xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision f00eae149c338528630cd778fd4de222713daa11)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
249 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
251 
252 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
253 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
255 
256 	{ RE_HWREV_8111F,	RE_MACVER_UNKN,		RE_MTU_9K,
257 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
258 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
259 
260 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
261 	  RE_C_HWCSUM | RE_C_FASTE },
262 
263 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
264 	  RE_C_HWCSUM | RE_C_FASTE },
265 
266 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
267 	  RE_C_HWCSUM | RE_C_FASTE },
268 
269 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
270 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
271 	  RE_C_FASTE },
272 
273 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
274 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
275 	  RE_C_FASTE },
276 
277 	{ RE_HWREV_8105E,	RE_MACVER_UNKN,		ETHERMTU,
278 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
279 	  RE_C_STOP_RXTX | RE_C_FASTE },
280 
281 	{ RE_HWREV_NULL, 0, 0, 0 }
282 };
283 
284 static int	re_probe(device_t);
285 static int	re_attach(device_t);
286 static int	re_detach(device_t);
287 static int	re_suspend(device_t);
288 static int	re_resume(device_t);
289 static void	re_shutdown(device_t);
290 
291 static int	re_allocmem(device_t);
292 static void	re_freemem(device_t);
293 static void	re_freebufmem(struct re_softc *, int, int);
294 static int	re_encap(struct re_softc *, struct mbuf **, int *);
295 static int	re_newbuf_std(struct re_softc *, int, int);
296 static int	re_newbuf_jumbo(struct re_softc *, int, int);
297 static void	re_setup_rxdesc(struct re_softc *, int);
298 static int	re_rx_list_init(struct re_softc *);
299 static int	re_tx_list_init(struct re_softc *);
300 static int	re_rxeof(struct re_softc *);
301 static int	re_txeof(struct re_softc *);
302 static int	re_tx_collect(struct re_softc *);
303 static void	re_intr(void *);
304 static void	re_tick(void *);
305 static void	re_tick_serialized(void *);
306 
307 static void	re_start(struct ifnet *, struct ifaltq_subque *);
308 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
309 static void	re_init(void *);
310 static void	re_stop(struct re_softc *);
311 static void	re_watchdog(struct ifnet *);
312 static int	re_ifmedia_upd(struct ifnet *);
313 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
314 
315 static void	re_eeprom_putbyte(struct re_softc *, int);
316 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
317 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
318 static void	re_get_eewidth(struct re_softc *);
319 
320 static int	re_gmii_readreg(device_t, int, int);
321 static int	re_gmii_writereg(device_t, int, int, int);
322 
323 static int	re_miibus_readreg(device_t, int, int);
324 static int	re_miibus_writereg(device_t, int, int, int);
325 static void	re_miibus_statchg(device_t);
326 
327 static void	re_setmulti(struct re_softc *);
328 static void	re_reset(struct re_softc *, int);
329 static void	re_get_eaddr(struct re_softc *, uint8_t *);
330 
331 static void	re_setup_hw_im(struct re_softc *);
332 static void	re_setup_sim_im(struct re_softc *);
333 static void	re_disable_hw_im(struct re_softc *);
334 static void	re_disable_sim_im(struct re_softc *);
335 static void	re_config_imtype(struct re_softc *, int);
336 static void	re_setup_intr(struct re_softc *, int, int);
337 
338 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
339 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
340 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
341 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
342 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
343 
344 static int	re_jpool_alloc(struct re_softc *);
345 static void	re_jpool_free(struct re_softc *);
346 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
347 static void	re_jbuf_free(void *);
348 static void	re_jbuf_ref(void *);
349 
350 #ifdef RE_DIAG
351 static int	re_diag(struct re_softc *);
352 #endif
353 
354 #ifdef IFPOLL_ENABLE
355 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
356 static void	re_npoll_compat(struct ifnet *, void *, int);
357 #endif
358 
359 static device_method_t re_methods[] = {
360 	/* Device interface */
361 	DEVMETHOD(device_probe,		re_probe),
362 	DEVMETHOD(device_attach,	re_attach),
363 	DEVMETHOD(device_detach,	re_detach),
364 	DEVMETHOD(device_suspend,	re_suspend),
365 	DEVMETHOD(device_resume,	re_resume),
366 	DEVMETHOD(device_shutdown,	re_shutdown),
367 
368 	/* bus interface */
369 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
370 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
371 
372 	/* MII interface */
373 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
374 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
375 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
376 
377 	DEVMETHOD_END
378 };
379 
380 static driver_t re_driver = {
381 	"re",
382 	re_methods,
383 	sizeof(struct re_softc)
384 };
385 
386 static devclass_t re_devclass;
387 
388 DECLARE_DUMMY_MODULE(if_re);
389 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
390 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
391 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
392 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
393 
394 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
395 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
396 static int	re_msi_enable = 1;
397 
398 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
399 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
400 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
401 
402 #define EE_SET(x)	\
403 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
404 
405 #define EE_CLR(x)	\
406 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
407 
408 static __inline void
409 re_free_rxchain(struct re_softc *sc)
410 {
411 	if (sc->re_head != NULL) {
412 		m_freem(sc->re_head);
413 		sc->re_head = sc->re_tail = NULL;
414 	}
415 }
416 
417 /*
418  * Send a read command and address to the EEPROM, check for ACK.
419  */
420 static void
421 re_eeprom_putbyte(struct re_softc *sc, int addr)
422 {
423 	int d, i;
424 
425 	d = addr | (RE_9346_READ << sc->re_eewidth);
426 
427 	/*
428 	 * Feed in each bit and strobe the clock.
429 	 */
430 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
431 		if (d & i)
432 			EE_SET(RE_EE_DATAIN);
433 		else
434 			EE_CLR(RE_EE_DATAIN);
435 		DELAY(100);
436 		EE_SET(RE_EE_CLK);
437 		DELAY(150);
438 		EE_CLR(RE_EE_CLK);
439 		DELAY(100);
440 	}
441 }
442 
443 /*
444  * Read a word of data stored in the EEPROM at address 'addr.'
