1 /* 2 * Copyright (c) 2004 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 * 32 * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $ 33 * $DragonFly: src/sys/dev/netif/vge/if_vge.c,v 1.2 2006/08/06 12:49:06 swildner Exp $ 34 */ 35 36 /* 37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that 46 * combines a tri-speed ethernet MAC and PHY, with the following 47 * features: 48 * 49 * o Jumbo frame support up to 16K 50 * o Transmit and receive flow control 51 * o IPv4 checksum offload 52 * o VLAN tag insertion and stripping 53 * o TCP large send 54 * o 64-bit multicast hash table filter 55 * o 64 entry CAM filter 56 * o 16K RX FIFO and 48K TX FIFO memory 57 * o Interrupt moderation 58 * 59 * The VT6122 supports up to four transmit DMA queues. The descriptors 60 * in the transmit ring can address up to 7 data fragments; frames which 61 * span more than 7 data buffers must be coalesced, but in general the 62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments 63 * long. The receive descriptors address only a single buffer. 64 * 65 * There are two peculiar design issues with the VT6122. One is that 66 * receive data buffers must be aligned on a 32-bit boundary. This is 67 * not a problem where the VT6122 is used as a LOM device in x86-based 68 * systems, but on architectures that generate unaligned access traps, we 69 * have to do some copying. 70 * 71 * The other issue has to do with the way 64-bit addresses are handled. 72 * The DMA descriptors only allow you to specify 48 bits of addressing 73 * information. The remaining 16 bits are specified using one of the 74 * I/O registers. If you only have a 32-bit system, then this isn't 75 * an issue, but if you have a 64-bit system and more than 4GB of 76 * memory, you must have to make sure your network data buffers reside 77 * in the same 48-bit 'segment.' 78 * 79 * Special thanks to Ryan Fu at VIA Networking for providing documentation 80 * and sample NICs for testing. 81 */ 82 83 #include "opt_polling.h" 84 85 #include <sys/param.h> 86 #include <sys/endian.h> 87 #include <sys/systm.h> 88 #include <sys/sockio.h> 89 #include <sys/mbuf.h> 90 #include <sys/malloc.h> 91 #include <sys/module.h> 92 #include <sys/kernel.h> 93 #include <sys/socket.h> 94 #include <sys/serialize.h> 95 #include <sys/proc.h> 96 97 #include <net/if.h> 98 #include <net/if_arp.h> 99 #include <net/ethernet.h> 100 #include <net/if_dl.h> 101 #include <net/if_media.h> 102 #include <net/ifq_var.h> 103 #include <net/if_types.h> 104 #include <net/vlan/if_vlan_var.h> 105 106 #include <net/bpf.h> 107 108 #include <machine/bus.h> 109 #include <machine/resource.h> 110 #include <sys/bus.h> 111 #include <sys/rman.h> 112 113 #include <dev/netif/mii_layer/mii.h> 114 #include <dev/netif/mii_layer/miivar.h> 115 116 #include <bus/pci/pcireg.h> 117 #include <bus/pci/pcivar.h> 118 #include <bus/pci/pcidevs.h> 119 120 #include "miibus_if.h" 121 122 #include <dev/netif/vge/if_vgereg.h> 123 #include <dev/netif/vge/if_vgevar.h> 124 125 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 126 127 /* 128 * Various supported device vendors/types and their names. 129 */ 130 static const struct vge_type vge_devs[] = { 131 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X, 132 "VIA Networking Gigabit Ethernet" }, 133 { 0, 0, NULL } 134 }; 135 136 static int vge_probe (device_t); 137 static int vge_attach (device_t); 138 static int vge_detach (device_t); 139 140 static int vge_encap (struct vge_softc *, struct mbuf *, int); 141 142 static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int); 143 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int, 144 bus_size_t, int); 145 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int, 146 bus_size_t, int); 147 static int vge_dma_alloc (device_t); 148 static void vge_dma_free (struct vge_softc *); 149 static int vge_newbuf (struct vge_softc *, int, struct mbuf *); 150 static int vge_rx_list_init (struct vge_softc *); 151 static int vge_tx_list_init (struct vge_softc *); 152 #ifdef VGE_FIXUP_RX 153 static __inline void vge_fixup_rx 154 (struct mbuf *); 155 #endif 156 static void vge_rxeof (struct vge_softc *, int); 157 static void vge_txeof (struct vge_softc *); 158 static void vge_intr (void *); 159 static void vge_tick (struct vge_softc *); 160 static void vge_start (struct ifnet *); 161 static int vge_ioctl (struct ifnet *, u_long, caddr_t, 162 struct ucred *); 163 static void vge_init (void *); 164 static void vge_stop (struct vge_softc *); 165 static void vge_watchdog (struct ifnet *); 166 static int vge_suspend (device_t); 167 static int vge_resume (device_t); 168 static void vge_shutdown (device_t); 169 static int vge_ifmedia_upd (struct ifnet *); 170 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *); 171 172 #ifdef VGE_EEPROM 173 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *); 174 #endif 175 static void vge_read_eeprom (struct vge_softc *, uint8_t *, int, int, int); 176 177 static void vge_miipoll_start (struct vge_softc *); 178 static void vge_miipoll_stop (struct vge_softc *); 179 static int vge_miibus_readreg (device_t, int, int); 180 static int vge_miibus_writereg (device_t, int, int, int); 181 static void vge_miibus_statchg (device_t); 182 183 static void vge_cam_clear (struct vge_softc *); 184 static int vge_cam_set (struct vge_softc *, uint8_t *); 185 static void vge_setmulti (struct vge_softc *); 186 static void vge_reset (struct vge_softc *); 187 188 #ifdef DEVICE_POLLING 189 static void vge_poll(struct ifnet *, enum poll_cmd, int); 190 static void vge_disable_intr(struct vge_softc *); 191 #endif 192 static void vge_enable_intr(struct vge_softc *, uint32_t); 193 194 #define VGE_PCI_LOIO 0x10 195 #define VGE_PCI_LOMEM 0x14 196 197 static device_method_t vge_methods[] = { 198 /* Device interface */ 199 DEVMETHOD(device_probe, vge_probe), 200 DEVMETHOD(device_attach, vge_attach), 201 DEVMETHOD(device_detach, vge_detach), 202 DEVMETHOD(device_suspend, vge_suspend), 203 DEVMETHOD(device_resume, vge_resume), 204 DEVMETHOD(device_shutdown, vge_shutdown), 205 206 /* bus interface */ 207 DEVMETHOD(bus_print_child, bus_generic_print_child), 208 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 209 210 /* MII interface */ 211 DEVMETHOD(miibus_readreg, vge_miibus_readreg), 212 DEVMETHOD(miibus_writereg, vge_miibus_writereg), 213 DEVMETHOD(miibus_statchg, vge_miibus_statchg), 214 215 { 0, 0 } 216 }; 217 218 static driver_t vge_driver = { 219 "vge", 220 vge_methods, 221 sizeof(struct vge_softc) 222 }; 223 224 static devclass_t vge_devclass; 225 226 DECLARE_DUMMY_MODULE(if_vge); 227 MODULE_DEPEND(if_vge, miibus, 1, 1, 1); 228 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, 0, 0); 229 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, 0, 0); 230 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0); 231 232 #ifdef VGE_EEPROM 233 /* 234 * Read a word of data stored in the EEPROM at address 'addr.' 235 */ 236 static void 237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest) 238 { 239 uint16_t word = 0; 240 int i; 241 242 /* 243 * Enter EEPROM embedded programming mode. In order to 244 * access the EEPROM at all, we first have to set the 245 * EELOAD bit in the CHIPCFG2 register. 246 */ 247 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 248 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 249 250 /* Select the address of the word we want to read */ 251 CSR_WRITE_1(sc, VGE_EEADDR, addr); 252 253 /* Issue read command */ 254 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); 255 256 /* Wait for the done bit to be set. */ 257 for (i = 0; i < VGE_TIMEOUT; i++) { 258 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) 259 break; 260 } 261 if (i == VGE_TIMEOUT) { 262 device_printf(sc->vge_dev, "EEPROM read timed out\n"); 263 *dest = 0; 264 return; 265 } 266 267 /* Read the result */ 268 word = CSR_READ_2(sc, VGE_EERDDAT); 269 270 /* Turn off EEPROM access mode. */ 271 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); 272 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); 273 274 *dest = word; 275 } 276 #endif 277 278 /* 279 * Read a sequence of words from the EEPROM. 