xref: /dflybsd-src/sys/dev/netif/ste/if_ste.c (revision 3cf94ecf50c1958c7b10de185222fd2816ccfff0)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_ste.c,v 1.14.2.9 2003/02/05 22:03:57 mbr Exp $
33  * $DragonFly: src/sys/dev/netif/ste/if_ste.c,v 1.19 2005/05/27 15:36:10 joerg Exp $
34  */
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/ifq_var.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/vlan/if_vlan_var.h>
51 
52 #include <net/bpf.h>
53 
54 #include <vm/vm.h>              /* for vtophys */
55 #include <vm/pmap.h>            /* for vtophys */
56 #include <machine/clock.h>      /* for DELAY */
57 #include <machine/bus_memio.h>
58 #include <machine/bus_pio.h>
59 #include <machine/bus.h>
60 #include <machine/resource.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include "../mii_layer/mii.h"
65 #include "../mii_layer/miivar.h"
66 
67 #include <bus/pci/pcireg.h>
68 #include <bus/pci/pcivar.h>
69 
70 /* "controller miibus0" required.  See GENERIC if you get errors here. */
71 #include "miibus_if.h"
72 
73 #define STE_USEIOSPACE
74 
75 #include "if_stereg.h"
76 
77 /*
78  * Various supported device vendors/types and their names.
79  */
80 static struct ste_type ste_devs[] = {
81 	{ ST_VENDORID, ST_DEVICEID_ST201, "Sundance ST201 10/100BaseTX" },
82 	{ DL_VENDORID, DL_DEVICEID_550TX, "D-Link DFE-550TX 10/100BaseTX" },
83 	{ 0, 0, NULL }
84 };
85 
86 static int ste_probe		(device_t);
87 static int ste_attach		(device_t);
88 static int ste_detach		(device_t);
89 static void ste_init		(void *);
90 static void ste_intr		(void *);
91 static void ste_rxeof		(struct ste_softc *);
92 static void ste_txeoc		(struct ste_softc *);
93 static void ste_txeof		(struct ste_softc *);
94 static void ste_stats_update	(void *);
95 static void ste_stop		(struct ste_softc *);
96 static void ste_reset		(struct ste_softc *);
97 static int ste_ioctl		(struct ifnet *, u_long, caddr_t,
98 					struct ucred *);
99 static int ste_encap		(struct ste_softc *, struct ste_chain *,
100 					struct mbuf *);
101 static void ste_start		(struct ifnet *);
102 static void ste_watchdog	(struct ifnet *);
103 static void ste_shutdown	(device_t);
104 static int ste_newbuf		(struct ste_softc *,
105 					struct ste_chain_onefrag *,
106 					struct mbuf *);
107 static int ste_ifmedia_upd	(struct ifnet *);
108 static void ste_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
109 
110 static void ste_mii_sync	(struct ste_softc *);
111 static void ste_mii_send	(struct ste_softc *, u_int32_t, int);
112 static int ste_mii_readreg	(struct ste_softc *,
113 					struct ste_mii_frame *);
114 static int ste_mii_writereg	(struct ste_softc *,
115 					struct ste_mii_frame *);
116 static int ste_miibus_readreg	(device_t, int, int);
117 static int ste_miibus_writereg	(device_t, int, int, int);
118 static void ste_miibus_statchg	(device_t);
119 
120 static int ste_eeprom_wait	(struct ste_softc *);
121 static int ste_read_eeprom	(struct ste_softc *, caddr_t, int,
122 							int, int);
123 static void ste_wait		(struct ste_softc *);
124 static u_int8_t ste_calchash	(caddr_t);
125 static void ste_setmulti	(struct ste_softc *);
126 static int ste_init_rx_list	(struct ste_softc *);
127 static void ste_init_tx_list	(struct ste_softc *);
128 
129 #ifdef STE_USEIOSPACE
130 #define STE_RES			SYS_RES_IOPORT
131 #define STE_RID			STE_PCI_LOIO
132 #else
133 #define STE_RES			SYS_RES_MEMORY
134 #define STE_RID			STE_PCI_LOMEM
135 #endif
136 
137 static device_method_t ste_methods[] = {
138 	/* Device interface */
139 	DEVMETHOD(device_probe,		ste_probe),
140 	DEVMETHOD(device_attach,	ste_attach),
141 	DEVMETHOD(device_detach,	ste_detach),
142 	DEVMETHOD(device_shutdown,	ste_shutdown),
143 
144 	/* bus interface */
145 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
146 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
147 
148 	/* MII interface */
149 	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
150 	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
151 	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
152 
153 	{ 0, 0 }
154 };
155 
156 static driver_t ste_driver = {
157 	"ste",
158 	ste_methods,
159 	sizeof(struct ste_softc)
160 };
161 
162 static devclass_t ste_devclass;
163 
164 DECLARE_DUMMY_MODULE(if_ste);
165 DRIVER_MODULE(if_ste, pci, ste_driver, ste_devclass, 0, 0);
166 DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
167 
168 #define STE_SETBIT4(sc, reg, x)				\
169 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
170 
171 #define STE_CLRBIT4(sc, reg, x)				\
172 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
173 
174 #define STE_SETBIT2(sc, reg, x)				\
175 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
176 
177 #define STE_CLRBIT2(sc, reg, x)				\
178 	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
179 
180 #define STE_SETBIT1(sc, reg, x)				\
181 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
182 
183 #define STE_CLRBIT1(sc, reg, x)				\
184 	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
185 
186 
187 #define MII_SET(x)		STE_SETBIT1(sc, STE_PHYCTL, x)
188 #define MII_CLR(x)		STE_CLRBIT1(sc, STE_PHYCTL, x)
189 
190 /*
191  * Sync the PHYs by setting data bit and strobing the clock 32 times.
192  */
193 static void ste_mii_sync(sc)
194 	struct ste_softc		*sc;
195 {
196 	int		i;
197 
198 	MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
199 
200 	for (i = 0; i < 32; i++) {
201 		MII_SET(STE_PHYCTL_MCLK);
202 		DELAY(1);
203 		MII_CLR(STE_PHYCTL_MCLK);
204 		DELAY(1);
205 	}
206 
207 	return;
208 }
209 
210 /*
211  * Clock a series of bits through the MII.
