xref: /dflybsd-src/sys/dev/netif/sis/if_sis.c (revision 6bc31f17c9c90db02ddbd88208e06c29ed0f1534)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/sis/if_sis.c,v 1.23 2005/05/25 01:44:29 dillon Exp $
34  */
35 
36 /*
37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38  * available from http://www.sis.com.tw.
39  *
40  * This driver also supports the NatSemi DP83815. Datasheets are
41  * available from http://www.national.com.
42  *
43  * Written by Bill Paul <wpaul@ee.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/kernel.h>
67 #include <sys/socket.h>
68 #include <sys/sysctl.h>
69 
70 #include <net/if.h>
71 #include <net/ifq_var.h>
72 #include <net/if_arp.h>
73 #include <net/ethernet.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/vlan/if_vlan_var.h>
78 
79 #include <net/bpf.h>
80 
81 #include <machine/bus_pio.h>
82 #include <machine/bus_memio.h>
83 #include <machine/bus.h>
84 #include <machine/resource.h>
85 #include <sys/bus.h>
86 #include <sys/rman.h>
87 
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
90 
91 #include <bus/pci/pcireg.h>
92 #include <bus/pci/pcivar.h>
93 
94 #define SIS_USEIOSPACE
95 
96 #include "if_sisreg.h"
97 
98 /* "controller miibus0" required.  See GENERIC if you get errors here. */
99 #include "miibus_if.h"
100 
101 /*
102  * Various supported device vendors/types and their names.
103  */
104 static struct sis_type sis_devs[] = {
105 	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
106 	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
107 	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
108 	{ 0, 0, NULL }
109 };
110 
111 static int	sis_probe(device_t);
112 static int	sis_attach(device_t);
113 static int	sis_detach(device_t);
114 
115 static int	sis_newbuf(struct sis_softc *, struct sis_desc *,
116 			   struct mbuf *);
117 static int	sis_encap(struct sis_softc *, struct mbuf *, uint32_t *);
118 static void	sis_rxeof(struct sis_softc *);
119 static void	sis_rxeoc(struct sis_softc *);
120 static void	sis_txeof(struct sis_softc *);
121 static void	sis_intr(void *);
122 static void	sis_tick(void *);
123 static void	sis_start(struct ifnet *);
124 static int	sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
125 static void	sis_init(void *);
126 static void	sis_stop(struct sis_softc *);
127 static void	sis_watchdog(struct ifnet *);
128 static void	sis_shutdown(device_t);
129 static int	sis_ifmedia_upd(struct ifnet *);
130 static void	sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131 
132 static uint16_t	sis_reverse(uint16_t);
133 static void	sis_delay(struct sis_softc *);
134 static void	sis_eeprom_idle(struct sis_softc *);
135 static void	sis_eeprom_putbyte(struct sis_softc *, int);
136 static void	sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
137 static void	sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
138 #ifdef __i386__
139 static void	sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
140 static void	sis_read_mac(struct sis_softc *, device_t, caddr_t);
141 static device_t	sis_find_bridge(device_t);
142 #endif
143 
144 static void	sis_mii_sync(struct sis_softc *);
145 static void	sis_mii_send(struct sis_softc *, uint32_t, int);
146 static int	sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
147 static int	sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
148 static int	sis_miibus_readreg(device_t, int, int);
149 static int	sis_miibus_writereg(device_t, int, int, int);
150 static void	sis_miibus_statchg(device_t);
151 
152 static void	sis_setmulti_sis(struct sis_softc *);
153 static void	sis_setmulti_ns(struct sis_softc *);
154 static uint32_t	sis_mchash(struct sis_softc *, const uint8_t *);
155 static void	sis_reset(struct sis_softc *);
156 static int	sis_list_rx_init(struct sis_softc *);
157 static int	sis_list_tx_init(struct sis_softc *);
158 
159 static void	sis_dma_map_desc_ptr(void *, bus_dma_segment_t *, int, int);
160 static void	sis_dma_map_desc_next(void *, bus_dma_segment_t *, int, int);
161 static void	sis_dma_map_ring(void *, bus_dma_segment_t *, int, int);
162 #ifdef DEVICE_POLLING
163 static poll_handler_t sis_poll;
164 #endif
165 #ifdef SIS_USEIOSPACE
166 #define SIS_RES			SYS_RES_IOPORT
167 #define SIS_RID			SIS_PCI_LOIO
168 #else
169 #define SIS_RES			SYS_RES_MEMORY
170 #define SIS_RID			SIS_PCI_LOMEM
171 #endif
172 
173 static device_method_t sis_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		sis_probe),
176 	DEVMETHOD(device_attach,	sis_attach),
177 	DEVMETHOD(device_detach,	sis_detach),
178 	DEVMETHOD(device_shutdown,	sis_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
188 
189 	{ 0, 0 }
190 };
191 
192 static driver_t sis_driver = {
193 	"sis",
194 	sis_methods,
195 	sizeof(struct sis_softc)
196 };
197 
198 static devclass_t sis_devclass;
199 
200 DECLARE_DUMMY_MODULE(if_sis);
201 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
202 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
203 
204 #define SIS_SETBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
206 
207 #define SIS_CLRBIT(sc, reg, x)				\
208 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
209 
210 #define SIO_SET(x)					\
211 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
212 
213 #define SIO_CLR(x)					\
214 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
215 
216 static void
217 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
218 {
219 	struct sis_desc	*r;
220 
221 	r = arg;
222 	r->sis_next = segs->ds_addr;
223 }
224 
225 static void
226 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
227 {
228 	struct sis_desc	*r;
229 
230 	r = arg;
231 	r->sis_ptr = segs->ds_addr;
232 }
233 
234 static void
235 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
236 {
237 	uint32_t *p;
238 
239 	p = arg;
240 	*p = segs->ds_addr;
241 }
242 
243 /*
244  * Routine to reverse the bits in a word. Stolen almost
245  * verbatim from /usr/games/fortune.
246  */
247 static uint16_t
248 sis_reverse(uint16_t n)
249 {
250 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
251 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
252 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
253 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
254 
255 	return(n);
256 }
257 
258 static void
259 sis_delay(struct sis_softc *sc)
260 {
261 	int idx;
262 
263 	for (idx = (300 / 33) + 1; idx > 0; idx--)
264 		CSR_READ_4(sc, SIS_CSR);
265 }
266 
267 static void
268 sis_eeprom_idle(struct sis_softc *sc)
269 {
270 	int i;
271 
272 	SIO_SET(SIS_EECTL_CSEL);
273 	sis_delay(sc);
274 	SIO_SET(SIS_EECTL_CLK);
275 	sis_delay(sc);
276 
277 	for (i = 0; i < 25; i++) {
278 		SIO_CLR(SIS_EECTL_CLK);
279 		sis_delay(sc);
280 		SIO_SET(SIS_EECTL_CLK);
281 		sis_delay(sc);
282 	}
283 
284 	SIO_CLR(SIS_EECTL_CLK);
285 	sis_delay(sc);
286 	SIO_CLR(SIS_EECTL_CSEL);
287 	sis_delay(sc);
288 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
289 }
290 
291 /*
292  * Send a read command and address to the EEPROM, check for ACK.
293  */
294 static void
295 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
296 {
297 	int d, i;
298 
299 	d = addr | SIS_EECMD_READ;
300 
301 	/*
302 	 * Feed in each bit and stobe the clock.
303 	 */
304 	for (i = 0x400; i; i >>= 1) {
305 		if (d & i)
306 			SIO_SET(SIS_EECTL_DIN);
307 		else
308 			SIO_CLR(SIS_EECTL_DIN);
309 		sis_delay(sc);
310 		SIO_SET(SIS_EECTL_CLK);
311 		sis_delay(sc);
312 		SIO_CLR(SIS_EECTL_CLK);
313 		sis_delay(sc);
314 	}
315 }
316 
317 /*
318  * Read a word of data stored in the EEPROM at address 'addr.'
319  */
320 static void
321 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
322 {
323 	int i;
324 	uint16_t word = 0;
325 
326 	/* Force EEPROM to idle state. */
327 	sis_eeprom_idle(sc);
328 
329 	/* Enter EEPROM access mode. */
330 	sis_delay(sc);
331 	SIO_CLR(SIS_EECTL_CLK);
332 	sis_delay(sc);
333 	SIO_SET(SIS_EECTL_CSEL);
334 	sis_delay(sc);
335 
336 	/*
337 	 * Send address of word we want to read.
