xref: /dflybsd-src/sys/dev/netif/sk/if_sk.c (revision 0402ebbc7d4b6f34d02791995169d25c4aec3b15)
1 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
35  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.26 2005/02/21 18:40:37 joerg Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 /*
55  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
56  * the SK-984x series adapters, both single port and dual port.
57  * References:
58  * 	The XaQti XMAC II datasheet,
59  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
60  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
61  *
62  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
63  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
64  * convenience to others until Vitesse corrects this problem:
65  *
66  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
67  *
68  * Written by Bill Paul <wpaul@ee.columbia.edu>
69  * Department of Electrical Engineering
70  * Columbia University, New York City
71  */
72 
73 /*
74  * The SysKonnect gigabit ethernet adapters consist of two main
75  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
76  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
77  * components and a PHY while the GEnesis controller provides a PCI
78  * interface with DMA support. Each card may have between 512K and
79  * 2MB of SRAM on board depending on the configuration.
80  *
81  * The SysKonnect GEnesis controller can have either one or two XMAC
82  * chips connected to it, allowing single or dual port NIC configurations.
83  * SysKonnect has the distinction of being the only vendor on the market
84  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
85  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
86  * XMAC registers. This driver takes advantage of these features to allow
87  * both XMACs to operate as independent interfaces.
88  */
89 
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/socket.h>
97 #include <sys/queue.h>
98 
99 #include <net/if.h>
100 #include <net/ifq_var.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #include <net/bpf.h>
107 
108 #include <vm/vm.h>              /* for vtophys */
109 #include <vm/pmap.h>            /* for vtophys */
110 #include <machine/clock.h>      /* for DELAY */
111 #include <machine/bus_pio.h>
112 #include <machine/bus_memio.h>
113 #include <machine/bus.h>
114 #include <machine/resource.h>
115 #include <sys/bus.h>
116 #include <sys/rman.h>
117 
118 #include "../mii_layer/mii.h"
119 #include "../mii_layer/miivar.h"
120 #include "../mii_layer/brgphyreg.h"
121 
122 #include <bus/pci/pcireg.h>
123 #include <bus/pci/pcivar.h>
124 
125 #if 0
126 #define SK_USEIOSPACE
127 #endif
128 
129 #include "if_skreg.h"
130 #include "xmaciireg.h"
131 #include "yukonreg.h"
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 static struct sk_type sk_devs[] = {
137 	{
138 		VENDORID_SK,
139 		DEVICEID_SK_V1,
140 		"SysKonnect Gigabit Ethernet (V1.0)"
141 	},
142 	{
143 		VENDORID_SK,
144 		DEVICEID_SK_V2,
145 		"SysKonnect Gigabit Ethernet (V2.0)"
146 	},
147 	{
148 		VENDORID_MARVELL,
149 		DEVICEID_SK_V2,
150 		"Marvell Gigabit Ethernet"
151 	},
152 	{
153 		VENDORID_3COM,
154 		DEVICEID_3COM_3C940,
155 		"3Com 3C940 Gigabit Ethernet"
156 	},
157 	{
158 		VENDORID_LINKSYS,
159 		DEVICEID_LINKSYS_EG1032,
160 		"Linksys EG1032 Gigabit Ethernet"
161 	},
162 	{
163 		VENDORID_DLINK,
164 		DEVICEID_DLINK_DGE530T,
165 		"D-Link DGE-530T Gigabit Ethernet"
166 	},
167 	{ 0, 0, NULL }
168 };
169 
170 static int skc_probe		(device_t);
171 static int skc_attach		(device_t);
172 static int skc_detach		(device_t);
173 static void skc_shutdown	(device_t);
174 static int sk_probe		(device_t);
175 static int sk_attach		(device_t);
176 static int sk_detach		(device_t);
177 static void sk_tick		(void *);
178 static void sk_intr		(void *);
179 static void sk_intr_bcom	(struct sk_if_softc *);
180 static void sk_intr_xmac	(struct sk_if_softc *);
181 static void sk_intr_yukon	(struct sk_if_softc *);
182 static void sk_rxeof		(struct sk_if_softc *);
183 static void sk_txeof		(struct sk_if_softc *);
184 static int sk_encap		(struct sk_if_softc *, struct mbuf *,
185 					u_int32_t *);
186 static void sk_start		(struct ifnet *);
187 static int sk_ioctl		(struct ifnet *, u_long, caddr_t,
188 					struct ucred *);
189 static void sk_init		(void *);
190 static void sk_init_xmac	(struct sk_if_softc *);
191 static void sk_init_yukon	(struct sk_if_softc *);
192 static void sk_stop		(struct sk_if_softc *);
193 static void sk_watchdog		(struct ifnet *);
194 static int sk_ifmedia_upd	(struct ifnet *);
195 static void sk_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
196 static void sk_reset		(struct sk_softc *);
197 static int sk_newbuf		(struct sk_if_softc *,
198 					struct sk_chain *, struct mbuf *);
199 static int sk_alloc_jumbo_mem	(struct sk_if_softc *);
200 static void *sk_jalloc		(struct sk_if_softc *);
201 static void sk_jfree		(caddr_t, u_int);
202 static void sk_jref		(caddr_t, u_int);
203 static int sk_init_rx_ring	(struct sk_if_softc *);
204 static void sk_init_tx_ring	(struct sk_if_softc *);
205 static u_int32_t sk_win_read_4	(struct sk_softc *, int);
206 static u_int16_t sk_win_read_2	(struct sk_softc *, int);
207 static u_int8_t sk_win_read_1	(struct sk_softc *, int);
208 static void sk_win_write_4	(struct sk_softc *, int, u_int32_t);
209 static void sk_win_write_2	(struct sk_softc *, int, u_int32_t);
210 static void sk_win_write_1	(struct sk_softc *, int, u_int32_t);
211 static u_int8_t sk_vpd_readbyte	(struct sk_softc *, int);
212 static void sk_vpd_read_res	(struct sk_softc *,
213 					struct vpd_res *, int);
214 static void sk_vpd_read		(struct sk_softc *);
215 
216 static int sk_miibus_readreg	(device_t, int, int);
217 static int sk_miibus_writereg	(device_t, int, int, int);
218 static void sk_miibus_statchg	(device_t);
219 
220 static int sk_xmac_miibus_readreg     (struct sk_if_softc *, int, int);
221 static int sk_xmac_miibus_writereg    (struct sk_if_softc *, int, int, int);
222 static void sk_xmac_miibus_statchg    (struct sk_if_softc *);
223 
224 static int sk_marv_miibus_readreg     (struct sk_if_softc *, int, int);
225 static int sk_marv_miibus_writereg    (struct sk_if_softc *, int, int, int);
226 static void sk_marv_miibus_statchg    (struct sk_if_softc *);
227 
228 static u_int32_t xmac_calchash	(caddr_t);
229 static u_int32_t gmac_calchash	(caddr_t);
230 static void sk_setfilt		(struct sk_if_softc *, caddr_t, int);
231 static void sk_setmulti		(struct sk_if_softc *);
232 static void sk_setpromisc	(struct sk_if_softc *);
233 
234 #ifdef SK_USEIOSPACE
235 #define SK_RES		SYS_RES_IOPORT
236 #define SK_RID		SK_PCI_LOIO
237 #else
238 #define SK_RES		SYS_RES_MEMORY
239 #define SK_RID		SK_PCI_LOMEM
240 #endif
241 
242 /*
243  * Note that we have newbus methods for both the GEnesis controller
244  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
245  * the miibus code is a child of the XMACs. We need to do it this way
246  * so that the miibus drivers can access the PHY registers on the
247  * right PHY. It's not quite what I had in mind, but it's the only
248  * design that achieves the desired effect.
249  */
250 static device_method_t skc_methods[] = {
251 	/* Device interface */
252 	DEVMETHOD(device_probe,		skc_probe),
253 	DEVMETHOD(device_attach,	skc_attach),
254 	DEVMETHOD(device_detach,	skc_detach),
255 	DEVMETHOD(device_shutdown,	skc_shutdown),
256 
257 	/* bus interface */
258 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
259 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
260 
261 	{ 0, 0 }
262 };
263 
264 static driver_t skc_driver = {
265 	"skc",
266 	skc_methods,
267 	sizeof(struct sk_softc)
268 };
269 
270 static devclass_t skc_devclass;
271 
272 static device_method_t sk_methods[] = {
273 	/* Device interface */
274 	DEVMETHOD(device_probe,		sk_probe),
275 	DEVMETHOD(device_attach,	sk_attach),
276 	DEVMETHOD(device_detach,	sk_detach),
277 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
278 
279 	/* bus interface */
280 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
281 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
282 
283 	/* MII interface */
284 	DEVMETHOD(miibus_readreg,	sk_miibus_readreg),
285 	DEVMETHOD(miibus_writereg,	sk_miibus_writereg),
286 	DEVMETHOD(miibus_statchg,	sk_miibus_statchg),
287 
288 	{ 0, 0 }
289 };
290 
291 static driver_t sk_driver = {
292 	"sk",
293 	sk_methods,
294 	sizeof(struct sk_if_softc)
295 };
296 
297 static devclass_t sk_devclass;
298 
299 DECLARE_DUMMY_MODULE(if_sk);
300 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
301 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
302 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
303 
304 #define SK_SETBIT(sc, reg, x)		\
305 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
306 
307 #define SK_CLRBIT(sc, reg, x)		\
308 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
309 
310 #define SK_WIN_SETBIT_4(sc, reg, x)	\
311 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
312 
313 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
314 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
315 
316 #define SK_WIN_SETBIT_2(sc, reg, x)	\
317 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
318 
319 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
320 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
321 
322 static u_int32_t sk_win_read_4(sc, reg)
323 	struct sk_softc		*sc;
324 	int			reg;
325 {
326 #ifdef SK_USEIOSPACE
327 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
328 	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
329 #else
330 	return(CSR_READ_4(sc, reg));
331 #endif
332 }
333 
334 static u_int16_t sk_win_read_2(sc, reg)
335 	struct sk_softc		*sc;
336 	int			reg;
337 {
338 #ifdef SK_USEIOSPACE
339 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
340 	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
341 #else
342 	return(CSR_READ_2(sc, reg));
343 #endif
344 }
345 
346 static u_int8_t sk_win_read_1(sc, reg)
347 	struct sk_softc		*sc;
348 	int			reg;
349 {
350 #ifdef SK_USEIOSPACE
351 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
352 	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
353 #else
354 	return(CSR_READ_1(sc, reg));
355 #endif
356 }
357 
358 static void sk_win_write_4(sc, reg, val)
359 	struct sk_softc		*sc;
360 	int			reg;
361 	u_int32_t		val;
362 {
363 #ifdef SK_USEIOSPACE
364 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
365 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
366 #else
367 	CSR_WRITE_4(sc, reg, val);
368 #endif
369 	return;
370 }
371 
372 static void sk_win_write_2(sc, reg, val)
373 	struct sk_softc		*sc;
374 	int			reg;
375 	u_int32_t		val;
376 {
377 #ifdef SK_USEIOSPACE
378 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
379 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
380 #else
381 	CSR_WRITE_2(sc, reg, val);
382 #endif
383 	return;
384 }
385 
386 static void sk_win_write_1(sc, reg, val)
387 	struct sk_softc		*sc;
388 	int			reg;
389 	u_int32_t		val;
390 {
391 #ifdef SK_USEIOSPACE
392 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
393 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
394 #else
395 	CSR_WRITE_1(sc, reg, val);
396 #endif
397 	return;
398 }
399 
400 /*
401  * The VPD EEPROM contains Vital Product Data, as suggested in
402  * the PCI 2.1 specification. The VPD data is separared into areas
403  * denoted by resource IDs. The SysKonnect VPD contains an ID string
404  * resource (the name of the adapter), a read-only area resource
405  * containing various key/data fields and a read/write area which
406  * can be used to store asset management information or log messages.