212  */
213 static void ste_mii_send(sc, bits, cnt)
214 	struct ste_softc		*sc;
215 	u_int32_t		bits;
216 	int			cnt;
217 {
218 	int			i;
219 
220 	MII_CLR(STE_PHYCTL_MCLK);
221 
222 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
223                 if (bits & i) {
224 			MII_SET(STE_PHYCTL_MDATA);
225                 } else {
226 			MII_CLR(STE_PHYCTL_MDATA);
227                 }
228 		DELAY(1);
229 		MII_CLR(STE_PHYCTL_MCLK);
230 		DELAY(1);
231 		MII_SET(STE_PHYCTL_MCLK);
232 	}
233 }
234 
235 /*
236  * Read an PHY register through the MII.
237  */
238 static int ste_mii_readreg(sc, frame)
239 	struct ste_softc		*sc;
240 	struct ste_mii_frame	*frame;
241 
242 {
243 	int			i, ack, s;
244 
245 	s = splimp();
246 
247 	/*
248 	 * Set up frame for RX.
249 	 */
250 	frame->mii_stdelim = STE_MII_STARTDELIM;
251 	frame->mii_opcode = STE_MII_READOP;
252 	frame->mii_turnaround = 0;
253 	frame->mii_data = 0;
254 
255 	CSR_WRITE_2(sc, STE_PHYCTL, 0);
256 	/*
257  	 * Turn on data xmit.
258 	 */
259 	MII_SET(STE_PHYCTL_MDIR);
260 
261 	ste_mii_sync(sc);
262 
263 	/*
264 	 * Send command/address info.
265 	 */
266 	ste_mii_send(sc, frame->mii_stdelim, 2);
267 	ste_mii_send(sc, frame->mii_opcode, 2);
268 	ste_mii_send(sc, frame->mii_phyaddr, 5);
269 	ste_mii_send(sc, frame->mii_regaddr, 5);
270 
271 	/* Turn off xmit. */
272 	MII_CLR(STE_PHYCTL_MDIR);
273 
274 	/* Idle bit */
275 	MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
276 	DELAY(1);
277 	MII_SET(STE_PHYCTL_MCLK);
278 	DELAY(1);
279 
280 	/* Check for ack */
281 	MII_CLR(STE_PHYCTL_MCLK);
282 	DELAY(1);
283 	ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
284 	MII_SET(STE_PHYCTL_MCLK);
285 	DELAY(1);
286 
287 	/*
288 	 * Now try reading data bits. If the ack failed, we still
289 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
290 	 */
291 	if (ack) {
292 		for(i = 0; i < 16; i++) {
293 			MII_CLR(STE_PHYCTL_MCLK);
294 			DELAY(1);
295 			MII_SET(STE_PHYCTL_MCLK);
296 			DELAY(1);
297 		}
298 		goto fail;
299 	}
300 
301 	for (i = 0x8000; i; i >>= 1) {
302 		MII_CLR(STE_PHYCTL_MCLK);
303 		DELAY(1);
304 		if (!ack) {
305 			if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
306 				frame->mii_data |= i;
307 			DELAY(1);
308 		}
309 		MII_SET(STE_PHYCTL_MCLK);
310 		DELAY(1);
311 	}
312 
313 fail:
314 
315 	MII_CLR(STE_PHYCTL_MCLK);
316 	DELAY(1);
317 	MII_SET(STE_PHYCTL_MCLK);
318 	DELAY(1);
319 
320 	splx(s);
321 
322 	if (ack)
323 		return(1);
324 	return(0);
325 }
326 
327 /*
328  * Write to a PHY register through the MII.
329  */
330 static int ste_mii_writereg(sc, frame)
331 	struct ste_softc		*sc;
332 	struct ste_mii_frame	*frame;
333 
334 {
335 	int			s;
336 
337 	s = splimp();
338 	/*
339 	 * Set up frame for TX.
340 	 */
341 
342 	frame->mii_stdelim = STE_MII_STARTDELIM;
343 	frame->mii_opcode = STE_MII_WRITEOP;
344 	frame->mii_turnaround = STE_MII_TURNAROUND;
345 
346 	/*
347  	 * Turn on data output.
348 	 */
349 	MII_SET(STE_PHYCTL_MDIR);
350 
351 	ste_mii_sync(sc);
352 
353 	ste_mii_send(sc, frame->mii_stdelim, 2);
354 	ste_mii_send(sc, frame->mii_opcode, 2);
355 	ste_mii_send(sc, frame->mii_phyaddr, 5);
356 	ste_mii_send(sc, frame->mii_regaddr, 5);
357 	ste_mii_send(sc, frame->mii_turnaround, 2);
358 	ste_mii_send(sc, frame->mii_data, 16);
359 
360 	/* Idle bit. */
361 	MII_SET(STE_PHYCTL_MCLK);
362 	DELAY(1);
363 	MII_CLR(STE_PHYCTL_MCLK);
364 	DELAY(1);
365 
366 	/*
367 	 * Turn off xmit.
