xref: /dflybsd-src/sys/dev/netif/ti/if_ti.c (revision 0402ebbc7d4b6f34d02791995169d25c4aec3b15)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33  * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.19 2005/05/05 22:57:45 swildner Exp $
34  */
35 
36 /*
37  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
38  * Manuals, sample driver and firmware source kits are available
39  * from http://www.alteon.com/support/openkits.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
48  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
49  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
50  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
51  * filtering and jumbo (9014 byte) frames. The hardware is largely
52  * controlled by firmware, which must be loaded into the NIC during
53  * initialization.
54  *
55  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
56  * revision, which supports new features such as extended commands,
57  * extended jumbo receive ring desciptors and a mini receive ring.
58  *
59  * Alteon Networks is to be commended for releasing such a vast amount
60  * of development material for the Tigon NIC without requiring an NDA
61  * (although they really should have done it a long time ago). With
62  * any luck, the other vendors will finally wise up and follow Alteon's
63  * stellar example.
64  *
65  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
66  * this driver by #including it as a C header file. This bloats the
67  * driver somewhat, but it's the easiest method considering that the
68  * driver code and firmware code need to be kept in sync. The source
69  * for the firmware is not provided with the FreeBSD distribution since
70  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
71  *
72  * The following people deserve special thanks:
73  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
74  *   for testing
75  * - Raymond Lee of Netgear, for providing a pair of Netgear
76  *   GA620 Tigon 2 boards for testing
77  * - Ulf Zimmermann, for bringing the GA260 to my attention and
78  *   convincing me to write this driver.
79  * - Andrew Gallatin for providing FreeBSD/Alpha support.
80  */
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/queue.h>
90 
91 #include <net/if.h>
92 #include <net/ifq_var.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_types.h>
98 #include <net/vlan/if_vlan_var.h>
99 
100 #include <net/bpf.h>
101 
102 #include <netinet/in_systm.h>
103 #include <netinet/in.h>
104 #include <netinet/ip.h>
105 
106 #include <vm/vm.h>              /* for vtophys */
107 #include <vm/pmap.h>            /* for vtophys */
108 #include <machine/clock.h>      /* for DELAY */
109 #include <machine/bus_memio.h>
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #include "if_tireg.h"
119 #include "ti_fw.h"
120 #include "ti_fw2.h"
121 
122 /*
123  * Temporarily disable the checksum offload support for now.
124  * Tests with ftp.freesoftware.com show that after about 12 hours,
125  * the firmware will begin calculating completely bogus TX checksums
126  * and refuse to stop until the interface is reset. Unfortunately,
127  * there isn't enough time to fully debug this before the 4.1
128  * release, so this will need to stay off for now.
129  */
130 #ifdef notdef
131 #define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
132 #else
133 #define TI_CSUM_FEATURES	0
134 #endif
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 
140 static struct ti_type ti_devs[] = {
141 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
142 		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
143 	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
144 		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
145 	{ TC_VENDORID,	TC_DEVICEID_3C985,
146 		"3Com 3c985-SX Gigabit Ethernet" },
147 	{ NG_VENDORID, NG_DEVICEID_GA620,
148 		"Netgear GA620 1000baseSX Gigabit Ethernet" },
149 	{ NG_VENDORID, NG_DEVICEID_GA620T,
150 		"Netgear GA620 1000baseT Gigabit Ethernet" },
151 	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
152 		"Silicon Graphics Gigabit Ethernet" },
153 	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
154 		"Farallon PN9000SX Gigabit Ethernet" },
155 	{ 0, 0, NULL }
156 };
157 
158 static int ti_probe		(device_t);
159 static int ti_attach		(device_t);
160 static int ti_detach		(device_t);
161 static void ti_txeof		(struct ti_softc *);
162 static void ti_rxeof		(struct ti_softc *);
163 
164 static void ti_stats_update	(struct ti_softc *);
165 static int ti_encap		(struct ti_softc *, struct mbuf *,
166 					u_int32_t *);
167 
168 static void ti_intr		(void *);
169 static void ti_start		(struct ifnet *);
170 static int ti_ioctl		(struct ifnet *, u_long, caddr_t,
171 					struct ucred *);
172 static void ti_init		(void *);
173 static void ti_init2		(struct ti_softc *);
174 static void ti_stop		(struct ti_softc *);
175 static void ti_watchdog		(struct ifnet *);
176 static void ti_shutdown		(device_t);
177 static int ti_ifmedia_upd	(struct ifnet *);
178 static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
179 
180 static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
181 static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *,
182 						int, u_int8_t *);
183 static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
184 
185 static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
186 static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
187 static void ti_setmulti		(struct ti_softc *);
188 
189 static void ti_mem		(struct ti_softc *, u_int32_t,
190 					u_int32_t, caddr_t);
191 static void ti_loadfw		(struct ti_softc *);
192 static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
193 static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
194 					caddr_t, int);
195 static void ti_handle_events	(struct ti_softc *);
196 static int ti_alloc_jumbo_mem	(struct ti_softc *);
197 static void *ti_jalloc		(struct ti_softc *);
198 static void ti_jfree		(caddr_t, u_int);
199 static void ti_jref		(caddr_t, u_int);
200 static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
201 static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
202 static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
203 static int ti_init_rx_ring_std	(struct ti_softc *);
204 static void ti_free_rx_ring_std	(struct ti_softc *);
205 static int ti_init_rx_ring_jumbo	(struct ti_softc *);
206 static void ti_free_rx_ring_jumbo	(struct ti_softc *);
207 static int ti_init_rx_ring_mini	(struct ti_softc *);
208 static void ti_free_rx_ring_mini	(struct ti_softc *);
209 static void ti_free_tx_ring	(struct ti_softc *);
210 static int ti_init_tx_ring	(struct ti_softc *);
211 
212 static int ti_64bitslot_war	(struct ti_softc *);
213 static int ti_chipinit		(struct ti_softc *);
214 static int ti_gibinit		(struct ti_softc *);
215 
216 static device_method_t ti_methods[] = {
217 	/* Device interface */
218 	DEVMETHOD(device_probe,		ti_probe),
219 	DEVMETHOD(device_attach,	ti_attach),
220 	DEVMETHOD(device_detach,	ti_detach),
221 	DEVMETHOD(device_shutdown,	ti_shutdown),
222 	{ 0, 0 }
223 };
224 
225 static driver_t ti_driver = {
226 	"ti",
227 	ti_methods,
228 	sizeof(struct ti_softc)
229 };
230 
231 static devclass_t ti_devclass;
232 
233 DECLARE_DUMMY_MODULE(if_ti);
234 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
235 
236 /*
237  * Send an instruction or address to the EEPROM, check for ACK.
238  */
239 static u_int32_t ti_eeprom_putbyte(sc, byte)
240 	struct ti_softc		*sc;
241 	int			byte;
242 {
243 	int		i, ack = 0;
244 
245 	/*
246 	 * Make sure we're in TX mode.
247 	 */
248 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
249 
250 	/*
251 	 * Feed in each bit and stobe the clock.
252 	 */
253 	for (i = 0x80; i; i >>= 1) {
254 		if (byte & i) {
255 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
256 		} else {
257 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
258 		}
259 		DELAY(1);
260 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
261 		DELAY(1);
262 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 	}
264 
265 	/*
266 	 * Turn off TX mode.
267 	 */
268 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
269 
270 	/*
271 	 * Check for ack.
272 	 */
273 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
274 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
275 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
276 
277 	return(ack);
278 }
279 
280 /*
281  * Read a byte of data stored in the EEPROM at address 'addr.'
282  * We have to send two address bytes since the EEPROM can hold
283  * more than 256 bytes of data.
284  */
285 static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
286 	struct ti_softc		*sc;
287 	int			addr;
288 	u_int8_t		*dest;
289 {
290 	int		i;
291 	u_int8_t		byte = 0;
292 
293 	EEPROM_START;
294 
295 	/*
296 	 * Send write control code to EEPROM.
297 	 */
298 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
299 		printf("ti%d: failed to send write command, status: %x\n",
300 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
301 		return(1);
302 	}
303 
304 	/*
305 	 * Send first byte of address of byte we want to read.
306 	 */
307 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
308 		printf("ti%d: failed to send address, status: %x\n",
309 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
310 		return(1);
311 	}
312 	/*
313 	 * Send second byte address of byte we want to read.
314 	 */
315 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
316 		printf("ti%d: failed to send address, status: %x\n",
317 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
318 		return(1);
319 	}
320 
321 	EEPROM_STOP;
322 	EEPROM_START;
323 	/*
324 	 * Send read control code to EEPROM.
325 	 */
326 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
327 		printf("ti%d: failed to send read command, status: %x\n",
328 		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
329 		return(1);
330 	}
331 
332 	/*
333 	 * Start reading bits from EEPROM.
334 	 */
335 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
336 	for (i = 0x80; i; i >>= 1) {
337 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
338 		DELAY(1);
339 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
340 			byte |= i;
341 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
342 		DELAY(1);
343 	}
344 
345 	EEPROM_STOP;
346 
347 	/*
348 	 * No ACK generated for read, so just return byte.