338 	 */
339 	sis_eeprom_putbyte(sc, addr);
340 
341 	/*
342 	 * Start reading bits from EEPROM.
343 	 */
344 	for (i = 0x8000; i; i >>= 1) {
345 		SIO_SET(SIS_EECTL_CLK);
346 		sis_delay(sc);
347 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
348 			word |= i;
349 		sis_delay(sc);
350 		SIO_CLR(SIS_EECTL_CLK);
351 		sis_delay(sc);
352 	}
353 
354 	/* Turn off EEPROM access mode. */
355 	sis_eeprom_idle(sc);
356 
357 	*dest = word;
358 }
359 
360 /*
361  * Read a sequence of words from the EEPROM.
362  */
363 static void
364 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
365 {
366 	int i;
367 	uint16_t word = 0, *ptr;
368 
369 	for (i = 0; i < cnt; i++) {
370 		sis_eeprom_getword(sc, off + i, &word);
371 		ptr = (uint16_t *)(dest + (i * 2));
372 		if (swap)
373 			*ptr = ntohs(word);
374 		else
375 			*ptr = word;
376 	}
377 }
378 
379 #ifdef __i386__
380 static device_t
381 sis_find_bridge(device_t dev)
382 {
383 	devclass_t pci_devclass;
384 	device_t *pci_devices;
385 	int pci_count = 0;
386 	device_t *pci_children;
387 	int pci_childcount = 0;
388 	device_t *busp, *childp;
389 	device_t child = NULL;
390 	int i, j;
391 
392 	if ((pci_devclass = devclass_find("pci")) == NULL)
393 		return(NULL);
394 
395 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
396 
397 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
398 		pci_childcount = 0;
399 		device_get_children(*busp, &pci_children, &pci_childcount);
400 		for (j = 0, childp = pci_children; j < pci_childcount;
401 		     j++, childp++) {
402 			if (pci_get_vendor(*childp) == SIS_VENDORID &&
403 			    pci_get_device(*childp) == 0x0008) {
404 				child = *childp;
405 				goto done;
406 			}
407 		}
408 	}
409 
410 done:
411 	free(pci_devices, M_TEMP);
412 	free(pci_children, M_TEMP);
413 	return(child);
414 }
415 
416 static void
417 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
418 	      int cnt)
419 {
420 	device_t bridge;
421 	uint8_t reg;
422 	int i;
423 	bus_space_tag_t	btag;
424 
425 	bridge = sis_find_bridge(dev);
426 	if (bridge == NULL)
427 		return;
428 	reg = pci_read_config(bridge, 0x48, 1);
429 	pci_write_config(bridge, 0x48, reg|0x40, 1);
430 
431 	/* XXX */
432 	btag = I386_BUS_SPACE_IO;
433 
434 	for (i = 0; i < cnt; i++) {
435 		bus_space_write_1(btag, 0x0, 0x70, i + off);
436 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
437 	}
438 
439 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
440 }
441 
442 static void
443 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
444 {
445 	uint32_t filtsave, csrsave;
446 
447 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
448 	csrsave = CSR_READ_4(sc, SIS_CSR);
449 
450 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
451 	CSR_WRITE_4(sc, SIS_CSR, 0);
452 
453 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
454 
455 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
456 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
457 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
458 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
459 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
460 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
461 
462 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
463 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
464 }
465 #endif
466 
467 /*
468  * Sync the PHYs by setting data bit and strobing the clock 32 times.
469  */
470 static void
471 sis_mii_sync(struct sis_softc *sc)
472 {
473 	int i;
474 
475 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
476 
477 	for (i = 0; i < 32; i++) {
478 		SIO_SET(SIS_MII_CLK);
479 		DELAY(1);
480 		SIO_CLR(SIS_MII_CLK);
481 		DELAY(1);
482 	}
483 }
484 
485 /*
486  * Clock a series of bits through the MII.
487  */
488 static void
489 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
490 {
491 	int i;
492 
493 	SIO_CLR(SIS_MII_CLK);
494 
495 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
496 		if (bits & i)
497 			SIO_SET(SIS_MII_DATA);
498 		else
499 			SIO_CLR(SIS_MII_DATA);
500 		DELAY(1);
501 		SIO_CLR(SIS_MII_CLK);
502 		DELAY(1);
503 		SIO_SET(SIS_MII_CLK);
504 	}
505 }
506 
507 /*
508  * Read an PHY register through the MII.
509  */
510 static int
511 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
512 {
513 	int i, ack, s;
514 
515 	s = splimp();
516 
517 	/*
518 	 * Set up frame for RX.
519 	 */
520 	frame->mii_stdelim = SIS_MII_STARTDELIM;
521 	frame->mii_opcode = SIS_MII_READOP;
522 	frame->mii_turnaround = 0;
523 	frame->mii_data = 0;
524 
525 	/*
526  	 * Turn on data xmit.
527 	 */
528 	SIO_SET(SIS_MII_DIR);
529 
530 	sis_mii_sync(sc);
531 
532 	/*
533 	 * Send command/address info.
534 	 */
535 	sis_mii_send(sc, frame->mii_stdelim, 2);
536 	sis_mii_send(sc, frame->mii_opcode, 2);
537 	sis_mii_send(sc, frame->mii_phyaddr, 5);
538 	sis_mii_send(sc, frame->mii_regaddr, 5);
539 
540 	/* Idle bit */
541 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
542 	DELAY(1);
543 	SIO_SET(SIS_MII_CLK);
544 	DELAY(1);
545 
546 	/* Turn off xmit. */
547 	SIO_CLR(SIS_MII_DIR);
548 
549 	/* Check for ack */
550 	SIO_CLR(SIS_MII_CLK);
551 	DELAY(1);
552 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
553 	SIO_SET(SIS_MII_CLK);
554 	DELAY(1);
555 
556 	/*
557 	 * Now try reading data bits. If the ack failed, we still
558 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
559 	 */
560 	if (ack) {
561 		for(i = 0; i < 16; i++) {
562 			SIO_CLR(SIS_MII_CLK);
563 			DELAY(1);
564 			SIO_SET(SIS_MII_CLK);
565 			DELAY(1);
566 		}
567 		goto fail;
568 	}
569 
570 	for (i = 0x8000; i; i >>= 1) {
571 		SIO_CLR(SIS_MII_CLK);
572 		DELAY(1);
573 		if (!ack) {
574 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
575 				frame->mii_data |= i;
576 			DELAY(1);
577 		}
578 		SIO_SET(SIS_MII_CLK);
579 		DELAY(1);
580 	}
581 
582 fail:
583 
584 	SIO_CLR(SIS_MII_CLK);
585 	DELAY(1);
586 	SIO_SET(SIS_MII_CLK);
587 	DELAY(1);
588 
589 	splx(s);
590 
591 	if (ack)
592 		return(1);
593 	return(0);
594 }
595 
596 /*
597  * Write to a PHY register through the MII.
598  */
599 static int
600 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
601 {
602 	int s;
603 
604 	s = splimp();
605 	/*
606 	 * Set up frame for TX.
607 	 */
608 
609 	frame->mii_stdelim = SIS_MII_STARTDELIM;
610 	frame->mii_opcode = SIS_MII_WRITEOP;
611 	frame->mii_turnaround = SIS_MII_TURNAROUND;
612 
613 	/*
614 	 * Turn on data output.
615 	 */
616 	SIO_SET(SIS_MII_DIR);
617 
618 	sis_mii_sync(sc);
619 
620 	sis_mii_send(sc, frame->mii_stdelim, 2);
621 	sis_mii_send(sc, frame->mii_opcode, 2);
622 	sis_mii_send(sc, frame->mii_phyaddr, 5);
623 	sis_mii_send(sc, frame->mii_regaddr, 5);
624 	sis_mii_send(sc, frame->mii_turnaround, 2);
625 	sis_mii_send(sc, frame->mii_data, 16);
626 
627 	/* Idle bit. */
628 	SIO_SET(SIS_MII_CLK);
629 	DELAY(1);
630 	SIO_CLR(SIS_MII_CLK);
631 	DELAY(1);
632 
633 	/*
634 	 * Turn off xmit.
