xref: /dflybsd-src/sys/dev/netif/rl/if_rl.c (revision fda7d3889b1114d34ad3a52a7257a2b80fe24e4c)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  */
34 
35 /*
36  * RealTek 8129/8139 PCI NIC driver
37  *
38  * Supports several extremely cheap PCI 10/100 adapters based on
39  * the RealTek chipset. Datasheets can be obtained from
40  * www.realtek.com.tw.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85 
86 #include "opt_ifpoll.h"
87 
88 #include <sys/param.h>
89 #include <sys/endian.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/module.h>
96 #include <sys/socket.h>
97 #include <sys/serialize.h>
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 #include <sys/thread2.h>
101 #include <sys/interrupt.h>
102 
103 #include <net/if.h>
104 #include <net/ifq_var.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_poll.h>
110 
111 #include <net/bpf.h>
112 
113 #include <dev/netif/mii_layer/mii.h>
114 #include <dev/netif/mii_layer/miivar.h>
115 
116 #include <bus/pci/pcidevs.h>
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Default to using PIO access for this driver. On SMP systems,
125  * there appear to be problems with memory mapped mode: it looks like
126  * doing too many memory mapped access back to back in rapid succession
127  * can hang the bus. I'm inclined to blame this on crummy design/construction
128  * on the part of RealTek. Memory mapped mode does appear to work on
129  * uniprocessor systems though.
130  */
131 #define RL_USEIOSPACE
132 
133 #include <dev/netif/rl/if_rlreg.h>
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 static struct rl_type {
139 	uint16_t	 rl_vid;
140 	uint16_t	 rl_did;
141 	const char	*rl_name;
142 } rl_devs[] = {
143 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8129,
144 		"RealTek 8129 10/100BaseTX" },
145 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
146 		"RealTek 8139 10/100BaseTX" },
147 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139B,
148 		"RealTek 8139 10/100BaseTX CardBus" },
149 	{ PCI_VENDOR_ACCTON, PCI_PRODUCT_ACCTON_MPX5030,
150 		"Accton MPX 5030/5038 10/100BaseTX" },
151 	{ PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_8139,
152 		"Delta Electronics 8139 10/100BaseTX" },
153 	{ PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_8139,
154 		"Addtron Technology 8139 10/100BaseTX" },
155 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE530TXPLUS,
156 		"D-Link DFE-530TX+ 10/100BaseTX" },
157 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE690TXD,
158 		"D-Link DFE-690TX 10/100BaseTX" },
159 	{ PCI_VENDOR_NORTEL, PCI_PRODUCT_NORTEL_BAYSTACK_21,
160 		"Nortel Networks 10/100BaseTX" },
161 	{ PCI_VENDOR_PEPPERCON, PCI_PRODUCT_PEPPERCON_ROLF,
162 		"Peppercon AG ROL/F" },
163 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CB_TXD,
164 		"Corega FEther CB-TXD" },
165 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_2CB_TXD,
166 		"Corega FEtherII CB-TXD" },
167 	{ PCI_VENDOR_PLANEX, PCI_PRODUCT_PLANEX_FNW_3800_TX,
168 		"Planex FNW-3800-TX" },
169 	{ 0, 0, NULL }
170 };
171 
172 static int	rl_probe(device_t);
173 static int	rl_attach(device_t);
174 static int	rl_detach(device_t);
175 
176 static int	rl_encap(struct rl_softc *, struct mbuf * );
177 
178 static void	rl_rxeof(struct rl_softc *);
179 static void	rl_txeof(struct rl_softc *);
180 static void	rl_intr(void *);
181 static void	rl_tick(void *);
182 static void	rl_start(struct ifnet *);
183 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
184 static void	rl_init(void *);
185 static void	rl_stop	(struct rl_softc *);
186 static void	rl_watchdog(struct ifnet *);
187 static int	rl_suspend(device_t);
188 static int	rl_resume(device_t);
189 static void	rl_shutdown(device_t);
190 static int	rl_ifmedia_upd(struct ifnet *);
191 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
192 
193 static void	rl_eeprom_putbyte(struct rl_softc *, int);
194 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
195 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
196 static void	rl_mii_sync(struct rl_softc *);
197 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
198 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
199 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
200 
201 static int	rl_miibus_readreg(device_t, int, int);
202 static int	rl_miibus_writereg(device_t, int, int, int);
203 static void	rl_miibus_statchg(device_t);
204 
205 static void	rl_setmulti(struct rl_softc *);
206 static void	rl_reset(struct rl_softc *);
207 static void	rl_list_tx_init(struct rl_softc *);
208 
209 #ifdef IFPOLL_ENABLE
210 static void	rl_npoll(struct ifnet *, struct ifpoll_info *);
211 static void	rl_npoll_compat(struct ifnet *, void *, int);
212 #endif
213 
214 static int	rl_dma_alloc(struct rl_softc *);
215 static void	rl_dma_free(struct rl_softc *);
216 
217 #ifdef RL_USEIOSPACE
218 #define	RL_RES			SYS_RES_IOPORT
219 #define	RL_RID			RL_PCI_LOIO
220 #else
221 #define	RL_RES			SYS_RES_MEMORY
222 #define	RL_RID			RL_PCI_LOMEM
223 #endif
224 
225 static device_method_t rl_methods[] = {
226 	/* Device interface */
227 	DEVMETHOD(device_probe,		rl_probe),
228 	DEVMETHOD(device_attach,	rl_attach),
229 	DEVMETHOD(device_detach,	rl_detach),
230 	DEVMETHOD(device_suspend,	rl_suspend),
231 	DEVMETHOD(device_resume,	rl_resume),
232 	DEVMETHOD(device_shutdown,	rl_shutdown),
233 
234 	/* bus interface */
235 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
236 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
237 
238 	/* MII interface */
239 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
240 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
241 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
242 
243 	{ 0, 0 }
244 };
245 
246 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
247 static devclass_t rl_devclass;
248 
249 DECLARE_DUMMY_MODULE(if_rl);
250 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, NULL, NULL);
251 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, NULL, NULL);
252 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, NULL, NULL);
253 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
254 
255 #define EE_SET(x)					\
256 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
257 
258 #define EE_CLR(x)					\
259 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
260 
261 /*
262  * Send a read command and address to the EEPROM, check for ACK.
263  */
264 static void
265 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
266 {
267 	int d, i;
268 
269 	d = addr | sc->rl_eecmd_read;
270 
271 	/*
272 	 * Feed in each bit and strobe the clock.
