xref: /dflybsd-src/sys/dev/netif/sis/if_sis.c (revision 0ea552d68c3a0ee380451241d06e39c6dd43d66a)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sis.c,v 1.13.4.24 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/sis/if_sis.c,v 1.34 2006/08/06 12:49:06 swildner Exp $
34  */
35 
36 /*
37  * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38  * available from http://www.sis.com.tw.
39  *
40  * This driver also supports the NatSemi DP83815. Datasheets are
41  * available from http://www.national.com.
42  *
43  * Written by Bill Paul <wpaul@ee.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50  * simple TX and RX descriptors of 3 longwords in size. The receiver
51  * has a single perfect filter entry for the station address and a
52  * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53  * transceiver while the 7016 requires an external transceiver chip.
54  * Both chips offer the standard bit-bang MII interface as well as
55  * an enchanced PHY interface which simplifies accessing MII registers.
56  *
57  * The only downside to this chipset is that RX descriptors must be
58  * longword aligned.
59  */
60 
61 #include "opt_polling.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/malloc.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sysctl.h>
71 #include <sys/serialize.h>
72 #include <sys/thread2.h>
73 
74 #include <net/if.h>
75 #include <net/ifq_var.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_dl.h>
79 #include <net/if_media.h>
80 #include <net/if_types.h>
81 #include <net/vlan/if_vlan_var.h>
82 
83 #include <net/bpf.h>
84 
85 #include <machine/bus_pio.h>
86 #include <machine/bus_memio.h>
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <sys/bus.h>
90 #include <sys/rman.h>
91 
92 #include <dev/netif/mii_layer/mii.h>
93 #include <dev/netif/mii_layer/miivar.h>
94 
95 #include <bus/pci/pcidevs.h>
96 #include <bus/pci/pcireg.h>
97 #include <bus/pci/pcivar.h>
98 
99 #define SIS_USEIOSPACE
100 
101 #include "if_sisreg.h"
102 
103 /* "controller miibus0" required.  See GENERIC if you get errors here. */
104 #include "miibus_if.h"
105 
106 /*
107  * Various supported device vendors/types and their names.
108  */
109 static struct sis_type sis_devs[] = {
110 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100BaseTX" },
111 	{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100BaseTX" },
112 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
113 	{ 0, 0, NULL }
114 };
115 
116 static int	sis_probe(device_t);
117 static int	sis_attach(device_t);
118 static int	sis_detach(device_t);
119 
120 static int	sis_newbuf(struct sis_softc *, struct sis_desc *,
121 			   struct mbuf *);
122 static int	sis_encap(struct sis_softc *, struct mbuf *, uint32_t *);
123 static void	sis_rxeof(struct sis_softc *);
124 static void	sis_rxeoc(struct sis_softc *);
125 static void	sis_txeof(struct sis_softc *);
126 static void	sis_intr(void *);
127 static void	sis_tick(void *);
128 static void	sis_start(struct ifnet *);
129 static int	sis_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
130 static void	sis_init(void *);
131 static void	sis_stop(struct sis_softc *);
132 static void	sis_watchdog(struct ifnet *);
133 static void	sis_shutdown(device_t);
134 static int	sis_ifmedia_upd(struct ifnet *);
135 static void	sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136 
137 static uint16_t	sis_reverse(uint16_t);
138 static void	sis_delay(struct sis_softc *);
139 static void	sis_eeprom_idle(struct sis_softc *);
140 static void	sis_eeprom_putbyte(struct sis_softc *, int);
141 static void	sis_eeprom_getword(struct sis_softc *, int, uint16_t *);
142 static void	sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int);
143 #ifdef __i386__
144 static void	sis_read_cmos(struct sis_softc *, device_t, caddr_t, int, int);
145 static void	sis_read_mac(struct sis_softc *, device_t, caddr_t);
146 static device_t	sis_find_bridge(device_t);
147 #endif
148 
149 static void	sis_mii_sync(struct sis_softc *);
150 static void	sis_mii_send(struct sis_softc *, uint32_t, int);
151 static int	sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *);
152 static int	sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *);
153 static int	sis_miibus_readreg(device_t, int, int);
154 static int	sis_miibus_writereg(device_t, int, int, int);
155 static void	sis_miibus_statchg(device_t);
156 
157 static void	sis_setmulti_sis(struct sis_softc *);
158 static void	sis_setmulti_ns(struct sis_softc *);
159 static uint32_t	sis_mchash(struct sis_softc *, const uint8_t *);
160 static void	sis_reset(struct sis_softc *);
161 static int	sis_list_rx_init(struct sis_softc *);
162 static int	sis_list_tx_init(struct sis_softc *);
163 
164 static void	sis_dma_map_desc_ptr(void *, bus_dma_segment_t *, int, int);
165 static void	sis_dma_map_desc_next(void *, bus_dma_segment_t *, int, int);
166 static void	sis_dma_map_ring(void *, bus_dma_segment_t *, int, int);
167 #ifdef DEVICE_POLLING
168 static poll_handler_t sis_poll;
169 #endif
170 #ifdef SIS_USEIOSPACE
171 #define SIS_RES			SYS_RES_IOPORT
172 #define SIS_RID			SIS_PCI_LOIO
173 #else
174 #define SIS_RES			SYS_RES_MEMORY
175 #define SIS_RID			SIS_PCI_LOMEM
176 #endif
177 
178 static device_method_t sis_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		sis_probe),
181 	DEVMETHOD(device_attach,	sis_attach),
182 	DEVMETHOD(device_detach,	sis_detach),
183 	DEVMETHOD(device_shutdown,	sis_shutdown),
184 
185 	/* bus interface */
186 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
187 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
188 
189 	/* MII interface */
190 	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
191 	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
192 	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
193 
194 	{ 0, 0 }
195 };
196 
197 static driver_t sis_driver = {
198 	"sis",
199 	sis_methods,
200 	sizeof(struct sis_softc)
201 };
202 
203 static devclass_t sis_devclass;
204 
205 DECLARE_DUMMY_MODULE(if_sis);
206 DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
207 DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
208 
209 #define SIS_SETBIT(sc, reg, x)				\
210 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
211 
212 #define SIS_CLRBIT(sc, reg, x)				\
213 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
214 
215 #define SIO_SET(x)					\
216 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
217 
218 #define SIO_CLR(x)					\
219 	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
220 
221 static void
222 sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
223 {
224 	struct sis_desc	*r;
225 
226 	r = arg;
227 	r->sis_next = segs->ds_addr;
228 }
229 
230 static void
231 sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
232 {
233 	struct sis_desc	*r;
234 
235 	r = arg;
236 	r->sis_ptr = segs->ds_addr;
237 }
238 
239 static void
240 sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
241 {
242 	uint32_t *p;
243 
244 	p = arg;
245 	*p = segs->ds_addr;
246 }
247 
248 /*
249  * Routine to reverse the bits in a word. Stolen almost
250  * verbatim from /usr/games/fortune.
251  */
252 static uint16_t
253 sis_reverse(uint16_t n)
254 {
255 	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
256 	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
257 	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
258 	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
259 
260 	return(n);
261 }
262 
263 static void
264 sis_delay(struct sis_softc *sc)
265 {
266 	int idx;
267 
268 	for (idx = (300 / 33) + 1; idx > 0; idx--)
269 		CSR_READ_4(sc, SIS_CSR);
270 }
271 
272 static void
273 sis_eeprom_idle(struct sis_softc *sc)
274 {
275 	int i;
276 
277 	SIO_SET(SIS_EECTL_CSEL);
278 	sis_delay(sc);
279 	SIO_SET(SIS_EECTL_CLK);
280 	sis_delay(sc);
281 
282 	for (i = 0; i < 25; i++) {
283 		SIO_CLR(SIS_EECTL_CLK);
284 		sis_delay(sc);
285 		SIO_SET(SIS_EECTL_CLK);
286 		sis_delay(sc);
287 	}
288 
289 	SIO_CLR(SIS_EECTL_CLK);
290 	sis_delay(sc);
291 	SIO_CLR(SIS_EECTL_CSEL);
292 	sis_delay(sc);
293 	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
294 }
295 
296 /*
297  * Send a read command and address to the EEPROM, check for ACK.
298  */
299 static void
300 sis_eeprom_putbyte(struct sis_softc *sc, int addr)
301 {
302 	int d, i;
303 
304 	d = addr | SIS_EECMD_READ;
305 
306 	/*
307 	 * Feed in each bit and stobe the clock.
