xref: /dflybsd-src/sys/dev/netif/vge/if_vge.c (revision efda3bd00c039d6845508b47bb18d1687c72154e)
1 /*
2  * Copyright (c) 2004
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
33  * $DragonFly: src/sys/dev/netif/vge/if_vge.c,v 1.2 2006/08/06 12:49:06 swildner Exp $
34  */
35 
36 /*
37  * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46  * combines a tri-speed ethernet MAC and PHY, with the following
47  * features:
48  *
49  *	o Jumbo frame support up to 16K
50  *	o Transmit and receive flow control
51  *	o IPv4 checksum offload
52  *	o VLAN tag insertion and stripping
53  *	o TCP large send
54  *	o 64-bit multicast hash table filter
55  *	o 64 entry CAM filter
56  *	o 16K RX FIFO and 48K TX FIFO memory
57  *	o Interrupt moderation
58  *
59  * The VT6122 supports up to four transmit DMA queues. The descriptors
60  * in the transmit ring can address up to 7 data fragments; frames which
61  * span more than 7 data buffers must be coalesced, but in general the
62  * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63  * long. The receive descriptors address only a single buffer.
64  *
65  * There are two peculiar design issues with the VT6122. One is that
66  * receive data buffers must be aligned on a 32-bit boundary. This is
67  * not a problem where the VT6122 is used as a LOM device in x86-based
68  * systems, but on architectures that generate unaligned access traps, we
69  * have to do some copying.
70  *
71  * The other issue has to do with the way 64-bit addresses are handled.
72  * The DMA descriptors only allow you to specify 48 bits of addressing
73  * information. The remaining 16 bits are specified using one of the
74  * I/O registers. If you only have a 32-bit system, then this isn't
75  * an issue, but if you have a 64-bit system and more than 4GB of
76  * memory, you must have to make sure your network data buffers reside
77  * in the same 48-bit 'segment.'
78  *
79  * Special thanks to Ryan Fu at VIA Networking for providing documentation
80  * and sample NICs for testing.
81  */
82 
83 #include "opt_polling.h"
84 
85 #include <sys/param.h>
86 #include <sys/endian.h>
87 #include <sys/systm.h>
88 #include <sys/sockio.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/module.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/serialize.h>
95 #include <sys/proc.h>
96 
97 #include <net/if.h>
98 #include <net/if_arp.h>
99 #include <net/ethernet.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/ifq_var.h>
103 #include <net/if_types.h>
104 #include <net/vlan/if_vlan_var.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include <dev/netif/mii_layer/mii.h>
114 #include <dev/netif/mii_layer/miivar.h>
115 
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 #include <bus/pci/pcidevs.h>
119 
120 #include "miibus_if.h"
121 
122 #include <dev/netif/vge/if_vgereg.h>
123 #include <dev/netif/vge/if_vgevar.h>
124 
125 #define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
126 
127 /*
128  * Various supported device vendors/types and their names.
129  */
130 static const struct vge_type vge_devs[] = {
131 	{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
132 	  "VIA Networking Gigabit Ethernet" },
133 	{ 0, 0, NULL }
134 };
135 
136 static int vge_probe		(device_t);
137 static int vge_attach		(device_t);
138 static int vge_detach		(device_t);
139 
140 static int vge_encap		(struct vge_softc *, struct mbuf *, int);
141 
142 static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
143 static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
144 				    bus_size_t, int);
145 static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
146 				    bus_size_t, int);
147 static int vge_dma_alloc	(device_t);
148 static void vge_dma_free	(struct vge_softc *);
149 static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
150 static int vge_rx_list_init	(struct vge_softc *);
151 static int vge_tx_list_init	(struct vge_softc *);
152 #ifdef VGE_FIXUP_RX
153 static __inline void vge_fixup_rx
154 				(struct mbuf *);
155 #endif
156 static void vge_rxeof		(struct vge_softc *, int);
157 static void vge_txeof		(struct vge_softc *);
158 static void vge_intr		(void *);
159 static void vge_tick		(struct vge_softc *);
160 static void vge_start		(struct ifnet *);
161 static int vge_ioctl		(struct ifnet *, u_long, caddr_t,
162 				 struct ucred *);
163 static void vge_init		(void *);
164 static void vge_stop		(struct vge_softc *);
165 static void vge_watchdog	(struct ifnet *);
166 static int vge_suspend		(device_t);
167 static int vge_resume		(device_t);
168 static void vge_shutdown	(device_t);
169 static int vge_ifmedia_upd	(struct ifnet *);
170 static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
171 
172 #ifdef VGE_EEPROM
173 static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
174 #endif
175 static void vge_read_eeprom	(struct vge_softc *, uint8_t *, int, int, int);
176 
177 static void vge_miipoll_start	(struct vge_softc *);
178 static void vge_miipoll_stop	(struct vge_softc *);
179 static int vge_miibus_readreg	(device_t, int, int);
180 static int vge_miibus_writereg	(device_t, int, int, int);
181 static void vge_miibus_statchg	(device_t);
182 
183 static void vge_cam_clear	(struct vge_softc *);
184 static int vge_cam_set		(struct vge_softc *, uint8_t *);
185 static void vge_setmulti	(struct vge_softc *);
186 static void vge_reset		(struct vge_softc *);
187 
188 #ifdef DEVICE_POLLING
189 static void	vge_poll(struct ifnet *, enum poll_cmd, int);
190 static void	vge_disable_intr(struct vge_softc *);
191 #endif
192 static void	vge_enable_intr(struct vge_softc *, uint32_t);
193 
194 #define VGE_PCI_LOIO             0x10
195 #define VGE_PCI_LOMEM            0x14
196 
197 static device_method_t vge_methods[] = {
198 	/* Device interface */
199 	DEVMETHOD(device_probe,		vge_probe),
200 	DEVMETHOD(device_attach,	vge_attach),
201 	DEVMETHOD(device_detach,	vge_detach),
202 	DEVMETHOD(device_suspend,	vge_suspend),
203 	DEVMETHOD(device_resume,	vge_resume),
204 	DEVMETHOD(device_shutdown,	vge_shutdown),
205 
206 	/* bus interface */
207 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209 
210 	/* MII interface */
211 	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212 	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213 	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214 
215 	{ 0, 0 }
216 };
217 
218 static driver_t vge_driver = {
219 	"vge",
220 	vge_methods,
221 	sizeof(struct vge_softc)
222 };
223 
224 static devclass_t vge_devclass;
225 
226 DECLARE_DUMMY_MODULE(if_vge);
227 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
228 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, 0, 0);
229 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
231 
232 #ifdef VGE_EEPROM
233 /*
234  * Read a word of data stored in the EEPROM at address 'addr.'
235  */
236 static void
237 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
238 {
239 	uint16_t word = 0;
240 	int i;
241 
242 	/*
243 	 * Enter EEPROM embedded programming mode. In order to
244 	 * access the EEPROM at all, we first have to set the
245 	 * EELOAD bit in the CHIPCFG2 register.
246 	 */
247 	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
248 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
249 
250 	/* Select the address of the word we want to read */
251 	CSR_WRITE_1(sc, VGE_EEADDR, addr);
252 
253 	/* Issue read command */
254 	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
255 
256 	/* Wait for the done bit to be set. */
257 	for (i = 0; i < VGE_TIMEOUT; i++) {
258 		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
259 			break;
260 	}
261 	if (i == VGE_TIMEOUT) {
262 		device_printf(sc->vge_dev, "EEPROM read timed out\n");
263 		*dest = 0;
264 		return;
265 	}
266 
267 	/* Read the result */
268 	word = CSR_READ_2(sc, VGE_EERDDAT);
269 
270 	/* Turn off EEPROM access mode. */
271 	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
272 	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
273 
274 	*dest = word;
275 }
276 #endif
277 
278 /*
279  * Read a sequence of words from the EEPROM.