349 	 */
350 
351 	*dest = byte;
352 
353 	return(0);
354 }
355 
356 /*
357  * Read a sequence of bytes from the EEPROM.
358  */
359 static int ti_read_eeprom(sc, dest, off, cnt)
360 	struct ti_softc		*sc;
361 	caddr_t			dest;
362 	int			off;
363 	int			cnt;
364 {
365 	int			err = 0, i;
366 	u_int8_t		byte = 0;
367 
368 	for (i = 0; i < cnt; i++) {
369 		err = ti_eeprom_getbyte(sc, off + i, &byte);
370 		if (err)
371 			break;
372 		*(dest + i) = byte;
373 	}
374 
375 	return(err ? 1 : 0);
376 }
377 
378 /*
379  * NIC memory access function. Can be used to either clear a section
380  * of NIC local memory or (if buf is non-NULL) copy data into it.
381  */
382 static void ti_mem(sc, addr, len, buf)
383 	struct ti_softc		*sc;
384 	u_int32_t		addr, len;
385 	caddr_t			buf;
386 {
387 	int			segptr, segsize, cnt;
388 	caddr_t			ti_winbase, ptr;
389 
390 	segptr = addr;
391 	cnt = len;
392 	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
393 	ptr = buf;
394 
395 	while(cnt) {
396 		if (cnt < TI_WINLEN)
397 			segsize = cnt;
398 		else
399 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
400 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
401 		if (buf == NULL)
402 			bzero((char *)ti_winbase + (segptr &
403 			    (TI_WINLEN - 1)), segsize);
404 		else {
405 			bcopy((char *)ptr, (char *)ti_winbase +
406 			    (segptr & (TI_WINLEN - 1)), segsize);
407 			ptr += segsize;
408 		}
409 		segptr += segsize;
410 		cnt -= segsize;
411 	}
412 
413 	return;
414 }
415 
416 /*
417  * Load firmware image into the NIC. Check that the firmware revision
418  * is acceptable and see if we want the firmware for the Tigon 1 or
419  * Tigon 2.
420  */
421 static void ti_loadfw(sc)
422 	struct ti_softc		*sc;
423 {
424 	switch(sc->ti_hwrev) {
425 	case TI_HWREV_TIGON:
426 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
427 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
428 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
429 			printf("ti%d: firmware revision mismatch; want "
430 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
431 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
432 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
433 			    tigonFwReleaseMinor, tigonFwReleaseFix);
434 			return;
435 		}
436 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
437 		    (caddr_t)tigonFwText);
438 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
439 		    (caddr_t)tigonFwData);
440 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
441 		    (caddr_t)tigonFwRodata);
442 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
443 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
444 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
445 		break;
446 	case TI_HWREV_TIGON_II:
447 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
448 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
449 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
450 			printf("ti%d: firmware revision mismatch; want "
451 			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
452 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
453 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
454 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
455 			return;
456 		}
457 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
458 		    (caddr_t)tigon2FwText);
459 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
460 		    (caddr_t)tigon2FwData);
461 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
462 		    (caddr_t)tigon2FwRodata);
463 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
464 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
465 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
466 		break;
467 	default:
468 		printf("ti%d: can't load firmware: unknown hardware rev\n",
469 		    sc->ti_unit);
470 		break;
471 	}
472 
473 	return;
474 }
475 
476 /*
477  * Send the NIC a command via the command ring.
478  */
479 static void ti_cmd(sc, cmd)
480 	struct ti_softc		*sc;
481 	struct ti_cmd_desc	*cmd;
482 {
483 	u_int32_t		index;
484 
485 	if (sc->ti_rdata->ti_cmd_ring == NULL)
486 		return;
487 
488 	index = sc->ti_cmd_saved_prodidx;
489 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
490 	TI_INC(index, TI_CMD_RING_CNT);
491 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
492 	sc->ti_cmd_saved_prodidx = index;
493 
494 	return;
495 }
496 
497 /*
498  * Send the NIC an extended command. The 'len' parameter specifies the
499  * number of command slots to include after the initial command.
500  */
501 static void ti_cmd_ext(sc, cmd, arg, len)
502 	struct ti_softc		*sc;
503 	struct ti_cmd_desc	*cmd;
504 	caddr_t			arg;
505 	int			len;
506 {
507 	u_int32_t		index;
508 	int		i;
509 
510 	if (sc->ti_rdata->ti_cmd_ring == NULL)
511 		return;
512 
513 	index = sc->ti_cmd_saved_prodidx;
514 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
515 	TI_INC(index, TI_CMD_RING_CNT);
516 	for (i = 0; i < len; i++) {
517 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
518 		    *(u_int32_t *)(&arg[i * 4]));
519 		TI_INC(index, TI_CMD_RING_CNT);
520 	}
521 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
522 	sc->ti_cmd_saved_prodidx = index;
523 
524 	return;
525 }
526 
527 /*
528  * Handle events that have triggered interrupts.
529  */
530 static void ti_handle_events(sc)
531 	struct ti_softc		*sc;
532 {
533 	struct ti_event_desc	*e;
534 
535 	if (sc->ti_rdata->ti_event_ring == NULL)
536 		return;
537 
538 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
539 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
540 		switch(e->ti_event) {
541 		case TI_EV_LINKSTAT_CHANGED:
542 			sc->ti_linkstat = e->ti_code;
543 			if (e->ti_code == TI_EV_CODE_LINK_UP)
544 				printf("ti%d: 10/100 link up\n", sc->ti_unit);
545 			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
546 				printf("ti%d: gigabit link up\n", sc->ti_unit);
547 			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
548 				printf("ti%d: link down\n", sc->ti_unit);
549 			break;
550 		case TI_EV_ERROR:
551 			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
552 				printf("ti%d: invalid command\n", sc->ti_unit);
553 			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
554 				printf("ti%d: unknown command\n", sc->ti_unit);
555 			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
556 				printf("ti%d: bad config data\n", sc->ti_unit);
557 			break;
558 		case TI_EV_FIRMWARE_UP:
559 			ti_init2(sc);
560 			break;
561 		case TI_EV_STATS_UPDATED:
562 			ti_stats_update(sc);
563 			break;
564 		case TI_EV_RESET_JUMBO_RING:
565 		case TI_EV_MCAST_UPDATED:
566 			/* Who cares. */
567 			break;
568 		default:
569 			printf("ti%d: unknown event: %d\n",
570 			    sc->ti_unit, e->ti_event);
571 			break;
572 		}
573 		/* Advance the consumer index. */
574 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
575 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
576 	}
577 
578 	return;
579 }
580 
581 /*
582  * Memory management for the jumbo receive ring is a pain in the
583  * butt. We need to allocate at least 9018 bytes of space per frame,
584  * _and_ it has to be contiguous (unless you use the extended
585  * jumbo descriptor format). Using malloc() all the time won't
586  * work: malloc() allocates memory in powers of two, which means we
587  * would end up wasting a considerable amount of space by allocating
588  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
589  * to do our own memory management.
590  *
591  * The driver needs to allocate a contiguous chunk of memory at boot
592  * time. We then chop this up ourselves into 9K pieces and use them
593  * as external mbuf storage.
594  *
595  * One issue here is how much memory to allocate. The jumbo ring has
596  * 256 slots in it, but at 9K per slot than can consume over 2MB of
597  * RAM. This is a bit much, especially considering we also need
598  * RAM for the standard ring and mini ring (on the Tigon 2). To
599  * save space, we only actually allocate enough memory for 64 slots
600  * by default, which works out to between 500 and 600K. This can
601  * be tuned by changing a #define in if_tireg.h.
602  */
603 
604 static int ti_alloc_jumbo_mem(sc)
605 	struct ti_softc		*sc;
606 {
607 	caddr_t			ptr;
608 	int		i;
609 	struct ti_jpool_entry   *entry;
610 
611 	/* Grab a big chunk o' storage. */
612 	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
613 		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
614 
615 	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
616 		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
617 		return(ENOBUFS);
618 	}
619 
620 	SLIST_INIT(&sc->ti_jfree_listhead);
621 	SLIST_INIT(&sc->ti_jinuse_listhead);
622 
623 	/*
624 	 * Now divide it up into 9K pieces and save the addresses
625 	 * in an array. Note that we play an evil trick here by using
626 	 * the first few bytes in the buffer to hold the the address
627 	 * of the softc structure for this interface. This is because
628 	 * ti_jfree() needs it, but it is called by the mbuf management
629 	 * code which will not pass it to us explicitly.
630 	 */
631 	ptr = sc->ti_cdata.ti_jumbo_buf;
632 	for (i = 0; i < TI_JSLOTS; i++) {
633 		u_int64_t		**aptr;
634 		aptr = (u_int64_t **)ptr;
635 		aptr[0] = (u_int64_t *)sc;
636 		ptr += sizeof(u_int64_t);
637 		sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
638 		sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
639 		ptr += (TI_JLEN - sizeof(u_int64_t));
640 		entry = malloc(sizeof(struct ti_jpool_entry),
641 			       M_DEVBUF, M_WAITOK);
642 		if (entry == NULL) {
643 			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
644 			           M_DEVBUF);
645 			sc->ti_cdata.ti_jumbo_buf = NULL;
646 			printf("ti%d: no memory for jumbo "
647 			    "buffer queue!\n", sc->ti_unit);
648 			return(ENOBUFS);
649 		}
650 		entry->slot = i;
651 		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
652 	}
653 
654 	return(0);
655 }
656 
657 /*
658  * Allocate a jumbo buffer.