308 	 */
309 	for (i = 0x400; i; i >>= 1) {
310 		if (d & i)
311 			SIO_SET(SIS_EECTL_DIN);
312 		else
313 			SIO_CLR(SIS_EECTL_DIN);
314 		sis_delay(sc);
315 		SIO_SET(SIS_EECTL_CLK);
316 		sis_delay(sc);
317 		SIO_CLR(SIS_EECTL_CLK);
318 		sis_delay(sc);
319 	}
320 }
321 
322 /*
323  * Read a word of data stored in the EEPROM at address 'addr.'
324  */
325 static void
326 sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
327 {
328 	int i;
329 	uint16_t word = 0;
330 
331 	/* Force EEPROM to idle state. */
332 	sis_eeprom_idle(sc);
333 
334 	/* Enter EEPROM access mode. */
335 	sis_delay(sc);
336 	SIO_CLR(SIS_EECTL_CLK);
337 	sis_delay(sc);
338 	SIO_SET(SIS_EECTL_CSEL);
339 	sis_delay(sc);
340 
341 	/*
342 	 * Send address of word we want to read.
343 	 */
344 	sis_eeprom_putbyte(sc, addr);
345 
346 	/*
347 	 * Start reading bits from EEPROM.
348 	 */
349 	for (i = 0x8000; i; i >>= 1) {
350 		SIO_SET(SIS_EECTL_CLK);
351 		sis_delay(sc);
352 		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
353 			word |= i;
354 		sis_delay(sc);
355 		SIO_CLR(SIS_EECTL_CLK);
356 		sis_delay(sc);
357 	}
358 
359 	/* Turn off EEPROM access mode. */
360 	sis_eeprom_idle(sc);
361 
362 	*dest = word;
363 }
364 
365 /*
366  * Read a sequence of words from the EEPROM.
367  */
368 static void
369 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
370 {
371 	int i;
372 	uint16_t word = 0, *ptr;
373 
374 	for (i = 0; i < cnt; i++) {
375 		sis_eeprom_getword(sc, off + i, &word);
376 		ptr = (uint16_t *)(dest + (i * 2));
377 		if (swap)
378 			*ptr = ntohs(word);
379 		else
380 			*ptr = word;
381 	}
382 }
383 
384 #ifdef __i386__
385 static device_t
386 sis_find_bridge(device_t dev)
387 {
388 	devclass_t pci_devclass;
389 	device_t *pci_devices;
390 	int pci_count = 0;
391 	device_t *pci_children;
392 	int pci_childcount = 0;
393 	device_t *busp, *childp;
394 	device_t child = NULL;
395 	int i, j;
396 
397 	if ((pci_devclass = devclass_find("pci")) == NULL)
398 		return(NULL);
399 
400 	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
401 
402 	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
403 		pci_childcount = 0;
404 		device_get_children(*busp, &pci_children, &pci_childcount);
405 		for (j = 0, childp = pci_children; j < pci_childcount;
406 		     j++, childp++) {
407 			if (pci_get_vendor(*childp) == PCI_VENDOR_SIS &&
408 			    pci_get_device(*childp) == 0x0008) {
409 				child = *childp;
410 				goto done;
411 			}
412 		}
413 	}
414 
415 done:
416 	free(pci_devices, M_TEMP);
417 	free(pci_children, M_TEMP);
418 	return(child);
419 }
420 
421 static void
422 sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off,
423 	      int cnt)
424 {
425 	device_t bridge;
426 	uint8_t reg;
427 	int i;
428 	bus_space_tag_t	btag;
429 
430 	bridge = sis_find_bridge(dev);
431 	if (bridge == NULL)
432 		return;
433 	reg = pci_read_config(bridge, 0x48, 1);
434 	pci_write_config(bridge, 0x48, reg|0x40, 1);
435 
436 	/* XXX */
437 	btag = I386_BUS_SPACE_IO;
438 
439 	for (i = 0; i < cnt; i++) {
440 		bus_space_write_1(btag, 0x0, 0x70, i + off);
441 		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
442 	}
443 
444 	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
445 }
446 
447 static void
448 sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
449 {
450 	uint32_t filtsave, csrsave;
451 
452 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
453 	csrsave = CSR_READ_4(sc, SIS_CSR);
454 
455 	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
456 	CSR_WRITE_4(sc, SIS_CSR, 0);
457 
458 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
459 
460 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
461 	((uint16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
462 	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
463 	((uint16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
464 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
465 	((uint16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
466 
467 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
468 	CSR_WRITE_4(sc, SIS_CSR, csrsave);
469 }
470 #endif
471 
472 /*
473  * Sync the PHYs by setting data bit and strobing the clock 32 times.
474  */
475 static void
476 sis_mii_sync(struct sis_softc *sc)
477 {
478 	int i;
479 
480 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
481 
482 	for (i = 0; i < 32; i++) {
483 		SIO_SET(SIS_MII_CLK);
484 		DELAY(1);
485 		SIO_CLR(SIS_MII_CLK);
486 		DELAY(1);
487 	}
488 }
489 
490 /*
491  * Clock a series of bits through the MII.
492  */
493 static void
494 sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
495 {
496 	int i;
497 
498 	SIO_CLR(SIS_MII_CLK);
499 
500 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
501 		if (bits & i)
502 			SIO_SET(SIS_MII_DATA);
503 		else
504 			SIO_CLR(SIS_MII_DATA);
505 		DELAY(1);
506 		SIO_CLR(SIS_MII_CLK);
507 		DELAY(1);
508 		SIO_SET(SIS_MII_CLK);
509 	}
510 }
511 
512 /*
513  * Read an PHY register through the MII.
514  */
515 static int
516 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
517 {
518 	int i, ack;
519 
520 	/*
521 	 * Set up frame for RX.
522 	 */
523 	frame->mii_stdelim = SIS_MII_STARTDELIM;
524 	frame->mii_opcode = SIS_MII_READOP;
525 	frame->mii_turnaround = 0;
526 	frame->mii_data = 0;
527 
528 	/*
529  	 * Turn on data xmit.
530 	 */
531 	SIO_SET(SIS_MII_DIR);
532 
533 	sis_mii_sync(sc);
534 
535 	/*
536 	 * Send command/address info.
537 	 */
538 	sis_mii_send(sc, frame->mii_stdelim, 2);
539 	sis_mii_send(sc, frame->mii_opcode, 2);
540 	sis_mii_send(sc, frame->mii_phyaddr, 5);
541 	sis_mii_send(sc, frame->mii_regaddr, 5);
542 
543 	/* Idle bit */
544 	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
545 	DELAY(1);
546 	SIO_SET(SIS_MII_CLK);
547 	DELAY(1);
548 
549 	/* Turn off xmit. */
550 	SIO_CLR(SIS_MII_DIR);
551 
552 	/* Check for ack */
553 	SIO_CLR(SIS_MII_CLK);
554 	DELAY(1);
555 	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
556 	SIO_SET(SIS_MII_CLK);
557 	DELAY(1);
558 
559 	/*
560 	 * Now try reading data bits. If the ack failed, we still
561 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
562 	 */
563 	if (ack) {
564 		for(i = 0; i < 16; i++) {
565 			SIO_CLR(SIS_MII_CLK);
566 			DELAY(1);
567 			SIO_SET(SIS_MII_CLK);
568 			DELAY(1);
569 		}
570 		goto fail;
571 	}
572 
573 	for (i = 0x8000; i; i >>= 1) {
574 		SIO_CLR(SIS_MII_CLK);
575 		DELAY(1);
576 		if (!ack) {
577 			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
578 				frame->mii_data |= i;
579 			DELAY(1);
580 		}
581 		SIO_SET(SIS_MII_CLK);
582 		DELAY(1);
583 	}
584 
585 fail:
586 
587 	SIO_CLR(SIS_MII_CLK);
588 	DELAY(1);
589 	SIO_SET(SIS_MII_CLK);
590 	DELAY(1);
591 
592 	if (ack)
593 		return(1);
594 	return(0);
595 }
596 
597 /*
598  * Write to a PHY register through the MII.
599  */
600 static int
601 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
602 {
603 	/*
604 	 * Set up frame for TX.
605 	 */
606 
607 	frame->mii_stdelim = SIS_MII_STARTDELIM;
608 	frame->mii_opcode = SIS_MII_WRITEOP;
609 	frame->mii_turnaround = SIS_MII_TURNAROUND;
610 
611 	/*
612 	 * Turn on data output.