280  */
281 static void
282 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
283 {
284 	int i;
285 #ifdef VGE_EEPROM
286 	uint16_t word = 0, *ptr;
287 
288 	for (i = 0; i < cnt; i++) {
289 		vge_eeprom_getword(sc, off + i, &word);
290 		ptr = (uint16_t *)(dest + (i * 2));
291 		if (swap)
292 			*ptr = ntohs(word);
293 		else
294 			*ptr = word;
295 	}
296 #else
297 	for (i = 0; i < ETHER_ADDR_LEN; i++)
298 		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
299 #endif
300 }
301 
302 static void
303 vge_miipoll_stop(struct vge_softc *sc)
304 {
305 	int i;
306 
307 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
308 
309 	for (i = 0; i < VGE_TIMEOUT; i++) {
310 		DELAY(1);
311 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
312 			break;
313 	}
314 	if (i == VGE_TIMEOUT)
315 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
316 }
317 
318 static void
319 vge_miipoll_start(struct vge_softc *sc)
320 {
321 	int i;
322 
323 	/* First, make sure we're idle. */
324 	CSR_WRITE_1(sc, VGE_MIICMD, 0);
325 	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
326 
327 	for (i = 0; i < VGE_TIMEOUT; i++) {
328 		DELAY(1);
329 		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
330 			break;
331 	}
332 	if (i == VGE_TIMEOUT) {
333 		if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
334 		return;
335 	}
336 
337 	/* Now enable auto poll mode. */
338 	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
339 
340 	/* And make sure it started. */
341 	for (i = 0; i < VGE_TIMEOUT; i++) {
342 		DELAY(1);
343 		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
344 			break;
345 	}
346 	if (i == VGE_TIMEOUT)
347 		if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
348 }
349 
350 static int
351 vge_miibus_readreg(device_t dev, int phy, int reg)
352 {
353 	struct vge_softc *sc;
354 	int i;
355 	uint16_t rval = 0;
356 
357 	sc = device_get_softc(dev);
358 
359 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
360 		return(0);
361 
362 	vge_miipoll_stop(sc);
363 
364 	/* Specify the register we want to read. */
365 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
366 
367 	/* Issue read command. */
368 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
369 
370 	/* Wait for the read command bit to self-clear. */
371 	for (i = 0; i < VGE_TIMEOUT; i++) {
372 		DELAY(1);
373 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
374 			break;
375 	}
376 	if (i == VGE_TIMEOUT)
377 		if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
378 	else
379 		rval = CSR_READ_2(sc, VGE_MIIDATA);
380 
381 	vge_miipoll_start(sc);
382 
383 	return (rval);
384 }
385 
386 static int
387 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
388 {
389 	struct vge_softc *sc;
390 	int i, rval = 0;
391 
392 	sc = device_get_softc(dev);
393 
394 	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
395 		return(0);
396 
397 	vge_miipoll_stop(sc);
398 
399 	/* Specify the register we want to write. */
400 	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
401 
402 	/* Specify the data we want to write. */
403 	CSR_WRITE_2(sc, VGE_MIIDATA, data);
404 
405 	/* Issue write command. */
406 	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
407 
408 	/* Wait for the write command bit to self-clear. */
409 	for (i = 0; i < VGE_TIMEOUT; i++) {
410 		DELAY(1);
411 		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
412 			break;
413 	}
414 	if (i == VGE_TIMEOUT) {
415 		if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
416 		rval = EIO;
417 	}
418 
419 	vge_miipoll_start(sc);
420 
421 	return (rval);
422 }
423 
424 static void
425 vge_cam_clear(struct vge_softc *sc)
426 {
427 	int i;
428 
429 	/*
430 	 * Turn off all the mask bits. This tells the chip
431 	 * that none of the entries in the CAM filter are valid.
432 	 * desired entries will be enabled as we fill the filter in.
433 	 */
434 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
435 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
436 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
437 	for (i = 0; i < 8; i++)
438 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
439 
440 	/* Clear the VLAN filter too. */
441 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
442 	for (i = 0; i < 8; i++)
443 		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444 
445 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
446 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
447 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
448 
449 	sc->vge_camidx = 0;
450 }
451 
452 static int
453 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
454 {
455 	int i, error = 0;
456 
457 	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
458 		return(ENOSPC);
459 
460 	/* Select the CAM data page. */
461 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
462 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
463 
464 	/* Set the filter entry we want to update and enable writing. */
465 	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
466 
467 	/* Write the address to the CAM registers */
468 	for (i = 0; i < ETHER_ADDR_LEN; i++)
469 		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
470 
471 	/* Issue a write command. */
472 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
473 
474 	/* Wake for it to clear. */
475 	for (i = 0; i < VGE_TIMEOUT; i++) {
476 		DELAY(1);
477 		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
478 			break;
479 	}
480 	if (i == VGE_TIMEOUT) {
481 		if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
482 		error = EIO;
483 		goto fail;
484 	}
485 
486 	/* Select the CAM mask page. */
487 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
488 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
489 
490 	/* Set the mask bit that enables this filter. */
491 	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
492 	    1<<(sc->vge_camidx & 7));
493 
494 	sc->vge_camidx++;
495 
496 fail:
497 	/* Turn off access to CAM. */
498 	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
499 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
501 
502 	return (error);
503 }
504 
505 /*
506  * Program the multicast filter. We use the 64-entry CAM filter
507  * for perfect filtering. If there's more than 64 multicast addresses,
508  * we use the hash filter insted.
509  */
510 static void
511 vge_setmulti(struct vge_softc *sc)
512 {
513 	struct ifnet *ifp = &sc->arpcom.ac_if;
514 	int error = 0;
515 	struct ifmultiaddr *ifma;
516 	uint32_t h, hashes[2] = { 0, 0 };
517 
518 	/* First, zot all the multicast entries. */
519 	vge_cam_clear(sc);
520 	CSR_WRITE_4(sc, VGE_MAR0, 0);
521 	CSR_WRITE_4(sc, VGE_MAR1, 0);
522 
523 	/*
524 	 * If the user wants allmulti or promisc mode, enable reception
525 	 * of all multicast frames.
526 	 */
527 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
528 		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
529 		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
530 		return;
531 	}
532 
533 	/* Now program new ones */
534 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
535 		if (ifma->ifma_addr->sa_family != AF_LINK)
536 			continue;
537 		error = vge_cam_set(sc,
538 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
539 		if (error)
540 			break;
541 	}
542 
543 	/* If there were too many addresses, use the hash filter. */
544 	if (error) {
545 		vge_cam_clear(sc);
546 
547 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
548 			if (ifma->ifma_addr->sa_family != AF_LINK)
549 				continue;
550 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
551 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
552 			if (h < 32)
553 				hashes[0] |= (1 << h);
554 			else
555 				hashes[1] |= (1 << (h - 32));
556 		}
557 
558 		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
559 		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
560 	}
561 }
562 
563 static void
564 vge_reset(struct vge_softc *sc)
565 {
566 	int i;
567 
568 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
569 
570 	for (i = 0; i < VGE_TIMEOUT; i++) {
571 		DELAY(5);
572 		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
573 			break;
574 	}
575 
576 	if (i == VGE_TIMEOUT) {
577 		if_printf(&sc->arpcom.ac_if, "soft reset timed out");
578 		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
579 		DELAY(2000);
580 	}
581 
582 	DELAY(5000);
583 
584 	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
585 
586 	for (i = 0; i < VGE_TIMEOUT; i++) {
587 		DELAY(5);
588 		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
589 			break;
590 	}
591 	if (i == VGE_TIMEOUT) {
592 		if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
593 		return;
594 	}
595 
596 	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
597 }
598 
599 /*
600  * Probe for a VIA gigabit chip. Check the PCI vendor and device
601  * IDs against our list and return a device name if we find a match.
602  */
603 static int
604 vge_probe(device_t dev)
605 {
606 	const struct vge_type *t;
607 	uint16_t did, vid;
608 
609 	did = pci_get_device(dev);
610 	vid = pci_get_vendor(dev);
611 	for (t = vge_devs; t->vge_name != NULL; ++t) {
612 		if (vid == t->vge_vid && did == t->vge_did) {
613 			device_set_desc(dev, t->vge_name);
614 			return 0;
615 		}
616 	}
617 	return (ENXIO);
618 }
619 
620 static void
621 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
622 		    bus_size_t mapsize, int error)
623 {
624 
625 	struct vge_dmaload_arg *ctx;
626 	struct vge_rx_desc *d = NULL;
627 
628 	if (error)
629 		return;
630 
631 	ctx = arg;
632 
633 	/* Signal error to caller if there's too many segments */
634 	if (nseg > ctx->vge_maxsegs) {
635 		ctx->vge_maxsegs = 0;
636 		return;
637 	}
638 
639 	/*
640 	 * Map the segment array into descriptors.