273 	 */
274 	for (i = 0x400; i; i >>= 1) {
275 		if (d & i)
276 			EE_SET(RL_EE_DATAIN);
277 		else
278 			EE_CLR(RL_EE_DATAIN);
279 		DELAY(100);
280 		EE_SET(RL_EE_CLK);
281 		DELAY(150);
282 		EE_CLR(RL_EE_CLK);
283 		DELAY(100);
284 	}
285 }
286 
287 /*
288  * Read a word of data stored in the EEPROM at address 'addr.'
289  */
290 static void
291 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
292 {
293 	int i;
294 	uint16_t word = 0;
295 
296 	/* Enter EEPROM access mode. */
297 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
298 
299 	/*
300 	 * Send address of word we want to read.
301 	 */
302 	rl_eeprom_putbyte(sc, addr);
303 
304 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
305 
306 	/*
307 	 * Start reading bits from EEPROM.
308 	 */
309 	for (i = 0x8000; i; i >>= 1) {
310 		EE_SET(RL_EE_CLK);
311 		DELAY(100);
312 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
313 			word |= i;
314 		EE_CLR(RL_EE_CLK);
315 		DELAY(100);
316 	}
317 
318 	/* Turn off EEPROM access mode. */
319 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
320 
321 	*dest = word;
322 }
323 
324 /*
325  * Read a sequence of words from the EEPROM.
326  */
327 static void
328 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
329 {
330 	int i;
331 	u_int16_t word = 0, *ptr;
332 
333 	for (i = 0; i < cnt; i++) {
334 		rl_eeprom_getword(sc, off + i, &word);
335 		ptr = (u_int16_t *)(dest + (i * 2));
336 		if (swap)
337 			*ptr = ntohs(word);
338 		else
339 			*ptr = word;
340 	}
341 }
342 
343 
344 /*
345  * MII access routines are provided for the 8129, which
346  * doesn't have a built-in PHY. For the 8139, we fake things
347  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
348  * direct access PHY registers.
349  */
350 #define MII_SET(x)							\
351 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
352 
353 #define MII_CLR(x)							\
354 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
355 
356 /*
357  * Sync the PHYs by setting data bit and strobing the clock 32 times.
358  */
359 static void
360 rl_mii_sync(struct rl_softc *sc)
361 {
362 	int i;
363 
364 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
365 
366 	for (i = 0; i < 32; i++) {
367 		MII_SET(RL_MII_CLK);
368 		DELAY(1);
369 		MII_CLR(RL_MII_CLK);
370 		DELAY(1);
371 	}
372 }
373 
374 /*
375  * Clock a series of bits through the MII.
376  */
377 static void
378 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
379 {
380 	int i;
381 
382 	MII_CLR(RL_MII_CLK);
383 
384 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
385 		if (bits & i)
386 			MII_SET(RL_MII_DATAOUT);
387 		else
388 			MII_CLR(RL_MII_DATAOUT);
389 		DELAY(1);
390 		MII_CLR(RL_MII_CLK);
391 		DELAY(1);
392 		MII_SET(RL_MII_CLK);
393 	}
394 }
395 
396 /*
397  * Read an PHY register through the MII.
398  */
399 static int
400 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
401 {
402 	int ack, i;
403 
404 	/*
405 	 * Set up frame for RX.
406 	 */
407 	frame->mii_stdelim = RL_MII_STARTDELIM;
408 	frame->mii_opcode = RL_MII_READOP;
409 	frame->mii_turnaround = 0;
410 	frame->mii_data = 0;
411 
412 	CSR_WRITE_2(sc, RL_MII, 0);
413 
414 	/*
415  	 * Turn on data xmit.
416 	 */
417 	MII_SET(RL_MII_DIR);
418 
419 	rl_mii_sync(sc);
420 
421 	/*
422 	 * Send command/address info.
423 	 */
424 	rl_mii_send(sc, frame->mii_stdelim, 2);
425 	rl_mii_send(sc, frame->mii_opcode, 2);
426 	rl_mii_send(sc, frame->mii_phyaddr, 5);
427 	rl_mii_send(sc, frame->mii_regaddr, 5);
428 
429 	/* Idle bit */
430 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
431 	DELAY(1);
432 	MII_SET(RL_MII_CLK);
433 	DELAY(1);
434 
435 	/* Turn off xmit. */
436 	MII_CLR(RL_MII_DIR);
437 
438 	/* Check for ack */
439 	MII_CLR(RL_MII_CLK);
440 	DELAY(1);
441 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
442 	MII_SET(RL_MII_CLK);
443 	DELAY(1);
444 
445 	/*
446 	 * Now try reading data bits. If the ack failed, we still
447 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
448 	 */
449 	if (ack) {
450 		for(i = 0; i < 16; i++) {
451 			MII_CLR(RL_MII_CLK);
452 			DELAY(1);
453 			MII_SET(RL_MII_CLK);
454 			DELAY(1);
455 		}
456 	} else {
457 		for (i = 0x8000; i; i >>= 1) {
458 			MII_CLR(RL_MII_CLK);
459 			DELAY(1);
460 			if (!ack) {
461 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
462 					frame->mii_data |= i;
463 				DELAY(1);
464 			}
465 			MII_SET(RL_MII_CLK);
466 			DELAY(1);
467 		}
468 	}
469 
470 	MII_CLR(RL_MII_CLK);
471 	DELAY(1);
472 	MII_SET(RL_MII_CLK);
473 	DELAY(1);
474 
475 	return(ack ? 1 : 0);
476 }
477 
478 /*
479  * Write to a PHY register through the MII.
480  */
481 static int
482 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
483 {
484 	/*
485 	 * Set up frame for TX.
486 	 */
487 	frame->mii_stdelim = RL_MII_STARTDELIM;
488 	frame->mii_opcode = RL_MII_WRITEOP;
489 	frame->mii_turnaround = RL_MII_TURNAROUND;
490 
491 	/*
492  	 * Turn on data output.
493 	 */
494 	MII_SET(RL_MII_DIR);
495 
496 	rl_mii_sync(sc);
497 
498 	rl_mii_send(sc, frame->mii_stdelim, 2);
499 	rl_mii_send(sc, frame->mii_opcode, 2);
500 	rl_mii_send(sc, frame->mii_phyaddr, 5);
501 	rl_mii_send(sc, frame->mii_regaddr, 5);
502 	rl_mii_send(sc, frame->mii_turnaround, 2);
503 	rl_mii_send(sc, frame->mii_data, 16);
504 
505 	/* Idle bit. */
506 	MII_SET(RL_MII_CLK);
507 	DELAY(1);
508 	MII_CLR(RL_MII_CLK);
509 	DELAY(1);
510 
511 	/*
512 	 * Turn off xmit.
