xref: /dflybsd-src/sys/dev/netif/sf/if_sf.c (revision 6bc31f17c9c90db02ddbd88208e06c29ed0f1534)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.19 2005/05/27 15:36:10 joerg Exp $
34  */
35 
36 /*
37  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
38  * Programming manual is available from:
39  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
40  *
41  * Written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Department of Electical Engineering
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
48  * controller designed with flexibility and reducing CPU load in mind.
49  * The Starfire offers high and low priority buffer queues, a
50  * producer/consumer index mechanism and several different buffer
51  * queue and completion queue descriptor types. Any one of a number
52  * of different driver designs can be used, depending on system and
53  * OS requirements. This driver makes use of type0 transmit frame
54  * descriptors (since BSD fragments packets across an mbuf chain)
55  * and two RX buffer queues prioritized on size (one queue for small
56  * frames that will fit into a single mbuf, another with full size
57  * mbuf clusters for everything else). The producer/consumer indexes
58  * and completion queues are also used.
59  *
60  * One downside to the Starfire has to do with alignment: buffer
61  * queues must be aligned on 256-byte boundaries, and receive buffers
62  * must be aligned on longword boundaries. The receive buffer alignment
63  * causes problems on the Alpha platform, where the packet payload
64  * should be longword aligned. There is no simple way around this.
65  *
66  * For receive filtering, the Starfire offers 16 perfect filter slots
67  * and a 512-bit hash table.
68  *
69  * The Starfire has no internal transceiver, relying instead on an
70  * external MII-based transceiver. Accessing registers on external
71  * PHYs is done through a special register map rather than with the
72  * usual bitbang MDIO method.
73  *
74  * Acesssing the registers on the Starfire is a little tricky. The
75  * Starfire has a 512K internal register space. When programmed for
76  * PCI memory mapped mode, the entire register space can be accessed
77  * directly. However in I/O space mode, only 256 bytes are directly
78  * mapped into PCI I/O space. The other registers can be accessed
79  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
80  * registers inside the 256-byte I/O window.
81  */
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/sockio.h>
86 #include <sys/mbuf.h>
87 #include <sys/malloc.h>
88 #include <sys/kernel.h>
89 #include <sys/socket.h>
90 
91 #include <net/if.h>
92 #include <net/ifq_var.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 
98 #include <net/bpf.h>
99 
100 #include <vm/vm.h>              /* for vtophys */
101 #include <vm/pmap.h>            /* for vtophys */
102 #include <machine/clock.h>      /* for DELAY */
103 #include <machine/bus_pio.h>
104 #include <machine/bus_memio.h>
105 #include <machine/bus.h>
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include "../mii_layer/mii.h"
111 #include "../mii_layer/miivar.h"
112 
113 /* "controller miibus0" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115 
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 #define SF_USEIOSPACE
120 
121 #include "if_sfreg.h"
122 
123 static struct sf_type sf_devs[] = {
124 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
125 		"Adaptec AIC-6915 10/100BaseTX" },
126 	{ 0, 0, NULL }
127 };
128 
129 static int sf_probe		(device_t);
130 static int sf_attach		(device_t);
131 static int sf_detach		(device_t);
132 static void sf_intr		(void *);
133 static void sf_stats_update	(void *);
134 static void sf_rxeof		(struct sf_softc *);
135 static void sf_txeof		(struct sf_softc *);
136 static int sf_encap		(struct sf_softc *,
137 					struct sf_tx_bufdesc_type0 *,
138 					struct mbuf *);
139 static void sf_start		(struct ifnet *);
140 static int sf_ioctl		(struct ifnet *, u_long, caddr_t,
141 					struct ucred *);
142 static void sf_init		(void *);
143 static void sf_stop		(struct sf_softc *);
144 static void sf_watchdog		(struct ifnet *);
145 static void sf_shutdown		(device_t);
146 static int sf_ifmedia_upd	(struct ifnet *);
147 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
148 static void sf_reset		(struct sf_softc *);
149 static int sf_init_rx_ring	(struct sf_softc *);
150 static void sf_init_tx_ring	(struct sf_softc *);
151 static int sf_newbuf		(struct sf_softc *,
152 					struct sf_rx_bufdesc_type0 *,
153 					struct mbuf *);
154 static void sf_setmulti		(struct sf_softc *);
155 static int sf_setperf		(struct sf_softc *, int, caddr_t);
156 static int sf_sethash		(struct sf_softc *, caddr_t, int);
157 #ifdef notdef