407  * We read the ID string and read-only into buffers attached to
408  * the controller softc structure for later use. At the moment,
409  * we only use the ID string during sk_attach().
410  */
411 static u_int8_t sk_vpd_readbyte(sc, addr)
412 	struct sk_softc		*sc;
413 	int			addr;
414 {
415 	int			i;
416 
417 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
418 	for (i = 0; i < SK_TIMEOUT; i++) {
419 		DELAY(1);
420 		if (sk_win_read_2(sc,
421 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
422 			break;
423 	}
424 
425 	if (i == SK_TIMEOUT)
426 		return(0);
427 
428 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
429 }
430 
431 static void sk_vpd_read_res(sc, res, addr)
432 	struct sk_softc		*sc;
433 	struct vpd_res		*res;
434 	int			addr;
435 {
436 	int			i;
437 	u_int8_t		*ptr;
438 
439 	ptr = (u_int8_t *)res;
440 	for (i = 0; i < sizeof(struct vpd_res); i++)
441 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
442 
443 	return;
444 }
445 
446 static void sk_vpd_read(sc)
447 	struct sk_softc		*sc;
448 {
449 	int			pos = 0, i;
450 	struct vpd_res		res;
451 
452 	if (sc->sk_vpd_prodname != NULL)
453 		free(sc->sk_vpd_prodname, M_DEVBUF);
454 	if (sc->sk_vpd_readonly != NULL)
455 		free(sc->sk_vpd_readonly, M_DEVBUF);
456 	sc->sk_vpd_prodname = NULL;
457 	sc->sk_vpd_readonly = NULL;
458 
459 	sk_vpd_read_res(sc, &res, pos);
460 
461 	if (res.vr_id != VPD_RES_ID) {
462 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
463 		    sc->sk_unit, VPD_RES_ID, res.vr_id);
464 		return;
465 	}
466 
467 	pos += sizeof(res);
468 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
469 	for (i = 0; i < res.vr_len; i++)
470 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
471 	sc->sk_vpd_prodname[i] = '\0';
472 	pos += i;
473 
474 	sk_vpd_read_res(sc, &res, pos);
475 
476 	if (res.vr_id != VPD_RES_READ) {
477 		printf("skc%d: bad VPD resource id: expected %x got %x\n",
478 		    sc->sk_unit, VPD_RES_READ, res.vr_id);
479 		return;
480 	}
481 
482 	pos += sizeof(res);
483 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
484 	for (i = 0; i < res.vr_len + 1; i++)
485 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
486 
487 	return;
488 }
489 
490 static int sk_miibus_readreg(dev, phy, reg)
491 	device_t		dev;
492 	int			phy, reg;
493 {
494 	struct sk_if_softc	*sc_if;
495 
496 	sc_if = device_get_softc(dev);
497 
498 	switch(sc_if->sk_softc->sk_type) {
499 	case SK_GENESIS:
500 		return(sk_xmac_miibus_readreg(sc_if, phy, reg));
501 	case SK_YUKON:
502 		return(sk_marv_miibus_readreg(sc_if, phy, reg));
503 	}
504 
505 	return(0);
506 }
507 
508 static int sk_miibus_writereg(dev, phy, reg, val)
509 	device_t		dev;
510 	int			phy, reg, val;
511 {
512 	struct sk_if_softc	*sc_if;
513 
514 	sc_if = device_get_softc(dev);
515 
516 	switch(sc_if->sk_softc->sk_type) {
517 	case SK_GENESIS:
518 		return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
519 	case SK_YUKON:
520 		return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
521 	}
522 
523 	return(0);
524 }
525 
526 static void sk_miibus_statchg(dev)
527 	device_t		dev;
528 {
529 	struct sk_if_softc	*sc_if;
530 
531 	sc_if = device_get_softc(dev);
532 
533 	switch(sc_if->sk_softc->sk_type) {
534 	case SK_GENESIS:
535 		sk_xmac_miibus_statchg(sc_if);
536 		break;
537 	case SK_YUKON:
538 		sk_marv_miibus_statchg(sc_if);
539 		break;
540 	}
541 
542 	return;
543 }
544 
545 static int sk_xmac_miibus_readreg(sc_if, phy, reg)
546 	struct sk_if_softc	*sc_if;
547 	int			phy, reg;
548 {
549 	int			i;
550 
551 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
552 		return(0);
553 
554 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
555 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
556 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
557 		for (i = 0; i < SK_TIMEOUT; i++) {
558 			DELAY(1);
559 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
560 			    XM_MMUCMD_PHYDATARDY)
561 				break;
562 		}
563 
564 		if (i == SK_TIMEOUT) {
565 			printf("sk%d: phy failed to come ready\n",
566 			    sc_if->sk_unit);
567 			return(0);
568 		}
569 	}
570 	DELAY(1);
571 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
572 }
573 
574 static int sk_xmac_miibus_writereg(sc_if, phy, reg, val)
575 	struct sk_if_softc	*sc_if;
576 	int			phy, reg, val;
577 {
578 	int			i;
579 
580 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
581 	for (i = 0; i < SK_TIMEOUT; i++) {
582 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
583 			break;
584 	}
585 
586 	if (i == SK_TIMEOUT) {
587 		printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
588 		return(ETIMEDOUT);
589 	}
590 
591 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
592 	for (i = 0; i < SK_TIMEOUT; i++) {
593 		DELAY(1);
594 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
595 			break;
596 	}
597 
598 	if (i == SK_TIMEOUT)
599 		printf("sk%d: phy write timed out\n", sc_if->sk_unit);
600 
601 	return(0);
602 }
603 
604 static void sk_xmac_miibus_statchg(sc_if)
605 	struct sk_if_softc	*sc_if;
606 {
607 	struct mii_data		*mii;
608 
609 	mii = device_get_softc(sc_if->sk_miibus);
610 
611 	/*
612 	 * If this is a GMII PHY, manually set the XMAC's
613 	 * duplex mode accordingly.
614 	 */
615 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
616 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
617 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
618 		} else {
619 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
620 		}
621 	}
622 
623 	return;
624 }
625 
626 static int sk_marv_miibus_readreg(sc_if, phy, reg)
627 	struct sk_if_softc	*sc_if;
628 	int			phy, reg;
629 {
630 	u_int16_t		val;
631 	int			i;
632 
633 	if (phy != 0 ||
634 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
635 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
636 		return(0);
637 	}
638 
639         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
640 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
641 
642 	for (i = 0; i < SK_TIMEOUT; i++) {
643 		DELAY(1);
644 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
645 		if (val & YU_SMICR_READ_VALID)
646 			break;
647 	}
648 
649 	if (i == SK_TIMEOUT) {
650 		printf("sk%d: phy failed to come ready\n",
651 		    sc_if->sk_unit);
652 		return(0);
653 	}
654 
655 	val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
656 
657 	return(val);
658 }
659 
660 static int sk_marv_miibus_writereg(sc_if, phy, reg, val)
661 	struct sk_if_softc	*sc_if;
662 	int			phy, reg, val;
663 {
664 	int			i;
665 
666 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
667 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
668 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
669 
670 	for (i = 0; i < SK_TIMEOUT; i++) {
671 		DELAY(1);
672 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
673 			break;
674 	}
675 
676 	return(0);
677 }
678 
679 static void sk_marv_miibus_statchg(sc_if)
680 	struct sk_if_softc	*sc_if;
681 {
682 	return;
683 }
684 
685 #define XMAC_POLY		0xEDB88320
686 #define GMAC_POLY               0x04C11DB7L
687 #define HASH_BITS		6
688 
689 static u_int32_t xmac_calchash(addr)
690 	caddr_t			addr;
691 {
692 	u_int32_t		idx, bit, data, crc;
693 
694 	/* Compute CRC for the address value. */
695 	crc = 0xFFFFFFFF; /* initial value */
696 
697 	for (idx = 0; idx < 6; idx++) {
698 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
699 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0);
700 	}
701 
702 	return (~crc & ((1 << HASH_BITS) - 1));
703 }
704 
705 static u_int32_t gmac_calchash(addr)
706     caddr_t			addr;
707 {
708     u_int32_t               idx, bit, crc, tmpData, data;
709 
710     /* Compute CRC for the address value. */
711     crc = 0xFFFFFFFF; /* initial value */
712 
713     for (idx = 0; idx < 6; idx++) {
714         data = *addr++;
715 
716         /* Change bit order in byte. */
717         tmpData = data;
718         for (bit = 0; bit < 8; bit++) {
719             if (tmpData & 1) {
720                 data |=  1 << (7 - bit);
721             }
722             else {
723                 data &= ~(1 << (7 - bit));
724             }
725 
726             tmpData >>= 1;
727         }
728 
729         crc ^= (data << 24);
730         for (bit = 0; bit < 8; bit++) {
731             if (crc & 0x80000000) {
732                 crc = (crc << 1) ^ GMAC_POLY;
733             } else {
734                 crc <<= 1;
735             }
736         }
737     }
738 
739     return (crc & ((1 << HASH_BITS) - 1));
740 }
741 
742 static void sk_setfilt(sc_if, addr, slot)
743 	struct sk_if_softc	*sc_if;
744 	caddr_t			addr;
745 	int			slot;
746 {
747 	int			base;
748 
749 	base = XM_RXFILT_ENTRY(slot);
750 
751 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
752 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
753 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
754 
755 	return;
756 }
757 
758 static void sk_setmulti(sc_if)
759 	struct sk_if_softc	*sc_if;
760 {
761 	struct sk_softc		*sc = sc_if->sk_softc;
762 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
763 	u_int32_t		hashes[2] = { 0, 0 };
764 	int			h, i;
765 	struct ifmultiaddr	*ifma;
766 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0 ,0 };
767 
768 
769 	/* First, zot all the existing filters. */
770 	switch(sc->sk_type) {
771 	case SK_GENESIS:
772 		for (i = 1; i < XM_RXFILT_MAX; i++)
773 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
774 
775 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
776 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
777 		break;
778 	case SK_YUKON:
779 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
780 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
781 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
782 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
783 		break;
784 	}
785 
786 	/* Now program new ones. */
787 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
788 		hashes[0] = 0xFFFFFFFF;
789 		hashes[1] = 0xFFFFFFFF;
790 	} else {
791 		i = 1;
792 		/* First find the tail of the list. */
793 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
794 					ifma = ifma->ifma_link.le_next) {
795 			if (ifma->ifma_link.le_next == NULL)
796 				break;
797 		}
798 		/* Now traverse the list backwards. */
799 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
800 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
801 			if (ifma->ifma_addr->sa_family != AF_LINK)
802 				continue;
803 			/*
804 			 * Program the first XM_RXFILT_MAX multicast groups
805 			 * into the perfect filter. For all others,
806 			 * use the hash table.