513 	 */
514 	MII_CLR(RL_MII_DIR);
515 
516 	return(0);
517 }
518 
519 static int
520 rl_miibus_readreg(device_t dev, int phy, int reg)
521 {
522 	struct rl_softc *sc;
523 	struct rl_mii_frame frame;
524 	uint16_t rval = 0;
525 	uint16_t rl8139_reg = 0;
526 
527 	sc = device_get_softc(dev);
528 
529 	if (sc->rl_type == RL_8139) {
530 		/* Pretend the internal PHY is only at address 0 */
531 		if (phy)
532 			return(0);
533 		switch (reg) {
534 		case MII_BMCR:
535 			rl8139_reg = RL_BMCR;
536 			break;
537 		case MII_BMSR:
538 			rl8139_reg = RL_BMSR;
539 			break;
540 		case MII_ANAR:
541 			rl8139_reg = RL_ANAR;
542 			break;
543 		case MII_ANER:
544 			rl8139_reg = RL_ANER;
545 			break;
546 		case MII_ANLPAR:
547 			rl8139_reg = RL_LPAR;
548 			break;
549 		case MII_PHYIDR1:
550 		case MII_PHYIDR2:
551 			return(0);
552 			break;
553 		/*
554 		 * Allow the rlphy driver to read the media status
555 		 * register. If we have a link partner which does not
556 		 * support NWAY, this is the register which will tell
557 		 * us the results of parallel detection.
558 		 */
559 		case RL_MEDIASTAT:
560 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
561 			return(rval);
562 		default:
563 			device_printf(dev, "bad phy register\n");
564 			return(0);
565 		}
566 		rval = CSR_READ_2(sc, rl8139_reg);
567 		return(rval);
568 	}
569 
570 	bzero(&frame, sizeof(frame));
571 
572 	frame.mii_phyaddr = phy;
573 	frame.mii_regaddr = reg;
574 	rl_mii_readreg(sc, &frame);
575 
576 	return(frame.mii_data);
577 }
578 
579 static int
580 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
581 {
582 	struct rl_softc *sc;
583 	struct rl_mii_frame frame;
584 	u_int16_t rl8139_reg = 0;
585 
586 	sc = device_get_softc(dev);
587 
588 	if (sc->rl_type == RL_8139) {
589 		/* Pretend the internal PHY is only at address 0 */
590 		if (phy)
591 			return(0);
592 		switch (reg) {
593 		case MII_BMCR:
594 			rl8139_reg = RL_BMCR;
595 			break;
596 		case MII_BMSR:
597 			rl8139_reg = RL_BMSR;
598 			break;
599 		case MII_ANAR:
600 			rl8139_reg = RL_ANAR;
601 			break;
602 		case MII_ANER:
603 			rl8139_reg = RL_ANER;
604 			break;
605 		case MII_ANLPAR:
606 			rl8139_reg = RL_LPAR;
607 			break;
608 		case MII_PHYIDR1:
609 		case MII_PHYIDR2:
610 			return(0);
611 		default:
612 			device_printf(dev, "bad phy register\n");
613 			return(0);
614 		}
615 		CSR_WRITE_2(sc, rl8139_reg, data);
616 		return(0);
617 	}
618 
619 	bzero(&frame, sizeof(frame));
620 
621 	frame.mii_phyaddr = phy;
622 	frame.mii_regaddr = reg;
623 	frame.mii_data = data;
624 
625 	rl_mii_writereg(sc, &frame);
626 
627 	return(0);
628 }
629 
630 static void
631 rl_miibus_statchg(device_t dev)
632 {
633 }
634 
635 /*
636  * Program the 64-bit multicast hash filter.
637  */
638 static void
639 rl_setmulti(struct rl_softc *sc)
640 {
641 	struct ifnet *ifp;
642 	int h = 0;
643 	uint32_t hashes[2] = { 0, 0 };
644 	struct ifmultiaddr *ifma;
645 	uint32_t rxfilt;
646 	int mcnt = 0;
647 
648 	ifp = &sc->arpcom.ac_if;
649 
650 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
651 
652 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
653 		rxfilt |= RL_RXCFG_RX_MULTI;
654 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
655 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
656 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
657 		return;
658 	}
659 
660 	/* first, zot all the existing hash bits */
661 	CSR_WRITE_4(sc, RL_MAR0, 0);
662 	CSR_WRITE_4(sc, RL_MAR4, 0);
663 
664 	/* now program new ones */
665 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
666 		if (ifma->ifma_addr->sa_family != AF_LINK)
667 			continue;
668 		h = ether_crc32_be(
669 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
670 		    ETHER_ADDR_LEN) >> 26;
671 		if (h < 32)
672 			hashes[0] |= (1 << h);
673 		else
674 			hashes[1] |= (1 << (h - 32));
675 		mcnt++;
676 	}
677 
678 	if (mcnt)
679 		rxfilt |= RL_RXCFG_RX_MULTI;
680 	else
681 		rxfilt &= ~RL_RXCFG_RX_MULTI;
682 
683 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
684 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
685 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
686 }
687 
688 static void
689 rl_reset(struct rl_softc *sc)
690 {
691 	int i;
692 
693 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
694 
695 	for (i = 0; i < RL_TIMEOUT; i++) {
696 		DELAY(10);
697 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
698 			break;
699 	}
700 	if (i == RL_TIMEOUT)
701 		device_printf(sc->rl_dev, "reset never completed!\n");
702 }
703 
704 /*
705  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
706  * IDs against our list and return a device name if we find a match.
707  *
708  * Return with a value < 0 to give re(4) a change to attach.
709  */
710 static int
711 rl_probe(device_t dev)
712 {
713 	struct rl_type *t;
714 	uint16_t product = pci_get_device(dev);
715 	uint16_t vendor = pci_get_vendor(dev);
716 
717 	for (t = rl_devs; t->rl_name != NULL; t++) {
718 		if (vendor == t->rl_vid && product == t->rl_did) {
719 			device_set_desc(dev, t->rl_name);
720 			return(-100);
721 		}
722 	}
723 
724 	return(ENXIO);
725 }
726 
727 /*
728  * Attach the interface. Allocate softc structures, do ifmedia
729  * setup and ethernet/BPF attach.
730  */
731 static int
732 rl_attach(device_t dev)
733 {
734 	uint8_t eaddr[ETHER_ADDR_LEN];
735 	uint16_t as[3];
736 	struct rl_softc *sc;
737 	struct ifnet *ifp;
738 	uint16_t rl_did = 0;
739 	int error = 0, rid, i;
740 
741 	sc = device_get_softc(dev);
742 	sc->rl_dev = dev;
743 
744 	/*
745 	 * Handle power management nonsense.
