xref: /dflybsd-src/sys/dev/netif/sf/if_sf.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.25 2005/11/28 17:13:44 dillon Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 #include <sys/serialize.h>
91 
92 #include <sys/thread2.h>
93 
94 #include <net/if.h>
95 #include <net/ifq_var.h>
96 #include <net/if_arp.h>
97 #include <net/ethernet.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 
101 #include <net/bpf.h>
102 
103 #include <vm/vm.h>              /* for vtophys */
104 #include <vm/pmap.h>            /* for vtophys */
105 #include <machine/clock.h>      /* for DELAY */
106 #include <machine/bus_pio.h>
107 #include <machine/bus_memio.h>
108 #include <machine/bus.h>
109 #include <machine/resource.h>
110 #include <sys/bus.h>
111 #include <sys/rman.h>
112 
113 #include "../mii_layer/mii.h"
114 #include "../mii_layer/miivar.h"
115 
116 /* "controller miibus0" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #include <bus/pci/pcireg.h>
120 #include <bus/pci/pcivar.h>
121 
122 #define SF_USEIOSPACE
123 
124 #include "if_sfreg.h"
125 
126 static struct sf_type sf_devs[] = {
127 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
128 		"Adaptec AIC-6915 10/100BaseTX" },
129 	{ 0, 0, NULL }
130 };
131 
132 static int sf_probe		(device_t);
133 static int sf_attach		(device_t);
134 static int sf_detach		(device_t);
135 static void sf_intr		(void *);
136 static void sf_stats_update	(void *);
137 static void sf_rxeof		(struct sf_softc *);
138 static void sf_txeof		(struct sf_softc *);
139 static int sf_encap		(struct sf_softc *,
140 					struct sf_tx_bufdesc_type0 *,
141 					struct mbuf *);
142 static void sf_start		(struct ifnet *);
143 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
144 					struct ucred *);
145 static void sf_init		(void *);
146 static void sf_stop		(struct sf_softc *);
147 static void sf_watchdog		(struct ifnet *);
148 static void sf_shutdown		(device_t);
149 static int sf_ifmedia_upd	(struct ifnet *);
150 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
151 static void sf_reset		(struct sf_softc *);
152 static int sf_init_rx_ring	(struct sf_softc *);
153 static void sf_init_tx_ring	(struct sf_softc *);
154 static int sf_newbuf		(struct sf_softc *,
155 					struct sf_rx_bufdesc_type0 *,
156 					struct mbuf *);
157 static void sf_setmulti		(struct sf_softc *);
158 static int sf_setperf		(struct sf_softc *, int, caddr_t);
159 static int sf_sethash		(struct sf_softc *, caddr_t, int);
160 #ifdef notdef
161 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
162 #endif
163 
164 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
165 static u_int32_t sf_calchash	(caddr_t);
166 
167 static int sf_miibus_readreg	(device_t, int, int);
168 static int sf_miibus_writereg	(device_t, int, int, int);
169 static void sf_miibus_statchg	(device_t);
170 
171 static u_int32_t csr_read_4	(struct sf_softc *, int);
172 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
173 static void sf_txthresh_adjust	(struct sf_softc *);
174 
175 #ifdef SF_USEIOSPACE
176 #define SF_RES			SYS_RES_IOPORT
177 #define SF_RID			SF_PCI_LOIO
178 #else
179 #define SF_RES			SYS_RES_MEMORY
180 #define SF_RID			SF_PCI_LOMEM
181 #endif
182 
183 static device_method_t sf_methods[] = {
184 	/* Device interface */
185 	DEVMETHOD(device_probe,		sf_probe),
186 	DEVMETHOD(device_attach,	sf_attach),
187 	DEVMETHOD(device_detach,	sf_detach),
188 	DEVMETHOD(device_shutdown,	sf_shutdown),
189 
190 	/* bus interface */
191 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
192 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
193 
194 	/* MII interface */
195 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
196 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
197 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
198 
199 	{ 0, 0 }
200 };
201 
202 static driver_t sf_driver = {
203 	"sf",
204 	sf_methods,
205 	sizeof(struct sf_softc),
206 };
207 
208 static devclass_t sf_devclass;
209 
210 DECLARE_DUMMY_MODULE(if_sf);
211 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
212 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
213 
214 #define SF_SETBIT(sc, reg, x)	\
215 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
216 
217 #define SF_CLRBIT(sc, reg, x)				\
218 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
219 
220 static u_int32_t csr_read_4(sc, reg)
221 	struct sf_softc		*sc;
222 	int			reg;
223 {
224 	u_int32_t		val;
225 
226 #ifdef SF_USEIOSPACE
227 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
228 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
229 #else
230 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
231 #endif
232 
233 	return(val);
234 }
235 
236 static u_int8_t sf_read_eeprom(sc, reg)
237 	struct sf_softc		*sc;
238 	int			reg;
239 {
240 	u_int8_t		val;
241 
242 	val = (csr_read_4(sc, SF_EEADDR_BASE +
243 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
244 
245 	return(val);
246 }
247 
248 static void csr_write_4(sc, reg, val)
249 	struct sf_softc		*sc;
250 	int			reg;
251 	u_int32_t		val;
252 {
253 #ifdef SF_USEIOSPACE
254 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
255 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
256 #else
257 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
258 #endif
259 	return;
260 }
261 
262 static u_int32_t sf_calchash(addr)
263 	caddr_t			addr;
264 {
265 	u_int32_t		crc, carry;
266 	int			i, j;
267 	u_int8_t		c;
268 
269 	/* Compute CRC for the address value. */
270 	crc = 0xFFFFFFFF; /* initial value */
271 
272 	for (i = 0; i < 6; i++) {
273 		c = *(addr + i);
274 		for (j = 0; j < 8; j++) {
275 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
276 			crc <<= 1;
277 			c >>= 1;
278 			if (carry)
279 				crc = (crc ^ 0x04c11db6) | carry;
280 		}
281 	}
282 
283 	/* return the filter bit position */
284 	return(crc >> 23 & 0x1FF);
285 }
286 
287 /*
288  * Copy the address 'mac' into the perfect RX filter entry at
289  * offset 'idx.' The perfect filter only has 16 entries so do
290  * some sanity tests.
