xref: /dflybsd-src/sys/dev/netif/rl/if_rl.c (revision 6bc31f17c9c90db02ddbd88208e06c29ed0f1534)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_rl.c,v 1.38.2.16 2003/03/05 18:42:33 njl Exp $
33  * $DragonFly: src/sys/dev/netif/rl/if_rl.c,v 1.23 2005/06/09 19:45:12 joerg Exp $
34  */
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
50  * probably the worst PCI ethernet controller ever made, with the possible
51  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
52  * DMA, but it has a terrible interface that nullifies any performance
53  * gains that bus-master DMA usually offers.
54  *
55  * For transmission, the chip offers a series of four TX descriptor
56  * registers. Each transmit frame must be in a contiguous buffer, aligned
57  * on a longword (32-bit) boundary. This means we almost always have to
58  * do mbuf copies in order to transmit a frame, except in the unlikely
59  * case where a) the packet fits into a single mbuf, and b) the packet
60  * is 32-bit aligned within the mbuf's data area. The presence of only
61  * four descriptor registers means that we can never have more than four
62  * packets queued for transmission at any one time.
63  *
64  * Reception is not much better. The driver has to allocate a single large
65  * buffer area (up to 64K in size) into which the chip will DMA received
66  * frames. Because we don't know where within this region received packets
67  * will begin or end, we have no choice but to copy data from the buffer
68  * area into mbufs in order to pass the packets up to the higher protocol
69  * levels.
70  *
71  * It's impossible given this rotten design to really achieve decent
72  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
73  * some equally overmuscled CPU to drive it.
74  *
75  * On the bright side, the 8139 does have a built-in PHY, although
76  * rather than using an MDIO serial interface like most other NICs, the
77  * PHY registers are directly accessible through the 8139's register
78  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
79  * filter.
80  *
81  * The 8129 chip is an older version of the 8139 that uses an external PHY
82  * chip. The 8129 has a serial MDIO interface for accessing the MII where
83  * the 8139 lets you directly access the on-board PHY registers. We need
84  * to select which interface to use depending on the chip type.
85  */
86 
87 #include <sys/param.h>
88 #include <sys/endian.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/module.h>
95 #include <sys/socket.h>
96 #include <sys/thread2.h>
97 
98 #include <net/if.h>
99 #include <net/ifq_var.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #include <machine/bus_pio.h>
108 #include <machine/bus_memio.h>
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <dev/netif/mii_layer/mii.h>
115 #include <dev/netif/mii_layer/miivar.h>
116 
117 #include <bus/pci/pcireg.h>
118 #include <bus/pci/pcivar.h>
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Default to using PIO access for this driver. On SMP systems,
125  * there appear to be problems with memory mapped mode: it looks like
126  * doing too many memory mapped access back to back in rapid succession
127  * can hang the bus. I'm inclined to blame this on crummy design/construction
128  * on the part of RealTek. Memory mapped mode does appear to work on
129  * uniprocessor systems though.
130  */
131 #define RL_USEIOSPACE
132 
133 #include <dev/netif/rl/if_rlreg.h>
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 static struct rl_type {
139 	uint16_t	 rl_vid;
140 	uint16_t	 rl_did;
141 	const char	*rl_name;
142 } rl_devs[] = {
143 	{ RT_VENDORID, RT_DEVICEID_8129,
144 		"RealTek 8129 10/100BaseTX" },
145 	{ RT_VENDORID, RT_DEVICEID_8139,
146 		"RealTek 8139 10/100BaseTX" },
147 	{ RT_VENDORID, RT_DEVICEID_8138,
148 		"RealTek 8139 10/100BaseTX CardBus" },
149 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030,
150 		"Accton MPX 5030/5038 10/100BaseTX" },
151 	{ DELTA_VENDORID, DELTA_DEVICEID_8139,
152 		"Delta Electronics 8139 10/100BaseTX" },
153 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139,
154 		"Addtron Technolgy 8139 10/100BaseTX" },
155 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS,
156 		"D-Link DFE-530TX+ 10/100BaseTX" },
157 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD,
158 		"D-Link DFE-690TX 10/100BaseTX" },
159 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030,
160 		"Nortel Networks 10/100BaseTX" },
161 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF,
162 		"Peppercon AG ROL/F" },
163 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD,
164 		"Corega FEther CB-TXD" },
165 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD,
166 		"Corega FEtherII CB-TXD" },
167 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX,
168 		"Planex FNW-3800-TX" },
169 	{ 0, 0, NULL }
170 };
171 
172 static int	rl_probe(device_t);
173 static int	rl_attach(device_t);
174 static int	rl_detach(device_t);
175 
176 static int	rl_encap(struct rl_softc *, struct mbuf * );
177 
178 static void	rl_rxeof(struct rl_softc *);
179 static void	rl_txeof(struct rl_softc *);
180 static void	rl_intr(void *);
181 static void	rl_tick(void *);
182 static void	rl_start(struct ifnet *);
183 static int	rl_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
184 static void	rl_init(void *);
185 static void	rl_stop	(struct rl_softc *);
186 static void	rl_watchdog(struct ifnet *);
187 static int	rl_suspend(device_t);
188 static int	rl_resume(device_t);
189 static void	rl_shutdown(device_t);
190 static int	rl_ifmedia_upd(struct ifnet *);
191 static void	rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
192 
193 static void	rl_eeprom_putbyte(struct rl_softc *, int);
194 static void	rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
195 static void	rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int);
196 static void	rl_mii_sync(struct rl_softc *);
197 static void	rl_mii_send(struct rl_softc *, uint32_t, int);
198 static int	rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
199 static int	rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
200 
201 static int	rl_miibus_readreg(device_t, int, int);
202 static int	rl_miibus_writereg(device_t, int, int, int);
203 static void	rl_miibus_statchg(device_t);
204 
205 static void	rl_setmulti(struct rl_softc *);
206 static void	rl_reset(struct rl_softc *);
207 static void	rl_list_tx_init(struct rl_softc *);
208 
209 static void	rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
210 static void	rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
211 #ifdef DEVICE_POLLING
212 static poll_handler_t rl_poll;
213 #endif
214 
215 #ifdef RL_USEIOSPACE
216 #define	RL_RES			SYS_RES_IOPORT
217 #define	RL_RID			RL_PCI_LOIO
218 #else
219 #define	RL_RES			SYS_RES_MEMORY
220 #define	RL_RID			RL_PCI_LOMEM
221 #endif
222 
223 static device_method_t rl_methods[] = {
224 	/* Device interface */
225 	DEVMETHOD(device_probe,		rl_probe),
226 	DEVMETHOD(device_attach,	rl_attach),
227 	DEVMETHOD(device_detach,	rl_detach),
228 	DEVMETHOD(device_suspend,	rl_suspend),
229 	DEVMETHOD(device_resume,	rl_resume),
230 	DEVMETHOD(device_shutdown,	rl_shutdown),
231 
232 	/* bus interface */
233 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
234 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
235 
236 	/* MII interface */
237 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
238 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
239 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
240 
241 	{ 0, 0 }
242 };
243 
244 static DEFINE_CLASS_0(rl, rl_driver, rl_methods, sizeof(struct rl_softc));
245 static devclass_t rl_devclass;
246 
247 DECLARE_DUMMY_MODULE(if_rl);
248 DRIVER_MODULE(if_rl, pci, rl_driver, rl_devclass, 0, 0);
249 DRIVER_MODULE(if_rl, cardbus, rl_driver, rl_devclass, 0, 0);
250 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
251 MODULE_DEPEND(if_rl, miibus, 1, 1, 1);
252 
253 #define EE_SET(x)					\
254 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) | (x))
255 
256 #define EE_CLR(x)					\
257 	CSR_WRITE_1(sc, RL_EECMD, CSR_READ_1(sc, RL_EECMD) & ~(x))
258 
259 static void
260 rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
261 {
262 	struct rl_softc *sc = arg;
263 
264 	CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
265 }
266 
267 static void
268 rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
269 {
270 	struct rl_softc *sc = arg;
271 
272 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
273 }
274 
275 /*
276  * Send a read command and address to the EEPROM, check for ACK.
