xref: /dflybsd-src/sys/dev/netif/ste/if_ste.c (revision b5b0912b1891e95ccc48cad83f09239ccb7ffc16)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.20 2005/06/06 23:12:07 okumoto Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/thread2.h>
44 
45 #include <net/if.h>
46 #include <net/ifq_var.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/vlan/if_vlan_var.h>
52 
53 #include <net/bpf.h>
54 
55 #include <vm/vm.h>              /* for vtophys */
56 #include <vm/pmap.h>            /* for vtophys */
57 #include <machine/clock.h>      /* for DELAY */
58 #include <machine/bus_memio.h>
59 #include <machine/bus_pio.h>
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64 
65 #include "../mii_layer/mii.h"
66 #include "../mii_layer/miivar.h"
67 
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
70 
71 /* "controller miibus0" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 #define STE_USEIOSPACE
75 
76 #include "if_stereg.h"
77 
78 /*
79  * Various supported device vendors/types and their names.
80  */
81 static struct ste_type ste_devs[] = {
82 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
83 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
84 	{ 0, 0, NULL }
85 };
86 
87 static int ste_probe		(device_t);
88 static int ste_attach		(device_t);
89 static int ste_detach		(device_t);
90 static void ste_init		(void *);
91 static void ste_intr		(void *);
92 static void ste_rxeof		(struct ste_softc *);
93 static void ste_txeoc		(struct ste_softc *);
94 static void ste_txeof		(struct ste_softc *);
95 static void ste_stats_update	(void *);
96 static void ste_stop		(struct ste_softc *);
97 static void ste_reset		(struct ste_softc *);
98 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
99 					struct ucred *);
100 static int ste_encap		(struct ste_softc *, struct ste_chain *,
101 					struct mbuf *);
102 static void ste_start		(struct ifnet *);
103 static void ste_watchdog	(struct ifnet *);
104 static void ste_shutdown	(device_t);
105 static int ste_newbuf		(struct ste_softc *,
106 					struct ste_chain_onefrag *,
107 					struct mbuf *);
108 static int ste_ifmedia_upd	(struct ifnet *);
109 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
110 
111 static void ste_mii_sync	(struct ste_softc *);
112 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
113 static int ste_mii_readreg	(struct ste_softc *,
114 					struct ste_mii_frame *);
115 static int ste_mii_writereg	(struct ste_softc *,
116 					struct ste_mii_frame *);
117 static int ste_miibus_readreg	(device_t, int, int);
118 static int ste_miibus_writereg	(device_t, int, int, int);
119 static void ste_miibus_statchg	(device_t);
120 
121 static int ste_eeprom_wait	(struct ste_softc *);
122 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
123 							int, int);
124 static void ste_wait		(struct ste_softc *);
125 static u_int8_t ste_calchash	(caddr_t);
126 static void ste_setmulti	(struct ste_softc *);
127 static int ste_init_rx_list	(struct ste_softc *);
128 static void ste_init_tx_list	(struct ste_softc *);
129 
130 #ifdef STE_USEIOSPACE
131 #define STE_RES			SYS_RES_IOPORT
132 #define STE_RID			STE_PCI_LOIO
133 #else
134 #define STE_RES			SYS_RES_MEMORY
135 #define STE_RID			STE_PCI_LOMEM
136 #endif
137 
138 static device_method_t ste_methods[] = {
139 	/* Device interface */
140 	DEVMETHOD(device_probe,		ste_probe),
141 	DEVMETHOD(device_attach,	ste_attach),
142 	DEVMETHOD(device_detach,	ste_detach),
143 	DEVMETHOD(device_shutdown,	ste_shutdown),
144 
145 	/* bus interface */
146 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
147 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
148 
149 	/* MII interface */
150 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
151 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
152 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
153 
154 	{ 0, 0 }
155 };
156 
157 static driver_t ste_driver = {
158 	"ste",
159 	ste_methods,
160 	sizeof(struct ste_softc)
161 };
162 
163 static devclass_t ste_devclass;
164 
165 DECLARE_DUMMY_MODULE(if_ste);
166 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
167 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
168 
169 #define STE_SETBIT4(sc, reg, x)				\
170 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
171 
172 #define STE_CLRBIT4(sc, reg, x)				\
173 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
174 
175 #define STE_SETBIT2(sc, reg, x)				\
176 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
177 
178 #define STE_CLRBIT2(sc, reg, x)				\
179 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
180 
181 #define STE_SETBIT1(sc, reg, x)				\
182 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
183 
184 #define STE_CLRBIT1(sc, reg, x)				\
185 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
186 
187 
188 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
189 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
190 
191 /*
192  * Sync the PHYs by setting data bit and strobing the clock 32 times.
193  */
194 static void ste_mii_sync(sc)
195 	struct ste_softc		*sc;
196 {
197 	int		i;
198 
199 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
200 
201 	for (i = 0; i < 32; i++) {
202 		MII_SET(STE_PHYCTL_MCLK);
203 		DELAY(1);
204 		MII_CLR(STE_PHYCTL_MCLK);
205 		DELAY(1);
206 	}
207 
208 	return;
209 }
210 
211 /*
212  * Clock a series of bits through the MII.
213  */
214 static void ste_mii_send(sc, bits, cnt)
215 	struct ste_softc		*sc;
216 	u_int32_t		bits;
217 	int			cnt;
218 {
219 	int			i;
220 
221 	MII_CLR(STE_PHYCTL_MCLK);
222 
223 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
224                 if (bits & i) {
225 			MII_SET(STE_PHYCTL_MDATA);
226                 } else {
227 			MII_CLR(STE_PHYCTL_MDATA);
228                 }
229 		DELAY(1);
230 		MII_CLR(STE_PHYCTL_MCLK);
231 		DELAY(1);
232 		MII_SET(STE_PHYCTL_MCLK);
233 	}
234 }
235 
236 /*
237  * Read an PHY register through the MII.