291  */
292 static int sf_setperf(sc, idx, mac)
293 	struct sf_softc		*sc;
294 	int			idx;
295 	caddr_t			mac;
296 {
297 	u_int16_t		*p;
298 
299 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
300 		return(EINVAL);
301 
302 	if (mac == NULL)
303 		return(EINVAL);
304 
305 	p = (u_int16_t *)mac;
306 
307 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
308 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
309 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
310 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
311 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
312 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
313 
314 	return(0);
315 }
316 
317 /*
318  * Set the bit in the 512-bit hash table that corresponds to the
319  * specified mac address 'mac.' If 'prio' is nonzero, update the
320  * priority hash table instead of the filter hash table.
321  */
322 static int sf_sethash(sc, mac, prio)
323 	struct sf_softc		*sc;
324 	caddr_t			mac;
325 	int			prio;
326 {
327 	u_int32_t		h = 0;
328 
329 	if (mac == NULL)
330 		return(EINVAL);
331 
332 	h = sf_calchash(mac);
333 
334 	if (prio) {
335 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
336 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
337 	} else {
338 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
339 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
340 	}
341 
342 	return(0);
343 }
344 
345 #ifdef notdef
346 /*
347  * Set a VLAN tag in the receive filter.
348  */
349 static int sf_setvlan(sc, idx, vlan)
350 	struct sf_softc		*sc;
351 	int			idx;
352 	u_int32_t		vlan;
353 {
354 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
355 		return(EINVAL);
356 
357 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
358 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
359 
360 	return(0);
361 }
362 #endif
363 
364 static int sf_miibus_readreg(dev, phy, reg)
365 	device_t		dev;
366 	int			phy, reg;
367 {
368 	struct sf_softc		*sc;
369 	int			i;
370 	u_int32_t		val = 0;
371 
372 	sc = device_get_softc(dev);
373 
374 	for (i = 0; i < SF_TIMEOUT; i++) {
375 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
376 		if (val & SF_MII_DATAVALID)
377 			break;
378 	}
379 
380 	if (i == SF_TIMEOUT)
381 		return(0);
382 
383 	if ((val & 0x0000FFFF) == 0xFFFF)
384 		return(0);
385 
386 	return(val & 0x0000FFFF);
387 }
388 
389 static int sf_miibus_writereg(dev, phy, reg, val)
390 	device_t		dev;
391 	int			phy, reg, val;
392 {
393 	struct sf_softc		*sc;
394 	int			i;
395 	int			busy;
396 
397 	sc = device_get_softc(dev);
398 
399 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
400 
401 	for (i = 0; i < SF_TIMEOUT; i++) {
402 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
403 		if (!(busy & SF_MII_BUSY))
404 			break;
405 	}
406 
407 	return(0);
408 }
409 
410 static void sf_miibus_statchg(dev)
411 	device_t		dev;
412 {
413 	struct sf_softc		*sc;
414 	struct mii_data		*mii;
415 
416 	sc = device_get_softc(dev);
417 	mii = device_get_softc(sc->sf_miibus);
418 
419 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
420 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
421 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
422 	} else {
423 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
424 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
425 	}
426 
427 	return;
428 }
429 
430 static void sf_setmulti(sc)
431 	struct sf_softc		*sc;
432 {
433 	struct ifnet		*ifp;
434 	int			i;
435 	struct ifmultiaddr	*ifma;
436 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
437 
438 	ifp = &sc->arpcom.ac_if;
439 
440 	/* First zot all the existing filters. */
441 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
442 		sf_setperf(sc, i, (char *)&dummy);
443 	for (i = SF_RXFILT_HASH_BASE;
444 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
445 		csr_write_4(sc, i, 0);
446 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
447 
448 	/* Now program new ones. */
449 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
450 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
451 	} else {
452 		i = 1;
453 		/* First find the tail of the list. */
454 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
455 					ifma = ifma->ifma_link.le_next) {
456 			if (ifma->ifma_link.le_next == NULL)
457 				break;
458 		}
459 		/* Now traverse the list backwards. */
460 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
461 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
462 			if (ifma->ifma_addr->sa_family != AF_LINK)
463 				continue;
464 			/*
465 			 * Program the first 15 multicast groups
466 			 * into the perfect filter. For all others,
467 			 * use the hash table.