277  */
278 static void
279 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
280 {
281 	int d, i;
282 
283 	d = addr | sc->rl_eecmd_read;
284 
285 	/*
286 	 * Feed in each bit and strobe the clock.
287 	 */
288 	for (i = 0x400; i; i >>= 1) {
289 		if (d & i)
290 			EE_SET(RL_EE_DATAIN);
291 		else
292 			EE_CLR(RL_EE_DATAIN);
293 		DELAY(100);
294 		EE_SET(RL_EE_CLK);
295 		DELAY(150);
296 		EE_CLR(RL_EE_CLK);
297 		DELAY(100);
298 	}
299 }
300 
301 /*
302  * Read a word of data stored in the EEPROM at address 'addr.'
303  */
304 static void
305 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
306 {
307 	int i;
308 	uint16_t word = 0;
309 
310 	/* Enter EEPROM access mode. */
311 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
312 
313 	/*
314 	 * Send address of word we want to read.
315 	 */
316 	rl_eeprom_putbyte(sc, addr);
317 
318 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
319 
320 	/*
321 	 * Start reading bits from EEPROM.
322 	 */
323 	for (i = 0x8000; i; i >>= 1) {
324 		EE_SET(RL_EE_CLK);
325 		DELAY(100);
326 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
327 			word |= i;
328 		EE_CLR(RL_EE_CLK);
329 		DELAY(100);
330 	}
331 
332 	/* Turn off EEPROM access mode. */
333 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
334 
335 	*dest = word;
336 }
337 
338 /*
339  * Read a sequence of words from the EEPROM.
340  */
341 static void
342 rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt, int swap)
343 {
344 	int i;
345 	u_int16_t word = 0, *ptr;
346 
347 	for (i = 0; i < cnt; i++) {
348 		rl_eeprom_getword(sc, off + i, &word);
349 		ptr = (u_int16_t *)(dest + (i * 2));
350 		if (swap)
351 			*ptr = ntohs(word);
352 		else
353 			*ptr = word;
354 	}
355 }
356 
357 
358 /*
359  * MII access routines are provided for the 8129, which
360  * doesn't have a built-in PHY. For the 8139, we fake things
361  * up by diverting rl_phy_readreg()/rl_phy_writereg() to the
362  * direct access PHY registers.
363  */
364 #define MII_SET(x)							\
365 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) | x)
366 
367 #define MII_CLR(x)							\
368 	CSR_WRITE_1(sc, RL_MII, CSR_READ_1(sc, RL_MII) & ~x)
369 
370 /*
371  * Sync the PHYs by setting data bit and strobing the clock 32 times.
372  */
373 static void
374 rl_mii_sync(struct rl_softc *sc)
375 {
376 	int i;
377 
378 	MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
379 
380 	for (i = 0; i < 32; i++) {
381 		MII_SET(RL_MII_CLK);
382 		DELAY(1);
383 		MII_CLR(RL_MII_CLK);
384 		DELAY(1);
385 	}
386 }
387 
388 /*
389  * Clock a series of bits through the MII.
390  */
391 static void
392 rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
393 {
394 	int i;
395 
396 	MII_CLR(RL_MII_CLK);
397 
398 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
399 		if (bits & i)
400 			MII_SET(RL_MII_DATAOUT);
401 		else
402 			MII_CLR(RL_MII_DATAOUT);
403 		DELAY(1);
404 		MII_CLR(RL_MII_CLK);
405 		DELAY(1);
406 		MII_SET(RL_MII_CLK);
407 	}
408 }
409 
410 /*
411  * Read an PHY register through the MII.
412  */
413 static int
414 rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
415 {
416 	int ack, i;
417 
418 	crit_enter();
419 
420 	/*
421 	 * Set up frame for RX.
422 	 */
423 	frame->mii_stdelim = RL_MII_STARTDELIM;
424 	frame->mii_opcode = RL_MII_READOP;
425 	frame->mii_turnaround = 0;
426 	frame->mii_data = 0;
427 
428 	CSR_WRITE_2(sc, RL_MII, 0);
429 
430 	/*
431  	 * Turn on data xmit.
432 	 */
433 	MII_SET(RL_MII_DIR);
434 
435 	rl_mii_sync(sc);
436 
437 	/*
438 	 * Send command/address info.