368 	 */
369 	MII_CLR(STE_PHYCTL_MDIR);
370 
371 	splx(s);
372 
373 	return(0);
374 }
375 
376 static int ste_miibus_readreg(dev, phy, reg)
377 	device_t		dev;
378 	int			phy, reg;
379 {
380 	struct ste_softc	*sc;
381 	struct ste_mii_frame	frame;
382 
383 	sc = device_get_softc(dev);
384 
385 	if ( sc->ste_one_phy && phy != 0 )
386 		return (0);
387 
388 	bzero((char *)&frame, sizeof(frame));
389 
390 	frame.mii_phyaddr = phy;
391 	frame.mii_regaddr = reg;
392 	ste_mii_readreg(sc, &frame);
393 
394 	return(frame.mii_data);
395 }
396 
397 static int ste_miibus_writereg(dev, phy, reg, data)
398 	device_t		dev;
399 	int			phy, reg, data;
400 {
401 	struct ste_softc	*sc;
402 	struct ste_mii_frame	frame;
403 
404 	sc = device_get_softc(dev);
405 	bzero((char *)&frame, sizeof(frame));
406 
407 	frame.mii_phyaddr = phy;
408 	frame.mii_regaddr = reg;
409 	frame.mii_data = data;
410 
411 	ste_mii_writereg(sc, &frame);
412 
413 	return(0);
414 }
415 
416 static void ste_miibus_statchg(dev)
417 	device_t		dev;
418 {
419 	struct ste_softc	*sc;
420 	struct mii_data		*mii;
421 	int			i;
422 
423 	sc = device_get_softc(dev);
424 	mii = device_get_softc(sc->ste_miibus);
425 
426 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
427 		STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
428 	} else {
429 		STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
430 	}
431 
432 	STE_SETBIT4(sc, STE_ASICCTL,STE_ASICCTL_RX_RESET |
433 		    STE_ASICCTL_TX_RESET);
434 	for (i = 0; i < STE_TIMEOUT; i++) {
435 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
436 			break;
437 	}
438 	if (i == STE_TIMEOUT)
439 		printf("ste%d: rx reset never completed\n", sc->ste_unit);
440 
441 	return;
442 }
443 
444 static int ste_ifmedia_upd(ifp)
445 	struct ifnet		*ifp;
446 {
447 	struct ste_softc	*sc;
448 	struct mii_data		*mii;
449 
450 	sc = ifp->if_softc;
451 	mii = device_get_softc(sc->ste_miibus);
452 	sc->ste_link = 0;
453 	if (mii->mii_instance) {
454 		struct mii_softc	*miisc;
455 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
456 		    miisc = LIST_NEXT(miisc, mii_list))
457 			mii_phy_reset(miisc);
458 	}
459 	mii_mediachg(mii);
460 
461 	return(0);
462 }
463 
464 static void ste_ifmedia_sts(ifp, ifmr)
465 	struct ifnet		*ifp;
466 	struct ifmediareq	*ifmr;
467 {
468 	struct ste_softc	*sc;
469 	struct mii_data		*mii;
470 
471 	sc = ifp->if_softc;
472 	mii = device_get_softc(sc->ste_miibus);
473 
474 	mii_pollstat(mii);
475 	ifmr->ifm_active = mii->mii_media_active;
476 	ifmr->ifm_status = mii->mii_media_status;
477 
478 	return;
479 }
480 
481 static void ste_wait(sc)
482 	struct ste_softc		*sc;
483 {
484 	int		i;
485 
486 	for (i = 0; i < STE_TIMEOUT; i++) {
487 		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
488 			break;
489 	}
490 
491 	if (i == STE_TIMEOUT)
492 		printf("ste%d: command never completed!\n", sc->ste_unit);
493 
494 	return;
495 }
496 
497 /*
498  * The EEPROM is slow: give it time to come ready after issuing
499  * it a command.
500  */
501 static int ste_eeprom_wait(sc)
502 	struct ste_softc		*sc;
503 {
504 	int			i;
505 
506 	DELAY(1000);
507 
508 	for (i = 0; i < 100; i++) {
509 		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
510 			DELAY(1000);
511 		else
512 			break;
513 	}
514 
515 	if (i == 100) {
516 		printf("ste%d: eeprom failed to come ready\n", sc->ste_unit);
517 		return(1);
518 	}
519 
520 	return(0);
521 }
522 
523 /*
524  * Read a sequence of words from the EEPROM. Note that ethernet address
525  * data is stored in the EEPROM in network byte order.
526  */
527 static int ste_read_eeprom(sc, dest, off, cnt, swap)
528 	struct ste_softc		*sc;
529 	caddr_t			dest;
530 	int			off;
531 	int			cnt;
532 	int			swap;
533 {
534 	int			err = 0, i;
535 	u_int16_t		word = 0, *ptr;
536 
537 	if (ste_eeprom_wait(sc))
538 		return(1);
539 
540 	for (i = 0; i < cnt; i++) {
541 		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
542 		err = ste_eeprom_wait(sc);
543 		if (err)
544 			break;
545 		word = CSR_READ_2(sc, STE_EEPROM_DATA);
546 		ptr = (u_int16_t *)(dest + (i * 2));
547 		if (swap)
548 			*ptr = ntohs(word);
549 		else
550 			*ptr = word;
551 	}
552 
553 	return(err ? 1 : 0);
554 }
555 
556 static u_int8_t ste_calchash(addr)
557 	caddr_t			addr;
558 {
559 
560 	u_int32_t		crc, carry;
561 	int			i, j;
562 	u_int8_t		c;
563 
564 	/* Compute CRC for the address value. */
565 	crc = 0xFFFFFFFF; /* initial value */
566 
567 	for (i = 0; i < 6; i++) {
568 		c = *(addr + i);
569 		for (j = 0; j < 8; j++) {
570 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
571 			crc <<= 1;
572 			c >>= 1;
573 			if (carry)
574 				crc = (crc ^ 0x04c11db6) | carry;
575 		}
576 	}
577 
578 	/* return the filter bit position */
579 	return(crc & 0x0000003F);
580 }
581 
582 static void ste_setmulti(sc)
583 	struct ste_softc	*sc;
584 {
585 	struct ifnet		*ifp;
586 	int			h = 0;
587 	u_int32_t		hashes[2] = { 0, 0 };
588 	struct ifmultiaddr	*ifma;
589 
590 	ifp = &sc->arpcom.ac_if;
591 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
592 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
593 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
594 		return;
595 	}
596 
597 	/* first, zot all the existing hash bits */
598 	CSR_WRITE_2(sc, STE_MAR0, 0);
599 	CSR_WRITE_2(sc, STE_MAR1, 0);
600 	CSR_WRITE_2(sc, STE_MAR2, 0);
601 	CSR_WRITE_2(sc, STE_MAR3, 0);
602 
603 	/* now program new ones */
604 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
605 	    ifma = ifma->ifma_link.le_next) {
606 		if (ifma->ifma_addr->sa_family != AF_LINK)
607 			continue;
608 		h = ste_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
609 		if (h < 32)
610 			hashes[0] |= (1 << h);
611 		else
612 			hashes[1] |= (1 << (h - 32));
613 	}
614 
615 	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
616 	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
617 	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
618 	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
619 	STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI);
620 	STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH);
621 
622 	return;
623 }
624 
625 static void ste_intr(xsc)
626 	void			*xsc;
627 {
628 	struct ste_softc	*sc;
629 	struct ifnet		*ifp;
630 	u_int16_t		status;
631 
632 	sc = xsc;
633 	ifp = &sc->arpcom.ac_if;
634 
635 	/* See if this is really our interrupt. */
636 	if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
637 		return;
638 
639 	for (;;) {
640 		status = CSR_READ_2(sc, STE_ISR_ACK);
641 
642 		if (!(status & STE_INTRS))
643 			break;
644 
645 		if (status & STE_ISR_RX_DMADONE)
646 			ste_rxeof(sc);
647 
648 		if (status & STE_ISR_TX_DMADONE)
649 			ste_txeof(sc);
650 
651 		if (status & STE_ISR_TX_DONE)
652 			ste_txeoc(sc);
653 
654 		if (status & STE_ISR_STATS_OFLOW) {
655 			callout_stop(&sc->ste_stat_timer);
656 			ste_stats_update(sc);
657 		}
658 
659 		if (status & STE_ISR_LINKEVENT)
660 			mii_pollstat(device_get_softc(sc->ste_miibus));
661 
662 		if (status & STE_ISR_HOSTERR) {
663 			ste_reset(sc);
664 			ste_init(sc);
665 		}
666 	}
667 
668 	/* Re-enable interrupts */
669 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
670 
671 	if (!ifq_is_empty(&ifp->if_snd))
672 		ste_start(ifp);
673 
674 	return;
675 }
676 
677 /*
678  * A frame has been uploaded: pass the resulting mbuf chain up to
679  * the higher level protocols.
