xref: /dflybsd-src/sys/dev/netif/sf/if_sf.c (revision 32832096b2b814ac219c4c4dc7fece32162b9ca4)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
33  * $DragonFly: src/sys/dev/netif/sf/if_sf.c,v 1.5 2003/11/20 22:07:30 dillon Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_sf.c,v 1.18.2.8 2001/12/16 15:46:07 luigi Exp $
36  */
37 
38 /*
39  * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
40  * Programming manual is available from:
41  * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Department of Electical Engineering
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
50  * controller designed with flexibility and reducing CPU load in mind.
51  * The Starfire offers high and low priority buffer queues, a
52  * producer/consumer index mechanism and several different buffer
53  * queue and completion queue descriptor types. Any one of a number
54  * of different driver designs can be used, depending on system and
55  * OS requirements. This driver makes use of type0 transmit frame
56  * descriptors (since BSD fragments packets across an mbuf chain)
57  * and two RX buffer queues prioritized on size (one queue for small
58  * frames that will fit into a single mbuf, another with full size
59  * mbuf clusters for everything else). The producer/consumer indexes
60  * and completion queues are also used.
61  *
62  * One downside to the Starfire has to do with alignment: buffer
63  * queues must be aligned on 256-byte boundaries, and receive buffers
64  * must be aligned on longword boundaries. The receive buffer alignment
65  * causes problems on the Alpha platform, where the packet payload
66  * should be longword aligned. There is no simple way around this.
67  *
68  * For receive filtering, the Starfire offers 16 perfect filter slots
69  * and a 512-bit hash table.
70  *
71  * The Starfire has no internal transceiver, relying instead on an
72  * external MII-based transceiver. Accessing registers on external
73  * PHYs is done through a special register map rather than with the
74  * usual bitbang MDIO method.
75  *
76  * Acesssing the registers on the Starfire is a little tricky. The
77  * Starfire has a 512K internal register space. When programmed for
78  * PCI memory mapped mode, the entire register space can be accessed
79  * directly. However in I/O space mode, only 256 bytes are directly
80  * mapped into PCI I/O space. The other registers can be accessed
81  * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
82  * registers inside the 256-byte I/O window.
83  */
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/socket.h>
92 
93 #include <net/if.h>
94 #include <net/if_arp.h>
95 #include <net/ethernet.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 
99 #include <net/bpf.h>
100 
101 #include <vm/vm.h>              /* for vtophys */
102 #include <vm/pmap.h>            /* for vtophys */
103 #include <machine/clock.h>      /* for DELAY */
104 #include <machine/bus_pio.h>
105 #include <machine/bus_memio.h>
106 #include <machine/bus.h>
107 #include <machine/resource.h>
108 #include <sys/bus.h>
109 #include <sys/rman.h>
110 
111 #include "../mii_layer/mii.h"
112 #include "../mii_layer/miivar.h"
113 
114 /* "controller miibus0" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116 
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 #define SF_USEIOSPACE
121 
122 #include "if_sfreg.h"
123 
124 static struct sf_type sf_devs[] = {
125 	{ AD_VENDORID, AD_DEVICEID_STARFIRE,
126 		"Adaptec AIC-6915 10/100BaseTX" },
127 	{ 0, 0, NULL }
128 };
129 
130 static int sf_probe		(device_t);
131 static int sf_attach		(device_t);
132 static int sf_detach		(device_t);
133 static void sf_intr		(void *);
134 static void sf_stats_update	(void *);
135 static void sf_rxeof		(struct sf_softc *);
136 static void sf_txeof		(struct sf_softc *);
137 static int sf_encap		(struct sf_softc *,
138 					struct sf_tx_bufdesc_type0 *,
139 					struct mbuf *);
140 static void sf_start		(struct ifnet *);
141 static int sf_ioctl		(struct ifnet *, u_long, caddr_t);
142 static void sf_init		(void *);
143 static void sf_stop		(struct sf_softc *);
144 static void sf_watchdog		(struct ifnet *);
145 static void sf_shutdown		(device_t);
146 static int sf_ifmedia_upd	(struct ifnet *);
147 static void sf_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
148 static void sf_reset		(struct sf_softc *);
149 static int sf_init_rx_ring	(struct sf_softc *);
150 static void sf_init_tx_ring	(struct sf_softc *);
151 static int sf_newbuf		(struct sf_softc *,
152 					struct sf_rx_bufdesc_type0 *,
153 					struct mbuf *);
154 static void sf_setmulti		(struct sf_softc *);
155 static int sf_setperf		(struct sf_softc *, int, caddr_t);
156 static int sf_sethash		(struct sf_softc *, caddr_t, int);
157 #ifdef notdef
158 static int sf_setvlan		(struct sf_softc *, int, u_int32_t);
159 #endif
160 
161 static u_int8_t sf_read_eeprom	(struct sf_softc *, int);