635 	 */
636 	SIO_CLR(SIS_MII_DIR);
637 
638 	splx(s);
639 
640 	return(0);
641 }
642 
643 static int
644 sis_miibus_readreg(device_t dev, int phy, int reg)
645 {
646 	struct sis_softc *sc;
647 	struct sis_mii_frame frame;
648 
649 	sc = device_get_softc(dev);
650 
651 	if (sc->sis_type == SIS_TYPE_83815) {
652 		if (phy != 0)
653 			return(0);
654 		/*
655 		 * The NatSemi chip can take a while after
656 		 * a reset to come ready, during which the BMSR
657 		 * returns a value of 0. This is *never* supposed
658 		 * to happen: some of the BMSR bits are meant to
659 		 * be hardwired in the on position, and this can
660 		 * confuse the miibus code a bit during the probe
661 		 * and attach phase. So we make an effort to check
662 		 * for this condition and wait for it to clear.
663 		 */
664 		if (!CSR_READ_4(sc, NS_BMSR))
665 			DELAY(1000);
666 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
667 	}
668 	/*
669 	 * Chipsets < SIS_635 seem not to be able to read/write
670 	 * through mdio. Use the enhanced PHY access register
671 	 * again for them.
672 	 */
673 	if (sc->sis_type == SIS_TYPE_900 &&
674 	    sc->sis_rev < SIS_REV_635) {
675 		int i, val = 0;
676 
677 		if (phy != 0)
678 			return(0);
679 
680 		CSR_WRITE_4(sc, SIS_PHYCTL,
681 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
682 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
683 
684 		for (i = 0; i < SIS_TIMEOUT; i++) {
685 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
686 				break;
687 		}
688 
689 		if (i == SIS_TIMEOUT) {
690 			device_printf(dev, "PHY failed to come ready\n");
691 			return(0);
692 		}
693 
694 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
695 
696 		if (val == 0xFFFF)
697 			return(0);
698 
699 		return(val);
700 	} else {
701 		bzero((char *)&frame, sizeof(frame));
702 
703 		frame.mii_phyaddr = phy;
704 		frame.mii_regaddr = reg;
705 		sis_mii_readreg(sc, &frame);
706 
707 		return(frame.mii_data);
708 	}
709 }
710 
711 static int
712 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
713 {
714 	struct sis_softc *sc;
715 	struct sis_mii_frame frame;
716 
717 	sc = device_get_softc(dev);
718 
719 	if (sc->sis_type == SIS_TYPE_83815) {
720 		if (phy != 0)
721 			return(0);
722 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
723 		return(0);
724 	}
725 
726 	if (sc->sis_type == SIS_TYPE_900 &&
727 	    sc->sis_rev < SIS_REV_635) {
728 		int i;
729 
730 		if (phy != 0)
731 			return(0);
732 
733 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
734 		    (reg << 6) | SIS_PHYOP_WRITE);
735 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
736 
737 		for (i = 0; i < SIS_TIMEOUT; i++) {
738 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
739 				break;
740 		}
741 
742 		if (i == SIS_TIMEOUT)
743 			device_printf(dev, "PHY failed to come ready\n");
744 	} else {
745 		bzero((char *)&frame, sizeof(frame));
746 
747 		frame.mii_phyaddr = phy;
748 		frame.mii_regaddr = reg;
749 		frame.mii_data = data;
750 		sis_mii_writereg(sc, &frame);
751 	}
752 	return(0);
753 }
754 
755 static void sis_miibus_statchg(device_t dev)
756 {
757 	struct sis_softc *sc;
758 
759 	sc = device_get_softc(dev);
760 	sis_init(sc);
761 }
762 
763 static uint32_t
764 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
765 {
766 	uint32_t crc, carry;
767 	int i, j;
768 	uint8_t c;
769 
770 	/* Compute CRC for the address value. */
771 	crc = 0xFFFFFFFF; /* initial value */
772 
773 	for (i = 0; i < 6; i++) {
774 		c = *(addr + i);
775 		for (j = 0; j < 8; j++) {
776 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
777 			crc <<= 1;
778 			c >>= 1;
779 			if (carry)
780 				crc = (crc ^ 0x04c11db6) | carry;
781 		}
782 	}
783 
784 	/*
785 	 * return the filter bit position
786 	 *
787 	 * The NatSemi chip has a 512-bit filter, which is
788 	 * different than the SiS, so we special-case it.
789 	 */
790 	if (sc->sis_type == SIS_TYPE_83815)
791 		return (crc >> 23);
792 	else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
793 		return (crc >> 24);
794 	else
795 		return (crc >> 25);
796 }
797 
798 static void
799 sis_setmulti_ns(struct sis_softc *sc)
800 {
801 	struct ifnet *ifp;
802 	struct ifmultiaddr *ifma;
803 	uint32_t h = 0, i, filtsave;
804 	int bit, index;
805 
806 	ifp = &sc->arpcom.ac_if;
807 
808 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
809 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
810 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
811 		return;
812 	}
813 
814 	/*
815 	 * We have to explicitly enable the multicast hash table
816 	 * on the NatSemi chip if we want to use it, which we do.
817 	 */
818 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
819 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
820 
821 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
822 
823 	/* first, zot all the existing hash bits */
824 	for (i = 0; i < 32; i++) {
825 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
826 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
827 	}
828 
829 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
830 		if (ifma->ifma_addr->sa_family != AF_LINK)
831 			continue;
832 		h = sis_mchash(sc,
833 			       LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
834 		index = h >> 3;
835 		bit = h & 0x1F;
836 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
837 		if (bit > 0xF)
838 			bit -= 0x10;
839 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
840 	}
841 
842 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
843 }
844 
845 static void
846 sis_setmulti_sis(struct sis_softc *sc)
847 {
848 	struct ifnet *ifp;
849 	struct ifmultiaddr *ifma;
850 	uint32_t h, i, n, ctl;
851 	uint16_t hashes[16];
852 
853 	ifp = &sc->arpcom.ac_if;
854 
855 	/* hash table size */
856 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
857 		n = 16;
858 	else
859 		n = 8;
860 
861 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
862 
863 	if (ifp->if_flags & IFF_BROADCAST)
864 		ctl |= SIS_RXFILTCTL_BROAD;
865 
866 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
867 		ctl |= SIS_RXFILTCTL_ALLMULTI;
868 		if (ifp->if_flags & IFF_PROMISC)
869 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
870 		for (i = 0; i < n; i++)
871 			hashes[i] = ~0;
872 	} else {
873 		for (i = 0; i < n; i++)
874 			hashes[i] = 0;
875 		i = 0;
876 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
877 			if (ifma->ifma_addr->sa_family != AF_LINK)
878 				continue;
879 			h = sis_mchash(sc,
880 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
881 			hashes[h >> 4] |= 1 << (h & 0xf);
882 			i++;
883 		}
884 		if (i > n) {
885 			ctl |= SIS_RXFILTCTL_ALLMULTI;
886 			for (i = 0; i < n; i++)
887 				hashes[i] = ~0;
888 		}
889 	}
890 
891 	for (i = 0; i < n; i++) {
892 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
893 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
894 	}
895 
896 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
897 }
898 
899 static void
900 sis_reset(struct sis_softc *sc)
901 {
902 	struct ifnet *ifp = &sc->arpcom.ac_if;
903 	int i;
904 
905 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
906 
907 	for (i = 0; i < SIS_TIMEOUT; i++) {
908 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
909 			break;
910 	}
911 
912 	if (i == SIS_TIMEOUT)
913 		if_printf(ifp, "reset never completed\n");
914 
915 	/* Wait a little while for the chip to get its brains in order. */
916 	DELAY(1000);
917 
918 	/*
919 	 * If this is a NetSemi chip, make sure to clear
920 	 * PME mode.
921 	 */
922 	if (sc->sis_type == SIS_TYPE_83815) {
923 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
924 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
925 	}
926 }
927 
928 /*
929  * Probe for an SiS chip. Check the PCI vendor and device
930  * IDs against our list and return a device name if we find a match.