439 	 */
440 	rl_mii_send(sc, frame->mii_stdelim, 2);
441 	rl_mii_send(sc, frame->mii_opcode, 2);
442 	rl_mii_send(sc, frame->mii_phyaddr, 5);
443 	rl_mii_send(sc, frame->mii_regaddr, 5);
444 
445 	/* Idle bit */
446 	MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
447 	DELAY(1);
448 	MII_SET(RL_MII_CLK);
449 	DELAY(1);
450 
451 	/* Turn off xmit. */
452 	MII_CLR(RL_MII_DIR);
453 
454 	/* Check for ack */
455 	MII_CLR(RL_MII_CLK);
456 	DELAY(1);
457 	ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
458 	MII_SET(RL_MII_CLK);
459 	DELAY(1);
460 
461 	/*
462 	 * Now try reading data bits. If the ack failed, we still
463 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
464 	 */
465 	if (ack) {
466 		for(i = 0; i < 16; i++) {
467 			MII_CLR(RL_MII_CLK);
468 			DELAY(1);
469 			MII_SET(RL_MII_CLK);
470 			DELAY(1);
471 		}
472 	} else {
473 		for (i = 0x8000; i; i >>= 1) {
474 			MII_CLR(RL_MII_CLK);
475 			DELAY(1);
476 			if (!ack) {
477 				if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
478 					frame->mii_data |= i;
479 				DELAY(1);
480 			}
481 			MII_SET(RL_MII_CLK);
482 			DELAY(1);
483 		}
484 	}
485 
486 	MII_CLR(RL_MII_CLK);
487 	DELAY(1);
488 	MII_SET(RL_MII_CLK);
489 	DELAY(1);
490 
491 	crit_exit();
492 
493 	return(ack ? 1 : 0);
494 }
495 
496 /*
497  * Write to a PHY register through the MII.
498  */
499 static int
500 rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
501 {
502 	crit_enter();
503 
504 	/*
505 	 * Set up frame for TX.
506 	 */
507 	frame->mii_stdelim = RL_MII_STARTDELIM;
508 	frame->mii_opcode = RL_MII_WRITEOP;
509 	frame->mii_turnaround = RL_MII_TURNAROUND;
510 
511 	/*
512  	 * Turn on data output.
513 	 */
514 	MII_SET(RL_MII_DIR);
515 
516 	rl_mii_sync(sc);
517 
518 	rl_mii_send(sc, frame->mii_stdelim, 2);
519 	rl_mii_send(sc, frame->mii_opcode, 2);
520 	rl_mii_send(sc, frame->mii_phyaddr, 5);
521 	rl_mii_send(sc, frame->mii_regaddr, 5);
522 	rl_mii_send(sc, frame->mii_turnaround, 2);
523 	rl_mii_send(sc, frame->mii_data, 16);
524 
525 	/* Idle bit. */
526 	MII_SET(RL_MII_CLK);
527 	DELAY(1);
528 	MII_CLR(RL_MII_CLK);
529 	DELAY(1);
530 
531 	/*
532 	 * Turn off xmit.
533 	 */
534 	MII_CLR(RL_MII_DIR);
535 
536 	crit_exit();
537 
538 	return(0);
539 }
540 
541 static int
542 rl_miibus_readreg(device_t dev, int phy, int reg)
543 {
544 	struct rl_softc *sc;
545 	struct rl_mii_frame frame;
546 	uint16_t rval = 0;
547 	uint16_t rl8139_reg = 0;
548 
549 	sc = device_get_softc(dev);
550 
551 	if (sc->rl_type == RL_8139) {
552 		/* Pretend the internal PHY is only at address 0 */
553 		if (phy)
554 			return(0);
555 		switch (reg) {
556 		case MII_BMCR:
557 			rl8139_reg = RL_BMCR;
558 			break;
559 		case MII_BMSR:
560 			rl8139_reg = RL_BMSR;
561 			break;
562 		case MII_ANAR:
563 			rl8139_reg = RL_ANAR;
564 			break;
565 		case MII_ANER:
566 			rl8139_reg = RL_ANER;
567 			break;
568 		case MII_ANLPAR:
569 			rl8139_reg = RL_LPAR;
570 			break;
571 		case MII_PHYIDR1:
572 		case MII_PHYIDR2:
573 			return(0);
574 			break;
575 		/*
576 		 * Allow the rlphy driver to read the media status
577 		 * register. If we have a link partner which does not
578 		 * support NWAY, this is the register which will tell
579 		 * us the results of parallel detection.
580 		 */
581 		case RL_MEDIASTAT:
582 			rval = CSR_READ_1(sc, RL_MEDIASTAT);
583 			return(rval);
584 		default:
585 			device_printf(dev, "bad phy register\n");
586 			return(0);
587 		}
588 		rval = CSR_READ_2(sc, rl8139_reg);
589 		return(rval);
590 	}
591 
592 	bzero(&frame, sizeof(frame));
593 
594 	frame.mii_phyaddr = phy;
595 	frame.mii_regaddr = reg;
596 	rl_mii_readreg(sc, &frame);
597 
598 	return(frame.mii_data);
599 }
600 
601 static int
602 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
603 {
604 	struct rl_softc *sc;
605 	struct rl_mii_frame frame;
606 	u_int16_t rl8139_reg = 0;
607 
608 	sc = device_get_softc(dev);
609 
610 	if (sc->rl_type == RL_8139) {
611 		/* Pretend the internal PHY is only at address 0 */
612 		if (phy)
613 			return(0);
614 		switch (reg) {
615 		case MII_BMCR:
616 			rl8139_reg = RL_BMCR;
617 			break;
618 		case MII_BMSR:
619 			rl8139_reg = RL_BMSR;
620 			break;
621 		case MII_ANAR:
622 			rl8139_reg = RL_ANAR;
623 			break;
624 		case MII_ANER:
625 			rl8139_reg = RL_ANER;
626 			break;
627 		case MII_ANLPAR:
628 			rl8139_reg = RL_LPAR;
629 			break;
630 		case MII_PHYIDR1:
631 		case MII_PHYIDR2:
632 			return(0);
633 		default:
634 			device_printf(dev, "bad phy register\n");
635 			return(0);
636 		}
637 		CSR_WRITE_2(sc, rl8139_reg, data);
638 		return(0);
639 	}
640 
641 	bzero(&frame, sizeof(frame));
642 
643 	frame.mii_phyaddr = phy;
644 	frame.mii_regaddr = reg;
645 	frame.mii_data = data;
646 
647 	rl_mii_writereg(sc, &frame);
648 
649 	return(0);
650 }
651 
652 static void
653 rl_miibus_statchg(device_t dev)
654 {
655 }
656 
657 /*
658  * Program the 64-bit multicast hash filter.