158 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
159 #endif
160 
161 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
162 static u_int32_t sf_calchash	(caddr_t);
163 
164 static int sf_miibus_readreg	(device_t, int, int);
165 static int sf_miibus_writereg	(device_t, int, int, int);
166 static void sf_miibus_statchg	(device_t);
167 
168 static u_int32_t csr_read_4	(struct sf_softc *, int);
169 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
170 static void sf_txthresh_adjust	(struct sf_softc *);
171 
172 #ifdef SF_USEIOSPACE
173 #define SF_RES			SYS_RES_IOPORT
174 #define SF_RID			SF_PCI_LOIO
175 #else
176 #define SF_RES			SYS_RES_MEMORY
177 #define SF_RID			SF_PCI_LOMEM
178 #endif
179 
180 static device_method_t sf_methods[] = {
181 	/* Device interface */
182 	DEVMETHOD(device_probe,		sf_probe),
183 	DEVMETHOD(device_attach,	sf_attach),
184 	DEVMETHOD(device_detach,	sf_detach),
185 	DEVMETHOD(device_shutdown,	sf_shutdown),
186 
187 	/* bus interface */
188 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
189 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
190 
191 	/* MII interface */
192 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
193 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
194 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
195 
196 	{ 0, 0 }
197 };
198 
199 static driver_t sf_driver = {
200 	"sf",
201 	sf_methods,
202 	sizeof(struct sf_softc),
203 };
204 
205 static devclass_t sf_devclass;
206 
207 DECLARE_DUMMY_MODULE(if_sf);
208 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
210 
211 #define SF_SETBIT(sc, reg, x)	\
212 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
213 
214 #define SF_CLRBIT(sc, reg, x)				\
215 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
216 
217 static u_int32_t csr_read_4(sc, reg)
218 	struct sf_softc		*sc;
219 	int			reg;
220 {
221 	u_int32_t		val;
222 
223 #ifdef SF_USEIOSPACE
224 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226 #else
227 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228 #endif
229 
230 	return(val);
231 }
232 
233 static u_int8_t sf_read_eeprom(sc, reg)
234 	struct sf_softc		*sc;
235 	int			reg;
236 {
237 	u_int8_t		val;
238 
239 	val = (csr_read_4(sc, SF_EEADDR_BASE +
240 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
241 
242 	return(val);
243 }
244 
245 static void csr_write_4(sc, reg, val)
246 	struct sf_softc		*sc;
247 	int			reg;
248 	u_int32_t		val;
249 {
250 #ifdef SF_USEIOSPACE
251 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
252 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
253 #else
254 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
255 #endif
256 	return;
257 }
258 
259 static u_int32_t sf_calchash(addr)
260 	caddr_t			addr;
261 {
262 	u_int32_t		crc, carry;
263 	int			i, j;
264 	u_int8_t		c;
265 
266 	/* Compute CRC for the address value. */
267 	crc = 0xFFFFFFFF; /* initial value */
268 
269 	for (i = 0; i < 6; i++) {
270 		c = *(addr + i);
271 		for (j = 0; j < 8; j++) {
272 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
273 			crc <<= 1;
274 			c >>= 1;
275 			if (carry)
276 				crc = (crc ^ 0x04c11db6) | carry;
277 		}
278 	}
279 
280 	/* return the filter bit position */
281 	return(crc >> 23 & 0x1FF);
282 }
283 
284 /*
285  * Copy the address 'mac' into the perfect RX filter entry at
286  * offset 'idx.' The perfect filter only has 16 entries so do
287  * some sanity tests.
288  */
289 static int sf_setperf(sc, idx, mac)
290 	struct sf_softc		*sc;
291 	int			idx;
292 	caddr_t			mac;
293 {
294 	u_int16_t		*p;
295 
296 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
297 		return(EINVAL);
298 
299 	if (mac == NULL)
300 		return(EINVAL);
301 
302 	p = (u_int16_t *)mac;
303 
304 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
305 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
306 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
308 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
310 
311 	return(0);
312 }
313 
314 /*
315  * Set the bit in the 512-bit hash table that corresponds to the
316  * specified mac address 'mac.' If 'prio' is nonzero, update the
317  * priority hash table instead of the filter hash table.
318  */
319 static int sf_sethash(sc, mac, prio)
320 	struct sf_softc		*sc;
321 	caddr_t			mac;
322 	int			prio;
323 {
324 	u_int32_t		h = 0;
325 
326 	if (mac == NULL)
327 		return(EINVAL);
328 
329 	h = sf_calchash(mac);
330 
331 	if (prio) {
332 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
333 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
334 	} else {
335 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
336 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
337 	}
338 
339 	return(0);
340 }
341 
342 #ifdef notdef
343 /*
344  * Set a VLAN tag in the receive filter.