931  */
932 static int
933 sis_probe(device_t dev)
934 {
935 	struct sis_type *t;
936 
937 	t = sis_devs;
938 
939 	while(t->sis_name != NULL) {
940 		if ((pci_get_vendor(dev) == t->sis_vid) &&
941 		    (pci_get_device(dev) == t->sis_did)) {
942 			device_set_desc(dev, t->sis_name);
943 			return(0);
944 		}
945 		t++;
946 	}
947 
948 	return(ENXIO);
949 }
950 
951 /*
952  * Attach the interface. Allocate softc structures, do ifmedia
953  * setup and ethernet/BPF attach.
954  */
955 static int
956 sis_attach(device_t dev)
957 {
958 	uint8_t eaddr[ETHER_ADDR_LEN];
959 	uint32_t command;
960 	struct sis_softc *sc;
961 	struct ifnet *ifp;
962 	int error, rid, waittime;
963 
964 	error = waittime = 0;
965 	sc = device_get_softc(dev);
966 	bzero(sc, sizeof(struct sis_softc));
967 
968 	if (pci_get_device(dev) == SIS_DEVICEID_900)
969 		sc->sis_type = SIS_TYPE_900;
970 	if (pci_get_device(dev) == SIS_DEVICEID_7016)
971 		sc->sis_type = SIS_TYPE_7016;
972 	if (pci_get_vendor(dev) == NS_VENDORID)
973 		sc->sis_type = SIS_TYPE_83815;
974 
975 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
976 
977 	/*
978 	 * Handle power management nonsense.
979 	 */
980 
981 	command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
982 	if (command == 0x01) {
983 
984 		command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
985 		if (command & SIS_PSTATE_MASK) {
986 			uint32_t		iobase, membase, irq;
987 
988 			/* Save important PCI config data. */
989 			iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
990 			membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
991 			irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
992 
993 			/* Reset the power state. */
994 			device_printf(dev, "chip is in D%d power mode "
995 			    "-- setting to D0\n", command & SIS_PSTATE_MASK);
996 			command &= 0xFFFFFFFC;
997 			pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
998 
999 			/* Restore PCI config data. */
1000 			pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1001 			pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1002 			pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Map control/status registers.
1008 	 */
1009 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1010 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1011 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1012 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1013 
1014 #ifdef SIS_USEIOSPACE
1015 	if (!(command & PCIM_CMD_PORTEN)) {
1016 		device_printf(dev, "failed to enable I/O ports!\n");
1017 		error = ENXIO;;
1018 		goto fail;
1019 	}
1020 #else
1021 	if (!(command & PCIM_CMD_MEMEN)) {
1022 		device_printf(dev, "failed to enable memory mapping!\n");
1023 		error = ENXIO;;
1024 		goto fail;
1025 	}
1026 #endif
1027 
1028 	rid = SIS_RID;
1029 	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
1030 
1031 	if (sc->sis_res == NULL) {
1032 		device_printf(dev, "couldn't map ports/memory\n");
1033 		error = ENXIO;
1034 		goto fail;
1035 	}
1036 
1037 	sc->sis_btag = rman_get_bustag(sc->sis_res);
1038 	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1039 
1040 	/* Allocate interrupt */
1041 	rid = 0;
1042 	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1043 	    RF_SHAREABLE | RF_ACTIVE);
1044 
1045 	if (sc->sis_irq == NULL) {
1046 		device_printf(dev, "couldn't map interrupt\n");
1047 		error = ENXIO;
1048 		goto fail;
1049 	}
1050 
1051 	/* Reset the adapter. */
1052 	sis_reset(sc);
1053 
1054 	if (sc->sis_type == SIS_TYPE_900 &&
1055             (sc->sis_rev == SIS_REV_635 ||
1056              sc->sis_rev == SIS_REV_900B)) {
1057 		SIO_SET(SIS_CFG_RND_CNT);
1058 		SIO_SET(SIS_CFG_PERR_DETECT);
1059 	}
1060 
1061 	/*
1062 	 * Get station address from the EEPROM.
1063 	 */
1064 	switch (pci_get_vendor(dev)) {
1065 	case NS_VENDORID:
1066 		/*
1067 		 * Reading the MAC address out of the EEPROM on
1068 		 * the NatSemi chip takes a bit more work than
1069 		 * you'd expect. The address spans 4 16-bit words,
1070 		 * with the first word containing only a single bit.
1071 		 * You have to shift everything over one bit to
1072 		 * get it aligned properly. Also, the bits are
1073 		 * stored backwards (the LSB is really the MSB,
1074 		 * and so on) so you have to reverse them in order
1075 		 * to get the MAC address into the form we want.
1076 		 * Why? Who the hell knows.
1077 		 */
1078 		{
1079 			uint16_t		tmp[4];
1080 
1081 			sis_read_eeprom(sc, (caddr_t)&tmp,
1082 			    NS_EE_NODEADDR, 4, 0);
1083 
1084 			/* Shift everything over one bit. */
1085 			tmp[3] = tmp[3] >> 1;
1086 			tmp[3] |= tmp[2] << 15;
1087 			tmp[2] = tmp[2] >> 1;
1088 			tmp[2] |= tmp[1] << 15;
1089 			tmp[1] = tmp[1] >> 1;
1090 			tmp[1] |= tmp[0] << 15;
1091 
1092 			/* Now reverse all the bits. */
1093 			tmp[3] = sis_reverse(tmp[3]);
1094 			tmp[2] = sis_reverse(tmp[2]);
1095 			tmp[1] = sis_reverse(tmp[1]);
1096 
1097 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1098 		}
1099 		break;
1100 	case SIS_VENDORID:
1101 	default:
1102 #ifdef __i386__
1103 		/*
1104 		 * If this is a SiS 630E chipset with an embedded
1105 		 * SiS 900 controller, we have to read the MAC address
1106 		 * from the APC CMOS RAM. Our method for doing this
1107 		 * is very ugly since we have to reach out and grab
1108 		 * ahold of hardware for which we cannot properly
1109 		 * allocate resources. This code is only compiled on
1110 		 * the i386 architecture since the SiS 630E chipset
1111 		 * is for x86 motherboards only. Note that there are
1112 		 * a lot of magic numbers in this hack. These are
1113 		 * taken from SiS's Linux driver. I'd like to replace
1114 		 * them with proper symbolic definitions, but that
1115 		 * requires some datasheets that I don't have access
1116 		 * to at the moment.
1117 		 */
1118 		if (sc->sis_rev == SIS_REV_630S ||
1119 		    sc->sis_rev == SIS_REV_630E ||
1120 		    sc->sis_rev == SIS_REV_630EA1)
1121 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1122 
1123 		else if (sc->sis_rev == SIS_REV_635 ||
1124 			 sc->sis_rev == SIS_REV_630ET)
1125 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1126 		else if (sc->sis_rev == SIS_REV_96x) {
1127 			/*
1128 			 * Allow to read EEPROM from LAN. It is shared
1129 			 * between a 1394 controller and the NIC and each
1130 			 * time we access it, we need to set SIS_EECMD_REQ.
1131 			 */
1132 			SIO_SET(SIS_EECMD_REQ);
1133 			for (waittime = 0; waittime < SIS_TIMEOUT;
1134 			    waittime++) {
1135 				/* Force EEPROM to idle state. */
1136 				sis_eeprom_idle(sc);
1137 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1138 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1139 					    SIS_EE_NODEADDR, 3, 0);
1140 					break;
1141 				}
1142 				DELAY(1);
1143 			}
1144 			/*
1145 			 * Set SIS_EECTL_CLK to high, so a other master
1146 			 * can operate on the i2c bus.
1147 			 */
1148 			SIO_SET(SIS_EECTL_CLK);
1149 			/* Refuse EEPROM access by LAN */
1150 			SIO_SET(SIS_EECMD_DONE);
1151 		} else
1152 #endif
1153 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1154 			    SIS_EE_NODEADDR, 3, 0);
1155 		break;
1156 	}
1157 
1158 	callout_init(&sc->sis_timer);
1159 
1160 	/*
1161 	 * Allocate the parent bus DMA tag appropriate for PCI.