807 			 */
808 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
809 				sk_setfilt(sc_if,
810 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
811 				i++;
812 				continue;
813 			}
814 
815                         switch(sc->sk_type) {
816                         case SK_GENESIS:
817                             h = xmac_calchash(
818                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
819                             if (h < 32)
820                                 hashes[0] |= (1 << h);
821                             else
822                                 hashes[1] |= (1 << (h - 32));
823                             break;
824 
825                         case SK_YUKON:
826                             h = gmac_calchash(
827                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
828                             if (h < 32)
829                                 hashes[0] |= (1 << h);
830                             else
831                                 hashes[1] |= (1 << (h - 32));
832                             break;
833                         }
834 		}
835 	}
836 
837 	switch(sc->sk_type) {
838 	case SK_GENESIS:
839 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
840 			       XM_MODE_RX_USE_PERFECT);
841 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
842 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
843 		break;
844 	case SK_YUKON:
845 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
846 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
847 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
848 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
849 		break;
850 	}
851 
852 	return;
853 }
854 
855 static void sk_setpromisc(sc_if)
856 	struct sk_if_softc	*sc_if;
857 {
858 	struct sk_softc		*sc = sc_if->sk_softc;
859 	struct ifnet		*ifp = &sc_if->arpcom.ac_if;
860 
861 	switch(sc->sk_type) {
862 	case SK_GENESIS:
863 		if (ifp->if_flags & IFF_PROMISC) {
864 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
865 		} else {
866 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
867 		}
868 		break;
869 	case SK_YUKON:
870 		if (ifp->if_flags & IFF_PROMISC) {
871 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
872 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
873 		} else {
874 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
875 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
876 		}
877 		break;
878 	}
879 
880 	return;
881 }
882 
883 static int sk_init_rx_ring(sc_if)
884 	struct sk_if_softc	*sc_if;
885 {
886 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
887 	struct sk_ring_data	*rd = sc_if->sk_rdata;
888 	int			i;
889 
890 	bzero((char *)rd->sk_rx_ring,
891 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
892 
893 	for (i = 0; i < SK_RX_RING_CNT; i++) {
894 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
895 		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
896 			return(ENOBUFS);
897 		if (i == (SK_RX_RING_CNT - 1)) {
898 			cd->sk_rx_chain[i].sk_next =
899 			    &cd->sk_rx_chain[0];
900 			rd->sk_rx_ring[i].sk_next =
901 			    vtophys(&rd->sk_rx_ring[0]);
902 		} else {
903 			cd->sk_rx_chain[i].sk_next =
904 			    &cd->sk_rx_chain[i + 1];
905 			rd->sk_rx_ring[i].sk_next =
906 			    vtophys(&rd->sk_rx_ring[i + 1]);
907 		}
908 	}
909 
910 	sc_if->sk_cdata.sk_rx_prod = 0;
911 	sc_if->sk_cdata.sk_rx_cons = 0;
912 
913 	return(0);
914 }
915 
916 static void sk_init_tx_ring(sc_if)
917 	struct sk_if_softc	*sc_if;
918 {
919 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
920 	struct sk_ring_data	*rd = sc_if->sk_rdata;
921 	int			i;
922 
923 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
924 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
925 
926 	for (i = 0; i < SK_TX_RING_CNT; i++) {
927 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
928 		if (i == (SK_TX_RING_CNT - 1)) {
929 			cd->sk_tx_chain[i].sk_next =
930 			    &cd->sk_tx_chain[0];
931 			rd->sk_tx_ring[i].sk_next =
932 			    vtophys(&rd->sk_tx_ring[0]);
933 		} else {
934 			cd->sk_tx_chain[i].sk_next =
935 			    &cd->sk_tx_chain[i + 1];
936 			rd->sk_tx_ring[i].sk_next =
937 			    vtophys(&rd->sk_tx_ring[i + 1]);
938 		}
939 	}
940 
941 	sc_if->sk_cdata.sk_tx_prod = 0;
942 	sc_if->sk_cdata.sk_tx_cons = 0;
943 	sc_if->sk_cdata.sk_tx_cnt = 0;
944 
945 	return;
946 }
947 
948 static int sk_newbuf(sc_if, c, m)
949 	struct sk_if_softc	*sc_if;
950 	struct sk_chain		*c;
951 	struct mbuf		*m;
952 {
953 	struct mbuf		*m_new = NULL;
954 	struct sk_rx_desc	*r;
955 
956 	if (m == NULL) {
957 		caddr_t			*buf = NULL;
958 
959 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
960 		if (m_new == NULL)
961 			return(ENOBUFS);
962 
963 		/* Allocate the jumbo buffer */
964 		buf = sk_jalloc(sc_if);
965 		if (buf == NULL) {
966 			m_freem(m_new);
967 #ifdef SK_VERBOSE
968 			printf("sk%d: jumbo allocation failed "
969 			    "-- packet dropped!\n", sc_if->sk_unit);
970 #endif
971 			return(ENOBUFS);
972 		}
973 
974 		/* Attach the buffer to the mbuf */
975 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
976 		m_new->m_flags |= M_EXT | M_EXT_OLD;
977 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
978 		    m_new->m_len = SK_MCLBYTES;
979 		m_new->m_ext.ext_nfree.old = sk_jfree;
980 		m_new->m_ext.ext_nref.old = sk_jref;
981 	} else {
982 		/*
983 	 	 * We're re-using a previously allocated mbuf;
984 		 * be sure to re-init pointers and lengths to
985 		 * default values.
986 		 */
987 		m_new = m;
988 		m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
989 		m_new->m_data = m_new->m_ext.ext_buf;
990 	}
991 
992 	/*
993 	 * Adjust alignment so packet payload begins on a
994 	 * longword boundary. Mandatory for Alpha, useful on
995 	 * x86 too.
996 	 */
997 	m_adj(m_new, ETHER_ALIGN);
998 
999 	r = c->sk_desc;
1000 	c->sk_mbuf = m_new;
1001 	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1002 	r->sk_ctl = m_new->m_len | SK_RXSTAT;
1003 
1004 	return(0);
1005 }
1006 
1007 /*
1008  * Allocate jumbo buffer storage. The SysKonnect adapters support
1009  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1010  * use them in their drivers. In order for us to use them, we need
1011  * large 9K receive buffers, however standard mbuf clusters are only
1012  * 2048 bytes in size. Consequently, we need to allocate and manage
1013  * our own jumbo buffer pool. Fortunately, this does not require an
1014  * excessive amount of additional code.
1015  */
1016 static int sk_alloc_jumbo_mem(sc_if)
1017 	struct sk_if_softc	*sc_if;
1018 {
1019 	caddr_t			ptr;
1020 	int		i;
1021 	struct sk_jpool_entry   *entry;
1022 
1023 	/* Grab a big chunk o' storage. */
1024 	sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1025 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1026 
1027 	if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1028 		printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1029 		return(ENOBUFS);
1030 	}
1031 
1032 	SLIST_INIT(&sc_if->sk_jfree_listhead);
1033 	SLIST_INIT(&sc_if->sk_jinuse_listhead);
1034 
1035 	/*
1036 	 * Now divide it up into 9K pieces and save the addresses
1037 	 * in an array. Note that we play an evil trick here by using
1038 	 * the first few bytes in the buffer to hold the the address
1039 	 * of the softc structure for this interface. This is because
1040 	 * sk_jfree() needs it, but it is called by the mbuf management
1041 	 * code which will not pass it to us explicitly.
