xref: /dflybsd-src/sys/dev/netif/sk/if_sk.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*
2  * Copyright (c) 1997, 1998, 1999, 2000
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $
33  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
34  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.48 2006/10/25 20:55:59 dillon Exp $
35  */
36 
37 /*
38  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
39  *
40  * Permission to use, copy, modify, and distribute this software for any
41  * purpose with or without fee is hereby granted, provided that the above
42  * copyright notice and this permission notice appear in all copies.
43  *
44  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
45  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
46  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
47  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
48  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
49  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
50  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  */
52 
53 /*
54  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
55  * the SK-984x series adapters, both single port and dual port.
56  * References:
57  * 	The XaQti XMAC II datasheet,
58  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
59  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
60  *
61  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
62  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
63  * convenience to others until Vitesse corrects this problem:
64  *
65  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
66  *
67  * Written by Bill Paul <wpaul@ee.columbia.edu>
68  * Department of Electrical Engineering
69  * Columbia University, New York City
70  */
71 
72 /*
73  * The SysKonnect gigabit ethernet adapters consist of two main
74  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
75  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
76  * components and a PHY while the GEnesis controller provides a PCI
77  * interface with DMA support. Each card may have between 512K and
78  * 2MB of SRAM on board depending on the configuration.
79  *
80  * The SysKonnect GEnesis controller can have either one or two XMAC
81  * chips connected to it, allowing single or dual port NIC configurations.
82  * SysKonnect has the distinction of being the only vendor on the market
83  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
84  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
85  * XMAC registers. This driver takes advantage of these features to allow
86  * both XMACs to operate as independent interfaces.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/serialize.h>
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 #include <sys/thread2.h>
101 
102 #include <net/if.h>
103 #include <net/ifq_var.h>
104 #include <net/if_arp.h>
105 #include <net/ethernet.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 
114 #include <dev/netif/mii_layer/mii.h>
115 #include <dev/netif/mii_layer/miivar.h>
116 #include <dev/netif/mii_layer/brgphyreg.h>
117 
118 #include <bus/pci/pcireg.h>
119 #include <bus/pci/pcivar.h>
120 
121 #if 0
122 #define SK_USEIOSPACE
123 #endif
124 
125 #include "if_skreg.h"
126 #include "xmaciireg.h"
127 #include "yukonreg.h"
128 
129 /* "controller miibus0" required.  See GENERIC if you get errors here. */
130 #include "miibus_if.h"
131 
132 static struct sk_type sk_devs[] = {
133 	{ VENDORID_SK, DEVICEID_SK_V1,
134 	  "SysKonnect Gigabit Ethernet (V1.0)" },
135 	{ VENDORID_SK, DEVICEID_SK_V2,
136 	  "SysKonnect Gigabit Ethernet (V2.0)" },
137 	{ VENDORID_MARVELL, DEVICEID_SK_V2,
138 	  "Marvell Gigabit Ethernet" },
139 	{ VENDORID_3COM, DEVICEID_3COM_3C940,
140 	  "3Com 3C940 Gigabit Ethernet" },
141 	{ VENDORID_LINKSYS, DEVICEID_LINKSYS_EG1032,
142 	  "Linksys EG1032 Gigabit Ethernet" },
143 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE530T,
144 	  "D-Link DGE-530T Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int	skc_probe(device_t);
149 static int	skc_attach(device_t);
150 static int	skc_detach(device_t);
151 static void	skc_shutdown(device_t);
152 static int	sk_probe(device_t);
153 static int	sk_attach(device_t);
154 static int	sk_detach(device_t);
155 static void	sk_tick(void *);
156 static void	sk_intr(void *);
157 static void	sk_intr_bcom(struct sk_if_softc *);
158 static void	sk_intr_xmac(struct sk_if_softc *);
159 static void	sk_intr_yukon(struct sk_if_softc *);
160 static void	sk_rxeof(struct sk_if_softc *);
161 static void	sk_txeof(struct sk_if_softc *);
162 static int	sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
163 static void	sk_start(struct ifnet *);
164 static int	sk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
165 static void	sk_init(void *);
166 static void	sk_init_xmac(struct sk_if_softc *);
167 static void	sk_init_yukon(struct sk_if_softc *);
168 static void	sk_stop(struct sk_if_softc *);
169 static void	sk_watchdog(struct ifnet *);
170 static int	sk_ifmedia_upd(struct ifnet *);
171 static void	sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172 static void	sk_reset(struct sk_softc *);
173 static int	sk_newbuf(struct sk_if_softc *, struct sk_chain *,
174 			  struct mbuf *);
175 static int	sk_alloc_jumbo_mem(struct sk_if_softc *);
176 static struct sk_jslot
177 		*sk_jalloc(struct sk_if_softc *);
178 static void	sk_jfree(void *);
179 static void	sk_jref(void *);
180 static int	sk_init_rx_ring(struct sk_if_softc *);
181 static void	sk_init_tx_ring(struct sk_if_softc *);
182 static uint32_t	sk_win_read_4(struct sk_softc *, int);
183 static uint16_t	sk_win_read_2(struct sk_softc *, int);
184 static uint8_t	sk_win_read_1(struct sk_softc *, int);
185 static void	sk_win_write_4(struct sk_softc *, int, uint32_t);
186 static void	sk_win_write_2(struct sk_softc *, int, uint32_t);
187 static void	sk_win_write_1(struct sk_softc *, int, uint32_t);
188 static uint8_t	sk_vpd_readbyte(struct sk_softc *, int);
189 static void	sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
190 static void	sk_vpd_read(struct sk_softc *);
191 
192 static int	sk_miibus_readreg(device_t, int, int);
193 static int	sk_miibus_writereg(device_t, int, int, int);
194 static void	sk_miibus_statchg(device_t);
195 
196 static int	sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
197 static int	sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int);
198 static void	sk_xmac_miibus_statchg(struct sk_if_softc *);
199 
200 static int	sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
201 static int	sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int);
202 static void	sk_marv_miibus_statchg(struct sk_if_softc *);
203 
204 static void	sk_setfilt(struct sk_if_softc *, caddr_t, int);
205 static void	sk_setmulti(struct sk_if_softc *);
206 static void	sk_setpromisc(struct sk_if_softc *);
207 
208 #ifdef SK_USEIOSPACE
209 #define SK_RES		SYS_RES_IOPORT
210 #define SK_RID		SK_PCI_LOIO
211 #else
212 #define SK_RES		SYS_RES_MEMORY
213 #define SK_RID		SK_PCI_LOMEM
214 #endif
215 
216 /*
217  * Note that we have newbus methods for both the GEnesis controller
218  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
219  * the miibus code is a child of the XMACs. We need to do it this way
220  * so that the miibus drivers can access the PHY registers on the
221  * right PHY. It's not quite what I had in mind, but it's the only
222  * design that achieves the desired effect.
223  */
224 static device_method_t skc_methods[] = {
225 	/* Device interface */
226 	DEVMETHOD(device_probe,		skc_probe),
227 	DEVMETHOD(device_attach,	skc_attach),
228 	DEVMETHOD(device_detach,	skc_detach),
229 	DEVMETHOD(device_shutdown,	skc_shutdown),
230 
231 	/* bus interface */
232 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
233 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
234 
235 	{ 0, 0 }
236 };
237 
238 static DEFINE_CLASS_0(skc, skc_driver, skc_methods, sizeof(struct sk_softc));
239 static devclass_t skc_devclass;
240 
241 static device_method_t sk_methods[] = {
242 	/* Device interface */
243 	DEVMETHOD(device_probe,		sk_probe),
244 	DEVMETHOD(device_attach,	sk_attach),
245 	DEVMETHOD(device_detach,	sk_detach),
246 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
247 
248 	/* bus interface */
249 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
250 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
251 
252 	/* MII interface */
253 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
254 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
255 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
256 
257 	{ 0, 0 }
258 };
259 
260 static DEFINE_CLASS_0(sk, sk_driver, sk_methods, sizeof(struct sk_if_softc));
261 static devclass_t sk_devclass;
262 static struct lwkt_serialize sk_serializer;
263 
264 DECLARE_DUMMY_MODULE(if_sk);
265 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
266 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
267 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
268 
269 #define SK_SETBIT(sc, reg, x)		\
270 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
271 
272 #define SK_CLRBIT(sc, reg, x)		\
273 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
274 
275 #define SK_WIN_SETBIT_4(sc, reg, x)	\
276 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
277 
278 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
279 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
280 
281 #define SK_WIN_SETBIT_2(sc, reg, x)	\
282 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
283 
284 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
285 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
286 
287 static uint32_t
288 sk_win_read_4(struct sk_softc *sc, int reg)
289 {
290 #ifdef SK_USEIOSPACE
291 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
292 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
293 #else
294 	return(CSR_READ_4(sc, reg));
295 #endif
296 }
297 
298 static uint16_t
299 sk_win_read_2(struct sk_softc *sc, int reg)
300 {
301 #ifdef SK_USEIOSPACE
302 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
303 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
304 #else
305 	return(CSR_READ_2(sc, reg));
306 #endif
307 }
308 
309 static uint8_t
310 sk_win_read_1(struct sk_softc *sc, int reg)
311 {
312 #ifdef SK_USEIOSPACE
313 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
314 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
315 #else
316 	return(CSR_READ_1(sc, reg));
317 #endif
318 }
319 
320 static void
321 sk_win_write_4(struct sk_softc *sc, int reg, uint32_t val)
322 {
323 #ifdef SK_USEIOSPACE
324 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
325 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
326 #else
327 	CSR_WRITE_4(sc, reg, val);
328 #endif
329 }
330 
331 static void
332 sk_win_write_2(struct sk_softc *sc, int reg, uint32_t val)
333 {
334 #ifdef SK_USEIOSPACE
335 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
336 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
337 #else
338 	CSR_WRITE_2(sc, reg, val);
339 #endif
340 }
341 
342 static void
343 sk_win_write_1(struct sk_softc *sc, int reg, uint32_t val)
344 {
345 #ifdef SK_USEIOSPACE
346 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
347 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
348 #else
349 	CSR_WRITE_1(sc, reg, val);
350 #endif
351 }
352 
353 /*
354  * The VPD EEPROM contains Vital Product Data, as suggested in
355  * the PCI 2.1 specification. The VPD data is separared into areas
356  * denoted by resource IDs. The SysKonnect VPD contains an ID string
357  * resource (the name of the adapter), a read-only area resource
358  * containing various key/data fields and a read/write area which
359  * can be used to store asset management information or log messages.