1162 	 */
1163 #define SIS_NSEG_NEW 32
1164 	error = bus_dma_tag_create(NULL,	/* parent */
1165 			1, 0,			/* alignment, boundary */
1166 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1167 			BUS_SPACE_MAXADDR,	/* highaddr */
1168 			NULL, NULL,		/* filter, filterarg */
1169 			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1170 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1171 			BUS_DMA_ALLOCNOW,	/* flags */
1172 			&sc->sis_parent_tag);
1173 	if (error)
1174 		goto fail;
1175 
1176 	/*
1177 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1178 	 * of DMA-able memory based on the tag. Also obtain the physical
1179 	 * addresses of the RX and TX ring, which we'll need later.
1180 	 * All of our lists are allocated as a contiguous block of memory.
1181 	 */
1182 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1183 			1, 0,			/* alignment, boundary */
1184 			BUS_SPACE_MAXADDR,	/* lowaddr */
1185 			BUS_SPACE_MAXADDR,	/* highaddr */
1186 			NULL, NULL,		/* filter, filterarg */
1187 			SIS_RX_LIST_SZ, 1,	/* maxsize, nsegments */
1188 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1189 			0,			/* flags */
1190 			&sc->sis_ldata.sis_rx_tag);
1191 	if (error)
1192 		goto fail;
1193 
1194 	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1195 				 (void **)&sc->sis_ldata.sis_rx_list,
1196 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1197 				 &sc->sis_ldata.sis_rx_dmamap);
1198 
1199 	if (error) {
1200 		device_printf(dev, "no memory for rx list buffers!\n");
1201 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1202 		sc->sis_ldata.sis_rx_tag = NULL;
1203 		goto fail;
1204 	}
1205 
1206 	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1207 				sc->sis_ldata.sis_rx_dmamap,
1208 				sc->sis_ldata.sis_rx_list,
1209 				sizeof(struct sis_desc), sis_dma_map_ring,
1210 				&sc->sis_cdata.sis_rx_paddr, 0);
1211 
1212 	if (error) {
1213 		device_printf(dev, "cannot get address of the rx ring!\n");
1214 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1215 				sc->sis_ldata.sis_rx_list,
1216 				sc->sis_ldata.sis_rx_dmamap);
1217 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1218 		sc->sis_ldata.sis_rx_tag = NULL;
1219 		goto fail;
1220 	}
1221 
1222 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1223 			1, 0,			/* alignment, boundary */
1224 			BUS_SPACE_MAXADDR,	/* lowaddr */
1225 			BUS_SPACE_MAXADDR,	/* highaddr */
1226 			NULL, NULL,		/* filter, filterarg */
1227 			SIS_TX_LIST_SZ, 1,	/* maxsize, nsegments */
1228 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1229 			0,			/* flags */
1230 			&sc->sis_ldata.sis_tx_tag);
1231 	if (error)
1232 		goto fail;
1233 
1234 	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1235 				 (void **)&sc->sis_ldata.sis_tx_list,
1236 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1237 				 &sc->sis_ldata.sis_tx_dmamap);
1238 
1239 	if (error) {
1240 		device_printf(dev, "no memory for tx list buffers!\n");
1241 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1242 		sc->sis_ldata.sis_tx_tag = NULL;
1243 		goto fail;
1244 	}
1245 
1246 	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1247 				sc->sis_ldata.sis_tx_dmamap,
1248 				sc->sis_ldata.sis_tx_list,
1249 				sizeof(struct sis_desc), sis_dma_map_ring,
1250 				&sc->sis_cdata.sis_tx_paddr, 0);
1251 
1252 	if (error) {
1253 		device_printf(dev, "cannot get address of the tx ring!\n");
1254 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1255 				sc->sis_ldata.sis_tx_list,
1256 				sc->sis_ldata.sis_tx_dmamap);
1257 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1258 		sc->sis_ldata.sis_tx_tag = NULL;
1259 		goto fail;
1260 	}
1261 
1262 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1263 			1, 0,			/* alignment, boundary */
1264 			BUS_SPACE_MAXADDR,	/* lowaddr */
1265 			BUS_SPACE_MAXADDR,	/* highaddr */
1266 			NULL, NULL,		/* filter, filterarg */
1267 			MCLBYTES, 1,		/* maxsize, nsegments */
1268 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1269 			0,			/* flags */
1270 			&sc->sis_tag);
1271 	if (error)
1272 		goto fail;
1273 
1274 	ifp = &sc->arpcom.ac_if;
1275 	ifp->if_softc = sc;
1276 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1277 	ifp->if_mtu = ETHERMTU;
1278 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1279 	ifp->if_ioctl = sis_ioctl;
1280 	ifp->if_start = sis_start;
1281 	ifp->if_watchdog = sis_watchdog;
1282 	ifp->if_init = sis_init;
1283 	ifp->if_baudrate = 10000000;
1284 	ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1285 	ifq_set_ready(&ifp->if_snd);
1286 #ifdef DEVICE_POLLING
1287 	ifp->if_poll = sis_poll;
1288 #endif
1289 	ifp->if_capenable = ifp->if_capabilities;
1290 
1291 	/*
1292 	 * Do MII setup.
1293 	 */
1294 	if (mii_phy_probe(dev, &sc->sis_miibus,
1295 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1296 		device_printf(dev, "MII without any PHY!\n");
1297 		error = ENXIO;
1298 		goto fail;
1299 	}
1300 
1301 	/*
1302 	 * Call MI attach routine.
1303 	 */
1304 	ether_ifattach(ifp, eaddr);
1305 
1306 	/*
1307 	 * Tell the upper layer(s) we support long frames.
1308 	 */
1309 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1310 
1311 	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
1312 			       sis_intr, sc,
1313 			       &sc->sis_intrhand, NULL);
1314 
1315 	if (error) {
1316 		device_printf(dev, "couldn't set up irq\n");
1317 		ether_ifdetach(ifp);
1318 		goto fail;
1319 	}
1320 
1321 fail:
1322 	if (error)
1323 		sis_detach(dev);
1324 
1325 	return(error);
1326 }
1327 
1328 /*
1329  * Shutdown hardware and free up resources. It is called in both the error case
1330  * and the normal detach case so it needs to be careful about only freeing
1331  * resources that have actually been allocated.
1332  */
1333 static int
1334 sis_detach(device_t dev)
1335 {
1336 	struct sis_softc *sc;
1337 	struct ifnet *ifp;
1338 	int s;
1339 
1340 	s = splimp();
1341 
1342 	sc = device_get_softc(dev);
1343 	ifp = &sc->arpcom.ac_if;
1344 
1345 	if (device_is_attached(dev)) {
1346 		sis_reset(sc);
1347 		sis_stop(sc);
1348 		ether_ifdetach(ifp);
1349 	}
1350 	if (sc->sis_miibus)
1351 		device_delete_child(dev, sc->sis_miibus);
1352 	bus_generic_detach(dev);
1353 
1354 	if (sc->sis_intrhand)
1355 		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1356 	if (sc->sis_irq)
1357 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1358 	if (sc->sis_res)
1359 		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1360 
1361 	if (sc->sis_ldata.sis_rx_tag) {
1362 		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1363 				  sc->sis_ldata.sis_rx_dmamap);
1364 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1365 				sc->sis_ldata.sis_rx_list,
1366 				sc->sis_ldata.sis_rx_dmamap);
1367 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1368 	}
1369 
1370 	if (sc->sis_ldata.sis_tx_tag) {
1371 		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1372 				  sc->sis_ldata.sis_tx_dmamap);
1373 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1374 				sc->sis_ldata.sis_tx_list,
1375 				sc->sis_ldata.sis_tx_dmamap);
1376 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1377 	}
1378 	if (sc->sis_tag)
1379 		bus_dma_tag_destroy(sc->sis_tag);
1380 	if (sc->sis_parent_tag)
1381 		bus_dma_tag_destroy(sc->sis_parent_tag);
1382 
1383 	splx(s);
1384 
1385 	return(0);
1386 }
1387 
1388 /*
1389  * Initialize the transmit descriptors.