680  */
681 static void ste_rxeof(sc)
682 	struct ste_softc		*sc;
683 {
684         struct mbuf		*m;
685         struct ifnet		*ifp;
686 	struct ste_chain_onefrag	*cur_rx;
687 	int			total_len = 0, count=0;
688 	u_int32_t		rxstat;
689 
690 	ifp = &sc->arpcom.ac_if;
691 
692 	while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
693 	      & STE_RXSTAT_DMADONE) {
694 		if ((STE_RX_LIST_CNT - count) < 3) {
695 			break;
696 		}
697 
698 		cur_rx = sc->ste_cdata.ste_rx_head;
699 		sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
700 
701 		/*
702 		 * If an error occurs, update stats, clear the
703 		 * status word and leave the mbuf cluster in place:
704 		 * it should simply get re-used next time this descriptor
705 	 	 * comes up in the ring.
706 		 */
707 		if (rxstat & STE_RXSTAT_FRAME_ERR) {
708 			ifp->if_ierrors++;
709 			cur_rx->ste_ptr->ste_status = 0;
710 			continue;
711 		}
712 
713 		/*
714 		 * If there error bit was not set, the upload complete
715 		 * bit should be set which means we have a valid packet.
716 		 * If not, something truly strange has happened.
717 		 */
718 		if (!(rxstat & STE_RXSTAT_DMADONE)) {
719 			printf("ste%d: bad receive status -- packet dropped",
720 							sc->ste_unit);
721 			ifp->if_ierrors++;
722 			cur_rx->ste_ptr->ste_status = 0;
723 			continue;
724 		}
725 
726 		/* No errors; receive the packet. */
727 		m = cur_rx->ste_mbuf;
728 		total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
729 
730 		/*
731 		 * Try to conjure up a new mbuf cluster. If that
732 		 * fails, it means we have an out of memory condition and
733 		 * should leave the buffer in place and continue. This will
734 		 * result in a lost packet, but there's little else we
735 		 * can do in this situation.
736 		 */
737 		if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
738 			ifp->if_ierrors++;
739 			cur_rx->ste_ptr->ste_status = 0;
740 			continue;
741 		}
742 
743 		ifp->if_ipackets++;
744 		m->m_pkthdr.rcvif = ifp;
745 		m->m_pkthdr.len = m->m_len = total_len;
746 
747 		(*ifp->if_input)(ifp, m);
748 
749 		cur_rx->ste_ptr->ste_status = 0;
750 		count++;
751 	}
752 
753 	return;
754 }
755 
756 static void ste_txeoc(sc)
757 	struct ste_softc	*sc;
758 {
759 	u_int8_t		txstat;
760 	struct ifnet		*ifp;
761 
762 	ifp = &sc->arpcom.ac_if;
763 
764 	while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
765 	    STE_TXSTATUS_TXDONE) {
766 		if (txstat & STE_TXSTATUS_UNDERRUN ||
767 		    txstat & STE_TXSTATUS_EXCESSCOLLS ||
768 		    txstat & STE_TXSTATUS_RECLAIMERR) {
769 			ifp->if_oerrors++;
770 			printf("ste%d: transmission error: %x\n",
771 			    sc->ste_unit, txstat);
772 
773 			ste_reset(sc);
774 			ste_init(sc);
775 
776 			if (txstat & STE_TXSTATUS_UNDERRUN &&
777 			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
778 				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
779 				printf("ste%d: tx underrun, increasing tx"
780 				    " start threshold to %d bytes\n",
781 				    sc->ste_unit, sc->ste_tx_thresh);
782 			}
783 			CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
784 			CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
785 			    (STE_PACKET_SIZE >> 4));
786 		}
787 		ste_init(sc);
788 		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
789 	}
790 
791 	return;
792 }
793 
794 static void ste_txeof(sc)
795 	struct ste_softc	*sc;
796 {
797 	struct ste_chain	*cur_tx = NULL;
798 	struct ifnet		*ifp;
799 	int			idx;
800 
801 	ifp = &sc->arpcom.ac_if;
802 
803 	idx = sc->ste_cdata.ste_tx_cons;
804 	while(idx != sc->ste_cdata.ste_tx_prod) {
805 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
806 
807 		if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
808 			break;
809 
810 		if (cur_tx->ste_mbuf != NULL) {
811 			m_freem(cur_tx->ste_mbuf);
812 			cur_tx->ste_mbuf = NULL;
813 		}
814 
815 		ifp->if_opackets++;
816 
817 		sc->ste_cdata.ste_tx_cnt--;
818 		STE_INC(idx, STE_TX_LIST_CNT);
819 		ifp->if_timer = 0;
820 	}
821 
822 	sc->ste_cdata.ste_tx_cons = idx;
823 
824 	if (cur_tx != NULL)
825 		ifp->if_flags &= ~IFF_OACTIVE;
826 
827 	return;
828 }
829 
830 static void ste_stats_update(xsc)
831 	void			*xsc;
832 {
833 	struct ste_softc	*sc;
834 	struct ifnet		*ifp;
835 	struct mii_data		*mii;
836 	int			s;
837 
838 	s = splimp();
839 
840 	sc = xsc;
841 	ifp = &sc->arpcom.ac_if;
842 	mii = device_get_softc(sc->ste_miibus);
843 
844         ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
845             + CSR_READ_1(sc, STE_MULTI_COLLS)
846             + CSR_READ_1(sc, STE_SINGLE_COLLS);
847 
848 	if (!sc->ste_link) {
849 		mii_pollstat(mii);
850 		if (mii->mii_media_status & IFM_ACTIVE &&
851 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
852 			sc->ste_link++;
853 			/*
854 			 * we don't get a call-back on re-init so do it
855 			 * otherwise we get stuck in the wrong link state
856 			 */
857 			ste_miibus_statchg(sc->ste_dev);
858 			if (!ifq_is_empty(&ifp->if_snd))
859 				ste_start(ifp);
860 		}
861 	}
862 
863 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
864 	splx(s);
865 
866 	return;
867 }
868 
869 
870 /*
871  * Probe for a Sundance ST201 chip. Check the PCI vendor and device
872  * IDs against our list and return a device name if we find a match.