613 	 */
614 	SIO_SET(SIS_MII_DIR);
615 
616 	sis_mii_sync(sc);
617 
618 	sis_mii_send(sc, frame->mii_stdelim, 2);
619 	sis_mii_send(sc, frame->mii_opcode, 2);
620 	sis_mii_send(sc, frame->mii_phyaddr, 5);
621 	sis_mii_send(sc, frame->mii_regaddr, 5);
622 	sis_mii_send(sc, frame->mii_turnaround, 2);
623 	sis_mii_send(sc, frame->mii_data, 16);
624 
625 	/* Idle bit. */
626 	SIO_SET(SIS_MII_CLK);
627 	DELAY(1);
628 	SIO_CLR(SIS_MII_CLK);
629 	DELAY(1);
630 
631 	/*
632 	 * Turn off xmit.
633 	 */
634 	SIO_CLR(SIS_MII_DIR);
635 
636 	return(0);
637 }
638 
639 static int
640 sis_miibus_readreg(device_t dev, int phy, int reg)
641 {
642 	struct sis_softc *sc;
643 	struct sis_mii_frame frame;
644 
645 	sc = device_get_softc(dev);
646 
647 	if (sc->sis_type == SIS_TYPE_83815) {
648 		if (phy != 0)
649 			return(0);
650 		/*
651 		 * The NatSemi chip can take a while after
652 		 * a reset to come ready, during which the BMSR
653 		 * returns a value of 0. This is *never* supposed
654 		 * to happen: some of the BMSR bits are meant to
655 		 * be hardwired in the on position, and this can
656 		 * confuse the miibus code a bit during the probe
657 		 * and attach phase. So we make an effort to check
658 		 * for this condition and wait for it to clear.
659 		 */
660 		if (!CSR_READ_4(sc, NS_BMSR))
661 			DELAY(1000);
662 		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
663 	}
664 	/*
665 	 * Chipsets < SIS_635 seem not to be able to read/write
666 	 * through mdio. Use the enhanced PHY access register
667 	 * again for them.
668 	 */
669 	if (sc->sis_type == SIS_TYPE_900 &&
670 	    sc->sis_rev < SIS_REV_635) {
671 		int i, val = 0;
672 
673 		if (phy != 0)
674 			return(0);
675 
676 		CSR_WRITE_4(sc, SIS_PHYCTL,
677 		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
678 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
679 
680 		for (i = 0; i < SIS_TIMEOUT; i++) {
681 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
682 				break;
683 		}
684 
685 		if (i == SIS_TIMEOUT) {
686 			device_printf(dev, "PHY failed to come ready\n");
687 			return(0);
688 		}
689 
690 		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
691 
692 		if (val == 0xFFFF)
693 			return(0);
694 
695 		return(val);
696 	} else {
697 		bzero((char *)&frame, sizeof(frame));
698 
699 		frame.mii_phyaddr = phy;
700 		frame.mii_regaddr = reg;
701 		sis_mii_readreg(sc, &frame);
702 
703 		return(frame.mii_data);
704 	}
705 }
706 
707 static int
708 sis_miibus_writereg(device_t dev, int phy, int reg, int data)
709 {
710 	struct sis_softc *sc;
711 	struct sis_mii_frame frame;
712 
713 	sc = device_get_softc(dev);
714 
715 	if (sc->sis_type == SIS_TYPE_83815) {
716 		if (phy != 0)
717 			return(0);
718 		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
719 		return(0);
720 	}
721 
722 	if (sc->sis_type == SIS_TYPE_900 &&
723 	    sc->sis_rev < SIS_REV_635) {
724 		int i;
725 
726 		if (phy != 0)
727 			return(0);
728 
729 		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
730 		    (reg << 6) | SIS_PHYOP_WRITE);
731 		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
732 
733 		for (i = 0; i < SIS_TIMEOUT; i++) {
734 			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
735 				break;
736 		}
737 
738 		if (i == SIS_TIMEOUT)
739 			device_printf(dev, "PHY failed to come ready\n");
740 	} else {
741 		bzero((char *)&frame, sizeof(frame));
742 
743 		frame.mii_phyaddr = phy;
744 		frame.mii_regaddr = reg;
745 		frame.mii_data = data;
746 		sis_mii_writereg(sc, &frame);
747 	}
748 	return(0);
749 }
750 
751 static void
752 sis_miibus_statchg(device_t dev)
753 {
754 	struct sis_softc *sc;
755 
756 	sc = device_get_softc(dev);
757 	sis_init(sc);
758 }
759 
760 static uint32_t
761 sis_mchash(struct sis_softc *sc, const uint8_t *addr)
762 {
763 	uint32_t crc, carry;
764 	int i, j;
765 	uint8_t c;
766 
767 	/* Compute CRC for the address value. */
768 	crc = 0xFFFFFFFF; /* initial value */
769 
770 	for (i = 0; i < 6; i++) {
771 		c = *(addr + i);
772 		for (j = 0; j < 8; j++) {
773 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
774 			crc <<= 1;
775 			c >>= 1;
776 			if (carry)
777 				crc = (crc ^ 0x04c11db6) | carry;
778 		}
779 	}
780 
781 	/*
782 	 * return the filter bit position
783 	 *
784 	 * The NatSemi chip has a 512-bit filter, which is
785 	 * different than the SiS, so we special-case it.
786 	 */
787 	if (sc->sis_type == SIS_TYPE_83815)
788 		return (crc >> 23);
789 	else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
790 		return (crc >> 24);
791 	else
792 		return (crc >> 25);
793 }
794 
795 static void
796 sis_setmulti_ns(struct sis_softc *sc)
797 {
798 	struct ifnet *ifp;
799 	struct ifmultiaddr *ifma;
800 	uint32_t h = 0, i, filtsave;
801 	int bit, index;
802 
803 	ifp = &sc->arpcom.ac_if;
804 
805 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
806 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
807 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
808 		return;
809 	}
810 
811 	/*
812 	 * We have to explicitly enable the multicast hash table
813 	 * on the NatSemi chip if we want to use it, which we do.
814 	 */
815 	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
816 	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
817 
818 	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
819 
820 	/* first, zot all the existing hash bits */
821 	for (i = 0; i < 32; i++) {
822 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
823 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
824 	}
825 
826 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
827 		if (ifma->ifma_addr->sa_family != AF_LINK)
828 			continue;
829 		h = sis_mchash(sc,
830 			       LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
831 		index = h >> 3;
832 		bit = h & 0x1F;
833 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
834 		if (bit > 0xF)
835 			bit -= 0x10;
836 		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
837 	}
838 
839 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
840 }
841 
842 static void
843 sis_setmulti_sis(struct sis_softc *sc)
844 {
845 	struct ifnet *ifp;
846 	struct ifmultiaddr *ifma;
847 	uint32_t h, i, n, ctl;
848 	uint16_t hashes[16];
849 
850 	ifp = &sc->arpcom.ac_if;
851 
852 	/* hash table size */
853 	if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B)
854 		n = 16;
855 	else
856 		n = 8;
857 
858 	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
859 
860 	if (ifp->if_flags & IFF_BROADCAST)
861 		ctl |= SIS_RXFILTCTL_BROAD;
862 
863 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
864 		ctl |= SIS_RXFILTCTL_ALLMULTI;
865 		if (ifp->if_flags & IFF_PROMISC)
866 			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
867 		for (i = 0; i < n; i++)
868 			hashes[i] = ~0;
869 	} else {
870 		for (i = 0; i < n; i++)
871 			hashes[i] = 0;
872 		i = 0;
873 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
874 			if (ifma->ifma_addr->sa_family != AF_LINK)
875 				continue;
876 			h = sis_mchash(sc,
877 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
878 			hashes[h >> 4] |= 1 << (h & 0xf);
879 			i++;
880 		}
881 		if (i > n) {
882 			ctl |= SIS_RXFILTCTL_ALLMULTI;
883 			for (i = 0; i < n; i++)
884 				hashes[i] = ~0;
885 		}
886 	}
887 
888 	for (i = 0; i < n; i++) {
889 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
890 		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
891 	}
892 
893 	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
894 }
895 
896 static void
897 sis_reset(struct sis_softc *sc)
898 {
899 	struct ifnet *ifp = &sc->arpcom.ac_if;
900 	int i;
901 
902 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
903 
904 	for (i = 0; i < SIS_TIMEOUT; i++) {
905 		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
906 			break;
907 	}
908 
909 	if (i == SIS_TIMEOUT)
910 		if_printf(ifp, "reset never completed\n");
911 
912 	/* Wait a little while for the chip to get its brains in order. */
913 	DELAY(1000);
914 
915 	/*
916 	 * If this is a NetSemi chip, make sure to clear
917 	 * PME mode.
