xref: /dflybsd-src/sys/dev/netif/rl/if_rl.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.29 2005/11/28 17:13:43 dillon Exp $
34  */
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
50  * probably the worst PCI ethernet controller ever made, with the possible
51  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
52  * DMA, but it has a terrible interface that nullifies any performance
53  * gains that bus-master DMA usually offers.
54  *
55  * For transmission, the chip offers a series of four TX descriptor
56  * registers. Each transmit frame must be in a contiguous buffer, aligned
57  * on a longword (32-bit) boundary. This means we almost always have to
58  * do mbuf copies in order to transmit a frame, except in the unlikely
59  * case where a) the packet fits into a single mbuf, and b) the packet
60  * is 32-bit aligned within the mbuf's data area. The presence of only
61  * four descriptor registers means that we can never have more than four
62  * packets queued for transmission at any one time.
63  *
64  * Reception is not much better. The driver has to allocate a single large
65  * buffer area (up to 64K in size) into which the chip will DMA received
66  * frames. Because we don't know where within this region received packets
67  * will begin or end, we have no choice but to copy data from the buffer
68  * area into mbufs in order to pass the packets up to the higher protocol
69  * levels.
70  *
71  * It's impossible given this rotten design to really achieve decent
72  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
73  * some equally overmuscled CPU to drive it.
74  *
75  * On the bright side, the 8139 does have a built-in PHY, although
76  * rather than using an MDIO serial interface like most other NICs, the
77  * PHY registers are directly accessible through the 8139's register
78  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
79  * filter.
80  *
81  * The 8129 chip is an older version of the 8139 that uses an external PHY
82  * chip. The 8129 has a serial MDIO interface for accessing the MII where
83  * the 8139 lets you directly access the on-board PHY registers. We need
84  * to select which interface to use depending on the chip type.
85  */
86 
87 #include "opt_polling.h"
88 
89 #include <sys/param.h>
90 #include <sys/endian.h>
91 #include <sys/systm.h>
92 #include <sys/sockio.h>
93 #include <sys/mbuf.h>
94 #include <sys/malloc.h>
95 #include <sys/kernel.h>
96 #include <sys/module.h>
97 #include <sys/socket.h>
98 #include <sys/serialize.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 
108 #include <net/bpf.h>
109 
110 #include <machine/bus_pio.h>
111 #include <machine/bus_memio.h>
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 #include <dev/netif/mii_layer/mii.h>
118 #include <dev/netif/mii_layer/miivar.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 
123 /* "controller miibus0" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 /*
127  * Default to using PIO access for this driver. On SMP systems,
128  * there appear to be problems with memory mapped mode: it looks like
129  * doing too many memory mapped access back to back in rapid succession
130  * can hang the bus. I'm inclined to blame this on crummy design/construction
131  * on the part of RealTek. Memory mapped mode does appear to work on
132  * uniprocessor systems though.
133  */
134 #define RL_USEIOSPACE
135 
136 #include <dev/netif/rl/if_rlreg.h>
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct rl_type {
142 	uint16_t	 rl_vid;
143 	uint16_t	 rl_did;
144 	const char	*rl_name;
145 } rl_devs[] = {
146 	{ RT_VENDORID, RT_DEVICEID_8129,
147 		"RealTek 8129 10/100BaseTX" },
148 	{ RT_VENDORID, RT_DEVICEID_8139,
149 		"RealTek 8139 10/100BaseTX" },
150 	{ RT_VENDORID, RT_DEVICEID_8138,
151 		"RealTek 8139 10/100BaseTX CardBus" },
152 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
153 		"Accton MPX 5030/5038 10/100BaseTX" },
154 	{ DELTA_VENDORID, DELTA_DEVICEID_8139,
155 		"Delta Electronics 8139 10/100BaseTX" },
156 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
157 		"Addtron Technolgy 8139 10/100BaseTX" },
158 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
159 		"D-Link DFE-530TX+ 10/100BaseTX" },
160 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
161 		"D-Link DFE-690TX 10/100BaseTX" },
162 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
163 		"Nortel Networks 10/100BaseTX" },
164 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
165 		"Peppercon AG ROL/F" },
166 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
167 		"Corega FEther CB-TXD" },
168 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
169 		"Corega FEtherII CB-TXD" },
170 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX,
171 		"Planex FNW-3800-TX" },
172 	{ 0, 0, NULL }
173 };
174 
175 static int	rl_probe(device_t);
176 static int	rl_attach(device_t);
177 static int	rl_detach(device_t);
178 
179 static int	rl_encap(struct rl_softc *, struct mbuf * );
180 
181 static void	rl_rxeof(struct rl_softc *);
182 static void	rl_txeof(struct rl_softc *);
183 static void	rl_intr(void *);
184 static void	rl_tick(void *);
185 static void	rl_start(struct ifnet *);
186 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
187 static void	rl_init(void *);
188 static void	rl_stop	(struct rl_softc *);
189 static void	rl_watchdog(struct ifnet *);
190 static int	rl_suspend(device_t);
191 static int	rl_resume(device_t);
192 static void	rl_shutdown(device_t);
193 static int	rl_ifmedia_upd(struct ifnet *);
194 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
195 
196 static void	rl_eeprom_putbyte(struct rl_softc *, int);
197 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
198 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
199 static void	rl_mii_sync(struct rl_softc *);
200 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
201 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
202 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
203 
204 static int	rl_miibus_readreg(device_t, int, int);
205 static int	rl_miibus_writereg(device_t, int, int, int);
206 static void	rl_miibus_statchg(device_t);
207 
208 static void	rl_setmulti(struct rl_softc *);
209 static void	rl_reset(struct rl_softc *);
210 static void	rl_list_tx_init(struct rl_softc *);
211 
212 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
213 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
214 #ifdef DEVICE_POLLING
215 static poll_handler_t rl_poll;
216 #endif
217 
218 #ifdef RL_USEIOSPACE
219 #define	RL_RES			SYS_RES_IOPORT
220 #define	RL_RID			RL_PCI_LOIO
221 #else
222 #define	RL_RES			SYS_RES_MEMORY
223 #define	RL_RID			RL_PCI_LOMEM
224 #endif
225 
226 static device_method_t rl_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		rl_probe),
229 	DEVMETHOD(device_attach,	rl_attach),
230 	DEVMETHOD(device_detach,	rl_detach),
231 	DEVMETHOD(device_suspend,	rl_suspend),
232 	DEVMETHOD(device_resume,	rl_resume),
233 	DEVMETHOD(device_shutdown,	rl_shutdown),
234 
235 	/* bus interface */
236 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
237 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
238 
239 	/* MII interface */
240 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
241 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
242 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
243 
244 	{ 0, 0 }
245 };
246 
247 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
248 static devclass_t rl_devclass;
249 
250 DECLARE_DUMMY_MODULE(if_rl);
251 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
252 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
253 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
254 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
255 
256 #define EE_SET(x)					\
257 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
258 
259 #define EE_CLR(x)					\
260 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
261 
262 static void
263 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
264 {
265 	struct rl_softc *sc = arg;
266 
267 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
268 }
269 
270 static void
271 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
272 {
273 	struct rl_softc *sc = arg;
274 
275 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
276 }
277 
278 /*
279  * Send a read command and address to the EEPROM, check for ACK.