659  */
660 static void *ti_jalloc(sc)
661 	struct ti_softc		*sc;
662 {
663 	struct ti_jpool_entry   *entry;
664 
665 	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
666 
667 	if (entry == NULL) {
668 		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
669 		return(NULL);
670 	}
671 
672 	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
673 	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
674 	sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
675 	return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
676 }
677 
678 /*
679  * Adjust usage count on a jumbo buffer. In general this doesn't
680  * get used much because our jumbo buffers don't get passed around
681  * too much, but it's implemented for correctness.
682  */
683 static void ti_jref(buf, size)
684 	caddr_t			buf;
685 	u_int			size;
686 {
687 	struct ti_softc		*sc;
688 	u_int64_t		**aptr;
689 	int		i;
690 
691 	/* Extract the softc struct pointer. */
692 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
693 	sc = (struct ti_softc *)(aptr[0]);
694 
695 	if (sc == NULL)
696 		panic("ti_jref: can't find softc pointer!");
697 
698 	if (size != TI_JUMBO_FRAMELEN)
699 		panic("ti_jref: adjusting refcount of buf of wrong size!");
700 
701 	/* calculate the slot this buffer belongs to */
702 
703 	i = ((vm_offset_t)aptr
704 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
705 
706 	if ((i < 0) || (i >= TI_JSLOTS))
707 		panic("ti_jref: asked to reference buffer "
708 		    "that we don't manage!");
709 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
710 		panic("ti_jref: buffer already free!");
711 	else
712 		sc->ti_cdata.ti_jslots[i].ti_inuse++;
713 
714 	return;
715 }
716 
717 /*
718  * Release a jumbo buffer.
719  */
720 static void ti_jfree(buf, size)
721 	caddr_t			buf;
722 	u_int			size;
723 {
724 	struct ti_softc		*sc;
725 	u_int64_t		**aptr;
726 	int		        i;
727 	struct ti_jpool_entry   *entry;
728 
729 	/* Extract the softc struct pointer. */
730 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
731 	sc = (struct ti_softc *)(aptr[0]);
732 
733 	if (sc == NULL)
734 		panic("ti_jfree: can't find softc pointer!");
735 
736 	if (size != TI_JUMBO_FRAMELEN)
737 		panic("ti_jfree: freeing buffer of wrong size!");
738 
739 	/* calculate the slot this buffer belongs to */
740 
741 	i = ((vm_offset_t)aptr
742 	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
743 
744 	if ((i < 0) || (i >= TI_JSLOTS))
745 		panic("ti_jfree: asked to free buffer that we don't manage!");
746 	else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
747 		panic("ti_jfree: buffer already free!");
748 	else {
749 		sc->ti_cdata.ti_jslots[i].ti_inuse--;
750 		if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
751 			entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
752 			if (entry == NULL)
753 				panic("ti_jfree: buffer not in use!");
754 			entry->slot = i;
755 			SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
756 					  jpool_entries);
757 			SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
758 					  entry, jpool_entries);
759 		}
760 	}
761 
762 	return;
763 }
764 
765 
766 /*
767  * Intialize a standard receive ring descriptor.
768  */
769 static int ti_newbuf_std(sc, i, m)
770 	struct ti_softc		*sc;
771 	int			i;
772 	struct mbuf		*m;
773 {
774 	struct mbuf		*m_new = NULL;
775 	struct ti_rx_desc	*r;
776 
777 	if (m == NULL) {
778 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
779 		if (m_new == NULL)
780 			return(ENOBUFS);
781 
782 		MCLGET(m_new, MB_DONTWAIT);
783 		if (!(m_new->m_flags & M_EXT)) {
784 			m_freem(m_new);
785 			return(ENOBUFS);
786 		}
787 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
788 	} else {
789 		m_new = m;
790 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
791 		m_new->m_data = m_new->m_ext.ext_buf;
792 	}
793 
794 	m_adj(m_new, ETHER_ALIGN);
795 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
796 	r = &sc->ti_rdata->ti_rx_std_ring[i];
797 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
798 	r->ti_type = TI_BDTYPE_RECV_BD;
799 	r->ti_flags = 0;
800 	if (sc->arpcom.ac_if.if_hwassist)
801 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
802 	r->ti_len = m_new->m_len;
803 	r->ti_idx = i;
804 
805 	return(0);
806 }
807 
808 /*
809  * Intialize a mini receive ring descriptor. This only applies to
810  * the Tigon 2.
811  */
812 static int ti_newbuf_mini(sc, i, m)
813 	struct ti_softc		*sc;
814 	int			i;
815 	struct mbuf		*m;
816 {
817 	struct mbuf		*m_new = NULL;
818 	struct ti_rx_desc	*r;
819 
820 	if (m == NULL) {
821 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
822 		if (m_new == NULL) {
823 			return(ENOBUFS);
824 		}
825 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
826 	} else {
827 		m_new = m;
828 		m_new->m_data = m_new->m_pktdat;
829 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
830 	}
831 
832 	m_adj(m_new, ETHER_ALIGN);
833 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
834 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
835 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
836 	r->ti_type = TI_BDTYPE_RECV_BD;
837 	r->ti_flags = TI_BDFLAG_MINI_RING;
838 	if (sc->arpcom.ac_if.if_hwassist)
839 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
840 	r->ti_len = m_new->m_len;
841 	r->ti_idx = i;
842 
843 	return(0);
844 }
845 
846 /*
847  * Initialize a jumbo receive ring descriptor. This allocates
848  * a jumbo buffer from the pool managed internally by the driver.
849  */
850 static int ti_newbuf_jumbo(sc, i, m)
851 	struct ti_softc		*sc;
852 	int			i;
853 	struct mbuf		*m;
854 {
855 	struct mbuf		*m_new = NULL;
856 	struct ti_rx_desc	*r;
857 
858 	if (m == NULL) {
859 		caddr_t			*buf = NULL;
860 
861 		/* Allocate the mbuf. */
862 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
863 		if (m_new == NULL) {
864 			return(ENOBUFS);
865 		}
866 
867 		/* Allocate the jumbo buffer */
868 		buf = ti_jalloc(sc);
869 		if (buf == NULL) {
870 			m_freem(m_new);
871 			printf("ti%d: jumbo allocation failed "
872 			    "-- packet dropped!\n", sc->ti_unit);
873 			return(ENOBUFS);
874 		}
875 
876 		/* Attach the buffer to the mbuf. */
877 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
878 		m_new->m_flags |= M_EXT | M_EXT_OLD;
879 		m_new->m_len = m_new->m_pkthdr.len =
880 		    m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
881 		m_new->m_ext.ext_nfree.old = ti_jfree;
882 		m_new->m_ext.ext_nref.old = ti_jref;
883 	} else {
884 		m_new = m;
885 		m_new->m_data = m_new->m_ext.ext_buf;
886 		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
887 	}
888 
889 	m_adj(m_new, ETHER_ALIGN);
890 	/* Set up the descriptor. */
891 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
892 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
893 	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
894 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
895 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
896 	if (sc->arpcom.ac_if.if_hwassist)
897 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
898 	r->ti_len = m_new->m_len;
899 	r->ti_idx = i;
900 
901 	return(0);
902 }
903 
904 /*
905  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
906  * that's 1MB or memory, which is a lot. For now, we fill only the first
907  * 256 ring entries and hope that our CPU is fast enough to keep up with
908  * the NIC.
