xref: /dflybsd-src/sys/dev/netif/tl/if_tl.c (revision 6bc31f17c9c90db02ddbd88208e06c29ed0f1534)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/tl/if_tl.c,v 1.22 2005/06/10 16:19:41 joerg Exp $
34  */
35 
36 /*
37  * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
38  * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
39  * the National Semiconductor DP83840A physical interface and the
40  * Microchip Technology 24Cxx series serial EEPROM.
41  *
42  * Written using the following four documents:
43  *
44  * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
45  * National Semiconductor DP83840A data sheet (www.national.com)
46  * Microchip Technology 24C02C data sheet (www.microchip.com)
47  * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
48  *
49  * Written by Bill Paul <wpaul@ctr.columbia.edu>
50  * Electrical Engineering Department
51  * Columbia University, New York City
52  */
53 
54 /*
55  * Some notes about the ThunderLAN:
56  *
57  * The ThunderLAN controller is a single chip containing PCI controller
58  * logic, approximately 3K of on-board SRAM, a LAN controller, and media
59  * independent interface (MII) bus. The MII allows the ThunderLAN chip to
60  * control up to 32 different physical interfaces (PHYs). The ThunderLAN
61  * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
62  * to act as a complete ethernet interface.
63  *
64  * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
65  * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
66  * in full or half duplex. Some of the Compaq Deskpro machines use a
67  * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
68  * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
69  * concert with the ThunderLAN's internal PHY to provide full 10/100
70  * support. This is cheaper than using a standalone external PHY for both
71  * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
72  * A serial EEPROM is also attached to the ThunderLAN chip to provide
73  * power-up default register settings and for storing the adapter's
74  * station address. Although not supported by this driver, the ThunderLAN
75  * chip can also be connected to token ring PHYs.
76  *
77  * The ThunderLAN has a set of registers which can be used to issue
78  * commands, acknowledge interrupts, and to manipulate other internal
79  * registers on its DIO bus. The primary registers can be accessed
80  * using either programmed I/O (inb/outb) or via PCI memory mapping,
81  * depending on how the card is configured during the PCI probing
82  * phase. It is even possible to have both PIO and memory mapped
83  * access turned on at the same time.
84  *
85  * Frame reception and transmission with the ThunderLAN chip is done
86  * using frame 'lists.' A list structure looks more or less like this:
87  *
88  * struct tl_frag {
89  *	u_int32_t		fragment_address;
90  *	u_int32_t		fragment_size;
91  * };
92  * struct tl_list {
93  *	u_int32_t		forward_pointer;
94  *	u_int16_t		cstat;
95  *	u_int16_t		frame_size;
96  *	struct tl_frag		fragments[10];
97  * };
98  *
99  * The forward pointer in the list header can be either a 0 or the address
100  * of another list, which allows several lists to be linked together. Each
101  * list contains up to 10 fragment descriptors. This means the chip allows
102  * ethernet frames to be broken up into up to 10 chunks for transfer to
103  * and from the SRAM. Note that the forward pointer and fragment buffer
104  * addresses are physical memory addresses, not virtual. Note also that
105  * a single ethernet frame can not span lists: if the host wants to
106  * transmit a frame and the frame data is split up over more than 10
107  * buffers, the frame has to collapsed before it can be transmitted.
108  *
109  * To receive frames, the driver sets up a number of lists and populates
110  * the fragment descriptors, then it sends an RX GO command to the chip.
111  * When a frame is received, the chip will DMA it into the memory regions
112  * specified by the fragment descriptors and then trigger an RX 'end of
113  * frame interrupt' when done. The driver may choose to use only one
114  * fragment per list; this may result is slighltly less efficient use
115  * of memory in exchange for improving performance.
116  *
117  * To transmit frames, the driver again sets up lists and fragment
118  * descriptors, only this time the buffers contain frame data that
119  * is to be DMA'ed into the chip instead of out of it. Once the chip
120  * has transfered the data into its on-board SRAM, it will trigger a
121  * TX 'end of frame' interrupt. It will also generate an 'end of channel'
122  * interrupt when it reaches the end of the list.
123  */
124 
125 /*
126  * Some notes about this driver:
127  *
128  * The ThunderLAN chip provides a couple of different ways to organize
129  * reception, transmission and interrupt handling. The simplest approach
130  * is to use one list each for transmission and reception. In this mode,
131  * the ThunderLAN will generate two interrupts for every received frame
132  * (one RX EOF and one RX EOC) and two for each transmitted frame (one
133  * TX EOF and one TX EOC). This may make the driver simpler but it hurts
134  * performance to have to handle so many interrupts.
135  *
136  * Initially I wanted to create a circular list of receive buffers so
137  * that the ThunderLAN chip would think there was an infinitely long
138  * receive channel and never deliver an RXEOC interrupt. However this
139  * doesn't work correctly under heavy load: while the manual says the
140  * chip will trigger an RXEOF interrupt each time a frame is copied into
141  * memory, you can't count on the chip waiting around for you to acknowledge
142  * the interrupt before it starts trying to DMA the next frame. The result
143  * is that the chip might traverse the entire circular list and then wrap
144  * around before you have a chance to do anything about it. Consequently,
145  * the receive list is terminated (with a 0 in the forward pointer in the
146  * last element). Each time an RXEOF interrupt arrives, the used list
147  * is shifted to the end of the list. This gives the appearance of an
148  * infinitely large RX chain so long as the driver doesn't fall behind
149  * the chip and allow all of the lists to be filled up.
150  *
151  * If all the lists are filled, the adapter will deliver an RX 'end of
152  * channel' interrupt when it hits the 0 forward pointer at the end of
153  * the chain. The RXEOC handler then cleans out the RX chain and resets
154  * the list head pointer in the ch_parm register and restarts the receiver.
155  *
156  * For frame transmission, it is possible to program the ThunderLAN's
157  * transmit interrupt threshold so that the chip can acknowledge multiple
158  * lists with only a single TX EOF interrupt. This allows the driver to
159  * queue several frames in one shot, and only have to handle a total
160  * two interrupts (one TX EOF and one TX EOC) no matter how many frames
161  * are transmitted. Frame transmission is done directly out of the
162  * mbufs passed to the tl_start() routine via the interface send queue.
163  * The driver simply sets up the fragment descriptors in the transmit
164  * lists to point to the mbuf data regions and sends a TX GO command.
165  *
166  * Note that since the RX and TX lists themselves are always used
167  * only by the driver, the are malloc()ed once at driver initialization
168  * time and never free()ed.
169  *
170  * Also, in order to remain as platform independent as possible, this
171  * driver uses memory mapped register access to manipulate the card
172  * as opposed to programmed I/O. This avoids the use of the inb/outb
173  * (and related) instructions which are specific to the i386 platform.
174  *
175  * Using these techniques, this driver achieves very high performance
176  * by minimizing the amount of interrupts generated during large
177  * transfers and by completely avoiding buffer copies. Frame transfer
178  * to and from the ThunderLAN chip is performed entirely by the chip
179  * itself thereby reducing the load on the host CPU.
180  */
181 
182 #include <sys/param.h>
183 #include <sys/systm.h>
184 #include <sys/sockio.h>
185 #include <sys/mbuf.h>
186 #include <sys/malloc.h>
187 #include <sys/kernel.h>
188 #include <sys/socket.h>
189 #include <sys/thread2.h>
190 
191 #include <net/if.h>
192 #include <net/ifq_var.h>
193 #include <net/if_arp.h>
194 #include <net/ethernet.h>
195 #include <net/if_dl.h>
196 #include <net/if_media.h>
197 
198 #include <net/bpf.h>
199 
200 #include <vm/vm.h>              /* for vtophys */
201 #include <vm/pmap.h>            /* for vtophys */
202 #include <machine/clock.h>      /* for DELAY */
203 #include <machine/bus_memio.h>
204 #include <machine/bus_pio.h>
205 #include <machine/bus.h>
206 #include <machine/resource.h>
207 #include <sys/bus.h>
208 #include <sys/rman.h>
209 
210 #include "../mii_layer/mii.h"
211 #include "../mii_layer/miivar.h"
212 
213 #include <bus/pci/pcireg.h>
214 #include <bus/pci/pcivar.h>
215 
216 /*
217  * Default to using PIO register access mode to pacify certain
218  * laptop docking stations with built-in ThunderLAN chips that
219  * don't seem to handle memory mapped mode properly.
220  */
221 #define TL_USEIOSPACE
222 
223 #include "if_tlreg.h"
224 
225 /* "controller miibus0" required.  See GENERIC if you get errors here. */
226 #include "miibus_if.h"
227 
228 /*
229  * Various supported device vendors/types and their names.