1390  */
1391 static int
1392 sis_list_tx_init(struct sis_softc *sc)
1393 {
1394 	struct sis_list_data *ld;
1395 	struct sis_ring_data *cd;
1396 	int i, nexti;
1397 
1398 	cd = &sc->sis_cdata;
1399 	ld = &sc->sis_ldata;
1400 
1401 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1402 		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1403 		ld->sis_tx_list[i].sis_nextdesc =
1404 			    &ld->sis_tx_list[nexti];
1405 		bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1406 				sc->sis_ldata.sis_tx_dmamap,
1407 				&ld->sis_tx_list[nexti],
1408 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1409 				&ld->sis_tx_list[i], 0);
1410 		ld->sis_tx_list[i].sis_mbuf = NULL;
1411 		ld->sis_tx_list[i].sis_ptr = 0;
1412 		ld->sis_tx_list[i].sis_ctl = 0;
1413 	}
1414 
1415 	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1416 
1417 	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag, sc->sis_ldata.sis_tx_dmamap,
1418 			BUS_DMASYNC_PREWRITE);
1419 
1420 	return(0);
1421 }
1422 
1423 /*
1424  * Initialize the RX descriptors and allocate mbufs for them. Note that
1425  * we arrange the descriptors in a closed ring, so that the last descriptor
1426  * points back to the first.
1427  */
1428 static int
1429 sis_list_rx_init(struct sis_softc *sc)
1430 {
1431 	struct sis_list_data *ld;
1432 	struct sis_ring_data *cd;
1433 	int i, nexti;
1434 
1435 	ld = &sc->sis_ldata;
1436 	cd = &sc->sis_cdata;
1437 
1438 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1439 		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1440 			return(ENOBUFS);
1441 		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1442 		ld->sis_rx_list[i].sis_nextdesc =
1443 			    &ld->sis_rx_list[nexti];
1444 		bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1445 				sc->sis_ldata.sis_rx_dmamap,
1446 				&ld->sis_rx_list[nexti],
1447 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1448 				&ld->sis_rx_list[i], 0);
1449 	}
1450 
1451 	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag, sc->sis_ldata.sis_rx_dmamap,
1452 			BUS_DMASYNC_PREWRITE);
1453 
1454 	cd->sis_rx_prod = 0;
1455 
1456 	return(0);
1457 }
1458 
1459 /*
1460  * Initialize an RX descriptor and attach an MBUF cluster.
1461  */
1462 static int
1463 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1464 {
1465 	if (m == NULL) {
1466 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1467 		if (m == NULL)
1468 			return(ENOBUFS);
1469 	} else {
1470 		m->m_data = m->m_ext.ext_buf;
1471 	}
1472 
1473 	c->sis_mbuf = m;
1474 	c->sis_ctl = SIS_RXLEN;
1475 
1476 	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1477 	bus_dmamap_load(sc->sis_tag, c->sis_map, mtod(m, void *), MCLBYTES,
1478 			sis_dma_map_desc_ptr, c, 0);
1479 	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1480 
1481 	return(0);
1482 }
1483 
1484 /*
1485  * A frame has been uploaded: pass the resulting mbuf chain up to
1486  * the higher level protocols.
1487  */
1488 static void
1489 sis_rxeof(struct sis_softc *sc)
1490 {
1491 	struct mbuf *m;
1492 	struct ifnet *ifp;
1493 	struct sis_desc	*cur_rx;
1494 	int i, total_len = 0;
1495 	uint32_t rxstat;
1496 
1497 	ifp = &sc->arpcom.ac_if;
1498 	i = sc->sis_cdata.sis_rx_prod;
1499 
1500 	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1501 
1502 #ifdef DEVICE_POLLING
1503 		if (ifp->if_flags & IFF_POLLING) {
1504 			if (sc->rxcycles <= 0)
1505 				break;
1506 			sc->rxcycles--;
1507 		}
1508 #endif /* DEVICE_POLLING */
1509 		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1510 		rxstat = cur_rx->sis_rxstat;
1511 		bus_dmamap_sync(sc->sis_tag, cur_rx->sis_map,
1512 				BUS_DMASYNC_POSTWRITE);
1513 		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1514 		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1515 		m = cur_rx->sis_mbuf;
1516 		cur_rx->sis_mbuf = NULL;
1517 		total_len = SIS_RXBYTES(cur_rx);
1518 		SIS_INC(i, SIS_RX_LIST_CNT);
1519 
1520 		/*
1521 		 * If an error occurs, update stats, clear the
1522 		 * status word and leave the mbuf cluster in place:
1523 		 * it should simply get re-used next time this descriptor
1524 	 	 * comes up in the ring.
1525 		 */
1526 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1527 			ifp->if_ierrors++;
1528 			if (rxstat & SIS_RXSTAT_COLL)
1529 				ifp->if_collisions++;
1530 			sis_newbuf(sc, cur_rx, m);
1531 			continue;
1532 		}
1533 
1534 		/* No errors; receive the packet. */
1535 #ifdef __i386__
1536 		/*
1537 		 * On the x86 we do not have alignment problems, so try to
1538 		 * allocate a new buffer for the receive ring, and pass up
1539 		 * the one where the packet is already, saving the expensive
1540 		 * copy done in m_devget().
1541 		 * If we are on an architecture with alignment problems, or
1542 		 * if the allocation fails, then use m_devget and leave the
1543 		 * existing buffer in the receive ring.
1544 		 */
1545 		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1546 			m->m_pkthdr.len = m->m_len = total_len;
1547 		else
1548 #endif
1549 		{
1550 			struct mbuf *m0;
1551 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1552 				total_len + ETHER_ALIGN, 0, ifp, NULL);
1553 			sis_newbuf(sc, cur_rx, m);
1554 			if (m0 == NULL) {
1555 				ifp->if_ierrors++;
1556 				continue;
1557 			}
1558 			m_adj(m0, ETHER_ALIGN);
1559 			m = m0;
1560 		}
1561 
1562 		ifp->if_ipackets++;
1563 		(*ifp->if_input)(ifp, m);
1564 	}
1565 
1566 	sc->sis_cdata.sis_rx_prod = i;
1567 }
1568 
1569 static void
1570 sis_rxeoc(struct sis_softc *sc)
1571 {
1572 	sis_rxeof(sc);
1573 	sis_init(sc);
1574 }
1575 
1576 /*
1577  * A frame was downloaded to the chip. It's safe for us to clean up
1578  * the list buffers.
1579  */
1580 
1581 static void
1582 sis_txeof(struct sis_softc *sc)
1583 {
1584 	struct sis_desc *cur_tx;
1585 	struct ifnet *ifp;
1586 	uint32_t idx;
1587 
1588 	ifp = &sc->arpcom.ac_if;
1589 
1590 	/*
1591 	 * Go through our tx list and free mbufs for those
1592 	 * frames that have been transmitted.
1593 	 */
1594 	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1595 	     sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1596 		cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1597 
1598 		if (SIS_OWNDESC(cur_tx))
1599 			break;
1600 
1601 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1602 			continue;
1603 
1604 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1605 			ifp->if_oerrors++;
1606 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1607 				ifp->if_collisions++;
1608 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1609 				ifp->if_collisions++;
1610 		}
1611 
1612 		ifp->if_collisions +=
1613 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1614 
1615 		ifp->if_opackets++;
1616 		if (cur_tx->sis_mbuf != NULL) {
1617 			m_freem(cur_tx->sis_mbuf);
1618 			cur_tx->sis_mbuf = NULL;
1619 			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1620 			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1621 		}
1622 	}
1623 
1624 	if (idx != sc->sis_cdata.sis_tx_cons) {
1625 		/* we freed up some buffers */
1626 		sc->sis_cdata.sis_tx_cons = idx;
1627 		ifp->if_flags &= ~IFF_OACTIVE;
1628 	}
1629 
1630 	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1631 }
1632 
1633 static void
1634 sis_tick(void *xsc)
1635 {
1636 	struct sis_softc *sc;
1637 	struct mii_data *mii;
1638 	struct ifnet *ifp;
1639 	int s;
1640 
1641 	s = splimp();
1642 
1643 	sc = xsc;
1644 	ifp = &sc->arpcom.ac_if;
1645 
1646 	mii = device_get_softc(sc->sis_miibus);
1647 	mii_tick(mii);
1648 
1649 	if (!sc->sis_link) {
1650 		mii_pollstat(mii);
1651 		if (mii->mii_media_status & IFM_ACTIVE &&
1652 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1653 			sc->sis_link++;
1654 		if (!ifq_is_empty(&ifp->if_snd))
1655 			sis_start(ifp);
1656 	}
1657 
1658 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1659 
1660 	splx(s);
1661 }
1662 
1663 #ifdef DEVICE_POLLING
1664 
1665 static void
1666 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1667 {
1668 	struct  sis_softc *sc = ifp->if_softc;
1669 
1670 	switch(cmd) {
1671 	case POLL_REGISTER:
1672 		/* disable interrupts */
1673 		CSR_WRITE_4(sc, SIS_IER, 0);
1674 		break;
1675 	case POLL_DEREGISTER:
1676 		/* enable interrupts */
1677 		CSR_WRITE_4(sc, SIS_IER, 1);
1678 		break;
1679 	default:
1680 		/*
1681 		 * On the sis, reading the status register also clears it.