238  */
239 static int ste_mii_readreg(sc, frame)
240 	struct ste_softc		*sc;
241 	struct ste_mii_frame	*frame;
242 
243 {
244 	int			i, ack;
245 
246 	crit_enter();
247 
248 	/*
249 	 * Set up frame for RX.
250 	 */
251 	frame->mii_stdelim = STE_MII_STARTDELIM;
252 	frame->mii_opcode = STE_MII_READOP;
253 	frame->mii_turnaround = 0;
254 	frame->mii_data = 0;
255 
256 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
257 	/*
258  	 * Turn on data xmit.
259 	 */
260 	MII_SET(STE_PHYCTL_MDIR);
261 
262 	ste_mii_sync(sc);
263 
264 	/*
265 	 * Send command/address info.
266 	 */
267 	ste_mii_send(sc, frame->mii_stdelim, 2);
268 	ste_mii_send(sc, frame->mii_opcode, 2);
269 	ste_mii_send(sc, frame->mii_phyaddr, 5);
270 	ste_mii_send(sc, frame->mii_regaddr, 5);
271 
272 	/* Turn off xmit. */
273 	MII_CLR(STE_PHYCTL_MDIR);
274 
275 	/* Idle bit */
276 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
277 	DELAY(1);
278 	MII_SET(STE_PHYCTL_MCLK);
279 	DELAY(1);
280 
281 	/* Check for ack */
282 	MII_CLR(STE_PHYCTL_MCLK);
283 	DELAY(1);
284 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
285 	MII_SET(STE_PHYCTL_MCLK);
286 	DELAY(1);
287 
288 	/*
289 	 * Now try reading data bits. If the ack failed, we still
290 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
291 	 */
292 	if (ack) {
293 		for(i = 0; i < 16; i++) {
294 			MII_CLR(STE_PHYCTL_MCLK);
295 			DELAY(1);
296 			MII_SET(STE_PHYCTL_MCLK);
297 			DELAY(1);
298 		}
299 		goto fail;
300 	}
301 
302 	for (i = 0x8000; i; i >>= 1) {
303 		MII_CLR(STE_PHYCTL_MCLK);
304 		DELAY(1);
305 		if (!ack) {
306 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
307 				frame->mii_data |= i;
308 			DELAY(1);
309 		}
310 		MII_SET(STE_PHYCTL_MCLK);
311 		DELAY(1);
312 	}
313 
314 fail:
315 
316 	MII_CLR(STE_PHYCTL_MCLK);
317 	DELAY(1);
318 	MII_SET(STE_PHYCTL_MCLK);
319 	DELAY(1);
320 
321 	crit_exit();
322 
323 	if (ack)
324 		return(1);
325 	return(0);
326 }
327 
328 /*
329  * Write to a PHY register through the MII.
330  */
331 static int ste_mii_writereg(sc, frame)
332 	struct ste_softc		*sc;
333 	struct ste_mii_frame	*frame;
334 
335 {
336 
337 	crit_enter();
338 	/*
339 	 * Set up frame for TX.
340 	 */
341 
342 	frame->mii_stdelim = STE_MII_STARTDELIM;
343 	frame->mii_opcode = STE_MII_WRITEOP;
344 	frame->mii_turnaround = STE_MII_TURNAROUND;
345 
346 	/*
347  	 * Turn on data output.
348 	 */
349 	MII_SET(STE_PHYCTL_MDIR);
350 
351 	ste_mii_sync(sc);
352 
353 	ste_mii_send(sc, frame->mii_stdelim, 2);
354 	ste_mii_send(sc, frame->mii_opcode, 2);
355 	ste_mii_send(sc, frame->mii_phyaddr, 5);
356 	ste_mii_send(sc, frame->mii_regaddr, 5);
357 	ste_mii_send(sc, frame->mii_turnaround, 2);
358 	ste_mii_send(sc, frame->mii_data, 16);
359 
360 	/* Idle bit. */
361 	MII_SET(STE_PHYCTL_MCLK);
362 	DELAY(1);
363 	MII_CLR(STE_PHYCTL_MCLK);
364 	DELAY(1);
365 
366 	/*
367 	 * Turn off xmit.