280  */
281 static void
282 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
283 {
284 	int d, i;
285 
286 	d = addr | sc->rl_eecmd_read;
287 
288 	/*
289 	 * Feed in each bit and strobe the clock.
290 	 */
291 	for (i = 0x400; i; i >>= 1) {
292 		if (d & i)
293 			EE_SET(RL_EE_DATAIN);
294 		else
295 			EE_CLR(RL_EE_DATAIN);
296 		DELAY(100);
297 		EE_SET(RL_EE_CLK);
298 		DELAY(150);
299 		EE_CLR(RL_EE_CLK);
300 		DELAY(100);
301 	}
302 }
303 
304 /*
305  * Read a word of data stored in the EEPROM at address 'addr.'
306  */
307 static void
308 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
309 {
310 	int i;
311 	uint16_t word = 0;
312 
313 	/* Enter EEPROM access mode. */
314 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
315 
316 	/*
317 	 * Send address of word we want to read.
318 	 */
319 	rl_eeprom_putbyte(sc, addr);
320 
321 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
322 
323 	/*
324 	 * Start reading bits from EEPROM.
325 	 */
326 	for (i = 0x8000; i; i >>= 1) {
327 		EE_SET(RL_EE_CLK);
328 		DELAY(100);
329 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
330 			word |= i;
331 		EE_CLR(RL_EE_CLK);
332 		DELAY(100);
333 	}
334 
335 	/* Turn off EEPROM access mode. */
336 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
337 
338 	*dest = word;
339 }
340 
341 /*
342  * Read a sequence of words from the EEPROM.
343  */
344 static void
345 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
346 {
347 	int i;
348 	u_int16_t word = 0, *ptr;
349 
350 	for (i = 0; i < cnt; i++) {
351 		rl_eeprom_getword(sc, off + i, &word);
352 		ptr = (u_int16_t *)(dest + (i * 2));
353 		if (swap)
354 			*ptr = ntohs(word);
355 		else
356 			*ptr = word;
357 	}
358 }
359 
360 
361 /*
362  * MII access routines are provided for the 8129, which
363  * doesn't have a built-in PHY. For the 8139, we fake things
364  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
365  * direct access PHY registers.
366  */
367 #define MII_SET(x)							\
368 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
369 
370 #define MII_CLR(x)							\
371 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
372 
373 /*
374  * Sync the PHYs by setting data bit and strobing the clock 32 times.
375  */
376 static void
377 rl_mii_sync(struct rl_softc *sc)
378 {
379 	int i;
380 
381 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
382 
383 	for (i = 0; i < 32; i++) {
384 		MII_SET(RL_MII_CLK);
385 		DELAY(1);
386 		MII_CLR(RL_MII_CLK);
387 		DELAY(1);
388 	}
389 }
390 
391 /*
392  * Clock a series of bits through the MII.
393  */
394 static void
395 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
396 {
397 	int i;
398 
399 	MII_CLR(RL_MII_CLK);
400 
401 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
402 		if (bits & i)
403 			MII_SET(RL_MII_DATAOUT);
404 		else
405 			MII_CLR(RL_MII_DATAOUT);
406 		DELAY(1);
407 		MII_CLR(RL_MII_CLK);
408 		DELAY(1);
409 		MII_SET(RL_MII_CLK);
410 	}
411 }
412 
413 /*
414  * Read an PHY register through the MII.
415  */
416 static int
417 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
418 {
419 	int ack, i;
420 
421 	/*
422 	 * Set up frame for RX.
423 	 */
424 	frame->mii_stdelim = RL_MII_STARTDELIM;
425 	frame->mii_opcode = RL_MII_READOP;
426 	frame->mii_turnaround = 0;
427 	frame->mii_data = 0;
428 
429 	CSR_WRITE_2(sc, RL_MII, 0);
430 
431 	/*
432  	 * Turn on data xmit.
433 	 */
434 	MII_SET(RL_MII_DIR);
435 
436 	rl_mii_sync(sc);
437 
438 	/*
439 	 * Send command/address info.
440 	 */
441 	rl_mii_send(sc, frame->mii_stdelim, 2);
442 	rl_mii_send(sc, frame->mii_opcode, 2);
443 	rl_mii_send(sc, frame->mii_phyaddr, 5);
444 	rl_mii_send(sc, frame->mii_regaddr, 5);
445 
446 	/* Idle bit */
447 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
448 	DELAY(1);
449 	MII_SET(RL_MII_CLK);
450 	DELAY(1);
451 
452 	/* Turn off xmit. */
453 	MII_CLR(RL_MII_DIR);
454 
455 	/* Check for ack */
456 	MII_CLR(RL_MII_CLK);
457 	DELAY(1);
458 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
459 	MII_SET(RL_MII_CLK);
460 	DELAY(1);
461 
462 	/*
463 	 * Now try reading data bits. If the ack failed, we still
464 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
465 	 */
466 	if (ack) {
467 		for(i = 0; i < 16; i++) {
468 			MII_CLR(RL_MII_CLK);
469 			DELAY(1);
470 			MII_SET(RL_MII_CLK);
471 			DELAY(1);
472 		}
473 	} else {
474 		for (i = 0x8000; i; i >>= 1) {
475 			MII_CLR(RL_MII_CLK);
476 			DELAY(1);
477 			if (!ack) {
478 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
479 					frame->mii_data |= i;
480 				DELAY(1);
481 			}
482 			MII_SET(RL_MII_CLK);
483 			DELAY(1);
484 		}
485 	}
486 
487 	MII_CLR(RL_MII_CLK);
488 	DELAY(1);
489 	MII_SET(RL_MII_CLK);
490 	DELAY(1);
491 
492 	return(ack ? 1 : 0);
493 }
494 
495 /*
496  * Write to a PHY register through the MII.