1682 		 * So before returning to intr mode we must make sure that all
1683 		 * possible pending sources of interrupts have been served.
1684 		 * In practice this means run to completion the *eof routines,
1685 		 * and then call the interrupt routine
1686 		 */
1687 		sc->rxcycles = count;
1688 		sis_rxeof(sc);
1689 		sis_txeof(sc);
1690 		if (!ifq_is_empty(&ifp->if_snd))
1691 			sis_start(ifp);
1692 
1693 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1694 			uint32_t status;
1695 
1696 			/* Reading the ISR register clears all interrupts. */
1697 			status = CSR_READ_4(sc, SIS_ISR);
1698 
1699 			if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1700 				sis_rxeoc(sc);
1701 
1702 			if (status & (SIS_ISR_RX_IDLE))
1703 				SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1704 
1705 			if (status & SIS_ISR_SYSERR) {
1706 				sis_reset(sc);
1707 				sis_init(sc);
1708 			}
1709 		}
1710 		break;
1711 	}
1712 }
1713 #endif /* DEVICE_POLLING */
1714 
1715 static void
1716 sis_intr(void *arg)
1717 {
1718 	struct sis_softc *sc;
1719 	struct ifnet *ifp;
1720 	uint32_t status;
1721 
1722 	sc = arg;
1723 	ifp = &sc->arpcom.ac_if;
1724 
1725 	/* Supress unwanted interrupts */
1726 	if (!(ifp->if_flags & IFF_UP)) {
1727 		sis_stop(sc);
1728 		return;
1729 	}
1730 
1731 	/* Disable interrupts. */
1732 	CSR_WRITE_4(sc, SIS_IER, 0);
1733 
1734 	for (;;) {
1735 		/* Reading the ISR register clears all interrupts. */
1736 		status = CSR_READ_4(sc, SIS_ISR);
1737 
1738 		if ((status & SIS_INTRS) == 0)
1739 			break;
1740 
1741 		if (status &
1742 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1743 		     SIS_ISR_TX_IDLE) )
1744 			sis_txeof(sc);
1745 
1746 		if (status &
1747 		    (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1748 			sis_rxeof(sc);
1749 
1750 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1751 			sis_rxeoc(sc);
1752 
1753 		if (status & (SIS_ISR_RX_IDLE))
1754 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1755 
1756 		if (status & SIS_ISR_SYSERR) {
1757 			sis_reset(sc);
1758 			sis_init(sc);
1759 		}
1760 	}
1761 
1762 	/* Re-enable interrupts. */
1763 	CSR_WRITE_4(sc, SIS_IER, 1);
1764 
1765 	if (!ifq_is_empty(&ifp->if_snd))
1766 		sis_start(ifp);
1767 }
1768 
1769 /*
1770  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1771  * pointers to the fragment pointers.
1772  */
1773 static int
1774 sis_encap(struct sis_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1775 {
1776 	struct sis_desc *f = NULL;
1777 	struct mbuf *m;
1778 	int frag, cur, cnt = 0;
1779 
1780 	/*
1781 	 * If there's no way we can send any packets, return now.
1782 	 */
1783 	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1784 		return (ENOBUFS);
1785 
1786 	/*
1787  	 * Start packing the mbufs in this chain into
1788 	 * the fragment pointers. Stop when we run out
1789  	 * of fragments or hit the end of the mbuf chain.
1790 	 */
1791 	m = m_head;
1792 	cur = frag = *txidx;
1793 
1794 	for (m = m_head; m != NULL; m = m->m_next) {
1795 		if (m->m_len != 0) {
1796 			if ((SIS_TX_LIST_CNT -
1797 			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1798 				return(ENOBUFS);
1799 			f = &sc->sis_ldata.sis_tx_list[frag];
1800 			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1801 			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1802 			bus_dmamap_load(sc->sis_tag, f->sis_map,
1803 					mtod(m, void *), m->m_len,
1804 					sis_dma_map_desc_ptr, f, 0);
1805 			bus_dmamap_sync(sc->sis_tag, f->sis_map,
1806 					BUS_DMASYNC_PREREAD);
1807 			if (cnt != 0)
1808 				f->sis_ctl |= SIS_CMDSTS_OWN;
1809 			cur = frag;
1810 			SIS_INC(frag, SIS_TX_LIST_CNT);
1811 			cnt++;
1812 		}
1813 	}
1814 
1815 	if (m != NULL)
1816 		return(ENOBUFS);
1817 
1818 	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1819 	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1820 	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1821 	sc->sis_cdata.sis_tx_cnt += cnt;
1822 	*txidx = frag;
1823 
1824 	return(0);
1825 }
1826 
1827 /*
1828  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1829  * to the mbuf data regions directly in the transmit lists. We also save a
1830  * copy of the pointers since the transmit list fragment pointers are
1831  * physical addresses.
1832  */
1833 
1834 static void
1835 sis_start(struct ifnet *ifp)
1836 {
1837 	struct sis_softc *sc;
1838 	struct mbuf *m_head = NULL;
1839 	uint32_t idx;
1840 
1841 	sc = ifp->if_softc;
1842 
1843 	if (!sc->sis_link)
1844 		return;
1845 
1846 	idx = sc->sis_cdata.sis_tx_prod;
1847 
1848 	if (ifp->if_flags & IFF_OACTIVE)
1849 		return;
1850 
1851 	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1852 		m_head = ifq_poll(&ifp->if_snd);
1853 		if (m_head == NULL)
1854 			break;
1855 
1856 		if (sis_encap(sc, m_head, &idx)) {
1857 			ifp->if_flags |= IFF_OACTIVE;
1858 			break;
1859 		}
1860 		m_head = ifq_dequeue(&ifp->if_snd);
1861 
1862 		/*
1863 		 * If there's a BPF listener, bounce a copy of this frame
1864 		 * to him.
1865 		 */
1866 		BPF_MTAP(ifp, m_head);
1867 	}
1868 
1869 	/* Transmit */
1870 	sc->sis_cdata.sis_tx_prod = idx;
1871 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1872 
1873 	/*
1874 	 * Set a timeout in case the chip goes out to lunch.
1875 	 */
1876 	ifp->if_timer = 5;
1877 }
1878 
1879 static void
1880 sis_init(void *xsc)
1881 {
1882 	struct sis_softc *sc = xsc;
1883 	struct ifnet *ifp = &sc->arpcom.ac_if;
1884 	struct mii_data *mii;
1885 	int s;
1886 
1887 	s = splimp();
1888 
1889 	/*
1890 	 * Cancel pending I/O and free all RX/TX buffers.
1891 	 */
1892 	sis_stop(sc);
1893 
1894 	mii = device_get_softc(sc->sis_miibus);
1895 
1896 	/* Set MAC address */
1897 	if (sc->sis_type == SIS_TYPE_83815) {
1898 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1899 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1900 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1901 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1902 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1903 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1904 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1905 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1906 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1907 	} else {
1908 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1909 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1910 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1911 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1912 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1913 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1914 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1915 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1916 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1917 	}
1918 
1919 	/* Init circular RX list. */
1920 	if (sis_list_rx_init(sc) == ENOBUFS) {
1921 		if_printf(ifp, "initialization failed: "
1922 			  "no memory for rx buffers\n");
1923 		sis_stop(sc);
1924 		splx(s);
1925 		return;
1926 	}
1927 
1928 	/*
1929 	 * Init tx descriptors.