1042 	 */
1043 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
1044 	for (i = 0; i < SK_JSLOTS; i++) {
1045 		u_int64_t		**aptr;
1046 		aptr = (u_int64_t **)ptr;
1047 		aptr[0] = (u_int64_t *)sc_if;
1048 		ptr += sizeof(u_int64_t);
1049 		sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
1050 		sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
1051 		ptr += SK_MCLBYTES;
1052 		entry = malloc(sizeof(struct sk_jpool_entry),
1053 		    M_DEVBUF, M_WAITOK);
1054 		if (entry == NULL) {
1055 			free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1056 			sc_if->sk_cdata.sk_jumbo_buf = NULL;
1057 			printf("sk%d: no memory for jumbo "
1058 			    "buffer queue!\n", sc_if->sk_unit);
1059 			return(ENOBUFS);
1060 		}
1061 		entry->slot = i;
1062 		SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1063 		    entry, jpool_entries);
1064 	}
1065 
1066 	return(0);
1067 }
1068 
1069 /*
1070  * Allocate a jumbo buffer.
1071  */
1072 static void *sk_jalloc(sc_if)
1073 	struct sk_if_softc	*sc_if;
1074 {
1075 	struct sk_jpool_entry   *entry;
1076 
1077 	entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1078 
1079 	if (entry == NULL) {
1080 #ifdef SK_VERBOSE
1081 		printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1082 #endif
1083 		return(NULL);
1084 	}
1085 
1086 	SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1087 	SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1088 	sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
1089 	return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
1090 }
1091 
1092 /*
1093  * Adjust usage count on a jumbo buffer. In general this doesn't
1094  * get used much because our jumbo buffers don't get passed around
1095  * a lot, but it's implemented for correctness.
1096  */
1097 static void sk_jref(buf, size)
1098 	caddr_t			buf;
1099 	u_int			size;
1100 {
1101 	struct sk_if_softc	*sc_if;
1102 	u_int64_t		**aptr;
1103 	int		i;
1104 
1105 	/* Extract the softc struct pointer. */
1106 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1107 	sc_if = (struct sk_if_softc *)(aptr[0]);
1108 
1109 	if (sc_if == NULL)
1110 		panic("sk_jref: can't find softc pointer!");
1111 
1112 	if (size != SK_MCLBYTES)
1113 		panic("sk_jref: adjusting refcount of buf of wrong size!");
1114 
1115 	/* calculate the slot this buffer belongs to */
1116 
1117 	i = ((vm_offset_t)aptr
1118 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1119 
1120 	if ((i < 0) || (i >= SK_JSLOTS))
1121 		panic("sk_jref: asked to reference buffer "
1122 		    "that we don't manage!");
1123 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1124 		panic("sk_jref: buffer already free!");
1125 	else
1126 		sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
1127 
1128 	return;
1129 }
1130 
1131 /*
1132  * Release a jumbo buffer.
1133  */
1134 static void sk_jfree(buf, size)
1135 	caddr_t			buf;
1136 	u_int			size;
1137 {
1138 	struct sk_if_softc	*sc_if;
1139 	u_int64_t		**aptr;
1140 	int		        i;
1141 	struct sk_jpool_entry   *entry;
1142 
1143 	/* Extract the softc struct pointer. */
1144 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1145 	sc_if = (struct sk_if_softc *)(aptr[0]);
1146 
1147 	if (sc_if == NULL)
1148 		panic("sk_jfree: can't find softc pointer!");
1149 
1150 	if (size != SK_MCLBYTES)
1151 		panic("sk_jfree: freeing buffer of wrong size!");
1152 
1153 	/* calculate the slot this buffer belongs to */
1154 
1155 	i = ((vm_offset_t)aptr
1156 	     - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1157 
1158 	if ((i < 0) || (i >= SK_JSLOTS))
1159 		panic("sk_jfree: asked to free buffer that we don't manage!");
1160 	else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1161 		panic("sk_jfree: buffer already free!");
1162 	else {
1163 		sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
1164 		if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
1165 			entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1166 			if (entry == NULL)
1167 				panic("sk_jfree: buffer not in use!");
1168 			entry->slot = i;
1169 			SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead,
1170 					  jpool_entries);
1171 			SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1172 					  entry, jpool_entries);
1173 		}
1174 	}
1175 
1176 	return;
1177 }
1178 
1179 /*
1180  * Set media options.
1181  */
1182 static int sk_ifmedia_upd(ifp)
1183 	struct ifnet		*ifp;
1184 {
1185 	struct sk_if_softc	*sc_if = ifp->if_softc;
1186 	struct mii_data		*mii;
1187 
1188 	mii = device_get_softc(sc_if->sk_miibus);
1189 	sk_init(sc_if);
1190 	mii_mediachg(mii);
1191 
1192 	return(0);
1193 }
1194 
1195 /*
1196  * Report current media status.
1197  */
1198 static void sk_ifmedia_sts(ifp, ifmr)
1199 	struct ifnet		*ifp;
1200 	struct ifmediareq	*ifmr;
1201 {
1202 	struct sk_if_softc	*sc_if;
1203 	struct mii_data		*mii;
1204 
1205 	sc_if = ifp->if_softc;
1206 	mii = device_get_softc(sc_if->sk_miibus);
1207 
1208 	mii_pollstat(mii);
1209 	ifmr->ifm_active = mii->mii_media_active;
1210 	ifmr->ifm_status = mii->mii_media_status;
1211 
1212 	return;
1213 }
1214 
1215 static int sk_ioctl(ifp, command, data, cr)
1216 	struct ifnet		*ifp;
1217 	u_long			command;
1218 	caddr_t			data;
1219 	struct ucred		*cr;
1220 {
1221 	struct sk_if_softc	*sc_if = ifp->if_softc;
1222 	struct ifreq		*ifr = (struct ifreq *) data;
1223 	int			s, error = 0;
1224 	struct mii_data		*mii;
1225 
1226 	s = splimp();
1227 
1228 	switch(command) {
1229 	case SIOCSIFADDR:
1230 	case SIOCGIFADDR:
1231 		error = ether_ioctl(ifp, command, data);
1232 		break;
1233 	case SIOCSIFMTU:
1234 		if (ifr->ifr_mtu > SK_JUMBO_MTU)
1235 			error = EINVAL;
1236 		else {
1237 			ifp->if_mtu = ifr->ifr_mtu;
1238 			sk_init(sc_if);
1239 		}
1240 		break;
1241 	case SIOCSIFFLAGS:
1242 		if (ifp->if_flags & IFF_UP) {
1243 			if (ifp->if_flags & IFF_RUNNING) {
1244 				if ((ifp->if_flags ^ sc_if->sk_if_flags)
1245 				    & IFF_PROMISC) {
1246 					sk_setpromisc(sc_if);
1247 					sk_setmulti(sc_if);
1248 				}
1249 			} else
1250 				sk_init(sc_if);
1251 		} else {
1252 			if (ifp->if_flags & IFF_RUNNING)
1253 				sk_stop(sc_if);
1254 		}
1255 		sc_if->sk_if_flags = ifp->if_flags;
1256 		error = 0;
1257 		break;
1258 	case SIOCADDMULTI:
1259 	case SIOCDELMULTI:
1260 		sk_setmulti(sc_if);
1261 		error = 0;
1262 		break;
1263 	case SIOCGIFMEDIA:
1264 	case SIOCSIFMEDIA:
1265 		mii = device_get_softc(sc_if->sk_miibus);
1266 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1267 		break;
1268 	default:
1269 		error = EINVAL;
1270 		break;
1271 	}
1272 
1273 	(void)splx(s);
1274 
1275 	return(error);
1276 }
1277 
1278 /*
1279  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1280  * IDs against our list and return a device name if we find a match.
1281  */
1282 static int skc_probe(dev)
1283 	device_t		dev;
1284 {
1285 	struct sk_softc		*sc;
1286 	struct sk_type		*t = sk_devs;
1287 
1288 	sc = device_get_softc(dev);
1289 
1290 	while(t->sk_name != NULL) {
1291 		if ((pci_get_vendor(dev) == t->sk_vid) &&
1292 		    (pci_get_device(dev) == t->sk_did)) {
1293 			device_set_desc(dev, t->sk_name);
1294 			return(0);
1295 		}
1296 		t++;
1297 	}
1298 
1299 	return(ENXIO);
1300 }
1301 
1302 /*
1303  * Force the GEnesis into reset, then bring it out of reset.
1304  */
1305 static void sk_reset(sc)
1306 	struct sk_softc		*sc;
1307 {
1308 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1309 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1310 	if (sc->sk_type == SK_YUKON)
1311 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1312 
1313 	DELAY(1000);
1314 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1315 	DELAY(2);
1316 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1317 	if (sc->sk_type == SK_YUKON)
1318 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1319 
1320 	if (sc->sk_type == SK_GENESIS) {
1321 		/* Configure packet arbiter */
1322 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1323 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1324 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1325 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1326 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1327 	}
1328 
1329 	/* Enable RAM interface */
1330 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1331 
1332 	/*
1333          * Configure interrupt moderation. The moderation timer
1334 	 * defers interrupts specified in the interrupt moderation
1335 	 * timer mask based on the timeout specified in the interrupt
1336 	 * moderation timer init register. Each bit in the timer
1337 	 * register represents 18.825ns, so to specify a timeout in
1338 	 * microseconds, we have to multiply by 54.
1339 	 */
1340         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1341         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1342 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1343         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1344 
1345 	return;
1346 }
1347 
1348 static int sk_probe(dev)
1349 	device_t		dev;
1350 {
1351 	struct sk_softc		*sc;
1352 
1353 	sc = device_get_softc(device_get_parent(dev));
1354 
1355 	/*
1356 	 * Not much to do here. We always know there will be
1357 	 * at least one XMAC present, and if there are two,
1358 	 * skc_attach() will create a second device instance
1359 	 * for us.
1360 	 */
1361 	switch (sc->sk_type) {
1362 	case SK_GENESIS:
1363 		device_set_desc(dev, "XaQti Corp. XMAC II");
1364 		break;
1365 	case SK_YUKON:
1366 		device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1367 		break;
1368 	}
1369 
1370 	return(0);
1371 }
1372 
1373 /*
1374  * Each XMAC chip is attached as a separate logical IP interface.
1375  * Single port cards will have only one logical interface of course.