345  */
346 static int sf_setvlan(sc, idx, vlan)
347 	struct sf_softc		*sc;
348 	int			idx;
349 	u_int32_t		vlan;
350 {
351 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
352 		return(EINVAL);
353 
354 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
355 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
356 
357 	return(0);
358 }
359 #endif
360 
361 static int sf_miibus_readreg(dev, phy, reg)
362 	device_t		dev;
363 	int			phy, reg;
364 {
365 	struct sf_softc		*sc;
366 	int			i;
367 	u_int32_t		val = 0;
368 
369 	sc = device_get_softc(dev);
370 
371 	for (i = 0; i < SF_TIMEOUT; i++) {
372 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
373 		if (val & SF_MII_DATAVALID)
374 			break;
375 	}
376 
377 	if (i == SF_TIMEOUT)
378 		return(0);
379 
380 	if ((val & 0x0000FFFF) == 0xFFFF)
381 		return(0);
382 
383 	return(val & 0x0000FFFF);
384 }
385 
386 static int sf_miibus_writereg(dev, phy, reg, val)
387 	device_t		dev;
388 	int			phy, reg, val;
389 {
390 	struct sf_softc		*sc;
391 	int			i;
392 	int			busy;
393 
394 	sc = device_get_softc(dev);
395 
396 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
397 
398 	for (i = 0; i < SF_TIMEOUT; i++) {
399 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
400 		if (!(busy & SF_MII_BUSY))
401 			break;
402 	}
403 
404 	return(0);
405 }
406 
407 static void sf_miibus_statchg(dev)
408 	device_t		dev;
409 {
410 	struct sf_softc		*sc;
411 	struct mii_data		*mii;
412 
413 	sc = device_get_softc(dev);
414 	mii = device_get_softc(sc->sf_miibus);
415 
416 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
417 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
418 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
419 	} else {
420 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
421 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
422 	}
423 
424 	return;
425 }
426 
427 static void sf_setmulti(sc)
428 	struct sf_softc		*sc;
429 {
430 	struct ifnet		*ifp;
431 	int			i;
432 	struct ifmultiaddr	*ifma;
433 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
434 
435 	ifp = &sc->arpcom.ac_if;
436 
437 	/* First zot all the existing filters. */
438 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
439 		sf_setperf(sc, i, (char *)&dummy);
440 	for (i = SF_RXFILT_HASH_BASE;
441 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
442 		csr_write_4(sc, i, 0);
443 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
444 
445 	/* Now program new ones. */
446 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
447 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
448 	} else {
449 		i = 1;
450 		/* First find the tail of the list. */
451 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
452 					ifma = ifma->ifma_link.le_next) {
453 			if (ifma->ifma_link.le_next == NULL)
454 				break;
455 		}
456 		/* Now traverse the list backwards. */
457 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
458 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
459 			if (ifma->ifma_addr->sa_family != AF_LINK)
460 				continue;
461 			/*
462 			 * Program the first 15 multicast groups
463 			 * into the perfect filter. For all others,
464 			 * use the hash table.
465 			 */
466 			if (i < SF_RXFILT_PERFECT_CNT) {
467 				sf_setperf(sc, i,
468 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
469 				i++;
470 				continue;
471 			}
472 
473 			sf_sethash(sc,
474 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
475 		}
476 	}
477 
478 	return;
479 }
480 
481 /*
482  * Set media options.
483  */
484 static int sf_ifmedia_upd(ifp)
485 	struct ifnet		*ifp;
486 {
487 	struct sf_softc		*sc;
488 	struct mii_data		*mii;
489 
490 	sc = ifp->if_softc;
491 	mii = device_get_softc(sc->sf_miibus);
492 	sc->sf_link = 0;
493 	if (mii->mii_instance) {
494 		struct mii_softc        *miisc;
495 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
496 		    miisc = LIST_NEXT(miisc, mii_list))
497 			mii_phy_reset(miisc);
498 	}
499 	mii_mediachg(mii);
500 
501 	return(0);
502 }
503 
504 /*
505  * Report current media status.
506  */
507 static void sf_ifmedia_sts(ifp, ifmr)
508 	struct ifnet		*ifp;
509 	struct ifmediareq	*ifmr;
510 {
511 	struct sf_softc		*sc;
512 	struct mii_data		*mii;
513 
514 	sc = ifp->if_softc;
515 	mii = device_get_softc(sc->sf_miibus);
516 
517 	mii_pollstat(mii);
518 	ifmr->ifm_active = mii->mii_media_active;
519 	ifmr->ifm_status = mii->mii_media_status;
520 
521 	return;
522 }
523 
524 static int sf_ioctl(ifp, command, data, cr)
525 	struct ifnet		*ifp;
526 	u_long			command;
527 	caddr_t			data;
528 	struct ucred		*cr;
529 {
530 	struct sf_softc		*sc = ifp->if_softc;
531 	struct ifreq		*ifr = (struct ifreq *) data;
532 	struct mii_data		*mii;
533 	int			s, error = 0;
534 
535 	s = splimp();
536 
537 	switch(command) {
538 	case SIOCSIFFLAGS:
539 		if (ifp->if_flags & IFF_UP) {
540 			if (ifp->if_flags & IFF_RUNNING &&
541 			    ifp->if_flags & IFF_PROMISC &&
542 			    !(sc->sf_if_flags & IFF_PROMISC)) {
543 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
544 			} else if (ifp->if_flags & IFF_RUNNING &&
545 			    !(ifp->if_flags & IFF_PROMISC) &&
546 			    sc->sf_if_flags & IFF_PROMISC) {
547 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
548 			} else if (!(ifp->if_flags & IFF_RUNNING))
549 				sf_init(sc);
550 		} else {
551 			if (ifp->if_flags & IFF_RUNNING)
552 				sf_stop(sc);
553 		}
554 		sc->sf_if_flags = ifp->if_flags;
555 		error = 0;
556 		break;
557 	case SIOCADDMULTI:
558 	case SIOCDELMULTI:
559 		sf_setmulti(sc);
560 		error = 0;
561 		break;
562 	case SIOCGIFMEDIA:
563 	case SIOCSIFMEDIA:
564 		mii = device_get_softc(sc->sf_miibus);
565 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
566 		break;
567 	default:
568 		error = ether_ioctl(ifp, command, data);
569 		break;
570 	}
571 
572 	(void)splx(s);
573 
574 	return(error);
575 }
576 
577 static void sf_reset(sc)
578 	struct sf_softc		*sc;
579 {
580 	int		i;
581 
582 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
583 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
584 	DELAY(1000);
585 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
586 
587 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
588 
589 	for (i = 0; i < SF_TIMEOUT; i++) {
590 		DELAY(10);
591 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
592 			break;
593 	}
594 
595 	if (i == SF_TIMEOUT)
596 		printf("sf%d: reset never completed!\n", sc->sf_unit);
597 
598 	/* Wait a little while for the chip to get its brains in order. */
599 	DELAY(1000);
600 	return;
601 }
602 
603 /*
604  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
605  * IDs against our list and return a device name if we find a match.
