1 /* 2 * Copyright (c) 1997, 1998 3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 * 32 * $FreeBSD: src/sys/pci/if_vr.c,v 1.26.2.13 2003/02/06 04:46:20 silby Exp $ 33 */ 34 35 /* 36 * VIA Rhine fast ethernet PCI NIC driver 37 * 38 * Supports various network adapters based on the VIA Rhine 39 * and Rhine II PCI controllers, including the D-Link DFE530TX. 40 * Datasheets are available at http://www.via.com.tw. 41 * 42 * Written by Bill Paul <wpaul@ctr.columbia.edu> 43 * Electrical Engineering Department 44 * Columbia University, New York City 45 */ 46 47 /* 48 * The VIA Rhine controllers are similar in some respects to the 49 * the DEC tulip chips, except less complicated. The controller 50 * uses an MII bus and an external physical layer interface. The 51 * receiver has a one entry perfect filter and a 64-bit hash table 52 * multicast filter. Transmit and receive descriptors are similar 53 * to the tulip. 54 * 55 * The Rhine has a serious flaw in its transmit DMA mechanism: 56 * transmit buffers must be longword aligned. Unfortunately, 57 * FreeBSD doesn't guarantee that mbufs will be filled in starting 58 * at longword boundaries, so we have to do a buffer copy before 59 * transmission. 60 */ 61 62 #include "opt_ifpoll.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/malloc.h> 69 #include <sys/kernel.h> 70 #include <sys/socket.h> 71 #include <sys/serialize.h> 72 #include <sys/bus.h> 73 #include <sys/rman.h> 74 #include <sys/thread2.h> 75 #include <sys/interrupt.h> 76 77 #include <net/if.h> 78 #include <net/ifq_var.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_dl.h> 82 #include <net/if_media.h> 83 #include <net/if_poll.h> 84 85 #include <net/bpf.h> 86 87 #include <vm/vm.h> /* for vtophys */ 88 #include <vm/pmap.h> /* for vtophys */ 89 90 #include <dev/netif/mii_layer/mii.h> 91 #include <dev/netif/mii_layer/miivar.h> 92 93 #include <bus/pci/pcidevs.h> 94 #include <bus/pci/pcireg.h> 95 #include <bus/pci/pcivar.h> 96 97 #define VR_USEIOSPACE 98 99 #include <dev/netif/vr/if_vrreg.h> 100 101 /* "controller miibus0" required. See GENERIC if you get errors here. */ 102 #include "miibus_if.h" 103 104 #undef VR_USESWSHIFT 105 106 /* 107 * Various supported device vendors/types and their names. 108 */ 109 static struct vr_type vr_devs[] = { 110 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043, 111 "VIA VT3043 Rhine I 10/100BaseTX" }, 112 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A, 113 "VIA VT86C100A Rhine II 10/100BaseTX" }, 114 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102, 115 "VIA VT6102 Rhine II 10/100BaseTX" }, 116 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105, 117 "VIA VT6105 Rhine III 10/100BaseTX" }, 118 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M, 119 "VIA VT6105M Rhine III 10/100BaseTX" }, 120 { PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_RHINEII, 121 "Delta Electronics Rhine II 10/100BaseTX" }, 122 { PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_RHINEII, 123 "Addtron Technology Rhine II 10/100BaseTX" }, 124 { 0, 0, NULL } 125 }; 126 127 static int vr_probe(device_t); 128 static int vr_attach(device_t); 129 static int vr_detach(device_t); 130 131 static int vr_newbuf(struct vr_softc *, struct vr_chain_onefrag *, 132 struct mbuf *); 133 static int vr_encap(struct vr_softc *, int, struct mbuf * ); 134 135 static void vr_rxeof(struct vr_softc *); 136 static void vr_rxeoc(struct vr_softc *); 137 static void vr_txeof(struct vr_softc *); 138 static void vr_txeoc(struct vr_softc *); 139 static void vr_tick(void *); 140 static void vr_intr(void *); 141 static void vr_start(struct ifnet *, struct ifaltq_subque *); 142 static int vr_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 143 static void vr_init(void *); 144 static void vr_stop(struct vr_softc *); 145 static void vr_watchdog(struct ifnet *); 146 static void vr_shutdown(device_t); 147 static int vr_ifmedia_upd(struct ifnet *); 148 static void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *); 149 150 #ifdef VR_USESWSHIFT 151 static void vr_mii_sync(struct vr_softc *); 152 static void vr_mii_send(struct vr_softc *, uint32_t, int); 153 #endif 154 static int vr_mii_readreg(struct vr_softc *, struct vr_mii_frame *); 155 static int vr_mii_writereg(struct vr_softc *, struct vr_mii_frame *); 156 static int vr_miibus_readreg(device_t, int, int); 157 static int vr_miibus_writereg(device_t, int, int, int); 158 static void vr_miibus_statchg(device_t); 159 160 static void vr_setcfg(struct vr_softc *, int); 161 static void vr_setmulti(struct vr_softc *); 162 static void vr_reset(struct vr_softc *); 163 static int vr_list_rx_init(struct vr_softc *); 164 static int vr_list_tx_init(struct vr_softc *); 165 #ifdef IFPOLL_ENABLE 166 static void vr_npoll(struct ifnet *, struct ifpoll_info *); 167 static void vr_npoll_compat(struct ifnet *, void *, int); 168 #endif 169 170 #ifdef VR_USEIOSPACE 171 #define VR_RES SYS_RES_IOPORT 172 #define VR_RID VR_PCI_LOIO 173 #else 174 #define VR_RES SYS_RES_MEMORY 175 #define VR_RID VR_PCI_LOMEM 176 #endif 177 178 static device_method_t vr_methods[] = { 179 /* Device interface */ 180 DEVMETHOD(device_probe, vr_probe), 181 DEVMETHOD(device_attach, vr_attach), 182 DEVMETHOD(device_detach, vr_detach), 183 DEVMETHOD(device_shutdown, vr_shutdown), 184 185 /* bus interface */ 186 DEVMETHOD(bus_print_child, bus_generic_print_child), 187 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 