230  */
231 
232 static struct tl_type tl_devs[] = {
233 	{ TI_VENDORID,	TI_DEVICEID_THUNDERLAN,
234 		"Texas Instruments ThunderLAN" },
235 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
236 		"Compaq Netelligent 10" },
237 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
238 		"Compaq Netelligent 10/100" },
239 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
240 		"Compaq Netelligent 10/100 Proliant" },
241 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
242 		"Compaq Netelligent 10/100 Dual Port" },
243 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
244 		"Compaq NetFlex-3/P Integrated" },
245 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
246 		"Compaq NetFlex-3/P" },
247 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
248 		"Compaq NetFlex 3/P w/ BNC" },
249 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
250 		"Compaq Netelligent 10/100 TX Embedded UTP" },
251 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
252 		"Compaq Netelligent 10 T/2 PCI UTP/Coax" },
253 	{ COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
254 		"Compaq Netelligent 10/100 TX UTP" },
255 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
256 		"Olicom OC-2183/2185" },
257 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
258 		"Olicom OC-2325" },
259 	{ OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
260 		"Olicom OC-2326 10/100 TX UTP" },
261 	{ 0, 0, NULL }
262 };
263 
264 static int tl_probe		(device_t);
265 static int tl_attach		(device_t);
266 static int tl_detach		(device_t);
267 static int tl_intvec_rxeoc	(void *, u_int32_t);
268 static int tl_intvec_txeoc	(void *, u_int32_t);
269 static int tl_intvec_txeof	(void *, u_int32_t);
270 static int tl_intvec_rxeof	(void *, u_int32_t);
271 static int tl_intvec_adchk	(void *, u_int32_t);
272 static int tl_intvec_netsts	(void *, u_int32_t);
273 
274 static int tl_newbuf		(struct tl_softc *,
275 					struct tl_chain_onefrag *);
276 static void tl_stats_update	(void *);
277 static int tl_encap		(struct tl_softc *, struct tl_chain *,
278 						struct mbuf *);
279 
280 static void tl_intr		(void *);
281 static void tl_start		(struct ifnet *);
282 static int tl_ioctl		(struct ifnet *, u_long, caddr_t,
283 						struct ucred *);
284 static void tl_init		(void *);
285 static void tl_stop		(struct tl_softc *);
286 static void tl_watchdog		(struct ifnet *);
287 static void tl_shutdown		(device_t);
288 static int tl_ifmedia_upd	(struct ifnet *);
289 static void tl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
290 
291 static u_int8_t tl_eeprom_putbyte	(struct tl_softc *, int);
292 static u_int8_t	tl_eeprom_getbyte	(struct tl_softc *,
293 						int, u_int8_t *);
294 static int tl_read_eeprom	(struct tl_softc *, caddr_t, int, int);
295 
296 static void tl_mii_sync		(struct tl_softc *);
297 static void tl_mii_send		(struct tl_softc *, u_int32_t, int);
298 static int tl_mii_readreg	(struct tl_softc *, struct tl_mii_frame *);
299 static int tl_mii_writereg	(struct tl_softc *, struct tl_mii_frame *);
300 static int tl_miibus_readreg	(device_t, int, int);
301 static int tl_miibus_writereg	(device_t, int, int, int);
302 static void tl_miibus_statchg	(device_t);
303 
304 static void tl_setmode		(struct tl_softc *, int);
305 static int tl_calchash		(caddr_t);
306 static void tl_setmulti		(struct tl_softc *);
307 static void tl_setfilt		(struct tl_softc *, caddr_t, int);
308 static void tl_softreset	(struct tl_softc *, int);
309 static void tl_hardreset	(device_t);
310 static int tl_list_rx_init	(struct tl_softc *);
311 static int tl_list_tx_init	(struct tl_softc *);
312 
313 static u_int8_t tl_dio_read8	(struct tl_softc *, int);
314 static u_int16_t tl_dio_read16	(struct tl_softc *, int);
315 static u_int32_t tl_dio_read32	(struct tl_softc *, int);
316 static void tl_dio_write8	(struct tl_softc *, int, int);
317 static void tl_dio_write16	(struct tl_softc *, int, int);
318 static void tl_dio_write32	(struct tl_softc *, int, int);
319 static void tl_dio_setbit	(struct tl_softc *, int, int);
320 static void tl_dio_clrbit	(struct tl_softc *, int, int);
321 static void tl_dio_setbit16	(struct tl_softc *, int, int);
322 static void tl_dio_clrbit16	(struct tl_softc *, int, int);
323 
324 #ifdef TL_USEIOSPACE
325 #define TL_RES		SYS_RES_IOPORT
326 #define TL_RID		TL_PCI_LOIO
327 #else
328 #define TL_RES		SYS_RES_MEMORY
329 #define TL_RID		TL_PCI_LOMEM
330 #endif
331 
332 static device_method_t tl_methods[] = {
333 	/* Device interface */
334 	DEVMETHOD(device_probe,		tl_probe),
335 	DEVMETHOD(device_attach,	tl_attach),
336 	DEVMETHOD(device_detach,	tl_detach),
337 	DEVMETHOD(device_shutdown,	tl_shutdown),
338 
339 	/* bus interface */
340 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
341 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
342 
343 	/* MII interface */
344 	DEVMETHOD(miibus_readreg,	tl_miibus_readreg),
345 	DEVMETHOD(miibus_writereg,	tl_miibus_writereg),
346 	DEVMETHOD(miibus_statchg,	tl_miibus_statchg),
347 
348 	{ 0, 0 }
349 };
350 
351 static driver_t tl_driver = {
352 	"tl",
353 	tl_methods,
354 	sizeof(struct tl_softc)
355 };
356 
357 static devclass_t tl_devclass;
358 
359 DECLARE_DUMMY_MODULE(if_tl);
360 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, 0, 0);
361 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, 0, 0);
362 
363 static u_int8_t tl_dio_read8(sc, reg)
364 	struct tl_softc		*sc;
365 	int			reg;
366 {
367 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
368 	return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
369 }
370 
371 static u_int16_t tl_dio_read16(sc, reg)
372 	struct tl_softc		*sc;
373 	int			reg;
374 {
375 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
376 	return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
377 }
378 
379 static u_int32_t tl_dio_read32(sc, reg)
380 	struct tl_softc		*sc;
381 	int			reg;
382 {
383 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
384 	return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
385 }
386 
387 static void tl_dio_write8(sc, reg, val)
388 	struct tl_softc		*sc;
389 	int			reg;
390 	int			val;
391 {
392 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
393 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
394 	return;
395 }
396 
397 static void tl_dio_write16(sc, reg, val)
398 	struct tl_softc		*sc;
399 	int			reg;
400 	int			val;
401 {
402 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
403 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
404 	return;
405 }
406 
407 static void tl_dio_write32(sc, reg, val)
408 	struct tl_softc		*sc;
409 	int			reg;
410 	int			val;
411 {
412 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
413 	CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
414 	return;
415 }
416 
417 static void tl_dio_setbit(sc, reg, bit)
418 	struct tl_softc		*sc;
419 	int			reg;
420 	int			bit;
421 {
422 	u_int8_t			f;
423 
424 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
425 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
426 	f |= bit;
427 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
428 
429 	return;
430 }
431 
432 static void tl_dio_clrbit(sc, reg, bit)
433 	struct tl_softc		*sc;
434 	int			reg;
435 	int			bit;
436 {
437 	u_int8_t			f;
438 
439 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
440 	f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
441 	f &= ~bit;
442 	CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
443 
444 	return;
445 }
446 
447 static void tl_dio_setbit16(sc, reg, bit)
448 	struct tl_softc		*sc;
449 	int			reg;
450 	int			bit;
451 {
452 	u_int16_t			f;
453 
454 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
455 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
456 	f |= bit;
457 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
458 
459 	return;
460 }
461 
462 static void tl_dio_clrbit16(sc, reg, bit)
463 	struct tl_softc		*sc;
464 	int			reg;
465 	int			bit;
466 {
467 	u_int16_t			f;
468 
469 	CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
470 	f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
471 	f &= ~bit;
472 	CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
473 
474 	return;
475 }
476 
477 /*
478  * Send an instruction or address to the EEPROM, check for ACK.
479  */
480 static u_int8_t tl_eeprom_putbyte(sc, byte)
481 	struct tl_softc		*sc;
482 	int			byte;
483 {
484 	int		i, ack = 0;
485 
486 	/*
487 	 * Make sure we're in TX mode.
488 	 */
489 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
490 
491 	/*
492 	 * Feed in each bit and stobe the clock.
493 	 */
494 	for (i = 0x80; i; i >>= 1) {
495 		if (byte & i) {
496 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
497 		} else {
498 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
499 		}
500 		DELAY(1);
501 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
502 		DELAY(1);
503 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
504 	}
505 
506 	/*
507 	 * Turn off TX mode.
508 	 */
509 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
510 
511 	/*
512 	 * Check for ack.
513 	 */
514 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
515 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
516 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
517 
518 	return(ack);
519 }
520 
521 /*
522  * Read a byte of data stored in the EEPROM at address 'addr.'
523  */
524 static u_int8_t tl_eeprom_getbyte(sc, addr, dest)
525 	struct tl_softc		*sc;
526 	int			addr;
527 	u_int8_t		*dest;
528 {
529 	int		i;
530 	u_int8_t		byte = 0;
531 
532 	tl_dio_write8(sc, TL_NETSIO, 0);
533 
534 	EEPROM_START;
535 
536 	/*
537 	 * Send write control code to EEPROM.
538 	 */
539 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
540 		printf("tl%d: failed to send write command, status: %x\n",
541 				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
542 		return(1);
543 	}
544 
545 	/*
546 	 * Send address of byte we want to read.