1376  */
1377 static int sk_attach(dev)
1378 	device_t		dev;
1379 {
1380 	struct sk_softc		*sc;
1381 	struct sk_if_softc	*sc_if;
1382 	struct ifnet		*ifp;
1383 	int			i, port;
1384 
1385 	if (dev == NULL)
1386 		return(EINVAL);
1387 
1388 	sc_if = device_get_softc(dev);
1389 	sc = device_get_softc(device_get_parent(dev));
1390 	port = *(int *)device_get_ivars(dev);
1391 	free(device_get_ivars(dev), M_DEVBUF);
1392 	device_set_ivars(dev, NULL);
1393 	sc_if->sk_dev = dev;
1394 	callout_init(&sc_if->sk_tick_timer);
1395 
1396 	bzero((char *)sc_if, sizeof(struct sk_if_softc));
1397 
1398 	sc_if->sk_dev = dev;
1399 	sc_if->sk_unit = device_get_unit(dev);
1400 	sc_if->sk_port = port;
1401 	sc_if->sk_softc = sc;
1402 	sc->sk_if[port] = sc_if;
1403 	if (port == SK_PORT_A)
1404 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1405 	if (port == SK_PORT_B)
1406 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1407 
1408 	/*
1409 	 * Get station address for this interface. Note that
1410 	 * dual port cards actually come with three station
1411 	 * addresses: one for each port, plus an extra. The
1412 	 * extra one is used by the SysKonnect driver software
1413 	 * as a 'virtual' station address for when both ports
1414 	 * are operating in failover mode. Currently we don't
1415 	 * use this extra address.
1416 	 */
1417 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1418 		sc_if->arpcom.ac_enaddr[i] =
1419 		    sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1420 
1421 	/*
1422 	 * Set up RAM buffer addresses. The NIC will have a certain
1423 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1424 	 * need to divide this up a) between the transmitter and
1425  	 * receiver and b) between the two XMACs, if this is a
1426 	 * dual port NIC. Our algotithm is to divide up the memory
1427 	 * evenly so that everyone gets a fair share.
1428 	 */
1429 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1430 		u_int32_t		chunk, val;
1431 
1432 		chunk = sc->sk_ramsize / 2;
1433 		val = sc->sk_rboff / sizeof(u_int64_t);
1434 		sc_if->sk_rx_ramstart = val;
1435 		val += (chunk / sizeof(u_int64_t));
1436 		sc_if->sk_rx_ramend = val - 1;
1437 		sc_if->sk_tx_ramstart = val;
1438 		val += (chunk / sizeof(u_int64_t));
1439 		sc_if->sk_tx_ramend = val - 1;
1440 	} else {
1441 		u_int32_t		chunk, val;
1442 
1443 		chunk = sc->sk_ramsize / 4;
1444 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1445 		    sizeof(u_int64_t);
1446 		sc_if->sk_rx_ramstart = val;
1447 		val += (chunk / sizeof(u_int64_t));
1448 		sc_if->sk_rx_ramend = val - 1;
1449 		sc_if->sk_tx_ramstart = val;
1450 		val += (chunk / sizeof(u_int64_t));
1451 		sc_if->sk_tx_ramend = val - 1;
1452 	}
1453 
1454 	/* Read and save PHY type and set PHY address */
1455 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1456 	switch(sc_if->sk_phytype) {
1457 	case SK_PHYTYPE_XMAC:
1458 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1459 		break;
1460 	case SK_PHYTYPE_BCOM:
1461 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1462 		break;
1463 	case SK_PHYTYPE_MARV_COPPER:
1464 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1465 		break;
1466 	default:
1467 		printf("skc%d: unsupported PHY type: %d\n",
1468 		    sc->sk_unit, sc_if->sk_phytype);
1469 		return(ENODEV);
1470 	}
1471 
1472 	/* Allocate the descriptor queues. */
1473 	sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1474 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1475 
1476 	if (sc_if->sk_rdata == NULL) {
1477 		printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1478 		sc->sk_if[port] = NULL;
1479 		return(ENOMEM);
1480 	}
1481 
1482 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1483 
1484 	/* Try to allocate memory for jumbo buffers. */
1485 	if (sk_alloc_jumbo_mem(sc_if)) {
1486 		printf("sk%d: jumbo buffer allocation failed\n",
1487 		    sc_if->sk_unit);
1488 		contigfree(sc_if->sk_rdata,
1489 		    sizeof(struct sk_ring_data), M_DEVBUF);
1490 		sc->sk_if[port] = NULL;
1491 		return(ENOMEM);
1492 	}
1493 
1494 	ifp = &sc_if->arpcom.ac_if;
1495 	ifp->if_softc = sc_if;
1496 	if_initname(ifp, "sk", sc_if->sk_unit);
1497 	ifp->if_mtu = ETHERMTU;
1498 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1499 	ifp->if_ioctl = sk_ioctl;
1500 	ifp->if_start = sk_start;
1501 	ifp->if_watchdog = sk_watchdog;
1502 	ifp->if_init = sk_init;
1503 	ifp->if_baudrate = 1000000000;
1504 	ifq_set_maxlen(&ifp->if_snd, SK_TX_RING_CNT - 1);
1505 	ifq_set_ready(&ifp->if_snd);
1506 
1507 	/*
1508 	 * Do miibus setup.
1509 	 */
1510 	switch (sc->sk_type) {
1511 	case SK_GENESIS:
1512 		sk_init_xmac(sc_if);
1513 		break;
1514 	case SK_YUKON:
1515 		sk_init_yukon(sc_if);
1516 		break;
1517 	}
1518 
1519 	if (mii_phy_probe(dev, &sc_if->sk_miibus,
1520 	    sk_ifmedia_upd, sk_ifmedia_sts)) {
1521 		printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1522 		contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1523 		    M_DEVBUF);
1524 		contigfree(sc_if->sk_rdata,
1525 		    sizeof(struct sk_ring_data), M_DEVBUF);
1526 		return(ENXIO);
1527 	}
1528 
1529 	/*
1530 	 * Call MI attach routine.
1531 	 */
1532 	ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1533 	callout_init(&sc_if->sk_tick_timer);
1534 
1535 	return(0);
1536 }
1537 
1538 /*
1539  * Attach the interface. Allocate softc structures, do ifmedia
1540  * setup and ethernet/BPF attach.
1541  */
1542 static int skc_attach(dev)
1543 	device_t		dev;
1544 {
1545 	int			s;
1546 	u_int32_t		command;
1547 	struct sk_softc		*sc;
1548 	int			unit, error = 0, rid, *port;
1549 	uint8_t			skrs;
1550 
1551 	s = splimp();
1552 
1553 	sc = device_get_softc(dev);
1554 	unit = device_get_unit(dev);
1555 	bzero(sc, sizeof(struct sk_softc));
1556 	switch (pci_get_device(dev)) {
1557 	case DEVICEID_SK_V1:
1558 		sc->sk_type = SK_GENESIS;
1559 		break;
1560 	case DEVICEID_SK_V2:
1561 	case DEVICEID_3COM_3C940:
1562 	case DEVICEID_LINKSYS_EG1032:
1563 	case DEVICEID_DLINK_DGE530T:
1564 		sc->sk_type = SK_YUKON;
1565 		break;
1566 	}
1567 
1568 	/*
1569 	 * Handle power management nonsense.
1570 	 */
1571 	command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1572 	if (command == 0x01) {
1573 		command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1574 		if (command & SK_PSTATE_MASK) {
1575 			u_int32_t		iobase, membase, irq;
1576 
1577 			/* Save important PCI config data. */
1578 			iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1579 			membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1580 			irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1581 
1582 			/* Reset the power state. */
1583 			printf("skc%d: chip is in D%d power mode "
1584 			"-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1585 			command &= 0xFFFFFFFC;
1586 			pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1587 
1588 			/* Restore PCI config data. */
1589 			pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1590 			pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1591 			pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1592 		}
1593 	}
1594 
1595 	/*
1596 	 * Map control/status registers.