188 189 /* MII interface */ 190 DEVMETHOD(miibus_readreg, vr_miibus_readreg), 191 DEVMETHOD(miibus_writereg, vr_miibus_writereg), 192 DEVMETHOD(miibus_statchg, vr_miibus_statchg), 193 194 { 0, 0 } 195 }; 196 197 static driver_t vr_driver = { 198 "vr", 199 vr_methods, 200 sizeof(struct vr_softc) 201 }; 202 203 static devclass_t vr_devclass; 204 205 DECLARE_DUMMY_MODULE(if_vr); 206 DRIVER_MODULE(if_vr, pci, vr_driver, vr_devclass, NULL, NULL); 207 DRIVER_MODULE(miibus, vr, miibus_driver, miibus_devclass, NULL, NULL); 208 209 #define VR_SETBIT(sc, reg, x) \ 210 CSR_WRITE_1(sc, reg, \ 211 CSR_READ_1(sc, reg) | (x)) 212 213 #define VR_CLRBIT(sc, reg, x) \ 214 CSR_WRITE_1(sc, reg, \ 215 CSR_READ_1(sc, reg) & ~(x)) 216 217 #define VR_SETBIT16(sc, reg, x) \ 218 CSR_WRITE_2(sc, reg, \ 219 CSR_READ_2(sc, reg) | (x)) 220 221 #define VR_CLRBIT16(sc, reg, x) \ 222 CSR_WRITE_2(sc, reg, \ 223 CSR_READ_2(sc, reg) & ~(x)) 224 225 #define VR_SETBIT32(sc, reg, x) \ 226 CSR_WRITE_4(sc, reg, \ 227 CSR_READ_4(sc, reg) | (x)) 228 229 #define VR_CLRBIT32(sc, reg, x) \ 230 CSR_WRITE_4(sc, reg, \ 231 CSR_READ_4(sc, reg) & ~(x)) 232 233 #define SIO_SET(x) \ 234 CSR_WRITE_1(sc, VR_MIICMD, \ 235 CSR_READ_1(sc, VR_MIICMD) | (x)) 236 237 #define SIO_CLR(x) \ 238 CSR_WRITE_1(sc, VR_MIICMD, \ 239 CSR_READ_1(sc, VR_MIICMD) & ~(x)) 240 241 #ifdef VR_USESWSHIFT 242 /* 243 * Sync the PHYs by setting data bit and strobing the clock 32 times. 244 */ 245 static void 246 vr_mii_sync(struct vr_softc *sc) 247 { 248 int i; 249 250 SIO_SET(VR_MIICMD_DIR|VR_MIICMD_DATAIN); 251 252 for (i = 0; i < 32; i++) { 253 SIO_SET(VR_MIICMD_CLK); 254 DELAY(1); 255 SIO_CLR(VR_MIICMD_CLK); 256 DELAY(1); 257 } 258 } 259 260 /* 261 * Clock a series of bits through the MII. 262 */ 263 static void 264 vr_mii_send(struct vr_softc *sc, uint32_t bits, int cnt) 265 { 266 int i; 267 268 SIO_CLR(VR_MIICMD_CLK); 269 270 for (i = (0x1 << (cnt - 1)); i; i >>= 1) { 271 if (bits & i) 272 SIO_SET(VR_MIICMD_DATAIN); 273 else 274 SIO_CLR(VR_MIICMD_DATAIN); 275 DELAY(1); 276 SIO_CLR(VR_MIICMD_CLK); 277 DELAY(1); 278 SIO_SET(VR_MIICMD_CLK); 279 } 280 } 281 #endif 282 283 /* 284 * Read an PHY register through the MII. 285 */ 286 static int 287 vr_mii_readreg(struct vr_softc *sc, struct vr_mii_frame *frame) 288 #ifdef VR_USESWSHIFT 289 { 290 int i, ack; 291 292 /* Set up frame for RX. */ 293 frame->mii_stdelim = VR_MII_STARTDELIM; 294 frame->mii_opcode = VR_MII_READOP; 295 frame->mii_turnaround = 0; 296 frame->mii_data = 0; 297 298 CSR_WRITE_1(sc, VR_MIICMD, 0); 299 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); 300 301 /* Turn on data xmit. */ 302 SIO_SET(VR_MIICMD_DIR); 303 304 vr_mii_sync(sc); 305 306 /* Send command/address info. */ 307 vr_mii_send(sc, frame->mii_stdelim, 2); 308 vr_mii_send(sc, frame->mii_opcode, 2); 309 vr_mii_send(sc, frame->mii_phyaddr, 5); 310 vr_mii_send(sc, frame->mii_regaddr, 5); 311 312 /* Idle bit. */ 313 SIO_CLR((VR_MIICMD_CLK|VR_MIICMD_DATAIN)); 314 DELAY(1); 315 SIO_SET(VR_MIICMD_CLK); 316 DELAY(1); 317 318 /* Turn off xmit. */ 319 SIO_CLR(VR_MIICMD_DIR); 320 321 /* Check for ack */ 322 SIO_CLR(VR_MIICMD_CLK); 323 DELAY(1); 324 ack = CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT; 325 SIO_SET(VR_MIICMD_CLK); 326 DELAY(1); 327 328 /* 329 * Now try reading data bits. If the ack failed, we still 330 * need to clock through 16 cycles to keep the PHY(s) in sync. 331 */ 332 if (ack) { 333 for(i = 0; i < 16; i++) { 334 SIO_CLR(VR_MIICMD_CLK); 335 DELAY(1); 336 SIO_SET(VR_MIICMD_CLK); 337 DELAY(1); 338 } 339 goto fail; 340 } 341 342 for (i = 0x8000; i; i >>= 1) { 343 SIO_CLR(VR_MIICMD_CLK); 344 DELAY(1); 345 if (!ack) { 346 if (CSR_READ_4(sc, VR_MIICMD) & VR_MIICMD_DATAOUT) 347 frame->mii_data |= i; 348 DELAY(1); 349 } 350 SIO_SET(VR_MIICMD_CLK); 351 DELAY(1); 352 } 353 354 fail: 355 SIO_CLR(VR_MIICMD_CLK); 356 DELAY(1); 357 SIO_SET(VR_MIICMD_CLK); 358 DELAY(1); 359 360 if (ack) 361 return(1); 362 return(0); 363 } 364 #else 365 { 366 int i; 367 368 /* Set the PHY address. */ 369 CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)| 370 frame->mii_phyaddr); 371 372 /* Set the register address. */ 373 CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr); 374 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB); 375 376 for (i = 0; i < 10000; i++) { 377 if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0) 378 break; 379 DELAY(1); 380 } 381 frame->mii_data = CSR_READ_2(sc, VR_MIIDATA); 382 383 return(0); 384 } 385 #endif 386 387 388 /* 389 * Write to a PHY register through the MII. 390 */ 391 static int 392 vr_mii_writereg(struct vr_softc *sc, struct vr_mii_frame *frame) 393 #ifdef VR_USESWSHIFT 394 { 395 CSR_WRITE_1(sc, VR_MIICMD, 0); 396 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM); 397 398 /* Set up frame for TX. */ 399 frame->mii_stdelim = VR_MII_STARTDELIM; 400 frame->mii_opcode = VR_MII_WRITEOP; 401 frame->mii_turnaround = VR_MII_TURNAROUND; 402 403 /* Turn on data output. */ 404 SIO_SET(VR_MIICMD_DIR); 405 406 vr_mii_sync(sc); 407 408 vr_mii_send(sc, frame->mii_stdelim, 2); 409 vr_mii_send(sc, frame->mii_opcode, 2); 410 vr_mii_send(sc, frame->mii_phyaddr, 5); 411 vr_mii_send(sc, frame->mii_regaddr, 5); 412 vr_mii_send(sc, frame->mii_turnaround, 2); 413 vr_mii_send(sc, frame->mii_data, 16); 414 415 /* Idle bit. */ 416 SIO_SET(VR_MIICMD_CLK); 417 DELAY(1); 418 SIO_CLR(VR_MIICMD_CLK); 419 DELAY(1); 420 421 /* Turn off xmit. */ 422 