547 	 */
548 	if (tl_eeprom_putbyte(sc, addr)) {
549 		printf("tl%d: failed to send address, status: %x\n",
550 				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
551 		return(1);
552 	}
553 
554 	EEPROM_STOP;
555 	EEPROM_START;
556 	/*
557 	 * Send read control code to EEPROM.
558 	 */
559 	if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
560 		printf("tl%d: failed to send write command, status: %x\n",
561 				sc->tl_unit, tl_dio_read8(sc, TL_NETSIO));
562 		return(1);
563 	}
564 
565 	/*
566 	 * Start reading bits from EEPROM.
567 	 */
568 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
569 	for (i = 0x80; i; i >>= 1) {
570 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
571 		DELAY(1);
572 		if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
573 			byte |= i;
574 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
575 		DELAY(1);
576 	}
577 
578 	EEPROM_STOP;
579 
580 	/*
581 	 * No ACK generated for read, so just return byte.
582 	 */
583 
584 	*dest = byte;
585 
586 	return(0);
587 }
588 
589 /*
590  * Read a sequence of bytes from the EEPROM.
591  */
592 static int tl_read_eeprom(sc, dest, off, cnt)
593 	struct tl_softc		*sc;
594 	caddr_t			dest;
595 	int			off;
596 	int			cnt;
597 {
598 	int			err = 0, i;
599 	u_int8_t		byte = 0;
600 
601 	for (i = 0; i < cnt; i++) {
602 		err = tl_eeprom_getbyte(sc, off + i, &byte);
603 		if (err)
604 			break;
605 		*(dest + i) = byte;
606 	}
607 
608 	return(err ? 1 : 0);
609 }
610 
611 static void tl_mii_sync(sc)
612 	struct tl_softc		*sc;
613 {
614 	int		i;
615 
616 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
617 
618 	for (i = 0; i < 32; i++) {
619 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
620 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
621 	}
622 
623 	return;
624 }
625 
626 static void tl_mii_send(sc, bits, cnt)
627 	struct tl_softc		*sc;
628 	u_int32_t		bits;
629 	int			cnt;
630 {
631 	int			i;
632 
633 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
634 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
635 		if (bits & i) {
636 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
637 		} else {
638 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
639 		}
640 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
641 	}
642 }
643 
644 static int tl_mii_readreg(sc, frame)
645 	struct tl_softc		*sc;
646 	struct tl_mii_frame	*frame;
647 
648 {
649 	int			i, ack;
650 	int			minten = 0;
651 
652 	crit_enter();
653 
654 	tl_mii_sync(sc);
655 
656 	/*
657 	 * Set up frame for RX.
658 	 */
659 	frame->mii_stdelim = TL_MII_STARTDELIM;
660 	frame->mii_opcode = TL_MII_READOP;
661 	frame->mii_turnaround = 0;
662 	frame->mii_data = 0;
663 
664 	/*
665 	 * Turn off MII interrupt by forcing MINTEN low.
666 	 */
667 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
668 	if (minten) {
669 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
670 	}
671 
672 	/*
673  	 * Turn on data xmit.
674 	 */
675 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
676 
677 	/*
678 	 * Send command/address info.
679 	 */
680 	tl_mii_send(sc, frame->mii_stdelim, 2);
681 	tl_mii_send(sc, frame->mii_opcode, 2);
682 	tl_mii_send(sc, frame->mii_phyaddr, 5);
683 	tl_mii_send(sc, frame->mii_regaddr, 5);
684 
685 	/*
686 	 * Turn off xmit.
687 	 */
688 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
689 
690 	/* Idle bit */
691 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
692 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
693 
694 	/* Check for ack */
695 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
696 	ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
697 
698 	/* Complete the cycle */
699 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
700 
701 	/*
702 	 * Now try reading data bits. If the ack failed, we still
703 	 * need to clock through 16 cycles to keep the PHYs in sync.
704 	 */
705 	if (ack) {
706 		for(i = 0; i < 16; i++) {
707 			tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
708 			tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
709 		}
710 		goto fail;
711 	}
712 
713 	for (i = 0x8000; i; i >>= 1) {
714 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
715 		if (!ack) {
716 			if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
717 				frame->mii_data |= i;
718 		}
719 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
720 	}
721 
722 fail:
723 
724 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
725 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
726 
727 	/* Reenable interrupts */
728 	if (minten) {
729 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
730 	}
731 
732 	crit_exit();
733 
734 	if (ack)
735 		return(1);
736 	return(0);
737 }
738 
739 static int tl_mii_writereg(sc, frame)
740 	struct tl_softc		*sc;
741 	struct tl_mii_frame	*frame;
742 
743 {
744 	int			minten;
745 
746 	tl_mii_sync(sc);
747 
748 	crit_enter();
749 	/*
750 	 * Set up frame for TX.
751 	 */
752 
753 	frame->mii_stdelim = TL_MII_STARTDELIM;
754 	frame->mii_opcode = TL_MII_WRITEOP;
755 	frame->mii_turnaround = TL_MII_TURNAROUND;
756 
757 	/*
758 	 * Turn off MII interrupt by forcing MINTEN low.
759 	 */
760 	minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
761 	if (minten) {
762 		tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
763 	}
764 
765 	/*
766  	 * Turn on data output.
767 	 */
768 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
769 
770 	tl_mii_send(sc, frame->mii_stdelim, 2);
771 	tl_mii_send(sc, frame->mii_opcode, 2);
772 	tl_mii_send(sc, frame->mii_phyaddr, 5);
773 	tl_mii_send(sc, frame->mii_regaddr, 5);
774 	tl_mii_send(sc, frame->mii_turnaround, 2);
775 	tl_mii_send(sc, frame->mii_data, 16);
776 
777 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
778 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
779 
780 	/*
781 	 * Turn off xmit.
782 	 */
783 	tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
784 
785 	/* Reenable interrupts */
786 	if (minten)
787 		tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
788 
789 	crit_exit();
790 
791 	return(0);
792 }
793 
794 static int tl_miibus_readreg(dev, phy, reg)
795 	device_t		dev;
796 	int			phy, reg;
797 {
798 	struct tl_softc		*sc;
799 	struct tl_mii_frame	frame;
800 
801 	sc = device_get_softc(dev);
802 	bzero((char *)&frame, sizeof(frame));
803 
804 	frame.mii_phyaddr = phy;
805 	frame.mii_regaddr = reg;
806 	tl_mii_readreg(sc, &frame);
807 
808 	return(frame.mii_data);
809 }
810 
811 static int tl_miibus_writereg(dev, phy, reg, data)
812 	device_t		dev;
813 	int			phy, reg, data;
814 {
815 	struct tl_softc		*sc;
816 	struct tl_mii_frame	frame;
817 
818 	sc = device_get_softc(dev);
819 	bzero((char *)&frame, sizeof(frame));
820 
821 	frame.mii_phyaddr = phy;
822 	frame.mii_regaddr = reg;
823 	frame.mii_data = data;
824 
825 	tl_mii_writereg(sc, &frame);
826 
827 	return(0);
828 }
829 
830 static void tl_miibus_statchg(dev)
831 	device_t		dev;
832 {
833 	struct tl_softc		*sc;
834 	struct mii_data		*mii;
835 
836 	sc = device_get_softc(dev);
837 	mii = device_get_softc(sc->tl_miibus);
838 
839 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
840 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
841 	} else {
842 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
843 	}
844 
845 	return;
846 }
847 
848 /*
849  * Set modes for bitrate devices.
850  */
851 static void tl_setmode(sc, media)
852 	struct tl_softc		*sc;
853 	int			media;
854 {
855 	if (IFM_SUBTYPE(media) == IFM_10_5)
856 		tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
857 	if (IFM_SUBTYPE(media) == IFM_10_T) {
858 		tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
859 		if ((media & IFM_GMASK) == IFM_FDX) {
860 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
861 			tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
862 		} else {
863 			tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
864 			tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
865 		}
866 	}
867 
868 	return;
869 }
870 
871 /*
872  * Calculate the hash of a MAC address for programming the multicast hash
873  * table.  This hash is simply the address split into 6-bit chunks
874  * XOR'd, e.g.
875  * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
876  * bit:  765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
877  * Bytes 0-2 and 3-5 are symmetrical, so are folded together.  Then
878  * the folded 24-bit value is split into 6-bit portions and XOR'd.
879  */
880 static int tl_calchash(addr)
881 	caddr_t			addr;
882 {
883 	int			t;
884 
885 	t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
886 		(addr[2] ^ addr[5]);
887 	return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
888 }
889 
890 /*
891  * The ThunderLAN has a perfect MAC address filter in addition to
892  * the multicast hash filter. The perfect filter can be programmed
893  * with up to four MAC addresses. The first one is always used to
894  * hold the station address, which leaves us free to use the other
895  * three for multicast addresses.