659  */
660 static void
661 rl_setmulti(struct rl_softc *sc)
662 {
663 	struct ifnet *ifp;
664 	int h = 0;
665 	uint32_t hashes[2] = { 0, 0 };
666 	struct ifmultiaddr *ifma;
667 	uint32_t rxfilt;
668 	int mcnt = 0;
669 
670 	ifp = &sc->arpcom.ac_if;
671 
672 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
673 
674 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
675 		rxfilt |= RL_RXCFG_RX_MULTI;
676 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
677 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
678 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
679 		return;
680 	}
681 
682 	/* first, zot all the existing hash bits */
683 	CSR_WRITE_4(sc, RL_MAR0, 0);
684 	CSR_WRITE_4(sc, RL_MAR4, 0);
685 
686 	/* now program new ones */
687 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
688 		if (ifma->ifma_addr->sa_family != AF_LINK)
689 			continue;
690 		h = ether_crc32_be(
691 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
692 		    ETHER_ADDR_LEN >> 26);
693 		if (h < 32)
694 			hashes[0] |= (1 << h);
695 		else
696 			hashes[1] |= (1 << (h - 32));
697 		mcnt++;
698 	}
699 
700 	if (mcnt)
701 		rxfilt |= RL_RXCFG_RX_MULTI;
702 	else
703 		rxfilt &= ~RL_RXCFG_RX_MULTI;
704 
705 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
706 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
707 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
708 }
709 
710 static void
711 rl_reset(struct rl_softc *sc)
712 {
713 	int i;
714 
715 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
716 
717 	for (i = 0; i < RL_TIMEOUT; i++) {
718 		DELAY(10);
719 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
720 			break;
721 	}
722 	if (i == RL_TIMEOUT)
723 		device_printf(sc->rl_dev, "reset never completed!\n");
724 }
725 
726 /*
727  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
728  * IDs against our list and return a device name if we find a match.
729  *
730  * Return with a value < 0 to give re(4) a change to attach.
731  */
732 static int
733 rl_probe(device_t dev)
734 {
735 	struct rl_type *t;
736 	uint16_t product = pci_get_device(dev);
737 	uint16_t vendor = pci_get_vendor(dev);
738 
739 	for (t = rl_devs; t->rl_name != NULL; t++) {
740 		if (vendor == t->rl_vid && product == t->rl_did) {
741 			device_set_desc(dev, t->rl_name);
742 			return(-100);
743 		}
744 	}
745 
746 	return(ENXIO);
747 }
748 
749 /*
750  * Attach the interface. Allocate softc structures, do ifmedia
751  * setup and ethernet/BPF attach.
752  */
753 static int
754 rl_attach(device_t dev)
755 {
756 	uint8_t eaddr[ETHER_ADDR_LEN];
757 	uint16_t as[3];
758 	struct rl_softc *sc;
759 	struct ifnet *ifp;
760 	uint16_t rl_did = 0;
761 	int error = 0, rid, i;
762 
763 	sc = device_get_softc(dev);
764 	sc->rl_dev = dev;
765 
766 	/*
767 	 * Handle power management nonsense.
768 	 */
769 
770 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
771 		uint32_t iobase, membase, irq;
772 
773 		/* Save important PCI config data. */
774 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
775 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
776 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
777 
778 		/* Reset the power state. */
779 		device_printf(dev, "chip is is in D%d power mode "
780 			      "-- setting to D0\n", pci_get_powerstate(dev));
781 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
782 
783 		/* Restore PCI config data. */
784 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
785 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
786 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
787 	}
788 
789 	/*
790 	 * Map control/status registers.
791 	 */
792 	pci_enable_busmaster(dev);
793 	pci_enable_io(dev, RL_RES);
794 
795 	rid = RL_RID;
796 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
797 
798 	if (sc->rl_res == NULL) {
799 		device_printf(dev, "couldn't map ports/memory\n");
800 		error = ENXIO;
801 		goto fail;
802 	}
803 
804 	sc->rl_btag = rman_get_bustag(sc->rl_res);
805 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
806 
807 	rid = 0;
808 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
809 					    RF_SHAREABLE | RF_ACTIVE);
810 
811 	if (sc->rl_irq == NULL) {
812 		device_printf(dev, "couldn't map interrupt\n");
813 		error = ENXIO;
814 		goto fail;
815 	}
816 
817 	callout_init(&sc->rl_stat_timer);
818 
819 	/* Reset the adapter. */
820 	rl_reset(sc);
821 
822 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
823 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
824 	if (rl_did != 0x8129)
825 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
826 
827 	/*
828 	 * Get station address from the EEPROM.
829 	 */
830 	rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
831 	for (i = 0; i < 3; i++) {
832 		eaddr[(i * 2) + 0] = as[i] & 0xff;
833 		eaddr[(i * 2) + 1] = as[i] >> 8;
834 	}
835 
836 	/*
837 	 * Now read the exact device type from the EEPROM to find
838 	 * out if it's an 8129 or 8139.
839 	 */
840 	rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0);
841 
842 	if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 ||
843 	    rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 ||
844 	    rl_did == DLINK_DEVICEID_530TXPLUS || rl_did == RT_DEVICEID_8138 ||
845 	    rl_did == DLINK_DEVICEID_690TXD ||
846 	    rl_did == COREGA_DEVICEID_FETHERCBTXD ||
847 	    rl_did == COREGA_DEVICEID_FETHERIICBTXD ||
848 	    rl_did == PLANEX_DEVICEID_FNW3800TX)
849 		sc->rl_type = RL_8139;
850 	else if (rl_did == RT_DEVICEID_8129)
851 		sc->rl_type = RL_8129;
852 	else {
853 		device_printf(dev, "unknown device ID: %x\n", rl_did);
854 		error = ENXIO;
855 		goto fail;
856 	}
857 
858 #define	RL_NSEG_NEW 32
859 	error = bus_dma_tag_create(NULL,			/* parent */
860 				   1, 0,			/* alignment, boundary */
861 				   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
862 				   BUS_SPACE_MAXADDR,		/* highaddr */
863 				   NULL, NULL,			/* filter, filterarg */
864 				   MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
865 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
866 				   BUS_DMA_ALLOCNOW,		/* flags */
867 				   &sc->rl_parent_tag);
868 
869 	if (error) {
870 		device_printf(dev, "can't create parent tag\n");
871 		goto fail;
872 	}
873 
874 	/*
875 	 * Now allocate a tag for the DMA descriptor lists.
876 	 * All of our lists are allocated as a contiguous block
877 	 * of memory.
878 	 */
879 	error = bus_dma_tag_create(sc->rl_parent_tag,		/* parent */
880 				   1, 0,			/* alignment, boundary */
881 				   BUS_SPACE_MAXADDR,		/* lowaddr */
882 				   BUS_SPACE_MAXADDR,		/* highaddr */
883 				   NULL, NULL,			/* filter, filterarg */
884 				   RL_RXBUFLEN + 1518, 1,	/* maxsize, nsegments */
885 				   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
886 				   0,				/* flags */
887 				   &sc->rl_tag);
888 
889 	if (error) {
890 		device_printf(dev, "can't create RX tag\n");
891 		goto fail;
892 	}
893 
894 	/*
895 	 * Now allocate a chunk of DMA-able memory based on the tag
896 	 * we just created.