SIO_CLR(VR_MIICMD_DIR); 423 424 return(0); 425 } 426 #else 427 { 428 int i; 429 430 /* Set the PHY-adress */ 431 CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)| 432 frame->mii_phyaddr); 433 434 /* Set the register address and data to write. */ 435 CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr); 436 CSR_WRITE_2(sc, VR_MIIDATA, frame->mii_data); 437 438 VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB); 439 440 for (i = 0; i < 10000; i++) { 441 if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0) 442 break; 443 DELAY(1); 444 } 445 return(0); 446 } 447 #endif 448 449 static int 450 vr_miibus_readreg(device_t dev, int phy, int reg) 451 { 452 struct vr_mii_frame frame; 453 struct vr_softc *sc; 454 455 sc = device_get_softc(dev); 456 457 switch (sc->vr_revid) { 458 case REV_ID_VT6102_APOLLO: 459 if (phy != 1) 460 return(0); 461 break; 462 default: 463 break; 464 } 465 466 bzero(&frame, sizeof(frame)); 467 468 frame.mii_phyaddr = phy; 469 frame.mii_regaddr = reg; 470 vr_mii_readreg(sc, &frame); 471 472 return(frame.mii_data); 473 } 474 475 static int 476 vr_miibus_writereg(device_t dev, int phy, int reg, int data) 477 { 478 struct vr_mii_frame frame; 479 struct vr_softc *sc; 480 481 sc = device_get_softc(dev); 482 483 switch (sc->vr_revid) { 484 case REV_ID_VT6102_APOLLO: 485 if (phy != 1) 486 return 0; 487 break; 488 default: 489 break; 490 } 491 492 bzero(&frame, sizeof(frame)); 493 494 frame.mii_phyaddr = phy; 495 frame.mii_regaddr = reg; 496 frame.mii_data = data; 497 498 vr_mii_writereg(sc, &frame); 499 500 return(0); 501 } 502 503 static void 504 vr_miibus_statchg(device_t dev) 505 { 506 struct mii_data *mii; 507 struct vr_softc *sc; 508 509 sc = device_get_softc(dev); 510 mii = device_get_softc(sc->vr_miibus); 511 vr_setcfg(sc, mii->mii_media_active); 512 } 513 514 /* 515 * Program the 64-bit multicast hash filter. 516 */ 517 static void 518 vr_setmulti(struct vr_softc *sc) 519 { 520 struct ifnet *ifp; 521 uint32_t hashes[2] = { 0, 0 }; 522 struct ifmultiaddr *ifma; 523 uint8_t rxfilt; 524 int mcnt = 0; 525 526 ifp = &sc->arpcom.ac_if; 527 528 rxfilt = CSR_READ_1(sc, VR_RXCFG); 529 530 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 531 rxfilt |= VR_RXCFG_RX_MULTI; 532 CSR_WRITE_1(sc, VR_RXCFG, rxfilt); 533 CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF); 534 CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF); 535 return; 536 } 537 538 /* First, zero out all the existing hash bits. */ 539 CSR_WRITE_4(sc, VR_MAR0, 0); 540 CSR_WRITE_4(sc, VR_MAR1, 0); 541 542 /* Now program new ones. */ 543 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 544 int h; 545 546 if (ifma->ifma_addr->sa_family != AF_LINK) 547 continue; 548 549 /* use the lower 6 bits */ 550 h = (ether_crc32_be( 551 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 552 ETHER_ADDR_LEN) >> 26) & 0x0000003F; 553 if (h < 32) 554 hashes[0] |= (1 << h); 555 else 556 hashes[1] |= (1 << (h - 32)); 557 mcnt++; 558 } 559 560 if (mcnt) 561 rxfilt |= VR_RXCFG_RX_MULTI; 562 else 563 rxfilt &= ~VR_RXCFG_RX_MULTI; 564 565 CSR_WRITE_4(sc, VR_MAR0, hashes[0]); 566 CSR_WRITE_4(sc, VR_MAR1, hashes[1]); 567 CSR_WRITE_1(sc, VR_RXCFG, rxfilt); 568 } 569 570 /* 571 * In order to fiddle with the 572 * 'full-duplex' and '100Mbps' bits in the netconfig register, we 573 * first have to put the transmit and/or receive logic in the idle state. 574 */ 575 static void 576 vr_setcfg(struct vr_softc *sc, int media) 577 { 578 int restart = 0; 579 580 if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) { 581 restart = 1; 582 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON)); 583 } 584 585 if ((media & IFM_GMASK) == IFM_FDX) 586 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); 587 else 588 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); 589 590 if (restart) 591 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); 592 } 593 594 static void 595 vr_reset(struct vr_softc *sc) 596 { 597 int i; 598 599 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); 600 601 for (i = 0; i < VR_TIMEOUT; i++) { 602 DELAY(10); 603 if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) 604 break; 605 } 606 if (i == VR_TIMEOUT) { 607 struct ifnet *ifp = &sc->arpcom.ac_if; 608 609 if (sc->vr_revid < REV_ID_VT3065_A) { 610 if_printf(ifp, "reset never completed!\n"); 611 } else { 612 /* Use newer force reset command */ 613 if_printf(ifp, "Using force reset command.\n"); 614 VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST); 615 } 616 } 617 618 /* Wait a little while for the chip to get its brains in order. */ 619 DELAY(1000); 620 } 621 622 /* 623 * Probe for a VIA Rhine chip. Check the PCI vendor and device 624 * IDs against our list and return a device name if we find a match. 625 */ 626 static int 627 vr_probe(device_t dev) 628 { 629 struct vr_type *t; 630 uint16_t vid, did; 631 632 vid = pci_get_vendor(dev); 633 did = pci_get_device(dev); 634 635 for (t = vr_devs; t->vr_name != NULL; ++t) { 636 if (vid == t->vr_vid && did == t->vr_did) { 637 device_set_desc(dev, t->vr_name); 638 return(0); 639 } 640 } 641 642 return(ENXIO); 643 } 644 645 /* 646 * Attach the interface. Allocate softc structures, do ifmedia 647 * setup and ethernet/BPF attach. 648 */ 649 static int 650 vr_attach(device_t dev) 651 { 652 int i; 653 uint8_t eaddr[ETHER_ADDR_LEN]; 654 struct vr_softc *sc; 655 struct ifnet *ifp; 656 int error = 0, rid; 657 658 sc = device_get_softc(dev); 659 callout_init(&sc->vr_stat_timer); 660 661 /* 662 * Handle power management nonsense. 