873  */
874 static int ste_probe(dev)
875 	device_t		dev;
876 {
877 	struct ste_type		*t;
878 
879 	t = ste_devs;
880 
881 	while(t->ste_name != NULL) {
882 		if ((pci_get_vendor(dev) == t->ste_vid) &&
883 		    (pci_get_device(dev) == t->ste_did)) {
884 			device_set_desc(dev, t->ste_name);
885 			return(0);
886 		}
887 		t++;
888 	}
889 
890 	return(ENXIO);
891 }
892 
893 /*
894  * Attach the interface. Allocate softc structures, do ifmedia
895  * setup and ethernet/BPF attach.
896  */
897 static int ste_attach(dev)
898 	device_t		dev;
899 {
900 	int			s;
901 	u_int32_t		command;
902 	struct ste_softc	*sc;
903 	struct ifnet		*ifp;
904 	int			unit, error = 0, rid;
905 
906 	s = splimp();
907 
908 	sc = device_get_softc(dev);
909 	unit = device_get_unit(dev);
910 	bzero(sc, sizeof(struct ste_softc));
911 	sc->ste_dev = dev;
912 
913 	/*
914 	 * Only use one PHY since this chip reports multiple
915 	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
916 	 * it is at 0 & 1.  It is rev 0x12.
917 	 */
918 	if (pci_get_vendor(dev) == DL_VENDORID &&
919 	    pci_get_device(dev) == DL_DEVICEID_550TX &&
920 	    pci_get_revid(dev) == 0x12 )
921 		sc->ste_one_phy = 1;
922 
923 	/*
924 	 * Handle power management nonsense.
925 	 */
926 	command = pci_read_config(dev, STE_PCI_CAPID, 4) & 0x000000FF;
927 	if (command == 0x01) {
928 
929 		command = pci_read_config(dev, STE_PCI_PWRMGMTCTRL, 4);
930 		if (command & STE_PSTATE_MASK) {
931 			u_int32_t		iobase, membase, irq;
932 
933 			/* Save important PCI config data. */
934 			iobase = pci_read_config(dev, STE_PCI_LOIO, 4);
935 			membase = pci_read_config(dev, STE_PCI_LOMEM, 4);
936 			irq = pci_read_config(dev, STE_PCI_INTLINE, 4);
937 
938 			/* Reset the power state. */
939 			printf("ste%d: chip is in D%d power mode "
940 			"-- setting to D0\n", unit, command & STE_PSTATE_MASK);
941 			command &= 0xFFFFFFFC;
942 			pci_write_config(dev, STE_PCI_PWRMGMTCTRL, command, 4);
943 
944 			/* Restore PCI config data. */
945 			pci_write_config(dev, STE_PCI_LOIO, iobase, 4);
946 			pci_write_config(dev, STE_PCI_LOMEM, membase, 4);
947 			pci_write_config(dev, STE_PCI_INTLINE, irq, 4);
948 		}
949 	}
950 
951 	/*
952 	 * Map control/status registers.
953 	 */
954 	command = pci_read_config(dev, PCIR_COMMAND, 4);
955 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
956 	pci_write_config(dev, PCIR_COMMAND, command, 4);
957 	command = pci_read_config(dev, PCIR_COMMAND, 4);
958 
959 #ifdef STE_USEIOSPACE
960 	if (!(command & PCIM_CMD_PORTEN)) {
961 		printf("ste%d: failed to enable I/O ports!\n", unit);
962 		error = ENXIO;
963 		goto fail;
964 	}
965 #else
966 	if (!(command & PCIM_CMD_MEMEN)) {
967 		printf("ste%d: failed to enable memory mapping!\n", unit);
968 		error = ENXIO;
969 		goto fail;
970 	}
971 #endif
972 
973 	rid = STE_RID;
974 	sc->ste_res = bus_alloc_resource_any(dev, STE_RES, &rid, RF_ACTIVE);
975 
976 	if (sc->ste_res == NULL) {
977 		printf ("ste%d: couldn't map ports/memory\n", unit);
978 		error = ENXIO;
979 		goto fail;
980 	}
981 
982 	sc->ste_btag = rman_get_bustag(sc->ste_res);
983 	sc->ste_bhandle = rman_get_bushandle(sc->ste_res);
984 
985 	rid = 0;
986 	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
987 	    RF_SHAREABLE | RF_ACTIVE);
988 
989 	if (sc->ste_irq == NULL) {
990 		printf("ste%d: couldn't map interrupt\n", unit);
991 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
992 		error = ENXIO;
993 		goto fail;
994 	}
995 
996 	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET,
997 			       ste_intr, sc, &sc->ste_intrhand, NULL);
998 
999 	if (error) {
1000 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1001 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1002 		printf("ste%d: couldn't set up irq\n", unit);
1003 		goto fail;
1004 	}
1005 
1006 	callout_init(&sc->ste_stat_timer);
1007 
1008 	/* Reset the adapter. */
1009 	ste_reset(sc);
1010 
1011 	/*
1012 	 * Get station address from the EEPROM.