468 			 */
469 			if (i < SF_RXFILT_PERFECT_CNT) {
470 				sf_setperf(sc, i,
471 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
472 				i++;
473 				continue;
474 			}
475 
476 			sf_sethash(sc,
477 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
478 		}
479 	}
480 
481 	return;
482 }
483 
484 /*
485  * Set media options.
486  */
487 static int sf_ifmedia_upd(ifp)
488 	struct ifnet		*ifp;
489 {
490 	struct sf_softc		*sc;
491 	struct mii_data		*mii;
492 
493 	sc = ifp->if_softc;
494 	mii = device_get_softc(sc->sf_miibus);
495 	sc->sf_link = 0;
496 	if (mii->mii_instance) {
497 		struct mii_softc        *miisc;
498 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
499 		    miisc = LIST_NEXT(miisc, mii_list))
500 			mii_phy_reset(miisc);
501 	}
502 	mii_mediachg(mii);
503 
504 	return(0);
505 }
506 
507 /*
508  * Report current media status.
509  */
510 static void sf_ifmedia_sts(ifp, ifmr)
511 	struct ifnet		*ifp;
512 	struct ifmediareq	*ifmr;
513 {
514 	struct sf_softc		*sc;
515 	struct mii_data		*mii;
516 
517 	sc = ifp->if_softc;
518 	mii = device_get_softc(sc->sf_miibus);
519 
520 	mii_pollstat(mii);
521 	ifmr->ifm_active = mii->mii_media_active;
522 	ifmr->ifm_status = mii->mii_media_status;
523 
524 	return;
525 }
526 
527 static int sf_ioctl(ifp, command, data, cr)
528 	struct ifnet		*ifp;
529 	u_long			command;
530 	caddr_t			data;
531 	struct ucred		*cr;
532 {
533 	struct sf_softc		*sc = ifp->if_softc;
534 	struct ifreq		*ifr = (struct ifreq *) data;
535 	struct mii_data		*mii;
536 	int error = 0;
537 
538 	switch(command) {
539 	case SIOCSIFFLAGS:
540 		if (ifp->if_flags & IFF_UP) {
541 			if (ifp->if_flags & IFF_RUNNING &&
542 			    ifp->if_flags & IFF_PROMISC &&
543 			    !(sc->sf_if_flags & IFF_PROMISC)) {
544 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
545 			} else if (ifp->if_flags & IFF_RUNNING &&
546 			    !(ifp->if_flags & IFF_PROMISC) &&
547 			    sc->sf_if_flags & IFF_PROMISC) {
548 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
549 			} else if (!(ifp->if_flags & IFF_RUNNING))
550 				sf_init(sc);
551 		} else {
552 			if (ifp->if_flags & IFF_RUNNING)
553 				sf_stop(sc);
554 		}
555 		sc->sf_if_flags = ifp->if_flags;
556 		error = 0;
557 		break;
558 	case SIOCADDMULTI:
559 	case SIOCDELMULTI:
560 		sf_setmulti(sc);
561 		error = 0;
562 		break;
563 	case SIOCGIFMEDIA:
564 	case SIOCSIFMEDIA:
565 		mii = device_get_softc(sc->sf_miibus);
566 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
567 		break;
568 	default:
569 		error = ether_ioctl(ifp, command, data);
570 		break;
571 	}
572 
573 	return(error);
574 }
575 
576 static void sf_reset(sc)
577 	struct sf_softc		*sc;
578 {
579 	int		i;
580 
581 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
582 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
583 	DELAY(1000);
584 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
585 
586 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
587 
588 	for (i = 0; i < SF_TIMEOUT; i++) {
589 		DELAY(10);
590 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
591 			break;
592 	}
593 
594 	if (i == SF_TIMEOUT)
595 		printf("sf%d: reset never completed!\n", sc->sf_unit);
596 
597 	/* Wait a little while for the chip to get its brains in order. */
598 	DELAY(1000);
599 	return;
600 }
601 
602 /*
603  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
604  * IDs against our list and return a device name if we find a match.
605  * We also check the subsystem ID so that we can identify exactly which
606  * NIC has been found, if possible.