445  */
446 static void
447 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
448 {
449 	int i;
450 	uint16_t word = 0;
451 
452 	/*
453 	 * Send address of word we want to read.
454 	 */
455 	re_eeprom_putbyte(sc, addr);
456 
457 	/*
458 	 * Start reading bits from EEPROM.
459 	 */
460 	for (i = 0x8000; i != 0; i >>= 1) {
461 		EE_SET(RE_EE_CLK);
462 		DELAY(100);
463 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
464 			word |= i;
465 		EE_CLR(RE_EE_CLK);
466 		DELAY(100);
467 	}
468 
469 	*dest = word;
470 }
471 
472 /*
473  * Read a sequence of words from the EEPROM.
474  */
475 static void
476 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
477 {
478 	int i;
479 	uint16_t word = 0, *ptr;
480 
481 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
482 	DELAY(100);
483 
484 	for (i = 0; i < cnt; i++) {
485 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
486 		re_eeprom_getword(sc, off + i, &word);
487 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
488 		ptr = (uint16_t *)(dest + (i * 2));
489 		*ptr = word;
490 	}
491 
492 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
493 }
494 
495 static void
496 re_get_eewidth(struct re_softc *sc)
497 {
498 	uint16_t re_did = 0;
499 
500 	sc->re_eewidth = 6;
501 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
502 	if (re_did != 0x8129)
503 		sc->re_eewidth = 8;
504 }
505 
506 static int
507 re_gmii_readreg(device_t dev, int phy, int reg)
508 {
509 	struct re_softc *sc = device_get_softc(dev);
510 	u_int32_t rval;
511 	int i;
512 
513 	if (phy != 1)
514 		return(0);
515 
516 	/* Let the rgephy driver read the GMEDIASTAT register */
517 
518 	if (reg == RE_GMEDIASTAT)
519 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
520 
521 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
522 	DELAY(1000);
523 
524 	for (i = 0; i < RE_TIMEOUT; i++) {
525 		rval = CSR_READ_4(sc, RE_PHYAR);
526 		if (rval & RE_PHYAR_BUSY)
527 			break;
528 		DELAY(100);
529 	}
530 
531 	if (i == RE_TIMEOUT) {
532 		device_printf(dev, "PHY read failed\n");
533 		return(0);
534 	}
535 
536 	return(rval & RE_PHYAR_PHYDATA);
537 }
538 
539 static int
540 re_gmii_writereg(device_t dev, int phy, int reg, int data)
541 {
542 	struct re_softc *sc = device_get_softc(dev);
543 	uint32_t rval;
544 	int i;
545 
546 	CSR_WRITE_4(sc, RE_PHYAR,
547 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
548 	DELAY(1000);
549 
550 	for (i = 0; i < RE_TIMEOUT; i++) {
551 		rval = CSR_READ_4(sc, RE_PHYAR);
552 		if ((rval & RE_PHYAR_BUSY) == 0)
553 			break;
554 		DELAY(100);
555 	}
556 
557 	if (i == RE_TIMEOUT)
558 		device_printf(dev, "PHY write failed\n");
559 
560 	return(0);
561 }
562 
563 static int
564 re_miibus_readreg(device_t dev, int phy, int reg)
565 {
566 	struct re_softc	*sc = device_get_softc(dev);
567 	uint16_t rval = 0;
568 	uint16_t re8139_reg = 0;
569 
570 	if (!RE_IS_8139CP(sc)) {
571 		rval = re_gmii_readreg(dev, phy, reg);
572 		return(rval);
573 	}
574 
575 	/* Pretend the internal PHY is only at address 0 */
576 	if (phy)
577 		return(0);
578 
579 	switch(reg) {
580 	case MII_BMCR:
581 		re8139_reg = RE_BMCR;
582 		break;
583 	case MII_BMSR:
584 		re8139_reg = RE_BMSR;
585 		break;
586 	case MII_ANAR:
587 		re8139_reg = RE_ANAR;
588 		break;
589 	case MII_ANER:
590 		re8139_reg = RE_ANER;
591 		break;
592 	case MII_ANLPAR:
593 		re8139_reg = RE_LPAR;
594 		break;
595 	case MII_PHYIDR1:
596 	case MII_PHYIDR2:
597 		return(0);
598 	/*
599 	 * Allow the rlphy driver to read the media status
600 	 * register. If we have a link partner which does not
601 	 * support NWAY, this is the register which will tell
602 	 * us the results of parallel detection.
603 	 */
604 	case RE_MEDIASTAT:
605 		return(CSR_READ_1(sc, RE_MEDIASTAT));
606 	default:
607 		device_printf(dev, "bad phy register\n");
608 		return(0);
609 	}
610 	rval = CSR_READ_2(sc, re8139_reg);
611 	if (re8139_reg == RE_BMCR) {
612 		/* 8139C+ has different bit layout. */
613 		rval &= ~(BMCR_LOOP | BMCR_ISO);
614 	}
615 	return(rval);
616 }
617 
618 static int
619 re_miibus_writereg(device_t dev, int phy, int reg, int data)
620 {
621 	struct re_softc *sc= device_get_softc(dev);
622 	u_int16_t re8139_reg = 0;
623 
624 	if (!RE_IS_8139CP(sc))
625 		return(re_gmii_writereg(dev, phy, reg, data));
626 
627 	/* Pretend the internal PHY is only at address 0 */
628 	if (phy)
629 		return(0);
630 
631 	switch(reg) {
632 	case MII_BMCR:
633 		re8139_reg = RE_BMCR;
634 		/* 8139C+ has different bit layout. */
635 		data &= ~(BMCR_LOOP | BMCR_ISO);
636 		break;
637 	case MII_BMSR:
638 		re8139_reg = RE_BMSR;
639 		break;
640 	case MII_ANAR:
641 		re8139_reg = RE_ANAR;
642 		break;
643 	case MII_ANER:
644 		re8139_reg = RE_ANER;
645 		break;
646 	case MII_ANLPAR:
647 		re8139_reg = RE_LPAR;
648 		break;
649 	case MII_PHYIDR1:
650 	case MII_PHYIDR2:
651 		return(0);
652 	default:
653 		device_printf(dev, "bad phy register\n");
654 		return(0);
655 	}
656 	CSR_WRITE_2(sc, re8139_reg, data);
657 	return(0);
658 }
659 
660 static void
661 re_miibus_statchg(device_t dev)
662 {
663 }
664 
665 /*
666  * Program the 64-bit multicast hash filter.
