xref: /dflybsd-src/sys/dev/netif/rl/if_rl.c (revision c2576c10ab1201aa47eb10096e226be7b357d01d)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.17 2005/02/12 04:00:13 joerg Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
36  */
37 
38 /*
39  * RealTek 8129/8139 PCI NIC driver
40  *
41  * Supports several extremely cheap PCI 10/100 adapters based on
42  * the RealTek chipset. Datasheets can be obtained from
43  * www.realtek.com.tw.
44  *
45  * Written by Bill Paul <wpaul@ctr.columbia.edu>
46  * Electrical Engineering Department
47  * Columbia University, New York City
48  */
49 
50 /*
51  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
52  * probably the worst PCI ethernet controller ever made, with the possible
53  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
54  * DMA, but it has a terrible interface that nullifies any performance
55  * gains that bus-master DMA usually offers.
56  *
57  * For transmission, the chip offers a series of four TX descriptor
58  * registers. Each transmit frame must be in a contiguous buffer, aligned
59  * on a longword (32-bit) boundary. This means we almost always have to
60  * do mbuf copies in order to transmit a frame, except in the unlikely
61  * case where a) the packet fits into a single mbuf, and b) the packet
62  * is 32-bit aligned within the mbuf's data area. The presence of only
63  * four descriptor registers means that we can never have more than four
64  * packets queued for transmission at any one time.
65  *
66  * Reception is not much better. The driver has to allocate a single large
67  * buffer area (up to 64K in size) into which the chip will DMA received
68  * frames. Because we don't know where within this region received packets
69  * will begin or end, we have no choice but to copy data from the buffer
70  * area into mbufs in order to pass the packets up to the higher protocol
71  * levels.
72  *
73  * It's impossible given this rotten design to really achieve decent
74  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
75  * some equally overmuscled CPU to drive it.
76  *
77  * On the bright side, the 8139 does have a built-in PHY, although
78  * rather than using an MDIO serial interface like most other NICs, the
79  * PHY registers are directly accessible through the 8139's register
80  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
81  * filter.
82  *
83  * The 8129 chip is an older version of the 8139 that uses an external PHY
84  * chip. The 8129 has a serial MDIO interface for accessing the MII where
85  * the 8139 lets you directly access the on-board PHY registers. We need
86  * to select which interface to use depending on the chip type.
87  */
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 
99 #include <net/if.h>
100 #include <net/ifq_var.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 
106 #include <net/bpf.h>
107 
108 #include <machine/bus_pio.h>
109 #include <machine/bus_memio.h>
110 #include <machine/bus.h>
111 #include <machine/resource.h>
112 #include <sys/bus.h>
113 #include <sys/rman.h>
114 
115 #include <dev/netif/mii_layer/mii.h>
116 #include <dev/netif/mii_layer/miivar.h>
117 
118 #include <bus/pci/pcireg.h>
119 #include <bus/pci/pcivar.h>
120 
121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
122 #include "miibus_if.h"
123 
124 /*
125  * Default to using PIO access for this driver. On SMP systems,
126  * there appear to be problems with memory mapped mode: it looks like
127  * doing too many memory mapped access back to back in rapid succession
128  * can hang the bus. I'm inclined to blame this on crummy design/construction
129  * on the part of RealTek. Memory mapped mode does appear to work on
130  * uniprocessor systems though.
131  */
132 #define RL_USEIOSPACE
133 
134 #include <dev/netif/rl/if_rlreg.h>
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static struct rl_type {
140 	uint16_t	 rl_vid;
141 	uint16_t	 rl_did;
142 	const char	*rl_name;
143 } rl_devs[] = {
144 	{ RT_VENDORID, RT_DEVICEID_8129,
145 		"RealTek 8129 10/100BaseTX" },
146 	{ RT_VENDORID, RT_DEVICEID_8139,
147 		"RealTek 8139 10/100BaseTX" },
148 	{ RT_VENDORID, RT_DEVICEID_8138,
149 		"RealTek 8139 10/100BaseTX CardBus" },
150 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
151 		"Accton MPX 5030/5038 10/100BaseTX" },
152 	{ DELTA_VENDORID, DELTA_DEVICEID_8139,
153 		"Delta Electronics 8139 10/100BaseTX" },
154 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
155 		"Addtron Technolgy 8139 10/100BaseTX" },
156 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
157 		"D-Link DFE-530TX+ 10/100BaseTX" },
158 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
159 		"D-Link DFE-690TX 10/100BaseTX" },
160 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
161 		"Nortel Networks 10/100BaseTX" },
162 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
163 		"Peppercon AG ROL/F" },
164 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
165 		"Corega FEther CB-TXD" },
166 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
167 		"Corega FEtherII CB-TXD" },
168 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX,
169 		"Planex FNW-3800-TX" },
170 	{ 0, 0, NULL }
171 };
172 
173 static int	rl_probe(device_t);
174 static int	rl_attach(device_t);
175 static int	rl_detach(device_t);
176 
177 static int	rl_encap(struct rl_softc *, struct mbuf * );
178 
179 static void	rl_rxeof(struct rl_softc *);
180 static void	rl_txeof(struct rl_softc *);
181 static void	rl_intr(void *);
182 static void	rl_tick(void *);
183 static void	rl_start(struct ifnet *);
184 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
185 static void	rl_init(void *);
186 static void	rl_stop	(struct rl_softc *);
187 static void	rl_watchdog(struct ifnet *);
188 static int	rl_suspend(device_t);
189 static int	rl_resume(device_t);
190 static void	rl_shutdown(device_t);
191 static int	rl_ifmedia_upd(struct ifnet *);
192 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
193 
194 static void	rl_eeprom_putbyte(struct rl_softc *, int);
195 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
196 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
197 static void	rl_mii_sync(struct rl_softc *);
198 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
199 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
200 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
201 
202 static int	rl_miibus_readreg(device_t, int, int);
203 static int	rl_miibus_writereg(device_t, int, int, int);
204 static void	rl_miibus_statchg(device_t);
205 
206 static void	rl_setmulti(struct rl_softc *);
207 static void	rl_reset(struct rl_softc *);
208 static void	rl_list_tx_init(struct rl_softc *);
209 
210 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
211 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
212 
213 #ifdef RL_USEIOSPACE
214 #define	RL_RES			SYS_RES_IOPORT
215 #define	RL_RID			RL_PCI_LOIO
216 #else
217 #define	RL_RES			SYS_RES_MEMORY
218 #define	RL_RID			RL_PCI_LOMEM
219 #endif
220 
221 static device_method_t rl_methods[] = {
222 	/* Device interface */
223 	DEVMETHOD(device_probe,		rl_probe),
224 	DEVMETHOD(device_attach,	rl_attach),
225 	DEVMETHOD(device_detach,	rl_detach),
226 	DEVMETHOD(device_suspend,	rl_suspend),
227 	DEVMETHOD(device_resume,	rl_resume),
228 	DEVMETHOD(device_shutdown,	rl_shutdown),
229 
230 	/* bus interface */
231 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
232 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
233 
234 	/* MII interface */
235 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
236 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
237 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
238 
239 	{ 0, 0 }
240 };
241 
242 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
243 static devclass_t rl_devclass;
244 
245 DECLARE_DUMMY_MODULE(if_rl);
246 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
247 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
248 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
249 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
250 
251 #define EE_SET(x)					\
252 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
253 
254 #define EE_CLR(x)					\
255 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
256 
257 static void
258 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
259 {
260 	struct rl_softc *sc = arg;
261 
262 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
263 }
264 
265 static void
266 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
267 {
268 	struct rl_softc *sc = arg;
269 
270 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
271 }
272 
273 /*
274  * Send a read command and address to the EEPROM, check for ACK.