360  * We read the ID string and read-only into buffers attached to
361  * the controller softc structure for later use. At the moment,
362  * we only use the ID string during sk_attach().
363  */
364 static uint8_t
365 sk_vpd_readbyte(struct sk_softc *sc, int addr)
366 {
367 	int i;
368 
369 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
370 	for (i = 0; i < SK_TIMEOUT; i++) {
371 		DELAY(1);
372 		if (sk_win_read_2(sc,
373 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
374 			break;
375 	}
376 
377 	if (i == SK_TIMEOUT)
378 		return(0);
379 
380 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
381 }
382 
383 static void
384 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
385 {
386 	int i;
387 	uint8_t *ptr;
388 
389 	ptr = (uint8_t *)res;
390 	for (i = 0; i < sizeof(struct vpd_res); i++)
391 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
392 }
393 
394 static void
395 sk_vpd_read(struct sk_softc *sc)
396 {
397 	struct vpd_res res;
398 	int i, pos = 0;
399 
400 	if (sc->sk_vpd_prodname != NULL)
401 		kfree(sc->sk_vpd_prodname, M_DEVBUF);
402 	if (sc->sk_vpd_readonly != NULL)
403 		kfree(sc->sk_vpd_readonly, M_DEVBUF);
404 	sc->sk_vpd_prodname = NULL;
405 	sc->sk_vpd_readonly = NULL;
406 
407 	sk_vpd_read_res(sc, &res, pos);
408 
409 	if (res.vr_id != VPD_RES_ID) {
410 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
411 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
412 		return;
413 	}
414 
415 	pos += sizeof(res);
416 	sc->sk_vpd_prodname = kmalloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
417 	for (i = 0; i < res.vr_len; i++)
418 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
419 	sc->sk_vpd_prodname[i] = '\0';
420 	pos += i;
421 
422 	sk_vpd_read_res(sc, &res, pos);
423 
424 	if (res.vr_id != VPD_RES_READ) {
425 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
426 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
427 		return;
428 	}
429 
430 	pos += sizeof(res);
431 	sc->sk_vpd_readonly = kmalloc(res.vr_len, M_DEVBUF, M_INTWAIT);
432 	for (i = 0; i < res.vr_len + 1; i++)
433 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
434 }
435 
436 static int
437 sk_miibus_readreg(device_t dev, int phy, int reg)
438 {
439 	struct sk_if_softc *sc_if = device_get_softc(dev);
440 
441 	switch(sc_if->sk_softc->sk_type) {
442 	case SK_GENESIS:
443 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
444 	case SK_YUKON:
445 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
446 	}
447 
448 	return(0);
449 }
450 
451 static int
452 sk_miibus_writereg(device_t dev, int phy, int reg, int val)
453 {
454 	struct sk_if_softc *sc_if = device_get_softc(dev);
455 
456 	switch(sc_if->sk_softc->sk_type) {
457 	case SK_GENESIS:
458 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
459 	case SK_YUKON:
460 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
461 	}
462 
463 	return(0);
464 }
465 
466 static void
467 sk_miibus_statchg(device_t dev)
468 {
469 	struct sk_if_softc *sc_if = device_get_softc(dev);
470 
471 	switch(sc_if->sk_softc->sk_type) {
472 	case SK_GENESIS:
473 		sk_xmac_miibus_statchg(sc_if);
474 		break;
475 	case SK_YUKON:
476 		sk_marv_miibus_statchg(sc_if);
477 		break;
478 	}
479 }
480 
481 static int
482 sk_xmac_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
483 {
484 	int i;
485 
486 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
487 		return(0);
488 
489 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
490 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
491 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
492 		for (i = 0; i < SK_TIMEOUT; i++) {
493 			DELAY(1);
494 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
495 			    XM_MMUCMD_PHYDATARDY)
496 				break;
497 		}
498 
499 		if (i == SK_TIMEOUT) {
500 			printf("sk%d: phy failed to come ready\n",
501 			    sc_if->sk_unit);
502 			return(0);
503 		}
504 	}
505 	DELAY(1);
506 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
507 }
508 
509 static int
510 sk_xmac_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
511 {
512 	int i;
513 
514 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
515 	for (i = 0; i < SK_TIMEOUT; i++) {
516 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
517 			break;
518 	}
519 
520 	if (i == SK_TIMEOUT) {
521 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
522 		return(ETIMEDOUT);
523 	}
524 
525 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
526 	for (i = 0; i < SK_TIMEOUT; i++) {
527 		DELAY(1);
528 		if ((SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY) == 0)
529 			break;
530 	}
531 
532 	if (i == SK_TIMEOUT)
533 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
534 
535 	return(0);
536 }
537 
538 static void
539 sk_xmac_miibus_statchg(struct sk_if_softc *sc_if)
540 {
541 	struct mii_data *mii;
542 
543 	mii = device_get_softc(sc_if->sk_miibus);
544 
545 	/*
546 	 * If this is a GMII PHY, manually set the XMAC's
547 	 * duplex mode accordingly.
548 	 */
549 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
550 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
551 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
552 		else
553 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
554 	}
555 }
556 
557 static int
558 sk_marv_miibus_readreg(struct sk_if_softc *sc_if, int phy, int reg)
559 {
560 	uint16_t val;
561 	int i;
562 
563 	if (phy != 0 ||
564 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
565 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
566 		return(0);
567 	}
568 
569         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
570 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
571 
572 	for (i = 0; i < SK_TIMEOUT; i++) {
573 		DELAY(1);
574 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
575 		if (val & YU_SMICR_READ_VALID)
576 			break;
577 	}
578 
579 	if (i == SK_TIMEOUT) {
580 		printf("sk%d: phy failed to come ready\n",
581 		    sc_if->sk_unit);
582 		return(0);
583 	}
584 
585 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
586 
587 	return(val);
588 }
589 
590 static int
591 sk_marv_miibus_writereg(struct sk_if_softc *sc_if, int phy, int reg, int val)
592 {
593 	int i;
594 
595 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
596 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
597 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
598 
599 	for (i = 0; i < SK_TIMEOUT; i++) {
600 		DELAY(1);
601 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
602 			break;
603 	}
604 
605 	return(0);
606 }
607 
608 static void
609 sk_marv_miibus_statchg(struct sk_if_softc *sc_if)
610 {
611 }
612 
613 #define	HASH_BITS		6
614 
615 static void
616 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
617 {
618 	int base;
619 
620 	base = XM_RXFILT_ENTRY(slot);
621 
622 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
623 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
624 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
625 }
626 
627 static void
628 sk_setmulti(struct sk_if_softc *sc_if)
629 {
630 	struct sk_softc *sc = sc_if->sk_softc;
631 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
632 	uint32_t hashes[2] = { 0, 0 };
633 	int h, i;
634 	struct ifmultiaddr *ifma;
635 	uint8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
636 
637 	/* First, zot all the existing filters. */
638 	switch(sc->sk_type) {
639 	case SK_GENESIS:
640 		for (i = 1; i < XM_RXFILT_MAX; i++)
641 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
642 
643 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
644 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
645 		break;
646 	case SK_YUKON:
647 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
649 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
650 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
651 		break;
652 	}
653 
654 	/* Now program new ones. */
655 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
656 		hashes[0] = 0xFFFFFFFF;
657 		hashes[1] = 0xFFFFFFFF;
658 	} else {
659 		i = 1;
660 		/* First find the tail of the list. */
661 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
662 			if (ifma->ifma_link.le_next == NULL)
663 				break;
664 		}
665 		/* Now traverse the list backwards. */
666 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
667 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
668 			if (ifma->ifma_addr->sa_family != AF_LINK)
669 				continue;
670 			/*
671 			 * Program the first XM_RXFILT_MAX multicast groups
672 			 * into the perfect filter. For all others,
673 			 * use the hash table.