1013 	 */
1014 	if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1015 	    STE_EEADDR_NODE0, 3, 0)) {
1016 		printf("ste%d: failed to read station address\n", unit);
1017 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1018 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1019 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1020 		error = ENXIO;;
1021 		goto fail;
1022 	}
1023 
1024 	sc->ste_unit = unit;
1025 
1026 	/* Allocate the descriptor queues. */
1027 	sc->ste_ldata = contigmalloc(sizeof(struct ste_list_data), M_DEVBUF,
1028 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1029 
1030 	if (sc->ste_ldata == NULL) {
1031 		printf("ste%d: no memory for list buffers!\n", unit);
1032 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1033 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1034 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1035 		error = ENXIO;
1036 		goto fail;
1037 	}
1038 
1039 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1040 
1041 	/* Do MII setup. */
1042 	if (mii_phy_probe(dev, &sc->ste_miibus,
1043 		ste_ifmedia_upd, ste_ifmedia_sts)) {
1044 		printf("ste%d: MII without any phy!\n", sc->ste_unit);
1045 		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1046 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1047 		bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1048 		contigfree(sc->ste_ldata,
1049 		    sizeof(struct ste_list_data), M_DEVBUF);
1050 		error = ENXIO;
1051 		goto fail;
1052 	}
1053 
1054 	ifp = &sc->arpcom.ac_if;
1055 	ifp->if_softc = sc;
1056 	if_initname(ifp, "ste", unit);
1057 	ifp->if_mtu = ETHERMTU;
1058 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1059 	ifp->if_ioctl = ste_ioctl;
1060 	ifp->if_start = ste_start;
1061 	ifp->if_watchdog = ste_watchdog;
1062 	ifp->if_init = ste_init;
1063 	ifp->if_baudrate = 10000000;
1064 	ifq_set_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1065 	ifq_set_ready(&ifp->if_snd);
1066 
1067 	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1068 
1069 	/*
1070 	 * Call MI attach routine.
1071 	 */
1072 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
1073 
1074         /*
1075          * Tell the upper layer(s) we support long frames.
1076          */
1077         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1078 
1079 fail:
1080 	splx(s);
1081 	return(error);
1082 }
1083 
1084 static int ste_detach(dev)
1085 	device_t		dev;
1086 {
1087 	struct ste_softc	*sc;
1088 	struct ifnet		*ifp;
1089 	int			s;
1090 
1091 	s = splimp();
1092 
1093 	sc = device_get_softc(dev);
1094 	ifp = &sc->arpcom.ac_if;
1095 
1096 	ste_stop(sc);
1097 	ether_ifdetach(ifp);
1098 
1099 	bus_generic_detach(dev);
1100 	device_delete_child(dev, sc->ste_miibus);
1101 
1102 	bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1103 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1104 	bus_release_resource(dev, STE_RES, STE_RID, sc->ste_res);
1105 
1106 	contigfree(sc->ste_ldata, sizeof(struct ste_list_data), M_DEVBUF);
1107 
1108 	splx(s);
1109 
1110 	return(0);
1111 }
1112 
1113 static int ste_newbuf(sc, c, m)
1114 	struct ste_softc	*sc;
1115 	struct ste_chain_onefrag	*c;
1116 	struct mbuf		*m;
1117 {
1118 	struct mbuf		*m_new = NULL;
1119 
1120 	if (m == NULL) {
1121 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1122 		if (m_new == NULL)
1123 			return(ENOBUFS);
1124 		MCLGET(m_new, MB_DONTWAIT);
1125 		if (!(m_new->m_flags & M_EXT)) {
1126 			m_freem(m_new);
1127 			return(ENOBUFS);
1128 		}
1129 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1130 	} else {
1131 		m_new = m;
1132 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1133 		m_new->m_data = m_new->m_ext.ext_buf;
1134 	}
1135 
1136 	m_adj(m_new, ETHER_ALIGN);
1137 
1138 	c->ste_mbuf = m_new;
1139 	c->ste_ptr->ste_status = 0;
1140 	c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t));
1141 	c->ste_ptr->ste_frag.ste_len = (1536 + EVL_ENCAPLEN) | STE_FRAG_LAST;
1142 
1143 	return(0);
1144 }
1145 
1146 static int ste_init_rx_list(sc)
1147 	struct ste_softc	*sc;
1148 {
1149 	struct ste_chain_data	*cd;
1150 	struct ste_list_data	*ld;
1151 	int			i;
1152 
1153 	cd = &sc->ste_cdata;
1154 	ld = sc->ste_ldata;
1155 
1156 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1157 		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1158 		if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
1159 			return(ENOBUFS);
1160 		if (i == (STE_RX_LIST_CNT - 1)) {
1161 			cd->ste_rx_chain[i].ste_next =
1162 			    &cd->ste_rx_chain[0];
1163 			ld->ste_rx_list[i].ste_next =
1164 			    vtophys(&ld->ste_rx_list[0]);
1165 		} else {
1166 			cd->ste_rx_chain[i].ste_next =
1167 			    &cd->ste_rx_chain[i + 1];
1168 			ld->ste_rx_list[i].ste_next =
1169 			    vtophys(&ld->ste_rx_list[i + 1]);
1170 		}
1171 		ld->ste_rx_list[i].ste_status = 0;
1172 	}
1173 
1174 	cd->ste_rx_head = &cd->ste_rx_chain[0];
1175 
1176 	return(0);
1177 }
1178 
1179 static void ste_init_tx_list(sc)
1180 	struct ste_softc	*sc;
1181 {
1182 	struct ste_chain_data	*cd;
1183 	struct ste_list_data	*ld;
1184 	int			i;
1185 
1186 	cd = &sc->ste_cdata;
1187 	ld = sc->ste_ldata;
1188 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1189 		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1190 		cd->ste_tx_chain[i].ste_ptr->ste_next = 0;
1191 		cd->ste_tx_chain[i].ste_ptr->ste_ctl  = 0;
1192 		cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]);
1193 		if (i == (STE_TX_LIST_CNT - 1))
1194 			cd->ste_tx_chain[i].ste_next =
1195 			    &cd->ste_tx_chain[0];
1196 		else
1197 			cd->ste_tx_chain[i].ste_next =
1198 			    &cd->ste_tx_chain[i + 1];
1199 		if (i == 0)
1200 			cd->ste_tx_chain[i].ste_prev =
1201 			     &cd->ste_tx_chain[STE_TX_LIST_CNT - 1];
1202 		else
1203 			cd->ste_tx_chain[i].ste_prev =
1204 			     &cd->ste_tx_chain[i - 1];