368 	 */
369 	MII_CLR(STE_PHYCTL_MDIR);
370 
371 	crit_exit();
372 
373 	return(0);
374 }
375 
376 static int ste_miibus_readreg(dev, phy, reg)
377 	device_t		dev;
378 	int			phy, reg;
379 {
380 	struct ste_softc	*sc;
381 	struct ste_mii_frame	frame;
382 
383 	sc = device_get_softc(dev);
384 
385 	if ( sc->ste_one_phy && phy != 0 )
386 		return (0);
387 
388 	bzero((char *)&frame, sizeof(frame));
389 
390 	frame.mii_phyaddr = phy;
391 	frame.mii_regaddr = reg;
392 	ste_mii_readreg(sc, &frame);
393 
394 	return(frame.mii_data);
395 }
396 
397 static int ste_miibus_writereg(dev, phy, reg, data)
398 	device_t		dev;
399 	int			phy, reg, data;
400 {
401 	struct ste_softc	*sc;
402 	struct ste_mii_frame	frame;
403 
404 	sc = device_get_softc(dev);
405 	bzero((char *)&frame, sizeof(frame));
406 
407 	frame.mii_phyaddr = phy;
408 	frame.mii_regaddr = reg;
409 	frame.mii_data = data;
410 
411 	ste_mii_writereg(sc, &frame);
412 
413 	return(0);
414 }
415 
416 static void ste_miibus_statchg(dev)
417 	device_t		dev;
418 {
419 	struct ste_softc	*sc;
420 	struct mii_data		*mii;
421 	int			i;
422 
423 	sc = device_get_softc(dev);
424 	mii = device_get_softc(sc->ste_miibus);
425 
426 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
427 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
428 	} else {
429 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
430 	}
431 
432 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
433 		    STE_ASICCTL_TX_RESET);
434 	for (i = 0; i < STE_TIMEOUT; i++) {
435 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
436 			break;
437 	}
438 	if (i == STE_TIMEOUT)
439 		printf("ste%d: rx reset never completed\n", sc->ste_unit);
440 
441 	return;
442 }
443 
444 static int ste_ifmedia_upd(ifp)
445 	struct ifnet		*ifp;
446 {
447 	struct ste_softc	*sc;
448 	struct mii_data		*mii;
449 
450 	sc = ifp->if_softc;
451 	mii = device_get_softc(sc->ste_miibus);
452 	sc->ste_link = 0;
453 	if (mii->mii_instance) {
454 		struct mii_softc	*miisc;
455 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
456 		    miisc = LIST_NEXT(miisc, mii_list))
457 			mii_phy_reset(miisc);
458 	}
459 	mii_mediachg(mii);
460 
461 	return(0);
462 }
463 
464 static void ste_ifmedia_sts(ifp, ifmr)
465 	struct ifnet		*ifp;
466 	struct ifmediareq	*ifmr;
467 {
468 	struct ste_softc	*sc;
469 	struct mii_data		*mii;
470 
471 	sc = ifp->if_softc;
472 	mii = device_get_softc(sc->ste_miibus);
473 
474 	mii_pollstat(mii);
475 	ifmr->ifm_active = mii->mii_media_active;
476 	ifmr->ifm_status = mii->mii_media_status;
477 
478 	return;
479 }
480 
481 static void ste_wait(sc)
482 	struct ste_softc		*sc;
483 {
484 	int		i;
485 
486 	for (i = 0; i < STE_TIMEOUT; i++) {
487 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
488 			break;
489 	}
490 
491 	if (i == STE_TIMEOUT)
492 		printf("ste%d: command never completed!\n", sc->ste_unit);
493 
494 	return;
495 }
496 
497 /*
498  * The EEPROM is slow: give it time to come ready after issuing
499  * it a command.
500  */
501 static int ste_eeprom_wait(sc)
502 	struct ste_softc		*sc;
503 {
504 	int			i;
505 
506 	DELAY(1000);
507 
508 	for (i = 0; i < 100; i++) {
509 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
510 			DELAY(1000);
511 		else
512 			break;
513 	}
514 
515 	if (i == 100) {
516 		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
517 		return(1);
518 	}
519 
520 	return(0);
521 }
522 
523 /*
524  * Read a sequence of words from the EEPROM. Note that ethernet address
525  * data is stored in the EEPROM in network byte order.
526  */
527 static int ste_read_eeprom(sc, dest, off, cnt, swap)
528 	struct ste_softc		*sc;
529 	caddr_t			dest;
530 	int			off;
531 	int			cnt;
532 	int			swap;
533 {
534 	int			err = 0, i;
535 	u_int16_t		word = 0, *ptr;
536 
537 	if (ste_eeprom_wait(sc))
538 		return(1);
539 
540 	for (i = 0; i < cnt; i++) {
541 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
542 		err = ste_eeprom_wait(sc);
543 		if (err)
544 			break;
545 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
546 		ptr = (u_int16_t *)(dest + (i * 2));
547 		if (swap)
548 			*ptr = ntohs(word);
549 		else
550 			*ptr = word;
551 	}
552 
553 	return(err ? 1 : 0);
554 }
555 
556 static u_int8_t ste_calchash(addr)
557 	caddr_t			addr;
558 {
559 
560 	u_int32_t		crc, carry;
561 	int			i, j;
562 	u_int8_t		c;
563 
564 	/* Compute CRC for the address value. */
565 	crc = 0xFFFFFFFF; /* initial value */
566 
567 	for (i = 0; i < 6; i++) {
568 		c = *(addr + i);
569 		for (j = 0; j < 8; j++) {
570 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
571 			crc <<= 1;
572 			c >>= 1;
573 			if (carry)
574 				crc = (crc ^ 0x04c11db6) | carry;
575 		}
576 	}
577 
578 	/* return the filter bit position */
579 	return(crc & 0x0000003F);
580 }
581 
582 static void ste_setmulti(sc)
583 	struct ste_softc	*sc;
584 {
585 	struct ifnet		*ifp;
586 	int			h = 0;
587 	u_int32_t		hashes[2] = { 0, 0 };
588 	struct ifmultiaddr	*ifma;
589 
590 	ifp = &sc->arpcom.ac_if;
591 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
592 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
593 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
594 		return;
595 	}
596 
597 	/* first, zot all the existing hash bits */
598 	CSR_WRITE_2(sc, STE_MAR0, 0);
599 	CSR_WRITE_2(sc, STE_MAR1, 0);
600 	CSR_WRITE_2(sc, STE_MAR2, 0);
601 	CSR_WRITE_2(sc, STE_MAR3, 0);
602 
603 	/* now program new ones */
604 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
605 	    ifma = ifma->ifma_link.le_next) {
606 		if (ifma->ifma_addr->sa_family != AF_LINK)
607 			continue;
608 		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
609 		if (h < 32)
610 			hashes[0] |= (1 << h);
611 		else
612 			hashes[1] |= (1 << (h - 32));
613 	}
614 
615 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
616 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
617 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
618 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
619 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
620 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
621 
622 	return;
623 }
624 
625 static void ste_intr(xsc)
626 	void			*xsc;
627 {
628 	struct ste_softc	*sc;
629 	struct ifnet		*ifp;
630 	u_int16_t		status;
631 
632 	sc = xsc;
633 	ifp = &sc->arpcom.ac_if;
634 
635 	/* See if this is really our interrupt. */
636 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
637 		return;
638 
639 	for (;;) {
640 		status = CSR_READ_2(sc, STE_ISR_ACK);
641 
642 		if (!(status & STE_INTRS))
643 			break;
644 
645 		if (status & STE_ISR_RX_DMADONE)
646 			ste_rxeof(sc);
647 
648 		if (status & STE_ISR_TX_DMADONE)
649 			ste_txeof(sc);
650 
651 		if (status & STE_ISR_TX_DONE)
652 			ste_txeoc(sc);
653 
654 		if (status & STE_ISR_STATS_OFLOW) {
655 			callout_stop(&sc->ste_stat_timer);
656 			ste_stats_update(sc);
657 		}
658 
659 		if (status & STE_ISR_LINKEVENT)
660 			mii_pollstat(device_get_softc(sc->ste_miibus));
661 
662 		if (status & STE_ISR_HOSTERR) {
663 			ste_reset(sc);
664 			ste_init(sc);
665 		}
666 	}
667 
668 	/* Re-enable interrupts */
669 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
670 
671 	if (!ifq_is_empty(&ifp->if_snd))
672 		ste_start(ifp);
673 
674 	return;
675 }
676 
677 /*
678  * A frame has been uploaded: pass the resulting mbuf chain up to
679  * the higher level protocols.