162 static u_int32_t sf_calchash	(caddr_t);
163 
164 static int sf_miibus_readreg	(device_t, int, int);
165 static int sf_miibus_writereg	(device_t, int, int, int);
166 static void sf_miibus_statchg	(device_t);
167 
168 static u_int32_t csr_read_4	(struct sf_softc *, int);
169 static void csr_write_4		(struct sf_softc *, int, u_int32_t);
170 static void sf_txthresh_adjust	(struct sf_softc *);
171 
172 #ifdef SF_USEIOSPACE
173 #define SF_RES			SYS_RES_IOPORT
174 #define SF_RID			SF_PCI_LOIO
175 #else
176 #define SF_RES			SYS_RES_MEMORY
177 #define SF_RID			SF_PCI_LOMEM
178 #endif
179 
180 static device_method_t sf_methods[] = {
181 	/* Device interface */
182 	DEVMETHOD(device_probe,		sf_probe),
183 	DEVMETHOD(device_attach,	sf_attach),
184 	DEVMETHOD(device_detach,	sf_detach),
185 	DEVMETHOD(device_shutdown,	sf_shutdown),
186 
187 	/* bus interface */
188 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
189 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
190 
191 	/* MII interface */
192 	DEVMETHOD(miibus_readreg,	sf_miibus_readreg),
193 	DEVMETHOD(miibus_writereg,	sf_miibus_writereg),
194 	DEVMETHOD(miibus_statchg,	sf_miibus_statchg),
195 
196 	{ 0, 0 }
197 };
198 
199 static driver_t sf_driver = {
200 	"sf",
201 	sf_methods,
202 	sizeof(struct sf_softc),
203 };
204 
205 static devclass_t sf_devclass;
206 
207 DECLARE_DUMMY_MODULE(if_sf);
208 DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
209 DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
210 
211 #define SF_SETBIT(sc, reg, x)	\
212 	csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
213 
214 #define SF_CLRBIT(sc, reg, x)				\
215 	csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
216 
217 static u_int32_t csr_read_4(sc, reg)
218 	struct sf_softc		*sc;
219 	int			reg;
220 {
221 	u_int32_t		val;
222 
223 #ifdef SF_USEIOSPACE
224 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
225 	val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
226 #else
227 	val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
228 #endif
229 
230 	return(val);
231 }
232 
233 static u_int8_t sf_read_eeprom(sc, reg)
234 	struct sf_softc		*sc;
235 	int			reg;
236 {
237 	u_int8_t		val;
238 
239 	val = (csr_read_4(sc, SF_EEADDR_BASE +
240 	    (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
241 
242 	return(val);
243 }
244 
245 static void csr_write_4(sc, reg, val)
246 	struct sf_softc		*sc;
247 	int			reg;
248 	u_int32_t		val;
249 {
250 #ifdef SF_USEIOSPACE
251 	CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
252 	CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
253 #else
254 	CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
255 #endif
256 	return;
257 }
258 
259 static u_int32_t sf_calchash(addr)
260 	caddr_t			addr;
261 {
262 	u_int32_t		crc, carry;
263 	int			i, j;
264 	u_int8_t		c;
265 
266 	/* Compute CRC for the address value. */
267 	crc = 0xFFFFFFFF; /* initial value */
268 
269 	for (i = 0; i < 6; i++) {
270 		c = *(addr + i);
271 		for (j = 0; j < 8; j++) {
272 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
273 			crc <<= 1;
274 			c >>= 1;
275 			if (carry)
276 				crc = (crc ^ 0x04c11db6) | carry;
277 		}
278 	}
279 
280 	/* return the filter bit position */
281 	return(crc >> 23 & 0x1FF);
282 }
283 
284 /*
285  * Copy the address 'mac' into the perfect RX filter entry at
286  * offset 'idx.' The perfect filter only has 16 entries so do
287  * some sanity tests.
288  */
289 static int sf_setperf(sc, idx, mac)
290 	struct sf_softc		*sc;
291 	int			idx;
292 	caddr_t			mac;
293 {
294 	u_int16_t		*p;
295 
296 	if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
297 		return(EINVAL);
298 
299 	if (mac == NULL)
300 		return(EINVAL);
301 
302 	p = (u_int16_t *)mac;
303 
304 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
305 	    (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
306 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307 	    (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
308 	csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309 	    (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
310 
311 	return(0);
312 }
313 
314 /*
315  * Set the bit in the 512-bit hash table that corresponds to the
316  * specified mac address 'mac.' If 'prio' is nonzero, update the
317  * priority hash table instead of the filter hash table.
318  */
319 static int sf_sethash(sc, mac, prio)
320 	struct sf_softc		*sc;
321 	caddr_t			mac;
322 	int			prio;
323 {
324 	u_int32_t		h = 0;
325 
326 	if (mac == NULL)
327 		return(EINVAL);
328 
329 	h = sf_calchash(mac);
330 
331 	if (prio) {
332 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
333 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
334 	} else {
335 		SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
336 		    (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
337 	}
338 
339 	return(0);
340 }
341 
342 #ifdef notdef
343 /*
344  * Set a VLAN tag in the receive filter.