497  */
498 static int
499 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
500 {
501 	/*
502 	 * Set up frame for TX.
503 	 */
504 	frame->mii_stdelim = RL_MII_STARTDELIM;
505 	frame->mii_opcode = RL_MII_WRITEOP;
506 	frame->mii_turnaround = RL_MII_TURNAROUND;
507 
508 	/*
509  	 * Turn on data output.
510 	 */
511 	MII_SET(RL_MII_DIR);
512 
513 	rl_mii_sync(sc);
514 
515 	rl_mii_send(sc, frame->mii_stdelim, 2);
516 	rl_mii_send(sc, frame->mii_opcode, 2);
517 	rl_mii_send(sc, frame->mii_phyaddr, 5);
518 	rl_mii_send(sc, frame->mii_regaddr, 5);
519 	rl_mii_send(sc, frame->mii_turnaround, 2);
520 	rl_mii_send(sc, frame->mii_data, 16);
521 
522 	/* Idle bit. */
523 	MII_SET(RL_MII_CLK);
524 	DELAY(1);
525 	MII_CLR(RL_MII_CLK);
526 	DELAY(1);
527 
528 	/*
529 	 * Turn off xmit.
530 	 */
531 	MII_CLR(RL_MII_DIR);
532 
533 	return(0);
534 }
535 
536 static int
537 rl_miibus_readreg(device_t dev, int phy, int reg)
538 {
539 	struct rl_softc *sc;
540 	struct rl_mii_frame frame;
541 	uint16_t rval = 0;
542 	uint16_t rl8139_reg = 0;
543 
544 	sc = device_get_softc(dev);
545 
546 	if (sc->rl_type == RL_8139) {
547 		/* Pretend the internal PHY is only at address 0 */
548 		if (phy)
549 			return(0);
550 		switch (reg) {
551 		case MII_BMCR:
552 			rl8139_reg = RL_BMCR;
553 			break;
554 		case MII_BMSR:
555 			rl8139_reg = RL_BMSR;
556 			break;
557 		case MII_ANAR:
558 			rl8139_reg = RL_ANAR;
559 			break;
560 		case MII_ANER:
561 			rl8139_reg = RL_ANER;
562 			break;
563 		case MII_ANLPAR:
564 			rl8139_reg = RL_LPAR;
565 			break;
566 		case MII_PHYIDR1:
567 		case MII_PHYIDR2:
568 			return(0);
569 			break;
570 		/*
571 		 * Allow the rlphy driver to read the media status
572 		 * register. If we have a link partner which does not
573 		 * support NWAY, this is the register which will tell
574 		 * us the results of parallel detection.
575 		 */
576 		case RL_MEDIASTAT:
577 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
578 			return(rval);
579 		default:
580 			device_printf(dev, "bad phy register\n");
581 			return(0);
582 		}
583 		rval = CSR_READ_2(sc, rl8139_reg);
584 		return(rval);
585 	}
586 
587 	bzero(&frame, sizeof(frame));
588 
589 	frame.mii_phyaddr = phy;
590 	frame.mii_regaddr = reg;
591 	rl_mii_readreg(sc, &frame);
592 
593 	return(frame.mii_data);
594 }
595 
596 static int
597 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
598 {
599 	struct rl_softc *sc;
600 	struct rl_mii_frame frame;
601 	u_int16_t rl8139_reg = 0;
602 
603 	sc = device_get_softc(dev);
604 
605 	if (sc->rl_type == RL_8139) {
606 		/* Pretend the internal PHY is only at address 0 */
607 		if (phy)
608 			return(0);
609 		switch (reg) {
610 		case MII_BMCR:
611 			rl8139_reg = RL_BMCR;
612 			break;
613 		case MII_BMSR:
614 			rl8139_reg = RL_BMSR;
615 			break;
616 		case MII_ANAR:
617 			rl8139_reg = RL_ANAR;
618 			break;
619 		case MII_ANER:
620 			rl8139_reg = RL_ANER;
621 			break;
622 		case MII_ANLPAR:
623 			rl8139_reg = RL_LPAR;
624 			break;
625 		case MII_PHYIDR1:
626 		case MII_PHYIDR2:
627 			return(0);
628 		default:
629 			device_printf(dev, "bad phy register\n");
630 			return(0);
631 		}
632 		CSR_WRITE_2(sc, rl8139_reg, data);
633 		return(0);
634 	}
635 
636 	bzero(&frame, sizeof(frame));
637 
638 	frame.mii_phyaddr = phy;
639 	frame.mii_regaddr = reg;
640 	frame.mii_data = data;
641 
642 	rl_mii_writereg(sc, &frame);
643 
644 	return(0);
645 }
646 
647 static void
648 rl_miibus_statchg(device_t dev)
649 {
650 }
651 
652 /*
653  * Program the 64-bit multicast hash filter.
