xref: /dflybsd-src/sys/dev/netif/ste/if_ste.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.31 2005/11/28 17:13:44 dillon Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/serialize.h>
44 #include <sys/thread2.h>
45 
46 #include <net/if.h>
47 #include <net/ifq_var.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/vlan/if_vlan_var.h>
53 
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>              /* for vtophys */
57 #include <vm/pmap.h>            /* for vtophys */
58 #include <machine/bus_memio.h>
59 #include <machine/bus_pio.h>
60 #include <machine/bus.h>
61 #include <machine/resource.h>
62 #include <sys/bus.h>
63 #include <sys/rman.h>
64 
65 #include "../mii_layer/mii.h"
66 #include "../mii_layer/miivar.h"
67 
68 #include <bus/pci/pcireg.h>
69 #include <bus/pci/pcivar.h>
70 
71 /* "controller miibus0" required.  See GENERIC if you get errors here. */
72 #include "miibus_if.h"
73 
74 #define STE_USEIOSPACE
75 
76 #include "if_stereg.h"
77 
78 /*
79  * Various supported device vendors/types and their names.
80  */
81 static struct ste_type ste_devs[] = {
82 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
83 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
84 	{ 0, 0, NULL }
85 };
86 
87 static int ste_probe		(device_t);
88 static int ste_attach		(device_t);
89 static int ste_detach		(device_t);
90 static void ste_init		(void *);
91 static void ste_intr		(void *);
92 static void ste_rxeof		(struct ste_softc *);
93 static void ste_txeoc		(struct ste_softc *);
94 static void ste_txeof		(struct ste_softc *);
95 static void ste_stats_update	(void *);
96 static void ste_stop		(struct ste_softc *);
97 static void ste_reset		(struct ste_softc *);
98 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
99 					struct ucred *);
100 static int ste_encap		(struct ste_softc *, struct ste_chain *,
101 					struct mbuf *);
102 static void ste_start		(struct ifnet *);
103 static void ste_watchdog	(struct ifnet *);
104 static void ste_shutdown	(device_t);
105 static int ste_newbuf		(struct ste_softc *,
106 					struct ste_chain_onefrag *,
107 					struct mbuf *);
108 static int ste_ifmedia_upd	(struct ifnet *);
109 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
110 
111 static void ste_mii_sync	(struct ste_softc *);
112 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
113 static int ste_mii_readreg	(struct ste_softc *,
114 					struct ste_mii_frame *);
115 static int ste_mii_writereg	(struct ste_softc *,
116 					struct ste_mii_frame *);
117 static int ste_miibus_readreg	(device_t, int, int);
118 static int ste_miibus_writereg	(device_t, int, int, int);
119 static void ste_miibus_statchg	(device_t);
120 
121 static int ste_eeprom_wait	(struct ste_softc *);
122 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
123 							int, int);
124 static void ste_wait		(struct ste_softc *);
125 static void ste_setmulti	(struct ste_softc *);
126 static int ste_init_rx_list	(struct ste_softc *);
127 static void ste_init_tx_list	(struct ste_softc *);
128 
129 #ifdef STE_USEIOSPACE
130 #define STE_RES			SYS_RES_IOPORT
131 #define STE_RID			STE_PCI_LOIO
132 #else
133 #define STE_RES			SYS_RES_MEMORY
134 #define STE_RID			STE_PCI_LOMEM
135 #endif
136 
137 static device_method_t ste_methods[] = {
138 	/* Device interface */
139 	DEVMETHOD(device_probe,		ste_probe),
140 	DEVMETHOD(device_attach,	ste_attach),
141 	DEVMETHOD(device_detach,	ste_detach),
142 	DEVMETHOD(device_shutdown,	ste_shutdown),
143 
144 	/* bus interface */
145 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147 
148 	/* MII interface */
149 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152 
153 	{ 0, 0 }
154 };
155 
156 static driver_t ste_driver = {
157 	"ste",
158 	ste_methods,
159 	sizeof(struct ste_softc)
160 };
161 
162 static devclass_t ste_devclass;
163 
164 DECLARE_DUMMY_MODULE(if_ste);
165 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
166 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
167 
168 #define STE_SETBIT4(sc, reg, x)				\
169 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
170 
171 #define STE_CLRBIT4(sc, reg, x)				\
172 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
173 
174 #define STE_SETBIT2(sc, reg, x)				\
175 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
176 
177 #define STE_CLRBIT2(sc, reg, x)				\
178 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
179 
180 #define STE_SETBIT1(sc, reg, x)				\
181 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
182 
183 #define STE_CLRBIT1(sc, reg, x)				\
184 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
185 
186 
187 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
188 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
189 
190 /*
191  * Sync the PHYs by setting data bit and strobing the clock 32 times.
192  */
193 static void ste_mii_sync(sc)
194 	struct ste_softc		*sc;
195 {
196 	int		i;
197 
198 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
199 
200 	for (i = 0; i < 32; i++) {
201 		MII_SET(STE_PHYCTL_MCLK);
202 		DELAY(1);
203 		MII_CLR(STE_PHYCTL_MCLK);
204 		DELAY(1);
205 	}
206 
207 	return;
208 }
209 
210 /*
211  * Clock a series of bits through the MII.