680  */
681 static void ste_rxeof(sc)
682 	struct ste_softc		*sc;
683 {
684         struct mbuf		*m;
685         struct ifnet		*ifp;
686 	struct ste_chain_onefrag	*cur_rx;
687 	int			total_len = 0, count=0;
688 	u_int32_t		rxstat;
689 
690 	ifp = &sc->arpcom.ac_if;
691 
692 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
693 	      & STE_RXSTAT_DMADONE) {
694 		if ((STE_RX_LIST_CNT - count) < 3) {
695 			break;
696 		}
697 
698 		cur_rx = sc->ste_cdata.ste_rx_head;
699 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
700 
701 		/*
702 		 * If an error occurs, update stats, clear the
703 		 * status word and leave the mbuf cluster in place:
704 		 * it should simply get re-used next time this descriptor
705 	 	 * comes up in the ring.
706 		 */
707 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
708 			ifp->if_ierrors++;
709 			cur_rx->ste_ptr->ste_status = 0;
710 			continue;
711 		}
712 
713 		/*
714 		 * If there error bit was not set, the upload complete
715 		 * bit should be set which means we have a valid packet.
716 		 * If not, something truly strange has happened.
717 		 */
718 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
719 			printf("ste%d: bad receive status -- packet dropped",
720 							sc->ste_unit);
721 			ifp->if_ierrors++;
722 			cur_rx->ste_ptr->ste_status = 0;
723 			continue;
724 		}
725 
726 		/* No errors; receive the packet. */
727 		m = cur_rx->ste_mbuf;
728 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
729 
730 		/*
731 		 * Try to conjure up a new mbuf cluster. If that
732 		 * fails, it means we have an out of memory condition and
733 		 * should leave the buffer in place and continue. This will
734 		 * result in a lost packet, but there's little else we
735 		 * can do in this situation.
736 		 */
737 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
738 			ifp->if_ierrors++;
739 			cur_rx->ste_ptr->ste_status = 0;
740 			continue;
741 		}
742 
743 		ifp->if_ipackets++;
744 		m->m_pkthdr.rcvif = ifp;
745 		m->m_pkthdr.len = m->m_len = total_len;
746 
747 		(*ifp->if_input)(ifp, m);
748 
749 		cur_rx->ste_ptr->ste_status = 0;
750 		count++;
751 	}
752 
753 	return;
754 }
755 
756 static void ste_txeoc(sc)
757 	struct ste_softc	*sc;
758 {
759 	u_int8_t		txstat;
760 	struct ifnet		*ifp;
761 
762 	ifp = &sc->arpcom.ac_if;
763 
764 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
765 	    STE_TXSTATUS_TXDONE) {
766 		if (txstat & STE_TXSTATUS_UNDERRUN ||
767 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
768 		    txstat & STE_TXSTATUS_RECLAIMERR) {
769 			ifp->if_oerrors++;
770 			printf("ste%d: transmission error: %x\n",
771 			    sc->ste_unit, txstat);
772 
773 			ste_reset(sc);
774 			ste_init(sc);
775 
776 			if (txstat & STE_TXSTATUS_UNDERRUN &&
777 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
778 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
779 				printf("ste%d: tx underrun, increasing tx"
780 				    " start threshold to %d bytes\n",
781 				    sc->ste_unit, sc->ste_tx_thresh);
782 			}
783 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
784 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
785 			    (STE_PACKET_SIZE >> 4));
786 		}
787 		ste_init(sc);
788 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
789 	}
790 
791 	return;
792 }
793 
794 static void ste_txeof(sc)
795 	struct ste_softc	*sc;
796 {
797 	struct ste_chain	*cur_tx = NULL;
798 	struct ifnet		*ifp;
799 	int			idx;
800 
801 	ifp = &sc->arpcom.ac_if;
802 
803 	idx = sc->ste_cdata.ste_tx_cons;
804 	while(idx != sc->ste_cdata.ste_tx_prod) {
805 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
806 
807 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
808 			break;
809 
810 		if (cur_tx->ste_mbuf != NULL) {
811 			m_freem(cur_tx->ste_mbuf);
812 			cur_tx->ste_mbuf = NULL;
813 		}
814 
815 		ifp->if_opackets++;
816 
817 		sc->ste_cdata.ste_tx_cnt--;
818 		STE_INC(idx, STE_TX_LIST_CNT);
819 		ifp->if_timer = 0;
820 	}
821 
822 	sc->ste_cdata.ste_tx_cons = idx;
823 
824 	if (cur_tx != NULL)
825 		ifp->if_flags &= ~IFF_OACTIVE;
826 
827 	return;
828 }
829 
830 static void ste_stats_update(xsc)
831 	void			*xsc;
832 {
833 	struct ste_softc	*sc;
834 	struct ifnet		*ifp;
835 	struct mii_data		*mii;
836 
837 	crit_enter();
838 
839 	sc = xsc;
840 	ifp = &sc->arpcom.ac_if;
841 	mii = device_get_softc(sc->ste_miibus);
842 
843         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
844             + CSR_READ_1(sc, STE_MULTI_COLLS)
845             + CSR_READ_1(sc, STE_SINGLE_COLLS);
846 
847 	if (!sc->ste_link) {
848 		mii_pollstat(mii);
849 		if (mii->mii_media_status & IFM_ACTIVE &&
850 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
851 			sc->ste_link++;
852 			/*
853 			 * we don't get a call-back on re-init so do it
854 			 * otherwise we get stuck in the wrong link state
855 			 */
856 			ste_miibus_statchg(sc->ste_dev);
857 			if (!ifq_is_empty(&ifp->if_snd))
858 				ste_start(ifp);
859 		}
860 	}
861 
862 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
863 	crit_exit();
864 
865 	return;
866 }
867 
868 
869 /*
870  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
871  * IDs against our list and return a device name if we find a match.