654  */
655 static void
656 rl_setmulti(struct rl_softc *sc)
657 {
658 	struct ifnet *ifp;
659 	int h = 0;
660 	uint32_t hashes[2] = { 0, 0 };
661 	struct ifmultiaddr *ifma;
662 	uint32_t rxfilt;
663 	int mcnt = 0;
664 
665 	ifp = &sc->arpcom.ac_if;
666 
667 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
668 
669 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
670 		rxfilt |= RL_RXCFG_RX_MULTI;
671 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
672 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
673 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
674 		return;
675 	}
676 
677 	/* first, zot all the existing hash bits */
678 	CSR_WRITE_4(sc, RL_MAR0, 0);
679 	CSR_WRITE_4(sc, RL_MAR4, 0);
680 
681 	/* now program new ones */
682 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
683 		if (ifma->ifma_addr->sa_family != AF_LINK)
684 			continue;
685 		h = ether_crc32_be(
686 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
687 		    ETHER_ADDR_LEN) >> 26;
688 		if (h < 32)
689 			hashes[0] |= (1 << h);
690 		else
691 			hashes[1] |= (1 << (h - 32));
692 		mcnt++;
693 	}
694 
695 	if (mcnt)
696 		rxfilt |= RL_RXCFG_RX_MULTI;
697 	else
698 		rxfilt &= ~RL_RXCFG_RX_MULTI;
699 
700 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
701 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
702 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
703 }
704 
705 static void
706 rl_reset(struct rl_softc *sc)
707 {
708 	int i;
709 
710 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
711 
712 	for (i = 0; i < RL_TIMEOUT; i++) {
713 		DELAY(10);
714 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
715 			break;
716 	}
717 	if (i == RL_TIMEOUT)
718 		device_printf(sc->rl_dev, "reset never completed!\n");
719 }
720 
721 /*
722  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
723  * IDs against our list and return a device name if we find a match.
724  *
725  * Return with a value < 0 to give re(4) a change to attach.
726  */
727 static int
728 rl_probe(device_t dev)
729 {
730 	struct rl_type *t;
731 	uint16_t product = pci_get_device(dev);
732 	uint16_t vendor = pci_get_vendor(dev);
733 
734 	for (t = rl_devs; t->rl_name != NULL; t++) {
735 		if (vendor == t->rl_vid && product == t->rl_did) {
736 			device_set_desc(dev, t->rl_name);
737 			return(-100);
738 		}
739 	}
740 
741 	return(ENXIO);
742 }
743 
744 /*
745  * Attach the interface. Allocate softc structures, do ifmedia
746  * setup and ethernet/BPF attach.
747  */
748 static int
749 rl_attach(device_t dev)
750 {
751 	uint8_t eaddr[ETHER_ADDR_LEN];
752 	uint16_t as[3];
753 	struct rl_softc *sc;
754 	struct ifnet *ifp;
755 	uint16_t rl_did = 0;
756 	int error = 0, rid, i;
757 
758 	sc = device_get_softc(dev);
759 	sc->rl_dev = dev;
760 
761 	/*
762 	 * Handle power management nonsense.
763 	 */
764 
765 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
766 		uint32_t iobase, membase, irq;
767 
768 		/* Save important PCI config data. */
769 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
770 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
771 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
772 
773 		/* Reset the power state. */
774 		device_printf(dev, "chip is is in D%d power mode "
775 			      "-- setting to D0\n", pci_get_powerstate(dev));
776 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
777 
778 		/* Restore PCI config data. */
779 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
780 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
781 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
782 	}
783 
784 	pci_enable_busmaster(dev);
785 
786 	rid = RL_RID;
787 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
788 
789 	if (sc->rl_res == NULL) {
790 		device_printf(dev, "couldn't map ports/memory\n");
791 		error = ENXIO;
792 		goto fail;
793 	}
794 
795 	sc->rl_btag = rman_get_bustag(sc->rl_res);
796 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
797 
798 	rid = 0;
799 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
800 					    RF_SHAREABLE | RF_ACTIVE);
801 
802 	if (sc->rl_irq == NULL) {
803 		device_printf(dev, "couldn't map interrupt\n");
804 		error = ENXIO;
805 		goto fail;
806 	}
807 
808 	callout_init(&sc->rl_stat_timer);
809 
810 	/* Reset the adapter. */
811 	rl_reset(sc);
812 
813 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
814 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
815 	if (rl_did != 0x8129)
816 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
817 
818 	/*
819 	 * Get station address from the EEPROM.
820 	 */
821 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
822 	for (i = 0; i < 3; i++) {
823 		eaddr[(i * 2) + 0] = as[i] & 0xff;
824 		eaddr[(i * 2) + 1] = as[i] >> 8;
825 	}
826 
827 	/*
828 	 * Now read the exact device type from the EEPROM to find
829 	 * out if it's an 8129 or 8139.
830 	 */
831 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
832 
833 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
834 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
835 	    rl_did == DLINK_DEVICEID_530TXPLUS || rl_did == RT_DEVICEID_8138 ||
836 	    rl_did == DLINK_DEVICEID_690TXD ||
837 	    rl_did == COREGA_DEVICEID_FETHERCBTXD ||
838 	    rl_did == COREGA_DEVICEID_FETHERIICBTXD ||
839 	    rl_did == PLANEX_DEVICEID_FNW3800TX)
840 		sc->rl_type = RL_8139;
841 	else if (rl_did == RT_DEVICEID_8129)
842 		sc->rl_type = RL_8129;
843 	else {
844 		device_printf(dev, "unknown device ID: %x\n", rl_did);
845 		error = ENXIO;
846 		goto fail;
847 	}
848 
849 #define	RL_NSEG_NEW 32
850 	error = bus_dma_tag_create(NULL,			/* parent */
851 				   1, 0,			/* alignment, boundary */
852 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
853 				   BUS_SPACE_MAXADDR,		/* highaddr */
854 				   NULL, NULL,			/* filter, filterarg */
855 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
856 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
857 				   BUS_DMA_ALLOCNOW,		/* flags */
858 				   &sc->rl_parent_tag);
859 
860 	if (error) {
861 		device_printf(dev, "can't create parent tag\n");
862 		goto fail;
863 	}
864 
865 	/*
866 	 * Now allocate a tag for the DMA descriptor lists.
867 	 * All of our lists are allocated as a contiguous block
868 	 * of memory.
869 	 */
870 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
871 				   1, 0,			/* alignment, boundary */
872 				   BUS_SPACE_MAXADDR,		/* lowaddr */
873 				   BUS_SPACE_MAXADDR,		/* highaddr */
874 				   NULL, NULL,			/* filter, filterarg */
875 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
876 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
877 				   0,				/* flags */
878 				   &sc->rl_tag);
879 
880 	if (error) {
881 		device_printf(dev, "can't create RX tag\n");
882 		goto fail;
883 	}
884 
885 	/*
886 	 * Now allocate a chunk of DMA-able memory based on the tag
887 	 * we just created.