897 	 */
898 	error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf,
899 				 BUS_DMA_WAITOK, &sc->rl_cdata.rl_rx_dmamap);
900 
901 	if (error) {
902 		device_printf(dev, "can't allocate RX memory!\n");
903 		error = ENXIO;
904 		goto fail;
905 	}
906 
907 	/* Leave a few bytes before the start of the RX ring buffer. */
908 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
909 	sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
910 
911 	/* Do MII setup */
912 	if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd,
913 			  rl_ifmedia_sts)) {
914 		device_printf(dev, "MII without any phy!\n");
915 		error = ENXIO;
916 		goto fail;
917 	}
918 
919 	ifp = &sc->arpcom.ac_if;
920 	ifp->if_softc = sc;
921 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
922 	ifp->if_mtu = ETHERMTU;
923 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
924 	ifp->if_ioctl = rl_ioctl;
925 	ifp->if_start = rl_start;
926 	ifp->if_watchdog = rl_watchdog;
927 	ifp->if_init = rl_init;
928 	ifp->if_baudrate = 10000000;
929 	ifp->if_capabilities = IFCAP_VLAN_MTU;
930 #ifdef DEVICE_POLLING
931 	ifp->if_poll = rl_poll;
932 #endif
933 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
934 	ifq_set_ready(&ifp->if_snd);
935 
936 	/*
937 	 * Call MI attach routine.
938 	 */
939 	ether_ifattach(ifp, eaddr);
940 
941 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET, rl_intr,
942 			       sc, &sc->rl_intrhand, NULL);
943 
944 	if (error) {
945 		device_printf(dev, "couldn't set up irq\n");
946 		ether_ifdetach(ifp);
947 		goto fail;
948 	}
949 
950 	return(0);
951 
952 fail:
953 	rl_detach(dev);
954 	return(error);
955 }
956 
957 static int
958 rl_detach(device_t dev)
959 {
960 	struct rl_softc *sc;
961 	struct ifnet *ifp;
962 
963 	sc = device_get_softc(dev);
964 	ifp = &sc->arpcom.ac_if;
965 
966 	crit_enter();
967 
968 	if (device_is_attached(dev)) {
969 		rl_stop(sc);
970 		ether_ifdetach(ifp);
971 	}
972 
973 	if (sc->rl_miibus)
974 		device_delete_child(dev, sc->rl_miibus);
975 	bus_generic_detach(dev);
976 
977 	if (sc->rl_intrhand)
978 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
979 
980 	crit_exit();
981 
982 	if (sc->rl_irq)
983 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
984 	if (sc->rl_res)
985 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
986 
987 	if (sc->rl_cdata.rl_rx_buf) {
988 		bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
989 		bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
990 				sc->rl_cdata.rl_rx_dmamap);
991 	}
992 	if (sc->rl_tag)
993 		bus_dma_tag_destroy(sc->rl_tag);
994 	if (sc->rl_parent_tag)
995 		bus_dma_tag_destroy(sc->rl_parent_tag);
996 
997 	return(0);
998 }
999 
1000 /*
1001  * Initialize the transmit descriptors.
1002  */
1003 static void
1004 rl_list_tx_init(struct rl_softc *sc)
1005 {
1006 	struct rl_chain_data *cd;
1007 	int i;
1008 
1009 	cd = &sc->rl_cdata;
1010 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1011 		cd->rl_tx_chain[i] = NULL;
1012 		CSR_WRITE_4(sc,
1013 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1014 	}
1015 
1016 	sc->rl_cdata.cur_tx = 0;
1017 	sc->rl_cdata.last_tx = 0;
1018 }
1019 
1020 /*
1021  * A frame has been uploaded: pass the resulting mbuf chain up to
1022  * the higher level protocols.
1023  *
1024  * You know there's something wrong with a PCI bus-master chip design
1025  * when you have to use m_devget().
1026  *
1027  * The receive operation is badly documented in the datasheet, so I'll
1028  * attempt to document it here. The driver provides a buffer area and
1029  * places its base address in the RX buffer start address register.
1030  * The chip then begins copying frames into the RX buffer. Each frame
1031  * is preceded by a 32-bit RX status word which specifies the length
1032  * of the frame and certain other status bits. Each frame (starting with
1033  * the status word) is also 32-bit aligned. The frame length is in the
1034  * first 16 bits of the status word; the lower 15 bits correspond with
1035  * the 'rx status register' mentioned in the datasheet.
1036  *
1037  * Note: to make the Alpha happy, the frame payload needs to be aligned
1038  * on a 32-bit boundary. To achieve this, we cheat a bit by copying from
1039  * the ring buffer starting at an address two bytes before the actual
1040  * data location. We can then shave off the first two bytes using m_adj().
1041  * The reason we do this is because m_devget() doesn't let us specify an
1042  * offset into the mbuf storage space, so we have to artificially create
1043  * one. The ring is allocated in such a way that there are a few unused
1044  * bytes of space preceecing it so that it will be safe for us to do the
1045  * 2-byte backstep even if reading from the ring at offset 0.
1046  */
1047 static void
1048 rl_rxeof(struct rl_softc *sc)
1049 {
1050         struct mbuf *m;
1051         struct ifnet *ifp;
1052 	int total_len = 0;
1053 	uint32_t rxstat;
1054 	caddr_t rxbufpos;
1055 	int wrap = 0;
1056 	uint16_t cur_rx, limit, max_bytes, rx_bytes = 0;
1057 
1058 	ifp = &sc->arpcom.ac_if;
1059 
1060 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1061 			BUS_DMASYNC_POSTREAD);
1062 
1063 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1064 
1065 	/* Do not try to read past this point. */
1066 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1067 
1068 	if (limit < cur_rx)
1069 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1070 	else
1071 		max_bytes = limit - cur_rx;
1072 
1073 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1074 #ifdef DEVICE_POLLING
1075 		if (ifp->if_flags & IFF_POLLING) {
1076 			if (sc->rxcycles <= 0)
1077 				break;
1078 			sc->rxcycles--;
1079 		}
1080 #endif /* DEVICE_POLLING */
1081 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1082 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1083 
1084 		/*
1085 		 * Here's a totally undocumented fact for you. When the
1086 		 * RealTek chip is in the process of copying a packet into
1087 		 * RAM for you, the length will be 0xfff0. If you spot a
1088 		 * packet header with this value, you need to stop. The
1089 		 * datasheet makes absolutely no mention of this and
1090 		 * RealTek should be shot for this.