663 */ 664 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 665 uint32_t iobase, membase, irq; 666 667 /* Save important PCI config data. */ 668 iobase = pci_read_config(dev, VR_PCI_LOIO, 4); 669 membase = pci_read_config(dev, VR_PCI_LOMEM, 4); 670 irq = pci_read_config(dev, VR_PCI_INTLINE, 4); 671 672 /* Reset the power state. */ 673 device_printf(dev, "chip is in D%d power mode " 674 "-- setting to D0\n", pci_get_powerstate(dev)); 675 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 676 677 /* Restore PCI config data. */ 678 pci_write_config(dev, VR_PCI_LOIO, iobase, 4); 679 pci_write_config(dev, VR_PCI_LOMEM, membase, 4); 680 pci_write_config(dev, VR_PCI_INTLINE, irq, 4); 681 } 682 683 pci_enable_busmaster(dev); 684 685 sc->vr_revid = pci_get_revid(dev); 686 687 rid = VR_RID; 688 sc->vr_res = bus_alloc_resource_any(dev, VR_RES, &rid, RF_ACTIVE); 689 690 if (sc->vr_res == NULL) { 691 device_printf(dev, "couldn't map ports/memory\n"); 692 return ENXIO; 693 } 694 695 sc->vr_btag = rman_get_bustag(sc->vr_res); 696 sc->vr_bhandle = rman_get_bushandle(sc->vr_res); 697 698 /* Allocate interrupt */ 699 rid = 0; 700 sc->vr_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 701 RF_SHAREABLE | RF_ACTIVE); 702 703 if (sc->vr_irq == NULL) { 704 device_printf(dev, "couldn't map interrupt\n"); 705 error = ENXIO; 706 goto fail; 707 } 708 709 /* 710 * Windows may put the chip in suspend mode when it 711 * shuts down. Be sure to kick it in the head to wake it 712 * up again. 713 */ 714 VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1)); 715 716 ifp = &sc->arpcom.ac_if; 717 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 718 719 /* Reset the adapter. */ 720 vr_reset(sc); 721 722 /* 723 * Turn on bit2 (MIION) in PCI configuration register 0x53 during 724 * initialization and disable AUTOPOLL. 725 */ 726 pci_write_config(dev, VR_PCI_MODE, 727 pci_read_config(dev, VR_PCI_MODE, 4) | (VR_MODE3_MIION << 24), 4); 728 VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL); 729 730 /* 731 * Get station address. The way the Rhine chips work, 732 * you're not allowed to directly access the EEPROM once 733 * they've been programmed a special way. Consequently, 734 * we need to read the node address from the PAR0 and PAR1 735 * registers. 736 */ 737 VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); 738 DELAY(200); 739 for (i = 0; i < ETHER_ADDR_LEN; i++) 740 eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); 741 742 sc->vr_ldata = contigmalloc(sizeof(struct vr_list_data), M_DEVBUF, 743 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); 744 745 if (sc->vr_ldata == NULL) { 746 device_printf(dev, "no memory for list buffers!\n"); 747 error = ENXIO; 748 goto fail; 749 } 750 751 /* Initialize TX buffer */ 752 sc->vr_cdata.vr_tx_buf = contigmalloc(VR_TX_BUF_SIZE, M_DEVBUF, 753 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0); 754 if (sc->vr_cdata.vr_tx_buf == NULL) { 755 device_printf(dev, "can't allocate tx buffer!\n"); 756 error = ENXIO; 757 goto fail; 758 } 759 760 /* Set various TX indexes to invalid value */ 761 sc->vr_cdata.vr_tx_free_idx = -1; 762 sc->vr_cdata.vr_tx_tail_idx = -1; 763 sc->vr_cdata.vr_tx_head_idx = -1; 764 765 766 ifp->if_softc = sc; 767 ifp->if_mtu = ETHERMTU; 768 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 769 ifp->if_ioctl = vr_ioctl; 770 ifp->if_start = vr_start; 771 #ifdef IFPOLL_ENABLE 772 ifp->if_npoll = vr_npoll; 773 #endif 774 ifp->if_watchdog = vr_watchdog; 775 ifp->if_init = vr_init; 776 ifp->if_baudrate = 10000000; 777 ifq_set_maxlen(&ifp->if_snd, VR_TX_LIST_CNT - 1); 778 ifq_set_ready(&ifp->if_snd); 779 780 /* 781 * Do MII setup. 782 */ 783 if (mii_phy_probe(dev, &sc->vr_miibus, 784 vr_ifmedia_upd, vr_ifmedia_sts)) { 785 if_printf(ifp, "MII without any phy!\n"); 786 error = ENXIO; 787 goto fail; 788 } 789 790 /* Call MI attach routine. */ 791 ether_ifattach(ifp, eaddr, NULL); 792 793 #ifdef IFPOLL_ENABLE 794 ifpoll_compat_setup(&sc->vr_npoll, NULL, NULL, device_get_unit(dev), 795 ifp->if_serializer); 796 #endif 797 798 error = bus_setup_intr(dev, sc->vr_irq, INTR_MPSAFE, 799 vr_intr, sc, &sc->vr_intrhand, 800 ifp->if_serializer); 801 if (error) { 802 device_printf(dev, "couldn't set up irq\n"); 803 ether_ifdetach(ifp); 804 goto fail; 805 } 806 807 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vr_irq)); 808 809 return 0; 810 811 fail: 812 vr_detach(dev); 813 return(error); 814 } 815 816 static int 817 vr_detach(device_t dev) 818 { 819 struct vr_softc *sc = device_get_softc(dev); 820 struct ifnet *ifp = &sc->arpcom.ac_if; 821 822 if (device_is_attached(dev)) { 823 lwkt_serialize_enter(ifp->if_serializer); 824 vr_stop(sc); 825 bus_teardown_intr(dev, sc->vr_irq, sc->vr_intrhand); 826 lwkt_serialize_exit(ifp->if_serializer); 827 828 ether_ifdetach(ifp); 829 } 830 if (sc->vr_miibus != NULL) 831 device_delete_child(dev, sc->vr_miibus); 832 bus_generic_detach(dev); 833 834 if (sc->vr_irq != NULL) 835 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vr_irq); 836 if (sc->vr_res != NULL) 837 bus_release_resource(dev, VR_RES, VR_RID, sc->vr_res); 838 if (sc->vr_ldata != NULL) 839 contigfree(sc->vr_ldata, sizeof(struct vr_list_data), M_DEVBUF); 840 if (sc->vr_cdata.vr_tx_buf != NULL) 841 contigfree(sc->vr_cdata.vr_tx_buf, VR_TX_BUF_SIZE, M_DEVBUF); 842 843 return(0); 844 } 845 846 /* 847 * Initialize the transmit descriptors. 