606  * We also check the subsystem ID so that we can identify exactly which
607  * NIC has been found, if possible.
608  */
609 static int sf_probe(dev)
610 	device_t		dev;
611 {
612 	struct sf_type		*t;
613 
614 	t = sf_devs;
615 
616 	while(t->sf_name != NULL) {
617 		if ((pci_get_vendor(dev) == t->sf_vid) &&
618 		    (pci_get_device(dev) == t->sf_did)) {
619 			switch((pci_read_config(dev,
620 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
621 			case AD_SUBSYSID_62011_REV0:
622 			case AD_SUBSYSID_62011_REV1:
623 				device_set_desc(dev,
624 				    "Adaptec ANA-62011 10/100BaseTX");
625 				return(0);
626 				break;
627 			case AD_SUBSYSID_62022:
628 				device_set_desc(dev,
629 				    "Adaptec ANA-62022 10/100BaseTX");
630 				return(0);
631 				break;
632 			case AD_SUBSYSID_62044_REV0:
633 			case AD_SUBSYSID_62044_REV1:
634 				device_set_desc(dev,
635 				    "Adaptec ANA-62044 10/100BaseTX");
636 				return(0);
637 				break;
638 			case AD_SUBSYSID_62020:
639 				device_set_desc(dev,
640 				    "Adaptec ANA-62020 10/100BaseFX");
641 				return(0);
642 				break;
643 			case AD_SUBSYSID_69011:
644 				device_set_desc(dev,
645 				    "Adaptec ANA-69011 10/100BaseTX");
646 				return(0);
647 				break;
648 			default:
649 				device_set_desc(dev, t->sf_name);
650 				return(0);
651 				break;
652 			}
653 		}
654 		t++;
655 	}
656 
657 	return(ENXIO);
658 }
659 
660 /*
661  * Attach the interface. Allocate softc structures, do ifmedia
662  * setup and ethernet/BPF attach.
663  */
664 static int sf_attach(dev)
665 	device_t		dev;
666 {
667 	int			s, i;
668 	u_int32_t		command;
669 	struct sf_softc		*sc;
670 	struct ifnet		*ifp;
671 	int			unit, rid, error = 0;
672 
673 	s = splimp();
674 
675 	sc = device_get_softc(dev);
676 	unit = device_get_unit(dev);
677 	bzero(sc, sizeof(struct sf_softc));
678 
679 	/*
680 	 * Handle power management nonsense.
681 	 */
682 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
683 	if (command == 0x01) {
684 
685 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
686 		if (command & SF_PSTATE_MASK) {
687 			u_int32_t		iobase, membase, irq;
688 
689 			/* Save important PCI config data. */
690 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
691 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
692 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
693 
694 			/* Reset the power state. */
695 			printf("sf%d: chip is in D%d power mode "
696 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
697 			command &= 0xFFFFFFFC;
698 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
699 
700 			/* Restore PCI config data. */
701 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
702 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
703 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
704 		}
705 	}
706 
707 	/*
708 	 * Map control/status registers.
709 	 */
710 	command = pci_read_config(dev, PCIR_COMMAND, 4);
711 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
712 	pci_write_config(dev, PCIR_COMMAND, command, 4);
713 	command = pci_read_config(dev, PCIR_COMMAND, 4);
714 
715 #ifdef SF_USEIOSPACE
716 	if (!(command & PCIM_CMD_PORTEN)) {
717 		printf("sf%d: failed to enable I/O ports!\n", unit);
718 		error = ENXIO;
719 		goto fail;
720 	}
721 #else
722 	if (!(command & PCIM_CMD_MEMEN)) {
723 		printf("sf%d: failed to enable memory mapping!\n", unit);
724 		error = ENXIO;
725 		goto fail;
726 	}
727 #endif
728 
729 	rid = SF_RID;
730 	sc->sf_res = bus_alloc_resource_any(dev, SF_RES, &rid, RF_ACTIVE);
731 
732 	if (sc->sf_res == NULL) {
733 		printf ("sf%d: couldn't map ports\n", unit);
734 		error = ENXIO;
735 		goto fail;
736 	}
737 
738 	sc->sf_btag = rman_get_bustag(sc->sf_res);
739 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
740 
741 	/* Allocate interrupt */
742 	rid = 0;
743 	sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
744 	    RF_SHAREABLE | RF_ACTIVE);
745 
746 	if (sc->sf_irq == NULL) {
747 		printf("sf%d: couldn't map interrupt\n", unit);
748 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
749 		error = ENXIO;
750 		goto fail;
751 	}
752 
753 	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
754 			       sf_intr, sc, &sc->sf_intrhand, NULL);
755 
756 	if (error) {
757 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
758 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
759 		printf("sf%d: couldn't set up irq\n", unit);
760 		goto fail;
761 	}
762 
763 	callout_init(&sc->sf_stat_timer);
764 
765 	/* Reset the adapter. */
766 	sf_reset(sc);
767 
768 	/*
769 	 * Get station address from the EEPROM.