674 			 */
675 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
676 				sk_setfilt(sc_if,
677 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
678 				i++;
679 				continue;
680 			}
681 
682                         switch(sc->sk_type) {
683                         case SK_GENESIS:
684 			    h = ~ether_crc32_le(LLADDR((struct sockaddr_dl *)
685 				ifma->ifma_addr), ETHER_ADDR_LEN) &
686 				((1 << HASH_BITS) -1 );
687                             if (h < 32)
688                                 hashes[0] |= (1 << h);
689                             else
690                                 hashes[1] |= (1 << (h - 32));
691                             break;
692 
693                         case SK_YUKON:
694 			    h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
695 				ifma->ifma_addr), ETHER_ADDR_LEN) &
696 				((1 << HASH_BITS) -1 );
697                             if (h < 32)
698                                 hashes[0] |= (1 << h);
699                             else
700                                 hashes[1] |= (1 << (h - 32));
701                             break;
702                         }
703 		}
704 	}
705 
706 	switch(sc->sk_type) {
707 	case SK_GENESIS:
708 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
709 			       XM_MODE_RX_USE_PERFECT);
710 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
711 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
712 		break;
713 	case SK_YUKON:
714 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
715 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
716 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
717 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
718 		break;
719 	}
720 }
721 
722 static void
723 sk_setpromisc(struct sk_if_softc *sc_if)
724 {
725 	struct sk_softc *sc = sc_if->sk_softc;
726 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
727 
728 	switch(sc->sk_type) {
729 	case SK_GENESIS:
730 		if (ifp->if_flags & IFF_PROMISC) {
731 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
732 		} else {
733 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
734 		}
735 		break;
736 	case SK_YUKON:
737 		if (ifp->if_flags & IFF_PROMISC) {
738 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
739 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
740 		} else {
741 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
742 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
743 		}
744 		break;
745 	}
746 }
747 
748 static int
749 sk_init_rx_ring(struct sk_if_softc *sc_if)
750 {
751 	struct sk_chain_data *cd = &sc_if->sk_cdata;
752 	struct sk_ring_data *rd = sc_if->sk_rdata;
753 	int i;
754 
755 	bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
756 
757 	for (i = 0; i < SK_RX_RING_CNT; i++) {
758 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
759 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
760 			return(ENOBUFS);
761 		if (i == (SK_RX_RING_CNT - 1)) {
762 			cd->sk_rx_chain[i].sk_next =
763 			    &cd->sk_rx_chain[0];
764 			rd->sk_rx_ring[i].sk_next =
765 			    vtophys(&rd->sk_rx_ring[0]);
766 		} else {
767 			cd->sk_rx_chain[i].sk_next =
768 			    &cd->sk_rx_chain[i + 1];
769 			rd->sk_rx_ring[i].sk_next =
770 			    vtophys(&rd->sk_rx_ring[i + 1]);
771 		}
772 	}
773 
774 	sc_if->sk_cdata.sk_rx_prod = 0;
775 	sc_if->sk_cdata.sk_rx_cons = 0;
776 
777 	return(0);
778 }
779 
780 static void
781 sk_init_tx_ring(struct sk_if_softc *sc_if)
782 {
783 	struct sk_chain_data *cd = &sc_if->sk_cdata;
784 	struct sk_ring_data *rd = sc_if->sk_rdata;
785 	int i, nexti;
786 
787 	bzero(sc_if->sk_rdata->sk_tx_ring,
788 	      sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
789 
790 	for (i = 0; i < SK_TX_RING_CNT; i++) {
791 		nexti = (i == (SK_TX_RING_CNT - 1)) ? 0 : i + 1;
792 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
793 		cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
794 		rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[nexti]);
795 	}
796 
797 	sc_if->sk_cdata.sk_tx_prod = 0;
798 	sc_if->sk_cdata.sk_tx_cons = 0;
799 	sc_if->sk_cdata.sk_tx_cnt = 0;
800 }
801 
802 static int
803 sk_newbuf(struct sk_if_softc *sc_if, struct sk_chain *c, struct mbuf *m)
804 {
805 	struct mbuf *m_new = NULL;
806 	struct sk_rx_desc *r;
807 	struct sk_jslot *buf;
808 
809 	if (m == NULL) {
810 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
811 		if (m_new == NULL)
812 			return(ENOBUFS);
813 
814 		/* Allocate the jumbo buffer */
815 		buf = sk_jalloc(sc_if);
816 		if (buf == NULL) {
817 			m_freem(m_new);
818 #ifdef SK_VERBOSE
819 			printf("sk%d: jumbo allocation failed "
820 			    "-- packet dropped!\n", sc_if->sk_unit);
821 #endif
822 			return(ENOBUFS);
823 		}
824 
825 		/* Attach the buffer to the mbuf */
826 		m_new->m_ext.ext_arg = buf;
827 		m_new->m_ext.ext_buf = buf->sk_buf;
828 		m_new->m_ext.ext_free = sk_jfree;
829 		m_new->m_ext.ext_ref = sk_jref;
830 		m_new->m_ext.ext_size = SK_JUMBO_FRAMELEN;
831 
832 		m_new->m_data = m_new->m_ext.ext_buf;
833 		m_new->m_flags |= M_EXT;
834 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
835 	} else {
836 		/*
837 	 	 * We're re-using a previously allocated mbuf;
838 		 * be sure to re-init pointers and lengths to
839 		 * default values.
840 		 */
841 		m_new = m;
842 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
843 		m_new->m_data = m_new->m_ext.ext_buf;
844 	}
845 
846 	/*
847 	 * Adjust alignment so packet payload begins on a
848 	 * longword boundary. Mandatory for Alpha, useful on
849 	 * x86 too.
850 	 */
851 	m_adj(m_new, ETHER_ALIGN);
852 
853 	r = c->sk_desc;
854 	c->sk_mbuf = m_new;
855 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
856 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
857 
858 	return(0);
859 }
860 
861 /*
862  * Allocate jumbo buffer storage. The SysKonnect adapters support
863  * "jumbograms" (9K frames), although SysKonnect doesn't currently
864  * use them in their drivers. In order for us to use them, we need
865  * large 9K receive buffers, however standard mbuf clusters are only
866  * 2048 bytes in size. Consequently, we need to allocate and manage
867  * our own jumbo buffer pool. Fortunately, this does not require an
868  * excessive amount of additional code.
869  */
870 static int
871 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
872 {
873 	caddr_t ptr;
874 	int i;
875 	struct sk_jslot *entry;
876 
877 	/* Grab a big chunk o' storage. */
878 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
879 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
880 
881 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
882 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
883 		return(ENOBUFS);
884 	}
885 
886 	SLIST_INIT(&sc_if->sk_jfree_listhead);
887 
888 	/*
889 	 * Now divide it up into 9K pieces and save the addresses
890 	 * in an array. Note that we play an evil trick here by using
891 	 * the first few bytes in the buffer to hold the the address
892 	 * of the softc structure for this interface. This is because
893 	 * sk_jfree() needs it, but it is called by the mbuf management
894 	 * code which will not pass it to us explicitly.
895 	 */
896 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
897 	for (i = 0; i < SK_JSLOTS; i++) {
898 		entry = &sc_if->sk_cdata.sk_jslots[i];
899 		entry->sk_sc = sc_if;
900 		entry->sk_buf = ptr;
901 		entry->sk_inuse = 0;
902 		entry->sk_slot = i;
903 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jslot_link);
904 		ptr += SK_JLEN;
905 	}
906 
907 	return(0);
908 }
909 
910 /*
911  * Allocate a jumbo buffer.
912  */
913 static struct sk_jslot *
914 sk_jalloc(struct sk_if_softc *sc_if)
915 {
916 	struct sk_jslot *entry;
917 
918 	lwkt_serialize_enter(&sc_if->sk_jslot_serializer);
919 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
920 	if (entry) {
921 		SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jslot_link);
922 		entry->sk_inuse = 1;
923 	} else {
924 #ifdef SK_VERBOSE
925 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
926 #endif
927 	}
928 	lwkt_serialize_exit(&sc_if->sk_jslot_serializer);
929 	return(entry);
930 }
931 
932 /*
933  * Adjust usage count on a jumbo buffer. In general this doesn't
934  * get used much because our jumbo buffers don't get passed around
935  * a lot, but it's implemented for correctness.
936  */
937 static void
938 sk_jref(void *arg)
939 {
940 	struct sk_jslot *entry = (struct sk_jslot *)arg;
941 	struct sk_if_softc *sc = entry->sk_sc;
942 
943 	if (sc == NULL)
944 		panic("sk_jref: can't find softc pointer!");
945 
946 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
947 		panic("sk_jref: asked to reference buffer "
948 		    "that we don't manage!");
949 	if (entry->sk_inuse == 0)
950 		panic("sk_jref: buffer already free!");
951 	atomic_add_int(&entry->sk_inuse, 1);
952 }
953 
954 /*
955  * Release a jumbo buffer.