896  */
897 static void tl_setfilt(sc, addr, slot)
898 	struct tl_softc		*sc;
899 	caddr_t			addr;
900 	int			slot;
901 {
902 	int			i;
903 	u_int16_t		regaddr;
904 
905 	regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
906 
907 	for (i = 0; i < ETHER_ADDR_LEN; i++)
908 		tl_dio_write8(sc, regaddr + i, *(addr + i));
909 
910 	return;
911 }
912 
913 /*
914  * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
915  * linked list. This is fine, except addresses are added from the head
916  * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
917  * group to always be in the perfect filter, but as more groups are added,
918  * the 224.0.0.1 entry (which is always added first) gets pushed down
919  * the list and ends up at the tail. So after 3 or 4 multicast groups
920  * are added, the all-hosts entry gets pushed out of the perfect filter
921  * and into the hash table.
922  *
923  * Because the multicast list is a doubly-linked list as opposed to a
924  * circular queue, we don't have the ability to just grab the tail of
925  * the list and traverse it backwards. Instead, we have to traverse
926  * the list once to find the tail, then traverse it again backwards to
927  * update the multicast filter.
928  */
929 static void tl_setmulti(sc)
930 	struct tl_softc		*sc;
931 {
932 	struct ifnet		*ifp;
933 	u_int32_t		hashes[2] = { 0, 0 };
934 	int			h, i;
935 	struct ifmultiaddr	*ifma;
936 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
937 	ifp = &sc->arpcom.ac_if;
938 
939 	/* First, zot all the existing filters. */
940 	for (i = 1; i < 4; i++)
941 		tl_setfilt(sc, (caddr_t)&dummy, i);
942 	tl_dio_write32(sc, TL_HASH1, 0);
943 	tl_dio_write32(sc, TL_HASH2, 0);
944 
945 	/* Now program new ones. */
946 	if (ifp->if_flags & IFF_ALLMULTI) {
947 		hashes[0] = 0xFFFFFFFF;
948 		hashes[1] = 0xFFFFFFFF;
949 	} else {
950 		i = 1;
951 		/* First find the tail of the list. */
952 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
953 					ifma = ifma->ifma_link.le_next) {
954 			if (ifma->ifma_link.le_next == NULL)
955 				break;
956 		}
957 		/* Now traverse the list backwards. */
958 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
959 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
960 			if (ifma->ifma_addr->sa_family != AF_LINK)
961 				continue;
962 			/*
963 			 * Program the first three multicast groups
964 			 * into the perfect filter. For all others,
965 			 * use the hash table.
966 			 */
967 			if (i < 4) {
968 				tl_setfilt(sc,
969 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
970 				i++;
971 				continue;
972 			}
973 
974 			h = tl_calchash(
975 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
976 			if (h < 32)
977 				hashes[0] |= (1 << h);
978 			else
979 				hashes[1] |= (1 << (h - 32));
980 		}
981 	}
982 
983 	tl_dio_write32(sc, TL_HASH1, hashes[0]);
984 	tl_dio_write32(sc, TL_HASH2, hashes[1]);
985 
986 	return;
987 }
988 
989 /*
990  * This routine is recommended by the ThunderLAN manual to insure that
991  * the internal PHY is powered up correctly. It also recommends a one
992  * second pause at the end to 'wait for the clocks to start' but in my
993  * experience this isn't necessary.
994  */
995 static void tl_hardreset(dev)
996 	device_t		dev;
997 {
998 	struct tl_softc		*sc;
999 	int			i;
1000 	u_int16_t		flags;
1001 
1002 	sc = device_get_softc(dev);
1003 
1004 	tl_mii_sync(sc);
1005 
1006 	flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
1007 
1008 	for (i = 0; i < MII_NPHY; i++)
1009 		tl_miibus_writereg(dev, i, MII_BMCR, flags);
1010 
1011 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
1012 	DELAY(50000);
1013 	tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
1014 	tl_mii_sync(sc);
1015 	while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
1016 
1017 	DELAY(50000);
1018 	return;
1019 }
1020 
1021 static void tl_softreset(sc, internal)
1022 	struct tl_softc		*sc;
1023 	int			internal;
1024 {
1025         u_int32_t               cmd, dummy, i;
1026 
1027         /* Assert the adapter reset bit. */
1028 	CMD_SET(sc, TL_CMD_ADRST);
1029 
1030         /* Turn off interrupts */
1031 	CMD_SET(sc, TL_CMD_INTSOFF);
1032 
1033 	/* First, clear the stats registers. */
1034 	for (i = 0; i < 5; i++)
1035 		dummy = tl_dio_read32(sc, TL_TXGOODFRAMES);
1036 
1037         /* Clear Areg and Hash registers */
1038 	for (i = 0; i < 8; i++)
1039 		tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
1040 
1041         /*
1042 	 * Set up Netconfig register. Enable one channel and
1043 	 * one fragment mode.
1044 	 */
1045 	tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
1046 	if (internal && !sc->tl_bitrate) {
1047 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1048 	} else {
1049 		tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
1050 	}
1051 
1052 	/* Handle cards with bitrate devices. */
1053 	if (sc->tl_bitrate)
1054 		tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1055 
1056 	/*
1057 	 * Load adapter irq pacing timer and tx threshold.
1058 	 * We make the transmit threshold 1 initially but we may
1059 	 * change that later.
1060 	 */
1061 	cmd = CSR_READ_4(sc, TL_HOSTCMD);
1062 	cmd |= TL_CMD_NES;
1063 	cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1064 	CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1065 	CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1066 
1067         /* Unreset the MII */
1068 	tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1069 
1070 	/* Take the adapter out of reset */
1071 	tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1072 
1073 	/* Wait for things to settle down a little. */
1074 	DELAY(500);
1075 
1076         return;
1077 }
1078 
1079 /*
1080  * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1081  * against our list and return its name if we find a match.
1082  */
1083 static int tl_probe(dev)
1084 	device_t		dev;
1085 {
1086 	struct tl_type		*t;
1087 
1088 	t = tl_devs;
1089 
1090 	while(t->tl_name != NULL) {
1091 		if ((pci_get_vendor(dev) == t->tl_vid) &&
1092 		    (pci_get_device(dev) == t->tl_did)) {
1093 			device_set_desc(dev, t->tl_name);
1094 			return(0);
1095 		}
1096 		t++;
1097 	}
1098 
1099 	return(ENXIO);
1100 }
1101 
1102 static int tl_attach(dev)
1103 	device_t		dev;
1104 {
1105 	int			i;
1106 	u_int32_t		command;
1107 	u_int16_t		did, vid;
1108 	struct tl_type		*t;
1109 	struct ifnet		*ifp;
1110 	struct tl_softc		*sc;
1111 	int			unit, error = 0, rid;
1112 
1113 	crit_enter();
1114 
1115 	vid = pci_get_vendor(dev);
1116 	did = pci_get_device(dev);
1117 	sc = device_get_softc(dev);
1118 	unit = device_get_unit(dev);
1119 	bzero(sc, sizeof(struct tl_softc));
1120 
1121 	t = tl_devs;
1122 	while(t->tl_name != NULL) {
1123 		if (vid == t->tl_vid && did == t->tl_did)
1124 			break;
1125 		t++;
1126 	}
1127 
1128 	if (t->tl_name == NULL) {
1129 		printf("tl%d: unknown device!?\n", unit);
1130 		goto fail;
1131 	}
1132 
1133 	/*
1134 	 * Map control/status registers.
1135 	 */
1136 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1137 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1138 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1139 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1140 
1141 #ifdef TL_USEIOSPACE
1142 	if (!(command & PCIM_CMD_PORTEN)) {
1143 		printf("tl%d: failed to enable I/O ports!\n", unit);
1144 		error = ENXIO;
1145 		goto fail;
1146 	}
1147 
1148 	rid = TL_PCI_LOIO;
1149 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1150 		RF_ACTIVE);
1151 
1152 	/*
1153 	 * Some cards have the I/O and memory mapped address registers
1154 	 * reversed. Try both combinations before giving up.
1155 	 */
1156 	if (sc->tl_res == NULL) {
1157 		rid = TL_PCI_LOMEM;
1158 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1159 		    RF_ACTIVE);
1160 	}
1161 #else
1162 	if (!(command & PCIM_CMD_MEMEN)) {
1163 		printf("tl%d: failed to enable memory mapping!\n", unit);
1164 		error = ENXIO;
1165 		goto fail;
1166 	}
1167 
1168 	rid = TL_PCI_LOMEM;
1169 	sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1170 	    RF_ACTIVE);
1171 	if (sc->tl_res == NULL) {
1172 		rid = TL_PCI_LOIO;
1173 		sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1174 		    RF_ACTIVE);
1175 	}
1176 #endif
1177 
1178 	if (sc->tl_res == NULL) {
1179 		printf("tl%d: couldn't map ports/memory\n", unit);
1180 		error = ENXIO;
1181 		goto fail;
1182 	}
1183 
1184 	sc->tl_btag = rman_get_bustag(sc->tl_res);
1185 	sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1186 
1187 #ifdef notdef
1188 	/*
1189 	 * The ThunderLAN manual suggests jacking the PCI latency
1190 	 * timer all the way up to its maximum value. I'm not sure
1191 	 * if this is really necessary, but what the manual wants,
1192 	 * the manual gets.