848 */ 849 static int 850 vr_list_tx_init(struct vr_softc *sc) 851 { 852 struct vr_chain_data *cd; 853 struct vr_list_data *ld; 854 struct vr_chain *tx_chain; 855 int i; 856 857 cd = &sc->vr_cdata; 858 ld = sc->vr_ldata; 859 tx_chain = cd->vr_tx_chain; 860 861 for (i = 0; i < VR_TX_LIST_CNT; i++) { 862 tx_chain[i].vr_ptr = &ld->vr_tx_list[i]; 863 if (i == (VR_TX_LIST_CNT - 1)) 864 tx_chain[i].vr_next_idx = 0; 865 else 866 tx_chain[i].vr_next_idx = i + 1; 867 } 868 869 for (i = 0; i < VR_TX_LIST_CNT; ++i) { 870 void *tx_buf; 871 int next_idx; 872 873 tx_buf = VR_TX_BUF(sc, i); 874 next_idx = tx_chain[i].vr_next_idx; 875 876 tx_chain[i].vr_next_desc_paddr = 877 vtophys(tx_chain[next_idx].vr_ptr); 878 tx_chain[i].vr_buf_paddr = vtophys(tx_buf); 879 } 880 881 cd->vr_tx_free_idx = 0; 882 cd->vr_tx_tail_idx = cd->vr_tx_head_idx = -1; 883 884 return 0; 885 } 886 887 888 /* 889 * Initialize the RX descriptors and allocate mbufs for them. Note that 890 * we arrange the descriptors in a closed ring, so that the last descriptor 891 * points back to the first. 892 */ 893 static int 894 vr_list_rx_init(struct vr_softc *sc) 895 { 896 struct vr_chain_data *cd; 897 struct vr_list_data *ld; 898 int i, nexti; 899 900 cd = &sc->vr_cdata; 901 ld = sc->vr_ldata; 902 903 for (i = 0; i < VR_RX_LIST_CNT; i++) { 904 cd->vr_rx_chain[i].vr_ptr = (struct vr_desc *)&ld->vr_rx_list[i]; 905 if (vr_newbuf(sc, &cd->vr_rx_chain[i], NULL) == ENOBUFS) 906 return(ENOBUFS); 907 if (i == (VR_RX_LIST_CNT - 1)) 908 nexti = 0; 909 else 910 nexti = i + 1; 911 cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[nexti]; 912 ld->vr_rx_list[i].vr_next = vtophys(&ld->vr_rx_list[nexti]); 913 } 914 915 cd->vr_rx_head = &cd->vr_rx_chain[0]; 916 917 return(0); 918 } 919 920 /* 921 * Initialize an RX descriptor and attach an MBUF cluster. 922 * Note: the length fields are only 11 bits wide, which means the 923 * largest size we can specify is 2047. This is important because 924 * MCLBYTES is 2048, so we have to subtract one otherwise we'll 925 * overflow the field and make a mess. 926 */ 927 static int 928 vr_newbuf(struct vr_softc *sc, struct vr_chain_onefrag *c, struct mbuf *m) 929 { 930 struct mbuf *m_new = NULL; 931 932 if (m == NULL) { 933 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 934 if (m_new == NULL) 935 return (ENOBUFS); 936 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 937 } else { 938 m_new = m; 939 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 940 m_new->m_data = m_new->m_ext.ext_buf; 941 } 942 943 m_adj(m_new, sizeof(uint64_t)); 944 945 c->vr_mbuf = m_new; 946 c->vr_ptr->vr_status = VR_RXSTAT; 947 c->vr_ptr->vr_data = vtophys(mtod(m_new, caddr_t)); 948 c->vr_ptr->vr_ctl = VR_RXCTL | VR_RXLEN; 949 950 return(0); 951 } 952 953 /* 954 * A frame has been uploaded: pass the resulting mbuf chain up to 955 * the higher level protocols. 956 */ 957 static void 958 vr_rxeof(struct vr_softc *sc) 959 { 960 struct mbuf *m; 961 struct ifnet *ifp; 962 struct vr_chain_onefrag *cur_rx; 963 int total_len = 0; 964 uint32_t rxstat; 965 966 ifp = &sc->arpcom.ac_if; 967 968 while(!((rxstat = sc->vr_cdata.vr_rx_head->vr_ptr->vr_status) & 969 VR_RXSTAT_OWN)) { 970 struct mbuf *m0 = NULL; 971 972 cur_rx = sc->vr_cdata.vr_rx_head; 973 sc->vr_cdata.vr_rx_head = cur_rx->vr_nextdesc; 974 m = cur_rx->vr_mbuf; 975 976 /* 977 * If an error occurs, update stats, clear the 978 * status word and leave the mbuf cluster in place: 979 * it should simply get re-used next time this descriptor 980 * comes up in the ring. 981 */ 982 if (rxstat & VR_RXSTAT_RXERR) { 983 ifp->if_ierrors++; 984 if_printf(ifp, "rx error (%02x):", rxstat & 0x000000ff); 985 if (rxstat & VR_RXSTAT_CRCERR) 986 kprintf(" crc error"); 987 if (rxstat & VR_RXSTAT_FRAMEALIGNERR) 988 kprintf(" frame alignment error\n"); 989 if (rxstat & VR_RXSTAT_FIFOOFLOW) 990 kprintf(" FIFO overflow"); 991 if (rxstat & VR_RXSTAT_GIANT) 992 kprintf(" received giant packet"); 993 if (rxstat & VR_RXSTAT_RUNT) 994 kprintf(" received runt packet"); 995 if (rxstat & VR_RXSTAT_BUSERR) 996 kprintf(" system bus error"); 997 if (rxstat & VR_RXSTAT_BUFFERR) 998 kprintf("rx buffer error"); 999 kprintf("\n"); 1000 vr_newbuf(sc, cur_rx, m); 1001 continue; 1002 } 1003 1004 /* No errors; receive the packet. */ 1005 total_len = VR_RXBYTES(cur_rx->vr_ptr->vr_status); 1006 1007 /* 1008 * XXX The VIA Rhine chip includes the CRC with every 1009 * received frame, and there's no way to turn this 1010 * behavior off (at least, I can't find anything in 1011 * the manual that explains how to do it) so we have 1012 * to trim off the CRC manually. 1013 */ 1014 total_len -= ETHER_CRC_LEN; 1015 1016 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, 1017 total_len + ETHER_ALIGN, 0, ifp, NULL); 1018 vr_newbuf(sc, cur_rx, m); 1019 if (m0 == NULL) { 1020 ifp->if_ierrors++; 1021 continue; 1022 } 1023 m_adj(m0, ETHER_ALIGN); 1024 m = m0; 1025 1026 ifp->if_ipackets++; 1027 ifp->if_input(ifp, m); 1028 } 1029 } 1030 1031 static void 1032 vr_rxeoc(struct vr_softc *sc) 1033 { 1034 struct ifnet *ifp; 1035 int i; 1036 1037 ifp = &sc->arpcom.ac_if; 1038 1039 ifp->if_ierrors++; 1040 1041 VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); 1042 DELAY(10000); 1043 1044 /* Wait for receiver to stop */ 1045 for (i = 0x400; 1046 i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON); 1047 i--) 1048 ; /* Wait for receiver to stop */ 1049 1050 if (i == 0) { 1051 if_printf(ifp, "rx shutdown error!