956  */
957 static void
958 sk_jfree(void *arg)
959 {
960 	struct sk_jslot *entry = (struct sk_jslot *)arg;
961 	struct sk_if_softc *sc = entry->sk_sc;
962 
963 	if (sc == NULL)
964 		panic("sk_jref: can't find softc pointer!");
965 
966 	if (&sc->sk_cdata.sk_jslots[entry->sk_slot] != entry)
967 		panic("sk_jref: asked to reference buffer "
968 		    "that we don't manage!");
969 	if (entry->sk_inuse == 0)
970 		panic("sk_jref: buffer already free!");
971 	lwkt_serialize_enter(&sc->sk_jslot_serializer);
972 	atomic_subtract_int(&entry->sk_inuse, 1);
973 	if (entry->sk_inuse == 0)
974 		SLIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jslot_link);
975 	lwkt_serialize_exit(&sc->sk_jslot_serializer);
976 }
977 
978 /*
979  * Set media options.
980  */
981 static int
982 sk_ifmedia_upd(struct ifnet *ifp)
983 {
984 	struct sk_if_softc *sc_if = ifp->if_softc;
985 	struct mii_data *mii;
986 
987 	mii = device_get_softc(sc_if->sk_miibus);
988 	sk_init(sc_if);
989 	mii_mediachg(mii);
990 
991 	return(0);
992 }
993 
994 /*
995  * Report current media status.
996  */
997 static void
998 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
999 {
1000 	struct sk_if_softc *sc_if;
1001 	struct mii_data *mii;
1002 
1003 	sc_if = ifp->if_softc;
1004 	mii = device_get_softc(sc_if->sk_miibus);
1005 
1006 	mii_pollstat(mii);
1007 	ifmr->ifm_active = mii->mii_media_active;
1008 	ifmr->ifm_status = mii->mii_media_status;
1009 }
1010 
1011 static int
1012 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1013 {
1014 	struct sk_if_softc *sc_if = ifp->if_softc;
1015 	struct ifreq *ifr = (struct ifreq *)data;
1016 	struct mii_data *mii;
1017 	int error = 0;
1018 
1019 	crit_enter();
1020 
1021 	switch(command) {
1022 	case SIOCSIFMTU:
1023 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1024 			error = EINVAL;
1025 		else {
1026 			ifp->if_mtu = ifr->ifr_mtu;
1027 			ifp->if_flags &= ~IFF_RUNNING;
1028 			sk_init(sc_if);
1029 		}
1030 		break;
1031 	case SIOCSIFFLAGS:
1032 		if (ifp->if_flags & IFF_UP) {
1033 			if (ifp->if_flags & IFF_RUNNING) {
1034 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1035 				    & IFF_PROMISC) {
1036 					sk_setpromisc(sc_if);
1037 					sk_setmulti(sc_if);
1038 				}
1039 			} else
1040 				sk_init(sc_if);
1041 		} else {
1042 			if (ifp->if_flags & IFF_RUNNING)
1043 				sk_stop(sc_if);
1044 		}
1045 		sc_if->sk_if_flags = ifp->if_flags;
1046 		error = 0;
1047 		break;
1048 	case SIOCADDMULTI:
1049 	case SIOCDELMULTI:
1050 		sk_setmulti(sc_if);
1051 		error = 0;
1052 		break;
1053 	case SIOCGIFMEDIA:
1054 	case SIOCSIFMEDIA:
1055 		mii = device_get_softc(sc_if->sk_miibus);
1056 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1057 		break;
1058 	default:
1059 		error = ether_ioctl(ifp, command, data);
1060 		break;
1061 	}
1062 
1063 	crit_exit();
1064 
1065 	return(error);
1066 }
1067 
1068 /*
1069  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1070  * IDs against our list and return a device name if we find a match.
1071  */
1072 static int
1073 skc_probe(device_t dev)
1074 {
1075 	struct sk_type *t;
1076 	uint16_t vendor, product;
1077 
1078 	lwkt_serialize_init(&sk_serializer);
1079 	vendor = pci_get_vendor(dev);
1080 	product = pci_get_device(dev);
1081 
1082 	/*
1083 	 * Only attach to rev.2 of the Linksys EG1032 adapter.
1084 	 * Rev.3 is supported by re(4).
1085 	 */
1086 	if (vendor == VENDORID_LINKSYS &&
1087 	    product == DEVICEID_LINKSYS_EG1032 &&
1088 	    pci_get_subdevice(dev) != SUBDEVICEID_LINKSYS_EG1032_REV2)
1089 		return (ENXIO);
1090 
1091 	for (t = sk_devs; t->sk_name != NULL; t++) {
1092 		if (vendor == t->sk_vid && product == t->sk_did) {
1093 			device_set_desc(dev, t->sk_name);
1094 			return(0);
1095 		}
1096 	}
1097 
1098 	return(ENXIO);
1099 }
1100 
1101 /*
1102  * Force the GEnesis into reset, then bring it out of reset.
1103  */
1104 static void
1105 sk_reset(struct sk_softc *sc)
1106 {
1107 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1108 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1109 	if (sc->sk_type == SK_YUKON)
1110 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1111 
1112 	DELAY(1000);
1113 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1114 	DELAY(2);
1115 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1116 	if (sc->sk_type == SK_YUKON)
1117 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1118 
1119 	if (sc->sk_type == SK_GENESIS) {
1120 		/* Configure packet arbiter */
1121 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1122 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1123 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1124 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1125 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1126 	}
1127 
1128 	/* Enable RAM interface */
1129 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1130 
1131 	/*
1132          * Configure interrupt moderation. The moderation timer
1133 	 * defers interrupts specified in the interrupt moderation
1134 	 * timer mask based on the timeout specified in the interrupt
1135 	 * moderation timer init register. Each bit in the timer
1136 	 * register represents 18.825ns, so to specify a timeout in
1137 	 * microseconds, we have to multiply by 54.
1138 	 */
1139         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1140         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1141 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1142         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1143 }
1144 
1145 static int
1146 sk_probe(device_t dev)
1147 {
1148 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1149 
1150 	/*
1151 	 * Not much to do here. We always know there will be
1152 	 * at least one XMAC present, and if there are two,
1153 	 * skc_attach() will create a second device instance
1154 	 * for us.
1155 	 */
1156 	switch (sc->sk_type) {
1157 	case SK_GENESIS:
1158 		device_set_desc(dev, "XaQti Corp. XMAC II");
1159 		break;
1160 	case SK_YUKON:
1161 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1162 		break;
1163 	}
1164 
1165 	return(0);
1166 }
1167 
1168 /*
1169  * Each XMAC chip is attached as a separate logical IP interface.
1170  * Single port cards will have only one logical interface of course.
1171  */
1172 static int
1173 sk_attach(device_t dev)
1174 {
1175 	struct sk_softc *sc = device_get_softc(device_get_parent(dev));
1176 	struct sk_if_softc *sc_if = device_get_softc(dev);
1177 	struct ifnet *ifp;
1178 	int i, port;
1179 
1180 	port = *(int *)device_get_ivars(dev);
1181 	kfree(device_get_ivars(dev), M_DEVBUF);
1182 	device_set_ivars(dev, NULL);
1183 	sc_if->sk_dev = dev;
1184 	callout_init(&sc_if->sk_tick_timer);
1185 	lwkt_serialize_init(&sc_if->sk_jslot_serializer);
1186 
1187 	sc_if->sk_dev = dev;
1188 	sc_if->sk_unit = device_get_unit(dev);
1189 	sc_if->sk_port = port;
1190 	sc_if->sk_softc = sc;
1191 	sc->sk_if[port] = sc_if;
1192 	if (port == SK_PORT_A)
1193 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1194 	if (port == SK_PORT_B)
1195 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1196 
1197 	/*
1198 	 * Get station address for this interface. Note that
1199 	 * dual port cards actually come with three station
1200 	 * addresses: one for each port, plus an extra. The
1201 	 * extra one is used by the SysKonnect driver software
1202 	 * as a 'virtual' station address for when both ports
1203 	 * are operating in failover mode. Currently we don't
1204 	 * use this extra address.
1205 	 */
1206 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1207 		sc_if->arpcom.ac_enaddr[i] =
1208 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1209 
1210 	/*
1211 	 * Set up RAM buffer addresses. The NIC will have a certain
1212 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1213 	 * need to divide this up a) between the transmitter and
1214  	 * receiver and b) between the two XMACs, if this is a
1215 	 * dual port NIC. Our algotithm is to divide up the memory
1216 	 * evenly so that everyone gets a fair share.