1193 	 */
1194 	command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1195 	command |= 0x0000FF00;
1196 	pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1197 #endif
1198 
1199 	/* Allocate interrupt */
1200 	rid = 0;
1201 	sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1202 	    RF_SHAREABLE | RF_ACTIVE);
1203 
1204 	if (sc->tl_irq == NULL) {
1205 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1206 		printf("tl%d: couldn't map interrupt\n", unit);
1207 		error = ENXIO;
1208 		goto fail;
1209 	}
1210 
1211 	error = bus_setup_intr(dev, sc->tl_irq, INTR_TYPE_NET,
1212 			       tl_intr, sc, &sc->tl_intrhand, NULL);
1213 
1214 	if (error) {
1215 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1216 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1217 		printf("tl%d: couldn't set up irq\n", unit);
1218 		goto fail;
1219 	}
1220 
1221 	/*
1222 	 * Now allocate memory for the TX and RX lists.
1223 	 */
1224 	sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1225 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1226 
1227 	if (sc->tl_ldata == NULL) {
1228 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1229 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1230 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1231 		printf("tl%d: no memory for list buffers!\n", unit);
1232 		error = ENXIO;
1233 		goto fail;
1234 	}
1235 
1236 	bzero(sc->tl_ldata, sizeof(struct tl_list_data));
1237 
1238 	sc->tl_unit = unit;
1239 	sc->tl_dinfo = t;
1240 	if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1241 		sc->tl_eeaddr = TL_EEPROM_EADDR;
1242 	if (t->tl_vid == OLICOM_VENDORID)
1243 		sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1244 
1245 	/* Reset the adapter. */
1246 	tl_softreset(sc, 1);
1247 	tl_hardreset(dev);
1248 	tl_softreset(sc, 1);
1249 
1250 	/*
1251 	 * Get station address from the EEPROM.
1252 	 */
1253 	if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1254 				sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1255 		bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1256 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1257 		bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1258 		contigfree(sc->tl_ldata,
1259 		    sizeof(struct tl_list_data), M_DEVBUF);
1260 		printf("tl%d: failed to read station address\n", unit);
1261 		error = ENXIO;
1262 		goto fail;
1263 	}
1264 
1265         /*
1266          * XXX Olicom, in its desire to be different from the
1267          * rest of the world, has done strange things with the
1268          * encoding of the station address in the EEPROM. First
1269          * of all, they store the address at offset 0xF8 rather
1270          * than at 0x83 like the ThunderLAN manual suggests.
1271          * Second, they store the address in three 16-bit words in
1272          * network byte order, as opposed to storing it sequentially
1273          * like all the other ThunderLAN cards. In order to get
1274          * the station address in a form that matches what the Olicom
1275          * diagnostic utility specifies, we have to byte-swap each
1276          * word. To make things even more confusing, neither 00:00:28
1277          * nor 00:00:24 appear in the IEEE OUI database.
1278          */
1279         if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1280                 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1281                         u_int16_t               *p;
1282                         p = (u_int16_t *)&sc->arpcom.ac_enaddr[i];
1283                         *p = ntohs(*p);
1284                 }
1285         }
1286 
1287 	ifp = &sc->arpcom.ac_if;
1288 	ifp->if_softc = sc;
1289 	if_initname(ifp, "tl", sc->tl_unit);
1290 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1291 	ifp->if_ioctl = tl_ioctl;
1292 	ifp->if_start = tl_start;
1293 	ifp->if_watchdog = tl_watchdog;
1294 	ifp->if_init = tl_init;
1295 	ifp->if_mtu = ETHERMTU;
1296 	ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1297 	ifq_set_ready(&ifp->if_snd);
1298 	callout_init(&sc->tl_stat_timer);
1299 
1300 	/* Reset the adapter again. */
1301 	tl_softreset(sc, 1);
1302 	tl_hardreset(dev);
1303 	tl_softreset(sc, 1);
1304 
1305 	/*
1306 	 * Do MII setup. If no PHYs are found, then this is a
1307 	 * bitrate ThunderLAN chip that only supports 10baseT
1308 	 * and AUI/BNC.
1309 	 */
1310 	if (mii_phy_probe(dev, &sc->tl_miibus,
1311 	    tl_ifmedia_upd, tl_ifmedia_sts)) {
1312 		struct ifmedia		*ifm;
1313 		sc->tl_bitrate = 1;
1314 		ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1315 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1316 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1317 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1318 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1319 		ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1320 		/* Reset again, this time setting bitrate mode. */
1321 		tl_softreset(sc, 1);
1322 		ifm = &sc->ifmedia;
1323 		ifm->ifm_media = ifm->ifm_cur->ifm_media;
1324 		tl_ifmedia_upd(ifp);
1325 	}
1326 
1327 	/*
1328 	 * Call MI attach routine.
1329 	 */
1330 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1331 
1332 fail:
1333 	crit_exit();
1334 	return(error);
1335 }
1336 
1337 static int tl_detach(dev)
1338 	device_t		dev;
1339 {
1340 	struct tl_softc		*sc;
1341 	struct ifnet		*ifp;
1342 
1343 	crit_enter();
1344 
1345 	sc = device_get_softc(dev);
1346 	ifp = &sc->arpcom.ac_if;
1347 
1348 	tl_stop(sc);
1349 	ether_ifdetach(ifp);
1350 
1351 	bus_generic_detach(dev);
1352 	device_delete_child(dev, sc->tl_miibus);
1353 
1354 	contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1355 	if (sc->tl_bitrate)
1356 		ifmedia_removeall(&sc->ifmedia);
1357 
1358 	bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1359 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1360 	bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1361 
1362 	crit_exit();
1363 
1364 	return(0);
1365 }
1366 
1367 /*
1368  * Initialize the transmit lists.
1369  */
1370 static int tl_list_tx_init(sc)
1371 	struct tl_softc		*sc;
1372 {
1373 	struct tl_chain_data	*cd;
1374 	struct tl_list_data	*ld;
1375 	int			i;
1376 
1377 	cd = &sc->tl_cdata;
1378 	ld = sc->tl_ldata;
1379 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
1380 		cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1381 		if (i == (TL_TX_LIST_CNT - 1))
1382 			cd->tl_tx_chain[i].tl_next = NULL;
1383 		else
1384 			cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1385 	}
1386 
1387 	cd->tl_tx_free = &cd->tl_tx_chain[0];
1388 	cd->tl_tx_tail = cd->tl_tx_head = NULL;
1389 	sc->tl_txeoc = 1;
1390 
1391 	return(0);
1392 }
1393 
1394 /*
1395  * Initialize the RX lists and allocate mbufs for them.
1396  */
1397 static int tl_list_rx_init(sc)
1398 	struct tl_softc		*sc;
1399 {
1400 	struct tl_chain_data	*cd;
1401 	struct tl_list_data	*ld;
1402 	int			i;
1403 
1404 	cd = &sc->tl_cdata;
1405 	ld = sc->tl_ldata;
1406 
1407 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
1408 		cd->tl_rx_chain[i].tl_ptr =
1409 			(struct tl_list_onefrag *)&ld->tl_rx_list[i];
1410 		if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1411 			return(ENOBUFS);
1412 		if (i == (TL_RX_LIST_CNT - 1)) {
1413 			cd->tl_rx_chain[i].tl_next = NULL;
1414 			ld->tl_rx_list[i].tlist_fptr = 0;
1415 		} else {
1416 			cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1417 			ld->tl_rx_list[i].tlist_fptr =
1418 					vtophys(&ld->tl_rx_list[i + 1]);
1419 		}
1420 	}
1421 
1422 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1423 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1424 
1425 	return(0);
1426 }
1427 
1428 static int tl_newbuf(sc, c)
1429 	struct tl_softc		*sc;
1430 	struct tl_chain_onefrag	*c;
1431 {
1432 	struct mbuf		*m_new = NULL;
1433 
1434 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1435 	if (m_new == NULL)
1436 		return(ENOBUFS);
1437 
1438 	MCLGET(m_new, MB_DONTWAIT);
1439 	if (!(m_new->m_flags & M_EXT)) {
1440 		m_freem(m_new);
1441 		return(ENOBUFS);
1442 	}
1443 
1444 	c->tl_mbuf = m_new;
1445 	c->tl_next = NULL;
1446 	c->tl_ptr->tlist_frsize = MCLBYTES;
1447 	c->tl_ptr->tlist_fptr = 0;
1448 	c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1449 	c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1450 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1451 
1452 	return(0);
1453 }
1454 /*
1455  * Interrupt handler for RX 'end of frame' condition (EOF). This
1456  * tells us that a full ethernet frame has been captured and we need
1457  * to handle it.
1458  *
1459  * Reception is done using 'lists' which consist of a header and a
1460  * series of 10 data count/data address pairs that point to buffers.
1461  * Initially you're supposed to create a list, populate it with pointers
1462  * to buffers, then load the physical address of the list into the
1463  * ch_parm register. The adapter is then supposed to DMA the received
1464  * frame into the buffers for you.
1465  *
1466  * To make things as fast as possible, we have the chip DMA directly
1467  * into mbufs. This saves us from having to do a buffer copy: we can
1468  * just hand the mbufs directly to ether_input(). Once the frame has
1469  * been sent on its way, the 'list' structure is assigned a new buffer
1470  * and moved to the end of the RX chain. As long we we stay ahead of
1471  * the chip, it will always think it has an endless receive channel.