918 	 */
919 	if (sc->sis_type == SIS_TYPE_83815) {
920 		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
921 		CSR_WRITE_4(sc, NS_CLKRUN, 0);
922 	}
923 }
924 
925 /*
926  * Probe for an SiS chip. Check the PCI vendor and device
927  * IDs against our list and return a device name if we find a match.
928  */
929 static int
930 sis_probe(device_t dev)
931 {
932 	struct sis_type *t;
933 
934 	t = sis_devs;
935 
936 	while(t->sis_name != NULL) {
937 		if ((pci_get_vendor(dev) == t->sis_vid) &&
938 		    (pci_get_device(dev) == t->sis_did)) {
939 			device_set_desc(dev, t->sis_name);
940 			return(0);
941 		}
942 		t++;
943 	}
944 
945 	return(ENXIO);
946 }
947 
948 /*
949  * Attach the interface. Allocate softc structures, do ifmedia
950  * setup and ethernet/BPF attach.
951  */
952 static int
953 sis_attach(device_t dev)
954 {
955 	uint8_t eaddr[ETHER_ADDR_LEN];
956 	uint32_t command;
957 	struct sis_softc *sc;
958 	struct ifnet *ifp;
959 	int error, rid, waittime;
960 
961 	error = waittime = 0;
962 	sc = device_get_softc(dev);
963 
964 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_900)
965 		sc->sis_type = SIS_TYPE_900;
966 	if (pci_get_device(dev) == PCI_PRODUCT_SIS_7016)
967 		sc->sis_type = SIS_TYPE_7016;
968 	if (pci_get_vendor(dev) == PCI_VENDOR_NS)
969 		sc->sis_type = SIS_TYPE_83815;
970 
971 	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
972 
973 	/*
974 	 * Handle power management nonsense.
975 	 */
976 
977 	command = pci_read_config(dev, SIS_PCI_CAPID, 4) & 0x000000FF;
978 	if (command == 0x01) {
979 
980 		command = pci_read_config(dev, SIS_PCI_PWRMGMTCTRL, 4);
981 		if (command & SIS_PSTATE_MASK) {
982 			uint32_t		iobase, membase, irq;
983 
984 			/* Save important PCI config data. */
985 			iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
986 			membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
987 			irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
988 
989 			/* Reset the power state. */
990 			device_printf(dev, "chip is in D%d power mode "
991 			    "-- setting to D0\n", command & SIS_PSTATE_MASK);
992 			command &= 0xFFFFFFFC;
993 			pci_write_config(dev, SIS_PCI_PWRMGMTCTRL, command, 4);
994 
995 			/* Restore PCI config data. */
996 			pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
997 			pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
998 			pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
999 		}
1000 	}
1001 
1002 	/*
1003 	 * Map control/status registers.
1004 	 */
1005 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1006 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1007 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1008 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1009 
1010 #ifdef SIS_USEIOSPACE
1011 	if (!(command & PCIM_CMD_PORTEN)) {
1012 		device_printf(dev, "failed to enable I/O ports!\n");
1013 		error = ENXIO;
1014 		goto fail;
1015 	}
1016 #else
1017 	if (!(command & PCIM_CMD_MEMEN)) {
1018 		device_printf(dev, "failed to enable memory mapping!\n");
1019 		error = ENXIO;
1020 		goto fail;
1021 	}
1022 #endif
1023 
1024 	rid = SIS_RID;
1025 	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
1026 
1027 	if (sc->sis_res == NULL) {
1028 		device_printf(dev, "couldn't map ports/memory\n");
1029 		error = ENXIO;
1030 		goto fail;
1031 	}
1032 
1033 	sc->sis_btag = rman_get_bustag(sc->sis_res);
1034 	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1035 
1036 	/* Allocate interrupt */
1037 	rid = 0;
1038 	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1039 	    RF_SHAREABLE | RF_ACTIVE);
1040 
1041 	if (sc->sis_irq == NULL) {
1042 		device_printf(dev, "couldn't map interrupt\n");
1043 		error = ENXIO;
1044 		goto fail;
1045 	}
1046 
1047 	/* Reset the adapter. */
1048 	sis_reset(sc);
1049 
1050 	if (sc->sis_type == SIS_TYPE_900 &&
1051             (sc->sis_rev == SIS_REV_635 ||
1052              sc->sis_rev == SIS_REV_900B)) {
1053 		SIO_SET(SIS_CFG_RND_CNT);
1054 		SIO_SET(SIS_CFG_PERR_DETECT);
1055 	}
1056 
1057 	/*
1058 	 * Get station address from the EEPROM.
1059 	 */
1060 	switch (pci_get_vendor(dev)) {
1061 	case PCI_VENDOR_NS:
1062 		/*
1063 		 * Reading the MAC address out of the EEPROM on
1064 		 * the NatSemi chip takes a bit more work than
1065 		 * you'd expect. The address spans 4 16-bit words,
1066 		 * with the first word containing only a single bit.
1067 		 * You have to shift everything over one bit to
1068 		 * get it aligned properly. Also, the bits are
1069 		 * stored backwards (the LSB is really the MSB,
1070 		 * and so on) so you have to reverse them in order
1071 		 * to get the MAC address into the form we want.
1072 		 * Why? Who the hell knows.
1073 		 */
1074 		{
1075 			uint16_t		tmp[4];
1076 
1077 			sis_read_eeprom(sc, (caddr_t)&tmp,
1078 			    NS_EE_NODEADDR, 4, 0);
1079 
1080 			/* Shift everything over one bit. */
1081 			tmp[3] = tmp[3] >> 1;
1082 			tmp[3] |= tmp[2] << 15;
1083 			tmp[2] = tmp[2] >> 1;
1084 			tmp[2] |= tmp[1] << 15;
1085 			tmp[1] = tmp[1] >> 1;
1086 			tmp[1] |= tmp[0] << 15;
1087 
1088 			/* Now reverse all the bits. */
1089 			tmp[3] = sis_reverse(tmp[3]);
1090 			tmp[2] = sis_reverse(tmp[2]);
1091 			tmp[1] = sis_reverse(tmp[1]);
1092 
1093 			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1094 		}
1095 		break;
1096 	case PCI_VENDOR_SIS:
1097 	default:
1098 #ifdef __i386__
1099 		/*
1100 		 * If this is a SiS 630E chipset with an embedded
1101 		 * SiS 900 controller, we have to read the MAC address
1102 		 * from the APC CMOS RAM. Our method for doing this
1103 		 * is very ugly since we have to reach out and grab
1104 		 * ahold of hardware for which we cannot properly
1105 		 * allocate resources. This code is only compiled on
1106 		 * the i386 architecture since the SiS 630E chipset
1107 		 * is for x86 motherboards only. Note that there are
1108 		 * a lot of magic numbers in this hack. These are
1109 		 * taken from SiS's Linux driver. I'd like to replace
1110 		 * them with proper symbolic definitions, but that
1111 		 * requires some datasheets that I don't have access
1112 		 * to at the moment.
1113 		 */
1114 		if (sc->sis_rev == SIS_REV_630S ||
1115 		    sc->sis_rev == SIS_REV_630E ||
1116 		    sc->sis_rev == SIS_REV_630EA1)
1117 			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1118 
1119 		else if (sc->sis_rev == SIS_REV_635 ||
1120 			 sc->sis_rev == SIS_REV_630ET)
1121 			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1122 		else if (sc->sis_rev == SIS_REV_96x) {
1123 			/*
1124 			 * Allow to read EEPROM from LAN. It is shared
1125 			 * between a 1394 controller and the NIC and each
1126 			 * time we access it, we need to set SIS_EECMD_REQ.
1127 			 */
1128 			SIO_SET(SIS_EECMD_REQ);
1129 			for (waittime = 0; waittime < SIS_TIMEOUT;
1130 			    waittime++) {
1131 				/* Force EEPROM to idle state. */
1132 				sis_eeprom_idle(sc);
1133 				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1134 					sis_read_eeprom(sc, (caddr_t)&eaddr,
1135 					    SIS_EE_NODEADDR, 3, 0);
1136 					break;
1137 				}
1138 				DELAY(1);
1139 			}
1140 			/*
1141 			 * Set SIS_EECTL_CLK to high, so a other master
1142 			 * can operate on the i2c bus.