872  */
873 static int ste_probe(dev)
874 	device_t		dev;
875 {
876 	struct ste_type		*t;
877 
878 	t = ste_devs;
879 
880 	while(t->ste_name != NULL) {
881 		if ((pci_get_vendor(dev) == t->ste_vid) &&
882 		    (pci_get_device(dev) == t->ste_did)) {
883 			device_set_desc(dev, t->ste_name);
884 			return(0);
885 		}
886 		t++;
887 	}
888 
889 	return(ENXIO);
890 }
891 
892 /*
893  * Attach the interface. Allocate softc structures, do ifmedia
894  * setup and ethernet/BPF attach.
895  */
896 static int ste_attach(dev)
897 	device_t		dev;
898 {
899 	u_int32_t		command;
900 	struct ste_softc	*sc;
901 	struct ifnet		*ifp;
902 	int			unit, error = 0, rid;
903 
904 	crit_enter();
905 
906 	sc = device_get_softc(dev);
907 	unit = device_get_unit(dev);
908 	bzero(sc, sizeof(struct ste_softc));
909 	sc->ste_dev = dev;
910 
911 	/*
912 	 * Only use one PHY since this chip reports multiple
913 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
914 	 * it is at 0 & 1.  It is rev 0x12.
915 	 */
916 	if (pci_get_vendor(dev) == DL_VENDORID &&
917 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
918 	    pci_get_revid(dev) == 0x12 )
919 		sc->ste_one_phy = 1;
920 
921 	/*
922 	 * Handle power management nonsense.
923 	 */
924 	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
925 	if (command == 0x01) {
926 
927 		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
928 		if (command & STE_PSTATE_MASK) {
929 			u_int32_t		iobase, membase, irq;
930 
931 			/* Save important PCI config data. */
932 			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
933 			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
934 			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
935 
936 			/* Reset the power state. */
937 			printf("ste%d: chip is in D%d power mode "
938 			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
939 			command &= 0xFFFFFFFC;
940 			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
941 
942 			/* Restore PCI config data. */
943 			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
944 			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
945 			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
946 		}
947 	}
948 
949 	/*
950 	 * Map control/status registers.
951 	 */
952 	command = pci_read_config(dev, PCIR_COMMAND, 4);
953 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
954 	pci_write_config(dev, PCIR_COMMAND, command, 4);
955 	command = pci_read_config(dev, PCIR_COMMAND, 4);
956 
957 #ifdef STE_USEIOSPACE
958 	if (!(command & PCIM_CMD_PORTEN)) {
959 		printf("ste%d: failed to enable I/O ports!\n", unit);
960 		error = ENXIO;
961 		goto fail;
962 	}
963 #else
964 	if (!(command & PCIM_CMD_MEMEN)) {
965 		printf("ste%d: failed to enable memory mapping!\n", unit);
966 		error = ENXIO;
967 		goto fail;
968 	}
969 #endif
970 
971 	rid = STE_RID;
972 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
973 
974 	if (sc->ste_res == NULL) {
975 		printf ("ste%d: couldn't map ports/memory\n", unit);
976 		error = ENXIO;
977 		goto fail;
978 	}
979 
980 	sc->ste_btag = rman_get_bustag(sc->ste_res);
981 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
982 
983 	rid = 0;
984 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
985 	    RF_SHAREABLE | RF_ACTIVE);
986 
987 	if (sc->ste_irq == NULL) {
988 		printf("ste%d: couldn't map interrupt\n", unit);
989 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
990 		error = ENXIO;
991 		goto fail;
992 	}
993 
994 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
995 			       ste_intr, sc, &sc->ste_intrhand, NULL);
996 
997 	if (error) {
998 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
999 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1000 		printf("ste%d: couldn't set up irq\n", unit);
1001 		goto fail;
1002 	}
1003 
1004 	callout_init(&sc->ste_stat_timer);
1005 
1006 	/* Reset the adapter. */
1007 	ste_reset(sc);
1008 
1009 	/*
1010 	 * Get station address from the EEPROM.