909  */
910 static int ti_init_rx_ring_std(sc)
911 	struct ti_softc		*sc;
912 {
913 	int		i;
914 	struct ti_cmd_desc	cmd;
915 
916 	for (i = 0; i < TI_SSLOTS; i++) {
917 		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
918 			return(ENOBUFS);
919 	};
920 
921 	TI_UPDATE_STDPROD(sc, i - 1);
922 	sc->ti_std = i - 1;
923 
924 	return(0);
925 }
926 
927 static void ti_free_rx_ring_std(sc)
928 	struct ti_softc		*sc;
929 {
930 	int		i;
931 
932 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
933 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
934 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
935 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
936 		}
937 		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
938 		    sizeof(struct ti_rx_desc));
939 	}
940 
941 	return;
942 }
943 
944 static int ti_init_rx_ring_jumbo(sc)
945 	struct ti_softc		*sc;
946 {
947 	int		i;
948 	struct ti_cmd_desc	cmd;
949 
950 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
951 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
952 			return(ENOBUFS);
953 	};
954 
955 	TI_UPDATE_JUMBOPROD(sc, i - 1);
956 	sc->ti_jumbo = i - 1;
957 
958 	return(0);
959 }
960 
961 static void ti_free_rx_ring_jumbo(sc)
962 	struct ti_softc		*sc;
963 {
964 	int		i;
965 
966 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
967 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
968 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
969 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
970 		}
971 		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
972 		    sizeof(struct ti_rx_desc));
973 	}
974 
975 	return;
976 }
977 
978 static int ti_init_rx_ring_mini(sc)
979 	struct ti_softc		*sc;
980 {
981 	int		i;
982 
983 	for (i = 0; i < TI_MSLOTS; i++) {
984 		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
985 			return(ENOBUFS);
986 	};
987 
988 	TI_UPDATE_MINIPROD(sc, i - 1);
989 	sc->ti_mini = i - 1;
990 
991 	return(0);
992 }
993 
994 static void ti_free_rx_ring_mini(sc)
995 	struct ti_softc		*sc;
996 {
997 	int		i;
998 
999 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1000 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1001 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1002 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1003 		}
1004 		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1005 		    sizeof(struct ti_rx_desc));
1006 	}
1007 
1008 	return;
1009 }
1010 
1011 static void ti_free_tx_ring(sc)
1012 	struct ti_softc		*sc;
1013 {
1014 	int		i;
1015 
1016 	if (sc->ti_rdata->ti_tx_ring == NULL)
1017 		return;
1018 
1019 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1020 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1021 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1022 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1023 		}
1024 		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1025 		    sizeof(struct ti_tx_desc));
1026 	}
1027 
1028 	return;
1029 }
1030 
1031 static int ti_init_tx_ring(sc)
1032 	struct ti_softc		*sc;
1033 {
1034 	sc->ti_txcnt = 0;
1035 	sc->ti_tx_saved_considx = 0;
1036 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1037 	return(0);
1038 }
1039 
1040 /*
1041  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1042  * but we have to support the old way too so that Tigon 1 cards will
1043  * work.
1044  */
1045 void ti_add_mcast(sc, addr)
1046 	struct ti_softc		*sc;
1047 	struct ether_addr	*addr;
1048 {
1049 	struct ti_cmd_desc	cmd;
1050 	u_int16_t		*m;
1051 	u_int32_t		ext[2] = {0, 0};
1052 
1053 	m = (u_int16_t *)&addr->octet[0];
1054 
1055 	switch(sc->ti_hwrev) {
1056 	case TI_HWREV_TIGON:
1057 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1058 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1059 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1060 		break;
1061 	case TI_HWREV_TIGON_II:
1062 		ext[0] = htons(m[0]);
1063 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1064 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1065 		break;
1066 	default:
1067 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1068 		break;
1069 	}
1070 
1071 	return;
1072 }
1073 
1074 void ti_del_mcast(sc, addr)
1075 	struct ti_softc		*sc;
1076 	struct ether_addr	*addr;
1077 {
1078 	struct ti_cmd_desc	cmd;
1079 	u_int16_t		*m;
1080 	u_int32_t		ext[2] = {0, 0};
1081 
1082 	m = (u_int16_t *)&addr->octet[0];
1083 
1084 	switch(sc->ti_hwrev) {
1085 	case TI_HWREV_TIGON:
1086 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1089 		break;
1090 	case TI_HWREV_TIGON_II:
1091 		ext[0] = htons(m[0]);
1092 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1094 		break;
1095 	default:
1096 		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1097 		break;
1098 	}
1099 
1100 	return;
1101 }
1102 
1103 /*
1104  * Configure the Tigon's multicast address filter.
1105  *
1106  * The actual multicast table management is a bit of a pain, thanks to
1107  * slight brain damage on the part of both Alteon and us. With our
1108  * multicast code, we are only alerted when the multicast address table
1109  * changes and at that point we only have the current list of addresses:
1110  * we only know the current state, not the previous state, so we don't
1111  * actually know what addresses were removed or added. The firmware has
1112  * state, but we can't get our grubby mits on it, and there is no 'delete
1113  * all multicast addresses' command. Hence, we have to maintain our own
1114  * state so we know what addresses have been programmed into the NIC at
1115  * any given time.
1116  */
1117 static void ti_setmulti(sc)
1118 	struct ti_softc		*sc;
1119 {
1120 	struct ifnet		*ifp;
1121 	struct ifmultiaddr	*ifma;
1122 	struct ti_cmd_desc	cmd;
1123 	struct ti_mc_entry	*mc;
1124 	u_int32_t		intrs;
1125 
1126 	ifp = &sc->arpcom.ac_if;
1127 
1128 	if (ifp->if_flags & IFF_ALLMULTI) {
1129 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1130 		return;
1131 	} else {
1132 		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1133 	}
1134 
1135 	/* Disable interrupts. */
1136 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1137 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1138 
1139 	/* First, zot all the existing filters. */
1140 	while (sc->ti_mc_listhead.slh_first != NULL) {
1141 		mc = sc->ti_mc_listhead.slh_first;
1142 		ti_del_mcast(sc, &mc->mc_addr);
1143 		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1144 		free(mc, M_DEVBUF);
1145 	}
1146 
1147 	/* Now program new ones. */
1148 	for (ifma = ifp->if_multiaddrs.lh_first;
1149 	    ifma != NULL; ifma = ifma->ifma_link.le_next) {
1150 		if (ifma->ifma_addr->sa_family != AF_LINK)
1151 			continue;
1152 		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1153 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1154 		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1155 		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1156 		ti_add_mcast(sc, &mc->mc_addr);
1157 	}
1158 
1159 	/* Re-enable interrupts. */
1160 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1161 
1162 	return;
1163 }
1164 
1165 /*
1166  * Check to see if the BIOS has configured us for a 64 bit slot when
1167  * we aren't actually in one. If we detect this condition, we can work
1168  * around it on the Tigon 2 by setting a bit in the PCI state register,
1169  * but for the Tigon 1 we must give up and abort the interface attach.
1170  */
1171 static int ti_64bitslot_war(sc)
1172 	struct ti_softc		*sc;
1173 {
1174 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1175 		CSR_WRITE_4(sc, 0x600, 0);
1176 		CSR_WRITE_4(sc, 0x604, 0);
1177 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1178 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1179 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1180 				return(EINVAL);
1181 			else {
1182 				TI_SETBIT(sc, TI_PCI_STATE,
1183 				    TI_PCISTATE_32BIT_BUS);
1184 				return(0);
1185 			}
1186 		}
1187 	}
1188 
1189 	return(0);
1190 }
1191 
1192 /*
1193  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1194  * self-test results.
1195  */
1196 static int ti_chipinit(sc)
1197 	struct ti_softc		*sc;
1198 {
1199 	u_int32_t		cacheline;
1200 	u_int32_t		pci_writemax = 0;
1201 
1202 	/* Initialize link to down state. */
1203 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1204 
1205 	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1206 		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1207 	else
1208 		sc->arpcom.ac_if.if_hwassist = 0;
1209 
1210 	/* Set endianness before we access any non-PCI registers. */
1211 #if BYTE_ORDER == BIG_ENDIAN
1212 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1213 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1214 #else
1215 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1216 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1217 #endif
1218 
1219 	/* Check the ROM failed bit to see if self-tests passed. */
1220 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1221 		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1222 		return(ENODEV);
1223 	}
1224 
1225 	/* Halt the CPU. */
1226 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1227 
1228 	/* Figure out the hardware revision. */
1229 	switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1230 	case TI_REV_TIGON_I:
1231 		sc->ti_hwrev = TI_HWREV_TIGON;
1232 		break;
1233 	case TI_REV_TIGON_II:
1234 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1235 		break;
1236 	default:
1237 		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1238 		return(ENODEV);
1239 	}
1240 
1241 	/* Do special setup for Tigon 2. */
1242 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1243 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1244 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1245 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1246 	}
1247 
1248 	/* Set up the PCI state register. */
1249 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1250 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1251 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1252 	}
1253 
1254 	/* Clear the read/write max DMA parameters. */
1255 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1256 	    TI_PCISTATE_READ_MAXDMA));
1257 
1258 	/* Get cache line size. */
1259 	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1260 
1261 	/*
1262 	 * If the system has set enabled the PCI memory write
1263 	 * and invalidate command in the command register, set
1264 	 * the write max parameter accordingly. This is necessary
1265 	 * to use MWI with the Tigon 2.
1266 	 */
1267 	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1268 		switch(cacheline) {
1269 		case 1:
1270 		case 4:
1271 		case 8:
1272 		case 16:
1273 		case 32:
1274 		case 64:
1275 			break;
1276 		default:
1277 		/* Disable PCI memory write and invalidate. */
1278 			if (bootverbose)
1279 				printf("ti%d: cache line size %d not "
1280 				    "supported; disabling PCI MWI\n",
1281 				    sc->ti_unit, cacheline);
1282 			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1283 			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1284 			break;
1285 		}
1286 	}
1287 
1288 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1289 
1290 	/* This sets the min dma param all the way up (0xff). */
1291 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1292 
1293 	/* Configure DMA variables. */
1294 #if BYTE_ORDER == BIG_ENDIAN
1295 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1296 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1297 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1298 	    TI_OPMODE_DONT_FRAG_JUMBO);
1299 #else
1300 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1301 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1302 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1303 #endif
1304 
1305 	/*
1306 	 * Only allow 1 DMA channel to be active at a time.