1143 			 */
1144 			SIO_SET(SIS_EECTL_CLK);
1145 			/* Refuse EEPROM access by LAN */
1146 			SIO_SET(SIS_EECMD_DONE);
1147 		} else
1148 #endif
1149 			sis_read_eeprom(sc, (caddr_t)&eaddr,
1150 			    SIS_EE_NODEADDR, 3, 0);
1151 		break;
1152 	}
1153 
1154 	callout_init(&sc->sis_timer);
1155 
1156 	/*
1157 	 * Allocate the parent bus DMA tag appropriate for PCI.
1158 	 */
1159 #define SIS_NSEG_NEW 32
1160 	error = bus_dma_tag_create(NULL,	/* parent */
1161 			1, 0,			/* alignment, boundary */
1162 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1163 			BUS_SPACE_MAXADDR,	/* highaddr */
1164 			NULL, NULL,		/* filter, filterarg */
1165 			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1166 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1167 			BUS_DMA_ALLOCNOW,	/* flags */
1168 			&sc->sis_parent_tag);
1169 	if (error)
1170 		goto fail;
1171 
1172 	/*
1173 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1174 	 * of DMA-able memory based on the tag. Also obtain the physical
1175 	 * addresses of the RX and TX ring, which we'll need later.
1176 	 * All of our lists are allocated as a contiguous block of memory.
1177 	 */
1178 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1179 			1, 0,			/* alignment, boundary */
1180 			BUS_SPACE_MAXADDR,	/* lowaddr */
1181 			BUS_SPACE_MAXADDR,	/* highaddr */
1182 			NULL, NULL,		/* filter, filterarg */
1183 			SIS_RX_LIST_SZ, 1,	/* maxsize, nsegments */
1184 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1185 			0,			/* flags */
1186 			&sc->sis_ldata.sis_rx_tag);
1187 	if (error)
1188 		goto fail;
1189 
1190 	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1191 				 (void **)&sc->sis_ldata.sis_rx_list,
1192 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1193 				 &sc->sis_ldata.sis_rx_dmamap);
1194 
1195 	if (error) {
1196 		device_printf(dev, "no memory for rx list buffers!\n");
1197 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1198 		sc->sis_ldata.sis_rx_tag = NULL;
1199 		goto fail;
1200 	}
1201 
1202 	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1203 				sc->sis_ldata.sis_rx_dmamap,
1204 				sc->sis_ldata.sis_rx_list,
1205 				sizeof(struct sis_desc), sis_dma_map_ring,
1206 				&sc->sis_cdata.sis_rx_paddr, 0);
1207 
1208 	if (error) {
1209 		device_printf(dev, "cannot get address of the rx ring!\n");
1210 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1211 				sc->sis_ldata.sis_rx_list,
1212 				sc->sis_ldata.sis_rx_dmamap);
1213 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1214 		sc->sis_ldata.sis_rx_tag = NULL;
1215 		goto fail;
1216 	}
1217 
1218 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1219 			1, 0,			/* alignment, boundary */
1220 			BUS_SPACE_MAXADDR,	/* lowaddr */
1221 			BUS_SPACE_MAXADDR,	/* highaddr */
1222 			NULL, NULL,		/* filter, filterarg */
1223 			SIS_TX_LIST_SZ, 1,	/* maxsize, nsegments */
1224 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1225 			0,			/* flags */
1226 			&sc->sis_ldata.sis_tx_tag);
1227 	if (error)
1228 		goto fail;
1229 
1230 	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1231 				 (void **)&sc->sis_ldata.sis_tx_list,
1232 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1233 				 &sc->sis_ldata.sis_tx_dmamap);
1234 
1235 	if (error) {
1236 		device_printf(dev, "no memory for tx list buffers!\n");
1237 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1238 		sc->sis_ldata.sis_tx_tag = NULL;
1239 		goto fail;
1240 	}
1241 
1242 	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1243 				sc->sis_ldata.sis_tx_dmamap,
1244 				sc->sis_ldata.sis_tx_list,
1245 				sizeof(struct sis_desc), sis_dma_map_ring,
1246 				&sc->sis_cdata.sis_tx_paddr, 0);
1247 
1248 	if (error) {
1249 		device_printf(dev, "cannot get address of the tx ring!\n");
1250 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1251 				sc->sis_ldata.sis_tx_list,
1252 				sc->sis_ldata.sis_tx_dmamap);
1253 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1254 		sc->sis_ldata.sis_tx_tag = NULL;
1255 		goto fail;
1256 	}
1257 
1258 	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1259 			1, 0,			/* alignment, boundary */
1260 			BUS_SPACE_MAXADDR,	/* lowaddr */
1261 			BUS_SPACE_MAXADDR,	/* highaddr */
1262 			NULL, NULL,		/* filter, filterarg */
1263 			MCLBYTES, 1,		/* maxsize, nsegments */
1264 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1265 			0,			/* flags */
1266 			&sc->sis_tag);
1267 	if (error)
1268 		goto fail;
1269 
1270 	ifp = &sc->arpcom.ac_if;
1271 	ifp->if_softc = sc;
1272 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1273 	ifp->if_mtu = ETHERMTU;
1274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1275 	ifp->if_ioctl = sis_ioctl;
1276 	ifp->if_start = sis_start;
1277 	ifp->if_watchdog = sis_watchdog;
1278 	ifp->if_init = sis_init;
1279 	ifp->if_baudrate = 10000000;
1280 	ifq_set_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1281 	ifq_set_ready(&ifp->if_snd);
1282 #ifdef DEVICE_POLLING
1283 	ifp->if_poll = sis_poll;
1284 #endif
1285 	ifp->if_capenable = ifp->if_capabilities;
1286 
1287 	/*
1288 	 * Do MII setup.
1289 	 */
1290 	if (mii_phy_probe(dev, &sc->sis_miibus,
1291 	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1292 		device_printf(dev, "MII without any PHY!\n");
1293 		error = ENXIO;
1294 		goto fail;
1295 	}
1296 
1297 	/*
1298 	 * Call MI attach routine.
1299 	 */
1300 	ether_ifattach(ifp, eaddr, NULL);
1301 
1302 	/*
1303 	 * Tell the upper layer(s) we support long frames.
1304 	 */
1305 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1306 
1307 	error = bus_setup_intr(dev, sc->sis_irq, INTR_NETSAFE,
1308 			       sis_intr, sc,
1309 			       &sc->sis_intrhand,
1310 			       ifp->if_serializer);
1311 
1312 	if (error) {
1313 		device_printf(dev, "couldn't set up irq\n");
1314 		ether_ifdetach(ifp);
1315 		goto fail;
1316 	}
1317 
1318 fail:
1319 	if (error)
1320 		sis_detach(dev);
1321 
1322 	return(error);
1323 }
1324 
1325 /*
1326  * Shutdown hardware and free up resources. It is called in both the error case
1327  * and the normal detach case so it needs to be careful about only freeing
1328  * resources that have actually been allocated.
1329  */
1330 static int
1331 sis_detach(device_t dev)
1332 {
1333 	struct sis_softc *sc = device_get_softc(dev);
1334 	struct ifnet *ifp = &sc->arpcom.ac_if;
1335 
1336 
1337 	if (device_is_attached(dev)) {
1338 		lwkt_serialize_enter(ifp->if_serializer);
1339 		sis_reset(sc);
1340 		sis_stop(sc);
1341 		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1342 		lwkt_serialize_exit(ifp->if_serializer);
1343 
1344 		ether_ifdetach(ifp);
1345 	}
1346 	if (sc->sis_miibus)
1347 		device_delete_child(dev, sc->sis_miibus);
1348 	bus_generic_detach(dev);
1349 
1350 	if (sc->sis_irq)
1351 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1352 	if (sc->sis_res)
1353 		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1354 
1355 	if (sc->sis_ldata.sis_rx_tag) {
1356 		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1357 				  sc->sis_ldata.sis_rx_dmamap);
1358 		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1359 				sc->sis_ldata.sis_rx_list,
1360 				sc->sis_ldata.sis_rx_dmamap);
1361 		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1362 	}
1363 
1364 	if (sc->sis_ldata.sis_tx_tag) {
1365 		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1366 				  sc->sis_ldata.sis_tx_dmamap);
1367 		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1368 				sc->sis_ldata.sis_tx_list,
1369 				sc->sis_ldata.sis_tx_dmamap);
1370 		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1371 	}
1372 	if (sc->sis_tag)
1373 		bus_dma_tag_destroy(sc->sis_tag);
1374 	if (sc->sis_parent_tag)
1375 		bus_dma_tag_destroy(sc->sis_parent_tag);
1376 
1377 	return(0);
1378 }
1379 
1380 /*
1381  * Initialize the transmit descriptors.