746 	 */
747 
748 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
749 		uint32_t iobase, membase, irq;
750 
751 		/* Save important PCI config data. */
752 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
753 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
754 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
755 
756 		/* Reset the power state. */
757 		device_printf(dev, "chip is in D%d power mode "
758 			      "-- setting to D0\n", pci_get_powerstate(dev));
759 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
760 
761 		/* Restore PCI config data. */
762 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
763 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
764 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
765 	}
766 
767 	pci_enable_busmaster(dev);
768 
769 	rid = RL_RID;
770 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
771 
772 	if (sc->rl_res == NULL) {
773 		device_printf(dev, "couldn't map ports/memory\n");
774 		error = ENXIO;
775 		goto fail;
776 	}
777 
778 	sc->rl_btag = rman_get_bustag(sc->rl_res);
779 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
780 
781 	rid = 0;
782 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
783 					    RF_SHAREABLE | RF_ACTIVE);
784 
785 	if (sc->rl_irq == NULL) {
786 		device_printf(dev, "couldn't map interrupt\n");
787 		error = ENXIO;
788 		goto fail;
789 	}
790 
791 	callout_init(&sc->rl_stat_timer);
792 
793 	/* Reset the adapter. */
794 	rl_reset(sc);
795 
796 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
797 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
798 	if (rl_did != 0x8129)
799 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
800 
801 	/*
802 	 * Get station address from the EEPROM.
803 	 */
804 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
805 	for (i = 0; i < 3; i++) {
806 		eaddr[(i * 2) + 0] = as[i] & 0xff;
807 		eaddr[(i * 2) + 1] = as[i] >> 8;
808 	}
809 
810 	/*
811 	 * Now read the exact device type from the EEPROM to find
812 	 * out if it's an 8129 or 8139.
813 	 */
814 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
815 
816 	if (rl_did == PCI_PRODUCT_REALTEK_RT8139 ||
817 	    rl_did == PCI_PRODUCT_ACCTON_MPX5030 ||
818 	    rl_did == PCI_PRODUCT_DELTA_8139 ||
819 	    rl_did == PCI_PRODUCT_ADDTRON_8139 ||
820 	    rl_did == PCI_PRODUCT_DLINK_DFE530TXPLUS ||
821 	    rl_did == PCI_PRODUCT_REALTEK_RT8139B ||
822 	    rl_did == PCI_PRODUCT_DLINK_DFE690TXD ||
823 	    rl_did == PCI_PRODUCT_COREGA_CB_TXD ||
824 	    rl_did == PCI_PRODUCT_COREGA_2CB_TXD ||
825 	    rl_did == PCI_PRODUCT_PLANEX_FNW_3800_TX) {
826 		sc->rl_type = RL_8139;
827 	} else if (rl_did == PCI_PRODUCT_REALTEK_RT8129) {
828 		sc->rl_type = RL_8129;
829 	} else {
830 		device_printf(dev, "unknown device ID: %x\n", rl_did);
831 		sc->rl_type = RL_8139;
832 		/*
833 		 * Read RL_IDR register to get ethernet address as accessing
834 		 * EEPROM may not extract correct address.
835 		 */
836 		for (i = 0; i < ETHER_ADDR_LEN; i++)
837 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
838 	}
839 
840 	error = rl_dma_alloc(sc);
841 	if (error)
842 		goto fail;
843 
844 	/* Do MII setup */
845 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
846 			  rl_ifmedia_sts)) {
847 		device_printf(dev, "MII without any phy!\n");
848 		error = ENXIO;
849 		goto fail;
850 	}
851 
852 	ifp = &sc->arpcom.ac_if;
853 	ifp->if_softc = sc;
854 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
855 	ifp->if_mtu = ETHERMTU;
856 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
857 	ifp->if_ioctl = rl_ioctl;
858 	ifp->if_start = rl_start;
859 	ifp->if_watchdog = rl_watchdog;
860 	ifp->if_init = rl_init;
861 	ifp->if_baudrate = 10000000;
862 	ifp->if_capabilities = IFCAP_VLAN_MTU;
863 #ifdef IFPOLL_ENABLE
864 	ifp->if_npoll = rl_npoll;
865 #endif
866 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
867 	ifq_set_ready(&ifp->if_snd);
868 
869 	/*
870 	 * Call MI attach routine.
871 	 */
872 	ether_ifattach(ifp, eaddr, NULL);
873 
874 #ifdef IFPOLL_ENABLE
875 	ifpoll_compat_setup(&sc->rl_npoll, NULL, NULL, device_get_unit(dev),
876 	    ifp->if_serializer);
877 #endif
878 
879 	error = bus_setup_intr(dev, sc->rl_irq, INTR_MPSAFE, rl_intr,
880 			       sc, &sc->rl_intrhand, ifp->if_serializer);
881 
882 	if (error) {
883 		device_printf(dev, "couldn't set up irq\n");
884 		ether_ifdetach(ifp);
885 		goto fail;
886 	}
887 
888 	ifp->if_cpuid = rman_get_cpuid(sc->rl_irq);
889 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
890 
891 	return(0);
892 
893 fail:
894 	rl_detach(dev);
895 	return(error);
896 }
897 
898 static int
899 rl_detach(device_t dev)
900 {
901 	struct rl_softc *sc;
902 	struct ifnet *ifp;
903 
904 	sc = device_get_softc(dev);
905 	ifp = &sc->arpcom.ac_if;
906 
907 	if (device_is_attached(dev)) {
908 		lwkt_serialize_enter(ifp->if_serializer);
909 		rl_stop(sc);
910 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
911 		lwkt_serialize_exit(ifp->if_serializer);
912 
913 		ether_ifdetach(ifp);
914 	}
915 
916 	if (sc->rl_miibus)
917 		device_delete_child(dev, sc->rl_miibus);
918 	bus_generic_detach(dev);
919 
920 	if (sc->rl_irq)
921 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
922 	if (sc->rl_res)
923 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
924 
925 	rl_dma_free(sc);
926 
927 	return(0);
928 }
929 
930 /*
931  * Initialize the transmit descriptors.
932  */
933 static void
934 rl_list_tx_init(struct rl_softc *sc)
935 {
936 	struct rl_chain_data *cd;
937 	int i;
938 
939 	cd = &sc->rl_cdata;
940 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
941 		cd->rl_tx_chain[i] = NULL;
942 		CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
943 			    0x0000000);
944 	}
945 
946 	sc->rl_cdata.cur_tx = 0;
947 	sc->rl_cdata.last_tx = 0;
948 }
949 
950 /*
951  * A frame has been uploaded: pass the resulting mbuf chain up to
952  * the higher level protocols.