212  */
213 static void ste_mii_send(sc, bits, cnt)
214 	struct ste_softc		*sc;
215 	u_int32_t		bits;
216 	int			cnt;
217 {
218 	int			i;
219 
220 	MII_CLR(STE_PHYCTL_MCLK);
221 
222 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
223                 if (bits & i) {
224 			MII_SET(STE_PHYCTL_MDATA);
225                 } else {
226 			MII_CLR(STE_PHYCTL_MDATA);
227                 }
228 		DELAY(1);
229 		MII_CLR(STE_PHYCTL_MCLK);
230 		DELAY(1);
231 		MII_SET(STE_PHYCTL_MCLK);
232 	}
233 }
234 
235 /*
236  * Read an PHY register through the MII.
237  */
238 static int ste_mii_readreg(sc, frame)
239 	struct ste_softc		*sc;
240 	struct ste_mii_frame	*frame;
241 
242 {
243 	int			i, ack;
244 
245 	/*
246 	 * Set up frame for RX.
247 	 */
248 	frame->mii_stdelim = STE_MII_STARTDELIM;
249 	frame->mii_opcode = STE_MII_READOP;
250 	frame->mii_turnaround = 0;
251 	frame->mii_data = 0;
252 
253 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
254 	/*
255  	 * Turn on data xmit.
256 	 */
257 	MII_SET(STE_PHYCTL_MDIR);
258 
259 	ste_mii_sync(sc);
260 
261 	/*
262 	 * Send command/address info.
263 	 */
264 	ste_mii_send(sc, frame->mii_stdelim, 2);
265 	ste_mii_send(sc, frame->mii_opcode, 2);
266 	ste_mii_send(sc, frame->mii_phyaddr, 5);
267 	ste_mii_send(sc, frame->mii_regaddr, 5);
268 
269 	/* Turn off xmit. */
270 	MII_CLR(STE_PHYCTL_MDIR);
271 
272 	/* Idle bit */
273 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
274 	DELAY(1);
275 	MII_SET(STE_PHYCTL_MCLK);
276 	DELAY(1);
277 
278 	/* Check for ack */
279 	MII_CLR(STE_PHYCTL_MCLK);
280 	DELAY(1);
281 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
282 	MII_SET(STE_PHYCTL_MCLK);
283 	DELAY(1);
284 
285 	/*
286 	 * Now try reading data bits. If the ack failed, we still
287 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
288 	 */
289 	if (ack) {
290 		for(i = 0; i < 16; i++) {
291 			MII_CLR(STE_PHYCTL_MCLK);
292 			DELAY(1);
293 			MII_SET(STE_PHYCTL_MCLK);
294 			DELAY(1);
295 		}
296 		goto fail;
297 	}
298 
299 	for (i = 0x8000; i; i >>= 1) {
300 		MII_CLR(STE_PHYCTL_MCLK);
301 		DELAY(1);
302 		if (!ack) {
303 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
304 				frame->mii_data |= i;
305 			DELAY(1);
306 		}
307 		MII_SET(STE_PHYCTL_MCLK);
308 		DELAY(1);
309 	}
310 
311 fail:
312 
313 	MII_CLR(STE_PHYCTL_MCLK);
314 	DELAY(1);
315 	MII_SET(STE_PHYCTL_MCLK);
316 	DELAY(1);
317 
318 	if (ack)
319 		return(1);
320 	return(0);
321 }
322 
323 /*
324  * Write to a PHY register through the MII.
325  */
326 static int ste_mii_writereg(sc, frame)
327 	struct ste_softc		*sc;
328 	struct ste_mii_frame	*frame;
329 
330 {
331 	/*
332 	 * Set up frame for TX.
333 	 */
334 
335 	frame->mii_stdelim = STE_MII_STARTDELIM;
336 	frame->mii_opcode = STE_MII_WRITEOP;
337 	frame->mii_turnaround = STE_MII_TURNAROUND;
338 
339 	/*
340  	 * Turn on data output.
341 	 */
342 	MII_SET(STE_PHYCTL_MDIR);
343 
344 	ste_mii_sync(sc);
345 
346 	ste_mii_send(sc, frame->mii_stdelim, 2);
347 	ste_mii_send(sc, frame->mii_opcode, 2);
348 	ste_mii_send(sc, frame->mii_phyaddr, 5);
349 	ste_mii_send(sc, frame->mii_regaddr, 5);
350 	ste_mii_send(sc, frame->mii_turnaround, 2);
351 	ste_mii_send(sc, frame->mii_data, 16);
352 
353 	/* Idle bit. */
354 	MII_SET(STE_PHYCTL_MCLK);
355 	DELAY(1);
356 	MII_CLR(STE_PHYCTL_MCLK);
357 	DELAY(1);
358 
359 	/*
360 	 * Turn off xmit.