667  */
668 static void
669 re_setmulti(struct re_softc *sc)
670 {
671 	struct ifnet *ifp = &sc->arpcom.ac_if;
672 	int h = 0;
673 	uint32_t hashes[2] = { 0, 0 };
674 	struct ifmultiaddr *ifma;
675 	uint32_t rxfilt;
676 	int mcnt = 0;
677 
678 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
679 
680 	/* Set the individual bit to receive frames for this host only. */
681 	rxfilt |= RE_RXCFG_RX_INDIV;
682 	/* Set capture broadcast bit to capture broadcast frames. */
683 	rxfilt |= RE_RXCFG_RX_BROAD;
684 
685 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
686 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
687 		rxfilt |= RE_RXCFG_RX_MULTI;
688 
689 		/* If we want promiscuous mode, set the allframes bit. */
690 		if (ifp->if_flags & IFF_PROMISC)
691 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
692 
693 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
694 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
695 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
696 		return;
697 	}
698 
699 	/* first, zot all the existing hash bits */
700 	CSR_WRITE_4(sc, RE_MAR0, 0);
701 	CSR_WRITE_4(sc, RE_MAR4, 0);
702 
703 	/* now program new ones */
704 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
705 		if (ifma->ifma_addr->sa_family != AF_LINK)
706 			continue;
707 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
708 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
709 		if (h < 32)
710 			hashes[0] |= (1 << h);
711 		else
712 			hashes[1] |= (1 << (h - 32));
713 		mcnt++;
714 	}
715 
716 	if (mcnt)
717 		rxfilt |= RE_RXCFG_RX_MULTI;
718 	else
719 		rxfilt &= ~RE_RXCFG_RX_MULTI;
720 
721 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
722 
723 	/*
724 	 * For some unfathomable reason, RealTek decided to reverse
725 	 * the order of the multicast hash registers in the PCI Express
726 	 * parts. This means we have to write the hash pattern in reverse
727 	 * order for those devices.
728 	 */
729 	if (sc->re_caps & RE_C_PCIE) {
730 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
731 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
732 	} else {
733 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
734 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
735 	}
736 }
737 
738 static void
739 re_reset(struct re_softc *sc, int running)
740 {
741 	int i;
742 
743 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
744 		CSR_WRITE_1(sc, RE_COMMAND,
745 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
746 		DELAY(100);
747 	}
748 
749 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
750 
751 	for (i = 0; i < RE_TIMEOUT; i++) {
752 		DELAY(10);
753 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
754 			break;
755 	}
756 	if (i == RE_TIMEOUT)
757 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
758 }
759 
760 #ifdef RE_DIAG
761 /*
762  * The following routine is designed to test for a defect on some
763  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
764  * lines connected to the bus, however for a 32-bit only card, they
765  * should be pulled high. The result of this defect is that the
766  * NIC will not work right if you plug it into a 64-bit slot: DMA
767  * operations will be done with 64-bit transfers, which will fail
768  * because the 64-bit data lines aren't connected.
769  *
770  * There's no way to work around this (short of talking a soldering
771  * iron to the board), however we can detect it. The method we use
772  * here is to put the NIC into digital loopback mode, set the receiver
773  * to promiscuous mode, and then try to send a frame. We then compare
774  * the frame data we sent to what was received. If the data matches,
775  * then the NIC is working correctly, otherwise we know the user has
776  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
777  * slot. In the latter case, there's no way the NIC can work correctly,
778  * so we print out a message on the console and abort the device attach.
779  */
780 
781 static int
782 re_diag(struct re_softc *sc)
783 {
784 	struct ifnet *ifp = &sc->arpcom.ac_if;
785 	struct mbuf *m0;
786 	struct ether_header *eh;
787 	struct re_desc *cur_rx;
788 	uint16_t status;
789 	int total_len, i, error = 0, phyaddr;
790 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
791 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
792 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
793 
794 	/* Allocate a single mbuf */
795 
796 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
797 	if (m0 == NULL)
798 		return(ENOBUFS);
799 
800 	/*
801 	 * Initialize the NIC in test mode. This sets the chip up
802 	 * so that it can send and receive frames, but performs the
803 	 * following special functions:
804 	 * - Puts receiver in promiscuous mode
805 	 * - Enables digital loopback mode
806 	 * - Leaves interrupts turned off
807 	 */
808 
809 	ifp->if_flags |= IFF_PROMISC;
810 	sc->re_flags |= RE_F_TESTMODE;
811 	re_init(sc);
812 	sc->re_flags |= RE_F_LINKED;
813 	if (!RE_IS_8139CP(sc))
814 		phyaddr = 1;
815 	else
816 		phyaddr = 0;
817 
818 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
819 	for (i = 0; i < RE_TIMEOUT; i++) {
820 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
821 		if (!(status & BMCR_RESET))
822 			break;
823 	}
824 
825 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
826 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
827 
828 	DELAY(100000);
829 
830 	/* Put some data in the mbuf */
831 
832 	eh = mtod(m0, struct ether_header *);
833 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
834 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
835 	eh->ether_type = htons(ETHERTYPE_IP);
836 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
837 
838 	/*
839 	 * Queue the packet, start transmission.
840 	 * Note: ifq_handoff() ultimately calls re_start() for us.