1091 		 */
1092 		if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
1093 			break;
1094 
1095 		if ((rxstat & RL_RXSTAT_RXOK) == 0) {
1096 			ifp->if_ierrors++;
1097 			rl_init(sc);
1098 			return;
1099 		}
1100 
1101 		/* No errors; receive the packet. */
1102 		total_len = rxstat >> 16;
1103 		rx_bytes += total_len + 4;
1104 
1105 		/*
1106 		 * XXX The RealTek chip includes the CRC with every
1107 		 * received frame, and there's no way to turn this
1108 		 * behavior off (at least, I can't find anything in
1109 	 	 * the manual that explains how to do it) so we have
1110 		 * to trim off the CRC manually.
1111 		 */
1112 		total_len -= ETHER_CRC_LEN;
1113 
1114 		/*
1115 		 * Avoid trying to read more bytes than we know
1116 		 * the chip has prepared for us.
1117 		 */
1118 		if (rx_bytes > max_bytes)
1119 			break;
1120 
1121 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1122 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1123 
1124 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1125 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1126 
1127 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1128 
1129 		if (total_len > wrap) {
1130 			/*
1131 			 * Fool m_devget() into thinking we want to copy
1132 			 * the whole buffer so we don't end up fragmenting
1133 			 * the data.
1134 			 */
1135 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1136 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1137 			if (m == NULL) {
1138 				ifp->if_ierrors++;
1139 			} else {
1140 				m_adj(m, RL_ETHER_ALIGN);
1141 				m_copyback(m, wrap, total_len - wrap,
1142 					sc->rl_cdata.rl_rx_buf);
1143 			}
1144 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1145 		} else {
1146 			m = m_devget(rxbufpos - RL_ETHER_ALIGN,
1147 			    total_len + RL_ETHER_ALIGN, 0, ifp, NULL);
1148 			if (m == NULL) {
1149 				ifp->if_ierrors++;
1150 			} else
1151 				m_adj(m, RL_ETHER_ALIGN);
1152 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1153 		}
1154 
1155 		/*
1156 		 * Round up to 32-bit boundary.
1157 		 */
1158 		cur_rx = (cur_rx + 3) & ~3;
1159 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1160 
1161 		if (m == NULL)
1162 			continue;
1163 
1164 		ifp->if_ipackets++;
1165 
1166 		(*ifp->if_input)(ifp, m);
1167 	}
1168 }
1169 
1170 /*
1171  * A frame was downloaded to the chip. It's safe for us to clean up
1172  * the list buffers.
1173  */
1174 static void
1175 rl_txeof(struct rl_softc *sc)
1176 {
1177 	struct ifnet *ifp;
1178 	uint32_t txstat;
1179 
1180 	ifp = &sc->arpcom.ac_if;
1181 
1182 	/*
1183 	 * Go through our tx list and free mbufs for those
1184 	 * frames that have been uploaded.
1185 	 */
1186 	do {
1187 		if (RL_LAST_TXMBUF(sc) == NULL)
1188 			break;
1189 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1190 		if ((txstat & (RL_TXSTAT_TX_OK | RL_TXSTAT_TX_UNDERRUN |
1191 			       RL_TXSTAT_TXABRT)) == 0)
1192 			break;
1193 
1194 		ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
1195 
1196 		bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
1197 		bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
1198 		m_freem(RL_LAST_TXMBUF(sc));
1199 		RL_LAST_TXMBUF(sc) = NULL;
1200 		RL_INC(sc->rl_cdata.last_tx);
1201 
1202 		if (txstat & RL_TXSTAT_TX_UNDERRUN) {
1203 			sc->rl_txthresh += 32;
1204 			if (sc->rl_txthresh > RL_TX_THRESH_MAX)
1205 				sc->rl_txthresh = RL_TX_THRESH_MAX;
1206 		}
1207 
1208 		if (txstat & RL_TXSTAT_TX_OK) {
1209 			ifp->if_opackets++;
1210 		} else {
1211 			ifp->if_oerrors++;
1212 			if (txstat & (RL_TXSTAT_TXABRT | RL_TXSTAT_OUTOFWIN))
1213 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1214 		}
1215 		ifp->if_flags &= ~IFF_OACTIVE;
1216 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1217 
1218 	if (RL_LAST_TXMBUF(sc) == NULL)
1219 		ifp->if_timer = 0;
1220 	else if (ifp->if_timer == 0)
1221 		ifp->if_timer = 5;
1222 }
1223 
1224 static void
1225 rl_tick(void *xsc)
1226 {
1227 	struct rl_softc *sc = xsc;
1228 	struct mii_data *mii;
1229 
1230 	crit_enter();
1231 
1232 	mii = device_get_softc(sc->rl_miibus);
1233 	mii_tick(mii);
1234 
1235 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1236 
1237 	crit_exit();
1238 }
1239 
1240 #ifdef DEVICE_POLLING
1241 
1242 static void
1243 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1244 {
1245 	struct rl_softc *sc = ifp->if_softc;
1246 
1247 	switch(cmd) {
1248 	case POLL_REGISTER:
1249 		/* disable interrupts */
1250                 CSR_WRITE_2(sc, RL_IMR, 0x0000);
1251 		break;
1252 	case POLL_DEREGISTER:
1253 		/* enable interrupts */
1254 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1255 		break;
1256 	default:
1257 		sc->rxcycles = count;
1258 		rl_rxeof(sc);
1259 		rl_txeof(sc);
1260 		if (!ifq_is_empty(&ifp->if_snd))
1261 			rl_start(ifp);
1262 
1263 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1264 			uint16_t status;
1265 
1266 			status = CSR_READ_2(sc, RL_ISR);
1267 			if (status == 0xffff)
1268 				return;
1269 			if (status)
1270 				CSR_WRITE_2(sc, RL_ISR, status);
1271 
1272 			/*
1273 			 * XXX check behaviour on receiver stalls.