280 */ 281 static void 282 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap) 283 { 284 int i; 285 #ifdef VGE_EEPROM 286 uint16_t word = 0, *ptr; 287 288 for (i = 0; i < cnt; i++) { 289 vge_eeprom_getword(sc, off + i, &word); 290 ptr = (uint16_t *)(dest + (i * 2)); 291 if (swap) 292 *ptr = ntohs(word); 293 else 294 *ptr = word; 295 } 296 #else 297 for (i = 0; i < ETHER_ADDR_LEN; i++) 298 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i); 299 #endif 300 } 301 302 static void 303 vge_miipoll_stop(struct vge_softc *sc) 304 { 305 int i; 306 307 CSR_WRITE_1(sc, VGE_MIICMD, 0); 308 309 for (i = 0; i < VGE_TIMEOUT; i++) { 310 DELAY(1); 311 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 312 break; 313 } 314 if (i == VGE_TIMEOUT) 315 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n"); 316 } 317 318 static void 319 vge_miipoll_start(struct vge_softc *sc) 320 { 321 int i; 322 323 /* First, make sure we're idle. */ 324 CSR_WRITE_1(sc, VGE_MIICMD, 0); 325 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); 326 327 for (i = 0; i < VGE_TIMEOUT; i++) { 328 DELAY(1); 329 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) 330 break; 331 } 332 if (i == VGE_TIMEOUT) { 333 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n"); 334 return; 335 } 336 337 /* Now enable auto poll mode. */ 338 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); 339 340 /* And make sure it started. */ 341 for (i = 0; i < VGE_TIMEOUT; i++) { 342 DELAY(1); 343 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) 344 break; 345 } 346 if (i == VGE_TIMEOUT) 347 if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n"); 348 } 349 350 static int 351 vge_miibus_readreg(device_t dev, int phy, int reg) 352 { 353 struct vge_softc *sc; 354 int i; 355 uint16_t rval = 0; 356 357 sc = device_get_softc(dev); 358 359 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 360 return(0); 361 362 vge_miipoll_stop(sc); 363 364 /* Specify the register we want to read. */ 365 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 366 367 /* Issue read command. */ 368 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); 369 370 /* Wait for the read command bit to self-clear. */ 371 for (i = 0; i < VGE_TIMEOUT; i++) { 372 DELAY(1); 373 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) 374 break; 375 } 376 if (i == VGE_TIMEOUT) 377 if_printf(&sc->arpcom.ac_if, "MII read timed out\n"); 378 else 379 rval = CSR_READ_2(sc, VGE_MIIDATA); 380 381 vge_miipoll_start(sc); 382 383 return (rval); 384 } 385 386 static int 387 vge_miibus_writereg(device_t dev, int phy, int reg, int data) 388 { 389 struct vge_softc *sc; 390 int i, rval = 0; 391 392 sc = device_get_softc(dev); 393 394 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) 395 return(0); 396 397 vge_miipoll_stop(sc); 398 399 /* Specify the register we want to write. */ 400 CSR_WRITE_1(sc, VGE_MIIADDR, reg); 401 402 /* Specify the data we want to write. */ 403 CSR_WRITE_2(sc, VGE_MIIDATA, data); 404 405 /* Issue write command. */ 406 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); 407 408 /* Wait for the write command bit to self-clear. */ 409 for (i = 0; i < VGE_TIMEOUT; i++) { 410 DELAY(1); 411 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) 412 break; 413 } 414 if (i == VGE_TIMEOUT) { 415 if_printf(&sc->arpcom.ac_if, "MII write timed out\n"); 416 rval = EIO; 417 } 418 419 vge_miipoll_start(sc); 420 421 return (rval); 422 } 423 424 static void 425 vge_cam_clear(struct vge_softc *sc) 426 { 427 int i; 428 429 /* 430 * Turn off all the mask bits. This tells the chip 431 * that none of the entries in the CAM filter are valid. 432 * desired entries will be enabled as we fill the filter in. 433 */ 434 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 435 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 436 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); 437 for (i = 0; i < 8; i++) 438 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 439 440 /* Clear the VLAN filter too. */ 441 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); 442 for (i = 0; i < 8; i++) 443 CSR_WRITE_1(sc, VGE_CAM0 + i, 0); 444 445 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 446 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 447 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 448 449 sc->vge_camidx = 0; 450 } 451 452 static int 453 vge_cam_set(struct vge_softc *sc, uint8_t *addr) 454 { 455 int i, error = 0; 456 457 if (sc->vge_camidx == VGE_CAM_MAXADDRS) 458 return(ENOSPC); 459 460 /* Select the CAM data page. */ 461 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 462 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); 463 464 /* Set the filter entry we want to update and enable writing. */ 465 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); 466 467 /* Write the address to the CAM registers */ 468 for (i = 0; i < ETHER_ADDR_LEN; i++) 469 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); 470 471 /* Issue a write command. */ 472 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); 473 474 /* Wake for it to clear. */ 475 for (i = 0; i < VGE_TIMEOUT; i++) { 476 DELAY(1); 477 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) 478 break; 479 } 480 if (i == VGE_TIMEOUT) { 481 if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n"); 482 error = EIO; 483 goto fail; 484 } 485 486 /* Select the CAM mask page. */ 487 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 488 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); 489 490 /* Set the mask bit that enables this filter. */ 491 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 492 1<<(sc->vge_camidx & 7)); 493 494 sc->vge_camidx++; 495 496 fail: 497 /* Turn off access to CAM. */ 498 CSR_WRITE_1(sc, VGE_CAMADDR, 0); 499 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 500 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 501 502 return (error); 503 } 504 505 /* 506 * Program the multicast filter. We use the 64-entry CAM filter 507 * for perfect filtering. If there's more than 64 multicast addresses, 508 * we use the hash filter insted. 509 */ 510 static void 511 vge_setmulti(struct vge_softc *sc) 512 { 513 struct ifnet *ifp = &sc->arpcom.ac_if; 514 int error = 0; 515 struct ifmultiaddr *ifma; 516 uint32_t h, hashes[2] = { 0, 0 }; 517 518 /* First, zot all the multicast entries. */ 519 vge_cam_clear(sc); 520 CSR_WRITE_4(sc, VGE_MAR0, 0); 521 CSR_WRITE_4(sc, VGE_MAR1, 0); 522 523 /* 524 * If the user wants allmulti or promisc mode, enable reception 525 * of all multicast frames. 