1217 	 */
1218 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1219 		uint32_t chunk, val;
1220 
1221 		chunk = sc->sk_ramsize / 2;
1222 		val = sc->sk_rboff / sizeof(uint64_t);
1223 		sc_if->sk_rx_ramstart = val;
1224 		val += (chunk / sizeof(uint64_t));
1225 		sc_if->sk_rx_ramend = val - 1;
1226 		sc_if->sk_tx_ramstart = val;
1227 		val += (chunk / sizeof(uint64_t));
1228 		sc_if->sk_tx_ramend = val - 1;
1229 	} else {
1230 		uint32_t chunk, val;
1231 
1232 		chunk = sc->sk_ramsize / 4;
1233 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1234 		    sizeof(uint64_t);
1235 		sc_if->sk_rx_ramstart = val;
1236 		val += (chunk / sizeof(uint64_t));
1237 		sc_if->sk_rx_ramend = val - 1;
1238 		sc_if->sk_tx_ramstart = val;
1239 		val += (chunk / sizeof(uint64_t));
1240 		sc_if->sk_tx_ramend = val - 1;
1241 	}
1242 
1243 	/* Read and save PHY type and set PHY address */
1244 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1245 	switch(sc_if->sk_phytype) {
1246 	case SK_PHYTYPE_XMAC:
1247 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1248 		break;
1249 	case SK_PHYTYPE_BCOM:
1250 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1251 		break;
1252 	case SK_PHYTYPE_MARV_COPPER:
1253 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1254 		break;
1255 	default:
1256 		printf("skc%d: unsupported PHY type: %d\n",
1257 		    sc->sk_unit, sc_if->sk_phytype);
1258 		sc->sk_if[port] = NULL;
1259 		return(ENODEV);
1260 	}
1261 
1262 	/* Allocate the descriptor queues. */
1263 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1264 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1265 
1266 	if (sc_if->sk_rdata == NULL) {
1267 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1268 		sc->sk_if[port] = NULL;
1269 		return(ENOMEM);
1270 	}
1271 
1272 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1273 
1274 	/* Try to allocate memory for jumbo buffers. */
1275 	if (sk_alloc_jumbo_mem(sc_if)) {
1276 		printf("sk%d: jumbo buffer allocation failed\n",
1277 		    sc_if->sk_unit);
1278 		contigfree(sc_if->sk_rdata,
1279 		    sizeof(struct sk_ring_data), M_DEVBUF);
1280 		sc->sk_if[port] = NULL;
1281 		return(ENOMEM);
1282 	}
1283 
1284 	ifp = &sc_if->arpcom.ac_if;
1285 	ifp->if_softc = sc_if;
1286 	if_initname(ifp, "sk", sc_if->sk_unit);
1287 	ifp->if_mtu = ETHERMTU;
1288 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1289 	ifp->if_ioctl = sk_ioctl;
1290 	ifp->if_start = sk_start;
1291 	ifp->if_watchdog = sk_watchdog;
1292 	ifp->if_init = sk_init;
1293 	ifp->if_baudrate = 1000000000;
1294 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1295 	ifq_set_ready(&ifp->if_snd);
1296 
1297 	/*
1298 	 * Do miibus setup.
1299 	 */
1300 	switch (sc->sk_type) {
1301 	case SK_GENESIS:
1302 		sk_init_xmac(sc_if);
1303 		break;
1304 	case SK_YUKON:
1305 		sk_init_yukon(sc_if);
1306 		break;
1307 	}
1308 
1309 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1310 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1311 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1312 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1313 		    M_DEVBUF);
1314 		contigfree(sc_if->sk_rdata,
1315 		    sizeof(struct sk_ring_data), M_DEVBUF);
1316 		sc->sk_if[port] = NULL;
1317 		return(ENXIO);
1318 	}
1319 
1320 	/*
1321 	 * Call MI attach routine.
1322 	 */
1323 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr, &sk_serializer);
1324 	callout_init(&sc_if->sk_tick_timer);
1325 
1326 	return(0);
1327 }
1328 
1329 /*
1330  * Attach the interface. Allocate softc structures, do ifmedia
1331  * setup and ethernet/BPF attach.
1332  */
1333 static int
1334 skc_attach(device_t dev)
1335 {
1336 	struct sk_softc *sc;
1337 	int error = 0, *port, rid, unit;
1338 	uint32_t command;
1339 	uint8_t skrs;
1340 
1341 	crit_enter();
1342 
1343 	sc = device_get_softc(dev);
1344 	unit = device_get_unit(dev);
1345 	switch (pci_get_device(dev)) {
1346 	case DEVICEID_SK_V1:
1347 		sc->sk_type = SK_GENESIS;
1348 		break;
1349 	case DEVICEID_SK_V2:
1350 	case DEVICEID_3COM_3C940:
1351 	case DEVICEID_LINKSYS_EG1032:
1352 	case DEVICEID_DLINK_DGE530T:
1353 		sc->sk_type = SK_YUKON;
1354 		break;
1355 	}
1356 
1357 	/*
1358 	 * Handle power management nonsense.
1359 	 */
1360 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1361 	if (command == 0x01) {
1362 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1363 		if (command & SK_PSTATE_MASK) {
1364 			uint32_t iobase, membase, irq;
1365 
1366 			/* Save important PCI config data. */
1367 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1368 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1369 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1370 
1371 			/* Reset the power state. */
1372 			printf("skc%d: chip is in D%d power mode "
1373 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1374 			command &= 0xFFFFFFFC;
1375 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1376 
1377 			/* Restore PCI config data. */
1378 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1379 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1380 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * Map control/status registers.
1386 	 */
1387 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1388 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1389 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1390 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1391 
1392 #ifdef SK_USEIOSPACE
1393 	if ((command & PCIM_CMD_PORTEN) == 0) {
1394 		printf("skc%d: failed to enable I/O ports!\n", unit);
1395 		error = ENXIO;
1396 		goto fail;
1397 	}
1398 #else
1399 	if ((command & PCIM_CMD_MEMEN) == 0) {
1400 		printf("skc%d: failed to enable memory mapping!\n", unit);
1401 		error = ENXIO;
1402 		goto fail;
1403 	}
1404 #endif
1405 
1406 	rid = SK_RID;
1407 	sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE);
1408 
1409 	if (sc->sk_res == NULL) {
1410 		printf("sk%d: couldn't map ports/memory\n", unit);
1411 		error = ENXIO;
1412 		goto fail;
1413 	}
1414 
1415 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1416 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1417 
1418 	/* Allocate interrupt */
1419 	rid = 0;
1420 	sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1421 	    RF_SHAREABLE | RF_ACTIVE);
1422 
1423 	if (sc->sk_irq == NULL) {
1424 		printf("skc%d: couldn't map interrupt\n", unit);
1425 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1426 		error = ENXIO;
1427 		goto fail;
1428 	}
1429 
1430 	error = bus_setup_intr(dev, sc->sk_irq, INTR_NETSAFE,
1431 			       sk_intr, sc,
1432 			       &sc->sk_intrhand, &sk_serializer);
1433 
1434 	if (error) {
1435 		printf("skc%d: couldn't set up irq\n", unit);
1436 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1437 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1438 		goto fail;
1439 	}
1440 
1441 	/* Reset the adapter. */
1442 	sk_reset(sc);
1443 
1444 	sc->sk_unit = unit;
1445 
1446 	/* Read and save vital product data from EEPROM. */
1447 	sk_vpd_read(sc);
1448 
1449 	skrs = sk_win_read_1(sc, SK_EPROM0);
1450 	if (sc->sk_type == SK_GENESIS) {
1451 		/* Read and save RAM size and RAMbuffer offset */
1452 		switch(skrs) {
1453 		case SK_RAMSIZE_512K_64:
1454 			sc->sk_ramsize = 0x80000;
1455 			sc->sk_rboff = SK_RBOFF_0;
1456 			break;
1457 		case SK_RAMSIZE_1024K_64:
1458 			sc->sk_ramsize = 0x100000;
1459 			sc->sk_rboff = SK_RBOFF_80000;
1460 			break;
1461 		case SK_RAMSIZE_1024K_128:
1462 			sc->sk_ramsize = 0x100000;
1463 			sc->sk_rboff = SK_RBOFF_0;
1464 			break;
1465 		case SK_RAMSIZE_2048K_128:
1466 			sc->sk_ramsize = 0x200000;
1467 			sc->sk_rboff = SK_RBOFF_0;
1468 			break;
1469 		default:
1470 			printf("skc%d: unknown ram size: %d\n",
1471 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1472 			bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1473 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1474 			bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1475 			error = ENXIO;
1476 			goto fail;
1477 			break;
1478 		}
1479 	} else { /* SK_YUKON */
1480 		if (skrs == 0x00) {
1481 			sc->sk_ramsize = 0x20000;
1482 		} else {
1483 			sc->sk_ramsize = skrs * (1<<12);
1484 		}
1485 		sc->sk_rboff = SK_RBOFF_0;
1486 	}
1487 
1488 	/* Read and save physical media type */
1489 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1490 	case SK_PMD_1000BASESX:
1491 		sc->sk_pmd = IFM_1000_SX;
1492 		break;
1493 	case SK_PMD_1000BASELX:
1494 		sc->sk_pmd = IFM_1000_LX;
1495 		break;
1496 	case SK_PMD_1000BASECX:
1497 		sc->sk_pmd = IFM_1000_CX;
1498 		break;
1499 	case SK_PMD_1000BASETX:
1500 		sc->sk_pmd = IFM_1000_T;
1501 		break;
1502 	default:
1503 		printf("skc%d: unknown media type: 0x%x\n",
1504 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1505 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1506 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1507 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1508 		error = ENXIO;
1509 		goto fail;
1510 	}
1511 
1512 	/* Announce the product name. */
1513 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1514 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1515 	port = kmalloc(sizeof(int), M_DEVBUF, M_WAITOK);
1516 	*port = SK_PORT_A;
1517 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1518 
1519 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1520 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1521 		port = kmalloc(sizeof(int), M_DEVBUF, M_WAITOK);
1522 		*port = SK_PORT_B;
1523 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1524 	}
1525 
1526 	/* Turn on the 'driver is loaded' LED. */
1527 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1528 
1529 	bus_generic_attach(dev);
1530 
1531 fail:
1532 	crit_exit();
1533 	return(error);
1534 }
1535 
1536 static int
1537 sk_detach(device_t dev)
1538 {
1539 	struct sk_if_softc *sc_if = device_get_softc(dev);
1540 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1541 
1542 	ether_ifdetach(ifp);
1543 	bus_generic_detach(dev);
1544 	if (sc_if->sk_miibus != NULL)
1545 		device_delete_child(dev, sc_if->sk_miibus);
1546 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1547 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1548 
1549 	return(0);
1550 }
1551 
1552 static int
1553 skc_detach(device_t dev)
1554 {
1555 	struct sk_softc *sc;
1556 
1557 	sc = device_get_softc(dev);
1558 
1559 	lwkt_serialize_enter(&sk_serializer);
1560 
1561 	if (sc->sk_if[SK_PORT_A] != NULL)
1562 		sk_stop(sc->sk_if[SK_PORT_A]);
1563 	if (sc->sk_if[SK_PORT_B] != NULL)
1564 		sk_stop(sc->sk_if[SK_PORT_B]);
1565 
1566 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1567 
1568 	lwkt_serialize_exit(&sk_serializer);
1569 
1570 	/*
1571 	 * recursed from sk_detach ?  don't need serializer
1572 	 */
1573 	bus_generic_detach(dev);
1574 	if (sc->sk_devs[SK_PORT_A] != NULL)
1575 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1576 	if (sc->sk_devs[SK_PORT_B] != NULL)
1577 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1578 
1579 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1580 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1581 
1582 	return(0);
1583 }
1584 
1585 static int
1586 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1587 {
1588 	struct sk_tx_desc *f = NULL;
1589 	struct mbuf *m;
1590 	uint32_t cnt = 0, cur, frag;
1591 
1592 	m = m_head;
1593 	cur = frag = *txidx;
1594 
1595 	/*
1596 	 * Start packing the mbufs in this chain into
1597 	 * the fragment pointers. Stop when we run out
1598 	 * of fragments or hit the end of the mbuf chain.