1011 	 */
1012 	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1013 	    STE_EEADDR_NODE0, 3, 0)) {
1014 		printf("ste%d: failed to read station address\n", unit);
1015 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1016 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1017 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1018 		error = ENXIO;;
1019 		goto fail;
1020 	}
1021 
1022 	sc->ste_unit = unit;
1023 
1024 	/* Allocate the descriptor queues. */
1025 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1026 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1027 
1028 	if (sc->ste_ldata == NULL) {
1029 		printf("ste%d: no memory for list buffers!\n", unit);
1030 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1031 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1032 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1033 		error = ENXIO;
1034 		goto fail;
1035 	}
1036 
1037 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1038 
1039 	/* Do MII setup. */
1040 	if (mii_phy_probe(dev, &sc->ste_miibus,
1041 		ste_ifmedia_upd, ste_ifmedia_sts)) {
1042 		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1043 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1044 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1045 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1046 		contigfree(sc->ste_ldata,
1047 		    sizeof(struct ste_list_data), M_DEVBUF);
1048 		error = ENXIO;
1049 		goto fail;
1050 	}
1051 
1052 	ifp = &sc->arpcom.ac_if;
1053 	ifp->if_softc = sc;
1054 	if_initname(ifp, "ste", unit);
1055 	ifp->if_mtu = ETHERMTU;
1056 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1057 	ifp->if_ioctl = ste_ioctl;
1058 	ifp->if_start = ste_start;
1059 	ifp->if_watchdog = ste_watchdog;
1060 	ifp->if_init = ste_init;
1061 	ifp->if_baudrate = 10000000;
1062 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1063 	ifq_set_ready(&ifp->if_snd);
1064 
1065 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1066 
1067 	/*
1068 	 * Call MI attach routine.
1069 	 */
1070 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1071 
1072         /*
1073          * Tell the upper layer(s) we support long frames.
1074          */
1075         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1076 
1077 fail:
1078 	crit_exit();
1079 	return(error);
1080 }
1081 
1082 static int ste_detach(dev)
1083 	device_t		dev;
1084 {
1085 	struct ste_softc	*sc;
1086 	struct ifnet		*ifp;
1087 
1088 	crit_enter();
1089 
1090 	sc = device_get_softc(dev);
1091 	ifp = &sc->arpcom.ac_if;
1092 
1093 	ste_stop(sc);
1094 	ether_ifdetach(ifp);
1095 
1096 	bus_generic_detach(dev);
1097 	device_delete_child(dev, sc->ste_miibus);
1098 
1099 	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1100 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1101 	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1102 
1103 	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1104 
1105 	crit_exit();
1106 
1107 	return(0);
1108 }
1109 
1110 static int ste_newbuf(sc, c, m)
1111 	struct ste_softc	*sc;
1112 	struct ste_chain_onefrag	*c;
1113 	struct mbuf		*m;
1114 {
1115 	struct mbuf		*m_new = NULL;
1116 
1117 	if (m == NULL) {
1118 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1119 		if (m_new == NULL)
1120 			return(ENOBUFS);
1121 		MCLGET(m_new, MB_DONTWAIT);
1122 		if (!(m_new->m_flags & M_EXT)) {
1123 			m_freem(m_new);
1124 			return(ENOBUFS);
1125 		}
1126 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1127 	} else {
1128 		m_new = m;
1129 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1130 		m_new->m_data = m_new->m_ext.ext_buf;
1131 	}
1132 
1133 	m_adj(m_new, ETHER_ALIGN);
1134 
1135 	c->ste_mbuf = m_new;
1136 	c->ste_ptr->ste_status = 0;
1137 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1138 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1139 
1140 	return(0);
1141 }
1142 
1143 static int ste_init_rx_list(sc)
1144 	struct ste_softc	*sc;
1145 {
1146 	struct ste_chain_data	*cd;
1147 	struct ste_list_data	*ld;
1148 	int			i;
1149 
1150 	cd = &sc->ste_cdata;
1151 	ld = sc->ste_ldata;
1152 
1153 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1154 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1155 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1156 			return(ENOBUFS);
1157 		if (i == (STE_RX_LIST_CNT - 1)) {
1158 			cd->ste_rx_chain[i].ste_next =
1159 			    &cd->ste_rx_chain[0];
1160 			ld->ste_rx_list[i].ste_next =
1161 			    vtophys(&ld->ste_rx_list[0]);
1162 		} else {
1163 			cd->ste_rx_chain[i].ste_next =
1164 			    &cd->ste_rx_chain[i + 1];
1165 			ld->ste_rx_list[i].ste_next =
1166 			    vtophys(&ld->ste_rx_list[i + 1]);
1167 		}
1168 		ld->ste_rx_list[i].ste_status = 0;
1169 	}
1170 
1171 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1172 
1173 	return(0);
1174 }
1175 
1176 static void ste_init_tx_list(sc)
1177 	struct ste_softc	*sc;
1178 {
1179 	struct ste_chain_data	*cd;
1180 	struct ste_list_data	*ld;
1181 	int			i;
1182 
1183 	cd = &sc->ste_cdata;
1184 	ld = sc->ste_ldata;
1185 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1186 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1187 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1188 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1189 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1190 		if (i == (STE_TX_LIST_CNT - 1))
1191 			cd->ste_tx_chain[i].ste_next =
1192 			    &cd->ste_tx_chain[0];
1193 		else
1194 			cd->ste_tx_chain[i].ste_next =
1195 			    &cd->ste_tx_chain[i + 1];
1196 		if (i == 0)
1197 			cd->ste_tx_chain[i].ste_prev =
1198 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1199 		else
1200 			cd->ste_tx_chain[i].ste_prev =
1201 			     &cd->ste_tx_chain[i - 1];