641 	 */
642 	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
643 
644 	/* If this descriptor is still owned by the chip, bail. */
645 	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
646 		if_printf(&ctx->sc->arpcom.ac_if,
647 			  "tried to map busy descriptor\n");
648 		ctx->vge_maxsegs = 0;
649 		return;
650 	}
651 
652 	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
653 	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
654 	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
655 	d->vge_sts = 0;
656 	d->vge_ctl = 0;
657 
658 	ctx->vge_maxsegs = 1;
659 }
660 
661 static void
662 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
663 		    bus_size_t mapsize, int error)
664 {
665 	struct vge_dmaload_arg *ctx;
666 	struct vge_tx_desc *d = NULL;
667 	struct vge_tx_frag *f;
668 	int i = 0;
669 
670 	if (error)
671 		return;
672 
673 	ctx = arg;
674 
675 	/* Signal error to caller if there's too many segments */
676 	if (nseg > ctx->vge_maxsegs) {
677 		ctx->vge_maxsegs = 0;
678 		return;
679 	}
680 
681 	/* Map the segment array into descriptors. */
682 	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
683 
684 	/* If this descriptor is still owned by the chip, bail. */
685 	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
686 		ctx->vge_maxsegs = 0;
687 		return;
688 	}
689 
690 	for (i = 0; i < nseg; i++) {
691 		f = &d->vge_frag[i];
692 		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
693 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
694 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
695 	}
696 
697 	/* Argh. This chip does not autopad short frames */
698 	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
699 		f = &d->vge_frag[i];
700 		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
701 		    ctx->vge_m0->m_pkthdr.len));
702 		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
703 		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
704 		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
705 		i++;
706 	}
707 
708 	/*
709 	 * When telling the chip how many segments there are, we
710 	 * must use nsegs + 1 instead of just nsegs. Darned if I
711 	 * know why.
712 	 */
713 	i++;
714 
715 	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
716 	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
717 
718 	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
719 		d->vge_ctl |= VGE_TDCTL_JUMBO;
720 
721 	ctx->vge_maxsegs = nseg;
722 }
723 
724 /*
725  * Map a single buffer address.
726  */
727 
728 static void
729 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
730 {
731 	if (error)
732 		return;
733 
734 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
735 	*((bus_addr_t *)arg) = segs->ds_addr;
736 }
737 
738 static int
739 vge_dma_alloc(device_t dev)
740 {
741 	struct vge_softc *sc = device_get_softc(dev);
742 	int error, nseg, i, tx_pos = 0, rx_pos = 0;
743 
744 	/*
745 	 * Allocate the parent bus DMA tag appropriate for PCI.
746 	 */
747 #define VGE_NSEG_NEW 32
748 	error = bus_dma_tag_create(NULL,	/* parent */
749 			1, 0,			/* alignment, boundary */
750 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
751 			BUS_SPACE_MAXADDR,	/* highaddr */
752 			NULL, NULL,		/* filter, filterarg */
753 			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
754 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
755 			BUS_DMA_ALLOCNOW,	/* flags */
756 			&sc->vge_parent_tag);
757 	if (error) {
758 		device_printf(dev, "can't create parent dma tag\n");
759 		return error;
760 	}
761 
762 	/*
763 	 * Allocate map for RX mbufs.
764 	 */
765 	nseg = 32;
766 	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
767 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
768 				   NULL, NULL,
769 				   MCLBYTES * nseg, nseg, MCLBYTES,
770 				   BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
771 	if (error) {
772 		device_printf(dev, "could not allocate mbuf dma tag\n");
773 		return error;
774 	}
775 
776 	/*
777 	 * Allocate map for TX descriptor list.
778 	 */
779 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
780 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
781 				   NULL, NULL,
782 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
783 				   BUS_DMA_ALLOCNOW,
784 				   &sc->vge_ldata.vge_tx_list_tag);
785 	if (error) {
786 		device_printf(dev, "could not allocate tx list dma tag\n");
787 		return error;
788 	}
789 
790 	/* Allocate DMA'able memory for the TX ring */
791 	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
792 				 (void **)&sc->vge_ldata.vge_tx_list,
793 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
794 				 &sc->vge_ldata.vge_tx_list_map);
795 	if (error) {
796 		device_printf(dev, "could not allocate tx list dma memory\n");
797 		return error;
798 	}
799 
800 	/* Load the map for the TX ring. */
801 	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
802 				sc->vge_ldata.vge_tx_list_map,
803 				sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
804 				vge_dma_map_addr,
805 				&sc->vge_ldata.vge_tx_list_addr,
806 				BUS_DMA_WAITOK);
807 	if (error) {
808 		device_printf(dev, "could not load tx list\n");
809 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
810 				sc->vge_ldata.vge_tx_list,
811 				sc->vge_ldata.vge_tx_list_map);
812 		sc->vge_ldata.vge_tx_list = NULL;
813 		return error;
814 	}
815 
816 	/* Create DMA maps for TX buffers */
817 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
818 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
819 					  &sc->vge_ldata.vge_tx_dmamap[i]);
820 		if (error) {
821 			device_printf(dev, "can't create DMA map for TX\n");
822 			tx_pos = i;
823 			goto map_fail;
824 		}
825 	}
826 	tx_pos = VGE_TX_DESC_CNT;
827 
828 	/*
829 	 * Allocate map for RX descriptor list.
830 	 */
831 	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
832 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
833 				   NULL, NULL,
834 				   VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
835 				   BUS_DMA_ALLOCNOW,
836 				   &sc->vge_ldata.vge_rx_list_tag);
837 	if (error) {
838 		device_printf(dev, "could not allocate rx list dma tag\n");
839 		return error;
840 	}
841 
842 	/* Allocate DMA'able memory for the RX ring */
843 	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
844 				 (void **)&sc->vge_ldata.vge_rx_list,
845 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
846 				 &sc->vge_ldata.vge_rx_list_map);
847 	if (error) {
848 		device_printf(dev, "could not allocate rx list dma memory\n");
849 		return error;
850 	}
851 
852 	/* Load the map for the RX ring. */
853 	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
854 				sc->vge_ldata.vge_rx_list_map,
855 				sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
856 				vge_dma_map_addr,
857 				&sc->vge_ldata.vge_rx_list_addr,
858 				BUS_DMA_WAITOK);
859 	if (error) {
860 		device_printf(dev, "could not load rx list\n");
861 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
862 				sc->vge_ldata.vge_rx_list,
863 				sc->vge_ldata.vge_rx_list_map);
864 		sc->vge_ldata.vge_rx_list = NULL;
865 		return error;
866 	}
867 
868 	/* Create DMA maps for RX buffers */
869 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
870 		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
871 					  &sc->vge_ldata.vge_rx_dmamap[i]);
872 		if (error) {
873 			device_printf(dev, "can't create DMA map for RX\n");
874 			rx_pos = i;
875 			goto map_fail;
876 		}
877 	}
878 	return (0);
879 
880 map_fail:
881 	for (i = 0; i < tx_pos; ++i) {
882 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
883 					   sc->vge_ldata.vge_tx_dmamap[i]);
884 	}
885 	for (i = 0; i < rx_pos; ++i) {
886 		error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
887 					   sc->vge_ldata.vge_rx_dmamap[i]);
888 	}
889 	bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
890 	sc->vge_ldata.vge_mtag = NULL;
891 
892 	return error;
893 }
894 
895 static void
896 vge_dma_free(struct vge_softc *sc)
897 {
898 	/* Unload and free the RX DMA ring memory and map */
899 	if (sc->vge_ldata.vge_rx_list_tag) {
900 		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
901 				  sc->vge_ldata.vge_rx_list_map);
902 		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
903 				sc->vge_ldata.vge_rx_list,
904 				sc->vge_ldata.vge_rx_list_map);
905 	}
906 
907 	if (sc->vge_ldata.vge_rx_list_tag)
908 		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
909 
910 	/* Unload and free the TX DMA ring memory and map */
911 	if (sc->vge_ldata.vge_tx_list_tag) {
912 		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
913 				  sc->vge_ldata.vge_tx_list_map);
914 		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
915 				sc->vge_ldata.vge_tx_list,
916 				sc->vge_ldata.vge_tx_list_map);
917 	}
918 
919 	if (sc->vge_ldata.vge_tx_list_tag)
920 		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
921 
922 	/* Destroy all the RX and TX buffer maps */
923 	if (sc->vge_ldata.vge_mtag) {
924 		int i;
925 
926 		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
927 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
928 					   sc->vge_ldata.vge_tx_dmamap[i]);
929 		}
930 		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
931 			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
932 					   sc->vge_ldata.vge_rx_dmamap[i]);
933 		}
934 		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
935 	}
936 
937 	if (sc->vge_parent_tag)
938 		bus_dma_tag_destroy(sc->vge_parent_tag);
939 }
940 
941 /*
942  * Attach the interface. Allocate softc structures, do ifmedia
943  * setup and ethernet/BPF attach.