526 */ 527 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 528 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); 529 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); 530 return; 531 } 532 533 /* Now program new ones */ 534 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 535 if (ifma->ifma_addr->sa_family != AF_LINK) 536 continue; 537 error = vge_cam_set(sc, 538 LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 539 if (error) 540 break; 541 } 542 543 /* If there were too many addresses, use the hash filter. */ 544 if (error) { 545 vge_cam_clear(sc); 546 547 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 548 if (ifma->ifma_addr->sa_family != AF_LINK) 549 continue; 550 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 551 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 552 if (h < 32) 553 hashes[0] |= (1 << h); 554 else 555 hashes[1] |= (1 << (h - 32)); 556 } 557 558 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); 559 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); 560 } 561 } 562 563 static void 564 vge_reset(struct vge_softc *sc) 565 { 566 int i; 567 568 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); 569 570 for (i = 0; i < VGE_TIMEOUT; i++) { 571 DELAY(5); 572 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) 573 break; 574 } 575 576 if (i == VGE_TIMEOUT) { 577 if_printf(&sc->arpcom.ac_if, "soft reset timed out"); 578 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); 579 DELAY(2000); 580 } 581 582 DELAY(5000); 583 584 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); 585 586 for (i = 0; i < VGE_TIMEOUT; i++) { 587 DELAY(5); 588 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) 589 break; 590 } 591 if (i == VGE_TIMEOUT) { 592 if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n"); 593 return; 594 } 595 596 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); 597 } 598 599 /* 600 * Probe for a VIA gigabit chip. Check the PCI vendor and device 601 * IDs against our list and return a device name if we find a match. 602 */ 603 static int 604 vge_probe(device_t dev) 605 { 606 const struct vge_type *t; 607 uint16_t did, vid; 608 609 did = pci_get_device(dev); 610 vid = pci_get_vendor(dev); 611 for (t = vge_devs; t->vge_name != NULL; ++t) { 612 if (vid == t->vge_vid && did == t->vge_did) { 613 device_set_desc(dev, t->vge_name); 614 return 0; 615 } 616 } 617 return (ENXIO); 618 } 619 620 static void 621 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg, 622 bus_size_t mapsize, int error) 623 { 624 625 struct vge_dmaload_arg *ctx; 626 struct vge_rx_desc *d = NULL; 627 628 if (error) 629 return; 630 631 ctx = arg; 632 633 /* Signal error to caller if there's too many segments */ 634 if (nseg > ctx->vge_maxsegs) { 635 ctx->vge_maxsegs = 0; 636 return; 637 } 638 639 /* 640 * Map the segment array into descriptors. 641 */ 642 d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx]; 643 644 /* If this descriptor is still owned by the chip, bail. */ 645 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) { 646 if_printf(&ctx->sc->arpcom.ac_if, 647 "tried to map busy descriptor\n"); 648 ctx->vge_maxsegs = 0; 649 return; 650 } 651 652 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I); 653 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 654 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); 655 d->vge_sts = 0; 656 d->vge_ctl = 0; 657 658 ctx->vge_maxsegs = 1; 659 } 660 661 static void 662 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg, 663 bus_size_t mapsize, int error) 664 { 665 struct vge_dmaload_arg *ctx; 666 struct vge_tx_desc *d = NULL; 667 struct vge_tx_frag *f; 668 int i = 0; 669 670 if (error) 671 return; 672 673 ctx = arg; 674 675 /* Signal error to caller if there's too many segments */ 676 if (nseg > ctx->vge_maxsegs) { 677 ctx->vge_maxsegs = 0; 678 return; 679 } 680 681 /* Map the segment array into descriptors. */ 682 d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx]; 683 684 /* If this descriptor is still owned by the chip, bail. */ 685 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) { 686 ctx->vge_maxsegs = 0; 687 return; 688 } 689 690 for (i = 0; i < nseg; i++) { 691 f = &d->vge_frag[i]; 692 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len)); 693 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr)); 694 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF); 695 } 696 697 /* Argh. This chip does not autopad short frames */ 698 if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) { 699 f = &d->vge_frag[i]; 700 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - 701 ctx->vge_m0->m_pkthdr.len)); 702 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); 703 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); 704 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN; 705 i++; 706 } 707 708 /* 709 * When telling the chip how many segments there are, we 710 * must use nsegs + 1 instead of just nsegs. Darned if I 711 * know why. 712 */ 713 i++; 714 715 d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16; 716 d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM; 717 718 if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN) 719 d->vge_ctl |= VGE_TDCTL_JUMBO; 720 721 ctx->vge_maxsegs = nseg; 722 } 723 724 /* 725 * Map a single buffer address. 726 */ 727 728 static void 729 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 730 { 731 if (error) 732 return; 733 734 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 735 *((bus_addr_t *)arg) = segs->ds_addr; 736 } 737 738 static int 739 vge_dma_alloc(device_t dev) 740 { 741 struct vge_softc *sc = device_get_softc(dev); 742 int error, nseg, i, tx_pos = 0, rx_pos = 0; 743 744 /* 745 * Allocate the parent bus DMA tag appropriate for PCI. 746 */ 747 #define VGE_NSEG_NEW 32 748 error = bus_dma_tag_create(NULL, /* parent */ 749 1, 0, /* alignment, boundary */ 750 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 751 BUS_SPACE_MAXADDR, /* highaddr */ 752 NULL, NULL, /* filter, filterarg */ 753 MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */ 754 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 755 BUS_DMA_ALLOCNOW, /* flags */ 756 &sc->vge_parent_tag); 757 if (error) { 758 device_printf(dev, "can't create parent dma tag\n"); 759 return error; 760 } 761 762 /* 763 * Allocate map for RX mbufs. 764 */ 765 nseg = 32; 766 error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0, 767 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 768 NULL, NULL, 769 MCLBYTES * nseg, nseg, MCLBYTES, 770 BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag); 771 if (error) { 772 device_printf(dev, "could not allocate mbuf dma tag\n"); 773 return error; 774 } 775 776 /* 777 * Allocate map for TX descriptor list. 778 */ 779 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0, 780 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 781 NULL, NULL, 782 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 783 BUS_DMA_ALLOCNOW, 784 &sc->vge_ldata.vge_tx_list_tag); 785 if (error) { 786 device_printf(dev, "could not allocate tx list dma tag\n"); 787 return error; 788 } 789 790 /* Allocate DMA'able memory for the TX ring */ 791 error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag, 792 (void **)&sc->vge_ldata.vge_tx_list, 793 BUS_DMA_WAITOK | BUS_DMA_ZERO, 794 &sc->vge_ldata.vge_tx_list_map); 795 if (error) { 796 device_printf(dev, "could not allocate tx list dma memory\n"); 797 return error; 798 } 799 800 /* Load the map for the TX ring. */ 801 error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag, 802 sc->vge_ldata.vge_tx_list_map, 803 sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ, 804 vge_dma_map_addr, 805 &sc->vge_ldata.vge_tx_list_addr, 806 BUS_DMA_WAITOK); 807 if (error) { 808 device_printf(dev, "could not load tx list\n"); 809 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag, 810 sc->vge_ldata.vge_tx_list, 811 sc->vge_ldata.vge_tx_list_map); 812 sc->vge_ldata.vge_tx_list = NULL; 813 return error; 814 } 815 816 /* Create DMA maps for TX buffers */ 817 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 818 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, 819 &sc->vge_ldata.vge_tx_dmamap[i]); 820 if (error) { 821 device_printf(dev, "can't create DMA map for TX\n"); 822 tx_pos = i; 823 goto map_fail; 824 } 825 } 826 tx_pos = VGE_TX_DESC_CNT; 827 828 /* 829 * Allocate map for RX descriptor list. 830 */ 831 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0, 832 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 833 NULL, NULL, 834 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, 835 BUS_DMA_ALLOCNOW, 836 &sc->vge_ldata.vge_rx_list_tag); 837 if (error) { 838 device_printf(dev, "could not allocate rx list dma tag\n"); 839 return error; 840 } 841 842 /* Allocate DMA'able memory for the RX ring */ 843 error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag, 844 (void **)&sc->vge_ldata.vge_rx_list, 845 BUS_DMA_WAITOK | BUS_DMA_ZERO, 846 &sc->vge_ldata.vge_rx_list_map); 847 if (error) { 848 device_printf(dev, "could not allocate rx list dma memory\n"); 849 return error; 850 } 851 852 /* Load the map for the RX ring. */ 853 error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag, 854 sc->vge_ldata.vge_rx_list_map, 855 sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ, 856 vge_dma_map_addr, 857 &sc->vge_ldata.vge_rx_list_addr, 858 BUS_DMA_WAITOK); 859 if (error) { 860 device_printf(dev, "could not load rx list\n"); 861 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag, 862 sc->vge_ldata.vge_rx_list, 863 sc->vge_ldata.vge_rx_list_map); 864 sc->vge_ldata.vge_rx_list = NULL; 865 return error; 866 } 867 868 /* Create DMA maps for RX buffers */ 869 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 870 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0, 871 &sc->vge_ldata.vge_rx_dmamap[i]); 872 if (error) { 873 device_printf(dev, "can't create DMA map for RX\n"); 874 rx_pos = i; 875 goto map_fail; 876 } 877 } 878 return (0); 879 880 map_fail: 881 for (i = 0; i < tx_pos; ++i) { 882 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 883 sc->vge_ldata.vge_tx_dmamap[i]); 884 } 885 for (i = 0; i < rx_pos; ++i) { 886 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 887 sc->vge_ldata.vge_rx_dmamap[i]); 888 } 889 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag); 890 sc->vge_ldata.vge_mtag = NULL; 891 892 return error; 893 } 894 895 static void 896 vge_dma_free(struct vge_softc *sc) 897 { 898 /* Unload and free the RX DMA ring memory and map */ 899 if (sc->vge_ldata.vge_rx_list_tag) { 900 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag, 901 sc->vge_ldata.vge_rx_list_map); 902 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag, 903 sc->vge_ldata.vge_rx_list, 904 sc->vge_ldata.vge_rx_list_map); 905 } 906 907 if (sc->vge_ldata.vge_rx_list_tag) 908 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag); 909 910 /* Unload and free the TX DMA ring memory and map */ 911 if (sc->vge_ldata.vge_tx_list_tag) { 912 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag, 913 sc->vge_ldata.vge_tx_list_map); 914 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag, 915 sc->vge_ldata.vge_tx_list, 916 sc->vge_ldata.vge_tx_list_map); 917 } 918 919 if (sc->vge_ldata.vge_tx_list_tag) 920 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag); 921 922 /* Destroy all the RX and TX buffer maps */ 923 if (sc->vge_ldata.vge_mtag) { 924 int i; 925 926 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 927 bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 928 sc->vge_ldata.vge_tx_dmamap[i]); 929 } 930 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 931 bus_dmamap_destroy(sc->vge_ldata.vge_mtag, 932 sc->vge_ldata.vge_rx_dmamap[i]); 933 } 934 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag); 935 } 936 937 if (sc->vge_parent_tag) 938 bus_dma_tag_destroy(sc->vge_parent_tag); 939 } 940 941 /* 942 * Attach the interface. Allocate softc structures, do ifmedia 943 * setup and ethernet/BPF attach. 944 */ 945 static int 946 vge_attach(device_t dev) 947 { 948 uint8_t eaddr[ETHER_ADDR_LEN]; 949 struct vge_softc *sc; 950 struct ifnet *ifp; 951 int error = 0; 952 953 sc = device_get_softc(dev); 954 ifp = &sc->arpcom.ac_if; 955 956 /* Initialize if_xname early, so if_printf() can be used */ 957 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 958 959 /* 960 * Map control/status registers. 961 */ 962 pci_enable_busmaster(dev); 963 964 sc->vge_res_rid = VGE_PCI_LOMEM; 965 sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 966 &sc->vge_res_rid, RF_ACTIVE); 967 if (sc->vge_res == NULL) { 968 device_printf(dev, "couldn't map ports/memory\n"); 969 return ENXIO; 970 } 971 972 sc->vge_btag = rman_get_bustag(sc->vge_res); 973 sc->vge_bhandle = rman_get_bushandle(sc->vge_res); 974 975 /* Allocate interrupt */ 976 sc->vge_irq_rid = 0; 977 sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid, 978 RF_SHAREABLE | RF_ACTIVE); 979 if (sc->vge_irq == NULL) { 980 device_printf(dev, "couldn't map interrupt\n"); 981 error = ENXIO; 982 goto fail; 983 } 984 985 /* Reset the adapter. */ 986 vge_reset(sc); 987 988 /* 989 * Get station address from the EEPROM. 990 */ 991 vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0); 992 993 /* Allocate DMA related stuffs */ 994 error = vge_dma_alloc(dev); 995 if (error) 996 goto fail; 997 998 /* Do MII setup */ 999 error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd, 1000 vge_ifmedia_sts); 1001 if (error) { 1002 device_printf(dev, "MII without any phy!\n"); 1003 goto fail; 1004 } 1005 1006 ifp->if_softc = sc; 1007 ifp->if_mtu = ETHERMTU; 1008 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1009 ifp->if_init = vge_init; 1010 ifp->if_start = vge_start; 1011 ifp->if_watchdog = vge_watchdog; 1012 ifp->if_ioctl = vge_ioctl; 1013 #ifdef DEVICE_POLLING 1014 ifp->if_poll = vge_poll; 1015 #endif 1016 ifp->if_hwassist = VGE_CSUM_FEATURES; 1017 ifp->if_capabilities = IFCAP_VLAN_MTU | 1018 IFCAP_HWCSUM | 1019 IFCAP_VLAN_HWTAGGING; 1020 ifp->if_capenable = ifp->if_capabilities; 1021 ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN); 1022 ifq_set_ready(&ifp->if_snd); 1023 1024 /* 1025 * Call MI attach routine. 1026 */ 1027 ether_ifattach(ifp, eaddr, NULL); 1028 1029 /* Hook interrupt last to avoid having to lock softc */ 1030 error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc, 1031 &sc->vge_intrhand, ifp->if_serializer); 1032 if (error) { 1033 device_printf(dev, "couldn't set up irq\n"); 1034 ether_ifdetach(ifp); 1035 goto fail; 1036 } 1037 1038 return 0; 1039 fail: 1040 vge_detach(dev); 1041 return error; 1042 } 1043 1044 /* 1045 * Shutdown hardware and free up resources. This can be called any 1046 * time after the mutex has been initialized. It is called in both 1047 * the error case in attach and the normal detach case so it needs 1048 * to be careful about only freeing resources that have actually been 1049 * allocated. 1050 */ 1051 static int 1052 vge_detach(device_t dev) 1053 { 1054 struct vge_softc *sc = device_get_softc(dev); 1055 struct ifnet *ifp = &sc->arpcom.ac_if; 1056 1057 /* These should only be active if attach succeeded */ 1058 if (device_is_attached(dev)) { 1059 lwkt_serialize_enter(ifp->if_serializer); 1060 1061 vge_stop(sc); 1062 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand); 1063 /* 1064 * Force off the IFF_UP flag here, in case someone 1065 * still had a BPF descriptor attached to this 1066 * interface. If they do, ether_ifattach() will cause 1067 * the BPF code to try and clear the promisc mode 1068 * flag, which will bubble down to vge_ioctl(), 1069 * which will try to call vge_init() again. This will 1070 * turn the NIC back on and restart the MII ticker, 1071 * which will panic the system when the kernel tries 1072 * to invoke the vge_tick() function that isn't there 1073 * anymore. 1074 */ 1075 ifp->if_flags &= ~IFF_UP; 1076 1077 lwkt_serialize_exit(ifp->if_serializer); 1078 1079 ether_ifdetach(ifp); 1080 } 1081 1082 if (sc->vge_miibus) 1083 device_delete_child(dev, sc->vge_miibus); 1084 bus_generic_detach(dev); 1085 1086 if (sc->vge_irq) { 1087 bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid, 1088 sc->vge_irq); 1089 } 1090 1091 if (sc->vge_res) { 1092 bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid, 1093 sc->vge_res); 1094 } 1095 1096 vge_dma_free(sc); 1097 return (0); 1098 } 1099 1100 static int 1101 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m) 1102 { 1103 struct vge_dmaload_arg arg; 1104 struct mbuf *n = NULL; 1105 int i, error; 1106 1107 if (m == NULL) { 1108 n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1109 if (n == NULL) 1110 return (ENOBUFS); 1111 m = n; 1112 } else { 1113 m->m_data = m->m_ext.ext_buf; 1114 } 1115 1116 1117 #ifdef VGE_FIXUP_RX 1118 /* 1119 * This is part of an evil trick to deal with non-x86 platforms. 