1472  *
1473  * If we happen to fall behind and the chip manages to fill up all of
1474  * the buffers, it will generate an end of channel interrupt and wait
1475  * for us to empty the chain and restart the receiver.
1476  */
1477 static int tl_intvec_rxeof(xsc, type)
1478 	void			*xsc;
1479 	u_int32_t		type;
1480 {
1481 	struct tl_softc		*sc;
1482 	int			r = 0, total_len = 0;
1483 	struct ether_header	*eh;
1484 	struct mbuf		*m;
1485 	struct ifnet		*ifp;
1486 	struct tl_chain_onefrag	*cur_rx;
1487 
1488 	sc = xsc;
1489 	ifp = &sc->arpcom.ac_if;
1490 
1491 	while(sc->tl_cdata.tl_rx_head != NULL) {
1492 		cur_rx = sc->tl_cdata.tl_rx_head;
1493 		if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1494 			break;
1495 		r++;
1496 		sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1497 		m = cur_rx->tl_mbuf;
1498 		total_len = cur_rx->tl_ptr->tlist_frsize;
1499 
1500 		if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1501 			ifp->if_ierrors++;
1502 			cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1503 			cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1504 			cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1505 			continue;
1506 		}
1507 
1508 		sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1509 						vtophys(cur_rx->tl_ptr);
1510 		sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1511 		sc->tl_cdata.tl_rx_tail = cur_rx;
1512 
1513 		eh = mtod(m, struct ether_header *);
1514 		m->m_pkthdr.rcvif = ifp;
1515 
1516 		/*
1517 		 * Note: when the ThunderLAN chip is in 'capture all
1518 		 * frames' mode, it will receive its own transmissions.
1519 		 * We drop don't need to process our own transmissions,
1520 		 * so we drop them here and continue.
1521 		 */
1522 		/*if (ifp->if_flags & IFF_PROMISC && */
1523 		if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1524 		 					ETHER_ADDR_LEN)) {
1525 				m_freem(m);
1526 				continue;
1527 		}
1528 
1529 		(*ifp->if_input)(ifp, m);
1530 	}
1531 
1532 	return(r);
1533 }
1534 
1535 /*
1536  * The RX-EOC condition hits when the ch_parm address hasn't been
1537  * initialized or the adapter reached a list with a forward pointer
1538  * of 0 (which indicates the end of the chain). In our case, this means
1539  * the card has hit the end of the receive buffer chain and we need to
1540  * empty out the buffers and shift the pointer back to the beginning again.
1541  */
1542 static int tl_intvec_rxeoc(xsc, type)
1543 	void			*xsc;
1544 	u_int32_t		type;
1545 {
1546 	struct tl_softc		*sc;
1547 	int			r;
1548 	struct tl_chain_data	*cd;
1549 
1550 
1551 	sc = xsc;
1552 	cd = &sc->tl_cdata;
1553 
1554 	/* Flush out the receive queue and ack RXEOF interrupts. */
1555 	r = tl_intvec_rxeof(xsc, type);
1556 	CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1557 	r = 1;
1558 	cd->tl_rx_head = &cd->tl_rx_chain[0];
1559 	cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1560 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1561 	r |= (TL_CMD_GO|TL_CMD_RT);
1562 	return(r);
1563 }
1564 
1565 static int tl_intvec_txeof(xsc, type)
1566 	void			*xsc;
1567 	u_int32_t		type;
1568 {
1569 	struct tl_softc		*sc;
1570 	int			r = 0;
1571 	struct tl_chain		*cur_tx;
1572 
1573 	sc = xsc;
1574 
1575 	/*
1576 	 * Go through our tx list and free mbufs for those
1577 	 * frames that have been sent.
1578 	 */
1579 	while (sc->tl_cdata.tl_tx_head != NULL) {
1580 		cur_tx = sc->tl_cdata.tl_tx_head;
1581 		if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1582 			break;
1583 		sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1584 
1585 		r++;
1586 		m_freem(cur_tx->tl_mbuf);
1587 		cur_tx->tl_mbuf = NULL;
1588 
1589 		cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1590 		sc->tl_cdata.tl_tx_free = cur_tx;
1591 		if (!cur_tx->tl_ptr->tlist_fptr)
1592 			break;
1593 	}
1594 
1595 	return(r);
1596 }
1597 
1598 /*
1599  * The transmit end of channel interrupt. The adapter triggers this
1600  * interrupt to tell us it hit the end of the current transmit list.
1601  *
1602  * A note about this: it's possible for a condition to arise where
1603  * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1604  * You have to avoid this since the chip expects things to go in a
1605  * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1606  * When the TXEOF handler is called, it will free all of the transmitted
1607  * frames and reset the tx_head pointer to NULL. However, a TXEOC
1608  * interrupt should be received and acknowledged before any more frames
1609  * are queued for transmission. If tl_statrt() is called after TXEOF
1610  * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1611  * it could attempt to issue a transmit command prematurely.
1612  *
1613  * To guard against this, tl_start() will only issue transmit commands
1614  * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1615  * can set this flag once tl_start() has cleared it.
1616  */
1617 static int tl_intvec_txeoc(xsc, type)
1618 	void			*xsc;
1619 	u_int32_t		type;
1620 {
1621 	struct tl_softc		*sc;
1622 	struct ifnet		*ifp;
1623 	u_int32_t		cmd;
1624 
1625 	sc = xsc;
1626 	ifp = &sc->arpcom.ac_if;
1627 
1628 	/* Clear the timeout timer. */
1629 	ifp->if_timer = 0;
1630 
1631 	if (sc->tl_cdata.tl_tx_head == NULL) {
1632 		ifp->if_flags &= ~IFF_OACTIVE;
1633 		sc->tl_cdata.tl_tx_tail = NULL;
1634 		sc->tl_txeoc = 1;
1635 	} else {
1636 		sc->tl_txeoc = 0;
1637 		/* First we have to ack the EOC interrupt. */
1638 		CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1639 		/* Then load the address of the next TX list. */
1640 		CSR_WRITE_4(sc, TL_CH_PARM,
1641 		    vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1642 		/* Restart TX channel. */
1643 		cmd = CSR_READ_4(sc, TL_HOSTCMD);
1644 		cmd &= ~TL_CMD_RT;
1645 		cmd |= TL_CMD_GO|TL_CMD_INTSON;
1646 		CMD_PUT(sc, cmd);
1647 		return(0);
1648 	}
1649 
1650 	return(1);
1651 }
1652 
1653 static int tl_intvec_adchk(xsc, type)
1654 	void			*xsc;
1655 	u_int32_t		type;
1656 {
1657 	struct tl_softc		*sc;
1658 
1659 	sc = xsc;
1660 
1661 	if (type)
1662 		printf("tl%d: adapter check: %x\n", sc->tl_unit,
1663 			(unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1664 
1665 	tl_softreset(sc, 1);
1666 	tl_stop(sc);
1667 	tl_init(sc);
1668 	CMD_SET(sc, TL_CMD_INTSON);
1669 
1670 	return(0);
1671 }
1672 
1673 static int tl_intvec_netsts(xsc, type)
1674 	void			*xsc;
1675 	u_int32_t		type;
1676 {
1677 	struct tl_softc		*sc;
1678 	u_int16_t		netsts;
1679 
1680 	sc = xsc;
1681 
1682 	netsts = tl_dio_read16(sc, TL_NETSTS);
1683 	tl_dio_write16(sc, TL_NETSTS, netsts);
1684 
1685 	printf("tl%d: network status: %x\n", sc->tl_unit, netsts);
1686 
1687 	return(1);
1688 }
1689 
1690 static void tl_intr(xsc)
1691 	void			*xsc;
1692 {
1693 	struct tl_softc		*sc;
1694 	struct ifnet		*ifp;
1695 	int			r = 0;
1696 	u_int32_t		type = 0;
1697 	u_int16_t		ints = 0;
1698 	u_int8_t		ivec = 0;
1699 
1700 	sc = xsc;
1701 
1702 	/* Disable interrupts */
1703 	ints = CSR_READ_2(sc, TL_HOST_INT);
1704 	CSR_WRITE_2(sc, TL_HOST_INT, ints);
1705 	type = (ints << 16) & 0xFFFF0000;
1706 	ivec = (ints & TL_VEC_MASK) >> 5;
1707 	ints = (ints & TL_INT_MASK) >> 2;
1708 
1709 	ifp = &sc->arpcom.ac_if;
1710 
1711 	switch(ints) {
1712 	case (TL_INTR_INVALID):
1713 #ifdef DIAGNOSTIC
1714 		printf("tl%d: got an invalid interrupt!\n", sc->tl_unit);
1715 #endif
1716 		/* Re-enable interrupts but don't ack this one. */
1717 		CMD_PUT(sc, type);
1718 		r = 0;
1719 		break;
1720 	case (TL_INTR_TXEOF):
1721 		r = tl_intvec_txeof((void *)sc, type);
1722 		break;
1723 	case (TL_INTR_TXEOC):
1724 		r = tl_intvec_txeoc((void *)sc, type);
1725 		break;
1726 	case (TL_INTR_STATOFLOW):
1727 		tl_stats_update(sc);
1728 		r = 1;
1729 		break;
1730 	case (TL_INTR_RXEOF):
1731 		r = tl_intvec_rxeof((void *)sc, type);
1732 		break;
1733 	case (TL_INTR_DUMMY):
1734 		printf("tl%d: got a dummy interrupt\n", sc->tl_unit);