888 	 */
889 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
890 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
891 
892 	if (error) {
893 		device_printf(dev, "can't allocate RX memory!\n");
894 		error = ENXIO;
895 		goto fail;
896 	}
897 
898 	/* Leave a few bytes before the start of the RX ring buffer. */
899 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
900 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
901 
902 	/* Do MII setup */
903 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
904 			  rl_ifmedia_sts)) {
905 		device_printf(dev, "MII without any phy!\n");
906 		error = ENXIO;
907 		goto fail;
908 	}
909 
910 	ifp = &sc->arpcom.ac_if;
911 	ifp->if_softc = sc;
912 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
913 	ifp->if_mtu = ETHERMTU;
914 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
915 	ifp->if_ioctl = rl_ioctl;
916 	ifp->if_start = rl_start;
917 	ifp->if_watchdog = rl_watchdog;
918 	ifp->if_init = rl_init;
919 	ifp->if_baudrate = 10000000;
920 	ifp->if_capabilities = IFCAP_VLAN_MTU;
921 #ifdef DEVICE_POLLING
922 	ifp->if_poll = rl_poll;
923 #endif
924 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
925 	ifq_set_ready(&ifp->if_snd);
926 
927 	/*
928 	 * Call MI attach routine.
929 	 */
930 	ether_ifattach(ifp, eaddr, NULL);
931 
932 	error = bus_setup_intr(dev, sc->rl_irq, INTR_NETSAFE, rl_intr,
933 			       sc, &sc->rl_intrhand, ifp->if_serializer);
934 
935 	if (error) {
936 		device_printf(dev, "couldn't set up irq\n");
937 		ether_ifdetach(ifp);
938 		goto fail;
939 	}
940 
941 	return(0);
942 
943 fail:
944 	rl_detach(dev);
945 	return(error);
946 }
947 
948 static int
949 rl_detach(device_t dev)
950 {
951 	struct rl_softc *sc;
952 	struct ifnet *ifp;
953 
954 	sc = device_get_softc(dev);
955 	ifp = &sc->arpcom.ac_if;
956 
957 	lwkt_serialize_enter(ifp->if_serializer);
958 
959 	if (device_is_attached(dev)) {
960 		rl_stop(sc);
961 		ether_ifdetach(ifp);
962 	}
963 
964 	if (sc->rl_miibus)
965 		device_delete_child(dev, sc->rl_miibus);
966 	bus_generic_detach(dev);
967 
968 	if (sc->rl_intrhand)
969 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
970 
971 	if (sc->rl_irq)
972 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
973 	if (sc->rl_res)
974 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
975 
976 	if (sc->rl_cdata.rl_rx_buf) {
977 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
978 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
979 				sc->rl_cdata.rl_rx_dmamap);
980 	}
981 	if (sc->rl_tag)
982 		bus_dma_tag_destroy(sc->rl_tag);
983 	if (sc->rl_parent_tag)
984 		bus_dma_tag_destroy(sc->rl_parent_tag);
985 
986 	lwkt_serialize_exit(ifp->if_serializer);
987 
988 	return(0);
989 }
990 
991 /*
992  * Initialize the transmit descriptors.
993  */
994 static void
995 rl_list_tx_init(struct rl_softc *sc)
996 {
997 	struct rl_chain_data *cd;
998 	int i;
999 
1000 	cd = &sc->rl_cdata;
1001 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1002 		cd->rl_tx_chain[i] = NULL;
1003 		CSR_WRITE_4(sc,
1004 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1005 	}
1006 
1007 	sc->rl_cdata.cur_tx = 0;
1008 	sc->rl_cdata.last_tx = 0;
1009 }
1010 
1011 /*
1012  * A frame has been uploaded: pass the resulting mbuf chain up to
1013  * the higher level protocols.
1014  *
1015  * You know there's something wrong with a PCI bus-master chip design
1016  * when you have to use m_devget().
1017  *
1018  * The receive operation is badly documented in the datasheet, so I'll
1019  * attempt to document it here. The driver provides a buffer area and
1020  * places its base address in the RX buffer start address register.
1021  * The chip then begins copying frames into the RX buffer. Each frame
1022  * is preceded by a 32-bit RX status word which specifies the length
1023  * of the frame and certain other status bits. Each frame (starting with
1024  * the status word) is also 32-bit aligned. The frame length is in the
1025  * first 16 bits of the status word; the lower 15 bits correspond with
1026  * the 'rx status register' mentioned in the datasheet.
1027  *
1028  * Note: to make the Alpha happy, the frame payload needs to be aligned
1029  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1030  * the ring buffer starting at an address two bytes before the actual
1031  * data location. We can then shave off the first two bytes using m_adj().
1032  * The reason we do this is because m_devget() doesn't let us specify an
1033  * offset into the mbuf storage space, so we have to artificially create
1034  * one. The ring is allocated in such a way that there are a few unused
1035  * bytes of space preceecing it so that it will be safe for us to do the
1036  * 2-byte backstep even if reading from the ring at offset 0.
1037  */
1038 static void
1039 rl_rxeof(struct rl_softc *sc)
1040 {
1041         struct mbuf *m;
1042         struct ifnet *ifp;
1043 	int total_len = 0;
1044 	uint32_t rxstat;
1045 	caddr_t rxbufpos;
1046 	int wrap = 0;
1047 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1048 
1049 	ifp = &sc->arpcom.ac_if;
1050 
1051 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1052 			BUS_DMASYNC_POSTREAD);
1053 
1054 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1055 
1056 	/* Do not try to read past this point. */
1057 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1058 
1059 	if (limit < cur_rx)
1060 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1061 	else
1062 		max_bytes = limit - cur_rx;
1063 
1064 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1065 #ifdef DEVICE_POLLING
1066 		if (ifp->if_flags & IFF_POLLING) {
1067 			if (sc->rxcycles <= 0)
1068 				break;
1069 			sc->rxcycles--;
1070 		}
1071 #endif /* DEVICE_POLLING */
1072 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1073 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1074 
1075 		/*
1076 		 * Here's a totally undocumented fact for you. When the
1077 		 * RealTek chip is in the process of copying a packet into
1078 		 * RAM for you, the length will be 0xfff0. If you spot a
1079 		 * packet header with this value, you need to stop. The
1080 		 * datasheet makes absolutely no mention of this and
1081 		 * RealTek should be shot for this.