953  *
954  * You know there's something wrong with a PCI bus-master chip design
955  * when you have to use m_devget().
956  *
957  * The receive operation is badly documented in the datasheet, so I'll
958  * attempt to document it here. The driver provides a buffer area and
959  * places its base address in the RX buffer start address register.
960  * The chip then begins copying frames into the RX buffer. Each frame
961  * is preceded by a 32-bit RX status word which specifies the length
962  * of the frame and certain other status bits. Each frame (starting with
963  * the status word) is also 32-bit aligned. The frame length is in the
964  * first 16 bits of the status word; the lower 15 bits correspond with
965  * the 'rx status register' mentioned in the datasheet.
966  *
967  * Note: to make the Alpha happy, the frame payload needs to be aligned
968  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
969  * the ring buffer starting at an address two bytes before the actual
970  * data location. We can then shave off the first two bytes using m_adj().
971  * The reason we do this is because m_devget() doesn't let us specify an
972  * offset into the mbuf storage space, so we have to artificially create
973  * one. The ring is allocated in such a way that there are a few unused
974  * bytes of space preceecing it so that it will be safe for us to do the
975  * 2-byte backstep even if reading from the ring at offset 0.
976  */
977 static void
978 rl_rxeof(struct rl_softc *sc)
979 {
980         struct mbuf *m;
981         struct ifnet *ifp;
982 	int total_len = 0;
983 	uint32_t rxstat;
984 	caddr_t rxbufpos;
985 	int wrap = 0, done = 0;
986 	uint16_t cur_rx = 0, max_bytes = 0, rx_bytes = 0;
987 
988 	ifp = &sc->arpcom.ac_if;
989 
990 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
991 		if (!done) {
992 			uint16_t limit;
993 
994 			done = 1;
995 
996 			cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) %
997 			    RL_RXBUFLEN;
998 
999 			/* Do not try to read past this point. */
1000 			limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1001 			if (limit < cur_rx)
1002 				max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1003 			else
1004 				max_bytes = limit - cur_rx;
1005 		}
1006 #ifdef IFPOLL_ENABLE
1007 		if (ifp->if_flags & IFF_NPOLLING) {
1008 			if (sc->rxcycles <= 0)
1009 				break;
1010 			sc->rxcycles--;
1011 		}
1012 #endif /* IFPOLL_ENABLE */
1013 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1014 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1015 
1016 		/*
1017 		 * Here's a totally undocumented fact for you. When the
1018 		 * RealTek chip is in the process of copying a packet into
1019 		 * RAM for you, the length will be 0xfff0. If you spot a
1020 		 * packet header with this value, you need to stop. The
1021 		 * datasheet makes absolutely no mention of this and
1022 		 * RealTek should be shot for this.
1023 		 */
1024 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1025 			break;
1026 
1027 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1028 			ifp->if_ierrors++;
1029 			rl_init(sc);
1030 			return;
1031 		}
1032 
1033 		/* No errors; receive the packet. */
1034 		total_len = rxstat >> 16;
1035 		rx_bytes += total_len + 4;
1036 
1037 		/*
1038 		 * XXX The RealTek chip includes the CRC with every
1039 		 * received frame, and there's no way to turn this
1040 		 * behavior off (at least, I can't find anything in
1041 	 	 * the manual that explains how to do it) so we have
1042 		 * to trim off the CRC manually.
1043 		 */
1044 		total_len -= ETHER_CRC_LEN;
1045 
1046 		/*
1047 		 * Avoid trying to read more bytes than we know
1048 		 * the chip has prepared for us.
1049 		 */
1050 		if (rx_bytes > max_bytes)
1051 			break;
1052 
1053 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1054 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1055 
1056 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1057 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1058 
1059 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1060 
1061 		if (total_len > wrap) {
1062 			/*
1063 			 * Fool m_devget() into thinking we want to copy
1064 			 * the whole buffer so we don't end up fragmenting
1065 			 * the data.
1066 			 */
1067 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1068 			    wrap + RL_ETHER_ALIGN, 0, ifp, NULL);
1069 			if (m == NULL) {
1070 				ifp->if_ierrors++;
1071 			} else {
1072 				m_adj(m, RL_ETHER_ALIGN);
1073 				m_copyback(m, wrap, total_len - wrap,
1074 					sc->rl_cdata.rl_rx_buf);
1075 			}
1076 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1077 		} else {
1078 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1079 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1080 			if (m == NULL) {
1081 				ifp->if_ierrors++;
1082 			} else
1083 				m_adj(m, RL_ETHER_ALIGN);
1084 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1085 		}
1086 
1087 		/*
1088 		 * Round up to 32-bit boundary.
1089 		 */
1090 		cur_rx = (cur_rx + 3) & ~3;
1091 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1092 
1093 		if (m == NULL)
1094 			continue;
1095 
1096 		ifp->if_ipackets++;
1097 
1098 		ifp->if_input(ifp, m);
1099 	}
1100 }
1101 
1102 /*
1103  * A frame was downloaded to the chip. It's safe for us to clean up
1104  * the list buffers.
1105  */
1106 static void
1107 rl_txeof(struct rl_softc *sc)
1108 {
1109 	struct ifnet *ifp;
1110 	uint32_t txstat;
1111 
1112 	ifp = &sc->arpcom.ac_if;
1113 
1114 	/*
1115 	 * Go through our tx list and free mbufs for those
1116 	 * frames that have been uploaded.