1599 	 */
1600 	for (m = m_head; m != NULL; m = m->m_next) {
1601 		if (m->m_len != 0) {
1602 			if ((SK_TX_RING_CNT -
1603 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1604 				return(ENOBUFS);
1605 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1606 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1607 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1608 			if (cnt == 0)
1609 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1610 			else
1611 				f->sk_ctl |= SK_TXCTL_OWN;
1612 			cur = frag;
1613 			SK_INC(frag, SK_TX_RING_CNT);
1614 			cnt++;
1615 		}
1616 	}
1617 
1618 	if (m != NULL)
1619 		return(ENOBUFS);
1620 
1621 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1622 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1623 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1624 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1625 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1626 
1627 	*txidx = frag;
1628 
1629 	return(0);
1630 }
1631 
1632 static void
1633 sk_start(struct ifnet *ifp)
1634 {
1635         struct sk_if_softc *sc_if = ifp->if_softc;
1636         struct sk_softc *sc = sc_if->sk_softc;
1637         struct mbuf *m_head = NULL;
1638         uint32_t idx;
1639 	int need_trans;
1640 
1641 	idx = sc_if->sk_cdata.sk_tx_prod;
1642 
1643 	need_trans = 0;
1644 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1645 		m_head = ifq_poll(&ifp->if_snd);
1646 		if (m_head == NULL)
1647 			break;
1648 
1649 		/*
1650 		 * Pack the data into the transmit ring. If we
1651 		 * don't have room, set the OACTIVE flag and wait
1652 		 * for the NIC to drain the ring.
1653 		 */
1654 		if (sk_encap(sc_if, m_head, &idx)) {
1655 			ifp->if_flags |= IFF_OACTIVE;
1656 			break;
1657 		}
1658 		ifq_dequeue(&ifp->if_snd, m_head);
1659 		need_trans = 1;
1660 
1661 		BPF_MTAP(ifp, m_head);
1662 	}
1663 
1664 	if (!need_trans)
1665 		return;
1666 
1667 	/* Transmit */
1668 	sc_if->sk_cdata.sk_tx_prod = idx;
1669 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1670 
1671 	/* Set a timeout in case the chip goes out to lunch. */
1672 	ifp->if_timer = 5;
1673 }
1674 
1675 
1676 static void
1677 sk_watchdog(struct ifnet *ifp)
1678 {
1679 	struct sk_if_softc *sc_if;
1680 
1681 	sc_if = ifp->if_softc;
1682 
1683 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1684 	ifp->if_flags &= ~IFF_RUNNING;
1685 	sk_init(sc_if);
1686 
1687 	if (!ifq_is_empty(&ifp->if_snd))
1688 		ifp->if_start(ifp);
1689 }
1690 
1691 static void
1692 skc_shutdown(device_t dev)
1693 {
1694 	struct sk_softc *sc = device_get_softc(dev);
1695 
1696 	lwkt_serialize_enter(&sk_serializer);
1697 
1698 	/* Turn off the 'driver is loaded' LED. */
1699 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1700 
1701 	/*
1702 	 * Reset the GEnesis controller. Doing this should also
1703 	 * assert the resets on the attached XMAC(s).
1704 	 */
1705 	sk_reset(sc);
1706 	lwkt_serialize_exit(&sk_serializer);
1707 }
1708 
1709 static void
1710 sk_rxeof(struct sk_if_softc *sc_if)
1711 {
1712 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1713 	struct mbuf *m;
1714 	struct sk_chain	*cur_rx;
1715 	int i, total_len = 0;
1716 	uint32_t rxstat;
1717 
1718 	i = sc_if->sk_cdata.sk_rx_prod;
1719 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1720 
1721 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1722 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1723 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1724 		m = cur_rx->sk_mbuf;
1725 		cur_rx->sk_mbuf = NULL;
1726 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1727 		SK_INC(i, SK_RX_RING_CNT);
1728 
1729 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1730 			ifp->if_ierrors++;
1731 			sk_newbuf(sc_if, cur_rx, m);
1732 			continue;
1733 		}
1734 
1735 		/*
1736 		 * Try to allocate a new jumbo buffer. If that
1737 		 * fails, copy the packet to mbufs and put the
1738 		 * jumbo buffer back in the ring so it can be
1739 		 * re-used. If allocating mbufs fails, then we
1740 		 * have to drop the packet.
1741 		 */
1742 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1743 			struct mbuf *m0;
1744 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1745 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1746 			sk_newbuf(sc_if, cur_rx, m);
1747 			if (m0 == NULL) {
1748 				printf("sk%d: no receive buffers "
1749 				    "available -- packet dropped!\n",
1750 				    sc_if->sk_unit);
1751 				ifp->if_ierrors++;
1752 				continue;
1753 			}
1754 			m_adj(m0, ETHER_ALIGN);
1755 			m = m0;
1756 		} else {
1757 			m->m_pkthdr.rcvif = ifp;
1758 			m->m_pkthdr.len = m->m_len = total_len;
1759 		}
1760 
1761 		ifp->if_ipackets++;
1762 		ifp->if_input(ifp, m);
1763 	}
1764 
1765 	sc_if->sk_cdata.sk_rx_prod = i;
1766 }
1767 
1768 static void
1769 sk_txeof(struct sk_if_softc *sc_if)
1770 {
1771 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1772 	struct sk_tx_desc *cur_tx = NULL;
1773 	uint32_t idx;
1774 
1775 	/*
1776 	 * Go through our tx ring and free mbufs for those
1777 	 * frames that have been sent.
1778 	 */
1779 	idx = sc_if->sk_cdata.sk_tx_cons;
1780 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1781 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1782 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1783 			break;
1784 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1785 			ifp->if_opackets++;
1786 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1787 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1788 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1789 		}
1790 		sc_if->sk_cdata.sk_tx_cnt--;
1791 		SK_INC(idx, SK_TX_RING_CNT);
1792 		ifp->if_timer = 0;
1793 	}
1794 
1795 	sc_if->sk_cdata.sk_tx_cons = idx;
1796 
1797 	if (cur_tx != NULL)
1798 		ifp->if_flags &= ~IFF_OACTIVE;
1799 }
1800 
1801 static void
1802 sk_tick(void *xsc_if)
1803 {
1804 	struct sk_if_softc *sc_if = xsc_if;
1805 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1806 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1807 	int i;
1808 
1809 	lwkt_serialize_enter(&sk_serializer);
1810 
1811 	if ((ifp->if_flags & IFF_UP) == 0) {
1812 		lwkt_serialize_exit(&sk_serializer);
1813 		return;
1814 	}
1815 
1816 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1817 		sk_intr_bcom(sc_if);
1818 		lwkt_serialize_exit(&sk_serializer);
1819 		return;
1820 	}
1821 
1822 	/*
1823 	 * According to SysKonnect, the correct way to verify that
1824 	 * the link has come back up is to poll bit 0 of the GPIO
1825 	 * register three times. This pin has the signal from the
1826 	 * link_sync pin connected to it; if we read the same link
1827 	 * state 3 times in a row, we know the link is up.