1307 	 * I don't think this is a good idea, but without it
1308 	 * the firmware racks up lots of nicDmaReadRingFull
1309 	 * errors.  This is not compatible with hardware checksums.
1310 	 */
1311 	if (sc->arpcom.ac_if.if_hwassist == 0)
1312 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1313 
1314 	/* Recommended settings from Tigon manual. */
1315 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1316 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1317 
1318 	if (ti_64bitslot_war(sc)) {
1319 		printf("ti%d: bios thinks we're in a 64 bit slot, "
1320 		    "but we aren't", sc->ti_unit);
1321 		return(EINVAL);
1322 	}
1323 
1324 	return(0);
1325 }
1326 
1327 /*
1328  * Initialize the general information block and firmware, and
1329  * start the CPU(s) running.
1330  */
1331 static int ti_gibinit(sc)
1332 	struct ti_softc		*sc;
1333 {
1334 	struct ti_rcb		*rcb;
1335 	int			i;
1336 	struct ifnet		*ifp;
1337 
1338 	ifp = &sc->arpcom.ac_if;
1339 
1340 	/* Disable interrupts for now. */
1341 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1342 
1343 	/* Tell the chip where to find the general information block. */
1344 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1345 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1346 
1347 	/* Load the firmware into SRAM. */
1348 	ti_loadfw(sc);
1349 
1350 	/* Set up the contents of the general info and ring control blocks. */
1351 
1352 	/* Set up the event ring and producer pointer. */
1353 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1354 
1355 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1356 	rcb->ti_flags = 0;
1357 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1358 	    vtophys(&sc->ti_ev_prodidx);
1359 	sc->ti_ev_prodidx.ti_idx = 0;
1360 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1361 	sc->ti_ev_saved_considx = 0;
1362 
1363 	/* Set up the command ring and producer mailbox. */
1364 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1365 
1366 	sc->ti_rdata->ti_cmd_ring =
1367 	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1368 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1369 	rcb->ti_flags = 0;
1370 	rcb->ti_max_len = 0;
1371 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1372 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1373 	}
1374 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1375 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1376 	sc->ti_cmd_saved_prodidx = 0;
1377 
1378 	/*
1379 	 * Assign the address of the stats refresh buffer.
1380 	 * We re-use the current stats buffer for this to
1381 	 * conserve memory.
1382 	 */
1383 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1384 	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1385 
1386 	/* Set up the standard receive ring. */
1387 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1388 	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1389 	rcb->ti_max_len = TI_FRAMELEN;
1390 	rcb->ti_flags = 0;
1391 	if (sc->arpcom.ac_if.if_hwassist)
1392 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1393 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1394 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1395 
1396 	/* Set up the jumbo receive ring. */
1397 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1398 	TI_HOSTADDR(rcb->ti_hostaddr) =
1399 	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1400 	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1401 	rcb->ti_flags = 0;
1402 	if (sc->arpcom.ac_if.if_hwassist)
1403 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1404 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1405 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1406 
1407 	/*
1408 	 * Set up the mini ring. Only activated on the
1409 	 * Tigon 2 but the slot in the config block is
1410 	 * still there on the Tigon 1.
1411 	 */
1412 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1413 	TI_HOSTADDR(rcb->ti_hostaddr) =
1414 	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1415 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1416 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1417 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1418 	else
1419 		rcb->ti_flags = 0;
1420 	if (sc->arpcom.ac_if.if_hwassist)
1421 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1422 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1423 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1424 
1425 	/*
1426 	 * Set up the receive return ring.
1427 	 */
1428 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1429 	TI_HOSTADDR(rcb->ti_hostaddr) =
1430 	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1431 	rcb->ti_flags = 0;
1432 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1433 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1434 	    vtophys(&sc->ti_return_prodidx);
1435 
1436 	/*
1437 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1438 	 * of putting the transmit ring in the host's address space and
1439 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1440 	 * memory and accessing it through the shared memory region. We
1441 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1442 	 * so we have to revert to the shared memory scheme if we detect
1443 	 * a Tigon 1 chip.
1444 	 */
1445 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1446 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1447 		sc->ti_rdata->ti_tx_ring_nic =
1448 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1449 	}
1450 	bzero((char *)sc->ti_rdata->ti_tx_ring,
1451 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1452 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1453 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1454 		rcb->ti_flags = 0;
1455 	else
1456 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1457 	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1458 	if (sc->arpcom.ac_if.if_hwassist)
1459 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1460 		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1461 	rcb->ti_max_len = TI_TX_RING_CNT;
1462 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1463 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1464 	else
1465 		TI_HOSTADDR(rcb->ti_hostaddr) =
1466 		    vtophys(&sc->ti_rdata->ti_tx_ring);
1467 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1468 	    vtophys(&sc->ti_tx_considx);
1469 
1470 	/* Set up tuneables */
1471 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1472 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1473 		    (sc->ti_rx_coal_ticks / 10));
1474 	else
1475 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1476 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1477 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1478 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1479 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1480 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1481 
1482 	/* Turn interrupts on. */
1483 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1484 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1485 
1486 	/* Start CPU. */
1487 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1488 
1489 	return(0);
1490 }
1491 
1492 /*
1493  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1494  * against our list and return its name if we find a match.
1495  */
1496 static int ti_probe(dev)
1497 	device_t		dev;
1498 {
1499 	struct ti_type		*t;
1500 
1501 	t = ti_devs;
1502 
1503 	while(t->ti_name != NULL) {
1504 		if ((pci_get_vendor(dev) == t->ti_vid) &&
1505 		    (pci_get_device(dev) == t->ti_did)) {
1506 			device_set_desc(dev, t->ti_name);
1507 			return(0);
1508 		}
1509 		t++;
1510 	}
1511 
1512 	return(ENXIO);
1513 }
1514 
1515 static int ti_attach(dev)
1516 	device_t		dev;
1517 {
1518 	int			s;
1519 	u_int32_t		command;
1520 	struct ifnet		*ifp;
1521 	struct ti_softc		*sc;
1522 	int			unit, error = 0, rid;
1523 
1524 	s = splimp();
1525 
1526 	sc = device_get_softc(dev);
1527 	unit = device_get_unit(dev);
1528 	bzero(sc, sizeof(struct ti_softc));
1529 	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM;
1530 	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
1531 
1532 	/*
1533 	 * Map control/status registers.
1534 	 */
1535 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1536 	command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1537 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1538 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1539 
1540 	if (!(command & PCIM_CMD_MEMEN)) {
1541 		printf("ti%d: failed to enable memory mapping!\n", unit);
1542 		error = ENXIO;
1543 		goto fail;
1544 	}
1545 
1546 	rid = TI_PCI_LOMEM;
1547 	sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1548 	    0, ~0, 1, RF_ACTIVE);
1549 
1550 	if (sc->ti_res == NULL) {
1551 		printf ("ti%d: couldn't map memory\n", unit);
1552 		error = ENXIO;
1553 		goto fail;
1554 	}
1555 
1556 	sc->ti_btag = rman_get_bustag(sc->ti_res);
1557 	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1558 	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1559 
1560 	/* Allocate interrupt */
1561 	rid = 0;
1562 
1563 	sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1564 	    RF_SHAREABLE | RF_ACTIVE);
1565 
1566 	if (sc->ti_irq == NULL) {
1567 		printf("ti%d: couldn't map interrupt\n", unit);
1568 		error = ENXIO;
1569 		goto fail;
1570 	}
1571 
1572 	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1573 	   ti_intr, sc, &sc->ti_intrhand);
1574 
1575 	if (error) {
1576 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1577 		bus_release_resource(dev, SYS_RES_MEMORY,
1578 		    TI_PCI_LOMEM, sc->ti_res);
1579 		printf("ti%d: couldn't set up irq\n", unit);
1580 		goto fail;
1581 	}
1582 
1583 	sc->ti_unit = unit;
1584 
1585 	if (ti_chipinit(sc)) {
1586 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1587 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1588 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1589 		bus_release_resource(dev, SYS_RES_MEMORY,
1590 		    TI_PCI_LOMEM, sc->ti_res);
1591 		error = ENXIO;
1592 		goto fail;
1593 	}
1594 
1595 	/* Zero out the NIC's on-board SRAM. */
1596 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1597 
1598 	/* Init again -- zeroing memory may have clobbered some registers. */
1599 	if (ti_chipinit(sc)) {
1600 		printf("ti%d: chip initialization failed\n", sc->ti_unit);
1601 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1602 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1603 		bus_release_resource(dev, SYS_RES_MEMORY,
1604 		    TI_PCI_LOMEM, sc->ti_res);
1605 		error = ENXIO;
1606 		goto fail;
1607 	}
1608 
1609 	/*
1610 	 * Get station address from the EEPROM. Note: the manual states
1611 	 * that the MAC address is at offset 0x8c, however the data is
1612 	 * stored as two longwords (since that's how it's loaded into
1613 	 * the NIC). This means the MAC address is actually preceeded
1614 	 * by two zero bytes. We need to skip over those.