1120 * The VIA chip requires RX buffers to be aligned on 32-bit 1121 * boundaries, but that will hose non-x86 machines. To get around 1122 * this, we leave some empty space at the start of each buffer 1123 * and for non-x86 hosts, we copy the buffer back two bytes 1124 * to achieve word alignment. This is slightly more efficient 1125 * than allocating a new buffer, copying the contents, and 1126 * discarding the old buffer. 1127 */ 1128 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN; 1129 m_adj(m, VGE_ETHER_ALIGN); 1130 #else 1131 m->m_len = m->m_pkthdr.len = MCLBYTES; 1132 #endif 1133 1134 arg.sc = sc; 1135 arg.vge_idx = idx; 1136 arg.vge_maxsegs = 1; 1137 arg.vge_flags = 0; 1138 1139 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, 1140 sc->vge_ldata.vge_rx_dmamap[idx], m, 1141 vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT); 1142 if (error || arg.vge_maxsegs != 1) { 1143 if (n != NULL) 1144 m_freem(n); 1145 return (ENOMEM); 1146 } 1147 1148 /* 1149 * Note: the manual fails to document the fact that for 1150 * proper opration, the driver needs to replentish the RX 1151 * DMA ring 4 descriptors at a time (rather than one at a 1152 * time, like most chips). We can allocate the new buffers 1153 * but we should not set the OWN bits until we're ready 1154 * to hand back 4 of them in one shot. 1155 */ 1156 1157 #define VGE_RXCHUNK 4 1158 sc->vge_rx_consumed++; 1159 if (sc->vge_rx_consumed == VGE_RXCHUNK) { 1160 for (i = idx; i != idx - sc->vge_rx_consumed; i--) { 1161 sc->vge_ldata.vge_rx_list[i].vge_sts |= 1162 htole32(VGE_RDSTS_OWN); 1163 } 1164 sc->vge_rx_consumed = 0; 1165 } 1166 1167 sc->vge_ldata.vge_rx_mbuf[idx] = m; 1168 1169 bus_dmamap_sync(sc->vge_ldata.vge_mtag, 1170 sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD); 1171 1172 return (0); 1173 } 1174 1175 static int 1176 vge_tx_list_init(struct vge_softc *sc) 1177 { 1178 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); 1179 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf, 1180 (VGE_TX_DESC_CNT * sizeof(struct mbuf *))); 1181 1182 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1183 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE); 1184 sc->vge_ldata.vge_tx_prodidx = 0; 1185 sc->vge_ldata.vge_tx_considx = 0; 1186 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT; 1187 1188 return (0); 1189 } 1190 1191 static int 1192 vge_rx_list_init(struct vge_softc *sc) 1193 { 1194 int i; 1195 1196 bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); 1197 bzero(&sc->vge_ldata.vge_rx_mbuf, 1198 VGE_RX_DESC_CNT * sizeof(struct mbuf *)); 1199 1200 sc->vge_rx_consumed = 0; 1201 1202 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 1203 if (vge_newbuf(sc, i, NULL) == ENOBUFS) 1204 return (ENOBUFS); 1205 } 1206 1207 /* Flush the RX descriptors */ 1208 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1209 sc->vge_ldata.vge_rx_list_map, 1210 BUS_DMASYNC_PREWRITE); 1211 1212 sc->vge_ldata.vge_rx_prodidx = 0; 1213 sc->vge_rx_consumed = 0; 1214 sc->vge_head = sc->vge_tail = NULL; 1215 return (0); 1216 } 1217 1218 #ifdef VGE_FIXUP_RX 1219 static __inline void 1220 vge_fixup_rx(struct mbuf *m) 1221 { 1222 uint16_t *src, *dst; 1223 int i; 1224 1225 src = mtod(m, uint16_t *); 1226 dst = src - 1; 1227 1228 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1229 *dst++ = *src++; 1230 1231 m->m_data -= ETHER_ALIGN; 1232 } 1233 #endif 1234 1235 /* 1236 * RX handler. We support the reception of jumbo frames that have 1237 * been fragmented across multiple 2K mbuf cluster buffers. 1238 */ 1239 static void 1240 vge_rxeof(struct vge_softc *sc, int count) 1241 { 1242 struct ifnet *ifp = &sc->arpcom.ac_if; 1243 struct mbuf *m; 1244 int i, total_len, lim = 0; 1245 struct vge_rx_desc *cur_rx; 1246 uint32_t rxstat, rxctl; 1247 1248 ASSERT_SERIALIZED(ifp->if_serializer); 1249 1250 i = sc->vge_ldata.vge_rx_prodidx; 1251 1252 /* Invalidate the descriptor memory */ 1253 1254 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1255 sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD); 1256 1257 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) { 1258 #ifdef DEVICE_POLLING 1259 if (count >= 0 && count-- == 0) 1260 break; 1261 #endif 1262 1263 cur_rx = &sc->vge_ldata.vge_rx_list[i]; 1264 m = sc->vge_ldata.vge_rx_mbuf[i]; 1265 total_len = VGE_RXBYTES(cur_rx); 1266 rxstat = le32toh(cur_rx->vge_sts); 1267 rxctl = le32toh(cur_rx->vge_ctl); 1268 1269 /* Invalidate the RX mbuf and unload its map */ 1270 bus_dmamap_sync(sc->vge_ldata.vge_mtag, 1271 sc->vge_ldata.vge_rx_dmamap[i], 1272 BUS_DMASYNC_POSTWRITE); 1273 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 1274 sc->vge_ldata.vge_rx_dmamap[i]); 1275 1276 /* 1277 * If the 'start of frame' bit is set, this indicates 1278 * either the first fragment in a multi-fragment receive, 1279 * or an intermediate fragment. Either way, we want to 1280 * accumulate the buffers. 1281 */ 1282 if (rxstat & VGE_RXPKT_SOF) { 1283 m->m_len = MCLBYTES - VGE_ETHER_ALIGN; 1284 if (sc->vge_head == NULL) { 1285 sc->vge_head = sc->vge_tail = m; 1286 } else { 1287 m->m_flags &= ~M_PKTHDR; 1288 sc->vge_tail->m_next = m; 1289 sc->vge_tail = m; 1290 } 1291 vge_newbuf(sc, i, NULL); 1292 VGE_RX_DESC_INC(i); 1293 continue; 1294 } 1295 1296 /* 1297 * Bad/error frames will have the RXOK bit cleared. 1298 * However, there's one error case we want to allow: 1299 * if a VLAN tagged frame arrives and the chip can't 1300 * match it against the CAM filter, it considers this 1301 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. 1302 * We don't want to drop the frame though: our VLAN 1303 * filtering is done in software. 1304 */ 1305 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) && 1306 !(rxstat & VGE_RDSTS_CSUMERR)) { 1307 ifp->if_ierrors++; 1308 /* 1309 * If this is part of a multi-fragment packet, 1310 * discard all the pieces. 1311 */ 1312 if (sc->vge_head != NULL) { 1313 m_freem(sc->vge_head); 1314 sc->vge_head = sc->vge_tail = NULL; 1315 } 1316 vge_newbuf(sc, i, m); 1317 VGE_RX_DESC_INC(i); 1318 continue; 1319 } 1320 1321 /* 1322 * If allocating a replacement mbuf fails, 1323 * reload the current one. 1324 */ 1325 if (vge_newbuf(sc, i, NULL)) { 1326 ifp->if_ierrors++; 1327 if (sc->vge_head != NULL) { 1328 m_freem(sc->vge_head); 1329 sc->vge_head = sc->vge_tail = NULL; 1330 } 1331 vge_newbuf(sc, i, m); 1332 VGE_RX_DESC_INC(i); 1333 continue; 1334 } 1335 1336 VGE_RX_DESC_INC(i); 1337 1338 if (sc->vge_head != NULL) { 1339 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN); 1340 /* 1341 * Special case: if there's 4 bytes or less 1342 * in this buffer, the mbuf can be discarded: 1343 * the last 4 bytes is the CRC, which we don't 1344 * care about anyway. 