770 	 */
771 	for (i = 0; i < ETHER_ADDR_LEN; i++)
772 		sc->arpcom.ac_enaddr[i] =
773 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
774 
775 	sc->sf_unit = unit;
776 
777 	/* Allocate the descriptor queues. */
778 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
779 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
780 
781 	if (sc->sf_ldata == NULL) {
782 		printf("sf%d: no memory for list buffers!\n", unit);
783 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
784 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
785 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
786 		error = ENXIO;
787 		goto fail;
788 	}
789 
790 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
791 
792 	/* Do MII setup. */
793 	if (mii_phy_probe(dev, &sc->sf_miibus,
794 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
795 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
796 		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
797 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
798 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
799 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
800 		error = ENXIO;
801 		goto fail;
802 	}
803 
804 	ifp = &sc->arpcom.ac_if;
805 	ifp->if_softc = sc;
806 	if_initname(ifp, "sf", unit);
807 	ifp->if_mtu = ETHERMTU;
808 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
809 	ifp->if_ioctl = sf_ioctl;
810 	ifp->if_start = sf_start;
811 	ifp->if_watchdog = sf_watchdog;
812 	ifp->if_init = sf_init;
813 	ifp->if_baudrate = 10000000;
814 	ifq_set_maxlen(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
815 	ifq_set_ready(&ifp->if_snd);
816 
817 	/*
818 	 * Call MI attach routine.
819 	 */
820 	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
821 
822 fail:
823 	splx(s);
824 	return(error);
825 }
826 
827 static int sf_detach(dev)
828 	device_t		dev;
829 {
830 	struct sf_softc		*sc;
831 	struct ifnet		*ifp;
832 	int			s;
833 
834 	s = splimp();
835 
836 	sc = device_get_softc(dev);
837 	ifp = &sc->arpcom.ac_if;
838 
839 	ether_ifdetach(ifp);
840 	sf_stop(sc);
841 
842 	bus_generic_detach(dev);
843 	device_delete_child(dev, sc->sf_miibus);
844 
845 	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
846 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
847 	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
848 
849 	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
850 
851 	splx(s);
852 
853 	return(0);
854 }
855 
856 static int sf_init_rx_ring(sc)
857 	struct sf_softc		*sc;
858 {
859 	struct sf_list_data	*ld;
860 	int			i;
861 
862 	ld = sc->sf_ldata;
863 
864 	bzero((char *)ld->sf_rx_dlist_big,
865 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
866 	bzero((char *)ld->sf_rx_clist,
867 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
868 
869 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
870 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
871 			return(ENOBUFS);
872 	}
873 
874 	return(0);
875 }
876 
877 static void sf_init_tx_ring(sc)
878 	struct sf_softc		*sc;
879 {
880 	struct sf_list_data	*ld;
881 	int			i;
882 
883 	ld = sc->sf_ldata;
884 
885 	bzero((char *)ld->sf_tx_dlist,
886 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
887 	bzero((char *)ld->sf_tx_clist,
888 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
889 
890 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
891 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
892 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
893 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
894 
895 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
896 	sc->sf_tx_cnt = 0;
897 
898 	return;
899 }
900 
901 static int sf_newbuf(sc, c, m)
902 	struct sf_softc		*sc;
903 	struct sf_rx_bufdesc_type0	*c;
904 	struct mbuf		*m;
905 {
906 	struct mbuf		*m_new = NULL;
907 
908 	if (m == NULL) {
909 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
910 		if (m_new == NULL)
911 			return(ENOBUFS);
912 
913 		MCLGET(m_new, MB_DONTWAIT);
914 		if (!(m_new->m_flags & M_EXT)) {
915 			m_freem(m_new);
916 			return(ENOBUFS);
917 		}
918 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
919 	} else {
920 		m_new = m;
921 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
922 		m_new->m_data = m_new->m_ext.ext_buf;
923 	}
924 
925 	m_adj(m_new, sizeof(u_int64_t));
926 
927 	c->sf_mbuf = m_new;
928 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
929 	c->sf_valid = 1;
930 
931 	return(0);
932 }
933 
934 /*
935  * The starfire is programmed to use 'normal' mode for packet reception,
936  * which means we use the consumer/producer model for both the buffer
937  * descriptor queue and the completion descriptor queue. The only problem
938  * with this is that it involves a lot of register accesses: we have to
939  * read the RX completion consumer and producer indexes and the RX buffer
940  * producer index, plus the RX completion consumer and RX buffer producer
941  * indexes have to be updated. It would have been easier if Adaptec had
942  * put each index in a separate register, especially given that the damn
943  * NIC has a 512K register space.
944  *
945  * In spite of all the lovely features that Adaptec crammed into the 6915,
946  * it is marred by one truly stupid design flaw, which is that receive
947  * buffer addresses must be aligned on a longword boundary. This forces
948  * the packet payload to be unaligned, which is suboptimal on the x86 and
949  * completely unuseable on the Alpha. Our only recourse is to copy received
950  * packets into properly aligned buffers before handing them off.