944  */
945 static int
946 vge_attach(device_t dev)
947 {
948 	uint8_t eaddr[ETHER_ADDR_LEN];
949 	struct vge_softc *sc;
950 	struct ifnet *ifp;
951 	int error = 0;
952 
953 	sc = device_get_softc(dev);
954 	ifp = &sc->arpcom.ac_if;
955 
956 	/* Initialize if_xname early, so if_printf() can be used */
957 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
958 
959 	/*
960 	 * Map control/status registers.
961 	 */
962 	pci_enable_busmaster(dev);
963 
964 	sc->vge_res_rid = VGE_PCI_LOMEM;
965 	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
966 					     &sc->vge_res_rid, RF_ACTIVE);
967 	if (sc->vge_res == NULL) {
968 		device_printf(dev, "couldn't map ports/memory\n");
969 		return ENXIO;
970 	}
971 
972 	sc->vge_btag = rman_get_bustag(sc->vge_res);
973 	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
974 
975 	/* Allocate interrupt */
976 	sc->vge_irq_rid = 0;
977 	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
978 					     RF_SHAREABLE | RF_ACTIVE);
979 	if (sc->vge_irq == NULL) {
980 		device_printf(dev, "couldn't map interrupt\n");
981 		error = ENXIO;
982 		goto fail;
983 	}
984 
985 	/* Reset the adapter. */
986 	vge_reset(sc);
987 
988 	/*
989 	 * Get station address from the EEPROM.
990 	 */
991 	vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
992 
993 	/* Allocate DMA related stuffs */
994 	error = vge_dma_alloc(dev);
995 	if (error)
996 		goto fail;
997 
998 	/* Do MII setup */
999 	error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
1000 			      vge_ifmedia_sts);
1001 	if (error) {
1002 		device_printf(dev, "MII without any phy!\n");
1003 		goto fail;
1004 	}
1005 
1006 	ifp->if_softc = sc;
1007 	ifp->if_mtu = ETHERMTU;
1008 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1009 	ifp->if_init = vge_init;
1010 	ifp->if_start = vge_start;
1011 	ifp->if_watchdog = vge_watchdog;
1012 	ifp->if_ioctl = vge_ioctl;
1013 #ifdef DEVICE_POLLING
1014 	ifp->if_poll = vge_poll;
1015 #endif
1016 	ifp->if_hwassist = VGE_CSUM_FEATURES;
1017 	ifp->if_capabilities = IFCAP_VLAN_MTU |
1018 			       IFCAP_HWCSUM |
1019 			       IFCAP_VLAN_HWTAGGING;
1020 	ifp->if_capenable = ifp->if_capabilities;
1021 	ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1022 	ifq_set_ready(&ifp->if_snd);
1023 
1024 	/*
1025 	 * Call MI attach routine.
1026 	 */
1027 	ether_ifattach(ifp, eaddr, NULL);
1028 
1029 	/* Hook interrupt last to avoid having to lock softc */
1030 	error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1031 			       &sc->vge_intrhand, ifp->if_serializer);
1032 	if (error) {
1033 		device_printf(dev, "couldn't set up irq\n");
1034 		ether_ifdetach(ifp);
1035 		goto fail;
1036 	}
1037 
1038 	return 0;
1039 fail:
1040 	vge_detach(dev);
1041 	return error;
1042 }
1043 
1044 /*
1045  * Shutdown hardware and free up resources. This can be called any
1046  * time after the mutex has been initialized. It is called in both
1047  * the error case in attach and the normal detach case so it needs
1048  * to be careful about only freeing resources that have actually been
1049  * allocated.
1050  */
1051 static int
1052 vge_detach(device_t dev)
1053 {
1054 	struct vge_softc *sc = device_get_softc(dev);
1055 	struct ifnet *ifp = &sc->arpcom.ac_if;
1056 
1057 	/* These should only be active if attach succeeded */
1058 	if (device_is_attached(dev)) {
1059 		lwkt_serialize_enter(ifp->if_serializer);
1060 
1061 		vge_stop(sc);
1062 		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1063 		/*
1064 		 * Force off the IFF_UP flag here, in case someone
1065 		 * still had a BPF descriptor attached to this
1066 		 * interface. If they do, ether_ifattach() will cause
1067 		 * the BPF code to try and clear the promisc mode
1068 		 * flag, which will bubble down to vge_ioctl(),
1069 		 * which will try to call vge_init() again. This will
1070 		 * turn the NIC back on and restart the MII ticker,
1071 		 * which will panic the system when the kernel tries
1072 		 * to invoke the vge_tick() function that isn't there
1073 		 * anymore.
1074 		 */
1075 		ifp->if_flags &= ~IFF_UP;
1076 
1077 		lwkt_serialize_exit(ifp->if_serializer);
1078 
1079 		ether_ifdetach(ifp);
1080 	}
1081 
1082 	if (sc->vge_miibus)
1083 		device_delete_child(dev, sc->vge_miibus);
1084 	bus_generic_detach(dev);
1085 
1086 	if (sc->vge_irq) {
1087 		bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1088 				     sc->vge_irq);
1089 	}
1090 
1091 	if (sc->vge_res) {
1092 		bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1093 				     sc->vge_res);
1094 	}
1095 
1096 	vge_dma_free(sc);
1097 	return (0);
1098 }
1099 
1100 static int
1101 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1102 {
1103 	struct vge_dmaload_arg arg;
1104 	struct mbuf *n = NULL;
1105 	int i, error;
1106 
1107 	if (m == NULL) {
1108 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1109 		if (n == NULL)
1110 			return (ENOBUFS);
1111 		m = n;
1112 	} else {
1113 		m->m_data = m->m_ext.ext_buf;
1114 	}
1115 
1116 
1117 #ifdef VGE_FIXUP_RX
1118 	/*
1119 	 * This is part of an evil trick to deal with non-x86 platforms.
1120 	 * The VIA chip requires RX buffers to be aligned on 32-bit
1121 	 * boundaries, but that will hose non-x86 machines. To get around
1122 	 * this, we leave some empty space at the start of each buffer
1123 	 * and for non-x86 hosts, we copy the buffer back two bytes
1124 	 * to achieve word alignment. This is slightly more efficient
1125 	 * than allocating a new buffer, copying the contents, and
1126 	 * discarding the old buffer.
1127 	 */
1128 	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1129 	m_adj(m, VGE_ETHER_ALIGN);
1130 #else
1131 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1132 #endif
1133 
1134 	arg.sc = sc;
1135 	arg.vge_idx = idx;
1136 	arg.vge_maxsegs = 1;
1137 	arg.vge_flags = 0;
1138 
1139 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1140 				     sc->vge_ldata.vge_rx_dmamap[idx], m,
1141 				     vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1142 	if (error || arg.vge_maxsegs != 1) {
1143 		if (n != NULL)
1144 			m_freem(n);
1145 		return (ENOMEM);
1146 	}
1147 
1148 	/*
1149 	 * Note: the manual fails to document the fact that for
1150 	 * proper opration, the driver needs to replentish the RX
1151 	 * DMA ring 4 descriptors at a time (rather than one at a
1152 	 * time, like most chips). We can allocate the new buffers
1153 	 * but we should not set the OWN bits until we're ready
1154 	 * to hand back 4 of them in one shot.