1082 		 */
1083 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1084 			break;
1085 
1086 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1087 			ifp->if_ierrors++;
1088 			rl_init(sc);
1089 			return;
1090 		}
1091 
1092 		/* No errors; receive the packet. */
1093 		total_len = rxstat >> 16;
1094 		rx_bytes += total_len + 4;
1095 
1096 		/*
1097 		 * XXX The RealTek chip includes the CRC with every
1098 		 * received frame, and there's no way to turn this
1099 		 * behavior off (at least, I can't find anything in
1100 	 	 * the manual that explains how to do it) so we have
1101 		 * to trim off the CRC manually.
1102 		 */
1103 		total_len -= ETHER_CRC_LEN;
1104 
1105 		/*
1106 		 * Avoid trying to read more bytes than we know
1107 		 * the chip has prepared for us.
1108 		 */
1109 		if (rx_bytes > max_bytes)
1110 			break;
1111 
1112 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1113 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1114 
1115 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1116 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1117 
1118 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1119 
1120 		if (total_len > wrap) {
1121 			/*
1122 			 * Fool m_devget() into thinking we want to copy
1123 			 * the whole buffer so we don't end up fragmenting
1124 			 * the data.
1125 			 */
1126 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1127 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1128 			if (m == NULL) {
1129 				ifp->if_ierrors++;
1130 			} else {
1131 				m_adj(m, RL_ETHER_ALIGN);
1132 				m_copyback(m, wrap, total_len - wrap,
1133 					sc->rl_cdata.rl_rx_buf);
1134 			}
1135 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1136 		} else {
1137 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1138 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1139 			if (m == NULL) {
1140 				ifp->if_ierrors++;
1141 			} else
1142 				m_adj(m, RL_ETHER_ALIGN);
1143 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1144 		}
1145 
1146 		/*
1147 		 * Round up to 32-bit boundary.
1148 		 */
1149 		cur_rx = (cur_rx + 3) & ~3;
1150 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1151 
1152 		if (m == NULL)
1153 			continue;
1154 
1155 		ifp->if_ipackets++;
1156 
1157 		ifp->if_input(ifp, m);
1158 	}
1159 }
1160 
1161 /*
1162  * A frame was downloaded to the chip. It's safe for us to clean up
1163  * the list buffers.
1164  */
1165 static void
1166 rl_txeof(struct rl_softc *sc)
1167 {
1168 	struct ifnet *ifp;
1169 	uint32_t txstat;
1170 
1171 	ifp = &sc->arpcom.ac_if;
1172 
1173 	/*
1174 	 * Go through our tx list and free mbufs for those
1175 	 * frames that have been uploaded.
1176 	 */
1177 	do {
1178 		if (RL_LAST_TXMBUF(sc) == NULL)
1179 			break;
1180 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1181 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1182 			       RL_TXSTAT_TXABRT)) == 0)
1183 			break;
1184 
1185 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1186 
1187 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1188 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1189 		m_freem(RL_LAST_TXMBUF(sc));
1190 		RL_LAST_TXMBUF(sc) = NULL;
1191 		RL_INC(sc->rl_cdata.last_tx);
1192 
1193 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1194 			sc->rl_txthresh += 32;
1195 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1196 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1197 		}
1198 
1199 		if (txstat & RL_TXSTAT_TX_OK) {
1200 			ifp->if_opackets++;
1201 		} else {
1202 			ifp->if_oerrors++;
1203 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1204 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1205 		}
1206 		ifp->if_flags &= ~IFF_OACTIVE;
1207 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1208 
1209 	if (RL_LAST_TXMBUF(sc) == NULL)
1210 		ifp->if_timer = 0;
1211 	else if (ifp->if_timer == 0)
1212 		ifp->if_timer = 5;
1213 }
1214 
1215 static void
1216 rl_tick(void *xsc)
1217 {
1218 	struct rl_softc *sc = xsc;
1219 	struct mii_data *mii;
1220 
1221 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1222 
1223 	mii = device_get_softc(sc->rl_miibus);
1224 	mii_tick(mii);
1225 
1226 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1227 
1228 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1229 }
1230 
1231 #ifdef DEVICE_POLLING
1232 
1233 static void
1234 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1235 {
1236 	struct rl_softc *sc = ifp->if_softc;
1237 
1238 	switch(cmd) {
1239 	case POLL_REGISTER:
1240 		/* disable interrupts */
1241                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1242 		break;
1243 	case POLL_DEREGISTER:
1244 		/* enable interrupts */
1245 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1246 		break;
1247 	default:
1248 		sc->rxcycles = count;
1249 		rl_rxeof(sc);
1250 		rl_txeof(sc);
1251 		if (!ifq_is_empty(&ifp->if_snd))
1252 			rl_start(ifp);
1253 
1254 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1255 			uint16_t status;
1256 
1257 			status = CSR_READ_2(sc, RL_ISR);
1258 			if (status == 0xffff)
1259 				return;
1260 			if (status)
1261 				CSR_WRITE_2(sc, RL_ISR, status);
1262 
1263 			/*
1264 			 * XXX check behaviour on receiver stalls.