841 	 */
842 
843 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
844 	error = ifq_handoff(ifp, m0, NULL);
845 	if (error) {
846 		m0 = NULL;
847 		goto done;
848 	}
849 	m0 = NULL;
850 
851 	/* Wait for it to propagate through the chip */
852 
853 	DELAY(100000);
854 	for (i = 0; i < RE_TIMEOUT; i++) {
855 		status = CSR_READ_2(sc, RE_ISR);
856 		CSR_WRITE_2(sc, RE_ISR, status);
857 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
858 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
859 			break;
860 		DELAY(10);
861 	}
862 
863 	if (i == RE_TIMEOUT) {
864 		if_printf(ifp, "diagnostic failed to receive packet "
865 			  "in loopback mode\n");
866 		error = EIO;
867 		goto done;
868 	}
869 
870 	/*
871 	 * The packet should have been dumped into the first
872 	 * entry in the RX DMA ring. Grab it from there.
873 	 */
874 
875 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
876 			BUS_DMASYNC_POSTREAD);
877 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
878 			  sc->re_ldata.re_rx_dmamap[0]);
879 
880 	m0 = sc->re_ldata.re_rx_mbuf[0];
881 	sc->re_ldata.re_rx_mbuf[0] = NULL;
882 	eh = mtod(m0, struct ether_header *);
883 
884 	cur_rx = &sc->re_ldata.re_rx_list[0];
885 	total_len = RE_RXBYTES(cur_rx);
886 
887 	if (total_len != ETHER_MIN_LEN) {
888 		if_printf(ifp, "diagnostic failed, received short packet\n");
889 		error = EIO;
890 		goto done;
891 	}
892 
893 	/* Test that the received packet data matches what we sent. */
894 
895 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
896 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
897 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
898 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
899 		if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
900 		    kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
901 		if_printf(ifp, "received RX data: %s/%s/0x%x\n",
902 		    kether_ntoa(eh->ether_dhost, ethstr[0]),
903 		    kether_ntoa(eh->ether_shost, ethstr[1]),
904 		    ntohs(eh->ether_type));
905 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
906 		    "into a 64-bit PCI slot.\n");
907 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
908 		    "for proper operation.\n");
909 		if_printf(ifp, "Read the re(4) man page for more details.\n");
910 		error = EIO;
911 	}
912 
913 done:
914 	/* Turn interface off, release resources */
915 
916 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
917 	ifp->if_flags &= ~IFF_PROMISC;
918 	re_stop(sc);
919 	if (m0 != NULL)
920 		m_freem(m0);
921 
922 	return (error);
923 }
924 #endif	/* RE_DIAG */
925 
926 /*
927  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
928  * IDs against our list and return a device name if we find a match.
929  */
930 static int
931 re_probe(device_t dev)
932 {
933 	const struct re_type *t;
934 	const struct re_hwrev *hw_rev;
935 	struct re_softc *sc;
936 	int rid;
937 	uint32_t hwrev, macmode, txcfg;
938 	uint16_t vendor, product;
939 
940 	vendor = pci_get_vendor(dev);
941 	product = pci_get_device(dev);
942 
943 	/*
944 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
945 	 * Rev.2 is supported by sk(4).
946 	 */
947 	if (vendor == PCI_VENDOR_LINKSYS &&
948 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
949 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
950 		return ENXIO;
951 
952 	if (vendor == PCI_VENDOR_REALTEK &&
953 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
954 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
955 		/* Poor 8139 */
956 		return ENXIO;
957 	}
958 
959 	for (t = re_devs; t->re_name != NULL; t++) {
960 		if (product == t->re_did && vendor == t->re_vid)
961 			break;
962 	}
963 
964 	/*
965 	 * Check if we found a RealTek device.
966 	 */
967 	if (t->re_name == NULL)
968 		return ENXIO;
969 
970 	/*
971 	 * Temporarily map the I/O space so we can read the chip ID register.
972 	 */
973 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
974 	rid = RE_PCI_LOIO;
975 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
976 					    RF_ACTIVE);
977 	if (sc->re_res == NULL) {
978 		device_printf(dev, "couldn't map ports/memory\n");
979 		kfree(sc, M_TEMP);
980 		return ENXIO;
981 	}
982 
983 	sc->re_btag = rman_get_bustag(sc->re_res);
984 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
985 
986 	txcfg = CSR_READ_4(sc, RE_TXCFG);
987 	hwrev = txcfg & RE_TXCFG_HWREV;
988 	macmode = txcfg & RE_TXCFG_MACMODE;
989 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
990 	kfree(sc, M_TEMP);
991 
992 	/*
993 	 * and continue matching for the specific chip...