1345 */ 1346 if (m->m_len <= ETHER_CRC_LEN) { 1347 sc->vge_tail->m_len -= 1348 (ETHER_CRC_LEN - m->m_len); 1349 m_freem(m); 1350 } else { 1351 m->m_len -= ETHER_CRC_LEN; 1352 m->m_flags &= ~M_PKTHDR; 1353 sc->vge_tail->m_next = m; 1354 } 1355 m = sc->vge_head; 1356 sc->vge_head = sc->vge_tail = NULL; 1357 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1358 } else { 1359 m->m_pkthdr.len = m->m_len = 1360 (total_len - ETHER_CRC_LEN); 1361 } 1362 1363 #ifdef VGE_FIXUP_RX 1364 vge_fixup_rx(m); 1365 #endif 1366 ifp->if_ipackets++; 1367 m->m_pkthdr.rcvif = ifp; 1368 1369 /* Do RX checksumming if enabled */ 1370 if (ifp->if_capenable & IFCAP_RXCSUM) { 1371 /* Check IP header checksum */ 1372 if (rxctl & VGE_RDCTL_IPPKT) 1373 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1374 if (rxctl & VGE_RDCTL_IPCSUMOK) 1375 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1376 1377 /* Check TCP/UDP checksum */ 1378 if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) && 1379 rxctl & VGE_RDCTL_PROTOCSUMOK) { 1380 m->m_pkthdr.csum_flags |= 1381 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1382 m->m_pkthdr.csum_data = 0xffff; 1383 } 1384 } 1385 1386 if (rxstat & VGE_RDSTS_VTAG) 1387 VLAN_INPUT_TAG(m, ntohs((rxctl & VGE_RDCTL_VLANID))); 1388 else 1389 ifp->if_input(ifp, m); 1390 1391 lim++; 1392 if (lim == VGE_RX_DESC_CNT) 1393 break; 1394 } 1395 1396 /* Flush the RX DMA ring */ 1397 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag, 1398 sc->vge_ldata.vge_rx_list_map, 1399 BUS_DMASYNC_PREWRITE); 1400 1401 sc->vge_ldata.vge_rx_prodidx = i; 1402 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); 1403 } 1404 1405 static void 1406 vge_txeof(struct vge_softc *sc) 1407 { 1408 struct ifnet *ifp = &sc->arpcom.ac_if; 1409 uint32_t txstat; 1410 int idx; 1411 1412 idx = sc->vge_ldata.vge_tx_considx; 1413 1414 /* Invalidate the TX descriptor list */ 1415 1416 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1417 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD); 1418 1419 while (idx != sc->vge_ldata.vge_tx_prodidx) { 1420 1421 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts); 1422 if (txstat & VGE_TDSTS_OWN) 1423 break; 1424 1425 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]); 1426 sc->vge_ldata.vge_tx_mbuf[idx] = NULL; 1427 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 1428 sc->vge_ldata.vge_tx_dmamap[idx]); 1429 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) 1430 ifp->if_collisions++; 1431 if (txstat & VGE_TDSTS_TXERR) 1432 ifp->if_oerrors++; 1433 else 1434 ifp->if_opackets++; 1435 1436 sc->vge_ldata.vge_tx_free++; 1437 VGE_TX_DESC_INC(idx); 1438 } 1439 1440 /* No changes made to the TX ring, so no flush needed */ 1441 if (idx != sc->vge_ldata.vge_tx_considx) { 1442 sc->vge_ldata.vge_tx_considx = idx; 1443 ifp->if_flags &= ~IFF_OACTIVE; 1444 ifp->if_timer = 0; 1445 } 1446 1447 /* 1448 * If not all descriptors have been released reaped yet, 1449 * reload the timer so that we will eventually get another 1450 * interrupt that will cause us to re-enter this routine. 1451 * This is done in case the transmitter has gone idle. 1452 */ 1453 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) 1454 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1455 } 1456 1457 static void 1458 vge_tick(struct vge_softc *sc) 1459 { 1460 struct ifnet *ifp = &sc->arpcom.ac_if; 1461 struct mii_data *mii; 1462 1463 mii = device_get_softc(sc->vge_miibus); 1464 1465 mii_tick(mii); 1466 if (sc->vge_link) { 1467 if (!(mii->mii_media_status & IFM_ACTIVE)) { 1468 sc->vge_link = 0; 1469 #if 0 1470 if_link_state_change(sc->vge_ifp, 1471 LINK_STATE_DOWN); 1472 #endif 1473 } 1474 } else { 1475 if (mii->mii_media_status & IFM_ACTIVE && 1476 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1477 sc->vge_link = 1; 1478 #if 0 1479 if_link_state_change(sc->vge_ifp, 1480 LINK_STATE_UP); 1481 #endif 1482 if (!ifq_is_empty(&ifp->if_snd)) 1483 ifp->if_start(ifp); 1484 } 1485 } 1486 } 1487 1488 #ifdef DEVICE_POLLING 1489 static void 1490 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1491 { 1492 struct vge_softc *sc = ifp->if_softc; 1493 1494 sc->rxcycles = count; 1495 1496 switch (cmd) { 1497 case POLL_REGISTER: 1498 vge_disable_intr(sc); 1499 break; 1500 case POLL_DEREGISTER: 1501 vge_enable_intr(sc, 0xffffffff); 1502 break; 1503 case POLL_ONLY: 1504 case POLL_AND_CHECK_STATUS: 1505 vge_rxeof(sc, count); 1506 vge_txeof(sc); 1507 1508 if (!ifq_is_empty(&ifp->if_snd)) 1509 ifp->if_start(ifp); 1510 1511 /* XXX copy & paste from vge_intr */ 1512 if (cmd == POLL_AND_CHECK_STATUS) { 1513 uint32_t status = 0; 1514 1515 status = CSR_READ_4(sc, VGE_ISR); 1516 if (status == 0xffffffff) 1517 break; 1518 1519 if (status) 1520 CSR_WRITE_4(sc, VGE_ISR, status); 1521 1522 if (status & (VGE_ISR_TXDMA_STALL | 1523 VGE_ISR_RXDMA_STALL)) 1524 vge_init(sc); 1525 1526 if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) { 1527 ifp->if_ierrors++; 1528 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1529 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1530 } 1531 } 1532 break; 1533 } 1534 1535 } 1536 #endif /* DEVICE_POLLING */ 1537 1538 static void 1539 vge_intr(void *arg) 1540 { 1541 struct vge_softc *sc = arg; 1542 struct ifnet *ifp = &sc->arpcom.ac_if; 1543 uint32_t status; 1544 1545 if (sc->suspended || !(ifp->if_flags & IFF_UP)) 1546 return; 1547 1548 /* Disable interrupts */ 1549 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 1550 1551 for (;;) { 1552 status = CSR_READ_4(sc, VGE_ISR); 1553 /* If the card has gone away the read returns 0xffff. */ 1554 if (status == 0xFFFFFFFF) 1555 break; 1556 1557 if (status) 1558 CSR_WRITE_4(sc, VGE_ISR, status); 1559 1560 if ((status & VGE_INTRS) == 0) 1561 break; 1562 1563 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) 1564 vge_rxeof(sc, -1); 1565 1566 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { 1567 vge_rxeof(sc, -1); 1568 ifp->if_ierrors++; 1569 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1570 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1571 } 1572 1573 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) 1574 vge_txeof(sc); 1575 1576 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) 1577 vge_init(sc); 1578 1579 if (status & VGE_ISR_LINKSTS) 1580 vge_tick(sc); 1581 } 1582 1583 /* Re-enable interrupts */ 1584 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 1585 1586 if (!ifq_is_empty(&ifp->if_snd)) 1587 ifp->if_start(ifp); 1588 } 1589 1590 static int 1591 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx) 1592 { 1593 struct vge_dmaload_arg arg; 1594 bus_dmamap_t map; 1595 int error; 1596 1597 arg.vge_flags = 0; 1598 1599 if (m_head->m_pkthdr.csum_flags & CSUM_IP) 1600 arg.vge_flags |= VGE_TDCTL_IPCSUM; 1601 if (m_head->m_pkthdr.csum_flags & CSUM_TCP) 1602 arg.vge_flags |= VGE_TDCTL_TCPCSUM; 1603 if (m_head->m_pkthdr.csum_flags & CSUM_UDP) 1604 arg.vge_flags |= VGE_TDCTL_UDPCSUM; 1605 1606 arg.sc = sc; 1607 arg.vge_idx = idx; 1608 arg.vge_m0 = m_head; 1609 arg.vge_maxsegs = VGE_TX_FRAGS; 1610 1611 map = sc->vge_ldata.vge_tx_dmamap[idx]; 1612 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head, 1613 vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT); 1614 if (error && error != EFBIG) { 1615 if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n", 1616 error); 1617 goto fail; 1618 } 1619 1620 /* Too many segments to map, coalesce into a single mbuf */ 1621 if (error || arg.vge_maxsegs == 0) { 1622 struct mbuf *m_new; 1623 1624 m_new = m_defrag(m_head, MB_DONTWAIT); 1625 if (m_new == NULL) { 1626 error = ENOBUFS; 1627 goto fail; 1628 } else { 1629 m_head = m_new; 1630 } 1631 1632 arg.sc = sc; 1633 arg.vge_m0 = m_head; 1634 arg.vge_idx = idx; 1635 arg.vge_maxsegs = 1; 1636 1637 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, 1638 m_head, vge_dma_map_tx_desc, &arg, 1639 BUS_DMA_NOWAIT); 1640 if (error) { 1641 if_printf(&sc->arpcom.ac_if, 1642 "can't map mbuf (error %d)\n", error); 1643 goto fail; 1644 } 1645 } 1646 1647 sc->vge_ldata.vge_tx_mbuf[idx] = m_head; 1648 sc->vge_ldata.vge_tx_free--; 1649 1650 /* 1651 * Set up hardware VLAN tagging. 1652 */ 1653 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && 1654 m_head->m_pkthdr.rcvif != NULL && 1655 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) { 1656 struct ifvlan *ifv = m_head->m_pkthdr.rcvif->if_softc; 1657 1658 if (ifv != NULL) { 1659 sc->vge_ldata.vge_tx_list[idx].vge_ctl |= 1660 htole32(htons(ifv->ifv_tag) | VGE_TDCTL_VTAG); 1661 } 1662 } 1663 1664 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN); 1665 return (0); 1666 1667 fail: 1668 m_freem(m_head); 1669 return error; 1670 } 1671 1672 /* 1673 * Main transmit routine. 