1265 			 */
1266 
1267 			if (status & RL_ISR_SYSTEM_ERR) {
1268 				rl_reset(sc);
1269 				rl_init(sc);
1270 			}
1271 		}
1272 		break;
1273 	}
1274 }
1275 #endif /* DEVICE_POLLING */
1276 
1277 static void
1278 rl_intr(void *arg)
1279 {
1280 	struct rl_softc *sc;
1281 	struct ifnet *ifp;
1282 	uint16_t status;
1283 
1284 	sc = arg;
1285 
1286 	if (sc->suspended)
1287 		return;
1288 
1289 	ifp = &sc->arpcom.ac_if;
1290 
1291 	for (;;) {
1292 		status = CSR_READ_2(sc, RL_ISR);
1293 		/* If the card has gone away, the read returns 0xffff. */
1294 		if (status == 0xffff)
1295 			break;
1296 
1297 		if (status != 0)
1298 			CSR_WRITE_2(sc, RL_ISR, status);
1299 
1300 		if ((status & RL_INTRS) == 0)
1301 			break;
1302 
1303 		if (status & RL_ISR_RX_OK)
1304 			rl_rxeof(sc);
1305 
1306 		if (status & RL_ISR_RX_ERR)
1307 			rl_rxeof(sc);
1308 
1309 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1310 			rl_txeof(sc);
1311 
1312 		if (status & RL_ISR_SYSTEM_ERR) {
1313 			rl_reset(sc);
1314 			rl_init(sc);
1315 		}
1316 
1317 	}
1318 
1319 	if (!ifq_is_empty(&ifp->if_snd))
1320 		rl_start(ifp);
1321 }
1322 
1323 /*
1324  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1325  * pointers to the fragment pointers.
1326  */
1327 static int
1328 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1329 {
1330 	struct mbuf *m_new = NULL;
1331 
1332 	/*
1333 	 * The RealTek is brain damaged and wants longword-aligned
1334 	 * TX buffers, plus we can only have one fragment buffer
1335 	 * per packet. We have to copy pretty much all the time.
1336 	 */
1337 	m_new = m_defrag(m_head, MB_DONTWAIT);
1338 
1339 	if (m_new == NULL) {
1340 		m_freem(m_head);
1341 		return(1);
1342 	}
1343 	m_head = m_new;
1344 
1345 	/* Pad frames to at least 60 bytes. */
1346 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1347 		/*
1348 		 * Make security concious people happy: zero out the
1349 		 * bytes in the pad area, since we don't know what
1350 		 * this mbuf cluster buffer's previous user might
1351 		 * have left in it.
1352 	 	 */
1353 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1354 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1355 		m_head->m_pkthdr.len +=
1356 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1357 		m_head->m_len = m_head->m_pkthdr.len;
1358 	}
1359 
1360 	RL_CUR_TXMBUF(sc) = m_head;
1361 
1362 	return(0);
1363 }
1364 
1365 /*
1366  * Main transmit routine.
1367  */
1368 
1369 static void
1370 rl_start(struct ifnet *ifp)
1371 {
1372 	struct rl_softc *sc;
1373 	struct mbuf *m_head = NULL;
1374 
1375 	sc = ifp->if_softc;
1376 
1377 	while(RL_CUR_TXMBUF(sc) == NULL) {
1378 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1379 		if (m_head == NULL)
1380 			break;
1381 
1382 		if (rl_encap(sc, m_head))
1383 			break;
1384 
1385 		/*
1386 		 * If there's a BPF listener, bounce a copy of this frame
1387 		 * to him.
1388 		 */
1389 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1390 
1391 		/*
1392 		 * Transmit the frame.
1393 	 	 */
1394 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1395 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1396 				mtod(RL_CUR_TXMBUF(sc), void *),
1397 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1398 				rl_dma_map_txbuf, sc, 0);
1399 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1400 				BUS_DMASYNC_PREREAD);
1401 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1402 		    RL_TXTHRESH(sc->rl_txthresh) |
1403 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1404 
1405 		RL_INC(sc->rl_cdata.cur_tx);
1406 
1407 		/*
1408 		 * Set a timeout in case the chip goes out to lunch.
1409 		 */
1410 		ifp->if_timer = 5;
1411 	}
1412 
1413 	/*
1414 	 * We broke out of the loop because all our TX slots are
1415 	 * full. Mark the NIC as busy until it drains some of the
1416 	 * packets from the queue.
1417 	 */
1418 	if (RL_CUR_TXMBUF(sc) != NULL)
1419 		ifp->if_flags |= IFF_OACTIVE;
1420 }
1421 
1422 static void
1423 rl_init(void *xsc)
1424 {
1425 	struct rl_softc *sc = xsc;
1426 	struct ifnet *ifp = &sc->arpcom.ac_if;
1427 	struct mii_data *mii;
1428 	uint32_t rxcfg = 0;
1429 
1430 	mii = device_get_softc(sc->rl_miibus);
1431 
1432 	/*
1433 	 * Cancel pending I/O and free all RX/TX buffers.
1434 	 */
1435 	rl_stop(sc);
1436 
1437 	/*
1438 	 * Init our MAC address.  Even though the chipset documentation
1439 	 * doesn't mention it, we need to enter "Config register write enable"
1440 	 * mode to modify the ID registers.
1441 	 */
1442 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1443 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1444 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1445 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1446 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1447 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1448 
1449 	/* Init the RX buffer pointer register. */
1450 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1451 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1452 			sc, 0);
1453 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1454 			BUS_DMASYNC_PREWRITE);
1455 
1456 	/* Init TX descriptors. */
1457 	rl_list_tx_init(sc);
1458 
1459 	/*
1460 	 * Enable transmit and receive.
1461 	 */
1462 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1463 
1464 	/*
1465 	 * Set the initial TX and RX configuration.
1466 	 */
1467 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1468 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1469 
1470 	/* Set the individual bit to receive frames for this host only. */
1471 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1472 	rxcfg |= RL_RXCFG_RX_INDIV;
1473 
1474 	/* If we want promiscuous mode, set the allframes bit. */
1475 	if (ifp->if_flags & IFF_PROMISC) {
1476 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1477 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1478 	} else {
1479 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1480 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1481 	}
1482 
1483 	/*
1484 	 * Set capture broadcast bit to capture broadcast frames.
1485 	 */
1486 	if (ifp->if_flags & IFF_BROADCAST) {
1487 		rxcfg |= RL_RXCFG_RX_BROAD;
1488 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1489 	} else {
1490 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1491 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1492 	}
1493 
1494 	/*
1495 	 * Program the multicast filter, if necessary.
1496 	 */
1497 	rl_setmulti(sc);
1498 
1499 #ifdef DEVICE_POLLING
1500 	/*
1501 	 * Only enable interrupts if we are polling, keep them off otherwise.
1502 	 */
1503 	if (ifp->if_flags & IFF_POLLING)
1504 		CSR_WRITE_2(sc, RL_IMR, 0);
1505 	else
1506 #endif /* DEVICE_POLLING */
1507 	/*
1508 	 * Enable interrupts.