345  */
346 static int sf_setvlan(sc, idx, vlan)
347 	struct sf_softc		*sc;
348 	int			idx;
349 	u_int32_t		vlan;
350 {
351 	if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
352 		return(EINVAL);
353 
354 	csr_write_4(sc, SF_RXFILT_HASH_BASE +
355 	    (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
356 
357 	return(0);
358 }
359 #endif
360 
361 static int sf_miibus_readreg(dev, phy, reg)
362 	device_t		dev;
363 	int			phy, reg;
364 {
365 	struct sf_softc		*sc;
366 	int			i;
367 	u_int32_t		val = 0;
368 
369 	sc = device_get_softc(dev);
370 
371 	for (i = 0; i < SF_TIMEOUT; i++) {
372 		val = csr_read_4(sc, SF_PHY_REG(phy, reg));
373 		if (val & SF_MII_DATAVALID)
374 			break;
375 	}
376 
377 	if (i == SF_TIMEOUT)
378 		return(0);
379 
380 	if ((val & 0x0000FFFF) == 0xFFFF)
381 		return(0);
382 
383 	return(val & 0x0000FFFF);
384 }
385 
386 static int sf_miibus_writereg(dev, phy, reg, val)
387 	device_t		dev;
388 	int			phy, reg, val;
389 {
390 	struct sf_softc		*sc;
391 	int			i;
392 	int			busy;
393 
394 	sc = device_get_softc(dev);
395 
396 	csr_write_4(sc, SF_PHY_REG(phy, reg), val);
397 
398 	for (i = 0; i < SF_TIMEOUT; i++) {
399 		busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
400 		if (!(busy & SF_MII_BUSY))
401 			break;
402 	}
403 
404 	return(0);
405 }
406 
407 static void sf_miibus_statchg(dev)
408 	device_t		dev;
409 {
410 	struct sf_softc		*sc;
411 	struct mii_data		*mii;
412 
413 	sc = device_get_softc(dev);
414 	mii = device_get_softc(sc->sf_miibus);
415 
416 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
417 		SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
418 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
419 	} else {
420 		SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
421 		csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
422 	}
423 
424 	return;
425 }
426 
427 static void sf_setmulti(sc)
428 	struct sf_softc		*sc;
429 {
430 	struct ifnet		*ifp;
431 	int			i;
432 	struct ifmultiaddr	*ifma;
433 	u_int8_t		dummy[] = { 0, 0, 0, 0, 0, 0 };
434 
435 	ifp = &sc->arpcom.ac_if;
436 
437 	/* First zot all the existing filters. */
438 	for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
439 		sf_setperf(sc, i, (char *)&dummy);
440 	for (i = SF_RXFILT_HASH_BASE;
441 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
442 		csr_write_4(sc, i, 0);
443 	SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
444 
445 	/* Now program new ones. */
446 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
447 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
448 	} else {
449 		i = 1;
450 		/* First find the tail of the list. */
451 		for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
452 					ifma = ifma->ifma_link.le_next) {
453 			if (ifma->ifma_link.le_next == NULL)
454 				break;
455 		}
456 		/* Now traverse the list backwards. */
457 		for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
458 			ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
459 			if (ifma->ifma_addr->sa_family != AF_LINK)
460 				continue;
461 			/*
462 			 * Program the first 15 multicast groups
463 			 * into the perfect filter. For all others,
464 			 * use the hash table.
465 			 */
466 			if (i < SF_RXFILT_PERFECT_CNT) {
467 				sf_setperf(sc, i,
468 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
469 				i++;
470 				continue;
471 			}
472 
473 			sf_sethash(sc,
474 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
475 		}
476 	}
477 
478 	return;
479 }
480 
481 /*
482  * Set media options.
483  */
484 static int sf_ifmedia_upd(ifp)
485 	struct ifnet		*ifp;
486 {
487 	struct sf_softc		*sc;
488 	struct mii_data		*mii;
489 
490 	sc = ifp->if_softc;
491 	mii = device_get_softc(sc->sf_miibus);
492 	sc->sf_link = 0;
493 	if (mii->mii_instance) {
494 		struct mii_softc        *miisc;
495 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
496 		    miisc = LIST_NEXT(miisc, mii_list))
497 			mii_phy_reset(miisc);
498 	}
499 	mii_mediachg(mii);
500 
501 	return(0);
502 }
503 
504 /*
505  * Report current media status.
506  */
507 static void sf_ifmedia_sts(ifp, ifmr)
508 	struct ifnet		*ifp;
509 	struct ifmediareq	*ifmr;
510 {
511 	struct sf_softc		*sc;
512 	struct mii_data		*mii;
513 
514 	sc = ifp->if_softc;
515 	mii = device_get_softc(sc->sf_miibus);
516 
517 	mii_pollstat(mii);
518 	ifmr->ifm_active = mii->mii_media_active;
519 	ifmr->ifm_status = mii->mii_media_status;
520 
521 	return;
522 }
523 
524 static int sf_ioctl(ifp, command, data)
525 	struct ifnet		*ifp;
526 	u_long			command;
527 	caddr_t			data;
528 {
529 	struct sf_softc		*sc = ifp->if_softc;
530 	struct ifreq		*ifr = (struct ifreq *) data;
531 	struct mii_data		*mii;
532 	int			s, error = 0;
533 
534 	s = splimp();
535 
536 	switch(command) {
537 	case SIOCSIFADDR:
538 	case SIOCGIFADDR:
539 	case SIOCSIFMTU:
540 		error = ether_ioctl(ifp, command, data);
541 		break;
542 	case SIOCSIFFLAGS:
543 		if (ifp->if_flags & IFF_UP) {
544 			if (ifp->if_flags & IFF_RUNNING &&
545 			    ifp->if_flags & IFF_PROMISC &&
546 			    !(sc->sf_if_flags & IFF_PROMISC)) {
547 				SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
548 			} else if (ifp->if_flags & IFF_RUNNING &&
549 			    !(ifp->if_flags & IFF_PROMISC) &&
550 			    sc->sf_if_flags & IFF_PROMISC) {
551 				SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
552 			} else if (!(ifp->if_flags & IFF_RUNNING))
553 				sf_init(sc);
554 		} else {
555 			if (ifp->if_flags & IFF_RUNNING)
556 				sf_stop(sc);
557 		}
558 		sc->sf_if_flags = ifp->if_flags;
559 		error = 0;
560 		break;
561 	case SIOCADDMULTI:
562 	case SIOCDELMULTI:
563 		sf_setmulti(sc);
564 		error = 0;
565 		break;
566 	case SIOCGIFMEDIA:
567 	case SIOCSIFMEDIA:
568 		mii = device_get_softc(sc->sf_miibus);
569 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
570 		break;
571 	default:
572 		error = EINVAL;
573 		break;
574 	}
575 
576 	(void)splx(s);
577 
578 	return(error);
579 }
580 
581 static void sf_reset(sc)
582 	struct sf_softc		*sc;
583 {
584 	register int		i;
585 
586 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
587 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
588 	DELAY(1000);
589 	SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
590 
591 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
592 
593 	for (i = 0; i < SF_TIMEOUT; i++) {
594 		DELAY(10);
595 		if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
596 			break;
597 	}
598 
599 	if (i == SF_TIMEOUT)
600 		printf("sf%d: reset never completed!\n", sc->sf_unit);
601 
602 	/* Wait a little while for the chip to get its brains in order. */
603 	DELAY(1000);
604 	return;
605 }
606 
607 /*
608  * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
609  * IDs against our list and return a device name if we find a match.