275  */
276 static void
277 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
278 {
279 	int d, i;
280 
281 	d = addr | sc->rl_eecmd_read;
282 
283 	/*
284 	 * Feed in each bit and strobe the clock.
285 	 */
286 	for (i = 0x400; i; i >>= 1) {
287 		if (d & i)
288 			EE_SET(RL_EE_DATAIN);
289 		else
290 			EE_CLR(RL_EE_DATAIN);
291 		DELAY(100);
292 		EE_SET(RL_EE_CLK);
293 		DELAY(150);
294 		EE_CLR(RL_EE_CLK);
295 		DELAY(100);
296 	}
297 }
298 
299 /*
300  * Read a word of data stored in the EEPROM at address 'addr.'
301  */
302 static void
303 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
304 {
305 	int i;
306 	uint16_t word = 0;
307 
308 	/* Enter EEPROM access mode. */
309 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
310 
311 	/*
312 	 * Send address of word we want to read.
313 	 */
314 	rl_eeprom_putbyte(sc, addr);
315 
316 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
317 
318 	/*
319 	 * Start reading bits from EEPROM.
320 	 */
321 	for (i = 0x8000; i; i >>= 1) {
322 		EE_SET(RL_EE_CLK);
323 		DELAY(100);
324 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
325 			word |= i;
326 		EE_CLR(RL_EE_CLK);
327 		DELAY(100);
328 	}
329 
330 	/* Turn off EEPROM access mode. */
331 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
332 
333 	*dest = word;
334 }
335 
336 /*
337  * Read a sequence of words from the EEPROM.
338  */
339 static void
340 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
341 {
342 	int i;
343 	u_int16_t word = 0, *ptr;
344 
345 	for (i = 0; i < cnt; i++) {
346 		rl_eeprom_getword(sc, off + i, &word);
347 		ptr = (u_int16_t *)(dest + (i * 2));
348 		if (swap)
349 			*ptr = ntohs(word);
350 		else
351 			*ptr = word;
352 	}
353 }
354 
355 
356 /*
357  * MII access routines are provided for the 8129, which
358  * doesn't have a built-in PHY. For the 8139, we fake things
359  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
360  * direct access PHY registers.
361  */
362 #define MII_SET(x)							\
363 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
364 
365 #define MII_CLR(x)							\
366 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
367 
368 /*
369  * Sync the PHYs by setting data bit and strobing the clock 32 times.
370  */
371 static void
372 rl_mii_sync(struct rl_softc *sc)
373 {
374 	int i;
375 
376 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
377 
378 	for (i = 0; i < 32; i++) {
379 		MII_SET(RL_MII_CLK);
380 		DELAY(1);
381 		MII_CLR(RL_MII_CLK);
382 		DELAY(1);
383 	}
384 }
385 
386 /*
387  * Clock a series of bits through the MII.
388  */
389 static void
390 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
391 {
392 	int i;
393 
394 	MII_CLR(RL_MII_CLK);
395 
396 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
397 		if (bits & i)
398 			MII_SET(RL_MII_DATAOUT);
399 		else
400 			MII_CLR(RL_MII_DATAOUT);
401 		DELAY(1);
402 		MII_CLR(RL_MII_CLK);
403 		DELAY(1);
404 		MII_SET(RL_MII_CLK);
405 	}
406 }
407 
408 /*
409  * Read an PHY register through the MII.
410  */
411 static int
412 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
413 {
414 	int i, ack, s;
415 
416 	s = splimp();
417 
418 	/*
419 	 * Set up frame for RX.
420 	 */
421 	frame->mii_stdelim = RL_MII_STARTDELIM;
422 	frame->mii_opcode = RL_MII_READOP;
423 	frame->mii_turnaround = 0;
424 	frame->mii_data = 0;
425 
426 	CSR_WRITE_2(sc, RL_MII, 0);
427 
428 	/*
429  	 * Turn on data xmit.
430 	 */
431 	MII_SET(RL_MII_DIR);
432 
433 	rl_mii_sync(sc);
434 
435 	/*
436 	 * Send command/address info.
437 	 */
438 	rl_mii_send(sc, frame->mii_stdelim, 2);
439 	rl_mii_send(sc, frame->mii_opcode, 2);
440 	rl_mii_send(sc, frame->mii_phyaddr, 5);
441 	rl_mii_send(sc, frame->mii_regaddr, 5);
442 
443 	/* Idle bit */
444 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
445 	DELAY(1);
446 	MII_SET(RL_MII_CLK);
447 	DELAY(1);
448 
449 	/* Turn off xmit. */
450 	MII_CLR(RL_MII_DIR);
451 
452 	/* Check for ack */
453 	MII_CLR(RL_MII_CLK);
454 	DELAY(1);
455 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
456 	MII_SET(RL_MII_CLK);
457 	DELAY(1);
458 
459 	/*
460 	 * Now try reading data bits. If the ack failed, we still
461 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
462 	 */
463 	if (ack) {
464 		for(i = 0; i < 16; i++) {
465 			MII_CLR(RL_MII_CLK);
466 			DELAY(1);
467 			MII_SET(RL_MII_CLK);
468 			DELAY(1);
469 		}
470 	} else {
471 		for (i = 0x8000; i; i >>= 1) {
472 			MII_CLR(RL_MII_CLK);
473 			DELAY(1);
474 			if (!ack) {
475 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
476 					frame->mii_data |= i;
477 				DELAY(1);
478 			}
479 			MII_SET(RL_MII_CLK);
480 			DELAY(1);
481 		}
482 	}
483 
484 	MII_CLR(RL_MII_CLK);
485 	DELAY(1);
486 	MII_SET(RL_MII_CLK);
487 	DELAY(1);
488 
489 	splx(s);
490 
491 	return(ack ? 1 : 0);
492 }
493 
494 /*
495  * Write to a PHY register through the MII.