1202 	}
1203 
1204 	cd->ste_tx_prod = 0;
1205 	cd->ste_tx_cons = 0;
1206 	cd->ste_tx_cnt = 0;
1207 
1208 	return;
1209 }
1210 
1211 static void ste_init(xsc)
1212 	void			*xsc;
1213 {
1214 	struct ste_softc	*sc;
1215 	int			i;
1216 	struct ifnet		*ifp;
1217 	struct mii_data		*mii;
1218 
1219 	crit_enter();
1220 
1221 	sc = xsc;
1222 	ifp = &sc->arpcom.ac_if;
1223 	mii = device_get_softc(sc->ste_miibus);
1224 
1225 	ste_stop(sc);
1226 
1227 	/* Init our MAC address */
1228 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1229 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1230 	}
1231 
1232 	/* Init RX list */
1233 	if (ste_init_rx_list(sc) == ENOBUFS) {
1234 		printf("ste%d: initialization failed: no "
1235 		    "memory for RX buffers\n", sc->ste_unit);
1236 		ste_stop(sc);
1237 		crit_exit();
1238 		return;
1239 	}
1240 
1241 	/* Set RX polling interval */
1242 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1243 
1244 	/* Init TX descriptors */
1245 	ste_init_tx_list(sc);
1246 
1247 	/* Set the TX freethresh value */
1248 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1249 
1250 	/* Set the TX start threshold for best performance. */
1251 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1252 
1253 	/* Set the TX reclaim threshold. */
1254 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1255 
1256 	/* Set up the RX filter. */
1257 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1258 
1259 	/* If we want promiscuous mode, set the allframes bit. */
1260 	if (ifp->if_flags & IFF_PROMISC) {
1261 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1262 	} else {
1263 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1264 	}
1265 
1266 	/* Set capture broadcast bit to accept broadcast frames. */
1267 	if (ifp->if_flags & IFF_BROADCAST) {
1268 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1269 	} else {
1270 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1271 	}
1272 
1273 	ste_setmulti(sc);
1274 
1275 	/* Load the address of the RX list. */
1276 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1277 	ste_wait(sc);
1278 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1279 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1280 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1281 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1282 
1283 	/* Set TX polling interval (defer until we TX first packet */
1284 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1285 
1286 	/* Load address of the TX list */
1287 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1288 	ste_wait(sc);
1289 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1290 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1291 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1292 	ste_wait(sc);
1293 	sc->ste_tx_prev_idx=-1;
1294 
1295 	/* Enable receiver and transmitter */
1296 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1297 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1298 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1299 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1300 
1301 	/* Enable stats counters. */
1302 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1303 
1304 	/* Enable interrupts. */
1305 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1306 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1307 
1308 	/* Accept VLAN length packets */
1309 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1310 
1311 	ste_ifmedia_upd(ifp);
1312 
1313 	ifp->if_flags |= IFF_RUNNING;
1314 	ifp->if_flags &= ~IFF_OACTIVE;
1315 
1316 	crit_exit();
1317 
1318 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1319 
1320 	return;
1321 }
1322 
1323 static void ste_stop(sc)
1324 	struct ste_softc	*sc;
1325 {
1326 	int			i;
1327 	struct ifnet		*ifp;
1328 
1329 	ifp = &sc->arpcom.ac_if;
1330 
1331 	callout_stop(&sc->ste_stat_timer);
1332 
1333 	CSR_WRITE_2(sc, STE_IMR, 0);
1334 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1335 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1336 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1337 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1338 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1339 	ste_wait(sc);
1340 	/*
1341 	 * Try really hard to stop the RX engine or under heavy RX
1342 	 * data chip will write into de-allocated memory.
1343 	 */
1344 	ste_reset(sc);
1345 
1346 	sc->ste_link = 0;
1347 
1348 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1349 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1350 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1351 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1352 		}
1353 	}
1354 
1355 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1356 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1357 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1358 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1359 		}
1360 	}
1361 
1362 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1363 
1364 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1365 
1366 	return;
1367 }
1368 
1369 static void ste_reset(sc)
1370 	struct ste_softc	*sc;
1371 {
1372 	int			i;
1373 
1374 	STE_SETBIT4(sc, STE_ASICCTL,
1375 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1376 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1377 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1378 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1379 	    STE_ASICCTL_EXTRESET_RESET);
1380 
1381 	DELAY(100000);
1382 
1383 	for (i = 0; i < STE_TIMEOUT; i++) {
1384 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1385 			break;
1386 	}
1387 
1388 	if (i == STE_TIMEOUT)
1389 		printf("ste%d: global reset never completed\n", sc->ste_unit);
1390 