610  * We also check the subsystem ID so that we can identify exactly which
611  * NIC has been found, if possible.
612  */
613 static int sf_probe(dev)
614 	device_t		dev;
615 {
616 	struct sf_type		*t;
617 
618 	t = sf_devs;
619 
620 	while(t->sf_name != NULL) {
621 		if ((pci_get_vendor(dev) == t->sf_vid) &&
622 		    (pci_get_device(dev) == t->sf_did)) {
623 			switch((pci_read_config(dev,
624 			    SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
625 			case AD_SUBSYSID_62011_REV0:
626 			case AD_SUBSYSID_62011_REV1:
627 				device_set_desc(dev,
628 				    "Adaptec ANA-62011 10/100BaseTX");
629 				return(0);
630 				break;
631 			case AD_SUBSYSID_62022:
632 				device_set_desc(dev,
633 				    "Adaptec ANA-62022 10/100BaseTX");
634 				return(0);
635 				break;
636 			case AD_SUBSYSID_62044_REV0:
637 			case AD_SUBSYSID_62044_REV1:
638 				device_set_desc(dev,
639 				    "Adaptec ANA-62044 10/100BaseTX");
640 				return(0);
641 				break;
642 			case AD_SUBSYSID_62020:
643 				device_set_desc(dev,
644 				    "Adaptec ANA-62020 10/100BaseFX");
645 				return(0);
646 				break;
647 			case AD_SUBSYSID_69011:
648 				device_set_desc(dev,
649 				    "Adaptec ANA-69011 10/100BaseTX");
650 				return(0);
651 				break;
652 			default:
653 				device_set_desc(dev, t->sf_name);
654 				return(0);
655 				break;
656 			}
657 		}
658 		t++;
659 	}
660 
661 	return(ENXIO);
662 }
663 
664 /*
665  * Attach the interface. Allocate softc structures, do ifmedia
666  * setup and ethernet/BPF attach.
667  */
668 static int sf_attach(dev)
669 	device_t		dev;
670 {
671 	int			s, i;
672 	u_int32_t		command;
673 	struct sf_softc		*sc;
674 	struct ifnet		*ifp;
675 	int			unit, rid, error = 0;
676 
677 	s = splimp();
678 
679 	sc = device_get_softc(dev);
680 	unit = device_get_unit(dev);
681 	bzero(sc, sizeof(struct sf_softc));
682 
683 	/*
684 	 * Handle power management nonsense.
685 	 */
686 	command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
687 	if (command == 0x01) {
688 
689 		command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
690 		if (command & SF_PSTATE_MASK) {
691 			u_int32_t		iobase, membase, irq;
692 
693 			/* Save important PCI config data. */
694 			iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
695 			membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
696 			irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
697 
698 			/* Reset the power state. */
699 			printf("sf%d: chip is in D%d power mode "
700 			"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
701 			command &= 0xFFFFFFFC;
702 			pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
703 
704 			/* Restore PCI config data. */
705 			pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
706 			pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
707 			pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
708 		}
709 	}
710 
711 	/*
712 	 * Map control/status registers.
713 	 */
714 	command = pci_read_config(dev, PCIR_COMMAND, 4);
715 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
716 	pci_write_config(dev, PCIR_COMMAND, command, 4);
717 	command = pci_read_config(dev, PCIR_COMMAND, 4);
718 
719 #ifdef SF_USEIOSPACE
720 	if (!(command & PCIM_CMD_PORTEN)) {
721 		printf("sf%d: failed to enable I/O ports!\n", unit);
722 		error = ENXIO;
723 		goto fail;
724 	}
725 #else
726 	if (!(command & PCIM_CMD_MEMEN)) {
727 		printf("sf%d: failed to enable memory mapping!\n", unit);
728 		error = ENXIO;
729 		goto fail;
730 	}
731 #endif
732 
733 	rid = SF_RID;
734 	sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
735 	    0, ~0, 1, RF_ACTIVE);
736 
737 	if (sc->sf_res == NULL) {
738 		printf ("sf%d: couldn't map ports\n", unit);
739 		error = ENXIO;
740 		goto fail;
741 	}
742 
743 	sc->sf_btag = rman_get_bustag(sc->sf_res);
744 	sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
745 
746 	/* Allocate interrupt */
747 	rid = 0;
748 	sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
749 	    RF_SHAREABLE | RF_ACTIVE);
750 
751 	if (sc->sf_irq == NULL) {
752 		printf("sf%d: couldn't map interrupt\n", unit);
753 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
754 		error = ENXIO;
755 		goto fail;
756 	}
757 
758 	error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
759 	    sf_intr, sc, &sc->sf_intrhand);
760 
761 	if (error) {
762 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
763 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
764 		printf("sf%d: couldn't set up irq\n", unit);
765 		goto fail;
766 	}
767 
768 	callout_handle_init(&sc->sf_stat_ch);
769 
770 	/* Reset the adapter. */
771 	sf_reset(sc);
772 
773 	/*
774 	 * Get station address from the EEPROM.
775 	 */
776 	for (i = 0; i < ETHER_ADDR_LEN; i++)
777 		sc->arpcom.ac_enaddr[i] =
778 		    sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
779 
780 	/*
781 	 * An Adaptec chip was detected. Inform the world.