1382  */
1383 static int
1384 sis_list_tx_init(struct sis_softc *sc)
1385 {
1386 	struct sis_list_data *ld;
1387 	struct sis_ring_data *cd;
1388 	int i, nexti;
1389 
1390 	cd = &sc->sis_cdata;
1391 	ld = &sc->sis_ldata;
1392 
1393 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1394 		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1395 		ld->sis_tx_list[i].sis_nextdesc =
1396 			    &ld->sis_tx_list[nexti];
1397 		bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1398 				sc->sis_ldata.sis_tx_dmamap,
1399 				&ld->sis_tx_list[nexti],
1400 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1401 				&ld->sis_tx_list[i], 0);
1402 		ld->sis_tx_list[i].sis_mbuf = NULL;
1403 		ld->sis_tx_list[i].sis_ptr = 0;
1404 		ld->sis_tx_list[i].sis_ctl = 0;
1405 	}
1406 
1407 	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1408 
1409 	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag, sc->sis_ldata.sis_tx_dmamap,
1410 			BUS_DMASYNC_PREWRITE);
1411 
1412 	return(0);
1413 }
1414 
1415 /*
1416  * Initialize the RX descriptors and allocate mbufs for them. Note that
1417  * we arrange the descriptors in a closed ring, so that the last descriptor
1418  * points back to the first.
1419  */
1420 static int
1421 sis_list_rx_init(struct sis_softc *sc)
1422 {
1423 	struct sis_list_data *ld;
1424 	struct sis_ring_data *cd;
1425 	int i, nexti;
1426 
1427 	ld = &sc->sis_ldata;
1428 	cd = &sc->sis_cdata;
1429 
1430 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1431 		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1432 			return(ENOBUFS);
1433 		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1434 		ld->sis_rx_list[i].sis_nextdesc =
1435 			    &ld->sis_rx_list[nexti];
1436 		bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1437 				sc->sis_ldata.sis_rx_dmamap,
1438 				&ld->sis_rx_list[nexti],
1439 				sizeof(struct sis_desc), sis_dma_map_desc_next,
1440 				&ld->sis_rx_list[i], 0);
1441 	}
1442 
1443 	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag, sc->sis_ldata.sis_rx_dmamap,
1444 			BUS_DMASYNC_PREWRITE);
1445 
1446 	cd->sis_rx_prod = 0;
1447 
1448 	return(0);
1449 }
1450 
1451 /*
1452  * Initialize an RX descriptor and attach an MBUF cluster.
1453  */
1454 static int
1455 sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1456 {
1457 	if (m == NULL) {
1458 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1459 		if (m == NULL)
1460 			return(ENOBUFS);
1461 	} else {
1462 		m->m_data = m->m_ext.ext_buf;
1463 	}
1464 
1465 	c->sis_mbuf = m;
1466 	c->sis_ctl = SIS_RXLEN;
1467 
1468 	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1469 	bus_dmamap_load(sc->sis_tag, c->sis_map, mtod(m, void *), MCLBYTES,
1470 			sis_dma_map_desc_ptr, c, 0);
1471 	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1472 
1473 	return(0);
1474 }
1475 
1476 /*
1477  * A frame has been uploaded: pass the resulting mbuf chain up to
1478  * the higher level protocols.
1479  */
1480 static void
1481 sis_rxeof(struct sis_softc *sc)
1482 {
1483 	struct mbuf *m;
1484 	struct ifnet *ifp;
1485 	struct sis_desc	*cur_rx;
1486 	int i, total_len = 0;
1487 	uint32_t rxstat;
1488 
1489 	ifp = &sc->arpcom.ac_if;
1490 	i = sc->sis_cdata.sis_rx_prod;
1491 
1492 	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1493 
1494 #ifdef DEVICE_POLLING
1495 		if (ifp->if_flags & IFF_POLLING) {
1496 			if (sc->rxcycles <= 0)
1497 				break;
1498 			sc->rxcycles--;
1499 		}
1500 #endif /* DEVICE_POLLING */
1501 		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1502 		rxstat = cur_rx->sis_rxstat;
1503 		bus_dmamap_sync(sc->sis_tag, cur_rx->sis_map,
1504 				BUS_DMASYNC_POSTWRITE);
1505 		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1506 		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1507 		m = cur_rx->sis_mbuf;
1508 		cur_rx->sis_mbuf = NULL;
1509 		total_len = SIS_RXBYTES(cur_rx);
1510 		SIS_INC(i, SIS_RX_LIST_CNT);
1511 
1512 		/*
1513 		 * If an error occurs, update stats, clear the
1514 		 * status word and leave the mbuf cluster in place:
1515 		 * it should simply get re-used next time this descriptor
1516 	 	 * comes up in the ring.
1517 		 */
1518 		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1519 			ifp->if_ierrors++;
1520 			if (rxstat & SIS_RXSTAT_COLL)
1521 				ifp->if_collisions++;
1522 			sis_newbuf(sc, cur_rx, m);
1523 			continue;
1524 		}
1525 
1526 		/* No errors; receive the packet. */
1527 #ifdef __i386__
1528 		/*
1529 		 * On the x86 we do not have alignment problems, so try to
1530 		 * allocate a new buffer for the receive ring, and pass up
1531 		 * the one where the packet is already, saving the expensive
1532 		 * copy done in m_devget().
1533 		 * If we are on an architecture with alignment problems, or
1534 		 * if the allocation fails, then use m_devget and leave the
1535 		 * existing buffer in the receive ring.
1536 		 */
1537 		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1538 			m->m_pkthdr.len = m->m_len = total_len;
1539 		else
1540 #endif
1541 		{
1542 			struct mbuf *m0;
1543 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1544 				total_len + ETHER_ALIGN, 0, ifp, NULL);
1545 			sis_newbuf(sc, cur_rx, m);
1546 			if (m0 == NULL) {
1547 				ifp->if_ierrors++;
1548 				continue;
1549 			}
1550 			m_adj(m0, ETHER_ALIGN);
1551 			m = m0;
1552 		}
1553 
1554 		ifp->if_ipackets++;
1555 		ifp->if_input(ifp, m);
1556 	}
1557 
1558 	sc->sis_cdata.sis_rx_prod = i;
1559 }
1560 
1561 static void
1562 sis_rxeoc(struct sis_softc *sc)
1563 {
1564 	sis_rxeof(sc);
1565 	sis_init(sc);
1566 }
1567 
1568 /*
1569  * A frame was downloaded to the chip. It's safe for us to clean up
1570  * the list buffers.
1571  */
1572 
1573 static void
1574 sis_txeof(struct sis_softc *sc)
1575 {
1576 	struct sis_desc *cur_tx;
1577 	struct ifnet *ifp;
1578 	uint32_t idx;
1579 
1580 	ifp = &sc->arpcom.ac_if;
1581 
1582 	/*
1583 	 * Go through our tx list and free mbufs for those
1584 	 * frames that have been transmitted.
1585 	 */
1586 	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1587 	     sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1588 		cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1589 
1590 		if (SIS_OWNDESC(cur_tx))
1591 			break;
1592 
1593 		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1594 			continue;
1595 
1596 		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1597 			ifp->if_oerrors++;
1598 			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1599 				ifp->if_collisions++;
1600 			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1601 				ifp->if_collisions++;
1602 		}
1603 
1604 		ifp->if_collisions +=
1605 		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1606 
1607 		ifp->if_opackets++;
1608 		if (cur_tx->sis_mbuf != NULL) {
1609 			m_freem(cur_tx->sis_mbuf);
1610 			cur_tx->sis_mbuf = NULL;
1611 			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1612 			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1613 		}
1614 	}
1615 
1616 	if (idx != sc->sis_cdata.sis_tx_cons) {
1617 		/* we freed up some buffers */
1618 		sc->sis_cdata.sis_tx_cons = idx;
1619 		ifp->if_flags &= ~IFF_OACTIVE;
1620 	}
1621 
1622 	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1623 }
1624 
1625 static void
1626 sis_tick(void *xsc)
1627 {
1628 	struct sis_softc *sc = xsc;
1629 	struct mii_data *mii;
1630 	struct ifnet *ifp = &sc->arpcom.ac_if;
1631 
1632 	lwkt_serialize_enter(ifp->if_serializer);
1633 
1634 	mii = device_get_softc(sc->sis_miibus);
1635 	mii_tick(mii);
1636 
1637 	if (!sc->sis_link) {
1638 		mii_pollstat(mii);
1639 		if (mii->mii_media_status & IFM_ACTIVE &&
1640 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1641 			sc->sis_link++;
1642 		if (!ifq_is_empty(&ifp->if_snd))
1643 			sis_start(ifp);
1644 	}
1645 
1646 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
1647 	lwkt_serialize_exit(ifp->if_serializer);
1648 }
1649 
1650 #ifdef DEVICE_POLLING
1651 
1652 static void
1653 sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1654 {
1655 	struct  sis_softc *sc = ifp->if_softc;
1656 
1657 	switch(cmd) {
1658 	case POLL_REGISTER:
1659 		/* disable interrupts */
1660 		CSR_WRITE_4(sc, SIS_IER, 0);
1661 		break;
1662 	case POLL_DEREGISTER:
1663 		/* enable interrupts */
1664 		CSR_WRITE_4(sc, SIS_IER, 1);
1665 		break;
1666 	default:
1667 		/*
1668 		 * On the sis, reading the status register also clears it.