1735 		r = 1;
1736 		break;
1737 	case (TL_INTR_ADCHK):
1738 		if (ivec)
1739 			r = tl_intvec_adchk((void *)sc, type);
1740 		else
1741 			r = tl_intvec_netsts((void *)sc, type);
1742 		break;
1743 	case (TL_INTR_RXEOC):
1744 		r = tl_intvec_rxeoc((void *)sc, type);
1745 		break;
1746 	default:
1747 		printf("%s: bogus interrupt type\n", ifp->if_xname);
1748 		break;
1749 	}
1750 
1751 	/* Re-enable interrupts */
1752 	if (r) {
1753 		CMD_PUT(sc, TL_CMD_ACK | r | type);
1754 	}
1755 
1756 	if (!ifq_is_empty(&ifp->if_snd))
1757 		tl_start(ifp);
1758 
1759 	return;
1760 }
1761 
1762 static void tl_stats_update(xsc)
1763 	void			*xsc;
1764 {
1765 	struct tl_softc		*sc;
1766 	struct ifnet		*ifp;
1767 	struct tl_stats		tl_stats;
1768 	struct mii_data		*mii;
1769 	u_int32_t		*p;
1770 
1771 	crit_enter();
1772 
1773 	bzero((char *)&tl_stats, sizeof(struct tl_stats));
1774 
1775 	sc = xsc;
1776 	ifp = &sc->arpcom.ac_if;
1777 
1778 	p = (u_int32_t *)&tl_stats;
1779 
1780 	CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1781 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1782 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1783 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1784 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1785 	*p++ = CSR_READ_4(sc, TL_DIO_DATA);
1786 
1787 	ifp->if_opackets += tl_tx_goodframes(tl_stats);
1788 	ifp->if_collisions += tl_stats.tl_tx_single_collision +
1789 				tl_stats.tl_tx_multi_collision;
1790 	ifp->if_ipackets += tl_rx_goodframes(tl_stats);
1791 	ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors +
1792 			    tl_rx_overrun(tl_stats);
1793 	ifp->if_oerrors += tl_tx_underrun(tl_stats);
1794 
1795 	if (tl_tx_underrun(tl_stats)) {
1796 		u_int8_t		tx_thresh;
1797 		tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1798 		if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1799 			tx_thresh >>= 4;
1800 			tx_thresh++;
1801 			printf("tl%d: tx underrun -- increasing "
1802 			    "tx threshold to %d bytes\n", sc->tl_unit,
1803 			    (64 * (tx_thresh * 4)));
1804 			tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1805 			tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1806 		}
1807 	}
1808 
1809 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1810 
1811 	if (!sc->tl_bitrate) {
1812 		mii = device_get_softc(sc->tl_miibus);
1813 		mii_tick(mii);
1814 	}
1815 
1816 	crit_exit();
1817 
1818 	return;
1819 }
1820 
1821 /*
1822  * Encapsulate an mbuf chain in a list by coupling the mbuf data
1823  * pointers to the fragment pointers.
1824  */
1825 static int tl_encap(sc, c, m_head)
1826 	struct tl_softc		*sc;
1827 	struct tl_chain		*c;
1828 	struct mbuf		*m_head;
1829 {
1830 	int			frag = 0;
1831 	struct tl_frag		*f = NULL;
1832 	int			total_len;
1833 	struct mbuf		*m;
1834 
1835 	/*
1836  	 * Start packing the mbufs in this chain into
1837 	 * the fragment pointers. Stop when we run out
1838  	 * of fragments or hit the end of the mbuf chain.
1839 	 */
1840 	m = m_head;
1841 	total_len = 0;
1842 
1843 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1844 		if (m->m_len != 0) {
1845 			if (frag == TL_MAXFRAGS)
1846 				break;
1847 			total_len+= m->m_len;
1848 			c->tl_ptr->tl_frag[frag].tlist_dadr =
1849 				vtophys(mtod(m, vm_offset_t));
1850 			c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1851 			frag++;
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * Handle special cases.
1857 	 * Special case #1: we used up all 10 fragments, but
1858 	 * we have more mbufs left in the chain. Copy the
1859 	 * data into an mbuf cluster. Note that we don't
1860 	 * bother clearing the values in the other fragment
1861 	 * pointers/counters; it wouldn't gain us anything,
1862 	 * and would waste cycles.
1863 	 */
1864 	if (m != NULL) {
1865 		struct mbuf		*m_new = NULL;
1866 
1867 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1868 		if (m_new == NULL) {
1869 			printf("tl%d: no memory for tx list\n", sc->tl_unit);
1870 			return(1);
1871 		}
1872 		if (m_head->m_pkthdr.len > MHLEN) {
1873 			MCLGET(m_new, MB_DONTWAIT);
1874 			if (!(m_new->m_flags & M_EXT)) {
1875 				m_freem(m_new);
1876 				printf("tl%d: no memory for tx list\n",
1877 				sc->tl_unit);
1878 				return(1);
1879 			}
1880 		}
1881 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1882 					mtod(m_new, caddr_t));
1883 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1884 		m_freem(m_head);
1885 		m_head = m_new;
1886 		f = &c->tl_ptr->tl_frag[0];
1887 		f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1888 		f->tlist_dcnt = total_len = m_new->m_len;
1889 		frag = 1;
1890 	}
1891 
1892 	/*
1893 	 * Special case #2: the frame is smaller than the minimum
1894 	 * frame size. We have to pad it to make the chip happy.
1895 	 */
1896 	if (total_len < TL_MIN_FRAMELEN) {
1897 		if (frag == TL_MAXFRAGS)
1898 			printf("tl%d: all frags filled but "
1899 				"frame still to small!\n", sc->tl_unit);
1900 		f = &c->tl_ptr->tl_frag[frag];
1901 		f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1902 		f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1903 		total_len += f->tlist_dcnt;
1904 		frag++;
1905 	}
1906 
1907 	c->tl_mbuf = m_head;
1908 	c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1909 	c->tl_ptr->tlist_frsize = total_len;
1910 	c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1911 	c->tl_ptr->tlist_fptr = 0;
1912 
1913 	return(0);
1914 }
1915 
1916 /*
1917  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1918  * to the mbuf data regions directly in the transmit lists. We also save a
1919  * copy of the pointers since the transmit list fragment pointers are
1920  * physical addresses.
1921  */
1922 static void tl_start(ifp)
1923 	struct ifnet		*ifp;
1924 {
1925 	struct tl_softc		*sc;
1926 	struct mbuf		*m_head = NULL;
1927 	u_int32_t		cmd;
1928 	struct tl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
1929 
1930 	sc = ifp->if_softc;
1931 
1932 	/*
1933 	 * Check for an available queue slot. If there are none,
1934 	 * punt.
1935 	 */
1936 	if (sc->tl_cdata.tl_tx_free == NULL) {
1937 		ifp->if_flags |= IFF_OACTIVE;
1938 		return;
1939 	}
1940 
1941 	start_tx = sc->tl_cdata.tl_tx_free;
1942 
1943 	while(sc->tl_cdata.tl_tx_free != NULL) {
1944 		m_head = ifq_dequeue(&ifp->if_snd);
1945 		if (m_head == NULL)
1946 			break;
1947 
1948 		/* Pick a chain member off the free list. */
1949 		cur_tx = sc->tl_cdata.tl_tx_free;
1950 		sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1951 
1952 		cur_tx->tl_next = NULL;
1953 
1954 		/* Pack the data into the list. */
1955 		tl_encap(sc, cur_tx, m_head);
1956 
1957 		/* Chain it together */
1958 		if (prev != NULL) {
1959 			prev->tl_next = cur_tx;
1960 			prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1961 		}
1962 		prev = cur_tx;
1963 
1964 		BPF_MTAP(ifp, cur_tx->tl_mbuf);
1965 	}
1966 
1967 	/*
1968 	 * If there are no packets queued, bail.
1969 	 */
1970 	if (cur_tx == NULL)
1971 		return;
1972 
1973 	/*
1974 	 * That's all we can stands, we can't stands no more.
1975 	 * If there are no other transfers pending, then issue the
1976 	 * TX GO command to the adapter to start things moving.
1977 	 * Otherwise, just leave the data in the queue and let
1978 	 * the EOF/EOC interrupt handler send.
1979 	 */
1980 	if (sc->tl_cdata.tl_tx_head == NULL) {
1981 		sc->tl_cdata.tl_tx_head = start_tx;
1982 		sc->tl_cdata.tl_tx_tail = cur_tx;
1983 
1984 		if (sc->tl_txeoc) {
1985 			sc->tl_txeoc = 0;
1986 			CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1987 			cmd = CSR_READ_4(sc, TL_HOSTCMD);
1988 			cmd &= ~TL_CMD_RT;
1989 			cmd |= TL_CMD_GO|TL_CMD_INTSON;
1990 			CMD_PUT(sc, cmd);
1991 		}
1992 	} else {
1993 		sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1994 		sc->tl_cdata.tl_tx_tail = cur_tx;
1995 	}
1996 
1997 	/*
1998 	 * Set a timeout in case the chip goes out to lunch.