496  */
497 static int
498 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
499 {
500 	int s;
501 
502 	s = splimp();
503 	/*
504 	 * Set up frame for TX.
505 	 */
506 
507 	frame->mii_stdelim = RL_MII_STARTDELIM;
508 	frame->mii_opcode = RL_MII_WRITEOP;
509 	frame->mii_turnaround = RL_MII_TURNAROUND;
510 
511 	/*
512  	 * Turn on data output.
513 	 */
514 	MII_SET(RL_MII_DIR);
515 
516 	rl_mii_sync(sc);
517 
518 	rl_mii_send(sc, frame->mii_stdelim, 2);
519 	rl_mii_send(sc, frame->mii_opcode, 2);
520 	rl_mii_send(sc, frame->mii_phyaddr, 5);
521 	rl_mii_send(sc, frame->mii_regaddr, 5);
522 	rl_mii_send(sc, frame->mii_turnaround, 2);
523 	rl_mii_send(sc, frame->mii_data, 16);
524 
525 	/* Idle bit. */
526 	MII_SET(RL_MII_CLK);
527 	DELAY(1);
528 	MII_CLR(RL_MII_CLK);
529 	DELAY(1);
530 
531 	/*
532 	 * Turn off xmit.
533 	 */
534 	MII_CLR(RL_MII_DIR);
535 
536 	splx(s);
537 
538 	return(0);
539 }
540 
541 static int
542 rl_miibus_readreg(device_t dev, int phy, int reg)
543 {
544 	struct rl_softc *sc;
545 	struct rl_mii_frame frame;
546 	uint16_t rval = 0;
547 	uint16_t rl8139_reg = 0;
548 
549 	sc = device_get_softc(dev);
550 
551 	if (sc->rl_type == RL_8139) {
552 		/* Pretend the internal PHY is only at address 0 */
553 		if (phy)
554 			return(0);
555 		switch (reg) {
556 		case MII_BMCR:
557 			rl8139_reg = RL_BMCR;
558 			break;
559 		case MII_BMSR:
560 			rl8139_reg = RL_BMSR;
561 			break;
562 		case MII_ANAR:
563 			rl8139_reg = RL_ANAR;
564 			break;
565 		case MII_ANER:
566 			rl8139_reg = RL_ANER;
567 			break;
568 		case MII_ANLPAR:
569 			rl8139_reg = RL_LPAR;
570 			break;
571 		case MII_PHYIDR1:
572 		case MII_PHYIDR2:
573 			return(0);
574 			break;
575 		/*
576 		 * Allow the rlphy driver to read the media status
577 		 * register. If we have a link partner which does not
578 		 * support NWAY, this is the register which will tell
579 		 * us the results of parallel detection.
580 		 */
581 		case RL_MEDIASTAT:
582 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
583 			return(rval);
584 		default:
585 			device_printf(dev, "bad phy register\n");
586 			return(0);
587 		}
588 		rval = CSR_READ_2(sc, rl8139_reg);
589 		return(rval);
590 	}
591 
592 	bzero(&frame, sizeof(frame));
593 
594 	frame.mii_phyaddr = phy;
595 	frame.mii_regaddr = reg;
596 	rl_mii_readreg(sc, &frame);
597 
598 	return(frame.mii_data);
599 }
600 
601 static int
602 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
603 {
604 	struct rl_softc *sc;
605 	struct rl_mii_frame frame;
606 	u_int16_t rl8139_reg = 0;
607 
608 	sc = device_get_softc(dev);
609 
610 	if (sc->rl_type == RL_8139) {
611 		/* Pretend the internal PHY is only at address 0 */
612 		if (phy)
613 			return(0);
614 		switch (reg) {
615 		case MII_BMCR:
616 			rl8139_reg = RL_BMCR;
617 			break;
618 		case MII_BMSR:
619 			rl8139_reg = RL_BMSR;
620 			break;
621 		case MII_ANAR:
622 			rl8139_reg = RL_ANAR;
623 			break;
624 		case MII_ANER:
625 			rl8139_reg = RL_ANER;
626 			break;
627 		case MII_ANLPAR:
628 			rl8139_reg = RL_LPAR;
629 			break;
630 		case MII_PHYIDR1:
631 		case MII_PHYIDR2:
632 			return(0);
633 		default:
634 			device_printf(dev, "bad phy register\n");
635 			return(0);
636 		}
637 		CSR_WRITE_2(sc, rl8139_reg, data);
638 		return(0);
639 	}
640 
641 	bzero(&frame, sizeof(frame));
642 
643 	frame.mii_phyaddr = phy;
644 	frame.mii_regaddr = reg;
645 	frame.mii_data = data;
646 
647 	rl_mii_writereg(sc, &frame);
648 
649 	return(0);
650 }
651 
652 static void
653 rl_miibus_statchg(device_t dev)
654 {
655 }
656 
657 /*
658  * Program the 64-bit multicast hash filter.