1615 	 */
1616 	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1617 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1618 		printf("ti%d: failed to read station address\n", unit);
1619 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1620 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1621 		bus_release_resource(dev, SYS_RES_MEMORY,
1622 		    TI_PCI_LOMEM, sc->ti_res);
1623 		error = ENXIO;
1624 		goto fail;
1625 	}
1626 
1627 	/* Allocate the general information block and ring buffers. */
1628 	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1629 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1630 
1631 	if (sc->ti_rdata == NULL) {
1632 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1633 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1634 		bus_release_resource(dev, SYS_RES_MEMORY,
1635 		    TI_PCI_LOMEM, sc->ti_res);
1636 		error = ENXIO;
1637 		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1638 		goto fail;
1639 	}
1640 
1641 	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1642 
1643 	/* Try to allocate memory for jumbo buffers. */
1644 	if (ti_alloc_jumbo_mem(sc)) {
1645 		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1646 		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1647 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1648 		bus_release_resource(dev, SYS_RES_MEMORY,
1649 		    TI_PCI_LOMEM, sc->ti_res);
1650 		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data),
1651 		    M_DEVBUF);
1652 		error = ENXIO;
1653 		goto fail;
1654 	}
1655 
1656 	/*
1657 	 * We really need a better way to tell a 1000baseTX card
1658 	 * from a 1000baseSX one, since in theory there could be
1659 	 * OEMed 1000baseTX cards from lame vendors who aren't
1660 	 * clever enough to change the PCI ID. For the moment
1661 	 * though, the AceNIC is the only copper card available.
1662 	 */
1663 	if (pci_get_vendor(dev) == ALT_VENDORID &&
1664 	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1665 		sc->ti_copper = 1;
1666 	/* Ok, it's not the only copper card available. */
1667 	if (pci_get_vendor(dev) == NG_VENDORID &&
1668 	    pci_get_device(dev) == NG_DEVICEID_GA620T)
1669 		sc->ti_copper = 1;
1670 
1671 	/* Set default tuneable values. */
1672 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1673 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1674 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1675 	sc->ti_rx_max_coal_bds = 64;
1676 	sc->ti_tx_max_coal_bds = 128;
1677 	sc->ti_tx_buf_ratio = 21;
1678 
1679 	/* Set up ifnet structure */
1680 	ifp = &sc->arpcom.ac_if;
1681 	ifp->if_softc = sc;
1682 	if_initname(ifp, "ti", sc->ti_unit);
1683 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1684 	ifp->if_ioctl = ti_ioctl;
1685 	ifp->if_start = ti_start;
1686 	ifp->if_watchdog = ti_watchdog;
1687 	ifp->if_init = ti_init;
1688 	ifp->if_mtu = ETHERMTU;
1689 	ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1690 	ifq_set_ready(&ifp->if_snd);
1691 
1692 	/* Set up ifmedia support. */
1693 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1694 	if (sc->ti_copper) {
1695 		/*
1696 		 * Copper cards allow manual 10/100 mode selection,
1697 		 * but not manual 1000baseTX mode selection. Why?
1698 		 * Becuase currently there's no way to specify the
1699 		 * master/slave setting through the firmware interface,
1700 		 * so Alteon decided to just bag it and handle it
1701 		 * via autonegotiation.
1702 		 */
1703 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1704 		ifmedia_add(&sc->ifmedia,
1705 		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1706 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1707 		ifmedia_add(&sc->ifmedia,
1708 		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1709 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1710 		ifmedia_add(&sc->ifmedia,
1711 		    IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1712 	} else {
1713 		/* Fiber cards don't support 10/100 modes. */
1714 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1715 		ifmedia_add(&sc->ifmedia,
1716 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1717 	}
1718 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1719 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1720 
1721 	/*
1722 	 * Call MI attach routine.
1723 	 */
1724 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1725 
1726 fail:
1727 	splx(s);
1728 
1729 	return(error);
1730 }
1731 
1732 static int ti_detach(dev)
1733 	device_t		dev;
1734 {
1735 	struct ti_softc		*sc;
1736 	struct ifnet		*ifp;
1737 	int			s;
1738 
1739 	s = splimp();
1740 
1741 	sc = device_get_softc(dev);
1742 	ifp = &sc->arpcom.ac_if;
1743 
1744 	ether_ifdetach(ifp);
1745 	ti_stop(sc);
1746 
1747 	bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1748 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1749 	bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1750 
1751 	contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1752 	contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1753 	ifmedia_removeall(&sc->ifmedia);
1754 
1755 	splx(s);
1756 
1757 	return(0);
1758 }
1759 
1760 /*
1761  * Frame reception handling. This is called if there's a frame
1762  * on the receive return list.
1763  *
1764  * Note: we have to be able to handle three possibilities here:
1765  * 1) the frame is from the mini receive ring (can only happen)
1766  *    on Tigon 2 boards)
1767  * 2) the frame is from the jumbo recieve ring
1768  * 3) the frame is from the standard receive ring
1769  */
1770 
1771 static void ti_rxeof(sc)
1772 	struct ti_softc		*sc;
1773 {
1774 	struct ifnet		*ifp;
1775 	struct ti_cmd_desc	cmd;
1776 
1777 	ifp = &sc->arpcom.ac_if;
1778 
1779 	while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1780 		struct ti_rx_desc	*cur_rx;
1781 		u_int32_t		rxidx;
1782 		struct mbuf		*m = NULL;
1783 		u_int16_t		vlan_tag = 0;
1784 		int			have_tag = 0;
1785 
1786 		cur_rx =
1787 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1788 		rxidx = cur_rx->ti_idx;
1789 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1790 
1791 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1792 			have_tag = 1;
1793 			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1794 		}
1795 
1796 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1797 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1798 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1799 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1800 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1801 				ifp->if_ierrors++;
1802 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1803 				continue;
1804 			}
1805 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1806 				ifp->if_ierrors++;
1807 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1808 				continue;
1809 			}
1810 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1811 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1812 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1813 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1814 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1815 				ifp->if_ierrors++;
1816 				ti_newbuf_mini(sc, sc->ti_mini, m);
1817 				continue;
1818 			}
1819 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1820 				ifp->if_ierrors++;
1821 				ti_newbuf_mini(sc, sc->ti_mini, m);
1822 				continue;
1823 			}
1824 		} else {
1825 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1826 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1827 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1828 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1829 				ifp->if_ierrors++;
1830 				ti_newbuf_std(sc, sc->ti_std, m);
1831 				continue;
1832 			}
1833 			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1834 				ifp->if_ierrors++;
1835 				ti_newbuf_std(sc, sc->ti_std, m);
1836 				continue;
1837 			}
1838 		}
1839 
1840 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1841 		ifp->if_ipackets++;
1842 		m->m_pkthdr.rcvif = ifp;
1843 
1844 		if (ifp->if_hwassist) {
1845 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1846 			    CSUM_DATA_VALID;
1847 			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1848 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1849 			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1850 		}
1851 
1852 		/*
1853 		 * If we received a packet with a vlan tag, pass it
1854 		 * to vlan_input() instead of ether_input().
1855 		 */
1856 		if (have_tag) {
1857 			VLAN_INPUT_TAG(m, vlan_tag);
1858 			have_tag = vlan_tag = 0;
1859 		} else {
1860 			(*ifp->if_input)(ifp, m);
1861 		}
1862 	}
1863 
1864 	/* Only necessary on the Tigon 1. */
1865 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1866 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1867 		    sc->ti_rx_saved_considx);
1868 
1869 	TI_UPDATE_STDPROD(sc, sc->ti_std);
1870 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1871 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1872 
1873 	return;
1874 }
1875 
1876 static void ti_txeof(sc)
1877 	struct ti_softc		*sc;
1878 {
1879 	struct ti_tx_desc	*cur_tx = NULL;
1880 	struct ifnet		*ifp;
1881 
1882 	ifp = &sc->arpcom.ac_if;
1883 
1884 	/*
1885 	 * Go through our tx ring and free mbufs for those
1886 	 * frames that have been sent.