1597 	 */
1598 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1599 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1600 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1601 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1602 
1603 #ifdef SK_USEIOSPACE
1604 	if (!(command & PCIM_CMD_PORTEN)) {
1605 		printf("skc%d: failed to enable I/O ports!\n", unit);
1606 		error = ENXIO;
1607 		goto fail;
1608 	}
1609 #else
1610 	if (!(command & PCIM_CMD_MEMEN)) {
1611 		printf("skc%d: failed to enable memory mapping!\n", unit);
1612 		error = ENXIO;
1613 		goto fail;
1614 	}
1615 #endif
1616 
1617 	rid = SK_RID;
1618 	sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1619 	    0, ~0, 1, RF_ACTIVE);
1620 
1621 	if (sc->sk_res == NULL) {
1622 		printf("sk%d: couldn't map ports/memory\n", unit);
1623 		error = ENXIO;
1624 		goto fail;
1625 	}
1626 
1627 	sc->sk_btag = rman_get_bustag(sc->sk_res);
1628 	sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1629 
1630 	/* Allocate interrupt */
1631 	rid = 0;
1632 	sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1633 	    RF_SHAREABLE | RF_ACTIVE);
1634 
1635 	if (sc->sk_irq == NULL) {
1636 		printf("skc%d: couldn't map interrupt\n", unit);
1637 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1638 		error = ENXIO;
1639 		goto fail;
1640 	}
1641 
1642 	error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1643 	    sk_intr, sc, &sc->sk_intrhand);
1644 
1645 	if (error) {
1646 		printf("skc%d: couldn't set up irq\n", unit);
1647 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1648 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1649 		goto fail;
1650 	}
1651 
1652 	/* Reset the adapter. */
1653 	sk_reset(sc);
1654 
1655 	sc->sk_unit = unit;
1656 
1657 	/* Read and save vital product data from EEPROM. */
1658 	sk_vpd_read(sc);
1659 
1660 	skrs = sk_win_read_1(sc, SK_EPROM0);
1661 	if (sc->sk_type == SK_GENESIS) {
1662 		/* Read and save RAM size and RAMbuffer offset */
1663 		switch(skrs) {
1664 		case SK_RAMSIZE_512K_64:
1665 			sc->sk_ramsize = 0x80000;
1666 			sc->sk_rboff = SK_RBOFF_0;
1667 			break;
1668 		case SK_RAMSIZE_1024K_64:
1669 			sc->sk_ramsize = 0x100000;
1670 			sc->sk_rboff = SK_RBOFF_80000;
1671 			break;
1672 		case SK_RAMSIZE_1024K_128:
1673 			sc->sk_ramsize = 0x100000;
1674 			sc->sk_rboff = SK_RBOFF_0;
1675 			break;
1676 		case SK_RAMSIZE_2048K_128:
1677 			sc->sk_ramsize = 0x200000;
1678 			sc->sk_rboff = SK_RBOFF_0;
1679 			break;
1680 		default:
1681 			printf("skc%d: unknown ram size: %d\n",
1682 			    sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1683 			bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1684 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1685 			bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1686 			error = ENXIO;
1687 			goto fail;
1688 			break;
1689 		}
1690 	} else { /* SK_YUKON */
1691 		if (skrs == 0x00) {
1692 			sc->sk_ramsize = 0x20000;
1693 		} else {
1694 			sc->sk_ramsize = skrs * (1<<12);
1695 		}
1696 		sc->sk_rboff = SK_RBOFF_0;
1697 	}
1698 
1699 	/* Read and save physical media type */
1700 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1701 	case SK_PMD_1000BASESX:
1702 		sc->sk_pmd = IFM_1000_SX;
1703 		break;
1704 	case SK_PMD_1000BASELX:
1705 		sc->sk_pmd = IFM_1000_LX;
1706 		break;
1707 	case SK_PMD_1000BASECX:
1708 		sc->sk_pmd = IFM_1000_CX;
1709 		break;
1710 	case SK_PMD_1000BASETX:
1711 		sc->sk_pmd = IFM_1000_T;
1712 		break;
1713 	default:
1714 		printf("skc%d: unknown media type: 0x%x\n",
1715 		    sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1716 		bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1717 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1718 		bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1719 		error = ENXIO;
1720 		goto fail;
1721 	}
1722 
1723 	/* Announce the product name. */
1724 	printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1725 	sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1726 	port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1727 	*port = SK_PORT_A;
1728 	device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1729 
1730 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1731 		sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1732 		port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1733 		*port = SK_PORT_B;
1734 		device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1735 	}
1736 
1737 	/* Turn on the 'driver is loaded' LED. */
1738 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1739 
1740 	bus_generic_attach(dev);
1741 
1742 fail:
1743 	splx(s);
1744 	return(error);
1745 }
1746 
1747 static int sk_detach(dev)
1748 	device_t		dev;
1749 {
1750 	struct sk_softc		*sc;
1751 	struct sk_if_softc	*sc_if;
1752 	struct ifnet		*ifp;
1753 	int			s;
1754 
1755 	s = splimp();
1756 
1757 	sc = device_get_softc(device_get_parent(dev));
1758 	sc_if = device_get_softc(dev);
1759 	ifp = &sc_if->arpcom.ac_if;
1760 	sk_stop(sc_if);
1761 	ether_ifdetach(ifp);
1762 	bus_generic_detach(dev);
1763 	if (sc_if->sk_miibus != NULL)
1764 		device_delete_child(dev, sc_if->sk_miibus);
1765 	contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1766 	contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1767 
1768 	return(0);
1769 }
1770 
1771 static int skc_detach(dev)
1772 	device_t		dev;
1773 {
1774 	struct sk_softc		*sc;
1775 	int			s;
1776 
1777 	s = splimp();
1778 
1779 	sc = device_get_softc(dev);
1780 
1781 	bus_generic_detach(dev);
1782 	if (sc->sk_devs[SK_PORT_A] != NULL)
1783 		device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1784 	if (sc->sk_devs[SK_PORT_B] != NULL)
1785 		device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1786 
1787 	bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1788 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1789 	bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1790 
1791 	splx(s);
1792 
1793 	return(0);
1794 }
1795 
1796 static int sk_encap(sc_if, m_head, txidx)
1797         struct sk_if_softc	*sc_if;
1798         struct mbuf		*m_head;
1799         u_int32_t		*txidx;
1800 {
1801 	struct sk_tx_desc	*f = NULL;
1802 	struct mbuf		*m;
1803 	u_int32_t		frag, cur, cnt = 0;
1804 
1805 	m = m_head;
1806 	cur = frag = *txidx;
1807 
1808 	/*
1809 	 * Start packing the mbufs in this chain into
1810 	 * the fragment pointers. Stop when we run out
1811 	 * of fragments or hit the end of the mbuf chain.
1812 	 */
1813 	for (m = m_head; m != NULL; m = m->m_next) {
1814 		if (m->m_len != 0) {
1815 			if ((SK_TX_RING_CNT -
1816 			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1817 				return(ENOBUFS);
1818 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1819 			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1820 			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1821 			if (cnt == 0)
1822 				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1823 			else
1824 				f->sk_ctl |= SK_TXCTL_OWN;
1825 			cur = frag;
1826 			SK_INC(frag, SK_TX_RING_CNT);
1827 			cnt++;
1828 		}
1829 	}
1830 
1831 	if (m != NULL)
1832 		return(ENOBUFS);
1833 
1834 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1835 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1836 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1837 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1838 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1839 
1840 	*txidx = frag;
1841 
1842 	return(0);
1843 }
1844 
1845 static void sk_start(ifp)
1846 	struct ifnet		*ifp;
1847 {
1848         struct sk_softc		*sc;
1849         struct sk_if_softc	*sc_if;
1850         struct mbuf		*m_head = NULL;
1851         u_int32_t		idx;
1852 
1853 	sc_if = ifp->if_softc;
1854 	sc = sc_if->sk_softc;
1855 
1856 	idx = sc_if->sk_cdata.sk_tx_prod;
1857 
1858 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1859 		m_head = ifq_poll(&ifp->if_snd);
1860 		if (m_head == NULL)
1861 			break;
1862 
1863 		/*
1864 		 * Pack the data into the transmit ring. If we
1865 		 * don't have room, set the OACTIVE flag and wait
1866 		 * for the NIC to drain the ring.
1867 		 */
1868 		if (sk_encap(sc_if, m_head, &idx)) {
1869 			ifp->if_flags |= IFF_OACTIVE;
1870 			break;
1871 		}
1872 		m_head = ifq_dequeue(&ifp->if_snd);
1873 
1874 		BPF_MTAP(ifp, m_head);
1875 	}
1876 
1877 	/* Transmit */
1878 	sc_if->sk_cdata.sk_tx_prod = idx;
1879 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1880 
1881 	/* Set a timeout in case the chip goes out to lunch. */
1882 	ifp->if_timer = 5;
1883 
1884 	return;
1885 }
1886 
1887 
1888 static void sk_watchdog(ifp)
1889 	struct ifnet		*ifp;
1890 {
1891 	struct sk_if_softc	*sc_if;
1892 
1893 	sc_if = ifp->if_softc;
1894 
1895 	printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1896 	sk_init(sc_if);
1897 
1898 	return;
1899 }
1900 
1901 static void skc_shutdown(dev)
1902 	device_t		dev;
1903 {
1904 	struct sk_softc		*sc;
1905 
1906 	sc = device_get_softc(dev);
1907 
1908 	/* Turn off the 'driver is loaded' LED. */
1909 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1910 
1911 	/*
1912 	 * Reset the GEnesis controller. Doing this should also
1913 	 * assert the resets on the attached XMAC(s).
1914 	 */
1915 	sk_reset(sc);
1916 
1917 	return;
1918 }
1919 
1920 static void sk_rxeof(sc_if)
1921 	struct sk_if_softc	*sc_if;
1922 {
1923 	struct mbuf		*m;
1924 	struct ifnet		*ifp;
1925 	struct sk_chain		*cur_rx;
1926 	int			total_len = 0;
1927 	int			i;
1928 	u_int32_t		rxstat;
1929 
1930 	ifp = &sc_if->arpcom.ac_if;
1931 	i = sc_if->sk_cdata.sk_rx_prod;
1932 	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1933 
1934 	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1935 
1936 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1937 		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1938 		m = cur_rx->sk_mbuf;
1939 		cur_rx->sk_mbuf = NULL;
1940 		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1941 		SK_INC(i, SK_RX_RING_CNT);
1942 
1943 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1944 			ifp->if_ierrors++;
1945 			sk_newbuf(sc_if, cur_rx, m);
1946 			continue;
1947 		}
1948 
1949 		/*
1950 		 * Try to allocate a new jumbo buffer. If that
1951 		 * fails, copy the packet to mbufs and put the
1952 		 * jumbo buffer back in the ring so it can be
1953 		 * re-used. If allocating mbufs fails, then we
1954 		 * have to drop the packet.
1955 		 */
1956 		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1957 			struct mbuf		*m0;
1958 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1959 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1960 			sk_newbuf(sc_if, cur_rx, m);
1961 			if (m0 == NULL) {
1962 				printf("sk%d: no receive buffers "
1963 				    "available -- packet dropped!\n",
1964 				    sc_if->sk_unit);
1965 				ifp->if_ierrors++;
1966 				continue;
1967 			}
1968 			m_adj(m0, ETHER_ALIGN);
1969 			m = m0;
1970 		} else {
1971 			m->m_pkthdr.rcvif = ifp;
1972 			m->m_pkthdr.len = m->m_len = total_len;
1973 		}
1974 
1975 		ifp->if_ipackets++;
1976 		(*ifp->if_input)(ifp, m);
1977 	}
1978 
1979 	sc_if->sk_cdata.sk_rx_prod = i;
1980 
1981 	return;
1982 }
1983 
1984 static void sk_txeof(sc_if)
1985 	struct sk_if_softc	*sc_if;
1986 {
1987 	struct sk_tx_desc	*cur_tx = NULL;
1988 	struct ifnet		*ifp;
1989 	u_int32_t		idx;
1990 
1991 	ifp = &sc_if->arpcom.ac_if;
1992 
1993 	/*
1994 	 * Go through our tx ring and free mbufs for those
1995 	 * frames that have been sent.