782 	 */
783 	printf("sf%d: Ethernet address: %6D\n", unit,
784 	    sc->arpcom.ac_enaddr, ":");
785 
786 	sc->sf_unit = unit;
787 
788 	/* Allocate the descriptor queues. */
789 	sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
790 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
791 
792 	if (sc->sf_ldata == NULL) {
793 		printf("sf%d: no memory for list buffers!\n", unit);
794 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
795 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
796 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
797 		error = ENXIO;
798 		goto fail;
799 	}
800 
801 	bzero(sc->sf_ldata, sizeof(struct sf_list_data));
802 
803 	/* Do MII setup. */
804 	if (mii_phy_probe(dev, &sc->sf_miibus,
805 	    sf_ifmedia_upd, sf_ifmedia_sts)) {
806 		printf("sf%d: MII without any phy!\n", sc->sf_unit);
807 		contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
808 		bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
809 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
810 		bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
811 		error = ENXIO;
812 		goto fail;
813 	}
814 
815 	ifp = &sc->arpcom.ac_if;
816 	ifp->if_softc = sc;
817 	ifp->if_unit = unit;
818 	ifp->if_name = "sf";
819 	ifp->if_mtu = ETHERMTU;
820 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
821 	ifp->if_ioctl = sf_ioctl;
822 	ifp->if_output = ether_output;
823 	ifp->if_start = sf_start;
824 	ifp->if_watchdog = sf_watchdog;
825 	ifp->if_init = sf_init;
826 	ifp->if_baudrate = 10000000;
827 	ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
828 
829 	/*
830 	 * Call MI attach routine.
831 	 */
832 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
833 
834 fail:
835 	splx(s);
836 	return(error);
837 }
838 
839 static int sf_detach(dev)
840 	device_t		dev;
841 {
842 	struct sf_softc		*sc;
843 	struct ifnet		*ifp;
844 	int			s;
845 
846 	s = splimp();
847 
848 	sc = device_get_softc(dev);
849 	ifp = &sc->arpcom.ac_if;
850 
851 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
852 	sf_stop(sc);
853 
854 	bus_generic_detach(dev);
855 	device_delete_child(dev, sc->sf_miibus);
856 
857 	bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
858 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
859 	bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
860 
861 	contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
862 
863 	splx(s);
864 
865 	return(0);
866 }
867 
868 static int sf_init_rx_ring(sc)
869 	struct sf_softc		*sc;
870 {
871 	struct sf_list_data	*ld;
872 	int			i;
873 
874 	ld = sc->sf_ldata;
875 
876 	bzero((char *)ld->sf_rx_dlist_big,
877 	    sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
878 	bzero((char *)ld->sf_rx_clist,
879 	    sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
880 
881 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
882 		if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
883 			return(ENOBUFS);
884 	}
885 
886 	return(0);
887 }
888 
889 static void sf_init_tx_ring(sc)
890 	struct sf_softc		*sc;
891 {
892 	struct sf_list_data	*ld;
893 	int			i;
894 
895 	ld = sc->sf_ldata;
896 
897 	bzero((char *)ld->sf_tx_dlist,
898 	    sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
899 	bzero((char *)ld->sf_tx_clist,
900 	    sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
901 
902 	for (i = 0; i < SF_TX_DLIST_CNT; i++)
903 		ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
904 	for (i = 0; i < SF_TX_CLIST_CNT; i++)
905 		ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
906 
907 	ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
908 	sc->sf_tx_cnt = 0;
909 
910 	return;
911 }
912 
913 static int sf_newbuf(sc, c, m)
914 	struct sf_softc		*sc;
915 	struct sf_rx_bufdesc_type0	*c;
916 	struct mbuf		*m;
917 {
918 	struct mbuf		*m_new = NULL;
919 
920 	if (m == NULL) {
921 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
922 		if (m_new == NULL)
923 			return(ENOBUFS);
924 
925 		MCLGET(m_new, M_DONTWAIT);
926 		if (!(m_new->m_flags & M_EXT)) {
927 			m_freem(m_new);
928 			return(ENOBUFS);
929 		}
930 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
931 	} else {
932 		m_new = m;
933 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
934 		m_new->m_data = m_new->m_ext.ext_buf;
935 	}
936 
937 	m_adj(m_new, sizeof(u_int64_t));
938 
939 	c->sf_mbuf = m_new;
940 	c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
941 	c->sf_valid = 1;
942 
943 	return(0);
944 }
945 
946 /*
947  * The starfire is programmed to use 'normal' mode for packet reception,
948  * which means we use the consumer/producer model for both the buffer
949  * descriptor queue and the completion descriptor queue. The only problem
950  * with this is that it involves a lot of register accesses: we have to
951  * read the RX completion consumer and producer indexes and the RX buffer
952  * producer index, plus the RX completion consumer and RX buffer producer
953  * indexes have to be updated. It would have been easier if Adaptec had
954  * put each index in a separate register, especially given that the damn
955  * NIC has a 512K register space.
956  *
957  * In spite of all the lovely features that Adaptec crammed into the 6915,
958  * it is marred by one truly stupid design flaw, which is that receive
959  * buffer addresses must be aligned on a longword boundary. This forces
960  * the packet payload to be unaligned, which is suboptimal on the x86 and
961  * completely unuseable on the Alpha. Our only recourse is to copy received
962  * packets into properly aligned buffers before handing them off.