659  */
660 static void
661 rl_setmulti(struct rl_softc *sc)
662 {
663 	struct ifnet *ifp;
664 	int h = 0;
665 	uint32_t hashes[2] = { 0, 0 };
666 	struct ifmultiaddr *ifma;
667 	uint32_t rxfilt;
668 	int mcnt = 0;
669 
670 	ifp = &sc->arpcom.ac_if;
671 
672 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
673 
674 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
675 		rxfilt |= RL_RXCFG_RX_MULTI;
676 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
677 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
678 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
679 		return;
680 	}
681 
682 	/* first, zot all the existing hash bits */
683 	CSR_WRITE_4(sc, RL_MAR0, 0);
684 	CSR_WRITE_4(sc, RL_MAR4, 0);
685 
686 	/* now program new ones */
687 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
688 		if (ifma->ifma_addr->sa_family != AF_LINK)
689 			continue;
690 		h = ether_crc32_be(
691 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
692 		    ETHER_ADDR_LEN >> 26);
693 		if (h < 32)
694 			hashes[0] |= (1 << h);
695 		else
696 			hashes[1] |= (1 << (h - 32));
697 		mcnt++;
698 	}
699 
700 	if (mcnt)
701 		rxfilt |= RL_RXCFG_RX_MULTI;
702 	else
703 		rxfilt &= ~RL_RXCFG_RX_MULTI;
704 
705 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
706 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
707 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
708 }
709 
710 static void
711 rl_reset(struct rl_softc *sc)
712 {
713 	int i;
714 
715 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
716 
717 	for (i = 0; i < RL_TIMEOUT; i++) {
718 		DELAY(10);
719 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
720 			break;
721 	}
722 	if (i == RL_TIMEOUT)
723 		device_printf(sc->rl_dev, "reset never completed!\n");
724 }
725 
726 /*
727  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
728  * IDs against our list and return a device name if we find a match.
729  *
730  * Return with a value < 0 to give re(4) a change to attach.
731  */
732 static int
733 rl_probe(device_t dev)
734 {
735 	struct rl_type *t;
736 	uint16_t product = pci_get_device(dev);
737 	uint16_t vendor = pci_get_vendor(dev);
738 
739 	for (t = rl_devs; t->rl_name != NULL; t++) {
740 		if (vendor == t->rl_vid && product == t->rl_did) {
741 			device_set_desc(dev, t->rl_name);
742 			return(-100);
743 		}
744 	}
745 
746 	return(ENXIO);
747 }
748 
749 /*
750  * Attach the interface. Allocate softc structures, do ifmedia
751  * setup and ethernet/BPF attach.
752  */
753 static int
754 rl_attach(device_t dev)
755 {
756 	uint8_t eaddr[ETHER_ADDR_LEN];
757 	uint16_t as[3];
758 	struct rl_softc *sc;
759 	struct ifnet *ifp;
760 	uint16_t rl_did = 0;
761 	int error = 0, rid, i;
762 
763 	sc = device_get_softc(dev);
764 	sc->rl_dev = dev;
765 
766 	/*
767 	 * Handle power management nonsense.
768 	 */
769 
770 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
771 		uint32_t iobase, membase, irq;
772 
773 		/* Save important PCI config data. */
774 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
775 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
776 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
777 
778 		/* Reset the power state. */
779 		device_printf(dev, "chip is is in D%d power mode "
780 			      "-- setting to D0\n", pci_get_powerstate(dev));
781 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
782 
783 		/* Restore PCI config data. */
784 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
785 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
786 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
787 	}
788 
789 	/*
790 	 * Map control/status registers.
791 	 */
792 	pci_enable_busmaster(dev);
793 	pci_enable_io(dev, RL_RES);
794 
795 	rid = RL_RID;
796 	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
797 	    0, ~0, 1, RF_ACTIVE);
798 
799 	if (sc->rl_res == NULL) {
800 		device_printf(dev, "couldn't map ports/memory\n");
801 		error = ENXIO;
802 		goto fail;
803 	}
804 
805 	sc->rl_btag = rman_get_bustag(sc->rl_res);
806 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
807 
808 	rid = 0;
809 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
810 					    RF_SHAREABLE | RF_ACTIVE);
811 
812 	if (sc->rl_irq == NULL) {
813 		device_printf(dev, "couldn't map interrupt\n");
814 		error = ENXIO;
815 		goto fail;
816 	}
817 
818 	callout_init(&sc->rl_stat_timer);
819 
820 	/* Reset the adapter. */
821 	rl_reset(sc);
822 
823 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
824 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
825 	if (rl_did != 0x8129)
826 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
827 
828 	/*
829 	 * Get station address from the EEPROM.
830 	 */
831 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
832 	for (i = 0; i < 3; i++) {
833 		eaddr[(i * 2) + 0] = as[i] & 0xff;
834 		eaddr[(i * 2) + 1] = as[i] >> 8;
835 	}
836 
837 	/*
838 	 * Now read the exact device type from the EEPROM to find
839 	 * out if it's an 8129 or 8139.
840 	 */
841 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
842 
843 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
844 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
845 	    rl_did == DLINK_DEVICEID_530TXPLUS || rl_did == RT_DEVICEID_8138 ||
846 	    rl_did == DLINK_DEVICEID_690TXD ||
847 	    rl_did == COREGA_DEVICEID_FETHERCBTXD ||
848 	    rl_did == COREGA_DEVICEID_FETHERIICBTXD ||
849 	    rl_did == PLANEX_DEVICEID_FNW3800TX)
850 		sc->rl_type = RL_8139;
851 	else if (rl_did == RT_DEVICEID_8129)
852 		sc->rl_type = RL_8129;
853 	else {
854 		device_printf(dev, "unknown device ID: %x\n", rl_did);
855 		error = ENXIO;
856 		goto fail;
857 	}
858 
859 #define	RL_NSEG_NEW 32
860 	error = bus_dma_tag_create(NULL,			/* parent */
861 				   1, 0,			/* alignment, boundary */
862 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
863 				   BUS_SPACE_MAXADDR,		/* highaddr */
864 				   NULL, NULL,			/* filter, filterarg */
865 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
866 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
867 				   BUS_DMA_ALLOCNOW,		/* flags */
868 				   &sc->rl_parent_tag);
869 
870 	if (error) {
871 		device_printf(dev, "can't create parent tag\n");
872 		goto fail;
873 	}
874 
875 	/*
876 	 * Now allocate a tag for the DMA descriptor lists.
877 	 * All of our lists are allocated as a contiguous block
878 	 * of memory.
879 	 */
880 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
881 				   1, 0,			/* alignment, boundary */
882 				   BUS_SPACE_MAXADDR,		/* lowaddr */
883 				   BUS_SPACE_MAXADDR,		/* highaddr */
884 				   NULL, NULL,			/* filter, filterarg */
885 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
886 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
887 				   0,				/* flags */
888 				   &sc->rl_tag);
889 
890 	if (error) {
891 		device_printf(dev, "can't create RX tag\n");
892 		goto fail;
893 	}
894 
895 	/*
896 	 * Now allocate a chunk of DMA-able memory based on the tag
897 	 * we just created.