1669 		 * So before returning to intr mode we must make sure that all
1670 		 * possible pending sources of interrupts have been served.
1671 		 * In practice this means run to completion the *eof routines,
1672 		 * and then call the interrupt routine
1673 		 */
1674 		sc->rxcycles = count;
1675 		sis_rxeof(sc);
1676 		sis_txeof(sc);
1677 		if (!ifq_is_empty(&ifp->if_snd))
1678 			sis_start(ifp);
1679 
1680 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1681 			uint32_t status;
1682 
1683 			/* Reading the ISR register clears all interrupts. */
1684 			status = CSR_READ_4(sc, SIS_ISR);
1685 
1686 			if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1687 				sis_rxeoc(sc);
1688 
1689 			if (status & (SIS_ISR_RX_IDLE))
1690 				SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1691 
1692 			if (status & SIS_ISR_SYSERR) {
1693 				sis_reset(sc);
1694 				sis_init(sc);
1695 			}
1696 		}
1697 		break;
1698 	}
1699 }
1700 #endif /* DEVICE_POLLING */
1701 
1702 static void
1703 sis_intr(void *arg)
1704 {
1705 	struct sis_softc *sc;
1706 	struct ifnet *ifp;
1707 	uint32_t status;
1708 
1709 	sc = arg;
1710 	ifp = &sc->arpcom.ac_if;
1711 
1712 	/* Supress unwanted interrupts */
1713 	if (!(ifp->if_flags & IFF_UP)) {
1714 		sis_stop(sc);
1715 		return;
1716 	}
1717 
1718 	/* Disable interrupts. */
1719 	CSR_WRITE_4(sc, SIS_IER, 0);
1720 
1721 	for (;;) {
1722 		/* Reading the ISR register clears all interrupts. */
1723 		status = CSR_READ_4(sc, SIS_ISR);
1724 
1725 		if ((status & SIS_INTRS) == 0)
1726 			break;
1727 
1728 		if (status &
1729 		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK |
1730 		     SIS_ISR_TX_IDLE) )
1731 			sis_txeof(sc);
1732 
1733 		if (status &
1734 		    (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE))
1735 			sis_rxeof(sc);
1736 
1737 		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1738 			sis_rxeoc(sc);
1739 
1740 		if (status & (SIS_ISR_RX_IDLE))
1741 			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1742 
1743 		if (status & SIS_ISR_SYSERR) {
1744 			sis_reset(sc);
1745 			sis_init(sc);
1746 		}
1747 	}
1748 
1749 	/* Re-enable interrupts. */
1750 	CSR_WRITE_4(sc, SIS_IER, 1);
1751 
1752 	if (!ifq_is_empty(&ifp->if_snd))
1753 		sis_start(ifp);
1754 }
1755 
1756 /*
1757  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1758  * pointers to the fragment pointers.
1759  */
1760 static int
1761 sis_encap(struct sis_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1762 {
1763 	struct sis_desc *f = NULL;
1764 	struct mbuf *m;
1765 	int frag, cur, cnt = 0;
1766 
1767 	/*
1768 	 * If there's no way we can send any packets, return now.
1769 	 */
1770 	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1771 		return (ENOBUFS);
1772 
1773 	/*
1774  	 * Start packing the mbufs in this chain into
1775 	 * the fragment pointers. Stop when we run out
1776  	 * of fragments or hit the end of the mbuf chain.
1777 	 */
1778 	m = m_head;
1779 	cur = frag = *txidx;
1780 
1781 	for (m = m_head; m != NULL; m = m->m_next) {
1782 		if (m->m_len != 0) {
1783 			if ((SIS_TX_LIST_CNT -
1784 			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1785 				return(ENOBUFS);
1786 			f = &sc->sis_ldata.sis_tx_list[frag];
1787 			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1788 			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1789 			bus_dmamap_load(sc->sis_tag, f->sis_map,
1790 					mtod(m, void *), m->m_len,
1791 					sis_dma_map_desc_ptr, f, 0);
1792 			bus_dmamap_sync(sc->sis_tag, f->sis_map,
1793 					BUS_DMASYNC_PREREAD);
1794 			if (cnt != 0)
1795 				f->sis_ctl |= SIS_CMDSTS_OWN;
1796 			cur = frag;
1797 			SIS_INC(frag, SIS_TX_LIST_CNT);
1798 			cnt++;
1799 		}
1800 	}
1801 
1802 	if (m != NULL)
1803 		return(ENOBUFS);
1804 
1805 	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1806 	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1807 	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1808 	sc->sis_cdata.sis_tx_cnt += cnt;
1809 	*txidx = frag;
1810 
1811 	return(0);
1812 }
1813 
1814 /*
1815  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1816  * to the mbuf data regions directly in the transmit lists. We also save a
1817  * copy of the pointers since the transmit list fragment pointers are
1818  * physical addresses.
1819  */
1820 
1821 static void
1822 sis_start(struct ifnet *ifp)
1823 {
1824 	struct sis_softc *sc;
1825 	struct mbuf *m_head = NULL;
1826 	uint32_t idx;
1827 	int need_trans;
1828 
1829 	sc = ifp->if_softc;
1830 
1831 	if (!sc->sis_link)
1832 		return;
1833 
1834 	idx = sc->sis_cdata.sis_tx_prod;
1835 
1836 	if (ifp->if_flags & IFF_OACTIVE)
1837 		return;
1838 
1839 	need_trans = 0;
1840 	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1841 		m_head = ifq_poll(&ifp->if_snd);
1842 		if (m_head == NULL)
1843 			break;
1844 
1845 		if (sis_encap(sc, m_head, &idx)) {
1846 			ifp->if_flags |= IFF_OACTIVE;
1847 			break;
1848 		}
1849 		ifq_dequeue(&ifp->if_snd, m_head);
1850 		need_trans = 1;
1851 
1852 		/*
1853 		 * If there's a BPF listener, bounce a copy of this frame
1854 		 * to him.
1855 		 */
1856 		BPF_MTAP(ifp, m_head);
1857 	}
1858 
1859 	if (!need_trans)
1860 		return;
1861 
1862 	/* Transmit */
1863 	sc->sis_cdata.sis_tx_prod = idx;
1864 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1865 
1866 	/*
1867 	 * Set a timeout in case the chip goes out to lunch.
1868 	 */
1869 	ifp->if_timer = 5;
1870 }
1871 
1872 static void
1873 sis_init(void *xsc)
1874 {
1875 	struct sis_softc *sc = xsc;
1876 	struct ifnet *ifp = &sc->arpcom.ac_if;
1877 	struct mii_data *mii;
1878 
1879 	/*
1880 	 * Cancel pending I/O and free all RX/TX buffers.
1881 	 */
1882 	sis_stop(sc);
1883 
1884 	mii = device_get_softc(sc->sis_miibus);
1885 
1886 	/* Set MAC address */
1887 	if (sc->sis_type == SIS_TYPE_83815) {
1888 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1889 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1890 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1891 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1892 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1893 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1894 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1895 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1896 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1897 	} else {
1898 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1899 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1900 		    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1901 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1902 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1903 		    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1904 		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1905 		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1906 		    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1907 	}
1908 
1909 	/* Init circular RX list. */
1910 	if (sis_list_rx_init(sc) == ENOBUFS) {
1911 		if_printf(ifp, "initialization failed: "
1912 			  "no memory for rx buffers\n");
1913 		sis_stop(sc);
1914 		return;
1915 	}
1916 
1917 	/*
1918 	 * Init tx descriptors.