1155 	 */
1156 
1157 #define VGE_RXCHUNK 4
1158 	sc->vge_rx_consumed++;
1159 	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1160 		for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1161 			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1162 			    htole32(VGE_RDSTS_OWN);
1163 		}
1164 		sc->vge_rx_consumed = 0;
1165 	}
1166 
1167 	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1168 
1169 	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1170 			sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1171 
1172 	return (0);
1173 }
1174 
1175 static int
1176 vge_tx_list_init(struct vge_softc *sc)
1177 {
1178 	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1179 	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1180 	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1181 
1182 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1183 	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1184 	sc->vge_ldata.vge_tx_prodidx = 0;
1185 	sc->vge_ldata.vge_tx_considx = 0;
1186 	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1187 
1188 	return (0);
1189 }
1190 
1191 static int
1192 vge_rx_list_init(struct vge_softc *sc)
1193 {
1194 	int i;
1195 
1196 	bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1197 	bzero(&sc->vge_ldata.vge_rx_mbuf,
1198 	      VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1199 
1200 	sc->vge_rx_consumed = 0;
1201 
1202 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1203 		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1204 			return (ENOBUFS);
1205 	}
1206 
1207 	/* Flush the RX descriptors */
1208 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1209 			sc->vge_ldata.vge_rx_list_map,
1210 			BUS_DMASYNC_PREWRITE);
1211 
1212 	sc->vge_ldata.vge_rx_prodidx = 0;
1213 	sc->vge_rx_consumed = 0;
1214 	sc->vge_head = sc->vge_tail = NULL;
1215 	return (0);
1216 }
1217 
1218 #ifdef VGE_FIXUP_RX
1219 static __inline void
1220 vge_fixup_rx(struct mbuf *m)
1221 {
1222 	uint16_t *src, *dst;
1223 	int i;
1224 
1225 	src = mtod(m, uint16_t *);
1226 	dst = src - 1;
1227 
1228 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1229 		*dst++ = *src++;
1230 
1231 	m->m_data -= ETHER_ALIGN;
1232 }
1233 #endif
1234 
1235 /*
1236  * RX handler. We support the reception of jumbo frames that have
1237  * been fragmented across multiple 2K mbuf cluster buffers.
1238  */
1239 static void
1240 vge_rxeof(struct vge_softc *sc, int count)
1241 {
1242 	struct ifnet *ifp = &sc->arpcom.ac_if;
1243 	struct mbuf *m;
1244 	int i, total_len, lim = 0;
1245 	struct vge_rx_desc *cur_rx;
1246 	uint32_t rxstat, rxctl;
1247 
1248 	ASSERT_SERIALIZED(ifp->if_serializer);
1249 
1250 	i = sc->vge_ldata.vge_rx_prodidx;
1251 
1252 	/* Invalidate the descriptor memory */
1253 
1254 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1255 			sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1256 
1257 	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1258 #ifdef DEVICE_POLLING
1259 		if (count >= 0 && count-- == 0)
1260 			break;
1261 #endif
1262 
1263 		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1264 		m = sc->vge_ldata.vge_rx_mbuf[i];
1265 		total_len = VGE_RXBYTES(cur_rx);
1266 		rxstat = le32toh(cur_rx->vge_sts);
1267 		rxctl = le32toh(cur_rx->vge_ctl);
1268 
1269 		/* Invalidate the RX mbuf and unload its map */
1270 		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1271 				sc->vge_ldata.vge_rx_dmamap[i],
1272 				BUS_DMASYNC_POSTWRITE);
1273 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1274 				  sc->vge_ldata.vge_rx_dmamap[i]);
1275 
1276 		/*
1277 		 * If the 'start of frame' bit is set, this indicates
1278 		 * either the first fragment in a multi-fragment receive,
1279 		 * or an intermediate fragment. Either way, we want to
1280 		 * accumulate the buffers.
1281 		 */
1282 		if (rxstat & VGE_RXPKT_SOF) {
1283 			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1284 			if (sc->vge_head == NULL) {
1285 				sc->vge_head = sc->vge_tail = m;
1286 			} else {
1287 				m->m_flags &= ~M_PKTHDR;
1288 				sc->vge_tail->m_next = m;
1289 				sc->vge_tail = m;
1290 			}
1291 			vge_newbuf(sc, i, NULL);
1292 			VGE_RX_DESC_INC(i);
1293 			continue;
1294 		}
1295 
1296 		/*
1297 		 * Bad/error frames will have the RXOK bit cleared.
1298 		 * However, there's one error case we want to allow:
1299 		 * if a VLAN tagged frame arrives and the chip can't
1300 		 * match it against the CAM filter, it considers this
1301 		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1302 		 * We don't want to drop the frame though: our VLAN
1303 		 * filtering is done in software.
1304 		 */
1305 		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1306 		    !(rxstat & VGE_RDSTS_CSUMERR)) {
1307 			ifp->if_ierrors++;
1308 			/*
1309 			 * If this is part of a multi-fragment packet,
1310 			 * discard all the pieces.
1311 			 */
1312 			if (sc->vge_head != NULL) {
1313 				m_freem(sc->vge_head);
1314 				sc->vge_head = sc->vge_tail = NULL;
1315 			}
1316 			vge_newbuf(sc, i, m);
1317 			VGE_RX_DESC_INC(i);
1318 			continue;
1319 		}
1320 
1321 		/*
1322 		 * If allocating a replacement mbuf fails,
1323 		 * reload the current one.
1324 		 */
1325 		if (vge_newbuf(sc, i, NULL)) {
1326 			ifp->if_ierrors++;
1327 			if (sc->vge_head != NULL) {
1328 				m_freem(sc->vge_head);
1329 				sc->vge_head = sc->vge_tail = NULL;
1330 			}
1331 			vge_newbuf(sc, i, m);
1332 			VGE_RX_DESC_INC(i);
1333 			continue;
1334 		}
1335 
1336 		VGE_RX_DESC_INC(i);
1337 
1338 		if (sc->vge_head != NULL) {
1339 			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1340 			/*
1341 			 * Special case: if there's 4 bytes or less
1342 			 * in this buffer, the mbuf can be discarded:
1343 			 * the last 4 bytes is the CRC, which we don't
1344 			 * care about anyway.