951  */
952 
953 static void sf_rxeof(sc)
954 	struct sf_softc		*sc;
955 {
956 	struct mbuf		*m;
957 	struct ifnet		*ifp;
958 	struct sf_rx_bufdesc_type0	*desc;
959 	struct sf_rx_cmpdesc_type3	*cur_rx;
960 	u_int32_t		rxcons, rxprod;
961 	int			cmpprodidx, cmpconsidx, bufprodidx;
962 
963 	ifp = &sc->arpcom.ac_if;
964 
965 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
966 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
967 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
968 	cmpconsidx = SF_IDX_LO(rxcons);
969 	bufprodidx = SF_IDX_LO(rxprod);
970 
971 	while (cmpconsidx != cmpprodidx) {
972 		struct mbuf		*m0;
973 
974 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
975 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
976 		m = desc->sf_mbuf;
977 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
978 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
979 
980 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
981 			ifp->if_ierrors++;
982 			sf_newbuf(sc, desc, m);
983 			continue;
984 		}
985 
986 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
987 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
988 		sf_newbuf(sc, desc, m);
989 		if (m0 == NULL) {
990 			ifp->if_ierrors++;
991 			continue;
992 		}
993 		m_adj(m0, ETHER_ALIGN);
994 		m = m0;
995 
996 		ifp->if_ipackets++;
997 
998 		(*ifp->if_input)(ifp, m);
999 	}
1000 
1001 	csr_write_4(sc, SF_CQ_CONSIDX,
1002 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1003 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1004 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1005 
1006 	return;
1007 }
1008 
1009 /*
1010  * Read the transmit status from the completion queue and release
1011  * mbufs. Note that the buffer descriptor index in the completion
1012  * descriptor is an offset from the start of the transmit buffer
1013  * descriptor list in bytes. This is important because the manual
1014  * gives the impression that it should match the producer/consumer
1015  * index, which is the offset in 8 byte blocks.
1016  */
1017 static void sf_txeof(sc)
1018 	struct sf_softc		*sc;
1019 {
1020 	int			txcons, cmpprodidx, cmpconsidx;
1021 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1022 	struct sf_tx_bufdesc_type0 *cur_tx;
1023 	struct ifnet		*ifp;
1024 
1025 	ifp = &sc->arpcom.ac_if;
1026 
1027 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1028 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1029 	cmpconsidx = SF_IDX_HI(txcons);
1030 
1031 	while (cmpconsidx != cmpprodidx) {
1032 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1033 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1034 
1035 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1036 			ifp->if_opackets++;
1037 		else {
1038 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1039 				sf_txthresh_adjust(sc);
1040 			ifp->if_oerrors++;
1041 		}
1042 
1043 		sc->sf_tx_cnt--;
1044 		if (cur_tx->sf_mbuf != NULL) {
1045 			m_freem(cur_tx->sf_mbuf);
1046 			cur_tx->sf_mbuf = NULL;
1047 		} else
1048 			break;
1049 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1050 	}
1051 
1052 	ifp->if_timer = 0;
1053 	ifp->if_flags &= ~IFF_OACTIVE;
1054 
1055 	csr_write_4(sc, SF_CQ_CONSIDX,
1056 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1057 	    ((cmpconsidx << 16) & 0xFFFF0000));
1058 
1059 	return;
1060 }
1061 
1062 static void sf_txthresh_adjust(sc)
1063 	struct sf_softc		*sc;
1064 {
1065 	u_int32_t		txfctl;
1066 	u_int8_t		txthresh;
1067 
1068 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1069 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1070 	if (txthresh < 0xFF) {
1071 		txthresh++;
1072 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1073 		txfctl |= txthresh;
1074 #ifdef DIAGNOSTIC
1075 		printf("sf%d: tx underrun, increasing "
1076 		    "tx threshold to %d bytes\n",
1077 		    sc->sf_unit, txthresh * 4);
1078 #endif
1079 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1080 	}
1081 
1082 	return;
1083 }
1084 
1085 static void sf_intr(arg)
1086 	void			*arg;
1087 {
1088 	struct sf_softc		*sc;
1089 	struct ifnet		*ifp;
1090 	u_int32_t		status;
1091 
1092 	sc = arg;
1093 	ifp = &sc->arpcom.ac_if;
1094 
1095 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1096 		return;
1097 
1098 	/* Disable interrupts. */
1099 	csr_write_4(sc, SF_IMR, 0x00000000);
1100 
1101 	for (;;) {
1102 		status = csr_read_4(sc, SF_ISR);
1103 		if (status)
1104 			csr_write_4(sc, SF_ISR, status);
1105 
1106 		if (!(status & SF_INTRS))
1107 			break;
1108 
1109 		if (status & SF_ISR_RXDQ1_DMADONE)
1110 			sf_rxeof(sc);
1111 
1112 		if (status & SF_ISR_TX_TXDONE ||
1113 		    status & SF_ISR_TX_DMADONE ||
1114 		    status & SF_ISR_TX_QUEUEDONE)
1115 			sf_txeof(sc);
1116 
1117 		if (status & SF_ISR_TX_LOFIFO)
1118 			sf_txthresh_adjust(sc);
1119 
1120 		if (status & SF_ISR_ABNORMALINTR) {
1121 			if (status & SF_ISR_STATSOFLOW) {
1122 				callout_stop(&sc->sf_stat_timer);
1123 				sf_stats_update(sc);
1124 			} else
1125 				sf_init(sc);
1126 		}
1127 	}
1128 
1129 	/* Re-enable interrupts. */
1130 	csr_write_4(sc, SF_IMR, SF_INTRS);
1131 
1132 	if (!ifq_is_empty(&ifp->if_snd))
1133 		sf_start(ifp);
1134 
1135 	return;
1136 }
1137 
1138 static void sf_init(xsc)