607  */
608 static int sf_probe(dev)
609 	device_t		dev;
610 {
611 	struct sf_type		*t;
612 
613 	t = sf_devs;
614 
615 	while(t->sf_name != NULL) {
616 		if ((pci_get_vendor(dev) == t->sf_vid) &&
617 		    (pci_get_device(dev) == t->sf_did)) {
618 			switch((pci_read_config(dev,
619 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
620 			case AD_SUBSYSID_62011_REV0:
621 			case AD_SUBSYSID_62011_REV1:
622 				device_set_desc(dev,
623 				    "Adaptec ANA-62011 10/100BaseTX");
624 				return(0);
625 				break;
626 			case AD_SUBSYSID_62022:
627 				device_set_desc(dev,
628 				    "Adaptec ANA-62022 10/100BaseTX");
629 				return(0);
630 				break;
631 			case AD_SUBSYSID_62044_REV0:
632 			case AD_SUBSYSID_62044_REV1:
633 				device_set_desc(dev,
634 				    "Adaptec ANA-62044 10/100BaseTX");
635 				return(0);
636 				break;
637 			case AD_SUBSYSID_62020:
638 				device_set_desc(dev,
639 				    "Adaptec ANA-62020 10/100BaseFX");
640 				return(0);
641 				break;
642 			case AD_SUBSYSID_69011:
643 				device_set_desc(dev,
644 				    "Adaptec ANA-69011 10/100BaseTX");
645 				return(0);
646 				break;
647 			default:
648 				device_set_desc(dev, t->sf_name);
649 				return(0);
650 				break;
651 			}
652 		}
653 		t++;
654 	}
655 
656 	return(ENXIO);
657 }
658 
659 /*
660  * Attach the interface. Allocate softc structures, do ifmedia
661  * setup and ethernet/BPF attach.
662  */
663 static int sf_attach(dev)
664 	device_t		dev;
665 {
666 	int			i;
667 	u_int32_t		command;
668 	struct sf_softc		*sc;
669 	struct ifnet		*ifp;
670 	int			unit, rid, error = 0;
671 
672 	sc = device_get_softc(dev);
673 	unit = device_get_unit(dev);
674 
675 	/*
676 	 * Handle power management nonsense.
677 	 */
678 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
679 	if (command == 0x01) {
680 
681 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
682 		if (command & SF_PSTATE_MASK) {
683 			u_int32_t		iobase, membase, irq;
684 
685 			/* Save important PCI config data. */
686 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
687 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
688 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
689 
690 			/* Reset the power state. */
691 			printf("sf%d: chip is in D%d power mode "
692 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
693 			command &= 0xFFFFFFFC;
694 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
695 
696 			/* Restore PCI config data. */
697 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
698 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
699 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
700 		}
701 	}
702 
703 	/*
704 	 * Map control/status registers.
705 	 */
706 	command = pci_read_config(dev, PCIR_COMMAND, 4);
707 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
708 	pci_write_config(dev, PCIR_COMMAND, command, 4);
709 	command = pci_read_config(dev, PCIR_COMMAND, 4);
710 
711 #ifdef SF_USEIOSPACE
712 	if (!(command & PCIM_CMD_PORTEN)) {
713 		printf("sf%d: failed to enable I/O ports!\n", unit);
714 		error = ENXIO;
715 		return(error);
716 	}
717 #else
718 	if (!(command & PCIM_CMD_MEMEN)) {
719 		printf("sf%d: failed to enable memory mapping!\n", unit);
720 		error = ENXIO;
721 		return(error);
722 	}
723 #endif
724 
725 	rid = SF_RID;
726 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
727 
728 	if (sc->sf_res == NULL) {
729 		printf ("sf%d: couldn't map ports\n", unit);
730 		error = ENXIO;
731 		return(error);
732 	}
733 
734 	sc->sf_btag = rman_get_bustag(sc->sf_res);
735 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
736 
737 	/* Allocate interrupt */
738 	rid = 0;
739 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
740 	    RF_SHAREABLE | RF_ACTIVE);
741 
742 	if (sc->sf_irq == NULL) {
743 		printf("sf%d: couldn't map interrupt\n", unit);
744 		error = ENXIO;
745 		goto fail;
746 	}
747 
748 	callout_init(&sc->sf_stat_timer);
749 
750 	/* Reset the adapter. */
751 	sf_reset(sc);
752 
753 	/*
754 	 * Get station address from the EEPROM.
755 	 */
756 	for (i = 0; i < ETHER_ADDR_LEN; i++)
757 		sc->arpcom.ac_enaddr[i] =
758 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
759 
760 	sc->sf_unit = unit;
761 
762 	/* Allocate the descriptor queues. */
763 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
764 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
765 
766 	if (sc->sf_ldata == NULL) {
767 		printf("sf%d: no memory for list buffers!\n", unit);
768 		error = ENXIO;
769 		goto fail;
770 	}
771 
772 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
773 
774 	/* Do MII setup. */
775 	if (mii_phy_probe(dev, &sc->sf_miibus,
776 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
777 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
778 		error = ENXIO;
779 		goto fail;
780 	}
781 
782 	ifp = &sc->arpcom.ac_if;
783 	ifp->if_softc = sc;
784 	if_initname(ifp, "sf", unit);
785 	ifp->if_mtu = ETHERMTU;
786 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
787 	ifp->if_ioctl = sf_ioctl;
788 	ifp->if_start = sf_start;
789 	ifp->if_watchdog = sf_watchdog;
790 	ifp->if_init = sf_init;
791 	ifp->if_baudrate = 10000000;
792 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
793 	ifq_set_ready(&ifp->if_snd);
794 
795 	/*
796 	 * Call MI attach routine.