\n"); 1052 sc->vr_flags |= VR_F_RESTART; 1053 return; 1054 } 1055 1056 vr_rxeof(sc); 1057 1058 CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); 1059 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); 1060 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); 1061 } 1062 1063 /* 1064 * A frame was downloaded to the chip. It's safe for us to clean up 1065 * the list buffers. 1066 */ 1067 static void 1068 vr_txeof(struct vr_softc *sc) 1069 { 1070 struct vr_chain_data *cd; 1071 struct vr_chain *tx_chain; 1072 struct ifnet *ifp; 1073 1074 ifp = &sc->arpcom.ac_if; 1075 cd = &sc->vr_cdata; 1076 1077 /* Reset the timeout timer; if_txeoc will clear it. */ 1078 ifp->if_timer = 5; 1079 1080 /* Sanity check. */ 1081 if (cd->vr_tx_head_idx == -1) 1082 return; 1083 1084 tx_chain = cd->vr_tx_chain; 1085 1086 /* 1087 * Go through our tx list and free mbufs for those 1088 * frames that have been transmitted. 1089 */ 1090 while(tx_chain[cd->vr_tx_head_idx].vr_buf != NULL) { 1091 struct vr_chain *cur_tx; 1092 uint32_t txstat; 1093 int i; 1094 1095 cur_tx = &tx_chain[cd->vr_tx_head_idx]; 1096 txstat = cur_tx->vr_ptr->vr_status; 1097 1098 if ((txstat & VR_TXSTAT_ABRT) || 1099 (txstat & VR_TXSTAT_UDF)) { 1100 for (i = 0x400; 1101 i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON); 1102 i--) 1103 ; /* Wait for chip to shutdown */ 1104 if (i == 0) { 1105 if_printf(ifp, "tx shutdown timeout\n"); 1106 sc->vr_flags |= VR_F_RESTART; 1107 break; 1108 } 1109 VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; 1110 CSR_WRITE_4(sc, VR_TXADDR, vtophys(cur_tx->vr_ptr)); 1111 break; 1112 } 1113 1114 if (txstat & VR_TXSTAT_OWN) 1115 break; 1116 1117 if (txstat & VR_TXSTAT_ERRSUM) { 1118 ifp->if_oerrors++; 1119 if (txstat & VR_TXSTAT_DEFER) 1120 ifp->if_collisions++; 1121 if (txstat & VR_TXSTAT_LATECOLL) 1122 ifp->if_collisions++; 1123 } 1124 1125 ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3; 1126 1127 ifp->if_opackets++; 1128 cur_tx->vr_buf = NULL; 1129 1130 if (cd->vr_tx_head_idx == cd->vr_tx_tail_idx) { 1131 cd->vr_tx_head_idx = -1; 1132 cd->vr_tx_tail_idx = -1; 1133 break; 1134 } 1135 1136 cd->vr_tx_head_idx = cur_tx->vr_next_idx; 1137 } 1138 } 1139 1140 /* 1141 * TX 'end of channel' interrupt handler. 1142 */ 1143 static void 1144 vr_txeoc(struct vr_softc *sc) 1145 { 1146 struct ifnet *ifp; 1147 1148 ifp = &sc->arpcom.ac_if; 1149 1150 if (sc->vr_cdata.vr_tx_head_idx == -1) { 1151 ifq_clr_oactive(&ifp->if_snd); 1152 sc->vr_cdata.vr_tx_tail_idx = -1; 1153 ifp->if_timer = 0; 1154 } 1155 } 1156 1157 static void 1158 vr_tick(void *xsc) 1159 { 1160 struct vr_softc *sc = xsc; 1161 struct ifnet *ifp = &sc->arpcom.ac_if; 1162 struct mii_data *mii; 1163 1164 lwkt_serialize_enter(ifp->if_serializer); 1165 1166 if (sc->vr_flags & VR_F_RESTART) { 1167 if_printf(&sc->arpcom.ac_if, "restarting\n"); 1168 vr_stop(sc); 1169 vr_reset(sc); 1170 vr_init(sc); 1171 sc->vr_flags &= ~VR_F_RESTART; 1172 } 1173 1174 mii = device_get_softc(sc->vr_miibus); 1175 mii_tick(mii); 1176 1177 callout_reset(&sc->vr_stat_timer, hz, vr_tick, sc); 1178 1179 lwkt_serialize_exit(ifp->if_serializer); 1180 } 1181 1182 static void 1183 vr_intr(void *arg) 1184 { 1185 struct vr_softc *sc; 1186 struct ifnet *ifp; 1187 uint16_t status; 1188 1189 sc = arg; 1190 ifp = &sc->arpcom.ac_if; 1191 1192 /* Supress unwanted interrupts. */ 1193 if (!(ifp->if_flags & IFF_UP)) { 1194 vr_stop(sc); 1195 return; 1196 } 1197 1198 /* Disable interrupts. */ 1199 if ((ifp->if_flags & IFF_NPOLLING) == 0) 1200 CSR_WRITE_2(sc, VR_IMR, 0x0000); 1201 1202 for (;;) { 1203 status = CSR_READ_2(sc, VR_ISR); 1204 if (status) 1205 CSR_WRITE_2(sc, VR_ISR, status); 1206 1207 if ((status & VR_INTRS) == 0) 1208 break; 1209 1210 if (status & VR_ISR_RX_OK) 1211 vr_rxeof(sc); 1212 1213 if (status & VR_ISR_RX_DROPPED) { 1214 if_printf(ifp, "rx packet lost\n"); 1215 ifp->if_ierrors++; 1216 } 1217 1218 if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) || 1219 (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW)) { 1220 if_printf(ifp, "receive error (%04x)", status); 1221 if (status & VR_ISR_RX_NOBUF) 1222 kprintf(" no buffers"); 1223 if (status & VR_ISR_RX_OFLOW) 1224 kprintf(" overflow"); 1225 if (status & VR_ISR_RX_DROPPED) 1226 kprintf(" packet lost"); 1227 kprintf("\n"); 1228 vr_rxeoc(sc); 1229 } 1230 1231 if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) { 1232 vr_reset(sc); 1233 vr_init(sc); 1234 break; 1235 } 1236 1237 if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) || 1238 (status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) { 1239 vr_txeof(sc); 1240 if ((status & VR_ISR_UDFI) || 1241 (status & VR_ISR_TX_ABRT2) || 1242 (status & VR_ISR_TX_ABRT)) { 1243 ifp->if_oerrors++; 1244 if (sc->vr_cdata.vr_tx_head_idx != -1) { 1245 VR_SETBIT16(sc, VR_COMMAND, 1246 VR_CMD_TX_ON); 1247 VR_SETBIT16(sc, VR_COMMAND, 1248 VR_CMD_TX_GO); 1249 } 1250 } else { 1251 vr_txeoc(sc); 1252 } 1253 } 1254 1255 } 1256 1257 /* Re-enable interrupts. */ 1258 if ((ifp->if_flags & IFF_NPOLLING) == 0) 1259 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 1260 1261 if (!ifq_is_empty(&ifp->if_snd)) 1262 if_devstart(ifp); 1263 } 1264 1265 /* 1266 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1267 * pointers to the fragment pointers. 