361 	 */
362 	MII_CLR(STE_PHYCTL_MDIR);
363 
364 	return(0);
365 }
366 
367 static int ste_miibus_readreg(dev, phy, reg)
368 	device_t		dev;
369 	int			phy, reg;
370 {
371 	struct ste_softc	*sc;
372 	struct ste_mii_frame	frame;
373 
374 	sc = device_get_softc(dev);
375 
376 	if ( sc->ste_one_phy && phy != 0 )
377 		return (0);
378 
379 	bzero((char *)&frame, sizeof(frame));
380 
381 	frame.mii_phyaddr = phy;
382 	frame.mii_regaddr = reg;
383 	ste_mii_readreg(sc, &frame);
384 
385 	return(frame.mii_data);
386 }
387 
388 static int ste_miibus_writereg(dev, phy, reg, data)
389 	device_t		dev;
390 	int			phy, reg, data;
391 {
392 	struct ste_softc	*sc;
393 	struct ste_mii_frame	frame;
394 
395 	sc = device_get_softc(dev);
396 	bzero((char *)&frame, sizeof(frame));
397 
398 	frame.mii_phyaddr = phy;
399 	frame.mii_regaddr = reg;
400 	frame.mii_data = data;
401 
402 	ste_mii_writereg(sc, &frame);
403 
404 	return(0);
405 }
406 
407 static void ste_miibus_statchg(dev)
408 	device_t		dev;
409 {
410 	struct ste_softc	*sc;
411 	struct mii_data		*mii;
412 	int			i;
413 
414 	sc = device_get_softc(dev);
415 	mii = device_get_softc(sc->ste_miibus);
416 
417 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
418 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
419 	} else {
420 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
421 	}
422 
423 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
424 		    STE_ASICCTL_TX_RESET);
425 	for (i = 0; i < STE_TIMEOUT; i++) {
426 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
427 			break;
428 	}
429 	if (i == STE_TIMEOUT)
430 		if_printf(&sc->arpcom.ac_if, "rx reset never completed\n");
431 
432 	return;
433 }
434 
435 static int ste_ifmedia_upd(ifp)
436 	struct ifnet		*ifp;
437 {
438 	struct ste_softc	*sc;
439 	struct mii_data		*mii;
440 
441 	sc = ifp->if_softc;
442 	mii = device_get_softc(sc->ste_miibus);
443 	sc->ste_link = 0;
444 	if (mii->mii_instance) {
445 		struct mii_softc	*miisc;
446 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
447 		    miisc = LIST_NEXT(miisc, mii_list))
448 			mii_phy_reset(miisc);
449 	}
450 	mii_mediachg(mii);
451 
452 	return(0);
453 }
454 
455 static void ste_ifmedia_sts(ifp, ifmr)
456 	struct ifnet		*ifp;
457 	struct ifmediareq	*ifmr;
458 {
459 	struct ste_softc	*sc;
460 	struct mii_data		*mii;
461 
462 	sc = ifp->if_softc;
463 	mii = device_get_softc(sc->ste_miibus);
464 
465 	mii_pollstat(mii);
466 	ifmr->ifm_active = mii->mii_media_active;
467 	ifmr->ifm_status = mii->mii_media_status;
468 
469 	return;
470 }
471 
472 static void ste_wait(sc)
473 	struct ste_softc		*sc;
474 {
475 	int		i;
476 
477 	for (i = 0; i < STE_TIMEOUT; i++) {
478 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
479 			break;
480 	}
481 
482 	if (i == STE_TIMEOUT)
483 		if_printf(&sc->arpcom.ac_if, "command never completed!\n");
484 
485 	return;
486 }
487 
488 /*
489  * The EEPROM is slow: give it time to come ready after issuing
490  * it a command.
491  */
492 static int ste_eeprom_wait(sc)
493 	struct ste_softc		*sc;
494 {
495 	int			i;
496 
497 	DELAY(1000);
498 
499 	for (i = 0; i < 100; i++) {
500 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
501 			DELAY(1000);
502 		else
503 			break;
504 	}
505 
506 	if (i == 100) {
507 		if_printf(&sc->arpcom.ac_if, "eeprom failed to come ready\n");
508 		return(1);
509 	}
510 
511 	return(0);
512 }
513 
514 /*
515  * Read a sequence of words from the EEPROM. Note that ethernet address
516  * data is stored in the EEPROM in network byte order.
517  */
518 static int ste_read_eeprom(sc, dest, off, cnt, swap)
519 	struct ste_softc		*sc;
520 	caddr_t			dest;
521 	int			off;
522 	int			cnt;
523 	int			swap;
524 {
525 	int			err = 0, i;
526 	u_int16_t		word = 0, *ptr;
527 
528 	if (ste_eeprom_wait(sc))
529 		return(1);
530 
531 	for (i = 0; i < cnt; i++) {
532 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
533 		err = ste_eeprom_wait(sc);
534 		if (err)
535 			break;
536 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
537 		ptr = (u_int16_t *)(dest + (i * 2));
538 		if (swap)
539 			*ptr = ntohs(word);
540 		else
541 			*ptr = word;
542 	}
543 
544 	return(err ? 1 : 0);
545 }
546 
547 static void ste_setmulti(sc)
548 	struct ste_softc	*sc;
549 {
550 	struct ifnet		*ifp;
551 	int			h = 0;
552 	u_int32_t		hashes[2] = { 0, 0 };
553 	struct ifmultiaddr	*ifma;
554 
555 	ifp = &sc->arpcom.ac_if;
556 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
557 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
558 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
559 		return;
560 	}
561 
562 	/* first, zot all the existing hash bits */
563 	CSR_WRITE_2(sc, STE_MAR0, 0);
564 	CSR_WRITE_2(sc, STE_MAR1, 0);
565 	CSR_WRITE_2(sc, STE_MAR2, 0);
566 	CSR_WRITE_2(sc, STE_MAR3, 0);
567 
568 	/* now program new ones */
569 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
570 		if (ifma->ifma_addr->sa_family != AF_LINK)
571 			continue;
572 		h = ether_crc32_be(
573 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
574 			ETHER_ADDR_LEN) & 0x3f;
575 		if (h < 32)
576 			hashes[0] |= (1 << h);
577 		else
578 			hashes[1] |= (1 << (h - 32));
579 	}
580 
581 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
582 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
583 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
584 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
585 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
586 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
587 
588 	return;
589 }
590 
591 static void ste_intr(xsc)
592 	void			*xsc;
593 {
594 	struct ste_softc	*sc;
595 	struct ifnet		*ifp;
596 	u_int16_t		status;
597 
598 	sc = xsc;
599 	ifp = &sc->arpcom.ac_if;
600 
601 	/* See if this is really our interrupt. */
602 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
603 		return;
604 
605 	for (;;) {
606 		status = CSR_READ_2(sc, STE_ISR_ACK);
607 
608 		if (!(status & STE_INTRS))
609 			break;
610 
611 		if (status & STE_ISR_RX_DMADONE)
612 			ste_rxeof(sc);
613 
614 		if (status & STE_ISR_TX_DMADONE)
615 			ste_txeof(sc);
616 
617 		if (status & STE_ISR_TX_DONE)
618 			ste_txeoc(sc);
619 
620 		if (status & STE_ISR_STATS_OFLOW) {
621 			callout_stop(&sc->ste_stat_timer);
622 			ste_stats_update(sc);
623 		}
624 
625 		if (status & STE_ISR_LINKEVENT)
626 			mii_pollstat(device_get_softc(sc->ste_miibus));
627 
628 		if (status & STE_ISR_HOSTERR) {
629 			ste_reset(sc);
630 			ste_init(sc);
631 		}
632 	}
633 
634 	/* Re-enable interrupts */
635 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
636 
637 	if (!ifq_is_empty(&ifp->if_snd))
638 		ste_start(ifp);
639 
640 	return;
641 }
642 
643 /*
644  * A frame has been uploaded: pass the resulting mbuf chain up to
645  * the higher level protocols.