1996 	 */
1997 	idx = sc_if->sk_cdata.sk_tx_cons;
1998 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1999 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2000 		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2001 			break;
2002 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2003 			ifp->if_opackets++;
2004 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2005 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2006 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2007 		}
2008 		sc_if->sk_cdata.sk_tx_cnt--;
2009 		SK_INC(idx, SK_TX_RING_CNT);
2010 		ifp->if_timer = 0;
2011 	}
2012 
2013 	sc_if->sk_cdata.sk_tx_cons = idx;
2014 
2015 	if (cur_tx != NULL)
2016 		ifp->if_flags &= ~IFF_OACTIVE;
2017 
2018 	return;
2019 }
2020 
2021 static void sk_tick(xsc_if)
2022 	void			*xsc_if;
2023 {
2024 	struct sk_if_softc	*sc_if;
2025 	struct mii_data		*mii;
2026 	struct ifnet		*ifp;
2027 	int			i;
2028 
2029 	sc_if = xsc_if;
2030 	ifp = &sc_if->arpcom.ac_if;
2031 	mii = device_get_softc(sc_if->sk_miibus);
2032 
2033 	if (!(ifp->if_flags & IFF_UP))
2034 		return;
2035 
2036 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2037 		sk_intr_bcom(sc_if);
2038 		return;
2039 	}
2040 
2041 	/*
2042 	 * According to SysKonnect, the correct way to verify that
2043 	 * the link has come back up is to poll bit 0 of the GPIO
2044 	 * register three times. This pin has the signal from the
2045 	 * link_sync pin connected to it; if we read the same link
2046 	 * state 3 times in a row, we know the link is up.
2047 	 */
2048 	for (i = 0; i < 3; i++) {
2049 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2050 			break;
2051 	}
2052 
2053 	if (i != 3) {
2054 		callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2055 		return;
2056 	}
2057 
2058 	/* Turn the GP0 interrupt back on. */
2059 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2060 	SK_XM_READ_2(sc_if, XM_ISR);
2061 	mii_tick(mii);
2062 	mii_pollstat(mii);
2063 	callout_stop(&sc_if->sk_tick_timer);
2064 
2065 	return;
2066 }
2067 
2068 static void sk_intr_bcom(sc_if)
2069 	struct sk_if_softc	*sc_if;
2070 {
2071 	struct sk_softc		*sc;
2072 	struct mii_data		*mii;
2073 	struct ifnet		*ifp;
2074 	int			status;
2075 
2076 	sc = sc_if->sk_softc;
2077 	mii = device_get_softc(sc_if->sk_miibus);
2078 	ifp = &sc_if->arpcom.ac_if;
2079 
2080 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2081 
2082 	/*
2083 	 * Read the PHY interrupt register to make sure
2084 	 * we clear any pending interrupts.
2085 	 */
2086 	status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2087 
2088 	if (!(ifp->if_flags & IFF_RUNNING)) {
2089 		sk_init_xmac(sc_if);
2090 		return;
2091 	}
2092 
2093 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2094 		int			lstat;
2095 		lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2096 		    BRGPHY_MII_AUXSTS);
2097 
2098 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2099 			mii_mediachg(mii);
2100 			/* Turn off the link LED. */
2101 			SK_IF_WRITE_1(sc_if, 0,
2102 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2103 			sc_if->sk_link = 0;
2104 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2105 			sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2106 	    		    BRGPHY_MII_IMR, 0xFF00);
2107 			mii_tick(mii);
2108 			sc_if->sk_link = 1;
2109 			/* Turn on the link LED. */
2110 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2111 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2112 			    SK_LINKLED_BLINK_OFF);
2113 			mii_pollstat(mii);
2114 		} else {
2115 			mii_tick(mii);
2116 			callout_reset(&sc_if->sk_tick_timer, hz,
2117 				      sk_tick, sc_if);
2118 		}
2119 	}
2120 
2121 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2122 
2123 	return;
2124 }
2125 
2126 static void sk_intr_xmac(sc_if)
2127 	struct sk_if_softc	*sc_if;
2128 {
2129 	struct sk_softc		*sc;
2130 	u_int16_t		status;
2131 	struct mii_data		*mii;
2132 
2133 	sc = sc_if->sk_softc;
2134 	mii = device_get_softc(sc_if->sk_miibus);
2135 	status = SK_XM_READ_2(sc_if, XM_ISR);
2136 
2137 	/*
2138 	 * Link has gone down. Start MII tick timeout to
2139 	 * watch for link resync.
2140 	 */
2141 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2142 		if (status & XM_ISR_GP0_SET) {
2143 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2144 			callout_reset(&sc_if->sk_tick_timer, hz,
2145 				      sk_tick, sc_if);
2146 		}
2147 
2148 		if (status & XM_ISR_AUTONEG_DONE) {
2149 			callout_reset(&sc_if->sk_tick_timer, hz,
2150 				      sk_tick, sc_if);
2151 		}
2152 	}
2153 
2154 	if (status & XM_IMR_TX_UNDERRUN)
2155 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2156 
2157 	if (status & XM_IMR_RX_OVERRUN)
2158 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2159 
2160 	status = SK_XM_READ_2(sc_if, XM_ISR);
2161 
2162 	return;
2163 }
2164 
2165 static void sk_intr_yukon(sc_if)
2166 	struct sk_if_softc	*sc_if;
2167 {
2168 	int status;
2169 
2170 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2171 
2172 	return;
2173 }
2174 
2175 static void sk_intr(xsc)
2176 	void			*xsc;
2177 {
2178 	struct sk_softc		*sc = xsc;
2179 	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
2180 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2181 	u_int32_t		status;
2182 
2183 	sc_if0 = sc->sk_if[SK_PORT_A];
2184 	sc_if1 = sc->sk_if[SK_PORT_B];
2185 
2186 	if (sc_if0 != NULL)
2187 		ifp0 = &sc_if0->arpcom.ac_if;
2188 	if (sc_if1 != NULL)
2189 		ifp1 = &sc_if1->arpcom.ac_if;
2190 
2191 	for (;;) {
2192 		status = CSR_READ_4(sc, SK_ISSR);
2193 		if (!(status & sc->sk_intrmask))
2194 			break;
2195 
2196 		/* Handle receive interrupts first. */
2197 		if (status & SK_ISR_RX1_EOF) {
2198 			sk_rxeof(sc_if0);
2199 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2200 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2201 		}
2202 		if (status & SK_ISR_RX2_EOF) {
2203 			sk_rxeof(sc_if1);
2204 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2205 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2206 		}
2207 
2208 		/* Then transmit interrupts. */
2209 		if (status & SK_ISR_TX1_S_EOF) {
2210 			sk_txeof(sc_if0);
2211 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2212 			    SK_TXBMU_CLR_IRQ_EOF);
2213 		}
2214 		if (status & SK_ISR_TX2_S_EOF) {
2215 			sk_txeof(sc_if1);
2216 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2217 			    SK_TXBMU_CLR_IRQ_EOF);
2218 		}
2219 
2220 		/* Then MAC interrupts. */
2221 		if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2222 			if (sc->sk_type == SK_GENESIS)
2223 				sk_intr_xmac(sc_if0);
2224 			else
2225 				sk_intr_yukon(sc_if0);
2226 		}
2227 
2228 		if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2229 			if (sc->sk_type == SK_GENESIS)
2230 				sk_intr_xmac(sc_if1);
2231 			else
2232 				sk_intr_yukon(sc_if0);
2233 		}
2234 
2235 		if (status & SK_ISR_EXTERNAL_REG) {
2236 			if (ifp0 != NULL &&
2237 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2238 				sk_intr_bcom(sc_if0);
2239 			if (ifp1 != NULL &&
2240 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2241 				sk_intr_bcom(sc_if1);
2242 		}
2243 	}
2244 
2245 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2246 
2247 	if (ifp0 != NULL && !ifq_is_empty(&ifp0->if_snd))
2248 		sk_start(ifp0);
2249 	if (ifp1 != NULL && !ifq_is_empty(&ifp0->if_snd))
2250 		sk_start(ifp1);
2251 
2252 	return;
2253 }
2254 
2255 static void sk_init_xmac(sc_if)
2256 	struct sk_if_softc	*sc_if;
2257 {
2258 	struct sk_softc		*sc;
2259 	struct ifnet		*ifp;
2260 	struct sk_bcom_hack	bhack[] = {
2261 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2262 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2263 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2264 	{ 0, 0 } };
2265 
2266 	sc = sc_if->sk_softc;
2267 	ifp = &sc_if->arpcom.ac_if;
2268 
2269 	/* Unreset the XMAC. */
2270 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2271 	DELAY(1000);
2272 
2273 	/* Reset the XMAC's internal state. */
2274 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2275 
2276 	/* Save the XMAC II revision */
2277 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2278 
2279 	/*
2280 	 * Perform additional initialization for external PHYs,
2281 	 * namely for the 1000baseTX cards that use the XMAC's
2282 	 * GMII mode.
2283 	 */
2284 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2285 		int			i = 0;
2286 		u_int32_t		val;
2287 
2288 		/* Take PHY out of reset. */
2289 		val = sk_win_read_4(sc, SK_GPIO);
2290 		if (sc_if->sk_port == SK_PORT_A)
2291 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2292 		else
2293 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2294 		sk_win_write_4(sc, SK_GPIO, val);
2295 
2296 		/* Enable GMII mode on the XMAC. */
2297 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2298 
2299 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2300 		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2301 		DELAY(10000);
2302 		sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2303 		    BRGPHY_MII_IMR, 0xFFF0);
2304 
2305 		/*
2306 		 * Early versions of the BCM5400 apparently have
2307 		 * a bug that requires them to have their reserved
2308 		 * registers initialized to some magic values. I don't
2309 		 * know what the numbers do, I'm just the messenger.