1509 	 */
1510 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1511 
1512 	/* Set initial TX threshold */
1513 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1514 
1515 	/* Start RX/TX process. */
1516 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1517 
1518 	/* Enable receiver and transmitter. */
1519 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1520 
1521 	mii_mediachg(mii);
1522 
1523 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1524 
1525 	ifp->if_flags |= IFF_RUNNING;
1526 	ifp->if_flags &= ~IFF_OACTIVE;
1527 
1528 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1529 }
1530 
1531 /*
1532  * Set media options.
1533  */
1534 static int
1535 rl_ifmedia_upd(struct ifnet *ifp)
1536 {
1537 	struct rl_softc *sc;
1538 	struct mii_data *mii;
1539 
1540 	sc = ifp->if_softc;
1541 	mii = device_get_softc(sc->rl_miibus);
1542 	mii_mediachg(mii);
1543 
1544 	return(0);
1545 }
1546 
1547 /*
1548  * Report current media status.
1549  */
1550 static void
1551 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1552 {
1553 	struct rl_softc *sc = ifp->if_softc;
1554 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1555 
1556 	mii_pollstat(mii);
1557 	ifmr->ifm_active = mii->mii_media_active;
1558 	ifmr->ifm_status = mii->mii_media_status;
1559 }
1560 
1561 static int
1562 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1563 {
1564 	struct rl_softc *sc = ifp->if_softc;
1565 	struct ifreq *ifr = (struct ifreq *) data;
1566 	struct mii_data	*mii;
1567 	int error = 0;
1568 
1569 	switch (command) {
1570 	case SIOCSIFFLAGS:
1571 		if (ifp->if_flags & IFF_UP) {
1572 			rl_init(sc);
1573 		} else {
1574 			if (ifp->if_flags & IFF_RUNNING)
1575 				rl_stop(sc);
1576 		}
1577 		error = 0;
1578 		break;
1579 	case SIOCADDMULTI:
1580 	case SIOCDELMULTI:
1581 		rl_setmulti(sc);
1582 		error = 0;
1583 		break;
1584 	case SIOCGIFMEDIA:
1585 	case SIOCSIFMEDIA:
1586 		mii = device_get_softc(sc->rl_miibus);
1587 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1588 		break;
1589 	case SIOCSIFCAP:
1590 		break;
1591 	default:
1592 		error = ether_ioctl(ifp, command, data);
1593 		break;
1594 	}
1595 
1596 	return(error);
1597 }
1598 
1599 static void
1600 rl_watchdog(struct ifnet *ifp)
1601 {
1602 	struct rl_softc *sc = ifp->if_softc;
1603 
1604 	device_printf(sc->rl_dev, "watchdog timeout\n");
1605 
1606 	lwkt_serialize_enter(ifp->if_serializer);
1607 
1608 	ifp->if_oerrors++;
1609 
1610 	rl_txeof(sc);
1611 	rl_rxeof(sc);
1612 	rl_init(sc);
1613 
1614 	lwkt_serialize_exit(ifp->if_serializer);
1615 }
1616 
1617 /*
1618  * Stop the adapter and free any mbufs allocated to the
1619  * RX and TX lists.
1620  */
1621 static void
1622 rl_stop(struct rl_softc *sc)
1623 {
1624 	struct ifnet *ifp = &sc->arpcom.ac_if;
1625 	int i;
1626 
1627 	ifp->if_timer = 0;
1628 
1629 	callout_stop(&sc->rl_stat_timer);
1630 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1631 
1632 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1633 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1634 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1635 
1636 	/*
1637 	 * Free the TX list buffers.
1638 	 */
1639 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1640 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1641 			bus_dmamap_unload(sc->rl_tag,
1642 					  sc->rl_cdata.rl_tx_dmamap[i]);
1643 			bus_dmamap_destroy(sc->rl_tag,
1644 					   sc->rl_cdata.rl_tx_dmamap[i]);
1645 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1646 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1647 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1648 				    0x0000000);
1649 		}
1650 	}
1651 }
1652 
1653 /*
1654  * Stop all chip I/O so that the kernel's probe routines don't
1655  * get confused by errant DMAs when rebooting.
1656  */
1657 static void
1658 rl_shutdown(device_t dev)
1659 {
1660 	struct rl_softc *sc;
1661 
1662 	sc = device_get_softc(dev);
1663 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1664 	rl_stop(sc);
1665 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1666 }
1667 
1668 /*
1669  * Device suspend routine.  Stop the interface and save some PCI
1670  * settings in case the BIOS doesn't restore them properly on
1671  * resume.
1672  */
1673 static int
1674 rl_suspend(device_t dev)
1675 {
1676 	struct rl_softc	*sc = device_get_softc(dev);
1677 	int i;
1678 
1679 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1680 	rl_stop(sc);
1681 
1682 	for (i = 0; i < 5; i++)
1683 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1684 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1685 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1686 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1687 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1688 
1689 	sc->suspended = 1;
1690 
1691 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1692 	return (0);
1693 }
1694 
1695 /*
1696  * Device resume routine.  Restore some PCI settings in case the BIOS
1697  * doesn't, re-enable busmastering, and restart the interface if
1698  * appropriate.
1699  */
1700 static int rl_resume(device_t dev)
1701 {
1702 	struct rl_softc *sc = device_get_softc(dev);
1703 	struct ifnet *ifp = &sc->arpcom.ac_if;
1704 	int		i;
1705 
1706 	lwkt_serialize_enter(ifp->if_serializer);
1707 
1708 	/* better way to do this? */
1709 	for (i = 0; i < 5; i++)
1710 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1711 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1712 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1713 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1714 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1715 
1716 	/* reenable busmastering */
1717 	pci_enable_busmaster(dev);
1718 	pci_enable_io(dev, RL_RES);
1719 
1720         /* reinitialize interface if necessary */
1721         if (ifp->if_flags & IFF_UP)
1722                 rl_init(sc);
1723 
1724 	sc->suspended = 0;
1725 	lwkt_serialize_exit(ifp->if_serializer);
1726 	return (0);
1727 }
1728