1205 	}
1206 
1207 	cd->ste_tx_prod = 0;
1208 	cd->ste_tx_cons = 0;
1209 	cd->ste_tx_cnt = 0;
1210 
1211 	return;
1212 }
1213 
1214 static void ste_init(xsc)
1215 	void			*xsc;
1216 {
1217 	struct ste_softc	*sc;
1218 	int			i, s;
1219 	struct ifnet		*ifp;
1220 	struct mii_data		*mii;
1221 
1222 	s = splimp();
1223 
1224 	sc = xsc;
1225 	ifp = &sc->arpcom.ac_if;
1226 	mii = device_get_softc(sc->ste_miibus);
1227 
1228 	ste_stop(sc);
1229 
1230 	/* Init our MAC address */
1231 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1232 		CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1233 	}
1234 
1235 	/* Init RX list */
1236 	if (ste_init_rx_list(sc) == ENOBUFS) {
1237 		printf("ste%d: initialization failed: no "
1238 		    "memory for RX buffers\n", sc->ste_unit);
1239 		ste_stop(sc);
1240 		splx(s);
1241 		return;
1242 	}
1243 
1244 	/* Set RX polling interval */
1245 	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 1);
1246 
1247 	/* Init TX descriptors */
1248 	ste_init_tx_list(sc);
1249 
1250 	/* Set the TX freethresh value */
1251 	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1252 
1253 	/* Set the TX start threshold for best performance. */
1254 	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1255 
1256 	/* Set the TX reclaim threshold. */
1257 	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1258 
1259 	/* Set up the RX filter. */
1260 	CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST);
1261 
1262 	/* If we want promiscuous mode, set the allframes bit. */
1263 	if (ifp->if_flags & IFF_PROMISC) {
1264 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1265 	} else {
1266 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC);
1267 	}
1268 
1269 	/* Set capture broadcast bit to accept broadcast frames. */
1270 	if (ifp->if_flags & IFF_BROADCAST) {
1271 		STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1272 	} else {
1273 		STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST);
1274 	}
1275 
1276 	ste_setmulti(sc);
1277 
1278 	/* Load the address of the RX list. */
1279 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1280 	ste_wait(sc);
1281 	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1282 	    vtophys(&sc->ste_ldata->ste_rx_list[0]));
1283 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1284 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1285 
1286 	/* Set TX polling interval (defer until we TX first packet */
1287 	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1288 
1289 	/* Load address of the TX list */
1290 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1291 	ste_wait(sc);
1292 	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1293 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1294 	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1295 	ste_wait(sc);
1296 	sc->ste_tx_prev_idx=-1;
1297 
1298 	/* Enable receiver and transmitter */
1299 	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1300 	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1301 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1302 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1303 
1304 	/* Enable stats counters. */
1305 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1306 
1307 	/* Enable interrupts. */
1308 	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1309 	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1310 
1311 	/* Accept VLAN length packets */
1312 	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + EVL_ENCAPLEN);
1313 
1314 	ste_ifmedia_upd(ifp);
1315 
1316 	ifp->if_flags |= IFF_RUNNING;
1317 	ifp->if_flags &= ~IFF_OACTIVE;
1318 
1319 	splx(s);
1320 
1321 	callout_reset(&sc->ste_stat_timer, hz, ste_stats_update, sc);
1322 
1323 	return;
1324 }
1325 
1326 static void ste_stop(sc)
1327 	struct ste_softc	*sc;
1328 {
1329 	int			i;
1330 	struct ifnet		*ifp;
1331 
1332 	ifp = &sc->arpcom.ac_if;
1333 
1334 	callout_stop(&sc->ste_stat_timer);
1335 
1336 	CSR_WRITE_2(sc, STE_IMR, 0);
1337 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
1338 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
1339 	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
1340 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1341 	STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1342 	ste_wait(sc);
1343 	/*
1344 	 * Try really hard to stop the RX engine or under heavy RX
1345 	 * data chip will write into de-allocated memory.
1346 	 */
1347 	ste_reset(sc);
1348 
1349 	sc->ste_link = 0;
1350 
1351 	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1352 		if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
1353 			m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
1354 			sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
1355 		}
1356 	}
1357 
1358 	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1359 		if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
1360 			m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
1361 			sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
1362 		}
1363 	}
1364 
1365 	bzero(sc->ste_ldata, sizeof(struct ste_list_data));
1366 
1367 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1368 
1369 	return;
1370 }
1371 
1372 static void ste_reset(sc)
1373 	struct ste_softc	*sc;
1374 {
1375 	int			i;
1376 
1377 	STE_SETBIT4(sc, STE_ASICCTL,
1378 	    STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
1379 	    STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
1380 	    STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
1381 	    STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
1382 	    STE_ASICCTL_EXTRESET_RESET);
1383 
1384 	DELAY(100000);
1385 
1386 	for (i = 0; i < STE_TIMEOUT; i++) {
1387 		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1388 			break;
1389 	}
1390 
1391 	if (i == STE_TIMEOUT)