2310 		 */
2311 		if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2312 		    == 0x6041) {
2313 			while(bhack[i].reg) {
2314 				sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2315 				    bhack[i].reg, bhack[i].val);
2316 				i++;
2317 			}
2318 		}
2319 	}
2320 
2321 	/* Set station address */
2322 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2323 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2324 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2325 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2326 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2327 	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2328 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2329 
2330 	if (ifp->if_flags & IFF_BROADCAST) {
2331 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2332 	} else {
2333 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2334 	}
2335 
2336 	/* We don't need the FCS appended to the packet. */
2337 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2338 
2339 	/* We want short frames padded to 60 bytes. */
2340 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2341 
2342 	/*
2343 	 * Enable the reception of all error frames. This is is
2344 	 * a necessary evil due to the design of the XMAC. The
2345 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2346 	 * frames can be up to 9000 bytes in length. When bad
2347 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2348 	 * in 'store and forward' mode. For this to work, the
2349 	 * entire frame has to fit into the FIFO, but that means
2350 	 * that jumbo frames larger than 8192 bytes will be
2351 	 * truncated. Disabling all bad frame filtering causes
2352 	 * the RX FIFO to operate in streaming mode, in which
2353 	 * case the XMAC will start transfering frames out of the
2354 	 * RX FIFO as soon as the FIFO threshold is reached.
2355 	 */
2356 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2357 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2358 	    XM_MODE_RX_INRANGELEN);
2359 
2360 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2361 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2362 	else
2363 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2364 
2365 	/*
2366 	 * Bump up the transmit threshold. This helps hold off transmit
2367 	 * underruns when we're blasting traffic from both ports at once.
2368 	 */
2369 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2370 
2371 	/* Set promiscuous mode */
2372 	sk_setpromisc(sc_if);
2373 
2374 	/* Set multicast filter */
2375 	sk_setmulti(sc_if);
2376 
2377 	/* Clear and enable interrupts */
2378 	SK_XM_READ_2(sc_if, XM_ISR);
2379 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2380 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2381 	else
2382 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2383 
2384 	/* Configure MAC arbiter */
2385 	switch(sc_if->sk_xmac_rev) {
2386 	case XM_XMAC_REV_B2:
2387 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2388 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2389 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2390 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2391 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2392 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2393 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2394 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2395 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2396 		break;
2397 	case XM_XMAC_REV_C1:
2398 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2399 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2400 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2401 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2402 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2403 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2404 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2405 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2406 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2407 		break;
2408 	default:
2409 		break;
2410 	}
2411 	sk_win_write_2(sc, SK_MACARB_CTL,
2412 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2413 
2414 	sc_if->sk_link = 1;
2415 
2416 	return;
2417 }
2418 
2419 static void sk_init_yukon(sc_if)
2420 	struct sk_if_softc	*sc_if;
2421 {
2422 	u_int32_t		phy;
2423 	u_int16_t		reg;
2424 	struct sk_softc		*sc;
2425 	struct ifnet		*ifp;
2426 	int			i;
2427 
2428 	sc = sc_if->sk_softc;
2429 	ifp = &sc_if->arpcom.ac_if;
2430 
2431 	/* GMAC and GPHY Reset */
2432 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2433 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2434 	DELAY(1000);
2435 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2436 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2437 	DELAY(1000);
2438 
2439 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2440 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2441 
2442 	switch(sc_if->sk_softc->sk_pmd) {
2443 	case IFM_1000_SX:
2444 	case IFM_1000_LX:
2445 		phy |= SK_GPHY_FIBER;
2446 		break;
2447 
2448 	case IFM_1000_CX:
2449 	case IFM_1000_T:
2450 		phy |= SK_GPHY_COPPER;
2451 		break;
2452 	}
2453 
2454 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2455 	DELAY(1000);
2456 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2457 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2458 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2459 
2460 	/* unused read of the interrupt source register */
2461 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2462 
2463 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2464 
2465 	/* MIB Counter Clear Mode set */
2466 	reg |= YU_PAR_MIB_CLR;
2467 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2468 
2469 	/* MIB Counter Clear Mode clear */
2470 	reg &= ~YU_PAR_MIB_CLR;
2471 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2472 
2473 	/* receive control reg */
2474 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2475 
2476 	/* transmit parameter register */
2477 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2478 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2479 
2480 	/* serial mode register */
2481 	reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2482 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2483 		reg |= YU_SMR_MFL_JUMBO;
2484 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2485 
2486 	/* Setup Yukon's address */
2487 	for (i = 0; i < 3; i++) {
2488 		/* Write Source Address 1 (unicast filter) */
2489 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2490 			      sc_if->arpcom.ac_enaddr[i * 2] |
2491 			      sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2492 	}
2493 
2494 	for (i = 0; i < 3; i++) {
2495 		reg = sk_win_read_2(sc_if->sk_softc,
2496 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2497 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2498 	}
2499 
2500 	/* Set promiscuous mode */
2501 	sk_setpromisc(sc_if);
2502 
2503 	/* Set multicast filter */
2504 	sk_setmulti(sc_if);
2505 
2506 	/* enable interrupt mask for counter overflows */
2507 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2508 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2509 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2510 
2511 	/* Configure RX MAC FIFO */
2512 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2513 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2514 
2515 	/* Configure TX MAC FIFO */
2516 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2517 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2518 }
2519 
2520 /*
2521  * Note that to properly initialize any part of the GEnesis chip,
2522  * you first have to take it out of reset mode.
2523  */
2524 static void sk_init(xsc)
2525 	void			*xsc;
2526 {
2527 	struct sk_if_softc	*sc_if = xsc;
2528 	struct sk_softc		*sc;
2529 	struct ifnet		*ifp;
2530 	struct mii_data		*mii;
2531 	int			s;
2532 	u_int16_t		reg;
2533 
2534 	s = splimp();
2535 
2536 	ifp = &sc_if->arpcom.ac_if;
2537 	sc = sc_if->sk_softc;
2538 	mii = device_get_softc(sc_if->sk_miibus);
2539 
2540 	/* Cancel pending I/O and free all RX/TX buffers. */
2541 	sk_stop(sc_if);
2542 
2543 	if (sc->sk_type == SK_GENESIS) {
2544 		/* Configure LINK_SYNC LED */
2545 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2546 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2547 			SK_LINKLED_LINKSYNC_ON);
2548 
2549 		/* Configure RX LED */
2550 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2551 			SK_RXLEDCTL_COUNTER_START);
2552 
2553 		/* Configure TX LED */
2554 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2555 			SK_TXLEDCTL_COUNTER_START);
2556 	}
2557 
2558 	/* Configure I2C registers */
2559 
2560 	/* Configure XMAC(s) */
2561 	switch (sc->sk_type) {
2562 	case SK_GENESIS:
2563 		sk_init_xmac(sc_if);
2564 		break;
2565 	case SK_YUKON:
2566 		sk_init_yukon(sc_if);
2567 		break;
2568 	}
2569 	mii_mediachg(mii);
2570 
2571 	if (sc->sk_type == SK_GENESIS) {
2572 		/* Configure MAC FIFOs */
2573 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2574 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2575 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2576 
2577 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2578 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2579 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2580 	}
2581 
2582 	/* Configure transmit arbiter(s) */
2583 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2584 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2585 
2586 	/* Configure RAMbuffers */
2587 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2588 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2589 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2590 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2591 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2592 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2593 
2594 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2595 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2596 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2597 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2598 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2599 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2600 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2601 
2602 	/* Configure BMUs */
2603 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2604 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2605 	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2606 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2607 
2608 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2609 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2610 	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2611 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2612 
2613 	/* Init descriptors */
2614 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2615 		printf("sk%d: initialization failed: no "
2616 		    "memory for rx buffers\n", sc_if->sk_unit);
2617 		sk_stop(sc_if);
2618 		(void)splx(s);
2619 		return;
2620 	}
2621 	sk_init_tx_ring(sc_if);
2622 
2623 	/* Configure interrupt handling */
2624 	CSR_READ_4(sc, SK_ISSR);
2625 	if (sc_if->sk_port == SK_PORT_A)
2626 		sc->sk_intrmask |= SK_INTRS1;
2627 	else
2628 		sc->sk_intrmask |= SK_INTRS2;
2629 
2630 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2631 
2632 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2633 
2634 	/* Start BMUs. */
2635 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2636 
2637 	switch(sc->sk_type) {
2638 	case SK_GENESIS:
2639 		/* Enable XMACs TX and RX state machines */
2640 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2641 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2642 		break;
2643 	case SK_YUKON:
2644 		reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2645 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2646 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2647 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2648 	}
2649 
2650 	ifp->if_flags |= IFF_RUNNING;
2651 	ifp->if_flags &= ~IFF_OACTIVE;
2652 
2653 	splx(s);
2654 
2655 	return;
2656 }
2657 
2658 static void sk_stop(sc_if)
2659 	struct sk_if_softc	*sc_if;
2660 {
2661 	int			i;
2662 	struct sk_softc		*sc;
2663 	struct ifnet		*ifp;
2664 
2665 	sc = sc_if->sk_softc;
2666 	ifp = &sc_if->arpcom.ac_if;
2667 
2668 	callout_stop(&sc_if->sk_tick_timer);
2669 
2670 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2671 		u_int32_t		val;
2672 
2673 		/* Put PHY back into reset. */
2674 		val = sk_win_read_4(sc, SK_GPIO);
2675 		if (sc_if->sk_port == SK_PORT_A) {
2676 			val |= SK_GPIO_DIR0;
2677 			val &= ~SK_GPIO_DAT0;
2678 		} else {
2679 			val |= SK_GPIO_DIR2;
2680 			val &= ~SK_GPIO_DAT2;
2681 		}
2682 		sk_win_write_4(sc, SK_GPIO, val);
2683 	}
2684 
2685 	/* Turn off various components of this interface. */
2686 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2687 	switch (sc->sk_type) {
2688 	case SK_GENESIS:
2689 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2690 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2691 		break;
2692 	case SK_YUKON:
2693 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2694 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2695 		break;
2696 	}
2697 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2698 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2699 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2700 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2701 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2702 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2703 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2704 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2705 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2706 
2707 	/* Disable interrupts */
2708 	if (sc_if->sk_port == SK_PORT_A)
2709 		sc->sk_intrmask &= ~SK_INTRS1;
2710 	else
2711 		sc->sk_intrmask &= ~SK_INTRS2;
2712 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2713 
2714 	SK_XM_READ_2(sc_if, XM_ISR);
2715 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2716 
2717 	/* Free RX and TX mbufs still in the queues. */
2718 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2719 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2720 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2721 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2722 		}
2723 	}
2724 
2725 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2726 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2727 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2728 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2729 		}
2730 	}
2731 
2732 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2733 
2734 	return;
2735 }
2736