994 	 */
995 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
996 		if (hw_rev->re_hwrev == hwrev) {
997 			sc = device_get_softc(dev);
998 
999 			sc->re_hwrev = hw_rev->re_hwrev;
1000 			sc->re_macver = hw_rev->re_macver;
1001 			sc->re_caps = hw_rev->re_caps;
1002 			sc->re_maxmtu = hw_rev->re_maxmtu;
1003 
1004 			/*
1005 			 * Apply chip property fixup
1006 			 */
1007 			switch (sc->re_hwrev) {
1008 			case RE_HWREV_8101E1:
1009 			case RE_HWREV_8101E2:
1010 				if (macmode == 0)
1011 					sc->re_macver = RE_MACVER_11;
1012 				else if (macmode == 0x200000)
1013 					sc->re_macver = RE_MACVER_12;
1014 				break;
1015 			case RE_HWREV_8102E:
1016 			case RE_HWREV_8102EL:
1017 				if (macmode == 0)
1018 					sc->re_macver = RE_MACVER_13;
1019 				else if (macmode == 0x100000)
1020 					sc->re_macver = RE_MACVER_14;
1021 				break;
1022 			case RE_HWREV_8168B2:
1023 			case RE_HWREV_8168B3:
1024 				if (macmode == 0)
1025 					sc->re_macver = RE_MACVER_22;
1026 				break;
1027 			case RE_HWREV_8168C:
1028 				if (macmode == 0)
1029 					sc->re_macver = RE_MACVER_24;
1030 				else if (macmode == 0x200000)
1031 					sc->re_macver = RE_MACVER_25;
1032 				else if (macmode == 0x300000)
1033 					sc->re_macver = RE_MACVER_27;
1034 				break;
1035 			case RE_HWREV_8168CP:
1036 				if (macmode == 0)
1037 					sc->re_macver = RE_MACVER_26;
1038 				else if (macmode == 0x100000)
1039 					sc->re_macver = RE_MACVER_28;
1040 				break;
1041 			case RE_HWREV_8168DP:
1042 				if (macmode == 0)
1043 					sc->re_macver = RE_MACVER_2B;
1044 				else if (macmode == 0x200000)
1045 					sc->re_macver = RE_MACVER_2C;
1046 				break;
1047 			case RE_HWREV_8168E:
1048 				if (macmode == 0x100000)
1049 					sc->re_macver = RE_MACVER_2E;
1050 				else if (macmode == 0x200000)
1051 					sc->re_macver = RE_MACVER_2F;
1052 				break;
1053 			case RE_HWREV_8168F:
1054 			case RE_HWREV_8111F:
1055 				if (macmode == 0x000000)
1056 					sc->re_macver = RE_MACVER_30;
1057 				else if (macmode == 0x100000)
1058 					sc->re_macver = RE_MACVER_31;
1059 				break;
1060 			}
1061 			if (pci_is_pcie(dev))
1062 				sc->re_caps |= RE_C_PCIE;
1063 
1064 			device_set_desc(dev, t->re_name);
1065 			return 0;
1066 		}
1067 	}
1068 
1069 	if (bootverbose) {
1070 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1071 			      hwrev, macmode);
1072 	}
1073 	return ENXIO;
1074 }
1075 
1076 static int
1077 re_allocmem(device_t dev)
1078 {
1079 	struct re_softc *sc = device_get_softc(dev);
1080 	bus_dmamem_t dmem;
1081 	int error, i;
1082 
1083 	/*
1084 	 * Allocate list data
1085 	 */
1086 	sc->re_ldata.re_tx_mbuf =
1087 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1088 		M_DEVBUF, M_ZERO | M_WAITOK);
1089 
1090 	sc->re_ldata.re_rx_mbuf =
1091 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1092 		M_DEVBUF, M_ZERO | M_WAITOK);
1093 
1094 	sc->re_ldata.re_rx_paddr =
1095 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1096 		M_DEVBUF, M_ZERO | M_WAITOK);
1097 
1098 	sc->re_ldata.re_tx_dmamap =
1099 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1100 		M_DEVBUF, M_ZERO | M_WAITOK);
1101 
1102 	sc->re_ldata.re_rx_dmamap =
1103 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1104 		M_DEVBUF, M_ZERO | M_WAITOK);
1105 
1106 	/*
1107 	 * Allocate the parent bus DMA tag appropriate for PCI.
1108 	 */
1109 	error = bus_dma_tag_create(NULL,	/* parent */
1110 			1, 0,			/* alignment, boundary */
1111 			BUS_SPACE_MAXADDR,	/* lowaddr */
1112 			BUS_SPACE_MAXADDR,	/* highaddr */
1113 			NULL, NULL,		/* filter, filterarg */
1114 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1115 			0,			/* nsegments */
1116 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1117 			0,			/* flags */
1118 			&sc->re_parent_tag);
1119 	if (error) {
1120 		device_printf(dev, "could not allocate parent dma tag\n");
1121 		return error;
1122 	}
1123 
1124 	/* Allocate TX descriptor list. */
1125 	error = bus_dmamem_coherent(sc->re_parent_tag,
1126 			RE_RING_ALIGN, 0,
1127 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1128 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1129 			&dmem);
1130 	if (error) {
1131 		device_printf(dev, "could not allocate TX ring\n");
1132 		return error;
1133 	}
1134 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1135 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1136 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1137 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1138 
1139 	/* Allocate RX descriptor list. */
1140 	error = bus_dmamem_coherent(sc->re_parent_tag,
1141 			RE_RING_ALIGN, 0,
1142 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1143 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1144 			&dmem);
1145 	if (error) {
1146 		device_printf(dev, "could not allocate RX ring\n");
1147 		return error;
1148 	}
1149 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1150 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1151 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1152 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1153 
1154 	/* Allocate maps for TX mbufs. */
1155 	error = bus_dma_tag_create(sc->re_parent_tag,
1156 			1, 0,
1157 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1158 			NULL, NULL,
1159 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1160 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1161 			&sc->re_ldata.re_tx_mtag);
1162 	if (error) {
1163 		device_printf(dev, "could not allocate TX buf dma tag\n");
1164 		return(error);
1165 	}
1166 
1167 	/* Create DMA maps for TX buffers */
1168 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1169 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1170 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1171 				&sc->re_ldata.re_tx_dmamap[i]);
1172 		if (error) {
1173 			device_printf(dev, "can't create DMA map for TX buf\n");
1174 			re_freebufmem(sc, i, 0);
1175 			return(error);
1176 		}
1177 	}
1178 
1179 	/* Allocate maps for RX mbufs. */
1180 	error = bus_dma_tag_create(sc->re_parent_tag,
1181 			RE_RXBUF_ALIGN, 0,
1182 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1183 			NULL, NULL,
1184 			MCLBYTES, 1, MCLBYTES,
1185 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1186 			&sc->re_ldata.re_rx_mtag);
1187 	if (error) {
1188 		device_printf(dev, "could not allocate RX buf dma tag\n");
1189 		return(error);
1190 	}
1191 
1192 	/* Create spare DMA map for RX */
1193 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1194 			&sc->re_ldata.re_rx_spare);
1195 	if (error) {
1196 		device_printf(dev, "can't create spare DMA map for RX\n");
1197 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1198 		sc->re_ldata.re_rx_mtag = NULL;
1199 		return error;
1200 	}
1201 
1202 	/* Create DMA maps for RX buffers */
1203 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1204 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1205 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1206 		if (error) {