898 	 */
899 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
900 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
901 
902 	if (error) {
903 		device_printf(dev, "can't allocate RX memory!\n");
904 		error = ENXIO;
905 		goto fail;
906 	}
907 
908 	/* Leave a few bytes before the start of the RX ring buffer. */
909 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
910 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
911 
912 	/* Do MII setup */
913 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
914 			  rl_ifmedia_sts)) {
915 		device_printf(dev, "MII without any phy!\n");
916 		error = ENXIO;
917 		goto fail;
918 	}
919 
920 	ifp = &sc->arpcom.ac_if;
921 	ifp->if_softc = sc;
922 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
923 	ifp->if_mtu = ETHERMTU;
924 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
925 	ifp->if_ioctl = rl_ioctl;
926 	ifp->if_start = rl_start;
927 	ifp->if_watchdog = rl_watchdog;
928 	ifp->if_init = rl_init;
929 	ifp->if_baudrate = 10000000;
930 	ifp->if_capabilities = IFCAP_VLAN_MTU;
931 #ifdef DEVICE_POLLING
932 	ifp->if_capabilities |= IFCAP_POLLING;
933 #endif
934 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
935 	ifq_set_ready(&ifp->if_snd);
936 
937 	/*
938 	 * Call MI attach routine.
939 	 */
940 	ether_ifattach(ifp, eaddr);
941 
942 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET, rl_intr,
943 			       sc, &sc->rl_intrhand);
944 
945 	if (error) {
946 		device_printf(dev, "couldn't set up irq\n");
947 		ether_ifdetach(ifp);
948 		goto fail;
949 	}
950 
951 	return(0);
952 
953 fail:
954 	rl_detach(dev);
955 	return(error);
956 }
957 
958 static int
959 rl_detach(device_t dev)
960 {
961 	struct rl_softc *sc;
962 	struct ifnet *ifp;
963 	int s;
964 
965 	sc = device_get_softc(dev);
966 	ifp = &sc->arpcom.ac_if;
967 
968 	s = splimp();
969 
970 	if (device_is_attached(dev)) {
971 		rl_stop(sc);
972 		ether_ifdetach(ifp);
973 	}
974 
975 	if (sc->rl_miibus)
976 		device_delete_child(dev, sc->rl_miibus);
977 	bus_generic_detach(dev);
978 
979 	if (sc->rl_intrhand)
980 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
981 	splx(s);
982 
983 	if (sc->rl_irq)
984 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
985 	if (sc->rl_res)
986 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
987 
988 	if (sc->rl_cdata.rl_rx_buf) {
989 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
990 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
991 				sc->rl_cdata.rl_rx_dmamap);
992 	}
993 	if (sc->rl_tag)
994 		bus_dma_tag_destroy(sc->rl_tag);
995 	if (sc->rl_parent_tag)
996 		bus_dma_tag_destroy(sc->rl_parent_tag);
997 
998 	return(0);
999 }
1000 
1001 /*
1002  * Initialize the transmit descriptors.
1003  */
1004 static void
1005 rl_list_tx_init(struct rl_softc *sc)
1006 {
1007 	struct rl_chain_data *cd;
1008 	int i;
1009 
1010 	cd = &sc->rl_cdata;
1011 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1012 		cd->rl_tx_chain[i] = NULL;
1013 		CSR_WRITE_4(sc,
1014 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1015 	}
1016 
1017 	sc->rl_cdata.cur_tx = 0;
1018 	sc->rl_cdata.last_tx = 0;
1019 }
1020 
1021 /*
1022  * A frame has been uploaded: pass the resulting mbuf chain up to
1023  * the higher level protocols.
1024  *
1025  * You know there's something wrong with a PCI bus-master chip design
1026  * when you have to use m_devget().
1027  *
1028  * The receive operation is badly documented in the datasheet, so I'll
1029  * attempt to document it here. The driver provides a buffer area and
1030  * places its base address in the RX buffer start address register.
1031  * The chip then begins copying frames into the RX buffer. Each frame
1032  * is preceded by a 32-bit RX status word which specifies the length
1033  * of the frame and certain other status bits. Each frame (starting with
1034  * the status word) is also 32-bit aligned. The frame length is in the
1035  * first 16 bits of the status word; the lower 15 bits correspond with
1036  * the 'rx status register' mentioned in the datasheet.
1037  *
1038  * Note: to make the Alpha happy, the frame payload needs to be aligned
1039  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1040  * the ring buffer starting at an address two bytes before the actual
1041  * data location. We can then shave off the first two bytes using m_adj().
1042  * The reason we do this is because m_devget() doesn't let us specify an
1043  * offset into the mbuf storage space, so we have to artificially create
1044  * one. The ring is allocated in such a way that there are a few unused
1045  * bytes of space preceecing it so that it will be safe for us to do the
1046  * 2-byte backstep even if reading from the ring at offset 0.
1047  */
1048 static void
1049 rl_rxeof(struct rl_softc *sc)
1050 {
1051         struct mbuf *m;
1052         struct ifnet *ifp;
1053 	int total_len = 0;
1054 	uint32_t rxstat;
1055 	caddr_t rxbufpos;
1056 	int wrap = 0;
1057 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1058 
1059 	ifp = &sc->arpcom.ac_if;
1060 
1061 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1062 			BUS_DMASYNC_POSTREAD);
1063 
1064 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1065 
1066 	/* Do not try to read past this point. */
1067 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1068 
1069 	if (limit < cur_rx)
1070 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1071 	else
1072 		max_bytes = limit - cur_rx;
1073 
1074 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1075 #ifdef DEVICE_POLLING
1076 		if (ifp->if_flags & IFF_POLLING) {
1077 			if (sc->rxcycles <= 0)
1078 				break;
1079 			sc->rxcycles--;
1080 		}
1081 #endif /* DEVICE_POLLING */
1082 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1083 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1084 
1085 		/*
1086 		 * Here's a totally undocumented fact for you. When the
1087 		 * RealTek chip is in the process of copying a packet into
1088 		 * RAM for you, the length will be 0xfff0. If you spot a
1089 		 * packet header with this value, you need to stop. The
1090 		 * datasheet makes absolutely no mention of this and
1091 		 * RealTek should be shot for this.