1999 	 */
2000 	ifp->if_timer = 5;
2001 
2002 	return;
2003 }
2004 
2005 static void tl_init(xsc)
2006 	void			*xsc;
2007 {
2008 	struct tl_softc		*sc = xsc;
2009 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2010 	struct mii_data		*mii;
2011 
2012 	crit_enter();
2013 
2014 	/*
2015 	 * Cancel pending I/O.
2016 	 */
2017 	tl_stop(sc);
2018 
2019 	/* Initialize TX FIFO threshold */
2020 	tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
2021 	tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
2022 
2023         /* Set PCI burst size */
2024 	tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
2025 
2026 	/*
2027 	 * Set 'capture all frames' bit for promiscuous mode.
2028 	 */
2029 	if (ifp->if_flags & IFF_PROMISC)
2030 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2031 	else
2032 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2033 
2034 	/*
2035 	 * Set capture broadcast bit to capture broadcast frames.
2036 	 */
2037 	if (ifp->if_flags & IFF_BROADCAST)
2038 		tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2039 	else
2040 		tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
2041 
2042 	tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
2043 
2044 	/* Init our MAC address */
2045 	tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
2046 
2047 	/* Init multicast filter, if needed. */
2048 	tl_setmulti(sc);
2049 
2050 	/* Init circular RX list. */
2051 	if (tl_list_rx_init(sc) == ENOBUFS) {
2052 		printf("tl%d: initialization failed: no "
2053 			"memory for rx buffers\n", sc->tl_unit);
2054 		tl_stop(sc);
2055 		return;
2056 	}
2057 
2058 	/* Init TX pointers. */
2059 	tl_list_tx_init(sc);
2060 
2061 	/* Enable PCI interrupts. */
2062 	CMD_SET(sc, TL_CMD_INTSON);
2063 
2064 	/* Load the address of the rx list */
2065 	CMD_SET(sc, TL_CMD_RT);
2066 	CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
2067 
2068 	if (!sc->tl_bitrate) {
2069 		if (sc->tl_miibus != NULL) {
2070 			mii = device_get_softc(sc->tl_miibus);
2071 			mii_mediachg(mii);
2072 		}
2073 	}
2074 
2075 	/* Send the RX go command */
2076 	CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
2077 
2078 	ifp->if_flags |= IFF_RUNNING;
2079 	ifp->if_flags &= ~IFF_OACTIVE;
2080 
2081 	/* Start the stats update counter */
2082 	callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
2083 
2084 	crit_exit();
2085 }
2086 
2087 /*
2088  * Set media options.
2089  */
2090 static int tl_ifmedia_upd(ifp)
2091 	struct ifnet		*ifp;
2092 {
2093 	struct tl_softc		*sc;
2094 	struct mii_data		*mii = NULL;
2095 
2096 	sc = ifp->if_softc;
2097 
2098 	if (sc->tl_bitrate)
2099 		tl_setmode(sc, sc->ifmedia.ifm_media);
2100 	else {
2101 		mii = device_get_softc(sc->tl_miibus);
2102 		mii_mediachg(mii);
2103 	}
2104 
2105 	return(0);
2106 }
2107 
2108 /*
2109  * Report current media status.
2110  */
2111 static void tl_ifmedia_sts(ifp, ifmr)
2112 	struct ifnet		*ifp;
2113 	struct ifmediareq	*ifmr;
2114 {
2115 	struct tl_softc		*sc;
2116 	struct mii_data		*mii;
2117 
2118 	sc = ifp->if_softc;
2119 
2120 	ifmr->ifm_active = IFM_ETHER;
2121 
2122 	if (sc->tl_bitrate) {
2123 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2124 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2125 		else
2126 			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2127 		if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2128 			ifmr->ifm_active |= IFM_HDX;
2129 		else
2130 			ifmr->ifm_active |= IFM_FDX;
2131 		return;
2132 	} else {
2133 		mii = device_get_softc(sc->tl_miibus);
2134 		mii_pollstat(mii);
2135 		ifmr->ifm_active = mii->mii_media_active;
2136 		ifmr->ifm_status = mii->mii_media_status;
2137 	}
2138 
2139 	return;
2140 }
2141 
2142 static int tl_ioctl(ifp, command, data, cr)
2143 	struct ifnet		*ifp;
2144 	u_long			command;
2145 	caddr_t			data;
2146 	struct ucred		*cr;
2147 {
2148 	struct tl_softc		*sc = ifp->if_softc;
2149 	struct ifreq		*ifr = (struct ifreq *) data;
2150 	int			error = 0;
2151 
2152 	crit_enter();
2153 
2154 	switch(command) {
2155 	case SIOCSIFFLAGS:
2156 		if (ifp->if_flags & IFF_UP) {
2157 			if (ifp->if_flags & IFF_RUNNING &&
2158 			    ifp->if_flags & IFF_PROMISC &&
2159 			    !(sc->tl_if_flags & IFF_PROMISC)) {
2160 				tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2161 				tl_setmulti(sc);
2162 			} else if (ifp->if_flags & IFF_RUNNING &&
2163 			    !(ifp->if_flags & IFF_PROMISC) &&
2164 			    sc->tl_if_flags & IFF_PROMISC) {
2165 				tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2166 				tl_setmulti(sc);
2167 			} else
2168 				tl_init(sc);
2169 		} else {
2170 			if (ifp->if_flags & IFF_RUNNING) {
2171 				tl_stop(sc);
2172 			}
2173 		}
2174 		sc->tl_if_flags = ifp->if_flags;
2175 		error = 0;
2176 		break;
2177 	case SIOCADDMULTI:
2178 	case SIOCDELMULTI:
2179 		tl_setmulti(sc);
2180 		error = 0;
2181 		break;
2182 	case SIOCSIFMEDIA:
2183 	case SIOCGIFMEDIA:
2184 		if (sc->tl_bitrate)
2185 			error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2186 		else {
2187 			struct mii_data		*mii;
2188 			mii = device_get_softc(sc->tl_miibus);
2189 			error = ifmedia_ioctl(ifp, ifr,
2190 			    &mii->mii_media, command);
2191 		}
2192 		break;
2193 	default:
2194 		error = ether_ioctl(ifp, command, data);
2195 		break;
2196 	}
2197 
2198 	crit_exit();
2199 
2200 	return(error);
2201 }
2202 
2203 static void tl_watchdog(ifp)
2204 	struct ifnet		*ifp;
2205 {
2206 	struct tl_softc		*sc;
2207 
2208 	sc = ifp->if_softc;
2209 
2210 	printf("tl%d: device timeout\n", sc->tl_unit);
2211 
2212 	ifp->if_oerrors++;
2213 
2214 	tl_softreset(sc, 1);
2215 	tl_init(sc);
2216 
2217 	return;
2218 }
2219 
2220 /*
2221  * Stop the adapter and free any mbufs allocated to the
2222  * RX and TX lists.
2223  */
2224 static void tl_stop(sc)
2225 	struct tl_softc		*sc;
2226 {
2227 	int		i;
2228 	struct ifnet		*ifp;
2229 
2230 	ifp = &sc->arpcom.ac_if;
2231 
2232 	/* Stop the stats updater. */
2233 	callout_stop(&sc->tl_stat_timer);
2234 
2235 	/* Stop the transmitter */
2236 	CMD_CLR(sc, TL_CMD_RT);
2237 	CMD_SET(sc, TL_CMD_STOP);
2238 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2239 
2240 	/* Stop the receiver */
2241 	CMD_SET(sc, TL_CMD_RT);
2242 	CMD_SET(sc, TL_CMD_STOP);
2243 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2244 
2245 	/*
2246 	 * Disable host interrupts.
2247 	 */
2248 	CMD_SET(sc, TL_CMD_INTSOFF);
2249 
2250 	/*
2251 	 * Clear list pointer.
2252 	 */
2253 	CSR_WRITE_4(sc, TL_CH_PARM, 0);
2254 
2255 	/*
2256 	 * Free the RX lists.
2257 	 */
2258 	for (i = 0; i < TL_RX_LIST_CNT; i++) {
2259 		if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2260 			m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2261 			sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2262 		}
2263 	}
2264 	bzero((char *)&sc->tl_ldata->tl_rx_list,
2265 		sizeof(sc->tl_ldata->tl_rx_list));
2266 
2267 	/*
2268 	 * Free the TX list buffers.
2269 	 */
2270 	for (i = 0; i < TL_TX_LIST_CNT; i++) {
2271 		if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2272 			m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2273 			sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2274 		}
2275 	}
2276 	bzero((char *)&sc->tl_ldata->tl_tx_list,
2277 		sizeof(sc->tl_ldata->tl_tx_list));
2278 
2279 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2280 
2281 	return;
2282 }
2283 
2284 /*
2285  * Stop all chip I/O so that the kernel's probe routines don't
2286  * get confused by errant DMAs when rebooting.
2287  */
2288 static void tl_shutdown(dev)
2289 	device_t		dev;
2290 {
2291 	struct tl_softc		*sc;
2292 
2293 	sc = device_get_softc(dev);
2294 
2295 	tl_stop(sc);
2296 
2297 	return;
2298 }
2299