1117 	 */
1118 	do {
1119 		if (RL_LAST_TXMBUF(sc) == NULL)
1120 			break;
1121 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1122 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1123 			       RL_TXSTAT_TXABRT)) == 0)
1124 			break;
1125 
1126 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1127 
1128 		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1129 		m_freem(RL_LAST_TXMBUF(sc));
1130 		RL_LAST_TXMBUF(sc) = NULL;
1131 		RL_INC(sc->rl_cdata.last_tx);
1132 
1133 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1134 			sc->rl_txthresh += 32;
1135 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1136 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1137 		}
1138 
1139 		if (txstat & RL_TXSTAT_TX_OK) {
1140 			ifp->if_opackets++;
1141 		} else {
1142 			ifp->if_oerrors++;
1143 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1144 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1145 		}
1146 		ifp->if_flags &= ~IFF_OACTIVE;
1147 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1148 
1149 	if (RL_LAST_TXMBUF(sc) == NULL)
1150 		ifp->if_timer = 0;
1151 	else if (ifp->if_timer == 0)
1152 		ifp->if_timer = 5;
1153 }
1154 
1155 static void
1156 rl_tick(void *xsc)
1157 {
1158 	struct rl_softc *sc = xsc;
1159 	struct mii_data *mii;
1160 
1161 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1162 
1163 	mii = device_get_softc(sc->rl_miibus);
1164 	mii_tick(mii);
1165 
1166 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1167 
1168 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1169 }
1170 
1171 #ifdef IFPOLL_ENABLE
1172 
1173 static void
1174 rl_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1175 {
1176 	struct rl_softc *sc = ifp->if_softc;
1177 
1178 	ASSERT_SERIALIZED(ifp->if_serializer);
1179 
1180 	sc->rxcycles = count;
1181 	rl_rxeof(sc);
1182 	rl_txeof(sc);
1183 	if (!ifq_is_empty(&ifp->if_snd))
1184 		if_devstart(ifp);
1185 
1186 	if (sc->rl_npoll.ifpc_stcount-- == 0) {
1187 		uint16_t status;
1188 
1189 		sc->rl_npoll.ifpc_stcount = sc->rl_npoll.ifpc_stfrac;
1190 
1191 		status = CSR_READ_2(sc, RL_ISR);
1192 		if (status == 0xffff)
1193 			return;
1194 		if (status)
1195 			CSR_WRITE_2(sc, RL_ISR, status);
1196 
1197 		/*
1198 		 * XXX check behaviour on receiver stalls.
1199 		 */
1200 
1201 		if (status & RL_ISR_SYSTEM_ERR) {
1202 			rl_reset(sc);
1203 			rl_init(sc);
1204 		}
1205 	}
1206 }
1207 
1208 static void
1209 rl_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1210 {
1211 	struct rl_softc *sc = ifp->if_softc;
1212 
1213 	ASSERT_SERIALIZED(ifp->if_serializer);
1214 
1215 	if (info != NULL) {
1216 		int cpuid = sc->rl_npoll.ifpc_cpuid;
1217 
1218 		info->ifpi_rx[cpuid].poll_func = rl_npoll_compat;
1219 		info->ifpi_rx[cpuid].arg = NULL;
1220 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1221 
1222 		if (ifp->if_flags & IFF_RUNNING) {
1223 			/* disable interrupts */
1224 			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1225 			sc->rl_npoll.ifpc_stcount = 0;
1226 		}
1227 		ifp->if_npoll_cpuid = cpuid;
1228 	} else {
1229 		if (ifp->if_flags & IFF_RUNNING) {
1230 			/* enable interrupts */
1231 			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1232 		}
1233 		ifp->if_npoll_cpuid = -1;
1234 	}
1235 }
1236 
1237 #endif /* IFPOLL_ENABLE */
1238 
1239 static void
1240 rl_intr(void *arg)
1241 {
1242 	struct rl_softc *sc;
1243 	struct ifnet *ifp;
1244 	uint16_t status;
1245 
1246 	sc = arg;
1247 
1248 	if (sc->suspended)
1249 		return;
1250 
1251 	ifp = &sc->arpcom.ac_if;
1252 
1253 	for (;;) {
1254 		status = CSR_READ_2(sc, RL_ISR);
1255 		/* If the card has gone away, the read returns 0xffff. */
1256 		if (status == 0xffff)
1257 			break;
1258 
1259 		if (status != 0)
1260 			CSR_WRITE_2(sc, RL_ISR, status);
1261 
1262 		if ((status & RL_INTRS) == 0)
1263 			break;
1264 
1265 		if (status & RL_ISR_RX_OK)
1266 			rl_rxeof(sc);
1267 
1268 		if (status & RL_ISR_RX_ERR)
1269 			rl_rxeof(sc);
1270 
1271 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1272 			rl_txeof(sc);
1273 
1274 		if (status & RL_ISR_SYSTEM_ERR) {
1275 			rl_reset(sc);
1276 			rl_init(sc);
1277 		}
1278 
1279 	}
1280 
1281 	if (!ifq_is_empty(&ifp->if_snd))
1282 		if_devstart(ifp);
1283 }
1284 
1285 /*
1286  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1287  * pointers to the fragment pointers.
1288  */
1289 static int
1290 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1291 {
1292 	struct mbuf *m_new = NULL;
1293 	bus_dma_segment_t seg;
1294 	int nseg, error;
1295 
1296 	/*
1297 	 * The RealTek is brain damaged and wants longword-aligned
1298 	 * TX buffers, plus we can only have one fragment buffer
1299 	 * per packet.  We have to copy pretty much all the time.
1300 	 */
1301 	m_new = m_defrag(m_head, MB_DONTWAIT);
1302 	if (m_new == NULL) {
1303 		m_freem(m_head);
1304 		return ENOBUFS;
1305 	}
1306 	m_head = m_new;
1307 
1308 	/* Pad frames to at least 60 bytes. */
1309 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1310 		error = m_devpad(m_head, RL_MIN_FRAMELEN);
1311 		if (error) {
1312 			m_freem(m_head);
1313 			return error;
1314 		}
1315 	}
1316 
1317 	/* Extract physical address. */
1318 	error = bus_dmamap_load_mbuf_segment(sc->rl_cdata.rl_tx_tag,
1319 			RL_CUR_DMAMAP(sc), m_head,
1320 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
1321 	if (error) {
1322 		m_freem(m_head);
1323 		return error;
1324 	}
1325 
1326 	/* Sync the loaded TX buffer. */
1327 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1328 			BUS_DMASYNC_PREWRITE);
1329 
1330 	/* Transmit */
1331 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), seg.ds_addr);
1332 	CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1333 		    RL_TXTHRESH(sc->rl_txthresh) | seg.ds_len);
1334 
1335 	RL_CUR_TXMBUF(sc) = m_head;
1336 	return 0;
1337 }
1338 
1339 /*
1340  * Main transmit routine.
1341  */
1342 
1343 static void
1344 rl_start(struct ifnet *ifp)
1345 {
1346 	struct rl_softc *sc = ifp->if_softc;
1347 	struct mbuf *m_head = NULL;
1348 
1349 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1350 		return;
1351 
1352 	while (RL_CUR_TXMBUF(sc) == NULL) {
1353 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1354 		if (m_head == NULL)
1355 			break;
1356 
1357 		if (rl_encap(sc, m_head))
1358 			continue;
1359 
1360 		/*
1361 		 * If there's a BPF listener, bounce a copy of this frame
1362 		 * to him.