1268 */ 1269 static int 1270 vr_encap(struct vr_softc *sc, int chain_idx, struct mbuf *m_head) 1271 { 1272 struct vr_chain *c; 1273 struct vr_desc *f; 1274 caddr_t tx_buf; 1275 int len; 1276 1277 KASSERT(chain_idx >= 0 && chain_idx < VR_TX_LIST_CNT, 1278 ("%s: chain idx(%d) out of range 0-%d", 1279 sc->arpcom.ac_if.if_xname, chain_idx, VR_TX_LIST_CNT)); 1280 1281 /* 1282 * The VIA Rhine wants packet buffers to be longword 1283 * aligned, but very often our mbufs aren't. Rather than 1284 * waste time trying to decide when to copy and when not 1285 * to copy, just do it all the time. 1286 */ 1287 tx_buf = VR_TX_BUF(sc, chain_idx); 1288 m_copydata(m_head, 0, m_head->m_pkthdr.len, tx_buf); 1289 len = m_head->m_pkthdr.len; 1290 1291 /* 1292 * The Rhine chip doesn't auto-pad, so we have to make 1293 * sure to pad short frames out to the minimum frame length 1294 * ourselves. 1295 */ 1296 if (len < VR_MIN_FRAMELEN) { 1297 bzero(tx_buf + len, VR_MIN_FRAMELEN - len); 1298 len = VR_MIN_FRAMELEN; 1299 } 1300 1301 c = &sc->vr_cdata.vr_tx_chain[chain_idx]; 1302 c->vr_buf = tx_buf; 1303 1304 f = c->vr_ptr; 1305 f->vr_data = c->vr_buf_paddr; 1306 f->vr_ctl = len; 1307 f->vr_ctl |= (VR_TXCTL_TLINK | VR_TXCTL_FIRSTFRAG); 1308 f->vr_ctl |= (VR_TXCTL_LASTFRAG | VR_TXCTL_FINT); 1309 f->vr_status = 0; 1310 f->vr_next = c->vr_next_desc_paddr; 1311 1312 return(0); 1313 } 1314 1315 /* 1316 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1317 * to the mbuf data regions directly in the transmit lists. We also save a 1318 * copy of the pointers since the transmit list fragment pointers are 1319 * physical addresses. 1320 */ 1321 static void 1322 vr_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) 1323 { 1324 struct vr_softc *sc; 1325 struct vr_chain_data *cd; 1326 struct vr_chain *tx_chain; 1327 int cur_tx_idx, start_tx_idx, prev_tx_idx; 1328 1329 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); 1330 1331 if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) 1332 return; 1333 1334 sc = ifp->if_softc; 1335 cd = &sc->vr_cdata; 1336 tx_chain = cd->vr_tx_chain; 1337 1338 start_tx_idx = cd->vr_tx_free_idx; 1339 cur_tx_idx = prev_tx_idx = -1; 1340 1341 /* Check for an available queue slot. If there are none, punt. */ 1342 if (tx_chain[start_tx_idx].vr_buf != NULL) { 1343 ifq_set_oactive(&ifp->if_snd); 1344 return; 1345 } 1346 1347 while (tx_chain[cd->vr_tx_free_idx].vr_buf == NULL) { 1348 struct mbuf *m_head; 1349 struct vr_chain *cur_tx; 1350 1351 m_head = ifq_dequeue(&ifp->if_snd, NULL); 1352 if (m_head == NULL) 1353 break; 1354 1355 /* Pick a descriptor off the free list. */ 1356 cur_tx_idx = cd->vr_tx_free_idx; 1357 cur_tx = &tx_chain[cur_tx_idx]; 1358 1359 /* Pack the data into the descriptor. */ 1360 if (vr_encap(sc, cur_tx_idx, m_head)) { 1361 ifq_set_oactive(&ifp->if_snd); 1362 cur_tx_idx = prev_tx_idx; 1363 break; 1364 } 1365 1366 /* XXX */ 1367 if (cur_tx_idx != start_tx_idx) 1368 VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; 1369 1370 BPF_MTAP(ifp, m_head); 1371 m_freem(m_head); 1372 1373 VR_TXOWN(cur_tx) = VR_TXSTAT_OWN; 1374 VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO); 1375 1376 /* Iff everything went OK, we bump up free index. */ 1377 prev_tx_idx = cur_tx_idx; 1378 cd->vr_tx_free_idx = cur_tx->vr_next_idx; 1379 } 1380 1381 /* If there are no frames queued, bail. */ 1382 if (cur_tx_idx == -1) 1383 return; 1384 1385 sc->vr_cdata.vr_tx_tail_idx = cur_tx_idx; 1386 1387 if (sc->vr_cdata.vr_tx_head_idx == -1) 1388 sc->vr_cdata.vr_tx_head_idx = start_tx_idx; 1389 1390 /* 1391 * Set a timeout in case the chip goes out to lunch. 1392 */ 1393 ifp->if_timer = 5; 1394 } 1395 1396 static void 1397 vr_init(void *xsc) 1398 { 1399 struct vr_softc *sc = xsc; 1400 struct ifnet *ifp = &sc->arpcom.ac_if; 1401 struct mii_data *mii; 1402 int i; 1403 1404 mii = device_get_softc(sc->vr_miibus); 1405 1406 /* Cancel pending I/O and free all RX/TX buffers. */ 1407 vr_stop(sc); 1408 vr_reset(sc); 1409 1410 /* Set our station address. */ 1411 for (i = 0; i < ETHER_ADDR_LEN; i++) 1412 CSR_WRITE_1(sc, VR_PAR0 + i, sc->arpcom.ac_enaddr[i]); 1413 1414 /* Set DMA size. */ 1415 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH); 1416 VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD); 1417 1418 /* 1419 * BCR0 and BCR1 can override the RXCFG and TXCFG registers, 1420 * so we must set both. 1421 */ 1422 VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH); 1423 VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES); 1424 1425 VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH); 1426 VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD); 1427 1428 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); 1429 VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES); 1430 1431 VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); 1432 VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); 1433 1434 /* Init circular RX list. */ 1435 if (vr_list_rx_init(sc) == ENOBUFS) { 1436 vr_stop(sc); 1437 if_printf(ifp, "initialization failed: no memory for rx buffers\n"); 1438 return; 1439 } 1440 1441 /* Init tx descriptors. */ 1442 vr_list_tx_init(sc); 1443 1444 /* If we want promiscuous mode, set the allframes bit. */ 1445 if (ifp->if_flags & IFF_PROMISC) 1446 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); 1447 else 1448 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC); 1449 1450 /* Set capture broadcast bit to capture broadcast frames. */ 1451 if (ifp->if_flags & IFF_BROADCAST) 1452 VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); 1453 else 1454 VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD); 1455 1456 /* 1457 * Program the multicast filter, if necessary. 