1345 			 */
1346 			if (m->m_len <= ETHER_CRC_LEN) {
1347 				sc->vge_tail->m_len -=
1348 				    (ETHER_CRC_LEN - m->m_len);
1349 				m_freem(m);
1350 			} else {
1351 				m->m_len -= ETHER_CRC_LEN;
1352 				m->m_flags &= ~M_PKTHDR;
1353 				sc->vge_tail->m_next = m;
1354 			}
1355 			m = sc->vge_head;
1356 			sc->vge_head = sc->vge_tail = NULL;
1357 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1358 		} else {
1359 			m->m_pkthdr.len = m->m_len =
1360 			    (total_len - ETHER_CRC_LEN);
1361 		}
1362 
1363 #ifdef VGE_FIXUP_RX
1364 		vge_fixup_rx(m);
1365 #endif
1366 		ifp->if_ipackets++;
1367 		m->m_pkthdr.rcvif = ifp;
1368 
1369 		/* Do RX checksumming if enabled */
1370 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1371 			/* Check IP header checksum */
1372 			if (rxctl & VGE_RDCTL_IPPKT)
1373 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1374 			if (rxctl & VGE_RDCTL_IPCSUMOK)
1375 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1376 
1377 			/* Check TCP/UDP checksum */
1378 			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1379 			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1380 				m->m_pkthdr.csum_flags |=
1381 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1382 				m->m_pkthdr.csum_data = 0xffff;
1383 			}
1384 		}
1385 
1386 		if (rxstat & VGE_RDSTS_VTAG)
1387 			VLAN_INPUT_TAG(m, ntohs((rxctl & VGE_RDCTL_VLANID)));
1388 		else
1389 			ifp->if_input(ifp, m);
1390 
1391 		lim++;
1392 		if (lim == VGE_RX_DESC_CNT)
1393 			break;
1394 	}
1395 
1396 	/* Flush the RX DMA ring */
1397 	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1398 			sc->vge_ldata.vge_rx_list_map,
1399 			BUS_DMASYNC_PREWRITE);
1400 
1401 	sc->vge_ldata.vge_rx_prodidx = i;
1402 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1403 }
1404 
1405 static void
1406 vge_txeof(struct vge_softc *sc)
1407 {
1408 	struct ifnet *ifp = &sc->arpcom.ac_if;
1409 	uint32_t txstat;
1410 	int idx;
1411 
1412 	idx = sc->vge_ldata.vge_tx_considx;
1413 
1414 	/* Invalidate the TX descriptor list */
1415 
1416 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1417 			sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1418 
1419 	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1420 
1421 		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1422 		if (txstat & VGE_TDSTS_OWN)
1423 			break;
1424 
1425 		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1426 		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1427 		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1428 				  sc->vge_ldata.vge_tx_dmamap[idx]);
1429 		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1430 			ifp->if_collisions++;
1431 		if (txstat & VGE_TDSTS_TXERR)
1432 			ifp->if_oerrors++;
1433 		else
1434 			ifp->if_opackets++;
1435 
1436 		sc->vge_ldata.vge_tx_free++;
1437 		VGE_TX_DESC_INC(idx);
1438 	}
1439 
1440 	/* No changes made to the TX ring, so no flush needed */
1441 	if (idx != sc->vge_ldata.vge_tx_considx) {
1442 		sc->vge_ldata.vge_tx_considx = idx;
1443 		ifp->if_flags &= ~IFF_OACTIVE;
1444 		ifp->if_timer = 0;
1445 	}
1446 
1447 	/*
1448 	 * If not all descriptors have been released reaped yet,
1449 	 * reload the timer so that we will eventually get another
1450 	 * interrupt that will cause us to re-enter this routine.
1451 	 * This is done in case the transmitter has gone idle.
1452 	 */
1453 	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1454 		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1455 }
1456 
1457 static void
1458 vge_tick(struct vge_softc *sc)
1459 {
1460 	struct ifnet *ifp = &sc->arpcom.ac_if;
1461 	struct mii_data *mii;
1462 
1463 	mii = device_get_softc(sc->vge_miibus);
1464 
1465 	mii_tick(mii);
1466 	if (sc->vge_link) {
1467 		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1468 			sc->vge_link = 0;
1469 #if 0
1470 			if_link_state_change(sc->vge_ifp,
1471 			    LINK_STATE_DOWN);
1472 #endif
1473 		}
1474 	} else {
1475 		if (mii->mii_media_status & IFM_ACTIVE &&
1476 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1477 			sc->vge_link = 1;
1478 #if 0
1479 			if_link_state_change(sc->vge_ifp,
1480 			    LINK_STATE_UP);
1481 #endif
1482 			if (!ifq_is_empty(&ifp->if_snd))
1483 				ifp->if_start(ifp);
1484 		}
1485 	}
1486 }
1487 
1488 #ifdef DEVICE_POLLING
1489 static void
1490 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1491 {
1492 	struct vge_softc *sc = ifp->if_softc;
1493 
1494 	sc->rxcycles = count;
1495 
1496 	switch (cmd) {
1497 	case POLL_REGISTER:
1498 		vge_disable_intr(sc);
1499 		break;
1500 	case POLL_DEREGISTER:
1501 		vge_enable_intr(sc, 0xffffffff);
1502 		break;
1503 	case POLL_ONLY:
1504 	case POLL_AND_CHECK_STATUS:
1505 		vge_rxeof(sc, count);
1506 		vge_txeof(sc);
1507 
1508 		if (!ifq_is_empty(&ifp->if_snd))
1509 			ifp->if_start(ifp);
1510 
1511 		/* XXX copy & paste from vge_intr */
1512 		if (cmd == POLL_AND_CHECK_STATUS) {
1513 			uint32_t status = 0;
1514 
1515 			status = CSR_READ_4(sc, VGE_ISR);
1516 			if (status == 0xffffffff)
1517 				break;
1518 
1519 			if (status)
1520 				CSR_WRITE_4(sc, VGE_ISR, status);
1521 
1522 			if (status & (VGE_ISR_TXDMA_STALL |
1523 				      VGE_ISR_RXDMA_STALL))
1524 				vge_init(sc);
1525 
1526 			if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1527 				ifp->if_ierrors++;
1528 				CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1529 				CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1530 			}
1531 		}
1532 		break;
1533 	}
1534 
1535 }
1536 #endif	/* DEVICE_POLLING */
1537 
1538 static void
1539 vge_intr(void *arg)
1540 {
1541 	struct vge_softc *sc = arg;
1542 	struct ifnet *ifp = &sc->arpcom.ac_if;
1543 	uint32_t status;
1544 
1545 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1546 		return;
1547 
1548 	/* Disable interrupts */
1549 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1550 
1551 	for (;;) {
1552 		status = CSR_READ_4(sc, VGE_ISR);
1553 		/* If the card has gone away the read returns 0xffff. */
1554 		if (status == 0xFFFFFFFF)
1555 			break;
1556 
1557 		if (status)
1558 			CSR_WRITE_4(sc, VGE_ISR, status);
1559 
1560 		if ((status & VGE_INTRS) == 0)
1561 			break;
1562 
1563 		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1564 			vge_rxeof(sc, -1);
1565 
1566 		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1567 			vge_rxeof(sc, -1);
1568 			ifp->if_ierrors++;
1569 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1570 			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1571 		}
1572 
1573 		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1574 			vge_txeof(sc);
1575 
1576 		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1577 			vge_init(sc);
1578 
1579 		if (status & VGE_ISR_LINKSTS)
1580 			vge_tick(sc);
1581 	}
1582 
1583 	/* Re-enable interrupts */
1584 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1585 
1586 	if (!ifq_is_empty(&ifp->if_snd))
1587 		ifp->if_start(ifp);
1588 }
1589 
1590 static int
1591 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1592 {
1593 	struct vge_dmaload_arg arg;
1594 	bus_dmamap_t map;
1595 	int error;
1596 
1597 	arg.vge_flags = 0;
1598 
1599 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1600 		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1601 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1602 		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1603 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1604 		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1605 
1606 	arg.sc = sc;
1607 	arg.vge_idx = idx;
1608 	arg.vge_m0 = m_head;
1609 	arg.vge_maxsegs = VGE_TX_FRAGS;
1610 
1611 	map = sc->vge_ldata.vge_tx_dmamap[idx];
1612 	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1613 				     vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1614 	if (error && error != EFBIG) {
1615 		if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1616 			  error);
1617 		goto fail;
1618 	}
1619 
1620 	/* Too many segments to map, coalesce into a single mbuf */
1621 	if (error || arg.vge_maxsegs == 0) {
1622 		struct mbuf *m_new;
1623 
1624 		m_new = m_defrag(m_head, MB_DONTWAIT);
1625 		if (m_new == NULL) {
1626 			error = ENOBUFS;
1627 			goto fail;
1628 		} else {
1629 			m_head = m_new;
1630 		}
1631 
1632 		arg.sc = sc;
1633 		arg.vge_m0 = m_head;
1634 		arg.vge_idx = idx;
1635 		arg.vge_maxsegs = 1;
1636 
1637 		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1638 					     m_head, vge_dma_map_tx_desc, &arg,
1639 					     BUS_DMA_NOWAIT);
1640 		if (error) {
1641 			if_printf(&sc->arpcom.ac_if,
1642 				  "can't map mbuf (error %d)\n", error);
1643 			goto fail;
1644 		}
1645 	}
1646 
1647 	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1648 	sc->vge_ldata.vge_tx_free--;
1649 
1650 	/*
1651 	 * Set up hardware VLAN tagging.
1652 	 */
1653 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1654 	    m_head->m_pkthdr.rcvif != NULL &&
1655 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1656 		struct ifvlan *ifv = m_head->m_pkthdr.rcvif->if_softc;
1657 
1658 		if (ifv != NULL) {
1659 			sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1660 				htole32(htons(ifv->ifv_tag) | VGE_TDCTL_VTAG);
1661 		}
1662 	}
1663 
1664 	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1665 	return (0);
1666 
1667 fail:
1668 	m_freem(m_head);
1669 	return error;
1670 }
1671 
1672 /*
1673  * Main transmit routine.