1828 	 */
1829 	for (i = 0; i < 3; i++) {
1830 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1831 			break;
1832 	}
1833 
1834 	if (i != 3) {
1835 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
1836 		lwkt_serialize_exit(&sk_serializer);
1837 		return;
1838 	}
1839 
1840 	/* Turn the GP0 interrupt back on. */
1841 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1842 	SK_XM_READ_2(sc_if, XM_ISR);
1843 	mii_tick(mii);
1844 	mii_pollstat(mii);
1845 	callout_stop(&sc_if->sk_tick_timer);
1846 	lwkt_serialize_exit(&sk_serializer);
1847 }
1848 
1849 static void
1850 sk_intr_bcom(struct sk_if_softc *sc_if)
1851 {
1852 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1853 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
1854 	int status;
1855 
1856 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1857 
1858 	/*
1859 	 * Read the PHY interrupt register to make sure
1860 	 * we clear any pending interrupts.
1861 	 */
1862 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1863 
1864 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1865 		sk_init_xmac(sc_if);
1866 		return;
1867 	}
1868 
1869 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1870 		int lstat;
1871 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
1872 		    BRGPHY_MII_AUXSTS);
1873 
1874 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1875 			mii_mediachg(mii);
1876 			/* Turn off the link LED. */
1877 			SK_IF_WRITE_1(sc_if, 0,
1878 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1879 			sc_if->sk_link = 0;
1880 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1881 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
1882 	    		    BRGPHY_MII_IMR, 0xFF00);
1883 			mii_tick(mii);
1884 			sc_if->sk_link = 1;
1885 			/* Turn on the link LED. */
1886 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1887 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1888 			    SK_LINKLED_BLINK_OFF);
1889 			mii_pollstat(mii);
1890 		} else {
1891 			mii_tick(mii);
1892 			callout_reset(&sc_if->sk_tick_timer, hz,
1893 				      sk_tick, sc_if);
1894 		}
1895 	}
1896 
1897 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1898 }
1899 
1900 static void
1901 sk_intr_xmac(struct sk_if_softc *sc_if)
1902 {
1903 	uint16_t status;
1904 
1905 	status = SK_XM_READ_2(sc_if, XM_ISR);
1906 
1907 	/*
1908 	 * Link has gone down. Start MII tick timeout to
1909 	 * watch for link resync.
1910 	 */
1911 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1912 		if (status & XM_ISR_GP0_SET) {
1913 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1914 			callout_reset(&sc_if->sk_tick_timer, hz,
1915 				      sk_tick, sc_if);
1916 		}
1917 
1918 		if (status & XM_ISR_AUTONEG_DONE) {
1919 			callout_reset(&sc_if->sk_tick_timer, hz,
1920 				      sk_tick, sc_if);
1921 		}
1922 	}
1923 
1924 	if (status & XM_IMR_TX_UNDERRUN)
1925 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1926 
1927 	if (status & XM_IMR_RX_OVERRUN)
1928 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1929 
1930 	status = SK_XM_READ_2(sc_if, XM_ISR);
1931 }
1932 
1933 static void
1934 sk_intr_yukon(struct sk_if_softc *sc_if)
1935 {
1936 	int status;
1937 
1938 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1939 }
1940 
1941 static void
1942 sk_intr(void *xsc)
1943 {
1944 	struct sk_softc *sc = xsc;
1945 	struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1946 	struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_A];
1947 	struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1948 	uint32_t status;
1949 
1950 	if (sc_if0 != NULL)
1951 		ifp0 = &sc_if0->arpcom.ac_if;
1952 	if (sc_if1 != NULL)
1953 		ifp1 = &sc_if1->arpcom.ac_if;
1954 
1955 	for (;;) {
1956 		status = CSR_READ_4(sc, SK_ISSR);
1957 		if ((status & sc->sk_intrmask) == 0)
1958 			break;
1959 
1960 		/* Handle receive interrupts first. */
1961 		if (status & SK_ISR_RX1_EOF) {
1962 			sk_rxeof(sc_if0);
1963 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1964 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1965 		}
1966 		if (status & SK_ISR_RX2_EOF) {
1967 			sk_rxeof(sc_if1);
1968 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1969 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1970 		}
1971 
1972 		/* Then transmit interrupts. */
1973 		if (status & SK_ISR_TX1_S_EOF) {
1974 			sk_txeof(sc_if0);
1975 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1976 			    SK_TXBMU_CLR_IRQ_EOF);
1977 		}
1978 		if (status & SK_ISR_TX2_S_EOF) {
1979 			sk_txeof(sc_if1);
1980 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1981 			    SK_TXBMU_CLR_IRQ_EOF);
1982 		}
1983 
1984 		/* Then MAC interrupts. */
1985 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
1986 			if (sc->sk_type == SK_GENESIS)
1987 				sk_intr_xmac(sc_if0);
1988 			else
1989 				sk_intr_yukon(sc_if0);
1990 		}
1991 
1992 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
1993 			if (sc->sk_type == SK_GENESIS)
1994 				sk_intr_xmac(sc_if1);
1995 			else
1996 				sk_intr_yukon(sc_if0);
1997 		}
1998 
1999 		if (status & SK_ISR_EXTERNAL_REG) {
2000 			if (ifp0 != NULL &&
2001 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2002 				sk_intr_bcom(sc_if0);
2003 			if (ifp1 != NULL &&
2004 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2005 				sk_intr_bcom(sc_if1);
2006 		}
2007 	}
2008 
2009 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2010 
2011 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2012 		sk_start(ifp0);
2013 	if (ifp1 != NULL && !ifq_is_empty(&ifp0->if_snd))
2014 		sk_start(ifp1);
2015 }
2016 
2017 static void
2018 sk_init_xmac(struct sk_if_softc *sc_if)
2019 {
2020 	struct sk_softc *sc = sc_if->sk_softc;
2021 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2022 	struct sk_bcom_hack bhack[] = {
2023 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2024 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2025 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2026 	{ 0, 0 } };
2027 
2028 	/* Unreset the XMAC. */
2029 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2030 	DELAY(1000);
2031 
2032 	/* Reset the XMAC's internal state. */
2033 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2034 
2035 	/* Save the XMAC II revision */
2036 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2037 
2038 	/*
2039 	 * Perform additional initialization for external PHYs,
2040 	 * namely for the 1000baseTX cards that use the XMAC's
2041 	 * GMII mode.
2042 	 */
2043 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2044 		int i = 0;
2045 		uint32_t val;
2046 
2047 		/* Take PHY out of reset. */
2048 		val = sk_win_read_4(sc, SK_GPIO);
2049 		if (sc_if->sk_port == SK_PORT_A)
2050 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2051 		else
2052 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2053 		sk_win_write_4(sc, SK_GPIO, val);
2054 
2055 		/* Enable GMII mode on the XMAC. */
2056 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2057 
2058 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2059 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2060 		DELAY(10000);
2061 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2062 		    BRGPHY_MII_IMR, 0xFFF0);
2063 
2064 		/*
2065 		 * Early versions of the BCM5400 apparently have
2066 		 * a bug that requires them to have their reserved
2067 		 * registers initialized to some magic values. I don't
2068 		 * know what the numbers do, I'm just the messenger.
2069 		 */
2070 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2071 		    == 0x6041) {
2072 			while(bhack[i].reg) {
2073 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2074 				    bhack[i].reg, bhack[i].val);
2075 				i++;
2076 			}
2077 		}
2078 	}
2079 
2080 	/* Set station address */
2081 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2082 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2083 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2084 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2085 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2086 	    *(uint16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2087 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2088 
2089 	if (ifp->if_flags & IFF_BROADCAST)
2090 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2091 	else
2092 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2093 
2094 	/* We don't need the FCS appended to the packet. */
2095 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2096 
2097 	/* We want short frames padded to 60 bytes. */
2098 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2099 
2100 	/*
2101 	 * Enable the reception of all error frames. This is is
2102 	 * a necessary evil due to the design of the XMAC. The
2103 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2104 	 * frames can be up to 9000 bytes in length. When bad
2105 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2106 	 * in 'store and forward' mode. For this to work, the
2107 	 * entire frame has to fit into the FIFO, but that means
2108 	 * that jumbo frames larger than 8192 bytes will be
2109 	 * truncated. Disabling all bad frame filtering causes
2110 	 * the RX FIFO to operate in streaming mode, in which
2111 	 * case the XMAC will start transfering frames out of the
2112 	 * RX FIFO as soon as the FIFO threshold is reached.