1092 		 */
1093 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1094 			break;
1095 
1096 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1097 			ifp->if_ierrors++;
1098 			rl_init(sc);
1099 			return;
1100 		}
1101 
1102 		/* No errors; receive the packet. */
1103 		total_len = rxstat >> 16;
1104 		rx_bytes += total_len + 4;
1105 
1106 		/*
1107 		 * XXX The RealTek chip includes the CRC with every
1108 		 * received frame, and there's no way to turn this
1109 		 * behavior off (at least, I can't find anything in
1110 	 	 * the manual that explains how to do it) so we have
1111 		 * to trim off the CRC manually.
1112 		 */
1113 		total_len -= ETHER_CRC_LEN;
1114 
1115 		/*
1116 		 * Avoid trying to read more bytes than we know
1117 		 * the chip has prepared for us.
1118 		 */
1119 		if (rx_bytes > max_bytes)
1120 			break;
1121 
1122 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1123 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1124 
1125 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1126 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1127 
1128 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1129 
1130 		if (total_len > wrap) {
1131 			/*
1132 			 * Fool m_devget() into thinking we want to copy
1133 			 * the whole buffer so we don't end up fragmenting
1134 			 * the data.
1135 			 */
1136 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1137 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1138 			if (m == NULL) {
1139 				ifp->if_ierrors++;
1140 			} else {
1141 				m_adj(m, RL_ETHER_ALIGN);
1142 				m_copyback(m, wrap, total_len - wrap,
1143 					sc->rl_cdata.rl_rx_buf);
1144 			}
1145 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1146 		} else {
1147 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1148 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1149 			if (m == NULL) {
1150 				ifp->if_ierrors++;
1151 			} else
1152 				m_adj(m, RL_ETHER_ALIGN);
1153 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1154 		}
1155 
1156 		/*
1157 		 * Round up to 32-bit boundary.
1158 		 */
1159 		cur_rx = (cur_rx + 3) & ~3;
1160 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1161 
1162 		if (m == NULL)
1163 			continue;
1164 
1165 		ifp->if_ipackets++;
1166 
1167 		(*ifp->if_input)(ifp, m);
1168 	}
1169 }
1170 
1171 /*
1172  * A frame was downloaded to the chip. It's safe for us to clean up
1173  * the list buffers.
1174  */
1175 static void
1176 rl_txeof(struct rl_softc *sc)
1177 {
1178 	struct ifnet *ifp;
1179 	uint32_t txstat;
1180 
1181 	ifp = &sc->arpcom.ac_if;
1182 
1183 	/*
1184 	 * Go through our tx list and free mbufs for those
1185 	 * frames that have been uploaded.
1186 	 */
1187 	do {
1188 		if (RL_LAST_TXMBUF(sc) == NULL)
1189 			break;
1190 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1191 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1192 			       RL_TXSTAT_TXABRT)) == 0)
1193 			break;
1194 
1195 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1196 
1197 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1198 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1199 		m_freem(RL_LAST_TXMBUF(sc));
1200 		RL_LAST_TXMBUF(sc) = NULL;
1201 
1202 		if ((txstat & RL_TXSTAT_TX_OK) == 0) {
1203 			int oldthresh;
1204 
1205 			ifp->if_oerrors++;
1206 			if ((txstat & RL_TXSTAT_TXABRT) ||
1207 			    (txstat & RL_TXSTAT_OUTOFWIN))
1208 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1209 			oldthresh = sc->rl_txthresh;
1210 			/* error recovery */
1211 			rl_reset(sc);
1212 			rl_init(sc);
1213 			/*
1214 			 * If there was a transmit underrun,
1215 			 * bump the TX threshold.
1216 			 */
1217 			if (txstat & RL_TXSTAT_TX_UNDERRUN)
1218 				sc->rl_txthresh = oldthresh + 32;
1219 			return;
1220 		}
1221 		ifp->if_opackets++;
1222 		RL_INC(sc->rl_cdata.last_tx);
1223 		ifp->if_flags &= ~IFF_OACTIVE;
1224 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1225 
1226 	if (RL_LAST_TXMBUF(sc) == NULL)
1227 		ifp->if_timer = 0;
1228 	else if (ifp->if_timer == 0)
1229 		ifp->if_timer = 5;
1230 }
1231 
1232 static void
1233 rl_tick(void *xsc)
1234 {
1235 	struct rl_softc *sc = xsc;
1236 	struct mii_data *mii;
1237 	int s;
1238 
1239 	s = splimp();
1240 
1241 	mii = device_get_softc(sc->rl_miibus);
1242 	mii_tick(mii);
1243 
1244 	splx(s);
1245 
1246 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1247 }
1248 
1249 #ifdef DEVICE_POLLING
1250 static poll_handler_t rl_poll;
1251 
1252 static void
1253 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1254 {
1255 	struct rl_softc *sc = ifp->if_softc;
1256 
1257 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1258 		ether_poll_deregister(ifp);
1259 		cmd = POLL_DEREGISTER;
1260 	}
1261 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1262 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1263 		return;
1264 	}
1265 
1266 	sc->rxcycles = count;
1267 	rl_rxeof(sc);
1268 	rl_txeof(sc);
1269 	if (!ifq_is_empty(&ifp->if_snd))
1270 		rl_start(ifp);
1271 
1272 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1273 		uint16_t status;
1274 
1275 		status = CSR_READ_2(sc, RL_ISR);
1276 		if (status == 0xffff)
1277 			return;
1278 		if (status)
1279 			CSR_WRITE_2(sc, RL_ISR, status);
1280 
1281 		/*
1282 		 * XXX check behaviour on receiver stalls.