1207 			device_printf(dev, "can't create DMA map for RX buf\n");
1208 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1209 			return(error);
1210 		}
1211 	}
1212 
1213 	/* Create jumbo buffer pool for RX if required */
1214 	if (sc->re_caps & RE_C_CONTIGRX) {
1215 		error = re_jpool_alloc(sc);
1216 		if (error) {
1217 			re_jpool_free(sc);
1218 			/* Disable jumbo frame support */
1219 			sc->re_maxmtu = ETHERMTU;
1220 		}
1221 	}
1222 	return(0);
1223 }
1224 
1225 static void
1226 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1227 {
1228 	int i;
1229 
1230 	/* Destroy all the RX and TX buffer maps */
1231 	if (sc->re_ldata.re_tx_mtag) {
1232 		for (i = 0; i < tx_cnt; i++) {
1233 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1234 					   sc->re_ldata.re_tx_dmamap[i]);
1235 		}
1236 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1237 		sc->re_ldata.re_tx_mtag = NULL;
1238 	}
1239 
1240 	if (sc->re_ldata.re_rx_mtag) {
1241 		for (i = 0; i < rx_cnt; i++) {
1242 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1243 					   sc->re_ldata.re_rx_dmamap[i]);
1244 		}
1245 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1246 				   sc->re_ldata.re_rx_spare);
1247 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1248 		sc->re_ldata.re_rx_mtag = NULL;
1249 	}
1250 }
1251 
1252 static void
1253 re_freemem(device_t dev)
1254 {
1255 	struct re_softc *sc = device_get_softc(dev);
1256 
1257 	/* Unload and free the RX DMA ring memory and map */
1258 	if (sc->re_ldata.re_rx_list_tag) {
1259 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1260 				  sc->re_ldata.re_rx_list_map);
1261 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1262 				sc->re_ldata.re_rx_list,
1263 				sc->re_ldata.re_rx_list_map);
1264 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1265 	}
1266 
1267 	/* Unload and free the TX DMA ring memory and map */
1268 	if (sc->re_ldata.re_tx_list_tag) {
1269 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1270 				  sc->re_ldata.re_tx_list_map);
1271 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1272 				sc->re_ldata.re_tx_list,
1273 				sc->re_ldata.re_tx_list_map);
1274 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1275 	}
1276 
1277 	/* Free RX/TX buf DMA stuffs */
1278 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1279 
1280 	/* Unload and free the stats buffer and map */
1281 	if (sc->re_ldata.re_stag) {
1282 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1283 		bus_dmamem_free(sc->re_ldata.re_stag,
1284 				sc->re_ldata.re_stats,
1285 				sc->re_ldata.re_smap);
1286 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1287 	}
1288 
1289 	if (sc->re_caps & RE_C_CONTIGRX)
1290 		re_jpool_free(sc);
1291 
1292 	if (sc->re_parent_tag)
1293 		bus_dma_tag_destroy(sc->re_parent_tag);
1294 
1295 	if (sc->re_ldata.re_tx_mbuf != NULL)
1296 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1297 	if (sc->re_ldata.re_rx_mbuf != NULL)
1298 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1299 	if (sc->re_ldata.re_rx_paddr != NULL)
1300 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1301 	if (sc->re_ldata.re_tx_dmamap != NULL)
1302 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1303 	if (sc->re_ldata.re_rx_dmamap != NULL)
1304 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1305 }
1306 
1307 /*
1308  * Attach the interface. Allocate softc structures, do ifmedia
1309  * setup and ethernet/BPF attach.
1310  */
1311 static int
1312 re_attach(device_t dev)
1313 {
1314 	struct re_softc	*sc = device_get_softc(dev);
1315 	struct ifnet *ifp;
1316 	uint8_t eaddr[ETHER_ADDR_LEN];
1317 	int error = 0, qlen, msi_enable;
1318 	u_int irq_flags;
1319 
1320 	callout_init(&sc->re_timer);
1321 	sc->re_dev = dev;
1322 
1323 	if (RE_IS_8139CP(sc)) {
1324 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1325 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1326 	} else {
1327 		sc->re_rx_desc_cnt = re_rx_desc_count;
1328 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1329 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1330 
1331 		sc->re_tx_desc_cnt = re_tx_desc_count;
1332 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1333 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1334 	}
1335 
1336 	qlen = RE_IFQ_MAXLEN;
1337 	if (sc->re_tx_desc_cnt > qlen)
1338 		qlen = sc->re_tx_desc_cnt;
1339 
1340 	sc->re_rxbuf_size = MCLBYTES;
1341 	sc->re_newbuf = re_newbuf_std;
1342 
1343 	sc->re_tx_time = 5;		/* 125us */
1344 	sc->re_rx_time = 2;		/* 50us */
1345 	if (sc->re_caps & RE_C_PCIE)
1346 		sc->re_sim_time = 75;	/* 75us */
1347 	else
1348 		sc->re_sim_time = 125;	/* 125us */
1349 	if (!RE_IS_8139CP(sc)) {
1350 		/* simulated interrupt moderation */
1351 		sc->re_imtype = RE_IMTYPE_SIM;
1352 	} else {
1353 		sc->re_imtype = RE_IMTYPE_NONE;
1354 	}
1355 	re_config_imtype(sc, sc->re_imtype);
1356 
1357 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1358 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1359 					     SYSCTL_STATIC_CHILDREN(_hw),
1360 					     OID_AUTO,
1361 					     device_get_nameunit(dev),
1362 					     CTLFLAG_RD, 0, "");
1363 	if (sc->re_sysctl_tree == NULL) {
1364 		device_printf(dev, "can't add sysctl node\n");
1365 		error = ENXIO;
1366 		goto fail;
1367 	}
1368 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1369 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1370 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1371 		       0, "RX desc count");
1372 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1373 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1374 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1375 		       0, "TX desc count");
1376 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1377 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1378 			OID_AUTO, "sim_time",
1379 			CTLTYPE_INT | CTLFLAG_RW,
1380 			sc, 0, re_sysctl_simtime, "I",
1381 			"Simulated interrupt moderation time (usec).");
1382 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1383 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1384 			OID_AUTO, "imtype",
1385 			CTLTYPE_INT | CTLFLAG_RW,
1386 			sc, 0, re_sysctl_imtype, "I",
1387 			"Interrupt moderation type -- "
1388 			"0:disable, 1:simulated, "
1389 			"2:hardware(if supported)");
1390 	if (sc->re_caps & RE_C_HWIM) {
1391 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1392 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1393 				OID_AUTO, "hw_rxtime",
1394 				CTLTYPE_INT | CTLFLAG_RW,
1395 				sc, 0, re_sysctl_rxtime, "I",
1396 				"Hardware interrupt moderation time "
1397 				"(unit: 25usec).");
1398 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1399 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1400 				OID_AUTO, "hw_txtime",
1401 				CTLTYPE_INT | CTLFLAG_RW,
1402 				sc, 0, re_sysctl_txtime, "I",
1403 				"Hardware interrupt moderation time "
1404 				"(unit: 25usec).");
1405 	}
1406 
1407 #ifndef BURN_BRIDGES
1408 	/*
1409 	 * Handle power management nonsense.