797 	 */
798 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
799 
800 	error = bus_setup_intr(dev, sc->sf_irq, INTR_NETSAFE,
801 			       sf_intr, sc, &sc->sf_intrhand,
802 			       ifp->if_serializer);
803 
804 	if (error) {
805 		ether_ifdetach(ifp);
806 		device_printf(dev, "couldn't set up irq\n");
807 		goto fail;
808 	}
809 
810 	return(0);
811 
812 fail:
813 	sf_detach(dev);
814 	return(error);
815 }
816 
817 static int sf_detach(dev)
818 	device_t		dev;
819 {
820 	struct sf_softc *sc = device_get_softc(dev);
821 	struct ifnet *ifp = &sc->arpcom.ac_if;
822 
823 	lwkt_serialize_enter(ifp->if_serializer);
824 
825 	if (device_is_attached(dev)) {
826 		ether_ifdetach(ifp);
827 		sf_stop(sc);
828 	}
829 
830 	if (sc->sf_miibus)
831 		device_delete_child(dev, sc->sf_miibus);
832 	bus_generic_detach(dev);
833 
834 	if (sc->sf_intrhand)
835 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
836 
837 	if (sc->sf_irq)
838 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
839 	if(sc->sf_res)
840 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
841 
842 	if (sc->sf_ldata) {
843 		contigfree(sc->sf_ldata, sizeof(struct sf_list_data),
844 			   M_DEVBUF);
845 	}
846 
847 	lwkt_serialize_exit(ifp->if_serializer);
848 	return(0);
849 }
850 
851 static int sf_init_rx_ring(sc)
852 	struct sf_softc		*sc;
853 {
854 	struct sf_list_data	*ld;
855 	int			i;
856 
857 	ld = sc->sf_ldata;
858 
859 	bzero((char *)ld->sf_rx_dlist_big,
860 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
861 	bzero((char *)ld->sf_rx_clist,
862 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
863 
864 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
865 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
866 			return(ENOBUFS);
867 	}
868 
869 	return(0);
870 }
871 
872 static void sf_init_tx_ring(sc)
873 	struct sf_softc		*sc;
874 {
875 	struct sf_list_data	*ld;
876 	int			i;
877 
878 	ld = sc->sf_ldata;
879 
880 	bzero((char *)ld->sf_tx_dlist,
881 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
882 	bzero((char *)ld->sf_tx_clist,
883 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
884 
885 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
886 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
887 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
888 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
889 
890 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
891 	sc->sf_tx_cnt = 0;
892 
893 	return;
894 }
895 
896 static int sf_newbuf(sc, c, m)
897 	struct sf_softc		*sc;
898 	struct sf_rx_bufdesc_type0	*c;
899 	struct mbuf		*m;
900 {
901 	struct mbuf		*m_new = NULL;
902 
903 	if (m == NULL) {
904 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
905 		if (m_new == NULL)
906 			return(ENOBUFS);
907 
908 		MCLGET(m_new, MB_DONTWAIT);
909 		if (!(m_new->m_flags & M_EXT)) {
910 			m_freem(m_new);
911 			return(ENOBUFS);
912 		}
913 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
914 	} else {
915 		m_new = m;
916 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
917 		m_new->m_data = m_new->m_ext.ext_buf;
918 	}
919 
920 	m_adj(m_new, sizeof(u_int64_t));
921 
922 	c->sf_mbuf = m_new;
923 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
924 	c->sf_valid = 1;
925 
926 	return(0);
927 }
928 
929 /*
930  * The starfire is programmed to use 'normal' mode for packet reception,
931  * which means we use the consumer/producer model for both the buffer
932  * descriptor queue and the completion descriptor queue. The only problem
933  * with this is that it involves a lot of register accesses: we have to
934  * read the RX completion consumer and producer indexes and the RX buffer
935  * producer index, plus the RX completion consumer and RX buffer producer
936  * indexes have to be updated. It would have been easier if Adaptec had
937  * put each index in a separate register, especially given that the damn
938  * NIC has a 512K register space.
939  *
940  * In spite of all the lovely features that Adaptec crammed into the 6915,
941  * it is marred by one truly stupid design flaw, which is that receive
942  * buffer addresses must be aligned on a longword boundary. This forces
943  * the packet payload to be unaligned, which is suboptimal on the x86 and
944  * completely unuseable on the Alpha. Our only recourse is to copy received
945  * packets into properly aligned buffers before handing them off.