1139 	void			*xsc;
1140 {
1141 	struct sf_softc		*sc;
1142 	struct ifnet		*ifp;
1143 	struct mii_data		*mii;
1144 	int			i, s;
1145 
1146 	s = splimp();
1147 
1148 	sc = xsc;
1149 	ifp = &sc->arpcom.ac_if;
1150 	mii = device_get_softc(sc->sf_miibus);
1151 
1152 	sf_stop(sc);
1153 	sf_reset(sc);
1154 
1155 	/* Init all the receive filter registers */
1156 	for (i = SF_RXFILT_PERFECT_BASE;
1157 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1158 		csr_write_4(sc, i, 0);
1159 
1160 	/* Empty stats counter registers. */
1161 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1162 		csr_write_4(sc, SF_STATS_BASE +
1163 		    (i + sizeof(u_int32_t)), 0);
1164 
1165 	/* Init our MAC address */
1166 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1167 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1168 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1169 
1170 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1171 		printf("sf%d: initialization failed: no "
1172 		    "memory for rx buffers\n", sc->sf_unit);
1173 		(void)splx(s);
1174 		return;
1175 	}
1176 
1177 	sf_init_tx_ring(sc);
1178 
1179 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1180 
1181 	/* If we want promiscuous mode, set the allframes bit. */
1182 	if (ifp->if_flags & IFF_PROMISC) {
1183 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1184 	} else {
1185 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1186 	}
1187 
1188 	if (ifp->if_flags & IFF_BROADCAST) {
1189 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1190 	} else {
1191 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1192 	}
1193 
1194 	/*
1195 	 * Load the multicast filter.
1196 	 */
1197 	sf_setmulti(sc);
1198 
1199 	/* Init the completion queue indexes */
1200 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1201 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1202 
1203 	/* Init the RX completion queue */
1204 	csr_write_4(sc, SF_RXCQ_CTL_1,
1205 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1206 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1207 
1208 	/* Init RX DMA control. */
1209 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1210 
1211 	/* Init the RX buffer descriptor queue. */
1212 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1213 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1214 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1215 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1216 
1217 	/* Init the TX completion queue */
1218 	csr_write_4(sc, SF_TXCQ_CTL,
1219 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1220 
1221 	/* Init the TX buffer descriptor queue. */
1222 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1223 		vtophys(sc->sf_ldata->sf_tx_dlist));
1224 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1225 	csr_write_4(sc, SF_TXDQ_CTL,
1226 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1227 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1228 
1229 	/* Enable autopadding of short TX frames. */
1230 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1231 
1232 	/* Enable interrupts. */
1233 	csr_write_4(sc, SF_IMR, SF_INTRS);
1234 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1235 
1236 	/* Enable the RX and TX engines. */
1237 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1238 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1239 
1240 	/*mii_mediachg(mii);*/
1241 	sf_ifmedia_upd(ifp);
1242 
1243 	ifp->if_flags |= IFF_RUNNING;
1244 	ifp->if_flags &= ~IFF_OACTIVE;
1245 
1246 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1247 
1248 	splx(s);
1249 
1250 	return;
1251 }
1252 
1253 static int sf_encap(sc, c, m_head)
1254 	struct sf_softc		*sc;
1255 	struct sf_tx_bufdesc_type0 *c;
1256 	struct mbuf		*m_head;
1257 {
1258 	int			frag = 0;
1259 	struct sf_frag		*f = NULL;
1260 	struct mbuf		*m;
1261 
1262 	m = m_head;
1263 
1264 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1265 		if (m->m_len != 0) {
1266 			if (frag == SF_MAXFRAGS)
1267 				break;
1268 			f = &c->sf_frags[frag];
1269 			if (frag == 0)
1270 				f->sf_pktlen = m_head->m_pkthdr.len;
1271 			f->sf_fraglen = m->m_len;
1272 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1273 			frag++;
1274 		}
1275 	}
1276 
1277 	if (m != NULL) {
1278 		struct mbuf		*m_new = NULL;
1279 
1280 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1281 		if (m_new == NULL) {
1282 			printf("sf%d: no memory for tx list", sc->sf_unit);
1283 			return(1);
1284 		}
1285 
1286 		if (m_head->m_pkthdr.len > MHLEN) {
1287 			MCLGET(m_new, MB_DONTWAIT);
1288 			if (!(m_new->m_flags & M_EXT)) {
1289 				m_freem(m_new);
1290 				printf("sf%d: no memory for tx list",
1291 				    sc->sf_unit);
1292 				return(1);
1293 			}
1294 		}
1295 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1296 		    mtod(m_new, caddr_t));
1297 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1298 		m_freem(m_head);
1299 		m_head = m_new;
1300 		f = &c->sf_frags[0];
1301 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1302 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1303 		frag = 1;
1304 	}
1305 
1306 	c->sf_mbuf = m_head;
1307 	c->sf_id = SF_TX_BUFDESC_ID;
1308 	c->sf_fragcnt = frag;
1309 	c->sf_intr = 1;
1310 	c->sf_caltcp = 0;