963  */
964 
965 static void sf_rxeof(sc)
966 	struct sf_softc		*sc;
967 {
968 	struct ether_header	*eh;
969 	struct mbuf		*m;
970 	struct ifnet		*ifp;
971 	struct sf_rx_bufdesc_type0	*desc;
972 	struct sf_rx_cmpdesc_type3	*cur_rx;
973 	u_int32_t		rxcons, rxprod;
974 	int			cmpprodidx, cmpconsidx, bufprodidx;
975 
976 	ifp = &sc->arpcom.ac_if;
977 
978 	rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
979 	rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
980 	cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
981 	cmpconsidx = SF_IDX_LO(rxcons);
982 	bufprodidx = SF_IDX_LO(rxprod);
983 
984 	while (cmpconsidx != cmpprodidx) {
985 		struct mbuf		*m0;
986 
987 		cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
988 		desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
989 		m = desc->sf_mbuf;
990 		SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
991 		SF_INC(bufprodidx, SF_RX_DLIST_CNT);
992 
993 		if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
994 			ifp->if_ierrors++;
995 			sf_newbuf(sc, desc, m);
996 			continue;
997 		}
998 
999 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1000 		    cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
1001 		sf_newbuf(sc, desc, m);
1002 		if (m0 == NULL) {
1003 			ifp->if_ierrors++;
1004 			continue;
1005 		}
1006 		m_adj(m0, ETHER_ALIGN);
1007 		m = m0;
1008 
1009 		eh = mtod(m, struct ether_header *);
1010 		ifp->if_ipackets++;
1011 
1012 		/* Remove header from mbuf and pass it on. */
1013 		m_adj(m, sizeof(struct ether_header));
1014 		ether_input(ifp, eh, m);
1015 	}
1016 
1017 	csr_write_4(sc, SF_CQ_CONSIDX,
1018 	    (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1019 	csr_write_4(sc, SF_RXDQ_PTR_Q1,
1020 	    (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1021 
1022 	return;
1023 }
1024 
1025 /*
1026  * Read the transmit status from the completion queue and release
1027  * mbufs. Note that the buffer descriptor index in the completion
1028  * descriptor is an offset from the start of the transmit buffer
1029  * descriptor list in bytes. This is important because the manual
1030  * gives the impression that it should match the producer/consumer
1031  * index, which is the offset in 8 byte blocks.
1032  */
1033 static void sf_txeof(sc)
1034 	struct sf_softc		*sc;
1035 {
1036 	int			txcons, cmpprodidx, cmpconsidx;
1037 	struct sf_tx_cmpdesc_type1 *cur_cmp;
1038 	struct sf_tx_bufdesc_type0 *cur_tx;
1039 	struct ifnet		*ifp;
1040 
1041 	ifp = &sc->arpcom.ac_if;
1042 
1043 	txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1044 	cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1045 	cmpconsidx = SF_IDX_HI(txcons);
1046 
1047 	while (cmpconsidx != cmpprodidx) {
1048 		cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1049 		cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1050 
1051 		if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1052 			ifp->if_opackets++;
1053 		else {
1054 			if (cur_cmp->sf_txstat & SF_TXSTAT_TX_UNDERRUN)
1055 				sf_txthresh_adjust(sc);
1056 			ifp->if_oerrors++;
1057 		}
1058 
1059 		sc->sf_tx_cnt--;
1060 		if (cur_tx->sf_mbuf != NULL) {
1061 			m_freem(cur_tx->sf_mbuf);
1062 			cur_tx->sf_mbuf = NULL;
1063 		} else
1064 			break;
1065 		SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1066 	}
1067 
1068 	ifp->if_timer = 0;
1069 	ifp->if_flags &= ~IFF_OACTIVE;
1070 
1071 	csr_write_4(sc, SF_CQ_CONSIDX,
1072 	    (txcons & ~SF_CQ_CONSIDX_TXQ) |
1073 	    ((cmpconsidx << 16) & 0xFFFF0000));
1074 
1075 	return;
1076 }
1077 
1078 static void sf_txthresh_adjust(sc)
1079 	struct sf_softc		*sc;
1080 {
1081 	u_int32_t		txfctl;
1082 	u_int8_t		txthresh;
1083 
1084 	txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
1085 	txthresh = txfctl & SF_TXFRMCTL_TXTHRESH;
1086 	if (txthresh < 0xFF) {
1087 		txthresh++;
1088 		txfctl &= ~SF_TXFRMCTL_TXTHRESH;
1089 		txfctl |= txthresh;
1090 #ifdef DIAGNOSTIC
1091 		printf("sf%d: tx underrun, increasing "
1092 		    "tx threshold to %d bytes\n",
1093 		    sc->sf_unit, txthresh * 4);
1094 #endif
1095 		csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
1096 	}
1097 
1098 	return;
1099 }
1100 
1101 static void sf_intr(arg)
1102 	void			*arg;
1103 {
1104 	struct sf_softc		*sc;
1105 	struct ifnet		*ifp;
1106 	u_int32_t		status;
1107 
1108 	sc = arg;
1109 	ifp = &sc->arpcom.ac_if;
1110 
1111 	if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1112 		return;
1113 
1114 	/* Disable interrupts. */
1115 	csr_write_4(sc, SF_IMR, 0x00000000);
1116 
1117 	for (;;) {
1118 		status = csr_read_4(sc, SF_ISR);
1119 		if (status)
1120 			csr_write_4(sc, SF_ISR, status);
1121 
1122 		if (!(status & SF_INTRS))
1123 			break;
1124 
1125 		if (status & SF_ISR_RXDQ1_DMADONE)
1126 			sf_rxeof(sc);
1127 
1128 		if (status & SF_ISR_TX_TXDONE ||
1129 		    status & SF_ISR_TX_DMADONE ||
1130 		    status & SF_ISR_TX_QUEUEDONE)
1131 			sf_txeof(sc);
1132 
1133 		if (status & SF_ISR_TX_LOFIFO)
1134 			sf_txthresh_adjust(sc);
1135 
1136 		if (status & SF_ISR_ABNORMALINTR) {
1137 			if (status & SF_ISR_STATSOFLOW) {
1138 				untimeout(sf_stats_update, sc,
1139 				    sc->sf_stat_ch);
1140 				sf_stats_update(sc);
1141 			} else
1142 				sf_init(sc);
1143 		}
1144 	}
1145 
1146 	/* Re-enable interrupts. */
1147 	csr_write_4(sc, SF_IMR, SF_INTRS);
1148 
1149 	if (ifp->if_snd.ifq_head != NULL)
1150 		sf_start(ifp);
1151 
1152 	return;
1153 }
1154 
1155 static void sf_init(xsc)
1156 	void			*xsc;
1157 {
1158 	struct sf_softc		*sc;
1159 	struct ifnet		*ifp;
1160 	struct mii_data		*mii;
1161 	int			i, s;
1162 
1163 	s = splimp();
1164 
1165 	sc = xsc;
1166 	ifp = &sc->arpcom.ac_if;
1167 	mii = device_get_softc(sc->sf_miibus);
1168 
1169 	sf_stop(sc);
1170 	sf_reset(sc);
1171 
1172 	/* Init all the receive filter registers */
1173 	for (i = SF_RXFILT_PERFECT_BASE;
1174 	    i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1175 		csr_write_4(sc, i, 0);
1176 
1177 	/* Empty stats counter registers. */
1178 	for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1179 		csr_write_4(sc, SF_STATS_BASE +