646  */
647 static void ste_rxeof(sc)
648 	struct ste_softc		*sc;
649 {
650         struct mbuf		*m;
651         struct ifnet		*ifp;
652 	struct ste_chain_onefrag	*cur_rx;
653 	int			total_len = 0, count=0;
654 	u_int32_t		rxstat;
655 
656 	ifp = &sc->arpcom.ac_if;
657 
658 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
659 	      & STE_RXSTAT_DMADONE) {
660 		if ((STE_RX_LIST_CNT - count) < 3) {
661 			break;
662 		}
663 
664 		cur_rx = sc->ste_cdata.ste_rx_head;
665 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
666 
667 		/*
668 		 * If an error occurs, update stats, clear the
669 		 * status word and leave the mbuf cluster in place:
670 		 * it should simply get re-used next time this descriptor
671 	 	 * comes up in the ring.
672 		 */
673 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
674 			ifp->if_ierrors++;
675 			cur_rx->ste_ptr->ste_status = 0;
676 			continue;
677 		}
678 
679 		/*
680 		 * If there error bit was not set, the upload complete
681 		 * bit should be set which means we have a valid packet.
682 		 * If not, something truly strange has happened.
683 		 */
684 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
685 			if_printf(ifp, "bad receive status -- packet dropped");
686 			ifp->if_ierrors++;
687 			cur_rx->ste_ptr->ste_status = 0;
688 			continue;
689 		}
690 
691 		/* No errors; receive the packet. */
692 		m = cur_rx->ste_mbuf;
693 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
694 
695 		/*
696 		 * Try to conjure up a new mbuf cluster. If that
697 		 * fails, it means we have an out of memory condition and
698 		 * should leave the buffer in place and continue. This will
699 		 * result in a lost packet, but there's little else we
700 		 * can do in this situation.
701 		 */
702 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
703 			ifp->if_ierrors++;
704 			cur_rx->ste_ptr->ste_status = 0;
705 			continue;
706 		}
707 
708 		ifp->if_ipackets++;
709 		m->m_pkthdr.rcvif = ifp;
710 		m->m_pkthdr.len = m->m_len = total_len;
711 
712 		ifp->if_input(ifp, m);
713 
714 		cur_rx->ste_ptr->ste_status = 0;
715 		count++;
716 	}
717 
718 	return;
719 }
720 
721 static void ste_txeoc(sc)
722 	struct ste_softc	*sc;
723 {
724 	u_int8_t		txstat;
725 	struct ifnet		*ifp;
726 
727 	ifp = &sc->arpcom.ac_if;
728 
729 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
730 	    STE_TXSTATUS_TXDONE) {
731 		if (txstat & STE_TXSTATUS_UNDERRUN ||
732 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
733 		    txstat & STE_TXSTATUS_RECLAIMERR) {
734 			ifp->if_oerrors++;
735 			if_printf(ifp, "transmission error: %x\n", txstat);
736 
737 			ste_reset(sc);
738 			ste_init(sc);
739 
740 			if (txstat & STE_TXSTATUS_UNDERRUN &&
741 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
742 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
743 				if_printf(ifp, "tx underrun, increasing tx"
744 				    " start threshold to %d bytes\n",
745 				    sc->ste_tx_thresh);
746 			}
747 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
748 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
749 			    (STE_PACKET_SIZE >> 4));
750 		}
751 		ste_init(sc);
752 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
753 	}
754 
755 	return;
756 }
757 
758 static void ste_txeof(sc)
759 	struct ste_softc	*sc;
760 {
761 	struct ste_chain	*cur_tx = NULL;
762 	struct ifnet		*ifp;
763 	int			idx;
764 
765 	ifp = &sc->arpcom.ac_if;
766 
767 	idx = sc->ste_cdata.ste_tx_cons;
768 	while(idx != sc->ste_cdata.ste_tx_prod) {
769 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
770 
771 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
772 			break;
773 
774 		if (cur_tx->ste_mbuf != NULL) {
775 			m_freem(cur_tx->ste_mbuf);
776 			cur_tx->ste_mbuf = NULL;
777 		}
778 
779 		ifp->if_opackets++;
780 
781 		sc->ste_cdata.ste_tx_cnt--;
782 		STE_INC(idx, STE_TX_LIST_CNT);
783 		ifp->if_timer = 0;
784 	}
785 
786 	sc->ste_cdata.ste_tx_cons = idx;
787 
788 	if (cur_tx != NULL)
789 		ifp->if_flags &= ~IFF_OACTIVE;
790 
791 	return;
792 }
793 
794 static void ste_stats_update(xsc)
795 	void			*xsc;
796 {
797 	struct ste_softc	*sc;
798 	struct ifnet		*ifp;
799 	struct mii_data		*mii;
800 
801 	sc = xsc;
802 	ifp = &sc->arpcom.ac_if;
803 	mii = device_get_softc(sc->ste_miibus);
804 
805 	lwkt_serialize_enter(ifp->if_serializer);
806 
807         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
808             + CSR_READ_1(sc, STE_MULTI_COLLS)
809             + CSR_READ_1(sc, STE_SINGLE_COLLS);
810 
811 	if (!sc->ste_link) {
812 		mii_pollstat(mii);
813 		if (mii->mii_media_status & IFM_ACTIVE &&
814 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
815 			sc->ste_link++;
816 			/*
817 			 * we don't get a call-back on re-init so do it
818 			 * otherwise we get stuck in the wrong link state
819 			 */
820 			ste_miibus_statchg(sc->ste_dev);
821 			if (!ifq_is_empty(&ifp->if_snd))
822 				ste_start(ifp);
823 		}
824 	}
825 
826 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
827 	lwkt_serialize_exit(ifp->if_serializer);
828 }
829 
830 
831 /*
832  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
833  * IDs against our list and return a device name if we find a match.