1311 	c->sf_crcen = 1;
1312 
1313 	return(0);
1314 }
1315 
1316 static void sf_start(ifp)
1317 	struct ifnet		*ifp;
1318 {
1319 	struct sf_softc		*sc;
1320 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1321 	struct mbuf		*m_head = NULL;
1322 	int			i, txprod;
1323 
1324 	sc = ifp->if_softc;
1325 
1326 	if (!sc->sf_link)
1327 		return;
1328 
1329 	if (ifp->if_flags & IFF_OACTIVE)
1330 		return;
1331 
1332 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1333 	i = SF_IDX_HI(txprod) >> 4;
1334 
1335 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1336 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1337 		sf_init(sc);
1338 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1339 		i = SF_IDX_HI(txprod) >> 4;
1340 	}
1341 
1342 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1343 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1344 			ifp->if_flags |= IFF_OACTIVE;
1345 			cur_tx = NULL;
1346 			break;
1347 		}
1348 		m_head = ifq_poll(&ifp->if_snd);
1349 		if (m_head == NULL)
1350 			break;
1351 
1352 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1353 		if (sf_encap(sc, cur_tx, m_head)) {
1354 			ifp->if_flags |= IFF_OACTIVE;
1355 			cur_tx = NULL;
1356 			break;
1357 		}
1358 		ifq_dequeue(&ifp->if_snd);
1359 		BPF_MTAP(ifp, cur_tx->sf_mbuf);
1360 
1361 		SF_INC(i, SF_TX_DLIST_CNT);
1362 		sc->sf_tx_cnt++;
1363 		/*
1364 		 * Don't get the TX DMA queue get too full.
1365 		 */
1366 		if (sc->sf_tx_cnt > 64)
1367 			break;
1368 	}
1369 
1370 	if (cur_tx == NULL)
1371 		return;
1372 
1373 	/* Transmit */
1374 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1375 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1376 	    ((i << 20) & 0xFFFF0000));
1377 
1378 	ifp->if_timer = 5;
1379 
1380 	return;
1381 }
1382 
1383 static void sf_stop(sc)
1384 	struct sf_softc		*sc;
1385 {
1386 	int			i;
1387 	struct ifnet		*ifp;
1388 
1389 	ifp = &sc->arpcom.ac_if;
1390 
1391 	callout_stop(&sc->sf_stat_timer);
1392 
1393 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1394 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1395 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1396 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1397 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1398 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1399 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1400 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1401 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1402 	sf_reset(sc);
1403 
1404 	sc->sf_link = 0;
1405 
1406 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1407 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1408 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1409 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1410 		}
1411 	}
1412 
1413 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1414 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1415 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1416 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1417 		}
1418 	}
1419 
1420 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1421 
1422 	return;
1423 }
1424 
1425 /*
1426  * Note: it is important that this function not be interrupted. We
1427  * use a two-stage register access scheme: if we are interrupted in
1428  * between setting the indirect address register and reading from the
1429  * indirect data register, the contents of the address register could
1430  * be changed out from under us.
1431  */
1432 static void sf_stats_update(xsc)
1433 	void			*xsc;
1434 {
1435 	struct sf_softc		*sc;
1436 	struct ifnet		*ifp;
1437 	struct mii_data		*mii;
1438 	struct sf_stats		stats;
1439 	u_int32_t		*ptr;
1440 	int			i, s;
1441 
1442 	s = splimp();
1443 
1444 	sc = xsc;
1445 	ifp = &sc->arpcom.ac_if;
1446 	mii = device_get_softc(sc->sf_miibus);
1447 
1448 	ptr = (u_int32_t *)&stats;
1449 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1450 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1451 		    (i + sizeof(u_int32_t)));
1452 
1453 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1454 		csr_write_4(sc, SF_STATS_BASE +
1455 		    (i + sizeof(u_int32_t)), 0);
1456 
1457 	ifp->if_collisions += stats.sf_tx_single_colls +
1458 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1459 
1460 	mii_tick(mii);
1461 	if (!sc->sf_link) {
1462 		mii_pollstat(mii);
1463 		if (mii->mii_media_status & IFM_ACTIVE &&
1464 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1465 			sc->sf_link++;
1466 			if (!ifq_is_empty(&ifp->if_snd))
1467 				sf_start(ifp);
1468 	}
1469 
1470 	callout_reset(&sc->sf_stat_timer, hz, sf_stats_update, sc);
1471 
1472 	splx(s);
1473 
1474 	return;
1475 }
1476 
1477 static void sf_watchdog(ifp)
1478 	struct ifnet		*ifp;
1479 {
1480 	struct sf_softc		*sc;
1481 
1482 	sc = ifp->if_softc;
1483 
1484 	ifp->if_oerrors++;
1485 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1486 
1487 	sf_stop(sc);
1488 	sf_reset(sc);
1489 	sf_init(sc);
1490 
1491 	if (!ifq_is_empty(&ifp->if_snd))
1492 		sf_start(ifp);
1493 
1494 	return;
1495 }
1496 
1497 static void sf_shutdown(dev)
1498 	device_t		dev;
1499 {
1500 	struct sf_softc		*sc;
1501 
1502 	sc = device_get_softc(dev);
1503 
1504 	sf_stop(sc);
1505 
1506 	return;
1507 }
1508