1674 */ 1675 1676 static void 1677 vge_start(struct ifnet *ifp) 1678 { 1679 struct vge_softc *sc = ifp->if_softc; 1680 struct mbuf *m_head = NULL; 1681 int idx, pidx = 0; 1682 1683 ASSERT_SERIALIZED(ifp->if_serializer); 1684 1685 if (!sc->vge_link || (ifp->if_flags & IFF_OACTIVE)) 1686 return; 1687 1688 if (ifq_is_empty(&ifp->if_snd)) 1689 return; 1690 1691 idx = sc->vge_ldata.vge_tx_prodidx; 1692 1693 pidx = idx - 1; 1694 if (pidx < 0) 1695 pidx = VGE_TX_DESC_CNT - 1; 1696 1697 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) { 1698 m_head = ifq_poll(&ifp->if_snd); 1699 if (m_head == NULL) 1700 break; 1701 1702 if (sc->vge_ldata.vge_tx_free <= 2) { 1703 ifp->if_flags |= IFF_OACTIVE; 1704 break; 1705 } 1706 1707 m_head = ifq_dequeue(&ifp->if_snd, m_head); 1708 1709 if (vge_encap(sc, m_head, idx)) { 1710 /* If vge_encap() failed, it will free m_head for us */ 1711 ifp->if_flags |= IFF_OACTIVE; 1712 break; 1713 } 1714 1715 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |= 1716 htole16(VGE_TXDESC_Q); 1717 1718 pidx = idx; 1719 VGE_TX_DESC_INC(idx); 1720 1721 /* 1722 * If there's a BPF listener, bounce a copy of this frame 1723 * to him. 1724 */ 1725 BPF_MTAP(ifp, m_head); 1726 } 1727 1728 if (idx == sc->vge_ldata.vge_tx_prodidx) 1729 return; 1730 1731 /* Flush the TX descriptors */ 1732 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag, 1733 sc->vge_ldata.vge_tx_list_map, 1734 BUS_DMASYNC_PREWRITE); 1735 1736 /* Issue a transmit command. */ 1737 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); 1738 1739 sc->vge_ldata.vge_tx_prodidx = idx; 1740 1741 /* 1742 * Use the countdown timer for interrupt moderation. 1743 * 'TX done' interrupts are disabled. Instead, we reset the 1744 * countdown timer, which will begin counting until it hits 1745 * the value in the SSTIMER register, and then trigger an 1746 * interrupt. Each time we set the TIMER0_ENABLE bit, the 1747 * the timer count is reloaded. Only when the transmitter 1748 * is idle will the timer hit 0 and an interrupt fire. 1749 */ 1750 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); 1751 1752 /* 1753 * Set a timeout in case the chip goes out to lunch. 1754 */ 1755 ifp->if_timer = 5; 1756 } 1757 1758 static void 1759 vge_init(void *xsc) 1760 { 1761 struct vge_softc *sc = xsc; 1762 struct ifnet *ifp = &sc->arpcom.ac_if; 1763 struct mii_data *mii; 1764 int i; 1765 1766 ASSERT_SERIALIZED(ifp->if_serializer); 1767 1768 mii = device_get_softc(sc->vge_miibus); 1769 1770 /* 1771 * Cancel pending I/O and free all RX/TX buffers. 1772 */ 1773 vge_stop(sc); 1774 vge_reset(sc); 1775 1776 /* 1777 * Initialize the RX and TX descriptors and mbufs. 1778 */ 1779 vge_rx_list_init(sc); 1780 vge_tx_list_init(sc); 1781 1782 /* Set our station address */ 1783 for (i = 0; i < ETHER_ADDR_LEN; i++) 1784 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]); 1785 1786 /* 1787 * Set receive FIFO threshold. Also allow transmission and 1788 * reception of VLAN tagged frames. 1789 */ 1790 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); 1791 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); 1792 1793 /* Set DMA burst length */ 1794 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); 1795 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); 1796 1797 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); 1798 1799 /* Set collision backoff algorithm */ 1800 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| 1801 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); 1802 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); 1803 1804 /* Disable LPSEL field in priority resolution */ 1805 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); 1806 1807 /* 1808 * Load the addresses of the DMA queues into the chip. 1809 * Note that we only use one transmit queue. 1810 */ 1811 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, 1812 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr)); 1813 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); 1814 1815 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 1816 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr)); 1817 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); 1818 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); 1819 1820 /* Enable and wake up the RX descriptor queue */ 1821 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); 1822 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); 1823 1824 /* Enable the TX descriptor queue */ 1825 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); 1826 1827 /* Set up the receive filter -- allow large frames for VLANs. */ 1828 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); 1829 1830 /* If we want promiscuous mode, set the allframes bit. */ 1831 if (ifp->if_flags & IFF_PROMISC) 1832 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); 1833 1834 /* Set capture broadcast bit to capture broadcast frames. */ 1835 if (ifp->if_flags & IFF_BROADCAST) 1836 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); 1837 1838 /* Set multicast bit to capture multicast frames. */ 1839 if (ifp->if_flags & IFF_MULTICAST) 1840 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); 1841 1842 /* Init the cam filter. */ 1843 vge_cam_clear(sc); 1844 1845 /* Init the multicast filter. */ 1846 vge_setmulti(sc); 1847 1848 /* Enable flow control */ 1849 1850 CSR_WRITE_1(sc, VGE_CRS2, 0x8B); 1851 1852 /* Enable jumbo frame reception (if desired) */ 1853 1854 /* Start the MAC. */ 1855 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); 1856 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); 1857 CSR_WRITE_1(sc, VGE_CRS0, 1858 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); 1859 1860 /* 1861 * Configure one-shot timer for microsecond 1862 * resulution and load it for 500 usecs. 1863 */ 1864 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); 1865 CSR_WRITE_2(sc, VGE_SSTIMER, 400); 1866 1867 /* 1868 * Configure interrupt moderation for receive. Enable 1869 * the holdoff counter and load it, and set the RX 1870 * suppression count to the number of descriptors we 1871 * want to allow before triggering an interrupt. 1872 * The holdoff timer is in units of 20 usecs. 1873 */ 1874 1875 #ifdef notyet 1876 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); 1877 /* Select the interrupt holdoff timer page. */ 1878 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 1879 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); 1880 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ 1881 1882 /* Enable use of the holdoff timer. */ 1883 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); 1884 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); 1885 1886 /* Select the RX suppression threshold page. */ 1887 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 1888 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); 1889 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ 1890 1891 /* Restore the page select bits. */ 1892 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); 1893 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); 1894 #endif 1895 1896 #ifdef DEVICE_POLLING 1897 /* Disable intr if polling(4) is enabled */ 1898 if (ifp->if_flags & IFF_POLLING) 1899 vge_disable_intr(sc); 1900 else 1901 #endif 1902 vge_enable_intr(sc, 0); 1903 1904 mii_mediachg(mii); 1905 1906 ifp->if_flags |= IFF_RUNNING; 1907 ifp->if_flags &= ~IFF_OACTIVE; 1908 1909 sc->vge_if_flags = 0; 1910 sc->vge_link = 0; 1911 } 1912 1913 /* 1914 * Set media options. 