1392 		printf("ste%d: global reset never completed\n", sc->ste_unit);
1393 
1394 	return;
1395 }
1396 
1397 static int ste_ioctl(ifp, command, data, cr)
1398 	struct ifnet		*ifp;
1399 	u_long			command;
1400 	caddr_t			data;
1401 	struct ucred		*cr;
1402 {
1403 	struct ste_softc	*sc;
1404 	struct ifreq		*ifr;
1405 	struct mii_data		*mii;
1406 	int			error = 0, s;
1407 
1408 	s = splimp();
1409 
1410 	sc = ifp->if_softc;
1411 	ifr = (struct ifreq *)data;
1412 
1413 	switch(command) {
1414 	case SIOCSIFFLAGS:
1415 		if (ifp->if_flags & IFF_UP) {
1416 			if (ifp->if_flags & IFF_RUNNING &&
1417 			    ifp->if_flags & IFF_PROMISC &&
1418 			    !(sc->ste_if_flags & IFF_PROMISC)) {
1419 				STE_SETBIT1(sc, STE_RX_MODE,
1420 				    STE_RXMODE_PROMISC);
1421 			} else if (ifp->if_flags & IFF_RUNNING &&
1422 			    !(ifp->if_flags & IFF_PROMISC) &&
1423 			    sc->ste_if_flags & IFF_PROMISC) {
1424 				STE_CLRBIT1(sc, STE_RX_MODE,
1425 				    STE_RXMODE_PROMISC);
1426 			}
1427 			if (!(ifp->if_flags & IFF_RUNNING)) {
1428 				sc->ste_tx_thresh = STE_TXSTART_THRESH;
1429 				ste_init(sc);
1430 			}
1431 		} else {
1432 			if (ifp->if_flags & IFF_RUNNING)
1433 				ste_stop(sc);
1434 		}
1435 		sc->ste_if_flags = ifp->if_flags;
1436 		error = 0;
1437 		break;
1438 	case SIOCADDMULTI:
1439 	case SIOCDELMULTI:
1440 		ste_setmulti(sc);
1441 		error = 0;
1442 		break;
1443 	case SIOCGIFMEDIA:
1444 	case SIOCSIFMEDIA:
1445 		mii = device_get_softc(sc->ste_miibus);
1446 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1447 		break;
1448 	default:
1449 		error = ether_ioctl(ifp, command, data);
1450 		break;
1451 	}
1452 
1453 	splx(s);
1454 
1455 	return(error);
1456 }
1457 
1458 static int ste_encap(sc, c, m_head)
1459 	struct ste_softc	*sc;
1460 	struct ste_chain	*c;
1461 	struct mbuf		*m_head;
1462 {
1463 	int			frag = 0;
1464 	struct ste_frag		*f = NULL;
1465 	struct mbuf		*m;
1466 	struct ste_desc		*d;
1467 	int			total_len = 0;
1468 
1469 	d = c->ste_ptr;
1470 	d->ste_ctl = 0;
1471 
1472 encap_retry:
1473 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1474 		if (m->m_len != 0) {
1475 			if (frag == STE_MAXFRAGS)
1476 				break;
1477 			total_len += m->m_len;
1478 			f = &d->ste_frags[frag];
1479 			f->ste_addr = vtophys(mtod(m, vm_offset_t));
1480 			f->ste_len = m->m_len;
1481 			frag++;
1482 		}
1483 	}
1484 
1485 	if (m != NULL) {
1486 		struct mbuf *mn;
1487 
1488 		/*
1489 		 * We ran out of segments. We have to recopy this
1490 		 * mbuf chain first. Bail out if we can't get the
1491 		 * new buffers.  Code borrowed from if_fxp.c.
1492 		 */
1493 		MGETHDR(mn, MB_DONTWAIT, MT_DATA);
1494 		if (mn == NULL) {
1495 			m_freem(m_head);
1496 			return ENOMEM;
1497 		}
1498 		if (m_head->m_pkthdr.len > MHLEN) {
1499 			MCLGET(mn, MB_DONTWAIT);
1500 			if ((mn->m_flags & M_EXT) == 0) {
1501 				m_freem(mn);
1502 				m_freem(m_head);
1503 				return ENOMEM;
1504 			}
1505 		}
1506 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1507 		    mtod(mn, caddr_t));
1508 		mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
1509 		m_freem(m_head);
1510 		m_head = mn;
1511 		goto encap_retry;
1512 	}
1513 
1514 	c->ste_mbuf = m_head;
1515 	d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
1516 	d->ste_ctl = 1;
1517 
1518 	return(0);
1519 }
1520 
1521 static void ste_start(ifp)
1522 	struct ifnet		*ifp;
1523 {
1524 	struct ste_softc	*sc;
1525 	struct mbuf		*m_head = NULL;
1526 	struct ste_chain	*cur_tx = NULL;
1527 	int			idx;
1528 
1529 	sc = ifp->if_softc;
1530 
1531 	if (!sc->ste_link)
1532 		return;
1533 
1534 	if (ifp->if_flags & IFF_OACTIVE)
1535 		return;
1536 
1537 	idx = sc->ste_cdata.ste_tx_prod;
1538 
1539 	while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
1540 
1541 		if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) {
1542 			ifp->if_flags |= IFF_OACTIVE;
1543 			break;
1544 		}
1545 
1546 		m_head = ifq_dequeue(&ifp->if_snd);
1547 		if (m_head == NULL)
1548 			break;
1549 
1550 		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
1551 
1552 		if (ste_encap(sc, cur_tx, m_head) != 0)
1553 			break;
1554 
1555 		cur_tx->ste_ptr->ste_next = 0;
1556 
1557 		if(sc->ste_tx_prev_idx < 0){
1558 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1559 			/* Load address of the TX list */
1560 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1561 			ste_wait(sc);
1562 
1563 			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1564 			    vtophys(&sc->ste_ldata->ste_tx_list[0]));
1565 
1566 			/* Set TX polling interval to start TX engine */
1567 			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1568 
1569 			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1570 			ste_wait(sc);
1571 		}else{
1572 			cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
1573 			sc->ste_cdata.ste_tx_chain[
1574 			    sc->ste_tx_prev_idx].ste_ptr->ste_next
1575 				= cur_tx->ste_phys;
1576 		}
1577 
1578 		sc->ste_tx_prev_idx=idx;
1579 
1580 		BPF_MTAP(ifp, cur_tx->ste_mbuf);
1581 
1582 		STE_INC(idx, STE_TX_LIST_CNT);
1583 		sc->ste_cdata.ste_tx_cnt++;
1584 		ifp->if_timer = 5;
1585 		sc->ste_cdata.ste_tx_prod = idx;
1586 	}
1587 
1588 	return;
1589 }
1590 
1591 static void ste_watchdog(ifp)
1592 	struct ifnet		*ifp;
1593 {
1594 	struct ste_softc	*sc;
1595 
1596 	sc = ifp->if_softc;
1597 
1598 	ifp->if_oerrors++;
1599 	printf("ste%d: watchdog timeout\n", sc->ste_unit);
1600 
1601 	ste_txeoc(sc);
1602 	ste_txeof(sc);
1603 	ste_rxeof(sc);
1604 	ste_reset(sc);
1605 	ste_init(sc);
1606 
1607 	if (!ifq_is_empty(&ifp->if_snd))
1608 		ste_start(ifp);
1609 
1610 	return;
1611 }
1612 
1613 static void ste_shutdown(dev)
1614 	device_t		dev;
1615 {
1616 	struct ste_softc	*sc;
1617 
1618 	sc = device_get_softc(dev);
1619 
1620 	ste_stop(sc);
1621 
1622 	return;
1623 }
1624