1674  */
1675 
1676 static void
1677 vge_start(struct ifnet *ifp)
1678 {
1679 	struct vge_softc *sc = ifp->if_softc;
1680 	struct mbuf *m_head = NULL;
1681 	int idx, pidx = 0;
1682 
1683 	ASSERT_SERIALIZED(ifp->if_serializer);
1684 
1685 	if (!sc->vge_link || (ifp->if_flags & IFF_OACTIVE))
1686 		return;
1687 
1688 	if (ifq_is_empty(&ifp->if_snd))
1689 		return;
1690 
1691 	idx = sc->vge_ldata.vge_tx_prodidx;
1692 
1693 	pidx = idx - 1;
1694 	if (pidx < 0)
1695 		pidx = VGE_TX_DESC_CNT - 1;
1696 
1697 	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1698 		m_head = ifq_poll(&ifp->if_snd);
1699 		if (m_head == NULL)
1700 			break;
1701 
1702 		if (sc->vge_ldata.vge_tx_free <= 2) {
1703 			ifp->if_flags |= IFF_OACTIVE;
1704 			break;
1705 		}
1706 
1707 		m_head = ifq_dequeue(&ifp->if_snd, m_head);
1708 
1709 		if (vge_encap(sc, m_head, idx)) {
1710 			/* If vge_encap() failed, it will free m_head for us */
1711 			ifp->if_flags |= IFF_OACTIVE;
1712 			break;
1713 		}
1714 
1715 		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1716 		    htole16(VGE_TXDESC_Q);
1717 
1718 		pidx = idx;
1719 		VGE_TX_DESC_INC(idx);
1720 
1721 		/*
1722 		 * If there's a BPF listener, bounce a copy of this frame
1723 		 * to him.
1724 		 */
1725 		BPF_MTAP(ifp, m_head);
1726 	}
1727 
1728 	if (idx == sc->vge_ldata.vge_tx_prodidx)
1729 		return;
1730 
1731 	/* Flush the TX descriptors */
1732 	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1733 			sc->vge_ldata.vge_tx_list_map,
1734 			BUS_DMASYNC_PREWRITE);
1735 
1736 	/* Issue a transmit command. */
1737 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1738 
1739 	sc->vge_ldata.vge_tx_prodidx = idx;
1740 
1741 	/*
1742 	 * Use the countdown timer for interrupt moderation.
1743 	 * 'TX done' interrupts are disabled. Instead, we reset the
1744 	 * countdown timer, which will begin counting until it hits
1745 	 * the value in the SSTIMER register, and then trigger an
1746 	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1747 	 * the timer count is reloaded. Only when the transmitter
1748 	 * is idle will the timer hit 0 and an interrupt fire.
1749 	 */
1750 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1751 
1752 	/*
1753 	 * Set a timeout in case the chip goes out to lunch.
1754 	 */
1755 	ifp->if_timer = 5;
1756 }
1757 
1758 static void
1759 vge_init(void *xsc)
1760 {
1761 	struct vge_softc *sc = xsc;
1762 	struct ifnet *ifp = &sc->arpcom.ac_if;
1763 	struct mii_data *mii;
1764 	int i;
1765 
1766 	ASSERT_SERIALIZED(ifp->if_serializer);
1767 
1768 	mii = device_get_softc(sc->vge_miibus);
1769 
1770 	/*
1771 	 * Cancel pending I/O and free all RX/TX buffers.
1772 	 */
1773 	vge_stop(sc);
1774 	vge_reset(sc);
1775 
1776 	/*
1777 	 * Initialize the RX and TX descriptors and mbufs.
1778 	 */
1779 	vge_rx_list_init(sc);
1780 	vge_tx_list_init(sc);
1781 
1782 	/* Set our station address */
1783 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1784 		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1785 
1786 	/*
1787 	 * Set receive FIFO threshold. Also allow transmission and
1788 	 * reception of VLAN tagged frames.
1789 	 */
1790 	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1791 	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1792 
1793 	/* Set DMA burst length */
1794 	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1795 	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1796 
1797 	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1798 
1799 	/* Set collision backoff algorithm */
1800 	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1801 	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1802 	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1803 
1804 	/* Disable LPSEL field in priority resolution */
1805 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1806 
1807 	/*
1808 	 * Load the addresses of the DMA queues into the chip.
1809 	 * Note that we only use one transmit queue.
1810 	 */
1811 	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1812 	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1813 	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1814 
1815 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1816 	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1817 	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1818 	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1819 
1820 	/* Enable and wake up the RX descriptor queue */
1821 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1822 	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1823 
1824 	/* Enable the TX descriptor queue */
1825 	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1826 
1827 	/* Set up the receive filter -- allow large frames for VLANs. */
1828 	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1829 
1830 	/* If we want promiscuous mode, set the allframes bit. */
1831 	if (ifp->if_flags & IFF_PROMISC)
1832 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1833 
1834 	/* Set capture broadcast bit to capture broadcast frames. */
1835 	if (ifp->if_flags & IFF_BROADCAST)
1836 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1837 
1838 	/* Set multicast bit to capture multicast frames. */
1839 	if (ifp->if_flags & IFF_MULTICAST)
1840 		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1841 
1842 	/* Init the cam filter. */
1843 	vge_cam_clear(sc);
1844 
1845 	/* Init the multicast filter. */
1846 	vge_setmulti(sc);
1847 
1848 	/* Enable flow control */
1849 
1850 	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1851 
1852 	/* Enable jumbo frame reception (if desired) */
1853 
1854 	/* Start the MAC. */
1855 	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1856 	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1857 	CSR_WRITE_1(sc, VGE_CRS0,
1858 	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1859 
1860 	/*
1861 	 * Configure one-shot timer for microsecond
1862 	 * resulution and load it for 500 usecs.
1863 	 */
1864 	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1865 	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1866 
1867 	/*
1868 	 * Configure interrupt moderation for receive. Enable
1869 	 * the holdoff counter and load it, and set the RX
1870 	 * suppression count to the number of descriptors we
1871 	 * want to allow before triggering an interrupt.
1872 	 * The holdoff timer is in units of 20 usecs.
1873 	 */
1874 
1875 #ifdef notyet
1876 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1877 	/* Select the interrupt holdoff timer page. */
1878 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1879 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1880 	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1881 
1882 	/* Enable use of the holdoff timer. */
1883 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1884 	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1885 
1886 	/* Select the RX suppression threshold page. */
1887 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1888 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1889 	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1890 
1891 	/* Restore the page select bits. */
1892 	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1893 	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1894 #endif
1895 
1896 #ifdef DEVICE_POLLING
1897 	/* Disable intr if polling(4) is enabled */
1898 	if (ifp->if_flags & IFF_POLLING)
1899 		vge_disable_intr(sc);
1900 	else
1901 #endif
1902 	vge_enable_intr(sc, 0);
1903 
1904 	mii_mediachg(mii);
1905 
1906 	ifp->if_flags |= IFF_RUNNING;
1907 	ifp->if_flags &= ~IFF_OACTIVE;
1908 
1909 	sc->vge_if_flags = 0;
1910 	sc->vge_link = 0;
1911 }
1912 
1913 /*
1914  * Set media options.
1915  */
1916 static int
1917 vge_ifmedia_upd(struct ifnet *ifp)
1918 {
1919 	struct vge_softc *sc = ifp->if_softc;
1920 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1921 
1922 	mii_mediachg(mii);
1923 
1924 	return (0);
1925 }
1926 
1927 /*
1928  * Report current media status.