1363 		 */
1364 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1365 
1366 		RL_INC(sc->rl_cdata.cur_tx);
1367 
1368 		/*
1369 		 * Set a timeout in case the chip goes out to lunch.
1370 		 */
1371 		ifp->if_timer = 5;
1372 	}
1373 
1374 	/*
1375 	 * We broke out of the loop because all our TX slots are
1376 	 * full. Mark the NIC as busy until it drains some of the
1377 	 * packets from the queue.
1378 	 */
1379 	if (RL_CUR_TXMBUF(sc) != NULL)
1380 		ifp->if_flags |= IFF_OACTIVE;
1381 }
1382 
1383 static void
1384 rl_init(void *xsc)
1385 {
1386 	struct rl_softc *sc = xsc;
1387 	struct ifnet *ifp = &sc->arpcom.ac_if;
1388 	struct mii_data *mii;
1389 	uint32_t rxcfg = 0;
1390 
1391 	mii = device_get_softc(sc->rl_miibus);
1392 
1393 	/*
1394 	 * Cancel pending I/O and free all RX/TX buffers.
1395 	 */
1396 	rl_stop(sc);
1397 
1398 	/*
1399 	 * Init our MAC address.  Even though the chipset documentation
1400 	 * doesn't mention it, we need to enter "Config register write enable"
1401 	 * mode to modify the ID registers.
1402 	 */
1403 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1404 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1405 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1406 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1407 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1408 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1409 
1410 	/* Init the RX buffer pointer register. */
1411 	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr);
1412 
1413 	/* Init TX descriptors. */
1414 	rl_list_tx_init(sc);
1415 
1416 	/*
1417 	 * Enable transmit and receive.
1418 	 */
1419 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1420 
1421 	/*
1422 	 * Set the initial TX and RX configuration.
1423 	 */
1424 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1425 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1426 
1427 	/* Set the individual bit to receive frames for this host only. */
1428 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1429 	rxcfg |= RL_RXCFG_RX_INDIV;
1430 
1431 	/* If we want promiscuous mode, set the allframes bit. */
1432 	if (ifp->if_flags & IFF_PROMISC) {
1433 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1434 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1435 	} else {
1436 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1437 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1438 	}
1439 
1440 	/*
1441 	 * Set capture broadcast bit to capture broadcast frames.
1442 	 */
1443 	if (ifp->if_flags & IFF_BROADCAST) {
1444 		rxcfg |= RL_RXCFG_RX_BROAD;
1445 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1446 	} else {
1447 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1448 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1449 	}
1450 
1451 	/*
1452 	 * Program the multicast filter, if necessary.
1453 	 */
1454 	rl_setmulti(sc);
1455 
1456 #ifdef IFPOLL_ENABLE
1457 	/*
1458 	 * Only enable interrupts if we are polling, keep them off otherwise.
1459 	 */
1460 	if (ifp->if_flags & IFF_NPOLLING) {
1461 		CSR_WRITE_2(sc, RL_IMR, 0);
1462 		sc->rl_npoll.ifpc_stcount = 0;
1463 	} else
1464 #endif /* IFPOLL_ENABLE */
1465 	/*
1466 	 * Enable interrupts.
1467 	 */
1468 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1469 
1470 	/* Set initial TX threshold */
1471 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1472 
1473 	/* Start RX/TX process. */
1474 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1475 
1476 	/* Enable receiver and transmitter. */
1477 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1478 
1479 	mii_mediachg(mii);
1480 
1481 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1482 
1483 	ifp->if_flags |= IFF_RUNNING;
1484 	ifp->if_flags &= ~IFF_OACTIVE;
1485 
1486 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1487 }
1488 
1489 /*
1490  * Set media options.
1491  */
1492 static int
1493 rl_ifmedia_upd(struct ifnet *ifp)
1494 {
1495 	struct rl_softc *sc;
1496 	struct mii_data *mii;
1497 
1498 	sc = ifp->if_softc;
1499 	mii = device_get_softc(sc->rl_miibus);
1500 	mii_mediachg(mii);
1501 
1502 	return(0);
1503 }
1504 
1505 /*
1506  * Report current media status.
1507  */
1508 static void
1509 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1510 {
1511 	struct rl_softc *sc = ifp->if_softc;
1512 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1513 
1514 	mii_pollstat(mii);
1515 	ifmr->ifm_active = mii->mii_media_active;
1516 	ifmr->ifm_status = mii->mii_media_status;
1517 }
1518 
1519 static int
1520 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1521 {
1522 	struct rl_softc *sc = ifp->if_softc;
1523 	struct ifreq *ifr = (struct ifreq *) data;
1524 	struct mii_data	*mii;
1525 	int error = 0;
1526 
1527 	switch (command) {
1528 	case SIOCSIFFLAGS:
1529 		if (ifp->if_flags & IFF_UP) {
1530 			rl_init(sc);
1531 		} else {
1532 			if (ifp->if_flags & IFF_RUNNING)
1533 				rl_stop(sc);
1534 		}
1535 		error = 0;
1536 		break;
1537 	case SIOCADDMULTI:
1538 	case SIOCDELMULTI:
1539 		rl_setmulti(sc);
1540 		error = 0;
1541 		break;
1542 	case SIOCGIFMEDIA:
1543 	case SIOCSIFMEDIA:
1544 		mii = device_get_softc(sc->rl_miibus);
1545 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1546 		break;
1547 	case SIOCSIFCAP:
1548 		break;
1549 	default:
1550 		error = ether_ioctl(ifp, command, data);
1551 		break;
1552 	}
1553 
1554 	return(error);
1555 }
1556 
1557 static void
1558 rl_watchdog(struct ifnet *ifp)
1559 {
1560 	struct rl_softc *sc = ifp->if_softc;
1561 
1562 	device_printf(sc->rl_dev, "watchdog timeout\n");
1563 
1564 	ifp->if_oerrors++;
1565 
1566 	rl_txeof(sc);
1567 	rl_rxeof(sc);
1568 	rl_init(sc);
1569 }
1570 
1571 /*
1572  * Stop the adapter and free any mbufs allocated to the
1573  * RX and TX lists.
1574  */
1575 static void
1576 rl_stop(struct rl_softc *sc)
1577 {
1578 	struct ifnet *ifp = &sc->arpcom.ac_if;
1579 	int i;
1580 
1581 	ifp->if_timer = 0;
1582 
1583 	callout_stop(&sc->rl_stat_timer);
1584 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1585 
1586 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1587 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1588 
1589 	/*
1590 	 * Free the TX list buffers.