1887 	 */
1888 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1889 		u_int32_t		idx = 0;
1890 
1891 		idx = sc->ti_tx_saved_considx;
1892 		if (sc->ti_hwrev == TI_HWREV_TIGON) {
1893 			if (idx > 383)
1894 				CSR_WRITE_4(sc, TI_WINBASE,
1895 				    TI_TX_RING_BASE + 6144);
1896 			else if (idx > 255)
1897 				CSR_WRITE_4(sc, TI_WINBASE,
1898 				    TI_TX_RING_BASE + 4096);
1899 			else if (idx > 127)
1900 				CSR_WRITE_4(sc, TI_WINBASE,
1901 				    TI_TX_RING_BASE + 2048);
1902 			else
1903 				CSR_WRITE_4(sc, TI_WINBASE,
1904 				    TI_TX_RING_BASE);
1905 			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1906 		} else
1907 			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1908 		if (cur_tx->ti_flags & TI_BDFLAG_END)
1909 			ifp->if_opackets++;
1910 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1911 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1912 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
1913 		}
1914 		sc->ti_txcnt--;
1915 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1916 		ifp->if_timer = 0;
1917 	}
1918 
1919 	if (cur_tx != NULL)
1920 		ifp->if_flags &= ~IFF_OACTIVE;
1921 
1922 	return;
1923 }
1924 
1925 static void ti_intr(xsc)
1926 	void			*xsc;
1927 {
1928 	struct ti_softc		*sc;
1929 	struct ifnet		*ifp;
1930 
1931 	sc = xsc;
1932 	ifp = &sc->arpcom.ac_if;
1933 
1934 #ifdef notdef
1935 	/* Avoid this for now -- checking this register is expensive. */
1936 	/* Make sure this is really our interrupt. */
1937 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1938 		return;
1939 #endif
1940 
1941 	/* Ack interrupt and stop others from occuring. */
1942 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1943 
1944 	if (ifp->if_flags & IFF_RUNNING) {
1945 		/* Check RX return ring producer/consumer */
1946 		ti_rxeof(sc);
1947 
1948 		/* Check TX ring producer/consumer */
1949 		ti_txeof(sc);
1950 	}
1951 
1952 	ti_handle_events(sc);
1953 
1954 	/* Re-enable interrupts. */
1955 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1956 
1957 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1958 		ti_start(ifp);
1959 
1960 	return;
1961 }
1962 
1963 static void ti_stats_update(sc)
1964 	struct ti_softc		*sc;
1965 {
1966 	struct ifnet		*ifp;
1967 
1968 	ifp = &sc->arpcom.ac_if;
1969 
1970 	ifp->if_collisions +=
1971 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1972 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1973 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1974 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1975 	   ifp->if_collisions;
1976 
1977 	return;
1978 }
1979 
1980 /*
1981  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
1982  * pointers to descriptors.
1983  */
1984 static int ti_encap(sc, m_head, txidx)
1985 	struct ti_softc		*sc;
1986 	struct mbuf		*m_head;
1987 	u_int32_t		*txidx;
1988 {
1989 	struct ti_tx_desc	*f = NULL;
1990 	struct mbuf		*m;
1991 	u_int32_t		frag, cur, cnt = 0;
1992 	u_int16_t		csum_flags = 0;
1993 	struct ifvlan		*ifv = NULL;
1994 
1995 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1996 	    m_head->m_pkthdr.rcvif != NULL &&
1997 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1998 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1999 
2000 	m = m_head;
2001 	cur = frag = *txidx;
2002 
2003 	if (m_head->m_pkthdr.csum_flags) {
2004 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2005 			csum_flags |= TI_BDFLAG_IP_CKSUM;
2006 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2007 			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2008 		if (m_head->m_flags & M_LASTFRAG)
2009 			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2010 		else if (m_head->m_flags & M_FRAG)
2011 			csum_flags |= TI_BDFLAG_IP_FRAG;
2012 	}
2013 	/*
2014  	 * Start packing the mbufs in this chain into
2015 	 * the fragment pointers. Stop when we run out
2016  	 * of fragments or hit the end of the mbuf chain.
2017 	 */
2018 	for (m = m_head; m != NULL; m = m->m_next) {
2019 		if (m->m_len != 0) {
2020 			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2021 				if (frag > 383)
2022 					CSR_WRITE_4(sc, TI_WINBASE,
2023 					    TI_TX_RING_BASE + 6144);
2024 				else if (frag > 255)
2025 					CSR_WRITE_4(sc, TI_WINBASE,
2026 					    TI_TX_RING_BASE + 4096);
2027 				else if (frag > 127)
2028 					CSR_WRITE_4(sc, TI_WINBASE,
2029 					    TI_TX_RING_BASE + 2048);
2030 				else
2031 					CSR_WRITE_4(sc, TI_WINBASE,
2032 					    TI_TX_RING_BASE);
2033 				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2034 			} else
2035 				f = &sc->ti_rdata->ti_tx_ring[frag];
2036 			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2037 				break;
2038 			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2039 			f->ti_len = m->m_len;
2040 			f->ti_flags = csum_flags;
2041 
2042 			if (ifv != NULL) {
2043 				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2044 				f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
2045 			} else {
2046 				f->ti_vlan_tag = 0;
2047 			}
2048 
2049 			/*
2050 			 * Sanity check: avoid coming within 16 descriptors
2051 			 * of the end of the ring.
2052 			 */
2053 			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2054 				return(ENOBUFS);
2055 			cur = frag;
2056 			TI_INC(frag, TI_TX_RING_CNT);
2057 			cnt++;
2058 		}
2059 	}
2060 
2061 	if (m != NULL)
2062 		return(ENOBUFS);
2063 
2064 	if (frag == sc->ti_tx_saved_considx)
2065 		return(ENOBUFS);
2066 
2067 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2068 		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2069 		    TI_BDFLAG_END;
2070 	else
2071 		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2072 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2073 	sc->ti_txcnt += cnt;
2074 
2075 	*txidx = frag;
2076 
2077 	return(0);
2078 }
2079 
2080 /*
2081  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2082  * to the mbuf data regions directly in the transmit descriptors.
2083  */
2084 static void ti_start(ifp)
2085 	struct ifnet		*ifp;
2086 {
2087 	struct ti_softc		*sc;
2088 	struct mbuf		*m_head = NULL;
2089 	u_int32_t		prodidx = 0;
2090 
2091 	sc = ifp->if_softc;
2092 
2093 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2094 
2095 	while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2096 		m_head = ifq_poll(&ifp->if_snd);
2097 		if (m_head == NULL)
2098 			break;
2099 
2100 		/*
2101 		 * XXX
2102 		 * safety overkill.  If this is a fragmented packet chain
2103 		 * with delayed TCP/UDP checksums, then only encapsulate
2104 		 * it if we have enough descriptors to handle the entire
2105 		 * chain at once.
2106 		 * (paranoia -- may not actually be needed)
2107 		 */
2108 		if (m_head->m_flags & M_FIRSTFRAG &&
2109 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2110 			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2111 			    m_head->m_pkthdr.csum_data + 16) {
2112 				ifp->if_flags |= IFF_OACTIVE;
2113 				break;
2114 			}
2115 		}
2116 
2117 		/*
2118 		 * Pack the data into the transmit ring. If we
2119 		 * don't have room, set the OACTIVE flag and wait
2120 		 * for the NIC to drain the ring.
2121 		 */
2122 		if (ti_encap(sc, m_head, &prodidx)) {
2123 			ifp->if_flags |= IFF_OACTIVE;
2124 			break;
2125 		}
2126 
2127 		m_head = ifq_dequeue(&ifp->if_snd);
2128 		BPF_MTAP(ifp, m_head);
2129 	}
2130 
2131 	/* Transmit */
2132 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2133 
2134 	/*
2135 	 * Set a timeout in case the chip goes out to lunch.
2136 	 */
2137 	ifp->if_timer = 5;
2138 
2139 	return;
2140 }
2141 
2142 static void ti_init(xsc)
2143 	void			*xsc;
2144 {
2145 	struct ti_softc		*sc = xsc;
2146         int			s;
2147 
2148 	s = splimp();
2149 
2150 	/* Cancel pending I/O and flush buffers. */
2151 	ti_stop(sc);
2152 
2153 	/* Init the gen info block, ring control blocks and firmware. */
2154 	if (ti_gibinit(sc)) {
2155 		printf("ti%d: initialization failure\n", sc->ti_unit);
2156 		splx(s);
2157 		return;
2158 	}
2159 
2160 	splx(s);
2161 
2162 	return;
2163 }
2164 
2165 static void ti_init2(sc)
2166 	struct ti_softc		*sc;
2167 {
2168 	struct ti_cmd_desc	cmd;
2169 	struct ifnet		*ifp;
2170 	u_int16_t		*m;
2171 	struct ifmedia		*ifm;
2172 	int			tmp;
2173 
2174 	ifp = &sc->arpcom.ac_if;
2175 
2176 	/* Specify MTU and interface index. */
2177 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
2178 	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2179 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2180 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2181 
2182 	/* Load our MAC address. */
2183 	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2184 	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2185 	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2186 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2187 
2188 	/* Enable or disable promiscuous mode as needed. */
2189 	if (ifp->if_flags & IFF_PROMISC) {
2190 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2191 	} else {
2192 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2193 	}
2194 
2195 	/* Program multicast filter. */
2196 	ti_setmulti(sc);
2197 
2198 	/*
2199 	 * If this is a Tigon 1, we should tell the
2200 	 * firmware to use software packet filtering.
2201 	 */
2202 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2203 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2204 	}
2205 
2206 	/* Init RX ring. */
2207 	ti_init_rx_ring_std(sc);
2208 
2209 	/* Init jumbo RX ring. */
2210 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2211 		ti_init_rx_ring_jumbo(sc);
2212 
2213 	/*
2214 	 * If this is a Tigon 2, we can also configure the
2215 	 * mini ring.
2216 	 */
2217 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2218 		ti_init_rx_ring_mini(sc);
2219 
2220 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2221 	sc->ti_rx_saved_considx = 0;
2222 
2223 	/* Init TX ring. */
2224 	ti_init_tx_ring(sc);
2225 
2226 	/* Tell firmware we're alive. */
2227 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2228 
2229 	/* Enable host interrupts. */
2230 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2231 
2232 	ifp->if_flags |= IFF_RUNNING;
2233 	ifp->if_flags &= ~IFF_OACTIVE;
2234 
2235 	/*
2236 	 * Make sure to set media properly. We have to do this
2237 	 * here since we have to issue commands in order to set
2238 	 * the link negotiation and we can't issue commands until
2239 	 * the firmware is running.