946  */
947 
948 static void sf_rxeof(sc)
949 	struct sf_softc		*sc;
950 {
951 	struct mbuf		*m;
952 	struct ifnet		*ifp;
953 	struct sf_rx_bufdesc_type0	*desc;
954 	struct sf_rx_cmpdesc_type3	*cur_rx;
955 	u_int32_t		rxcons, rxprod;
956 	int			cmpprodidx, cmpconsidx, bufprodidx;
957 
958 	ifp = &sc->arpcom.ac_if;
959 
960 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
961 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
962 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
963 	cmpconsidx = SF_IDX_LO(rxcons);
964 	bufprodidx = SF_IDX_LO(rxprod);
965 
966 	while (cmpconsidx != cmpprodidx) {
967 		struct mbuf		*m0;
968 
969 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
970 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
971 		m = desc->sf_mbuf;
972 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
973 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
974 
975 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
976 			ifp->if_ierrors++;
977 			sf_newbuf(sc, desc, m);
978 			continue;
979 		}
980 
981 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
982 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
983 		sf_newbuf(sc, desc, m);
984 		if (m0 == NULL) {
985 			ifp->if_ierrors++;
986 			continue;
987 		}
988 		m_adj(m0, ETHER_ALIGN);
989 		m = m0;
990 
991 		ifp->if_ipackets++;
992 
993 		ifp->if_input(ifp, m);
994 	}
995 
996 	csr_write_4(sc, SF_CQ_CONSIDX,
997 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
998 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
999 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1000 
1001 	return;
1002 }
1003 
1004 /*
1005  * Read the transmit status from the completion queue and release
1006  * mbufs. Note that the buffer descriptor index in the completion
1007  * descriptor is an offset from the start of the transmit buffer
1008  * descriptor list in bytes. This is important because the manual
1009  * gives the impression that it should match the producer/consumer
1010  * index, which is the offset in 8 byte blocks.
1011  */
1012 static void sf_txeof(sc)
1013 	struct sf_softc		*sc;
1014 {
1015 	int			txcons, cmpprodidx, cmpconsidx;
1016 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1017 	struct sf_tx_bufdesc_type0 *cur_tx;
1018 	struct ifnet		*ifp;
1019 
1020 	ifp = &sc->arpcom.ac_if;
1021 
1022 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1023 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1024 	cmpconsidx = SF_IDX_HI(txcons);
1025 
1026 	while (cmpconsidx != cmpprodidx) {
1027 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1028 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1029 
1030 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1031 			ifp->if_opackets++;
1032 		else {
1033 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1034 				sf_txthresh_adjust(sc);
1035 			ifp->if_oerrors++;
1036 		}
1037 
1038 		sc->sf_tx_cnt--;
1039 		if (cur_tx->sf_mbuf != NULL) {
1040 			m_freem(cur_tx->sf_mbuf);
1041 			cur_tx->sf_mbuf = NULL;
1042 		} else
1043 			break;
1044 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1045 	}
1046 
1047 	ifp->if_timer = 0;
1048 	ifp->if_flags &= ~IFF_OACTIVE;
1049 
1050 	csr_write_4(sc, SF_CQ_CONSIDX,
1051 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1052 	    ((cmpconsidx << 16) & 0xFFFF0000));
1053 
1054 	return;
1055 }
1056 
1057 static void sf_txthresh_adjust(sc)
1058 	struct sf_softc		*sc;
1059 {
1060 	u_int32_t		txfctl;
1061 	u_int8_t		txthresh;
1062 
1063 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1064 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1065 	if (txthresh < 0xFF) {
1066 		txthresh++;
1067 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1068 		txfctl |= txthresh;
1069 #ifdef DIAGNOSTIC
1070 		printf("sf%d: tx underrun, increasing "
1071 		    "tx threshold to %d bytes\n",
1072 		    sc->sf_unit, txthresh * 4);
1073 #endif
1074 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1075 	}
1076 
1077 	return;
1078 }
1079 
1080 static void sf_intr(arg)
1081 	void			*arg;
1082 {
1083 	struct sf_softc		*sc;
1084 	struct ifnet		*ifp;
1085 	u_int32_t		status;
1086 
1087 	sc = arg;
1088 	ifp = &sc->arpcom.ac_if;
1089 
1090 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1091 		return;
1092 
1093 	/* Disable interrupts. */
1094 	csr_write_4(sc, SF_IMR, 0x00000000);
1095 
1096 	for (;;) {
1097 		status = csr_read_4(sc, SF_ISR);
1098 		if (status)
1099 			csr_write_4(sc, SF_ISR, status);
1100 
1101 		if (!(status & SF_INTRS))
1102 			break;
1103 
1104 		if (status & SF_ISR_RXDQ1_DMADONE)
1105 			sf_rxeof(sc);
1106 
1107 		if (status & SF_ISR_TX_TXDONE ||
1108 		    status & SF_ISR_TX_DMADONE ||
1109 		    status & SF_ISR_TX_QUEUEDONE)
1110 			sf_txeof(sc);
1111 
1112 		if (status & SF_ISR_TX_LOFIFO)
1113 			sf_txthresh_adjust(sc);
1114 
1115 		if (status & SF_ISR_ABNORMALINTR) {
1116 			if (status & SF_ISR_STATSOFLOW) {
1117 				callout_stop(&sc->sf_stat_timer);
1118 				sf_stats_update(sc);
1119 			} else
1120 				sf_init(sc);
1121 		}
1122 	}
1123 
1124 	/* Re-enable interrupts. */
1125 	csr_write_4(sc, SF_IMR, SF_INTRS);
1126 
1127 	if (!ifq_is_empty(&ifp->if_snd))
1128 		sf_start(ifp);
1129 
1130 	return;
1131 }
1132 
1133 static void sf_init(xsc)
1134 	void			*xsc;
1135 {
1136 	struct sf_softc *sc = xsc;
1137 	struct ifnet *ifp = &sc->arpcom.ac_if;
1138 	int i;
1139 
1140 	sf_stop(sc);
1141 	sf_reset(sc);
1142 
1143 	/* Init all the receive filter registers */
1144 	for (i = SF_RXFILT_PERFECT_BASE;
1145 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1146 		csr_write_4(sc, i, 0);
1147 
1148 	/* Empty stats counter registers. */
1149 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1150 		csr_write_4(sc, SF_STATS_BASE +
1151 		    (i + sizeof(u_int32_t)), 0);
1152 
1153 	/* Init our MAC address */
1154 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1155 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1156 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1157 
1158 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1159 		printf("sf%d: initialization failed: no "
1160 		    "memory for rx buffers\n", sc->sf_unit);
1161 		return;
1162 	}
1163 
1164 	sf_init_tx_ring(sc);
1165 
1166 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1167 
1168 	/* If we want promiscuous mode, set the allframes bit. */
1169 	if (ifp->if_flags & IFF_PROMISC) {
1170 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1171 	} else {
1172 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1173 	}
1174 
1175 	if (ifp->if_flags & IFF_BROADCAST) {
1176 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1177 	} else {
1178 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1179 	}
1180 
1181 	/*
1182 	 * Load the multicast filter.