1458 */ 1459 vr_setmulti(sc); 1460 1461 /* 1462 * Load the address of the RX list. 1463 */ 1464 CSR_WRITE_4(sc, VR_RXADDR, vtophys(sc->vr_cdata.vr_rx_head->vr_ptr)); 1465 1466 /* Enable receiver and transmitter. */ 1467 CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START| 1468 VR_CMD_TX_ON|VR_CMD_RX_ON| 1469 VR_CMD_RX_GO); 1470 1471 CSR_WRITE_4(sc, VR_TXADDR, vtophys(&sc->vr_ldata->vr_tx_list[0])); 1472 1473 /* 1474 * Enable interrupts, unless we are polling. 1475 */ 1476 CSR_WRITE_2(sc, VR_ISR, 0xFFFF); 1477 #ifdef IFPOLL_ENABLE 1478 if ((ifp->if_flags & IFF_NPOLLING) == 0) 1479 #endif 1480 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 1481 1482 mii_mediachg(mii); 1483 1484 ifp->if_flags |= IFF_RUNNING; 1485 ifq_clr_oactive(&ifp->if_snd); 1486 1487 callout_reset(&sc->vr_stat_timer, hz, vr_tick, sc); 1488 } 1489 1490 /* 1491 * Set media options. 1492 */ 1493 static int 1494 vr_ifmedia_upd(struct ifnet *ifp) 1495 { 1496 struct vr_softc *sc; 1497 1498 sc = ifp->if_softc; 1499 1500 if (ifp->if_flags & IFF_UP) 1501 vr_init(sc); 1502 1503 return(0); 1504 } 1505 1506 /* 1507 * Report current media status. 1508 */ 1509 static void 1510 vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1511 { 1512 struct vr_softc *sc; 1513 struct mii_data *mii; 1514 1515 sc = ifp->if_softc; 1516 mii = device_get_softc(sc->vr_miibus); 1517 mii_pollstat(mii); 1518 ifmr->ifm_active = mii->mii_media_active; 1519 ifmr->ifm_status = mii->mii_media_status; 1520 } 1521 1522 static int 1523 vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) 1524 { 1525 struct vr_softc *sc = ifp->if_softc; 1526 struct ifreq *ifr = (struct ifreq *) data; 1527 struct mii_data *mii; 1528 int error = 0; 1529 1530 switch(command) { 1531 case SIOCSIFFLAGS: 1532 if (ifp->if_flags & IFF_UP) { 1533 vr_init(sc); 1534 } else { 1535 if (ifp->if_flags & IFF_RUNNING) 1536 vr_stop(sc); 1537 } 1538 error = 0; 1539 break; 1540 case SIOCADDMULTI: 1541 case SIOCDELMULTI: 1542 vr_setmulti(sc); 1543 error = 0; 1544 break; 1545 case SIOCGIFMEDIA: 1546 case SIOCSIFMEDIA: 1547 mii = device_get_softc(sc->vr_miibus); 1548 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1549 break; 1550 default: 1551 error = ether_ioctl(ifp, command, data); 1552 break; 1553 } 1554 return(error); 1555 } 1556 1557 #ifdef IFPOLL_ENABLE 1558 1559 static void 1560 vr_npoll_compat(struct ifnet *ifp, void *arg __unused, int count __unused) 1561 { 1562 struct vr_softc *sc = ifp->if_softc; 1563 1564 ASSERT_SERIALIZED(ifp->if_serializer); 1565 vr_intr(sc); 1566 } 1567 1568 static void 1569 vr_npoll(struct ifnet *ifp, struct ifpoll_info *info) 1570 { 1571 struct vr_softc *sc = ifp->if_softc; 1572 1573 ASSERT_SERIALIZED(ifp->if_serializer); 1574 1575 if (info != NULL) { 1576 int cpuid = sc->vr_npoll.ifpc_cpuid; 1577 1578 info->ifpi_rx[cpuid].poll_func = vr_npoll_compat; 1579 info->ifpi_rx[cpuid].arg = NULL; 1580 info->ifpi_rx[cpuid].serializer = ifp->if_serializer; 1581 1582 if (ifp->if_flags & IFF_RUNNING) { 1583 /* disable interrupts */ 1584 CSR_WRITE_2(sc, VR_IMR, 0x0000); 1585 } 1586 ifq_set_cpuid(&ifp->if_snd, cpuid); 1587 } else { 1588 if (ifp->if_flags & IFF_RUNNING) { 1589 /* enable interrupts */ 1590 CSR_WRITE_2(sc, VR_IMR, VR_INTRS); 1591 } 1592 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->vr_irq)); 1593 } 1594 } 1595 1596 #endif /* IFPOLL_ENABLE */ 1597 1598 static void 1599 vr_watchdog(struct ifnet *ifp) 1600 { 1601 struct vr_softc *sc; 1602 1603 sc = ifp->if_softc; 1604 1605 ifp->if_oerrors++; 1606 if_printf(ifp, "watchdog timeout\n"); 1607 1608 vr_stop(sc); 1609 vr_reset(sc); 1610 vr_init(sc); 1611 1612 if (!ifq_is_empty(&ifp->if_snd)) 1613 if_devstart(ifp); 1614 } 1615 1616 /* 1617 * Stop the adapter and free any mbufs allocated to the 1618 * RX and TX lists. 1619 */ 1620 static void 1621 vr_stop(struct vr_softc *sc) 1622 { 1623 int i; 1624 struct ifnet *ifp; 1625 1626 ifp = &sc->arpcom.ac_if; 1627 ifp->if_timer = 0; 1628 1629 callout_stop(&sc->vr_stat_timer); 1630 1631 VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); 1632 VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON)); 1633 CSR_WRITE_2(sc, VR_IMR, 0x0000); 1634 CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); 1635 CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); 1636 1637 /* 1638 * Free data in the RX lists. 1639 */ 1640 for (i = 0; i < VR_RX_LIST_CNT; i++) { 1641 if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) { 1642 m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf); 1643 sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL; 1644 } 1645 } 1646 bzero(&sc->vr_ldata->vr_rx_list, sizeof(sc->vr_ldata->vr_rx_list)); 1647 1648 /* 1649 * Reset the TX list buffer pointers. 1650 */ 1651 for (i = 0; i < VR_TX_LIST_CNT; i++) 1652 sc->vr_cdata.vr_tx_chain[i].vr_buf = NULL; 1653 1654 bzero(&sc->vr_ldata->vr_tx_list, sizeof(sc->vr_ldata->vr_tx_list)); 1655 1656 ifp->if_flags &= ~IFF_RUNNING; 1657 ifq_clr_oactive(&ifp->if_snd); 1658 } 1659 1660 /* 1661 * Stop all chip I/O so that the kernel's probe routines don't 1662 * get confused by errant DMAs when rebooting. 1663 */ 1664 static void 1665 vr_shutdown(device_t dev) 1666 { 1667 struct vr_softc *sc; 1668 1669 sc = device_get_softc(dev); 1670 1671 vr_stop(sc); 1672 } 1673