1283 		 */
1284 
1285 		if (status & RL_ISR_SYSTEM_ERR) {
1286 			rl_reset(sc);
1287 			rl_init(sc);
1288 		}
1289 	}
1290 }
1291 #endif /* DEVICE_POLLING */
1292 
1293 static void
1294 rl_intr(void *arg)
1295 {
1296 	struct rl_softc *sc;
1297 	struct ifnet *ifp;
1298 	uint16_t status;
1299 
1300 	sc = arg;
1301 
1302 	if (sc->suspended)
1303 		return;
1304 
1305 	ifp = &sc->arpcom.ac_if;
1306 #ifdef DEVICE_POLLING
1307         if  (ifp->if_flags & IFF_POLLING)
1308                 return;
1309         if ((ifp->if_capenable & IFCAP_POLLING) &&
1310 	    ether_poll_register(rl_poll, ifp)) { /* ok, disable interrupts */
1311                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1312                 rl_poll(ifp, 0, 1);
1313                 return;
1314         }
1315 #endif /* DEVICE_POLLING */
1316 
1317 	for (;;) {
1318 		status = CSR_READ_2(sc, RL_ISR);
1319 		/* If the card has gone away, the read returns 0xffff. */
1320 		if (status == 0xffff)
1321 			break;
1322 
1323 		if (status != 0)
1324 			CSR_WRITE_2(sc, RL_ISR, status);
1325 
1326 		if ((status & RL_INTRS) == 0)
1327 			break;
1328 
1329 		if (status & RL_ISR_RX_OK)
1330 			rl_rxeof(sc);
1331 
1332 		if (status & RL_ISR_RX_ERR)
1333 			rl_rxeof(sc);
1334 
1335 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1336 			rl_txeof(sc);
1337 
1338 		if (status & RL_ISR_SYSTEM_ERR) {
1339 			rl_reset(sc);
1340 			rl_init(sc);
1341 		}
1342 
1343 	}
1344 
1345 	if (!ifq_is_empty(&ifp->if_snd))
1346 		rl_start(ifp);
1347 }
1348 
1349 /*
1350  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1351  * pointers to the fragment pointers.
1352  */
1353 static int
1354 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1355 {
1356 	struct mbuf *m_new = NULL;
1357 
1358 	/*
1359 	 * The RealTek is brain damaged and wants longword-aligned
1360 	 * TX buffers, plus we can only have one fragment buffer
1361 	 * per packet. We have to copy pretty much all the time.
1362 	 */
1363 	m_new = m_defrag(m_head, MB_DONTWAIT);
1364 
1365 	if (m_new == NULL) {
1366 		m_freem(m_head);
1367 		return(1);
1368 	}
1369 	m_head = m_new;
1370 
1371 	/* Pad frames to at least 60 bytes. */
1372 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1373 		/*
1374 		 * Make security concious people happy: zero out the
1375 		 * bytes in the pad area, since we don't know what
1376 		 * this mbuf cluster buffer's previous user might
1377 		 * have left in it.
1378 	 	 */
1379 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1380 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1381 		m_head->m_pkthdr.len +=
1382 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1383 		m_head->m_len = m_head->m_pkthdr.len;
1384 	}
1385 
1386 	RL_CUR_TXMBUF(sc) = m_head;
1387 
1388 	return(0);
1389 }
1390 
1391 /*
1392  * Main transmit routine.
1393  */
1394 
1395 static void
1396 rl_start(struct ifnet *ifp)
1397 {
1398 	struct rl_softc *sc;
1399 	struct mbuf *m_head = NULL;
1400 
1401 	sc = ifp->if_softc;
1402 
1403 	while(RL_CUR_TXMBUF(sc) == NULL) {
1404 		m_head = ifq_dequeue(&ifp->if_snd);
1405 		if (m_head == NULL)
1406 			break;
1407 
1408 		if (rl_encap(sc, m_head))
1409 			break;
1410 
1411 		/*
1412 		 * If there's a BPF listener, bounce a copy of this frame
1413 		 * to him.
1414 		 */
1415 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1416 
1417 		/*
1418 		 * Transmit the frame.
1419 	 	 */
1420 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1421 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1422 				mtod(RL_CUR_TXMBUF(sc), void *),
1423 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1424 				rl_dma_map_txbuf, sc, 0);
1425 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1426 				BUS_DMASYNC_PREREAD);
1427 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1428 		    RL_TXTHRESH(sc->rl_txthresh) |
1429 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1430 
1431 		RL_INC(sc->rl_cdata.cur_tx);
1432 
1433 		/*
1434 		 * Set a timeout in case the chip goes out to lunch.
1435 		 */
1436 		ifp->if_timer = 5;
1437 	}
1438 
1439 	/*
1440 	 * We broke out of the loop because all our TX slots are
1441 	 * full. Mark the NIC as busy until it drains some of the
1442 	 * packets from the queue.
1443 	 */
1444 	if (RL_CUR_TXMBUF(sc) != NULL)
1445 		ifp->if_flags |= IFF_OACTIVE;
1446 }
1447 
1448 static void
1449 rl_init(void *xsc)
1450 {
1451 	struct rl_softc *sc = xsc;
1452 	struct ifnet *ifp = &sc->arpcom.ac_if;
1453 	struct mii_data *mii;
1454 	int s;
1455 	uint32_t rxcfg = 0;
1456 
1457 	s = splimp();
1458 
1459 	mii = device_get_softc(sc->rl_miibus);
1460 
1461 	/*
1462 	 * Cancel pending I/O and free all RX/TX buffers.
1463 	 */
1464 	rl_stop(sc);
1465 
1466 	/*
1467 	 * Init our MAC address.  Even though the chipset documentation
1468 	 * doesn't mention it, we need to enter "Config register write enable"
1469 	 * mode to modify the ID registers.
1470 	 */
1471 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1472 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1473 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1474 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1475 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1476 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1477 
1478 	/* Init the RX buffer pointer register. */
1479 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1480 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1481 			sc, 0);
1482 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1483 			BUS_DMASYNC_PREWRITE);
1484 
1485 	/* Init TX descriptors. */
1486 	rl_list_tx_init(sc);
1487 
1488 	/*
1489 	 * Enable transmit and receive.
1490 	 */
1491 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1492 
1493 	/*
1494 	 * Set the initial TX and RX configuration.
1495 	 */
1496 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1497 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1498 
1499 	/* Set the individual bit to receive frames for this host only. */
1500 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1501 	rxcfg |= RL_RXCFG_RX_INDIV;
1502 
1503 	/* If we want promiscuous mode, set the allframes bit. */
1504 	if (ifp->if_flags & IFF_PROMISC) {
1505 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1506 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1507 	} else {
1508 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1509 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1510 	}
1511 
1512 	/*
1513 	 * Set capture broadcast bit to capture broadcast frames.
1514 	 */
1515 	if (ifp->if_flags & IFF_BROADCAST) {
1516 		rxcfg |= RL_RXCFG_RX_BROAD;
1517 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1518 	} else {
1519 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1520 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1521 	}
1522 
1523 	/*
1524 	 * Program the multicast filter, if necessary.
1525 	 */
1526 	rl_setmulti(sc);
1527 
1528 #ifdef DEVICE_POLLING
1529 	/*
1530 	 * Only enable interrupts if we are polling, keep them off otherwise.