834  */
835 static int ste_probe(dev)
836 	device_t		dev;
837 {
838 	struct ste_type		*t;
839 
840 	t = ste_devs;
841 
842 	while(t->ste_name != NULL) {
843 		if ((pci_get_vendor(dev) == t->ste_vid) &&
844 		    (pci_get_device(dev) == t->ste_did)) {
845 			device_set_desc(dev, t->ste_name);
846 			return(0);
847 		}
848 		t++;
849 	}
850 
851 	return(ENXIO);
852 }
853 
854 /*
855  * Attach the interface. Allocate softc structures, do ifmedia
856  * setup and ethernet/BPF attach.
857  */
858 static int ste_attach(dev)
859 	device_t		dev;
860 {
861 	struct ste_softc	*sc;
862 	struct ifnet		*ifp;
863 	int			error = 0, rid;
864 	uint8_t			eaddr[ETHER_ADDR_LEN];
865 
866 	sc = device_get_softc(dev);
867 	sc->ste_dev = dev;
868 
869 	/*
870 	 * Only use one PHY since this chip reports multiple
871 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
872 	 * it is at 0 & 1.  It is rev 0x12.
873 	 */
874 	if (pci_get_vendor(dev) == DL_VENDORID &&
875 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
876 	    pci_get_revid(dev) == 0x12 )
877 		sc->ste_one_phy = 1;
878 
879 	/*
880 	 * Handle power management nonsense.
881 	 */
882 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
883 		u_int32_t		iobase, membase, irq;
884 
885 		/* Save important PCI config data. */
886 		iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
887 		membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
888 		irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
889 
890 		/* Reset the power state. */
891 		device_printf(dev, "chip is in D%d power mode "
892 		"-- setting to D0\n", pci_get_powerstate(dev));
893 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
894 
895 		/* Restore PCI config data. */
896 		pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
897 		pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
898 		pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
899 	}
900 
901 	/*
902 	 * Map control/status registers.
903 	 */
904 	pci_enable_busmaster(dev);
905 
906 	rid = STE_RID;
907 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
908 
909 	if (sc->ste_res == NULL) {
910 		device_printf(dev, "couldn't map ports/memory\n");
911 		error = ENXIO;
912 		goto fail;
913 	}
914 
915 	sc->ste_btag = rman_get_bustag(sc->ste_res);
916 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
917 
918 	rid = 0;
919 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
920 	    RF_SHAREABLE | RF_ACTIVE);
921 
922 	if (sc->ste_irq == NULL) {
923 		device_printf(dev, "couldn't map interrupt\n");
924 		error = ENXIO;
925 		goto fail;
926 	}
927 
928 	callout_init(&sc->ste_stat_timer);
929 
930 	ifp = &sc->arpcom.ac_if;
931 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
932 
933 	/* Reset the adapter. */
934 	ste_reset(sc);
935 
936 	/*
937 	 * Get station address from the EEPROM.
938 	 */
939 	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, 3, 0)) {
940 		device_printf(dev, "failed to read station address\n");
941 		error = ENXIO;
942 		goto fail;
943 	}
944 
945 	/* Allocate the descriptor queues. */
946 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
947 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
948 
949 	if (sc->ste_ldata == NULL) {
950 		device_printf(dev, "no memory for list buffers!\n");
951 		error = ENXIO;
952 		goto fail;
953 	}
954 
955 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
956 
957 	/* Do MII setup. */
958 	if (mii_phy_probe(dev, &sc->ste_miibus,
959 		ste_ifmedia_upd, ste_ifmedia_sts)) {
960 		device_printf(dev, "MII without any phy!\n");
961 		error = ENXIO;
962 		goto fail;
963 	}
964 
965 	ifp->if_softc = sc;
966 	ifp->if_mtu = ETHERMTU;
967 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
968 	ifp->if_ioctl = ste_ioctl;
969 	ifp->if_start = ste_start;
970 	ifp->if_watchdog = ste_watchdog;
971 	ifp->if_init = ste_init;
972 	ifp->if_baudrate = 10000000;
973 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
974 	ifq_set_ready(&ifp->if_snd);
975 
976 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
977 
978 	/*
979 	 * Call MI attach routine.