2113 	 */
2114 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2115 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2116 	    XM_MODE_RX_INRANGELEN);
2117 
2118 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2119 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2120 	else
2121 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2122 
2123 	/*
2124 	 * Bump up the transmit threshold. This helps hold off transmit
2125 	 * underruns when we're blasting traffic from both ports at once.
2126 	 */
2127 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2128 
2129 	/* Set promiscuous mode */
2130 	sk_setpromisc(sc_if);
2131 
2132 	/* Set multicast filter */
2133 	sk_setmulti(sc_if);
2134 
2135 	/* Clear and enable interrupts */
2136 	SK_XM_READ_2(sc_if, XM_ISR);
2137 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2138 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2139 	else
2140 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2141 
2142 	/* Configure MAC arbiter */
2143 	switch(sc_if->sk_xmac_rev) {
2144 	case XM_XMAC_REV_B2:
2145 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2146 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2147 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2148 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2149 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2150 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2151 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2152 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2153 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2154 		break;
2155 	case XM_XMAC_REV_C1:
2156 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2157 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2158 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2159 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2160 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2161 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2162 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2163 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2164 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2165 		break;
2166 	default:
2167 		break;
2168 	}
2169 	sk_win_write_2(sc, SK_MACARB_CTL,
2170 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2171 
2172 	sc_if->sk_link = 1;
2173 }
2174 
2175 static void
2176 sk_init_yukon(struct sk_if_softc *sc_if)
2177 {
2178 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2179 	uint32_t phy;
2180 	uint16_t reg;
2181 	int i;
2182 
2183 	/* GMAC and GPHY Reset */
2184 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2185 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2186 	DELAY(1000);
2187 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2188 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2189 	DELAY(1000);
2190 
2191 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2192 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2193 
2194 	switch(sc_if->sk_softc->sk_pmd) {
2195 	case IFM_1000_SX:
2196 	case IFM_1000_LX:
2197 		phy |= SK_GPHY_FIBER;
2198 		break;
2199 
2200 	case IFM_1000_CX:
2201 	case IFM_1000_T:
2202 		phy |= SK_GPHY_COPPER;
2203 		break;
2204 	}
2205 
2206 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2207 	DELAY(1000);
2208 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2209 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2210 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2211 
2212 	/* unused read of the interrupt source register */
2213 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2214 
2215 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2216 
2217 	/* MIB Counter Clear Mode set */
2218 	reg |= YU_PAR_MIB_CLR;
2219 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2220 
2221 	/* MIB Counter Clear Mode clear */
2222 	reg &= ~YU_PAR_MIB_CLR;
2223 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2224 
2225 	/* receive control reg */
2226 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2227 
2228 	/* transmit parameter register */
2229 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2230 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2231 
2232 	/* serial mode register */
2233 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2234 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2235 		reg |= YU_SMR_MFL_JUMBO;
2236 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2237 
2238 	/* Setup Yukon's address */
2239 	for (i = 0; i < 3; i++) {
2240 		/* Write Source Address 1 (unicast filter) */
2241 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2242 			      sc_if->arpcom.ac_enaddr[i * 2] |
2243 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2244 	}
2245 
2246 	for (i = 0; i < 3; i++) {
2247 		reg = sk_win_read_2(sc_if->sk_softc,
2248 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2249 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2250 	}
2251 
2252 	/* Set promiscuous mode */
2253 	sk_setpromisc(sc_if);
2254 
2255 	/* Set multicast filter */
2256 	sk_setmulti(sc_if);
2257 
2258 	/* enable interrupt mask for counter overflows */
2259 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2260 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2261 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2262 
2263 	/* Configure RX MAC FIFO */
2264 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2265 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2266 
2267 	/* Configure TX MAC FIFO */
2268 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2269 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2270 }
2271 
2272 /*
2273  * Note that to properly initialize any part of the GEnesis chip,
2274  * you first have to take it out of reset mode.
2275  */
2276 static void
2277 sk_init(void *xsc)
2278 {
2279 	struct sk_if_softc *sc_if = xsc;
2280 	struct sk_softc *sc = sc_if->sk_softc;
2281 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2282 	struct mii_data *mii = device_get_softc(sc_if->sk_miibus);
2283 	uint16_t reg;
2284 
2285 	crit_enter();
2286 
2287 	if (ifp->if_flags & IFF_RUNNING) {
2288 		crit_exit();
2289 		return;
2290 	}
2291 
2292 	/* Cancel pending I/O and free all RX/TX buffers. */
2293 	sk_stop(sc_if);
2294 
2295 	if (sc->sk_type == SK_GENESIS) {
2296 		/* Configure LINK_SYNC LED */
2297 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2298 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2299 			SK_LINKLED_LINKSYNC_ON);
2300 
2301 		/* Configure RX LED */
2302 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2303 			SK_RXLEDCTL_COUNTER_START);
2304 
2305 		/* Configure TX LED */
2306 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2307 			SK_TXLEDCTL_COUNTER_START);
2308 	}
2309 
2310 	/* Configure I2C registers */
2311 
2312 	/* Configure XMAC(s) */
2313 	switch (sc->sk_type) {
2314 	case SK_GENESIS:
2315 		sk_init_xmac(sc_if);
2316 		break;
2317 	case SK_YUKON:
2318 		sk_init_yukon(sc_if);
2319 		break;
2320 	}
2321 	mii_mediachg(mii);
2322 
2323 	if (sc->sk_type == SK_GENESIS) {
2324 		/* Configure MAC FIFOs */
2325 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2326 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2327 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2328 
2329 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2330 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2331 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2332 	}
2333 
2334 	/* Configure transmit arbiter(s) */
2335 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2336 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2337 
2338 	/* Configure RAMbuffers */
2339 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2340 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2341 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2342 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2343 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2344 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2345 
2346 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2347 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2348 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2349 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2350 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2351 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2352 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2353 
2354 	/* Configure BMUs */
2355 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2356 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2357 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2358 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2359 
2360 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2361 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2362 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2363 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2364 
2365 	/* Init descriptors */
2366 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2367 		printf("sk%d: initialization failed: no "
2368 		    "memory for rx buffers\n", sc_if->sk_unit);
2369 		sk_stop(sc_if);
2370 		crit_exit();
2371 		return;
2372 	}
2373 	sk_init_tx_ring(sc_if);
2374 
2375 	/* Configure interrupt handling */
2376 	CSR_READ_4(sc, SK_ISSR);
2377 	if (sc_if->sk_port == SK_PORT_A)
2378 		sc->sk_intrmask |= SK_INTRS1;
2379 	else
2380 		sc->sk_intrmask |= SK_INTRS2;
2381 
2382 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2383 
2384 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2385 
2386 	/* Start BMUs. */
2387 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2388 
2389 	switch(sc->sk_type) {
2390 	case SK_GENESIS:
2391 		/* Enable XMACs TX and RX state machines */
2392 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2393 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2394 		    XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2395 		break;
2396 	case SK_YUKON:
2397 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2398 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2399 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2400 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2401 	}
2402 
2403 	ifp->if_flags |= IFF_RUNNING;
2404 	ifp->if_flags &= ~IFF_OACTIVE;
2405 
2406 	crit_exit();
2407 }
2408 
2409 static void
2410 sk_stop(struct sk_if_softc *sc_if)
2411 {
2412 	int i;
2413 	struct sk_softc *sc = sc_if->sk_softc;
2414 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2415 
2416 	callout_stop(&sc_if->sk_tick_timer);
2417 
2418 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2419 		uint32_t val;
2420 
2421 		/* Put PHY back into reset. */
2422 		val = sk_win_read_4(sc, SK_GPIO);
2423 		if (sc_if->sk_port == SK_PORT_A) {
2424 			val |= SK_GPIO_DIR0;
2425 			val &= ~SK_GPIO_DAT0;
2426 		} else {
2427 			val |= SK_GPIO_DIR2;
2428 			val &= ~SK_GPIO_DAT2;
2429 		}
2430 		sk_win_write_4(sc, SK_GPIO, val);
2431 	}
2432 
2433 	/* Turn off various components of this interface. */
2434 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2435 	switch (sc->sk_type) {
2436 	case SK_GENESIS:
2437 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2438 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2439 		break;
2440 	case SK_YUKON:
2441 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2442 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2443 		break;
2444 	}
2445 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2446 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2447 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2448 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST,
2449 	    SK_RBCTL_RESET | SK_RBCTL_OFF);
2450 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2451 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2452 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2453 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2454 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2455 
2456 	/* Disable interrupts */
2457 	if (sc_if->sk_port == SK_PORT_A)
2458 		sc->sk_intrmask &= ~SK_INTRS1;
2459 	else
2460 		sc->sk_intrmask &= ~SK_INTRS2;
2461 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2462 
2463 	SK_XM_READ_2(sc_if, XM_ISR);
2464 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2465 
2466 	/* Free RX and TX mbufs still in the queues. */
2467 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2468 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2469 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2470 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2471 		}
2472 	}
2473 
2474 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2475 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2476 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2477 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2478 		}
2479 	}
2480 
2481 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2482 }
2483