1274 			 */
1275 
1276 			if (status & RL_ISR_SYSTEM_ERR) {
1277 				rl_reset(sc);
1278 				rl_init(sc);
1279 			}
1280 		}
1281 		break;
1282 	}
1283 }
1284 #endif /* DEVICE_POLLING */
1285 
1286 static void
1287 rl_intr(void *arg)
1288 {
1289 	struct rl_softc *sc;
1290 	struct ifnet *ifp;
1291 	uint16_t status;
1292 
1293 	sc = arg;
1294 
1295 	if (sc->suspended)
1296 		return;
1297 
1298 	ifp = &sc->arpcom.ac_if;
1299 
1300 	for (;;) {
1301 		status = CSR_READ_2(sc, RL_ISR);
1302 		/* If the card has gone away, the read returns 0xffff. */
1303 		if (status == 0xffff)
1304 			break;
1305 
1306 		if (status != 0)
1307 			CSR_WRITE_2(sc, RL_ISR, status);
1308 
1309 		if ((status & RL_INTRS) == 0)
1310 			break;
1311 
1312 		if (status & RL_ISR_RX_OK)
1313 			rl_rxeof(sc);
1314 
1315 		if (status & RL_ISR_RX_ERR)
1316 			rl_rxeof(sc);
1317 
1318 		if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
1319 			rl_txeof(sc);
1320 
1321 		if (status & RL_ISR_SYSTEM_ERR) {
1322 			rl_reset(sc);
1323 			rl_init(sc);
1324 		}
1325 
1326 	}
1327 
1328 	if (!ifq_is_empty(&ifp->if_snd))
1329 		rl_start(ifp);
1330 }
1331 
1332 /*
1333  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1334  * pointers to the fragment pointers.
1335  */
1336 static int
1337 rl_encap(struct rl_softc *sc, struct mbuf *m_head)
1338 {
1339 	struct mbuf *m_new = NULL;
1340 
1341 	/*
1342 	 * The RealTek is brain damaged and wants longword-aligned
1343 	 * TX buffers, plus we can only have one fragment buffer
1344 	 * per packet. We have to copy pretty much all the time.
1345 	 */
1346 	m_new = m_defrag(m_head, MB_DONTWAIT);
1347 
1348 	if (m_new == NULL) {
1349 		m_freem(m_head);
1350 		return(1);
1351 	}
1352 	m_head = m_new;
1353 
1354 	/* Pad frames to at least 60 bytes. */
1355 	if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
1356 		/*
1357 		 * Make security concious people happy: zero out the
1358 		 * bytes in the pad area, since we don't know what
1359 		 * this mbuf cluster buffer's previous user might
1360 		 * have left in it.
1361 	 	 */
1362 		bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
1363 		     RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1364 		m_head->m_pkthdr.len +=
1365 		    (RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
1366 		m_head->m_len = m_head->m_pkthdr.len;
1367 	}
1368 
1369 	RL_CUR_TXMBUF(sc) = m_head;
1370 
1371 	return(0);
1372 }
1373 
1374 /*
1375  * Main transmit routine.
1376  */
1377 
1378 static void
1379 rl_start(struct ifnet *ifp)
1380 {
1381 	struct rl_softc *sc;
1382 	struct mbuf *m_head = NULL;
1383 
1384 	sc = ifp->if_softc;
1385 
1386 	while(RL_CUR_TXMBUF(sc) == NULL) {
1387 		m_head = ifq_dequeue(&ifp->if_snd);
1388 		if (m_head == NULL)
1389 			break;
1390 
1391 		if (rl_encap(sc, m_head))
1392 			break;
1393 
1394 		/*
1395 		 * If there's a BPF listener, bounce a copy of this frame
1396 		 * to him.
1397 		 */
1398 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1399 
1400 		/*
1401 		 * Transmit the frame.
1402 	 	 */
1403 		bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
1404 		bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
1405 				mtod(RL_CUR_TXMBUF(sc), void *),
1406 				RL_CUR_TXMBUF(sc)->m_pkthdr.len,
1407 				rl_dma_map_txbuf, sc, 0);
1408 		bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
1409 				BUS_DMASYNC_PREREAD);
1410 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1411 		    RL_TXTHRESH(sc->rl_txthresh) |
1412 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1413 
1414 		RL_INC(sc->rl_cdata.cur_tx);
1415 
1416 		/*
1417 		 * Set a timeout in case the chip goes out to lunch.
1418 		 */
1419 		ifp->if_timer = 5;
1420 	}
1421 
1422 	/*
1423 	 * We broke out of the loop because all our TX slots are
1424 	 * full. Mark the NIC as busy until it drains some of the
1425 	 * packets from the queue.
1426 	 */
1427 	if (RL_CUR_TXMBUF(sc) != NULL)
1428 		ifp->if_flags |= IFF_OACTIVE;
1429 }
1430 
1431 static void
1432 rl_init(void *xsc)
1433 {
1434 	struct rl_softc *sc = xsc;
1435 	struct ifnet *ifp = &sc->arpcom.ac_if;
1436 	struct mii_data *mii;
1437 	uint32_t rxcfg = 0;
1438 
1439 	crit_enter();
1440 
1441 	mii = device_get_softc(sc->rl_miibus);
1442 
1443 	/*
1444 	 * Cancel pending I/O and free all RX/TX buffers.
1445 	 */
1446 	rl_stop(sc);
1447 
1448 	/*
1449 	 * Init our MAC address.  Even though the chipset documentation
1450 	 * doesn't mention it, we need to enter "Config register write enable"
1451 	 * mode to modify the ID registers.
1452 	 */
1453 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1454 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
1455 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1456 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
1457 			   *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1458 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1459 
1460 	/* Init the RX buffer pointer register. */
1461 	bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1462 			sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf,
1463 			sc, 0);
1464 	bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
1465 			BUS_DMASYNC_PREWRITE);
1466 
1467 	/* Init TX descriptors. */
1468 	rl_list_tx_init(sc);
1469 
1470 	/*
1471 	 * Enable transmit and receive.
1472 	 */
1473 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1474 
1475 	/*
1476 	 * Set the initial TX and RX configuration.
1477 	 */
1478 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1479 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1480 
1481 	/* Set the individual bit to receive frames for this host only. */
1482 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
1483 	rxcfg |= RL_RXCFG_RX_INDIV;
1484 
1485 	/* If we want promiscuous mode, set the allframes bit. */
1486 	if (ifp->if_flags & IFF_PROMISC) {
1487 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
1488 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1489 	} else {
1490 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
1491 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1492 	}
1493 
1494 	/*
1495 	 * Set capture broadcast bit to capture broadcast frames.
1496 	 */
1497 	if (ifp->if_flags & IFF_BROADCAST) {
1498 		rxcfg |= RL_RXCFG_RX_BROAD;
1499 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1500 	} else {
1501 		rxcfg &= ~RL_RXCFG_RX_BROAD;
1502 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
1503 	}
1504 
1505 	/*
1506 	 * Program the multicast filter, if necessary.