1919 	 */
1920 	sis_list_tx_init(sc);
1921 
1922 	/*
1923 	 * For the NatSemi chip, we have to explicitly enable the
1924 	 * reception of ARP frames, as well as turn on the 'perfect
1925 	 * match' filter where we store the station address, otherwise
1926 	 * we won't receive unicasts meant for this host.
1927 	 */
1928 	if (sc->sis_type == SIS_TYPE_83815) {
1929 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1930 		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1931 	}
1932 
1933 	 /* If we want promiscuous mode, set the allframes bit. */
1934 	if (ifp->if_flags & IFF_PROMISC)
1935 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1936 	else
1937 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1938 
1939 	/*
1940 	 * Set the capture broadcast bit to capture broadcast frames.
1941 	 */
1942 	if (ifp->if_flags & IFF_BROADCAST)
1943 		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1944 	else
1945 		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1946 
1947 	/*
1948 	 * Load the multicast filter.
1949 	 */
1950 	if (sc->sis_type == SIS_TYPE_83815)
1951 		sis_setmulti_ns(sc);
1952 	else
1953 		sis_setmulti_sis(sc);
1954 
1955 	/* Turn the receive filter on */
1956 	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1957 
1958 	/*
1959 	 * Load the address of the RX and TX lists.
1960 	 */
1961 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1962 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1963 
1964 	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1965 	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1966 	 * for TX/RX DMA should be no larger than 16 double words.
1967 	 */
1968 	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN)
1969 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1970 	else
1971 		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1972 
1973 	/* Accept Long Packets for VLAN support */
1974 	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1975 
1976 	/* Set TX configuration */
1977 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T)
1978 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1979 	else
1980 		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1981 
1982 	/* Set full/half duplex mode. */
1983 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1984 		SIS_SETBIT(sc, SIS_TX_CFG,
1985 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1986 		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1987 	} else {
1988 		SIS_CLRBIT(sc, SIS_TX_CFG,
1989 		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1990 		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1991 	}
1992 
1993 	/*
1994 	 * Enable interrupts.
1995 	 */
1996 	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
1997 #ifdef DEVICE_POLLING
1998 	/*
1999 	 * ... only enable interrupts if we are not polling, make sure
2000 	 * they are off otherwise.
2001 	 */
2002 	if (ifp->if_flags & IFF_POLLING)
2003 		CSR_WRITE_4(sc, SIS_IER, 0);
2004 	else
2005 #endif /* DEVICE_POLLING */
2006 	CSR_WRITE_4(sc, SIS_IER, 1);
2007 
2008 	/* Enable receiver and transmitter. */
2009 	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2010 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2011 
2012 #ifdef notdef
2013 	mii_mediachg(mii);
2014 #endif
2015 
2016 	/*
2017 	 * Page 75 of the DP83815 manual recommends the
2018 	 * following register settings "for optimum
2019 	 * performance." Note however that at least three
2020 	 * of the registers are listed as "reserved" in
2021 	 * the register map, so who knows what they do.
2022 	 */
2023 	if (sc->sis_type == SIS_TYPE_83815) {
2024 		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2025 		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2026 		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2027 		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2028 		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2029 	}
2030 
2031 	ifp->if_flags |= IFF_RUNNING;
2032 	ifp->if_flags &= ~IFF_OACTIVE;
2033 
2034 	callout_reset(&sc->sis_timer, hz, sis_tick, sc);
2035 }
2036 
2037 /*
2038  * Set media options.
2039  */
2040 static int
2041 sis_ifmedia_upd(struct ifnet *ifp)
2042 {
2043 	struct sis_softc *sc;
2044 	struct mii_data *mii;
2045 
2046 	sc = ifp->if_softc;
2047 
2048 	mii = device_get_softc(sc->sis_miibus);
2049 	sc->sis_link = 0;
2050 	if (mii->mii_instance) {
2051 		struct mii_softc	*miisc;
2052 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2053 			mii_phy_reset(miisc);
2054 	}
2055 	mii_mediachg(mii);
2056 
2057 	return(0);
2058 }
2059 
2060 /*
2061  * Report current media status.
2062  */
2063 static void
2064 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2065 {
2066 	struct sis_softc *sc;
2067 	struct mii_data *mii;
2068 
2069 	sc = ifp->if_softc;
2070 
2071 	mii = device_get_softc(sc->sis_miibus);
2072 	mii_pollstat(mii);
2073 	ifmr->ifm_active = mii->mii_media_active;
2074 	ifmr->ifm_status = mii->mii_media_status;
2075 }
2076 
2077 static int
2078 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2079 {
2080 	struct sis_softc *sc = ifp->if_softc;
2081 	struct ifreq *ifr = (struct ifreq *) data;
2082 	struct mii_data *mii;
2083 	int error = 0;
2084 
2085 	switch(command) {
2086 	case SIOCSIFFLAGS:
2087 		if (ifp->if_flags & IFF_UP) {
2088 			sis_init(sc);
2089 		} else {
2090 			if (ifp->if_flags & IFF_RUNNING)
2091 				sis_stop(sc);
2092 		}
2093 		error = 0;
2094 		break;
2095 	case SIOCADDMULTI:
2096 	case SIOCDELMULTI:
2097 		if (sc->sis_type == SIS_TYPE_83815)
2098 			sis_setmulti_ns(sc);
2099 		else
2100 			sis_setmulti_sis(sc);
2101 		error = 0;
2102 		break;
2103 	case SIOCGIFMEDIA:
2104 	case SIOCSIFMEDIA:
2105 		mii = device_get_softc(sc->sis_miibus);
2106 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2107 		break;
2108 	default:
2109 		error = ether_ioctl(ifp, command, data);
2110 		break;
2111 	}
2112 	return(error);
2113 }
2114 
2115 static void
2116 sis_watchdog(struct ifnet *ifp)
2117 {
2118 	struct sis_softc *sc;
2119 
2120 	sc = ifp->if_softc;
2121 
2122 	ifp->if_oerrors++;
2123 	if_printf(ifp, "watchdog timeout\n");
2124 
2125 	sis_stop(sc);
2126 	sis_reset(sc);
2127 	sis_init(sc);
2128 
2129 	if (!ifq_is_empty(&ifp->if_snd))
2130 		sis_start(ifp);
2131 }
2132 
2133 /*
2134  * Stop the adapter and free any mbufs allocated to the
2135  * RX and TX lists.
2136  */
2137 static void
2138 sis_stop(struct sis_softc *sc)
2139 {
2140 	int i;
2141 	struct ifnet *ifp;
2142 
2143 	ifp = &sc->arpcom.ac_if;
2144 	ifp->if_timer = 0;
2145 
2146 	callout_stop(&sc->sis_timer);
2147 
2148 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2149 	CSR_WRITE_4(sc, SIS_IER, 0);
2150 	CSR_WRITE_4(sc, SIS_IMR, 0);
2151 	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2152 	DELAY(1000);
2153 	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2154 	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2155 
2156 	sc->sis_link = 0;
2157 
2158 	/*
2159 	 * Free data in the RX lists.
2160 	 */
2161 	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2162 		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2163 			bus_dmamap_unload(sc->sis_tag,
2164 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2165 			bus_dmamap_destroy(sc->sis_tag,
2166 					  sc->sis_ldata.sis_rx_list[i].sis_map);
2167 			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2168 			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2169 		}
2170 	}
2171 	bzero(sc->sis_ldata.sis_rx_list, sizeof(sc->sis_ldata.sis_rx_list));
2172 
2173 	/*
2174 	 * Free the TX list buffers.
2175 	 */
2176 	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2177 		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2178 			bus_dmamap_unload(sc->sis_tag,
2179 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2180 			bus_dmamap_destroy(sc->sis_tag,
2181 					  sc->sis_ldata.sis_tx_list[i].sis_map);
2182 			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2183 			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2184 		}
2185 	}
2186 
2187 	bzero(sc->sis_ldata.sis_tx_list, sizeof(sc->sis_ldata.sis_tx_list));
2188 }
2189 
2190 /*
2191  * Stop all chip I/O so that the kernel's probe routines don't
2192  * get confused by errant DMAs when rebooting.
2193  */
2194 static void
2195 sis_shutdown(device_t dev)
2196 {
2197 	struct sis_softc	*sc;
2198 	struct ifnet *ifp;
2199 
2200 	sc = device_get_softc(dev);
2201 	ifp = &sc->arpcom.ac_if;
2202 	lwkt_serialize_enter(ifp->if_serializer);
2203 	sis_reset(sc);
2204 	sis_stop(sc);
2205 	lwkt_serialize_exit(ifp->if_serializer);
2206 }
2207 
2208