1180 		    (i + sizeof(u_int32_t)), 0);
1181 
1182 	/* Init our MAC address */
1183 	csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1184 	csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1185 	sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1186 
1187 	if (sf_init_rx_ring(sc) == ENOBUFS) {
1188 		printf("sf%d: initialization failed: no "
1189 		    "memory for rx buffers\n", sc->sf_unit);
1190 		(void)splx(s);
1191 		return;
1192 	}
1193 
1194 	sf_init_tx_ring(sc);
1195 
1196 	csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1197 
1198 	/* If we want promiscuous mode, set the allframes bit. */
1199 	if (ifp->if_flags & IFF_PROMISC) {
1200 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1201 	} else {
1202 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1203 	}
1204 
1205 	if (ifp->if_flags & IFF_BROADCAST) {
1206 		SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1207 	} else {
1208 		SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1209 	}
1210 
1211 	/*
1212 	 * Load the multicast filter.
1213 	 */
1214 	sf_setmulti(sc);
1215 
1216 	/* Init the completion queue indexes */
1217 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1218 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1219 
1220 	/* Init the RX completion queue */
1221 	csr_write_4(sc, SF_RXCQ_CTL_1,
1222 	    vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1223 	SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1224 
1225 	/* Init RX DMA control. */
1226 	SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1227 
1228 	/* Init the RX buffer descriptor queue. */
1229 	csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1230 	    vtophys(sc->sf_ldata->sf_rx_dlist_big));
1231 	csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1232 	csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1233 
1234 	/* Init the TX completion queue */
1235 	csr_write_4(sc, SF_TXCQ_CTL,
1236 	    vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1237 
1238 	/* Init the TX buffer descriptor queue. */
1239 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1240 		vtophys(sc->sf_ldata->sf_tx_dlist));
1241 	SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1242 	csr_write_4(sc, SF_TXDQ_CTL,
1243 	    SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1244 	SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1245 
1246 	/* Enable autopadding of short TX frames. */
1247 	SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1248 
1249 	/* Enable interrupts. */
1250 	csr_write_4(sc, SF_IMR, SF_INTRS);
1251 	SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1252 
1253 	/* Enable the RX and TX engines. */
1254 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1255 	SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1256 
1257 	/*mii_mediachg(mii);*/
1258 	sf_ifmedia_upd(ifp);
1259 
1260 	ifp->if_flags |= IFF_RUNNING;
1261 	ifp->if_flags &= ~IFF_OACTIVE;
1262 
1263 	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1264 
1265 	splx(s);
1266 
1267 	return;
1268 }
1269 
1270 static int sf_encap(sc, c, m_head)
1271 	struct sf_softc		*sc;
1272 	struct sf_tx_bufdesc_type0 *c;
1273 	struct mbuf		*m_head;
1274 {
1275 	int			frag = 0;
1276 	struct sf_frag		*f = NULL;
1277 	struct mbuf		*m;
1278 
1279 	m = m_head;
1280 
1281 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1282 		if (m->m_len != 0) {
1283 			if (frag == SF_MAXFRAGS)
1284 				break;
1285 			f = &c->sf_frags[frag];
1286 			if (frag == 0)
1287 				f->sf_pktlen = m_head->m_pkthdr.len;
1288 			f->sf_fraglen = m->m_len;
1289 			f->sf_addr = vtophys(mtod(m, vm_offset_t));
1290 			frag++;
1291 		}
1292 	}
1293 
1294 	if (m != NULL) {
1295 		struct mbuf		*m_new = NULL;
1296 
1297 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1298 		if (m_new == NULL) {
1299 			printf("sf%d: no memory for tx list", sc->sf_unit);
1300 			return(1);
1301 		}
1302 
1303 		if (m_head->m_pkthdr.len > MHLEN) {
1304 			MCLGET(m_new, M_DONTWAIT);
1305 			if (!(m_new->m_flags & M_EXT)) {
1306 				m_freem(m_new);
1307 				printf("sf%d: no memory for tx list",
1308 				    sc->sf_unit);
1309 				return(1);
1310 			}
1311 		}
1312 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1313 		    mtod(m_new, caddr_t));
1314 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1315 		m_freem(m_head);
1316 		m_head = m_new;
1317 		f = &c->sf_frags[0];
1318 		f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1319 		f->sf_addr = vtophys(mtod(m_head, caddr_t));
1320 		frag = 1;
1321 	}
1322 
1323 	c->sf_mbuf = m_head;
1324 	c->sf_id = SF_TX_BUFDESC_ID;
1325 	c->sf_fragcnt = frag;
1326 	c->sf_intr = 1;
1327 	c->sf_caltcp = 0;
1328 	c->sf_crcen = 1;
1329 
1330 	return(0);
1331 }
1332 
1333 static void sf_start(ifp)
1334 	struct ifnet		*ifp;
1335 {
1336 	struct sf_softc		*sc;
1337 	struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1338 	struct mbuf		*m_head = NULL;
1339 	int			i, txprod;
1340 
1341 	sc = ifp->if_softc;
1342 
1343 	if (!sc->sf_link && ifp->if_snd.ifq_len < 10)
1344 		return;
1345 
1346 	if (ifp->if_flags & IFF_OACTIVE)
1347 		return;
1348 
1349 	txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1350 	i = SF_IDX_HI(txprod) >> 4;
1351 
1352 	if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1353 		printf("sf%d: TX ring full, resetting\n", sc->sf_unit);
1354 		sf_init(sc);
1355 		txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1356 		i = SF_IDX_HI(txprod) >> 4;
1357 	}
1358 
1359 	while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1360 		if (sc->sf_tx_cnt >= (SF_TX_DLIST_CNT - 5)) {
1361 			ifp->if_flags |= IFF_OACTIVE;
1362 			cur_tx = NULL;
1363 			break;
1364 		}
1365 		IF_DEQUEUE(&ifp->if_snd, m_head);
1366 		if (m_head == NULL)
1367 			break;
1368 
1369 		cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1370 		if (sf_encap(sc, cur_tx, m_head)) {
1371 			IF_PREPEND(&ifp->if_snd, m_head);
1372 			ifp->if_flags |= IFF_OACTIVE;
1373 			cur_tx = NULL;
1374 			break;
1375 		}
1376 
1377 
1378 		/*
1379 		 * If there's a BPF listener, bounce a copy of this frame
1380 		 * to him.