1531 	 */
1532 	if (ifp->if_flags & IFF_POLLING)
1533 		CSR_WRITE_2(sc, RL_IMR, 0);
1534 	else
1535 #endif /* DEVICE_POLLING */
1536 	/*
1537 	 * Enable interrupts.
1538 	 */
1539 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1540 
1541 	/* Set initial TX threshold */
1542 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1543 
1544 	/* Start RX/TX process. */
1545 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1546 
1547 	/* Enable receiver and transmitter. */
1548 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1549 
1550 	mii_mediachg(mii);
1551 
1552 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1553 
1554 	ifp->if_flags |= IFF_RUNNING;
1555 	ifp->if_flags &= ~IFF_OACTIVE;
1556 
1557 	splx(s);
1558 
1559 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1560 }
1561 
1562 /*
1563  * Set media options.
1564  */
1565 static int
1566 rl_ifmedia_upd(struct ifnet *ifp)
1567 {
1568 	struct rl_softc *sc;
1569 	struct mii_data *mii;
1570 
1571 	sc = ifp->if_softc;
1572 	mii = device_get_softc(sc->rl_miibus);
1573 	mii_mediachg(mii);
1574 
1575 	return(0);
1576 }
1577 
1578 /*
1579  * Report current media status.
1580  */
1581 static void
1582 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1583 {
1584 	struct rl_softc *sc = ifp->if_softc;
1585 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1586 
1587 	mii_pollstat(mii);
1588 	ifmr->ifm_active = mii->mii_media_active;
1589 	ifmr->ifm_status = mii->mii_media_status;
1590 }
1591 
1592 static int
1593 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1594 {
1595 	struct rl_softc *sc = ifp->if_softc;
1596 	struct ifreq *ifr = (struct ifreq *) data;
1597 	struct mii_data	*mii;
1598 	int s, error = 0;
1599 
1600 	s = splimp();
1601 
1602 	switch (command) {
1603 	case SIOCSIFFLAGS:
1604 		if (ifp->if_flags & IFF_UP) {
1605 			rl_init(sc);
1606 		} else {
1607 			if (ifp->if_flags & IFF_RUNNING)
1608 				rl_stop(sc);
1609 		}
1610 		error = 0;
1611 		break;
1612 	case SIOCADDMULTI:
1613 	case SIOCDELMULTI:
1614 		rl_setmulti(sc);
1615 		error = 0;
1616 		break;
1617 	case SIOCGIFMEDIA:
1618 	case SIOCSIFMEDIA:
1619 		mii = device_get_softc(sc->rl_miibus);
1620 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1621 		break;
1622 	case SIOCSIFCAP:
1623 		ifp->if_capenable &= ~IFCAP_POLLING;
1624 		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
1625 		break;
1626 	default:
1627 		error = ether_ioctl(ifp, command, data);
1628 		break;
1629 	}
1630 
1631 	splx(s);
1632 
1633 	return(error);
1634 }
1635 
1636 static void
1637 rl_watchdog(struct ifnet *ifp)
1638 {
1639 	struct rl_softc *sc = ifp->if_softc;
1640 	int s;
1641 
1642 	s = splimp();
1643 
1644 	device_printf(sc->rl_dev, "watchdog timeout\n");
1645 	ifp->if_oerrors++;
1646 
1647 	rl_txeof(sc);
1648 	rl_rxeof(sc);
1649 	rl_init(sc);
1650 
1651 	splx(s);
1652 }
1653 
1654 /*
1655  * Stop the adapter and free any mbufs allocated to the
1656  * RX and TX lists.
1657  */
1658 static void
1659 rl_stop(struct rl_softc *sc)
1660 {
1661 	struct ifnet *ifp = &sc->arpcom.ac_if;
1662 	int i;
1663 
1664 	ifp->if_timer = 0;
1665 
1666 	callout_stop(&sc->rl_stat_timer);
1667 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1668 #ifdef DEVICE_POLLING
1669 	ether_poll_deregister(ifp);
1670 #endif /* DEVICE_POLLING */
1671 
1672 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1673 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1674 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1675 
1676 	/*
1677 	 * Free the TX list buffers.
1678 	 */
1679 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1680 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1681 			bus_dmamap_unload(sc->rl_tag,
1682 					  sc->rl_cdata.rl_tx_dmamap[i]);
1683 			bus_dmamap_destroy(sc->rl_tag,
1684 					   sc->rl_cdata.rl_tx_dmamap[i]);
1685 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1686 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1687 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1688 				    0x0000000);
1689 		}
1690 	}
1691 }
1692 
1693 /*
1694  * Stop all chip I/O so that the kernel's probe routines don't
1695  * get confused by errant DMAs when rebooting.
1696  */
1697 static void
1698 rl_shutdown(device_t dev)
1699 {
1700 	struct rl_softc *sc;
1701 
1702 	sc = device_get_softc(dev);
1703 
1704 	rl_stop(sc);
1705 }
1706 
1707 /*
1708  * Device suspend routine.  Stop the interface and save some PCI
1709  * settings in case the BIOS doesn't restore them properly on
1710  * resume.
1711  */
1712 static int
1713 rl_suspend(device_t dev)
1714 {
1715 	struct rl_softc	*sc = device_get_softc(dev);
1716 	int i;
1717 
1718 	rl_stop(sc);
1719 
1720 	for (i = 0; i < 5; i++)
1721 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1722 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1723 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1724 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1725 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1726 
1727 	sc->suspended = 1;
1728 
1729 	return (0);
1730 }
1731 
1732 /*
1733  * Device resume routine.  Restore some PCI settings in case the BIOS
1734  * doesn't, re-enable busmastering, and restart the interface if
1735  * appropriate.
1736  */
1737 static int rl_resume(device_t dev)
1738 {
1739 	struct rl_softc *sc = device_get_softc(dev);
1740 	struct ifnet *ifp = &sc->arpcom.ac_if;
1741 	int		i;
1742 
1743 	/* better way to do this? */
1744 	for (i = 0; i < 5; i++)
1745 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1746 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1747 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1748 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1749 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1750 
1751 	/* reenable busmastering */
1752 	pci_enable_busmaster(dev);
1753 	pci_enable_io(dev, RL_RES);
1754 
1755         /* reinitialize interface if necessary */
1756         if (ifp->if_flags & IFF_UP)
1757                 rl_init(sc);
1758 
1759 	sc->suspended = 0;
1760 
1761 	return (0);
1762 }
1763