1410 	 */
1411 
1412 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1413 		uint32_t membase, irq;
1414 
1415 		/* Save important PCI config data. */
1416 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1417 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1418 
1419 		/* Reset the power state. */
1420 		device_printf(dev, "chip is in D%d power mode "
1421 		    "-- setting to D0\n", pci_get_powerstate(dev));
1422 
1423 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1424 
1425 		/* Restore PCI config data. */
1426 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1427 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1428 	}
1429 #endif
1430 	/*
1431 	 * Map control/status registers.
1432 	 */
1433 	pci_enable_busmaster(dev);
1434 
1435 	if (pci_is_pcie(dev)) {
1436 		sc->re_res_rid = PCIR_BAR(2);
1437 		sc->re_res_type = SYS_RES_MEMORY;
1438 	} else {
1439 		sc->re_res_rid = PCIR_BAR(0);
1440 		sc->re_res_type = SYS_RES_IOPORT;
1441 	}
1442 	sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
1443 	    &sc->re_res_rid, RF_ACTIVE);
1444 	if (sc->re_res == NULL) {
1445 		device_printf(dev, "couldn't map IO\n");
1446 		error = ENXIO;
1447 		goto fail;
1448 	}
1449 
1450 	sc->re_btag = rman_get_bustag(sc->re_res);
1451 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1452 
1453 	/*
1454 	 * Allocate interrupt
1455 	 */
1456 	if (pci_is_pcie(dev))
1457 		msi_enable = re_msi_enable;
1458 	else
1459 		msi_enable = 0;
1460 	sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
1461 	    &sc->re_irq_rid, &irq_flags);
1462 
1463 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1464 					    irq_flags);
1465 	if (sc->re_irq == NULL) {
1466 		device_printf(dev, "couldn't map interrupt\n");
1467 		error = ENXIO;
1468 		goto fail;
1469 	}
1470 
1471 	/* Reset the adapter. */
1472 	re_reset(sc, 0);
1473 
1474 	if (RE_IS_8139CP(sc)) {
1475 		sc->re_bus_speed = 33; /* XXX */
1476 	} else if (sc->re_caps & RE_C_PCIE) {
1477 		sc->re_bus_speed = 125;
1478 	} else {
1479 		uint8_t cfg2;
1480 
1481 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1482 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1483 		case RE_CFG2_PCICLK_33MHZ:
1484 			sc->re_bus_speed = 33;
1485 			break;
1486 		case RE_CFG2_PCICLK_66MHZ:
1487 			sc->re_bus_speed = 66;
1488 			break;
1489 		default:
1490 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1491 			sc->re_bus_speed = 33;
1492 			break;
1493 		}
1494 		if (cfg2 & RE_CFG2_PCI64)
1495 			sc->re_caps |= RE_C_PCI64;
1496 	}
1497 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1498 		      "PCI%s %dMHz\n",
1499 		      sc->re_hwrev, sc->re_macver,
1500 		      (sc->re_caps & RE_C_PCIE) ?
1501 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1502 		      sc->re_bus_speed);
1503 
1504 	/*
1505 	 * NOTE:
1506 	 * DO NOT try to adjust config1 and config5 which was spotted in
1507 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1508 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1509 	 */
1510 
1511 	re_get_eaddr(sc, eaddr);
1512 
1513 	if (!RE_IS_8139CP(sc)) {
1514 		/* Set RX length mask */
1515 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1516 		sc->re_txstart = RE_GTXSTART;
1517 	} else {
1518 		/* Set RX length mask */
1519 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1520 		sc->re_txstart = RE_TXSTART;
1521 	}
1522 
1523 	/* Allocate DMA stuffs */
1524 	error = re_allocmem(dev);
1525 	if (error)
1526 		goto fail;
1527 
1528 	/*
1529 	 * Apply some magic PCI settings from Realtek ...
1530 	 */
1531 	if (RE_IS_8169(sc)) {
1532 		CSR_WRITE_1(sc, 0x82, 1);
1533 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1534 	}
1535 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1536 
1537 	if (sc->re_caps & RE_C_MAC2) {
1538 		/*
1539 		 * Following part is extracted from Realtek BSD driver v176.
1540 		 * However, this does _not_ make much/any sense:
1541 		 * 8168C's PCI Express device control is located at 0x78,
1542 		 * so the reading from 0x79 (higher part of 0x78) and setting
1543 		 * the 4~6bits intend to enlarge the "max read request size"
1544 		 * (we will do it).  The content of the rest part of this
1545 		 * register is not meaningful to other PCI registers, so
1546 		 * writing the value to 0x54 could be completely wrong.