1381 		 */
1382 		if (ifp->if_bpf)
1383 			bpf_mtap(ifp, m_head);
1384 
1385 		SF_INC(i, SF_TX_DLIST_CNT);
1386 		sc->sf_tx_cnt++;
1387 		/*
1388 		 * Don't get the TX DMA queue get too full.
1389 		 */
1390 		if (sc->sf_tx_cnt > 64)
1391 			break;
1392 	}
1393 
1394 	if (cur_tx == NULL)
1395 		return;
1396 
1397 	/* Transmit */
1398 	csr_write_4(sc, SF_TXDQ_PRODIDX,
1399 	    (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1400 	    ((i << 20) & 0xFFFF0000));
1401 
1402 	ifp->if_timer = 5;
1403 
1404 	return;
1405 }
1406 
1407 static void sf_stop(sc)
1408 	struct sf_softc		*sc;
1409 {
1410 	int			i;
1411 	struct ifnet		*ifp;
1412 
1413 	ifp = &sc->arpcom.ac_if;
1414 
1415 	untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1416 
1417 	csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1418 	csr_write_4(sc, SF_CQ_CONSIDX, 0);
1419 	csr_write_4(sc, SF_CQ_PRODIDX, 0);
1420 	csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1421 	csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1422 	csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1423 	csr_write_4(sc, SF_TXCQ_CTL, 0);
1424 	csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1425 	csr_write_4(sc, SF_TXDQ_CTL, 0);
1426 	sf_reset(sc);
1427 
1428 	sc->sf_link = 0;
1429 
1430 	for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1431 		if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1432 			m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1433 			sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1434 		}
1435 	}
1436 
1437 	for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1438 		if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1439 			m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1440 			sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1441 		}
1442 	}
1443 
1444 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1445 
1446 	return;
1447 }
1448 
1449 /*
1450  * Note: it is important that this function not be interrupted. We
1451  * use a two-stage register access scheme: if we are interrupted in
1452  * between setting the indirect address register and reading from the
1453  * indirect data register, the contents of the address register could
1454  * be changed out from under us.
1455  */
1456 static void sf_stats_update(xsc)
1457 	void			*xsc;
1458 {
1459 	struct sf_softc		*sc;
1460 	struct ifnet		*ifp;
1461 	struct mii_data		*mii;
1462 	struct sf_stats		stats;
1463 	u_int32_t		*ptr;
1464 	int			i, s;
1465 
1466 	s = splimp();
1467 
1468 	sc = xsc;
1469 	ifp = &sc->arpcom.ac_if;
1470 	mii = device_get_softc(sc->sf_miibus);
1471 
1472 	ptr = (u_int32_t *)&stats;
1473 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1474 		ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1475 		    (i + sizeof(u_int32_t)));
1476 
1477 	for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1478 		csr_write_4(sc, SF_STATS_BASE +
1479 		    (i + sizeof(u_int32_t)), 0);
1480 
1481 	ifp->if_collisions += stats.sf_tx_single_colls +
1482 	    stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1483 
1484 	mii_tick(mii);
1485 	if (!sc->sf_link) {
1486 		mii_pollstat(mii);
1487 		if (mii->mii_media_status & IFM_ACTIVE &&
1488 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1489 			sc->sf_link++;
1490 			if (ifp->if_snd.ifq_head != NULL)
1491 				sf_start(ifp);
1492 	}
1493 
1494 	sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1495 
1496 	splx(s);
1497 
1498 	return;
1499 }
1500 
1501 static void sf_watchdog(ifp)
1502 	struct ifnet		*ifp;
1503 {
1504 	struct sf_softc		*sc;
1505 
1506 	sc = ifp->if_softc;
1507 
1508 	ifp->if_oerrors++;
1509 	printf("sf%d: watchdog timeout\n", sc->sf_unit);
1510 
1511 	sf_stop(sc);
1512 	sf_reset(sc);
1513 	sf_init(sc);
1514 
1515 	if (ifp->if_snd.ifq_head != NULL)
1516 		sf_start(ifp);
1517 
1518 	return;
1519 }
1520 
1521 static void sf_shutdown(dev)
1522 	device_t		dev;
1523 {
1524 	struct sf_softc		*sc;
1525 
1526 	sc = device_get_softc(dev);
1527 
1528 	sf_stop(sc);
1529 
1530 	return;
1531 }
1532