1929  */
1930 static void
1931 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1932 {
1933 	struct vge_softc *sc = ifp->if_softc;
1934 	struct mii_data *mii = device_get_softc(sc->vge_miibus);
1935 
1936 	mii_pollstat(mii);
1937 	ifmr->ifm_active = mii->mii_media_active;
1938 	ifmr->ifm_status = mii->mii_media_status;
1939 }
1940 
1941 static void
1942 vge_miibus_statchg(device_t dev)
1943 {
1944 	struct vge_softc *sc;
1945 	struct mii_data *mii;
1946 	struct ifmedia_entry *ife;
1947 
1948 	sc = device_get_softc(dev);
1949 	mii = device_get_softc(sc->vge_miibus);
1950 	ife = mii->mii_media.ifm_cur;
1951 
1952 	/*
1953 	 * If the user manually selects a media mode, we need to turn
1954 	 * on the forced MAC mode bit in the DIAGCTL register. If the
1955 	 * user happens to choose a full duplex mode, we also need to
1956 	 * set the 'force full duplex' bit. This applies only to
1957 	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1958 	 * mode is disabled, and in 1000baseT mode, full duplex is
1959 	 * always implied, so we turn on the forced mode bit but leave
1960 	 * the FDX bit cleared.
1961 	 */
1962 
1963 	switch (IFM_SUBTYPE(ife->ifm_media)) {
1964 	case IFM_AUTO:
1965 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1966 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1967 		break;
1968 	case IFM_1000_T:
1969 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1970 		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1971 		break;
1972 	case IFM_100_TX:
1973 	case IFM_10_T:
1974 		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1975 		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1976 			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1977 		else
1978 			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1979 		break;
1980 	default:
1981 		device_printf(dev, "unknown media type: %x\n",
1982 			      IFM_SUBTYPE(ife->ifm_media));
1983 		break;
1984 	}
1985 }
1986 
1987 static int
1988 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1989 {
1990 	struct vge_softc *sc = ifp->if_softc;
1991 	struct ifreq *ifr = (struct ifreq *)data;
1992 	struct mii_data *mii;
1993 	int error = 0;
1994 
1995 	switch (command) {
1996 	case SIOCSIFMTU:
1997 		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
1998 			error = EINVAL;
1999 		ifp->if_mtu = ifr->ifr_mtu;
2000 		break;
2001 	case SIOCSIFFLAGS:
2002 		if (ifp->if_flags & IFF_UP) {
2003 			if ((ifp->if_flags & IFF_RUNNING) &&
2004 			    (ifp->if_flags & IFF_PROMISC) &&
2005 			    !(sc->vge_if_flags & IFF_PROMISC)) {
2006 				CSR_SETBIT_1(sc, VGE_RXCTL,
2007 				    VGE_RXCTL_RX_PROMISC);
2008 				vge_setmulti(sc);
2009 			} else if ((ifp->if_flags & IFF_RUNNING) &&
2010 				   !(ifp->if_flags & IFF_PROMISC) &&
2011 				   (sc->vge_if_flags & IFF_PROMISC)) {
2012 				CSR_CLRBIT_1(sc, VGE_RXCTL,
2013 					     VGE_RXCTL_RX_PROMISC);
2014 				vge_setmulti(sc);
2015                         } else {
2016 				vge_init(sc);
2017 			}
2018 		} else {
2019 			if (ifp->if_flags & IFF_RUNNING)
2020 				vge_stop(sc);
2021 		}
2022 		sc->vge_if_flags = ifp->if_flags;
2023 		break;
2024 	case SIOCADDMULTI:
2025 	case SIOCDELMULTI:
2026 		vge_setmulti(sc);
2027 		break;
2028 	case SIOCGIFMEDIA:
2029 	case SIOCSIFMEDIA:
2030 		mii = device_get_softc(sc->vge_miibus);
2031 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2032 		break;
2033 	case SIOCSIFCAP:
2034 	    {
2035 		uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2036 
2037 		if (mask & IFCAP_HWCSUM) {
2038 			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2039 			if (ifp->if_capenable & IFCAP_TXCSUM)
2040 				ifp->if_hwassist = VGE_CSUM_FEATURES;
2041 			else
2042 				ifp->if_hwassist = 0;
2043 			if (ifp->if_flags & IFF_RUNNING)
2044 				vge_init(sc);
2045 		}
2046 	    }
2047 		break;
2048 	default:
2049 		error = ether_ioctl(ifp, command, data);
2050 		break;
2051 	}
2052 	return (error);
2053 }
2054 
2055 static void
2056 vge_watchdog(struct ifnet *ifp)
2057 {
2058 	struct vge_softc *sc = ifp->if_softc;
2059 
2060 	if_printf(ifp, "watchdog timeout\n");
2061 	ifp->if_oerrors++;
2062 
2063 	vge_txeof(sc);
2064 	vge_rxeof(sc, -1);
2065 
2066 	vge_init(sc);
2067 }
2068 
2069 /*
2070  * Stop the adapter and free any mbufs allocated to the
2071  * RX and TX lists.
2072  */
2073 static void
2074 vge_stop(struct vge_softc *sc)
2075 {
2076 	struct ifnet *ifp = &sc->arpcom.ac_if;
2077 	int i;
2078 
2079 	ASSERT_SERIALIZED(ifp->if_serializer);
2080 
2081 	ifp->if_timer = 0;
2082 
2083 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2084 
2085 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2086 	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2087 	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2088 	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2089 	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2090 	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2091 
2092 	if (sc->vge_head != NULL) {
2093 		m_freem(sc->vge_head);
2094 		sc->vge_head = sc->vge_tail = NULL;
2095 	}
2096 
2097 	/* Free the TX list buffers. */
2098 	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2099 		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2100 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2101 					  sc->vge_ldata.vge_tx_dmamap[i]);
2102 			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2103 			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2104 		}
2105 	}
2106 
2107 	/* Free the RX list buffers. */
2108 	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2109 		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2110 			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2111 					  sc->vge_ldata.vge_rx_dmamap[i]);
2112 			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2113 			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2114 		}
2115 	}
2116 }
2117 
2118 /*
2119  * Device suspend routine.  Stop the interface and save some PCI
2120  * settings in case the BIOS doesn't restore them properly on
2121  * resume.
2122  */
2123 static int
2124 vge_suspend(device_t dev)
2125 {
2126 	struct vge_softc *sc = device_get_softc(dev);
2127 	struct ifnet *ifp = &sc->arpcom.ac_if;
2128 
2129 	lwkt_serialize_enter(ifp->if_serializer);
2130 	vge_stop(sc);
2131 	sc->suspended = 1;
2132 	lwkt_serialize_exit(ifp->if_serializer);
2133 
2134 	return (0);
2135 }
2136 
2137 /*
2138  * Device resume routine.  Restore some PCI settings in case the BIOS
2139  * doesn't, re-enable busmastering, and restart the interface if
2140  * appropriate.
2141  */
2142 static int
2143 vge_resume(device_t dev)
2144 {
2145 	struct vge_softc *sc = device_get_softc(dev);
2146 	struct ifnet *ifp = &sc->arpcom.ac_if;
2147 
2148 	/* reenable busmastering */
2149 	pci_enable_busmaster(dev);
2150 	pci_enable_io(dev, SYS_RES_MEMORY);
2151 
2152 	lwkt_serialize_enter(ifp->if_serializer);
2153 	/* reinitialize interface if necessary */
2154 	if (ifp->if_flags & IFF_UP)
2155 		vge_init(sc);
2156 
2157 	sc->suspended = 0;
2158 	lwkt_serialize_exit(ifp->if_serializer);
2159 
2160 	return (0);
2161 }
2162 
2163 /*
2164  * Stop all chip I/O so that the kernel's probe routines don't
2165  * get confused by errant DMAs when rebooting.
2166  */
2167 static void
2168 vge_shutdown(device_t dev)
2169 {
2170 	struct vge_softc *sc = device_get_softc(dev);
2171 	struct ifnet *ifp = &sc->arpcom.ac_if;
2172 
2173 	lwkt_serialize_enter(ifp->if_serializer);
2174 	vge_stop(sc);
2175 	lwkt_serialize_exit(ifp->if_serializer);
2176 }
2177 
2178 static void
2179 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2180 {
2181 	CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2182 	CSR_WRITE_4(sc, VGE_ISR, isr);
2183 	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2184 }
2185 
2186 #ifdef DEVICE_POLLING
2187 static void
2188 vge_disable_intr(struct vge_softc *sc)
2189 {
2190 	CSR_WRITE_4(sc, VGE_IMR, 0);
2191 	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2192 }
2193 #endif
2194