1915 */ 1916 static int 1917 vge_ifmedia_upd(struct ifnet *ifp) 1918 { 1919 struct vge_softc *sc = ifp->if_softc; 1920 struct mii_data *mii = device_get_softc(sc->vge_miibus); 1921 1922 mii_mediachg(mii); 1923 1924 return (0); 1925 } 1926 1927 /* 1928 * Report current media status. 1929 */ 1930 static void 1931 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1932 { 1933 struct vge_softc *sc = ifp->if_softc; 1934 struct mii_data *mii = device_get_softc(sc->vge_miibus); 1935 1936 mii_pollstat(mii); 1937 ifmr->ifm_active = mii->mii_media_active; 1938 ifmr->ifm_status = mii->mii_media_status; 1939 } 1940 1941 static void 1942 vge_miibus_statchg(device_t dev) 1943 { 1944 struct vge_softc *sc; 1945 struct mii_data *mii; 1946 struct ifmedia_entry *ife; 1947 1948 sc = device_get_softc(dev); 1949 mii = device_get_softc(sc->vge_miibus); 1950 ife = mii->mii_media.ifm_cur; 1951 1952 /* 1953 * If the user manually selects a media mode, we need to turn 1954 * on the forced MAC mode bit in the DIAGCTL register. If the 1955 * user happens to choose a full duplex mode, we also need to 1956 * set the 'force full duplex' bit. This applies only to 1957 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC 1958 * mode is disabled, and in 1000baseT mode, full duplex is 1959 * always implied, so we turn on the forced mode bit but leave 1960 * the FDX bit cleared. 1961 */ 1962 1963 switch (IFM_SUBTYPE(ife->ifm_media)) { 1964 case IFM_AUTO: 1965 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 1966 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 1967 break; 1968 case IFM_1000_T: 1969 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 1970 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 1971 break; 1972 case IFM_100_TX: 1973 case IFM_10_T: 1974 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); 1975 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) 1976 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 1977 else 1978 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); 1979 break; 1980 default: 1981 device_printf(dev, "unknown media type: %x\n", 1982 IFM_SUBTYPE(ife->ifm_media)); 1983 break; 1984 } 1985 } 1986 1987 static int 1988 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) 1989 { 1990 struct vge_softc *sc = ifp->if_softc; 1991 struct ifreq *ifr = (struct ifreq *)data; 1992 struct mii_data *mii; 1993 int error = 0; 1994 1995 switch (command) { 1996 case SIOCSIFMTU: 1997 if (ifr->ifr_mtu > VGE_JUMBO_MTU) 1998 error = EINVAL; 1999 ifp->if_mtu = ifr->ifr_mtu; 2000 break; 2001 case SIOCSIFFLAGS: 2002 if (ifp->if_flags & IFF_UP) { 2003 if ((ifp->if_flags & IFF_RUNNING) && 2004 (ifp->if_flags & IFF_PROMISC) && 2005 !(sc->vge_if_flags & IFF_PROMISC)) { 2006 CSR_SETBIT_1(sc, VGE_RXCTL, 2007 VGE_RXCTL_RX_PROMISC); 2008 vge_setmulti(sc); 2009 } else if ((ifp->if_flags & IFF_RUNNING) && 2010 !(ifp->if_flags & IFF_PROMISC) && 2011 (sc->vge_if_flags & IFF_PROMISC)) { 2012 CSR_CLRBIT_1(sc, VGE_RXCTL, 2013 VGE_RXCTL_RX_PROMISC); 2014 vge_setmulti(sc); 2015 } else { 2016 vge_init(sc); 2017 } 2018 } else { 2019 if (ifp->if_flags & IFF_RUNNING) 2020 vge_stop(sc); 2021 } 2022 sc->vge_if_flags = ifp->if_flags; 2023 break; 2024 case SIOCADDMULTI: 2025 case SIOCDELMULTI: 2026 vge_setmulti(sc); 2027 break; 2028 case SIOCGIFMEDIA: 2029 case SIOCSIFMEDIA: 2030 mii = device_get_softc(sc->vge_miibus); 2031 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2032 break; 2033 case SIOCSIFCAP: 2034 { 2035 uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2036 2037 if (mask & IFCAP_HWCSUM) { 2038 ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM); 2039 if (ifp->if_capenable & IFCAP_TXCSUM) 2040 ifp->if_hwassist = VGE_CSUM_FEATURES; 2041 else 2042 ifp->if_hwassist = 0; 2043 if (ifp->if_flags & IFF_RUNNING) 2044 vge_init(sc); 2045 } 2046 } 2047 break; 2048 default: 2049 error = ether_ioctl(ifp, command, data); 2050 break; 2051 } 2052 return (error); 2053 } 2054 2055 static void 2056 vge_watchdog(struct ifnet *ifp) 2057 { 2058 struct vge_softc *sc = ifp->if_softc; 2059 2060 if_printf(ifp, "watchdog timeout\n"); 2061 ifp->if_oerrors++; 2062 2063 vge_txeof(sc); 2064 vge_rxeof(sc, -1); 2065 2066 vge_init(sc); 2067 } 2068 2069 /* 2070 * Stop the adapter and free any mbufs allocated to the 2071 * RX and TX lists. 2072 */ 2073 static void 2074 vge_stop(struct vge_softc *sc) 2075 { 2076 struct ifnet *ifp = &sc->arpcom.ac_if; 2077 int i; 2078 2079 ASSERT_SERIALIZED(ifp->if_serializer); 2080 2081 ifp->if_timer = 0; 2082 2083 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2084 2085 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2086 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); 2087 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); 2088 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); 2089 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); 2090 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); 2091 2092 if (sc->vge_head != NULL) { 2093 m_freem(sc->vge_head); 2094 sc->vge_head = sc->vge_tail = NULL; 2095 } 2096 2097 /* Free the TX list buffers. */ 2098 for (i = 0; i < VGE_TX_DESC_CNT; i++) { 2099 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) { 2100 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 2101 sc->vge_ldata.vge_tx_dmamap[i]); 2102 m_freem(sc->vge_ldata.vge_tx_mbuf[i]); 2103 sc->vge_ldata.vge_tx_mbuf[i] = NULL; 2104 } 2105 } 2106 2107 /* Free the RX list buffers. */ 2108 for (i = 0; i < VGE_RX_DESC_CNT; i++) { 2109 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) { 2110 bus_dmamap_unload(sc->vge_ldata.vge_mtag, 2111 sc->vge_ldata.vge_rx_dmamap[i]); 2112 m_freem(sc->vge_ldata.vge_rx_mbuf[i]); 2113 sc->vge_ldata.vge_rx_mbuf[i] = NULL; 2114 } 2115 } 2116 } 2117 2118 /* 2119 * Device suspend routine. Stop the interface and save some PCI 2120 * settings in case the BIOS doesn't restore them properly on 2121 * resume. 2122 */ 2123 static int 2124 vge_suspend(device_t dev) 2125 { 2126 struct vge_softc *sc = device_get_softc(dev); 2127 struct ifnet *ifp = &sc->arpcom.ac_if; 2128 2129 lwkt_serialize_enter(ifp->if_serializer); 2130 vge_stop(sc); 2131 sc->suspended = 1; 2132 lwkt_serialize_exit(ifp->if_serializer); 2133 2134 return (0); 2135 } 2136 2137 /* 2138 * Device resume routine. Restore some PCI settings in case the BIOS 2139 * doesn't, re-enable busmastering, and restart the interface if 2140 * appropriate. 2141 */ 2142 static int 2143 vge_resume(device_t dev) 2144 { 2145 struct vge_softc *sc = device_get_softc(dev); 2146 struct ifnet *ifp = &sc->arpcom.ac_if; 2147 2148 /* reenable busmastering */ 2149 pci_enable_busmaster(dev); 2150 pci_enable_io(dev, SYS_RES_MEMORY); 2151 2152 lwkt_serialize_enter(ifp->if_serializer); 2153 /* reinitialize interface if necessary */ 2154 if (ifp->if_flags & IFF_UP) 2155 vge_init(sc); 2156 2157 sc->suspended = 0; 2158 lwkt_serialize_exit(ifp->if_serializer); 2159 2160 return (0); 2161 } 2162 2163 /* 2164 * Stop all chip I/O so that the kernel's probe routines don't 2165 * get confused by errant DMAs when rebooting. 2166 */ 2167 static void 2168 vge_shutdown(device_t dev) 2169 { 2170 struct vge_softc *sc = device_get_softc(dev); 2171 struct ifnet *ifp = &sc->arpcom.ac_if; 2172 2173 lwkt_serialize_enter(ifp->if_serializer); 2174 vge_stop(sc); 2175 lwkt_serialize_exit(ifp->if_serializer); 2176 } 2177 2178 static void 2179 vge_enable_intr(struct vge_softc *sc, uint32_t isr) 2180 { 2181 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); 2182 CSR_WRITE_4(sc, VGE_ISR, isr); 2183 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); 2184 } 2185 2186 #ifdef DEVICE_POLLING 2187 static void 2188 vge_disable_intr(struct vge_softc *sc) 2189 { 2190 CSR_WRITE_4(sc, VGE_IMR, 0); 2191 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); 2192 } 2193 #endif 2194