980 	 */
981 	ether_ifattach(ifp, eaddr, NULL);
982 
983         /*
984          * Tell the upper layer(s) we support long frames.
985          */
986         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
987 
988 	error = bus_setup_intr(dev, sc->ste_irq, INTR_NETSAFE,
989 			       ste_intr, sc, &sc->ste_intrhand,
990 			       ifp->if_serializer);
991 	if (error) {
992 		device_printf(dev, "couldn't set up irq\n");
993 		ether_ifdetach(ifp);
994 		goto fail;
995 	}
996 
997 	return 0;
998 
999 fail:
1000 	ste_detach(dev);
1001 	return(error);
1002 }
1003 
1004 static int ste_detach(dev)
1005 	device_t		dev;
1006 {
1007 	struct ste_softc	*sc;
1008 	struct ifnet		*ifp;
1009 
1010 	sc = device_get_softc(dev);
1011 	ifp = &sc->arpcom.ac_if;
1012 	lwkt_serialize_enter(ifp->if_serializer);
1013 
1014 	if (device_is_attached(dev)) {
1015 		if (bus_child_present(dev))
1016 			ste_stop(sc);
1017 		ether_ifdetach(ifp);
1018 	}
1019 	if (sc->ste_miibus != NULL)
1020 		device_delete_child(dev, sc->ste_miibus);
1021 	bus_generic_detach(dev);
1022 
1023 	if (sc->ste_intrhand != NULL)
1024 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1025 
1026 	if (sc->ste_irq != NULL)
1027 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1028 	if (sc->ste_res != NULL)
1029 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1030 	if (sc->ste_ldata != NULL) {
1031 		contigfree(sc->ste_ldata, sizeof(struct ste_list_data),
1032 			   M_DEVBUF);
1033 	}
1034 	lwkt_serialize_exit(ifp->if_serializer);
1035 
1036 	return(0);
1037 }
1038 
1039 static int ste_newbuf(sc, c, m)
1040 	struct ste_softc	*sc;
1041 	struct ste_chain_onefrag	*c;
1042 	struct mbuf		*m;
1043 {
1044 	struct mbuf		*m_new = NULL;
1045 
1046 	if (m == NULL) {
1047 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1048 		if (m_new == NULL)
1049 			return(ENOBUFS);
1050 		MCLGET(m_new, MB_DONTWAIT);
1051 		if (!(m_new->m_flags & M_EXT)) {
1052 			m_freem(m_new);
1053 			return(ENOBUFS);
1054 		}
1055 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1056 	} else {
1057 		m_new = m;
1058 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1059 		m_new->m_data = m_new->m_ext.ext_buf;
1060 	}
1061 
1062 	m_adj(m_new, ETHER_ALIGN);
1063 
1064 	c->ste_mbuf = m_new;
1065 	c->ste_ptr->ste_status = 0;
1066 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1067 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1068 
1069 	return(0);
1070 }
1071 
1072 static int ste_init_rx_list(sc)
1073 	struct ste_softc	*sc;
1074 {
1075 	struct ste_chain_data	*cd;
1076 	struct ste_list_data	*ld;
1077 	int			i;
1078 
1079 	cd = &sc->ste_cdata;
1080 	ld = sc->ste_ldata;
1081 
1082 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1083 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1084 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1085 			return(ENOBUFS);
1086 		if (i == (STE_RX_LIST_CNT - 1)) {
1087 			cd->ste_rx_chain[i].ste_next =
1088 			    &cd->ste_rx_chain[0];
1089 			ld->ste_rx_list[i].ste_next =
1090 			    vtophys(&ld->ste_rx_list[0]);
1091 		} else {
1092 			cd->ste_rx_chain[i].ste_next =
1093 			    &cd->ste_rx_chain[i + 1];
1094 			ld->ste_rx_list[i].ste_next =
1095 			    vtophys(&ld->ste_rx_list[i + 1]);
1096 		}
1097 		ld->ste_rx_list[i].ste_status = 0;
1098 	}
1099 
1100 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1101 
1102 	return(0);
1103 }
1104 
1105 static void ste_init_tx_list(sc)
1106 	struct ste_softc	*sc;
1107 {
1108 	struct ste_chain_data	*cd;
1109 	struct ste_list_data	*ld;
1110 	int			i;
1111 
1112 	cd = &sc->ste_cdata;
1113 	ld = sc->ste_ldata;
1114 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1115 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1116 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1117 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1118 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1119 		if (i == (STE_TX_LIST_CNT - 1))
1120 			cd->ste_tx_chain[i].ste_next =
1121 			    &cd->ste_tx_chain[0];
1122 		else
1123 			cd->ste_tx_chain[i].ste_next =
1124 			    &cd->ste_tx_chain[i + 1];
1125 		if (i == 0)
1126 			cd->ste_tx_chain[i].ste_prev =
1127 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1128 		else
1129 			cd->ste_tx_chain[i].ste_prev =
1130 			     &cd->ste_tx_chain[i - 1];
1131 	}
1132 
1133 	cd->ste_tx_prod = 0;
1134 	cd->ste_tx_cons = 0;
1135 	cd->ste_tx_cnt = 0;
1136 
1137 	return;
1138 }
1139 
1140 static void ste_init(xsc)
1141 	void			*xsc;
1142 {
1143 	struct ste_softc	*sc;
1144 	int			i;
1145 	struct ifnet		*ifp;
1146 	struct mii_data		*mii;
1147 
1148 	sc = xsc;
1149 	ifp = &sc->arpcom.ac_if;
1150 	mii = device_get_softc(sc->ste_miibus);
1151 
1152 	ste_stop(sc);
1153 
1154 	/* Init our MAC address */
1155 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1156 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1157 	}
1158 
1159 	/* Init RX list */
1160 	if (ste_init_rx_list(sc) == ENOBUFS) {
1161 		if_printf(ifp, "initialization failed: no "
1162 		    "memory for RX buffers\n");
1163 		ste_stop(sc);
1164 		return;
1165 	}
1166 
1167 	/* Set RX polling interval */
1168 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1169 
1170 	/* Init TX descriptors */