1930 	 */
1931 	sis_list_tx_init(sc);
1932 
1933 	/*
1934 	 * For the NatSemi chip, we have to explicitly enable the
1935 	 * reception of ARP frames, as well as turn on the 'perfect
1936 	 * match' filter where we store the station address, otherwise
1937 	 * we won't receive unicasts meant for this host.
1938 	 */
1939 	if (sc->sis_type == SIS_TYPE_83815) {
1940 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1941 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1942 	}
1943 
1944 	 /* If we want promiscuous mode, set the allframes bit. */
1945 	if (ifp->if_flags & IFF_PROMISC)
1946 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1947 	else
1948 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1949 
1950 	/*
1951 	 * Set the capture broadcast bit to capture broadcast frames.
1952 	 */
1953 	if (ifp->if_flags & IFF_BROADCAST)
1954 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1955 	else
1956 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1957 
1958 	/*
1959 	 * Load the multicast filter.
1960 	 */
1961 	if (sc->sis_type == SIS_TYPE_83815)
1962 		sis_setmulti_ns(sc);
1963 	else
1964 		sis_setmulti_sis(sc);
1965 
1966 	/* Turn the receive filter on */
1967 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1968 
1969 	/*
1970 	 * Load the address of the RX and TX lists.
1971 	 */
1972 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1973 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1974 
1975 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1976 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1977 	 * for TX/RX DMA should be no larger than 16 double words.
1978 	 */
1979 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1980 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1981 	else
1982 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1983 
1984 	/* Accept Long Packets for VLAN support */
1985 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1986 
1987 	/* Set TX configuration */
1988 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
1989 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1990 	else
1991 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1992 
1993 	/* Set full/half duplex mode. */
1994 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1995 		SIS_SETBIT(sc, SIS_TX_CFG,
1996 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1997 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1998 	} else {
1999 		SIS_CLRBIT(sc, SIS_TX_CFG,
2000 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2001 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2002 	}
2003 
2004 	/*
2005 	 * Enable interrupts.
2006 	 */
2007 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2008 #ifdef DEVICE_POLLING
2009 	/*
2010 	 * ... only enable interrupts if we are not polling, make sure
2011 	 * they are off otherwise.
2012 	 */
2013 	if (ifp->if_flags & IFF_POLLING)
2014 		CSR_WRITE_4(sc, SIS_IER, 0);
2015 	else
2016 #endif /* DEVICE_POLLING */
2017 	CSR_WRITE_4(sc, SIS_IER, 1);
2018 
2019 	/* Enable receiver and transmitter. */
2020 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2021 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2022 
2023 #ifdef notdef
2024 	mii_mediachg(mii);
2025 #endif
2026 
2027 	/*
2028 	 * Page 75 of the DP83815 manual recommends the
2029 	 * following register settings "for optimum
2030 	 * performance." Note however that at least three
2031 	 * of the registers are listed as "reserved" in
2032 	 * the register map, so who knows what they do.
2033 	 */
2034 	if (sc->sis_type == SIS_TYPE_83815) {
2035 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2036 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2037 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2038 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2039 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2040 	}
2041 
2042 	ifp->if_flags |= IFF_RUNNING;
2043 	ifp->if_flags &= ~IFF_OACTIVE;
2044 
2045 	splx(s);
2046 
2047 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
2048 }
2049 
2050 /*
2051  * Set media options.
2052  */
2053 static int
2054 sis_ifmedia_upd(struct ifnet *ifp)
2055 {
2056 	struct sis_softc *sc;
2057 	struct mii_data *mii;
2058 
2059 	sc = ifp->if_softc;
2060 
2061 	mii = device_get_softc(sc->sis_miibus);
2062 	sc->sis_link = 0;
2063 	if (mii->mii_instance) {
2064 		struct mii_softc	*miisc;
2065 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2066 			mii_phy_reset(miisc);
2067 	}
2068 	mii_mediachg(mii);
2069 
2070 	return(0);
2071 }
2072 
2073 /*
2074  * Report current media status.
2075  */
2076 static void
2077 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2078 {
2079 	struct sis_softc *sc;
2080 	struct mii_data *mii;
2081 
2082 	sc = ifp->if_softc;
2083 
2084 	mii = device_get_softc(sc->sis_miibus);
2085 	mii_pollstat(mii);
2086 	ifmr->ifm_active = mii->mii_media_active;
2087 	ifmr->ifm_status = mii->mii_media_status;
2088 }
2089 
2090 static int
2091 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2092 {
2093 	struct sis_softc *sc = ifp->if_softc;
2094 	struct ifreq *ifr = (struct ifreq *) data;
2095 	struct mii_data *mii;
2096 	int s, error = 0;
2097 
2098 	switch(command) {
2099 	case SIOCSIFFLAGS:
2100 		if (ifp->if_flags & IFF_UP) {
2101 			sis_init(sc);
2102 		} else {
2103 			if (ifp->if_flags & IFF_RUNNING)
2104 				sis_stop(sc);
2105 		}
2106 		error = 0;
2107 		break;
2108 	case SIOCADDMULTI:
2109 	case SIOCDELMULTI:
2110 		s = splimp();
2111 		if (sc->sis_type == SIS_TYPE_83815)
2112 			sis_setmulti_ns(sc);
2113 		else
2114 			sis_setmulti_sis(sc);
2115 		splx(s);
2116 		error = 0;
2117 		break;
2118 	case SIOCGIFMEDIA:
2119 	case SIOCSIFMEDIA:
2120 		mii = device_get_softc(sc->sis_miibus);
2121 		s = splimp();
2122 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2123 		splx(s);
2124 		break;
2125 	default:
2126 		error = ether_ioctl(ifp, command, data);
2127 		break;
2128 	}
2129 
2130 	return(error);
2131 }
2132 
2133 static void
2134 sis_watchdog(struct ifnet *ifp)
2135 {
2136 	struct sis_softc *sc;
2137 
2138 	sc = ifp->if_softc;
2139 
2140 	ifp->if_oerrors++;
2141 	if_printf(ifp, "watchdog timeout\n");
2142 
2143 	sis_stop(sc);
2144 	sis_reset(sc);
2145 	sis_init(sc);
2146 
2147 	if (!ifq_is_empty(&ifp->if_snd))
2148 		sis_start(ifp);
2149 }
2150 
2151 /*
2152  * Stop the adapter and free any mbufs allocated to the
2153  * RX and TX lists.
2154  */
2155 static void
2156 sis_stop(struct sis_softc *sc)
2157 {
2158 	int i;
2159 	struct ifnet *ifp;
2160 
2161 	ifp = &sc->arpcom.ac_if;
2162 	ifp->if_timer = 0;
2163 
2164 	callout_stop(&sc->sis_timer);
2165 
2166 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2167 	CSR_WRITE_4(sc, SIS_IER, 0);
2168 	CSR_WRITE_4(sc, SIS_IMR, 0);
2169 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2170 	DELAY(1000);
2171 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2172 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2173 
2174 	sc->sis_link = 0;
2175 
2176 	/*
2177 	 * Free data in the RX lists.
2178 	 */
2179 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2180 		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2181 			bus_dmamap_unload(sc->sis_tag,
2182 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2183 			bus_dmamap_destroy(sc->sis_tag,
2184 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2185 			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2186 			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2187 		}
2188 	}
2189 	bzero(sc->sis_ldata.sis_rx_list, sizeof(sc->sis_ldata.sis_rx_list));
2190 
2191 	/*
2192 	 * Free the TX list buffers.
2193 	 */
2194 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2195 		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2196 			bus_dmamap_unload(sc->sis_tag,
2197 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2198 			bus_dmamap_destroy(sc->sis_tag,
2199 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2200 			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2201 			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2202 		}
2203 	}
2204 
2205 	bzero(sc->sis_ldata.sis_tx_list, sizeof(sc->sis_ldata.sis_tx_list));
2206 }
2207 
2208 /*
2209  * Stop all chip I/O so that the kernel's probe routines don't
2210  * get confused by errant DMAs when rebooting.
2211  */
2212 static void
2213 sis_shutdown(device_t dev)
2214 {
2215 	struct sis_softc	*sc;
2216 
2217 	sc = device_get_softc(dev);
2218 
2219 	sis_reset(sc);
2220 	sis_stop(sc);
2221 }
2222