1391 	return;
1392 }
1393 
1394 static int ste_ioctl(ifp, command, data, cr)
1395 	struct ifnet		*ifp;
1396 	u_long			command;
1397 	caddr_t			data;
1398 	struct ucred		*cr;
1399 {
1400 	struct ste_softc	*sc;
1401 	struct ifreq		*ifr;
1402 	struct mii_data		*mii;
1403 	int			error = 0;
1404 
1405 	crit_enter();
1406 
1407 	sc = ifp->if_softc;
1408 	ifr = (struct ifreq *)data;
1409 
1410 	switch(command) {
1411 	case SIOCSIFFLAGS:
1412 		if (ifp->if_flags & IFF_UP) {
1413 			if (ifp->if_flags & IFF_RUNNING &&
1414 			    ifp->if_flags & IFF_PROMISC &&
1415 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1416 				STE_SETBIT1(sc, STE_RX_MODE,
1417 				    STE_RXMODE_PROMISC);
1418 			} else if (ifp->if_flags & IFF_RUNNING &&
1419 			    !(ifp->if_flags & IFF_PROMISC) &&
1420 			    sc->ste_if_flags & IFF_PROMISC) {
1421 				STE_CLRBIT1(sc, STE_RX_MODE,
1422 				    STE_RXMODE_PROMISC);
1423 			}
1424 			if (!(ifp->if_flags & IFF_RUNNING)) {
1425 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1426 				ste_init(sc);
1427 			}
1428 		} else {
1429 			if (ifp->if_flags & IFF_RUNNING)
1430 				ste_stop(sc);
1431 		}
1432 		sc->ste_if_flags = ifp->if_flags;
1433 		error = 0;
1434 		break;
1435 	case SIOCADDMULTI:
1436 	case SIOCDELMULTI:
1437 		ste_setmulti(sc);
1438 		error = 0;
1439 		break;
1440 	case SIOCGIFMEDIA:
1441 	case SIOCSIFMEDIA:
1442 		mii = device_get_softc(sc->ste_miibus);
1443 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1444 		break;
1445 	default:
1446 		error = ether_ioctl(ifp, command, data);
1447 		break;
1448 	}
1449 
1450 	crit_exit();
1451 
1452 	return(error);
1453 }
1454 
1455 static int ste_encap(sc, c, m_head)
1456 	struct ste_softc	*sc;
1457 	struct ste_chain	*c;
1458 	struct mbuf		*m_head;
1459 {
1460 	int			frag = 0;
1461 	struct ste_frag		*f = NULL;
1462 	struct mbuf		*m;
1463 	struct ste_desc		*d;
1464 	int			total_len = 0;
1465 
1466 	d = c->ste_ptr;
1467 	d->ste_ctl = 0;
1468 
1469 encap_retry:
1470 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1471 		if (m->m_len != 0) {
1472 			if (frag == STE_MAXFRAGS)
1473 				break;
1474 			total_len += m->m_len;
1475 			f = &d->ste_frags[frag];
1476 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1477 			f->ste_len = m->m_len;
1478 			frag++;
1479 		}
1480 	}
1481 
1482 	if (m != NULL) {
1483 		struct mbuf *mn;
1484 
1485 		/*
1486 		 * We ran out of segments. We have to recopy this
1487 		 * mbuf chain first. Bail out if we can't get the
1488 		 * new buffers.  Code borrowed from if_fxp.c.
1489 		 */
1490 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1491 		if (mn == NULL) {
1492 			m_freem(m_head);
1493 			return ENOMEM;
1494 		}
1495 		if (m_head->m_pkthdr.len > MHLEN) {
1496 			MCLGET(mn, MB_DONTWAIT);
1497 			if ((mn->m_flags & M_EXT) == 0) {
1498 				m_freem(mn);
1499 				m_freem(m_head);
1500 				return ENOMEM;
1501 			}
1502 		}
1503 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1504 		    mtod(mn, caddr_t));
1505 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1506 		m_freem(m_head);
1507 		m_head = mn;
1508 		goto encap_retry;
1509 	}
1510 
1511 	c->ste_mbuf = m_head;
1512 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1513 	d->ste_ctl = 1;
1514 
1515 	return(0);
1516 }
1517 
1518 static void ste_start(ifp)
1519 	struct ifnet		*ifp;
1520 {
1521 	struct ste_softc	*sc;
1522 	struct mbuf		*m_head = NULL;
1523 	struct ste_chain	*cur_tx = NULL;
1524 	int			idx;
1525 
1526 	sc = ifp->if_softc;
1527 
1528 	if (!sc->ste_link)
1529 		return;
1530 
1531 	if (ifp->if_flags & IFF_OACTIVE)
1532 		return;
1533 
1534 	idx = sc->ste_cdata.ste_tx_prod;
1535 
1536 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1537 
1538 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1539 			ifp->if_flags |= IFF_OACTIVE;
1540 			break;
1541 		}
1542 
1543 		m_head = ifq_dequeue(&ifp->if_snd);
1544 		if (m_head == NULL)
1545 			break;
1546 
1547 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1548 
1549 		if (ste_encap(sc, cur_tx, m_head) != 0)
1550 			break;
1551 
1552 		cur_tx->ste_ptr->ste_next = 0;
1553 
1554 		if(sc->ste_tx_prev_idx < 0){
1555 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1556 			/* Load address of the TX list */
1557 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1558 			ste_wait(sc);
1559 
1560 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1561 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1562 
1563 			/* Set TX polling interval to start TX engine */
1564 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1565 
1566 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1567 			ste_wait(sc);
1568 		}else{
1569 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1570 			sc->ste_cdata.ste_tx_chain[
1571 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1572 				= cur_tx->ste_phys;
1573 		}
1574 
1575 		sc->ste_tx_prev_idx=idx;
1576 
1577 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1578 
1579 		STE_INC(idx, STE_TX_LIST_CNT);
1580 		sc->ste_cdata.ste_tx_cnt++;
1581 		ifp->if_timer = 5;
1582 		sc->ste_cdata.ste_tx_prod = idx;
1583 	}
1584 
1585 	return;
1586 }
1587 
1588 static void ste_watchdog(ifp)
1589 	struct ifnet		*ifp;
1590 {
1591 	struct ste_softc	*sc;
1592 
1593 	sc = ifp->if_softc;
1594 
1595 	ifp->if_oerrors++;
1596 	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1597 
1598 	ste_txeoc(sc);
1599 	ste_txeof(sc);
1600 	ste_rxeof(sc);
1601 	ste_reset(sc);
1602 	ste_init(sc);
1603 
1604 	if (!ifq_is_empty(&ifp->if_snd))
1605 		ste_start(ifp);
1606 
1607 	return;
1608 }
1609 
1610 static void ste_shutdown(dev)
1611 	device_t		dev;
1612 {
1613 	struct ste_softc	*sc;
1614 
1615 	sc = device_get_softc(dev);
1616 
1617 	ste_stop(sc);
1618 
1619 	return;
1620 }
1621