1591 	 */
1592 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1593 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1594 			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1595 					  sc->rl_cdata.rl_tx_dmamap[i]);
1596 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1597 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1598 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1599 				    0x0000000);
1600 		}
1601 	}
1602 }
1603 
1604 /*
1605  * Stop all chip I/O so that the kernel's probe routines don't
1606  * get confused by errant DMAs when rebooting.
1607  */
1608 static void
1609 rl_shutdown(device_t dev)
1610 {
1611 	struct rl_softc *sc;
1612 
1613 	sc = device_get_softc(dev);
1614 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1615 	rl_stop(sc);
1616 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1617 }
1618 
1619 /*
1620  * Device suspend routine.  Stop the interface and save some PCI
1621  * settings in case the BIOS doesn't restore them properly on
1622  * resume.
1623  */
1624 static int
1625 rl_suspend(device_t dev)
1626 {
1627 	struct rl_softc	*sc = device_get_softc(dev);
1628 	int i;
1629 
1630 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1631 	rl_stop(sc);
1632 
1633 	for (i = 0; i < 5; i++)
1634 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1635 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1636 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1637 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1638 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1639 
1640 	sc->suspended = 1;
1641 
1642 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1643 	return (0);
1644 }
1645 
1646 /*
1647  * Device resume routine.  Restore some PCI settings in case the BIOS
1648  * doesn't, re-enable busmastering, and restart the interface if
1649  * appropriate.
1650  */
1651 static int
1652 rl_resume(device_t dev)
1653 {
1654 	struct rl_softc *sc = device_get_softc(dev);
1655 	struct ifnet *ifp = &sc->arpcom.ac_if;
1656 	int		i;
1657 
1658 	lwkt_serialize_enter(ifp->if_serializer);
1659 
1660 	/* better way to do this? */
1661 	for (i = 0; i < 5; i++)
1662 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1663 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1664 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1665 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1666 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1667 
1668 	/* reenable busmastering */
1669 	pci_enable_busmaster(dev);
1670 	pci_enable_io(dev, RL_RES);
1671 
1672         /* reinitialize interface if necessary */
1673         if (ifp->if_flags & IFF_UP)
1674                 rl_init(sc);
1675 
1676 	sc->suspended = 0;
1677 	lwkt_serialize_exit(ifp->if_serializer);
1678 	return (0);
1679 }
1680 
1681 static int
1682 rl_dma_alloc(struct rl_softc *sc)
1683 {
1684 	bus_dmamem_t dmem;
1685 	int error, i;
1686 
1687 	error = bus_dma_tag_create(NULL,	/* parent */
1688 			1, 0,			/* alignment, boundary */
1689 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1690 			BUS_SPACE_MAXADDR,	/* highaddr */
1691 			NULL, NULL,		/* filter, filterarg */
1692 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1693 			0,			/* nsegments */
1694 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1695 			0,			/* flags */
1696 			&sc->rl_parent_tag);
1697 	if (error) {
1698 		device_printf(sc->rl_dev, "can't create parent tag\n");
1699 		return error;
1700 	}
1701 
1702 	/* Allocate a chunk of coherent memory for RX */
1703 	error = bus_dmamem_coherent(sc->rl_parent_tag, 1, 0,
1704 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1705 			RL_RXBUFLEN + 1518, BUS_DMA_WAITOK, &dmem);
1706 	if (error)
1707 		return error;
1708 
1709 	sc->rl_cdata.rl_rx_tag = dmem.dmem_tag;
1710 	sc->rl_cdata.rl_rx_dmamap = dmem.dmem_map;
1711 	sc->rl_cdata.rl_rx_buf_ptr = dmem.dmem_addr;
1712 
1713 	/* NOTE: Apply same adjustment to vaddr and paddr */
1714 	sc->rl_cdata.rl_rx_buf = sc->rl_cdata.rl_rx_buf_ptr + sizeof(uint64_t);
1715 	sc->rl_cdata.rl_rx_buf_paddr = dmem.dmem_busaddr + sizeof(uint64_t);
1716 
1717 	/*
1718 	 * Allocate TX mbuf's DMA tag and maps
1719 	 */
1720 	error = bus_dma_tag_create(sc->rl_parent_tag,/* parent */
1721 			RL_TXBUF_ALIGN, 0,	/* alignment, boundary */
1722 			BUS_SPACE_MAXADDR,	/* lowaddr */
1723 			BUS_SPACE_MAXADDR,	/* highaddr */
1724 			NULL, NULL,		/* filter, filterarg */
1725 			MCLBYTES,		/* maxsize */
1726 			1,			/* nsegments */
1727 			MCLBYTES,		/* maxsegsize */
1728 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1729 			BUS_DMA_ALIGNED,	/* flags */
1730 			&sc->rl_cdata.rl_tx_tag);
1731 	if (error) {
1732 		device_printf(sc->rl_dev, "can't create TX mbuf tag\n");
1733 		return error;
1734 	}
1735 
1736 	for (i = 0; i < RL_TX_LIST_CNT; ++i) {
1737 		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag,
1738 				BUS_DMA_WAITOK, &sc->rl_cdata.rl_tx_dmamap[i]);
1739 		if (error) {
1740 			int j;
1741 
1742 			for (j = 0; j < i; ++j) {
1743 				bus_dmamap_destroy(sc->rl_cdata.rl_tx_tag,
1744 					sc->rl_cdata.rl_tx_dmamap[j]);
1745 			}
1746 			bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1747 			sc->rl_cdata.rl_tx_tag = NULL;
1748 
1749 			device_printf(sc->rl_dev, "can't create TX mbuf map\n");
1750 			return error;
1751 		}
1752 	}
1753 	return 0;
1754 }
1755 
1756 static void
1757 rl_dma_free(struct rl_softc *sc)
1758 {
1759 	if (sc->rl_cdata.rl_tx_tag != NULL) {
1760 		int i;
1761 
1762 		for (i = 0; i < RL_TX_LIST_CNT; ++i) {
1763 			bus_dmamap_destroy(sc->rl_cdata.rl_tx_tag,
1764 					   sc->rl_cdata.rl_tx_dmamap[i]);
1765 		}
1766 		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1767 	}
1768 
1769 	if (sc->rl_cdata.rl_rx_tag != NULL) {
1770 		bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1771 				  sc->rl_cdata.rl_rx_dmamap);
1772 		/* NOTE: Use rl_rx_buf_ptr here */
1773 		bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1774 				sc->rl_cdata.rl_rx_buf_ptr,
1775 				sc->rl_cdata.rl_rx_dmamap);
1776 		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1777 	}
1778 
1779 	if (sc->rl_parent_tag)
1780 		bus_dma_tag_destroy(sc->rl_parent_tag);
1781 }
1782