1507 	 */
1508 	rl_setmulti(sc);
1509 
1510 #ifdef DEVICE_POLLING
1511 	/*
1512 	 * Only enable interrupts if we are polling, keep them off otherwise.
1513 	 */
1514 	if (ifp->if_flags & IFF_POLLING)
1515 		CSR_WRITE_2(sc, RL_IMR, 0);
1516 	else
1517 #endif /* DEVICE_POLLING */
1518 	/*
1519 	 * Enable interrupts.
1520 	 */
1521 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1522 
1523 	/* Set initial TX threshold */
1524 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1525 
1526 	/* Start RX/TX process. */
1527 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1528 
1529 	/* Enable receiver and transmitter. */
1530 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1531 
1532 	mii_mediachg(mii);
1533 
1534 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1535 
1536 	ifp->if_flags |= IFF_RUNNING;
1537 	ifp->if_flags &= ~IFF_OACTIVE;
1538 
1539 	callout_reset(&sc->rl_stat_timer, hz, rl_tick, sc);
1540 
1541 	crit_exit();
1542 }
1543 
1544 /*
1545  * Set media options.
1546  */
1547 static int
1548 rl_ifmedia_upd(struct ifnet *ifp)
1549 {
1550 	struct rl_softc *sc;
1551 	struct mii_data *mii;
1552 
1553 	sc = ifp->if_softc;
1554 	mii = device_get_softc(sc->rl_miibus);
1555 	mii_mediachg(mii);
1556 
1557 	return(0);
1558 }
1559 
1560 /*
1561  * Report current media status.
1562  */
1563 static void
1564 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1565 {
1566 	struct rl_softc *sc = ifp->if_softc;
1567 	struct mii_data *mii = device_get_softc(sc->rl_miibus);
1568 
1569 	mii_pollstat(mii);
1570 	ifmr->ifm_active = mii->mii_media_active;
1571 	ifmr->ifm_status = mii->mii_media_status;
1572 }
1573 
1574 static int
1575 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1576 {
1577 	struct rl_softc *sc = ifp->if_softc;
1578 	struct ifreq *ifr = (struct ifreq *) data;
1579 	struct mii_data	*mii;
1580 	int error = 0;
1581 
1582 	crit_enter();
1583 
1584 	switch (command) {
1585 	case SIOCSIFFLAGS:
1586 		if (ifp->if_flags & IFF_UP) {
1587 			rl_init(sc);
1588 		} else {
1589 			if (ifp->if_flags & IFF_RUNNING)
1590 				rl_stop(sc);
1591 		}
1592 		error = 0;
1593 		break;
1594 	case SIOCADDMULTI:
1595 	case SIOCDELMULTI:
1596 		rl_setmulti(sc);
1597 		error = 0;
1598 		break;
1599 	case SIOCGIFMEDIA:
1600 	case SIOCSIFMEDIA:
1601 		mii = device_get_softc(sc->rl_miibus);
1602 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1603 		break;
1604 	case SIOCSIFCAP:
1605 		break;
1606 	default:
1607 		error = ether_ioctl(ifp, command, data);
1608 		break;
1609 	}
1610 
1611 	crit_exit();
1612 
1613 	return(error);
1614 }
1615 
1616 static void
1617 rl_watchdog(struct ifnet *ifp)
1618 {
1619 	struct rl_softc *sc = ifp->if_softc;
1620 
1621 	device_printf(sc->rl_dev, "watchdog timeout\n");
1622 
1623 	crit_enter();
1624 
1625 	ifp->if_oerrors++;
1626 
1627 	rl_txeof(sc);
1628 	rl_rxeof(sc);
1629 	rl_init(sc);
1630 
1631 	crit_exit();
1632 }
1633 
1634 /*
1635  * Stop the adapter and free any mbufs allocated to the
1636  * RX and TX lists.
1637  */
1638 static void
1639 rl_stop(struct rl_softc *sc)
1640 {
1641 	struct ifnet *ifp = &sc->arpcom.ac_if;
1642 	int i;
1643 
1644 	ifp->if_timer = 0;
1645 
1646 	callout_stop(&sc->rl_stat_timer);
1647 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1648 
1649 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1650 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1651 	bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
1652 
1653 	/*
1654 	 * Free the TX list buffers.
1655 	 */
1656 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1657 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1658 			bus_dmamap_unload(sc->rl_tag,
1659 					  sc->rl_cdata.rl_tx_dmamap[i]);
1660 			bus_dmamap_destroy(sc->rl_tag,
1661 					   sc->rl_cdata.rl_tx_dmamap[i]);
1662 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1663 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1664 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1665 				    0x0000000);
1666 		}
1667 	}
1668 }
1669 
1670 /*
1671  * Stop all chip I/O so that the kernel's probe routines don't
1672  * get confused by errant DMAs when rebooting.
1673  */
1674 static void
1675 rl_shutdown(device_t dev)
1676 {
1677 	struct rl_softc *sc;
1678 
1679 	sc = device_get_softc(dev);
1680 
1681 	rl_stop(sc);
1682 }
1683 
1684 /*
1685  * Device suspend routine.  Stop the interface and save some PCI
1686  * settings in case the BIOS doesn't restore them properly on
1687  * resume.
1688  */
1689 static int
1690 rl_suspend(device_t dev)
1691 {
1692 	struct rl_softc	*sc = device_get_softc(dev);
1693 	int i;
1694 
1695 	rl_stop(sc);
1696 
1697 	for (i = 0; i < 5; i++)
1698 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
1699 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
1700 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
1701 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
1702 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
1703 
1704 	sc->suspended = 1;
1705 
1706 	return (0);
1707 }
1708 
1709 /*
1710  * Device resume routine.  Restore some PCI settings in case the BIOS
1711  * doesn't, re-enable busmastering, and restart the interface if
1712  * appropriate.
1713  */
1714 static int rl_resume(device_t dev)
1715 {
1716 	struct rl_softc *sc = device_get_softc(dev);
1717 	struct ifnet *ifp = &sc->arpcom.ac_if;
1718 	int		i;
1719 
1720 	/* better way to do this? */
1721 	for (i = 0; i < 5; i++)
1722 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
1723 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
1724 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
1725 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
1726 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
1727 
1728 	/* reenable busmastering */
1729 	pci_enable_busmaster(dev);
1730 	pci_enable_io(dev, RL_RES);
1731 
1732         /* reinitialize interface if necessary */
1733         if (ifp->if_flags & IFF_UP)
1734                 rl_init(sc);
1735 
1736 	sc->suspended = 0;
1737 
1738 	return (0);
1739 }
1740