2240 	 */
2241 	ifm = &sc->ifmedia;
2242 	tmp = ifm->ifm_media;
2243 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2244 	ti_ifmedia_upd(ifp);
2245 	ifm->ifm_media = tmp;
2246 
2247 	return;
2248 }
2249 
2250 /*
2251  * Set media options.
2252  */
2253 static int ti_ifmedia_upd(ifp)
2254 	struct ifnet		*ifp;
2255 {
2256 	struct ti_softc		*sc;
2257 	struct ifmedia		*ifm;
2258 	struct ti_cmd_desc	cmd;
2259 
2260 	sc = ifp->if_softc;
2261 	ifm = &sc->ifmedia;
2262 
2263 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2264 		return(EINVAL);
2265 
2266 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
2267 	case IFM_AUTO:
2268 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2269 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2270 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2271 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2272 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2273 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2274 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2275 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2276 		break;
2277 	case IFM_1000_SX:
2278 	case IFM_1000_T:
2279 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2280 		    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2281 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2282 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2283 			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2284 		}
2285 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2286 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2287 		break;
2288 	case IFM_100_FX:
2289 	case IFM_10_FL:
2290 	case IFM_100_TX:
2291 	case IFM_10_T:
2292 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2293 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2294 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2295 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2296 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2297 		} else {
2298 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2299 		}
2300 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2301 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2302 		} else {
2303 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2304 		}
2305 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2306 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2307 		break;
2308 	}
2309 
2310 	return(0);
2311 }
2312 
2313 /*
2314  * Report current media status.
2315  */
2316 static void ti_ifmedia_sts(ifp, ifmr)
2317 	struct ifnet		*ifp;
2318 	struct ifmediareq	*ifmr;
2319 {
2320 	struct ti_softc		*sc;
2321 	u_int32_t		media = 0;
2322 
2323 	sc = ifp->if_softc;
2324 
2325 	ifmr->ifm_status = IFM_AVALID;
2326 	ifmr->ifm_active = IFM_ETHER;
2327 
2328 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2329 		return;
2330 
2331 	ifmr->ifm_status |= IFM_ACTIVE;
2332 
2333 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2334 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2335 		if (sc->ti_copper)
2336 			ifmr->ifm_active |= IFM_1000_T;
2337 		else
2338 			ifmr->ifm_active |= IFM_1000_SX;
2339 		if (media & TI_GLNK_FULL_DUPLEX)
2340 			ifmr->ifm_active |= IFM_FDX;
2341 		else
2342 			ifmr->ifm_active |= IFM_HDX;
2343 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2344 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2345 		if (sc->ti_copper) {
2346 			if (media & TI_LNK_100MB)
2347 				ifmr->ifm_active |= IFM_100_TX;
2348 			if (media & TI_LNK_10MB)
2349 				ifmr->ifm_active |= IFM_10_T;
2350 		} else {
2351 			if (media & TI_LNK_100MB)
2352 				ifmr->ifm_active |= IFM_100_FX;
2353 			if (media & TI_LNK_10MB)
2354 				ifmr->ifm_active |= IFM_10_FL;
2355 		}
2356 		if (media & TI_LNK_FULL_DUPLEX)
2357 			ifmr->ifm_active |= IFM_FDX;
2358 		if (media & TI_LNK_HALF_DUPLEX)
2359 			ifmr->ifm_active |= IFM_HDX;
2360 	}
2361 
2362 	return;
2363 }
2364 
2365 static int ti_ioctl(ifp, command, data, cr)
2366 	struct ifnet		*ifp;
2367 	u_long			command;
2368 	caddr_t			data;
2369 	struct ucred		*cr;
2370 {
2371 	struct ti_softc		*sc = ifp->if_softc;
2372 	struct ifreq		*ifr = (struct ifreq *) data;
2373 	int			s, mask, error = 0;
2374 	struct ti_cmd_desc	cmd;
2375 
2376 	s = splimp();
2377 
2378 	switch(command) {
2379 	case SIOCSIFADDR:
2380 	case SIOCGIFADDR:
2381 		error = ether_ioctl(ifp, command, data);
2382 		break;
2383 	case SIOCSIFMTU:
2384 		if (ifr->ifr_mtu > TI_JUMBO_MTU)
2385 			error = EINVAL;
2386 		else {
2387 			ifp->if_mtu = ifr->ifr_mtu;
2388 			ti_init(sc);
2389 		}
2390 		break;
2391 	case SIOCSIFFLAGS:
2392 		if (ifp->if_flags & IFF_UP) {
2393 			/*
2394 			 * If only the state of the PROMISC flag changed,
2395 			 * then just use the 'set promisc mode' command
2396 			 * instead of reinitializing the entire NIC. Doing
2397 			 * a full re-init means reloading the firmware and
2398 			 * waiting for it to start up, which may take a
2399 			 * second or two.
2400 			 */
2401 			if (ifp->if_flags & IFF_RUNNING &&
2402 			    ifp->if_flags & IFF_PROMISC &&
2403 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2404 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2405 				    TI_CMD_CODE_PROMISC_ENB, 0);
2406 			} else if (ifp->if_flags & IFF_RUNNING &&
2407 			    !(ifp->if_flags & IFF_PROMISC) &&
2408 			    sc->ti_if_flags & IFF_PROMISC) {
2409 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2410 				    TI_CMD_CODE_PROMISC_DIS, 0);
2411 			} else
2412 				ti_init(sc);
2413 		} else {
2414 			if (ifp->if_flags & IFF_RUNNING) {
2415 				ti_stop(sc);
2416 			}
2417 		}
2418 		sc->ti_if_flags = ifp->if_flags;
2419 		error = 0;
2420 		break;
2421 	case SIOCADDMULTI:
2422 	case SIOCDELMULTI:
2423 		if (ifp->if_flags & IFF_RUNNING) {
2424 			ti_setmulti(sc);
2425 			error = 0;
2426 		}
2427 		break;
2428 	case SIOCSIFMEDIA:
2429 	case SIOCGIFMEDIA:
2430 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2431 		break;
2432 	case SIOCSIFCAP:
2433 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2434 		if (mask & IFCAP_HWCSUM) {
2435 			if (IFCAP_HWCSUM & ifp->if_capenable)
2436 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2437                         else
2438                                 ifp->if_capenable |= IFCAP_HWCSUM;
2439 			if (ifp->if_flags & IFF_RUNNING)
2440 				ti_init(sc);
2441                 }
2442 		error = 0;
2443 		break;
2444 	default:
2445 		error = EINVAL;
2446 		break;
2447 	}
2448 
2449 	(void)splx(s);
2450 
2451 	return(error);
2452 }
2453 
2454 static void ti_watchdog(ifp)
2455 	struct ifnet		*ifp;
2456 {
2457 	struct ti_softc		*sc;
2458 
2459 	sc = ifp->if_softc;
2460 
2461 	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2462 	ti_stop(sc);
2463 	ti_init(sc);
2464 
2465 	ifp->if_oerrors++;
2466 
2467 	return;
2468 }
2469 
2470 /*
2471  * Stop the adapter and free any mbufs allocated to the
2472  * RX and TX lists.
2473  */
2474 static void ti_stop(sc)
2475 	struct ti_softc		*sc;
2476 {
2477 	struct ifnet		*ifp;
2478 	struct ti_cmd_desc	cmd;
2479 
2480 	ifp = &sc->arpcom.ac_if;
2481 
2482 	/* Disable host interrupts. */
2483 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2484 	/*
2485 	 * Tell firmware we're shutting down.
2486 	 */
2487 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2488 
2489 	/* Halt and reinitialize. */
2490 	ti_chipinit(sc);
2491 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2492 	ti_chipinit(sc);
2493 
2494 	/* Free the RX lists. */
2495 	ti_free_rx_ring_std(sc);
2496 
2497 	/* Free jumbo RX list. */
2498 	ti_free_rx_ring_jumbo(sc);
2499 
2500 	/* Free mini RX list. */
2501 	ti_free_rx_ring_mini(sc);
2502 
2503 	/* Free TX buffers. */
2504 	ti_free_tx_ring(sc);
2505 
2506 	sc->ti_ev_prodidx.ti_idx = 0;
2507 	sc->ti_return_prodidx.ti_idx = 0;
2508 	sc->ti_tx_considx.ti_idx = 0;
2509 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2510 
2511 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2512 
2513 	return;
2514 }
2515 
2516 /*
2517  * Stop all chip I/O so that the kernel's probe routines don't
2518  * get confused by errant DMAs when rebooting.
2519  */
2520 static void ti_shutdown(dev)
2521 	device_t		dev;
2522 {
2523 	struct ti_softc		*sc;
2524 
2525 	sc = device_get_softc(dev);
2526 
2527 	ti_chipinit(sc);
2528 
2529 	return;
2530 }
2531