1183 	 */
1184 	sf_setmulti(sc);
1185 
1186 	/* Init the completion queue indexes */
1187 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1188 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1189 
1190 	/* Init the RX completion queue */
1191 	csr_write_4(sc, SF_RXCQ_CTL_1,
1192 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1193 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1194 
1195 	/* Init RX DMA control. */
1196 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1197 
1198 	/* Init the RX buffer descriptor queue. */
1199 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1200 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1201 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1202 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1203 
1204 	/* Init the TX completion queue */
1205 	csr_write_4(sc, SF_TXCQ_CTL,
1206 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1207 
1208 	/* Init the TX buffer descriptor queue. */
1209 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1210 		vtophys(sc->sf_ldata->sf_tx_dlist));
1211 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1212 	csr_write_4(sc, SF_TXDQ_CTL,
1213 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1214 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1215 
1216 	/* Enable autopadding of short TX frames. */
1217 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1218 
1219 	/* Enable interrupts. */
1220 	csr_write_4(sc, SF_IMR, SF_INTRS);
1221 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1222 
1223 	/* Enable the RX and TX engines. */
1224 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1225 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1226 
1227 	/*mii_mediachg(mii);*/
1228 	sf_ifmedia_upd(ifp);
1229 
1230 	ifp->if_flags |= IFF_RUNNING;
1231 	ifp->if_flags &= ~IFF_OACTIVE;
1232 
1233 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1234 }
1235 
1236 static int sf_encap(sc, c, m_head)
1237 	struct sf_softc		*sc;
1238 	struct sf_tx_bufdesc_type0 *c;
1239 	struct mbuf		*m_head;
1240 {
1241 	int			frag = 0;
1242 	struct sf_frag		*f = NULL;
1243 	struct mbuf		*m;
1244 
1245 	m = m_head;
1246 
1247 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1248 		if (m->m_len != 0) {
1249 			if (frag == SF_MAXFRAGS)
1250 				break;
1251 			f = &c->sf_frags[frag];
1252 			if (frag == 0)
1253 				f->sf_pktlen = m_head->m_pkthdr.len;
1254 			f->sf_fraglen = m->m_len;
1255 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1256 			frag++;
1257 		}
1258 	}
1259 
1260 	if (m != NULL) {
1261 		struct mbuf		*m_new = NULL;
1262 
1263 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1264 		if (m_new == NULL) {
1265 			printf("sf%d: no memory for tx list", sc->sf_unit);
1266 			return(1);
1267 		}
1268 
1269 		if (m_head->m_pkthdr.len > MHLEN) {
1270 			MCLGET(m_new, MB_DONTWAIT);
1271 			if (!(m_new->m_flags & M_EXT)) {
1272 				m_freem(m_new);
1273 				printf("sf%d: no memory for tx list",
1274 				    sc->sf_unit);
1275 				return(1);
1276 			}
1277 		}
1278 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1279 		    mtod(m_new, caddr_t));
1280 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1281 		m_freem(m_head);
1282 		m_head = m_new;
1283 		f = &c->sf_frags[0];
1284 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1285 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1286 		frag = 1;
1287 	}
1288 
1289 	c->sf_mbuf = m_head;
1290 	c->sf_id = SF_TX_BUFDESC_ID;
1291 	c->sf_fragcnt = frag;
1292 	c->sf_intr = 1;
1293 	c->sf_caltcp = 0;
1294 	c->sf_crcen = 1;
1295 
1296 	return(0);
1297 }
1298 
1299 static void sf_start(ifp)
1300 	struct ifnet		*ifp;
1301 {
1302 	struct sf_softc		*sc;
1303 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1304 	struct mbuf		*m_head = NULL;
1305 	int			i, txprod;
1306 
1307 	sc = ifp->if_softc;
1308 
1309 	if (!sc->sf_link)
1310 		return;
1311 
1312 	if (ifp->if_flags & IFF_OACTIVE)
1313 		return;
1314 
1315 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1316 	i = SF_IDX_HI(txprod) >> 4;
1317 
1318 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1319 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1320 		sf_init(sc);
1321 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1322 		i = SF_IDX_HI(txprod) >> 4;
1323 	}
1324 
1325 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1326 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1327 			ifp->if_flags |= IFF_OACTIVE;
1328 			cur_tx = NULL;
1329 			break;
1330 		}
1331 		m_head = ifq_poll(&ifp->if_snd);
1332 		if (m_head == NULL)
1333 			break;
1334 
1335 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1336 		if (sf_encap(sc, cur_tx, m_head)) {
1337 			ifp->if_flags |= IFF_OACTIVE;
1338 			cur_tx = NULL;
1339 			break;
1340 		}
1341 		ifq_dequeue(&ifp->if_snd, m_head);
1342 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1343 
1344 		SF_INC(i, SF_TX_DLIST_CNT);
1345 		sc->sf_tx_cnt++;
1346 		/*
1347 		 * Don't get the TX DMA queue get too full.