1171 	ste_init_tx_list(sc);
1172 
1173 	/* Set the TX freethresh value */
1174 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1175 
1176 	/* Set the TX start threshold for best performance. */
1177 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1178 
1179 	/* Set the TX reclaim threshold. */
1180 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1181 
1182 	/* Set up the RX filter. */
1183 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1184 
1185 	/* If we want promiscuous mode, set the allframes bit. */
1186 	if (ifp->if_flags & IFF_PROMISC) {
1187 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1188 	} else {
1189 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1190 	}
1191 
1192 	/* Set capture broadcast bit to accept broadcast frames. */
1193 	if (ifp->if_flags & IFF_BROADCAST) {
1194 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1195 	} else {
1196 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1197 	}
1198 
1199 	ste_setmulti(sc);
1200 
1201 	/* Load the address of the RX list. */
1202 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1203 	ste_wait(sc);
1204 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1205 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1206 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1207 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1208 
1209 	/* Set TX polling interval (defer until we TX first packet */
1210 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1211 
1212 	/* Load address of the TX list */
1213 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1214 	ste_wait(sc);
1215 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1216 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1217 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1218 	ste_wait(sc);
1219 	sc->ste_tx_prev_idx=-1;
1220 
1221 	/* Enable receiver and transmitter */
1222 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1223 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1224 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1225 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1226 
1227 	/* Enable stats counters. */
1228 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1229 
1230 	/* Enable interrupts. */
1231 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1232 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1233 
1234 	/* Accept VLAN length packets */
1235 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1236 
1237 	ste_ifmedia_upd(ifp);
1238 
1239 	ifp->if_flags |= IFF_RUNNING;
1240 	ifp->if_flags &= ~IFF_OACTIVE;
1241 
1242 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1243 }
1244 
1245 static void ste_stop(sc)
1246 	struct ste_softc	*sc;
1247 {
1248 	int			i;
1249 	struct ifnet		*ifp;
1250 
1251 	ifp = &sc->arpcom.ac_if;
1252 
1253 	callout_stop(&sc->ste_stat_timer);
1254 
1255 	CSR_WRITE_2(sc, STE_IMR, 0);
1256 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1257 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1258 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1259 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1260 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1261 	ste_wait(sc);
1262 	/*
1263 	 * Try really hard to stop the RX engine or under heavy RX
1264 	 * data chip will write into de-allocated memory.
1265 	 */
1266 	ste_reset(sc);
1267 
1268 	sc->ste_link = 0;
1269 
1270 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1271 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1272 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1273 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1274 		}
1275 	}
1276 
1277 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1278 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1279 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1280 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1281 		}
1282 	}
1283 
1284 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1285 
1286 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1287 
1288 	return;
1289 }
1290 
1291 static void ste_reset(sc)
1292 	struct ste_softc	*sc;
1293 {
1294 	int			i;
1295 
1296 	STE_SETBIT4(sc, STE_ASICCTL,
1297 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1298 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1299 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1300 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1301 	    STE_ASICCTL_EXTRESET_RESET);
1302 
1303 	DELAY(100000);
1304 
1305 	for (i = 0; i < STE_TIMEOUT; i++) {
1306 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1307 			break;
1308 	}
1309 
1310 	if (i == STE_TIMEOUT)
1311 		if_printf(&sc->arpcom.ac_if, "global reset never completed\n");
1312 
1313 	return;
1314 }
1315 
1316 static int ste_ioctl(ifp, command, data, cr)
1317 	struct ifnet		*ifp;
1318 	u_long			command;
1319 	caddr_t			data;
1320 	struct ucred		*cr;
1321 {
1322 	struct ste_softc	*sc;
1323 	struct ifreq		*ifr;
1324 	struct mii_data		*mii;
1325 	int			error = 0;
1326 
1327 	sc = ifp->if_softc;
1328 	ifr = (struct ifreq *)data;
1329 
1330 	switch(command) {
1331 	case SIOCSIFFLAGS:
1332 		if (ifp->if_flags & IFF_UP) {
1333 			if (ifp->if_flags & IFF_RUNNING &&