1348 		 */
1349 		if (sc->sf_tx_cnt > 64)
1350 			break;
1351 	}
1352 
1353 	if (cur_tx == NULL)
1354 		return;
1355 
1356 	/* Transmit */
1357 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1358 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1359 	    ((i << 20) & 0xFFFF0000));
1360 
1361 	ifp->if_timer = 5;
1362 
1363 	return;
1364 }
1365 
1366 static void sf_stop(sc)
1367 	struct sf_softc		*sc;
1368 {
1369 	int			i;
1370 	struct ifnet		*ifp;
1371 
1372 	ifp = &sc->arpcom.ac_if;
1373 
1374 	callout_stop(&sc->sf_stat_timer);
1375 
1376 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1377 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1378 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1379 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1380 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1381 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1382 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1383 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1384 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1385 	sf_reset(sc);
1386 
1387 	sc->sf_link = 0;
1388 
1389 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1390 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1391 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1392 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1393 		}
1394 	}
1395 
1396 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1397 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1398 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1399 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1400 		}
1401 	}
1402 
1403 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1404 
1405 	return;
1406 }
1407 
1408 /*
1409  * Note: it is important that this function not be interrupted. We
1410  * use a two-stage register access scheme: if we are interrupted in
1411  * between setting the indirect address register and reading from the
1412  * indirect data register, the contents of the address register could
1413  * be changed out from under us.
1414  */
1415 static void sf_stats_update(xsc)
1416 	void			*xsc;
1417 {
1418 	struct sf_softc *sc = xsc;
1419 	struct ifnet *ifp = &sc->arpcom.ac_if;
1420 	struct mii_data *mii = device_get_softc(sc->sf_miibus);
1421 	struct sf_stats		stats;
1422 	u_int32_t		*ptr;
1423 	int			i;
1424 
1425 	lwkt_serialize_enter(ifp->if_serializer);
1426 
1427 	ptr = (u_int32_t *)&stats;
1428 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1429 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1430 		    (i + sizeof(u_int32_t)));
1431 
1432 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1433 		csr_write_4(sc, SF_STATS_BASE +
1434 		    (i + sizeof(u_int32_t)), 0);
1435 
1436 	ifp->if_collisions += stats.sf_tx_single_colls +
1437 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1438 
1439 	mii_tick(mii);
1440 	if (!sc->sf_link) {
1441 		mii_pollstat(mii);
1442 		if (mii->mii_media_status & IFM_ACTIVE &&
1443 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1444 			sc->sf_link++;
1445 			if (!ifq_is_empty(&ifp->if_snd))
1446 				sf_start(ifp);
1447 	}
1448 
1449 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1450 
1451 	lwkt_serialize_exit(ifp->if_serializer);
1452 }
1453 
1454 static void sf_watchdog(ifp)
1455 	struct ifnet		*ifp;
1456 {
1457 	struct sf_softc		*sc;
1458 
1459 	sc = ifp->if_softc;
1460 
1461 	ifp->if_oerrors++;
1462 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1463 
1464 	sf_stop(sc);
1465 	sf_reset(sc);
1466 	sf_init(sc);
1467 
1468 	if (!ifq_is_empty(&ifp->if_snd))
1469 		sf_start(ifp);
1470 
1471 	return;
1472 }
1473 
1474 static void sf_shutdown(dev)
1475 	device_t		dev;
1476 {
1477 	struct sf_softc	*sc;
1478 	struct ifnet *ifp;
1479 
1480 	sc = device_get_softc(dev);
1481 	ifp = &sc->arpcom.ac_if;
1482 	lwkt_serialize_enter(ifp->if_serializer);
1483 	sf_stop(sc);
1484 	lwkt_serialize_exit(ifp->if_serializer);
1485 
1486 	return;
1487 }
1488