1334 			    ifp->if_flags & IFF_PROMISC &&
1335 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1336 				STE_SETBIT1(sc, STE_RX_MODE,
1337 				    STE_RXMODE_PROMISC);
1338 			} else if (ifp->if_flags & IFF_RUNNING &&
1339 			    !(ifp->if_flags & IFF_PROMISC) &&
1340 			    sc->ste_if_flags & IFF_PROMISC) {
1341 				STE_CLRBIT1(sc, STE_RX_MODE,
1342 				    STE_RXMODE_PROMISC);
1343 			}
1344 			if (!(ifp->if_flags & IFF_RUNNING)) {
1345 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1346 				ste_init(sc);
1347 			}
1348 		} else {
1349 			if (ifp->if_flags & IFF_RUNNING)
1350 				ste_stop(sc);
1351 		}
1352 		sc->ste_if_flags = ifp->if_flags;
1353 		error = 0;
1354 		break;
1355 	case SIOCADDMULTI:
1356 	case SIOCDELMULTI:
1357 		ste_setmulti(sc);
1358 		error = 0;
1359 		break;
1360 	case SIOCGIFMEDIA:
1361 	case SIOCSIFMEDIA:
1362 		mii = device_get_softc(sc->ste_miibus);
1363 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1364 		break;
1365 	default:
1366 		error = ether_ioctl(ifp, command, data);
1367 		break;
1368 	}
1369 	return(error);
1370 }
1371 
1372 static int ste_encap(sc, c, m_head)
1373 	struct ste_softc	*sc;
1374 	struct ste_chain	*c;
1375 	struct mbuf		*m_head;
1376 {
1377 	int			frag = 0;
1378 	struct ste_frag		*f = NULL;
1379 	struct mbuf		*m;
1380 	struct ste_desc		*d;
1381 	int			total_len = 0;
1382 
1383 	d = c->ste_ptr;
1384 	d->ste_ctl = 0;
1385 
1386 encap_retry:
1387 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1388 		if (m->m_len != 0) {
1389 			if (frag == STE_MAXFRAGS)
1390 				break;
1391 			total_len += m->m_len;
1392 			f = &d->ste_frags[frag];
1393 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1394 			f->ste_len = m->m_len;
1395 			frag++;
1396 		}
1397 	}
1398 
1399 	if (m != NULL) {
1400 		struct mbuf *mn;
1401 
1402 		/*
1403 		 * We ran out of segments. We have to recopy this
1404 		 * mbuf chain first. Bail out if we can't get the
1405 		 * new buffers.  Code borrowed from if_fxp.c.
1406 		 */
1407 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1408 		if (mn == NULL) {
1409 			m_freem(m_head);
1410 			return ENOMEM;
1411 		}
1412 		if (m_head->m_pkthdr.len > MHLEN) {
1413 			MCLGET(mn, MB_DONTWAIT);
1414 			if ((mn->m_flags & M_EXT) == 0) {
1415 				m_freem(mn);
1416 				m_freem(m_head);
1417 				return ENOMEM;
1418 			}
1419 		}
1420 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1421 		    mtod(mn, caddr_t));
1422 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1423 		m_freem(m_head);
1424 		m_head = mn;
1425 		goto encap_retry;
1426 	}
1427 
1428 	c->ste_mbuf = m_head;
1429 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1430 	d->ste_ctl = 1;
1431 
1432 	return(0);
1433 }
1434 
1435 static void ste_start(ifp)
1436 	struct ifnet		*ifp;
1437 {
1438 	struct ste_softc	*sc;
1439 	struct mbuf		*m_head = NULL;
1440 	struct ste_chain	*cur_tx = NULL;
1441 	int			idx;
1442 
1443 	sc = ifp->if_softc;
1444 
1445 	if (!sc->ste_link)
1446 		return;
1447 
1448 	if (ifp->if_flags & IFF_OACTIVE)
1449 		return;
1450 
1451 	idx = sc->ste_cdata.ste_tx_prod;
1452 
1453 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1454 
1455 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1456 			ifp->if_flags |= IFF_OACTIVE;
1457 			break;
1458 		}
1459 
1460 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1461 		if (m_head == NULL)
1462 			break;
1463 
1464 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1465 
1466 		if (ste_encap(sc, cur_tx, m_head) != 0)
1467 			break;
1468 
1469 		cur_tx->ste_ptr->ste_next = 0;
1470 
1471 		if(sc->ste_tx_prev_idx < 0){
1472 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1473 			/* Load address of the TX list */
1474 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1475 			ste_wait(sc);
1476 
1477 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1478 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1479 
1480 			/* Set TX polling interval to start TX engine */
1481 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1482 
1483 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1484 			ste_wait(sc);
1485 		}else{
1486 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1487 			sc->ste_cdata.ste_tx_chain[
1488 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1489 				= cur_tx->ste_phys;
1490 		}
1491 
1492 		sc->ste_tx_prev_idx=idx;
1493 
1494 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1495 
1496 		STE_INC(idx, STE_TX_LIST_CNT);
1497 		sc->ste_cdata.ste_tx_cnt++;
1498 		ifp->if_timer = 5;
1499 		sc->ste_cdata.ste_tx_prod = idx;
1500 	}
1501 
1502 	return;
1503 }
1504 
1505 static void ste_watchdog(ifp)
1506 	struct ifnet		*ifp;
1507 {
1508 	struct ste_softc	*sc;
1509 
1510 	sc = ifp->if_softc;
1511 
1512 	ifp->if_oerrors++;
1513 	if_printf(ifp, "watchdog timeout\n");
1514 
1515 	ste_txeoc(sc);
1516 	ste_txeof(sc);
1517 	ste_rxeof(sc);
1518 	ste_reset(sc);
1519 	ste_init(sc);
1520 
1521 	if (!ifq_is_empty(&ifp->if_snd))
1522 		ste_start(ifp);
1523 
1524 	return;
1525 }
1526 
1527 static void ste_shutdown(dev)
1528 	device_t		dev;
1529 {
1530 	struct ste_softc	*sc;
1531 
1532 	sc = device_get_softc(dev);
1533 
1534 	ste_stop(sc);
1535 
1536 	return;
1537 }
1538