1547 		 * 0x80 is the lower part of PCI Express device status, non-
1548 		 * reserved bits are RW1C, writing 0 to them will not have
1549 		 * any effect at all.
1550 		 */
1551 #ifdef foo
1552 		uint8_t val;
1553 
1554 		val = pci_read_config(dev, 0x79, 1);
1555 		val = (val & ~0x70) | 0x50;
1556 		pci_write_config(dev, 0x54, val, 1);
1557 		pci_write_config(dev, 0x80, 0, 1);
1558 #endif
1559 	}
1560 
1561 	/*
1562 	 * Apply some PHY fixup from Realtek ...
1563 	 */
1564 	if (sc->re_hwrev == RE_HWREV_8110S) {
1565 		CSR_WRITE_1(sc, 0x82, 1);
1566 		re_miibus_writereg(dev, 1, 0xb, 0);
1567 	}
1568 	if (sc->re_caps & RE_C_PHYPMGT) {
1569 		/* Power up PHY */
1570 		re_miibus_writereg(dev, 1, 0x1f, 0);
1571 		re_miibus_writereg(dev, 1, 0xe, 0);
1572 	}
1573 
1574 	/* Do MII setup */
1575 	if (mii_phy_probe(dev, &sc->re_miibus,
1576 	    re_ifmedia_upd, re_ifmedia_sts)) {
1577 		device_printf(dev, "MII without any phy!\n");
1578 		error = ENXIO;
1579 		goto fail;
1580 	}
1581 
1582 	ifp = &sc->arpcom.ac_if;
1583 	ifp->if_softc = sc;
1584 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1585 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1586 	ifp->if_ioctl = re_ioctl;
1587 	ifp->if_start = re_start;
1588 #ifdef IFPOLL_ENABLE
1589 	ifp->if_npoll = re_npoll;
1590 #endif
1591 	ifp->if_watchdog = re_watchdog;
1592 	ifp->if_init = re_init;
1593 	if (!RE_IS_8139CP(sc)) /* XXX */
1594 		ifp->if_baudrate = 1000000000;
1595 	else
1596 		ifp->if_baudrate = 100000000;
1597 	ifq_set_maxlen(&ifp->if_snd, qlen);
1598 	ifq_set_ready(&ifp->if_snd);
1599 
1600 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1601 	if (sc->re_caps & RE_C_HWCSUM)
1602 		ifp->if_capabilities |= IFCAP_HWCSUM;
1603 
1604 	ifp->if_capenable = ifp->if_capabilities;
1605 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1606 		ifp->if_hwassist = RE_CSUM_FEATURES;
1607 	else
1608 		ifp->if_hwassist = 0;
1609 
1610 	/*
1611 	 * Call MI attach routine.
1612 	 */
1613 	ether_ifattach(ifp, eaddr, NULL);
1614 
1615 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1616 
1617 #ifdef IFPOLL_ENABLE
1618 	ifpoll_compat_setup(&sc->re_npoll,
1619 	    &sc->re_sysctl_ctx, sc->re_sysctl_tree, device_get_unit(dev),
1620 	    ifp->if_serializer);
1621 #endif
1622 
1623 #ifdef RE_DIAG
1624 	/*
1625 	 * Perform hardware diagnostic on the original RTL8169.
1626 	 * Some 32-bit cards were incorrectly wired and would
1627 	 * malfunction if plugged into a 64-bit slot.
1628 	 */
1629 	if (sc->re_hwrev == RE_HWREV_8169) {
1630 		lwkt_serialize_enter(ifp->if_serializer);
1631 		error = re_diag(sc);
1632 		lwkt_serialize_exit(ifp->if_serializer);
1633 
1634 		if (error) {
1635 			device_printf(dev, "hardware diagnostic failure\n");
1636 			ether_ifdetach(ifp);
1637 			goto fail;
1638 		}
1639 	}
1640 #endif	/* RE_DIAG */
1641 
1642 	/* Hook interrupt last to avoid having to lock softc */
1643 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1644 			       &sc->re_intrhand, ifp->if_serializer);
1645 
1646 	if (error) {
1647 		device_printf(dev, "couldn't set up irq\n");
1648 		ether_ifdetach(ifp);
1649 		goto fail;
1650 	}
1651 
1652 fail:
1653 	if (error)
1654 		re_detach(dev);
1655 
1656 	return (error);
1657 }
1658 
1659 /*
1660  * Shutdown hardware and free up resources. This can be called any
1661  * time after the mutex has been initialized. It is called in both
1662  * the error case in attach and the normal detach case so it needs
1663  * to be careful about only freeing resources that have actually been
1664  * allocated.
1665  */
1666 static int
1667 re_detach(device_t dev)
1668 {
1669 	struct re_softc *sc = device_get_softc(dev);
1670 	struct ifnet *ifp = &sc->arpcom.ac_if;
1671 
1672 	/* These should only be active if attach succeeded */
1673 	if (device_is_attached(dev)) {
1674 		lwkt_serialize_enter(ifp->if_serializer);
1675 		re_stop(sc);
1676 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1677 		lwkt_serialize_exit(ifp->if_serializer);
1678 
1679 		ether_ifdetach(ifp);
1680 	}
1681 	if (sc->re_miibus)
1682 		device_delete_child(dev, sc->re_miibus);
1683 	bus_generic_detach(dev);
1684 
1685 	if (sc->re_sysctl_tree != NULL)
1686 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1687 
1688 	if (sc->re_irq)
1689 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1690 				     sc->re_irq);
1691 
1692 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1693 		pci_release_msi(dev);
1694 
1695 	if (sc->re_res) {
1696 		bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
1697 		    sc->re_res);
1698 	}
1699 
1700 	/* Free DMA stuffs */
1701 	re_freemem(dev);
1702 
1703 	return(0);
1704 }
1705 
1706 static void
1707 re_setup_rxdesc(struct re_softc *sc, int idx)
1708 {
1709 	bus_addr_t paddr;
1710 	uint32_t cmdstat;
1711 	struct re_desc *d;
1712 
1713 	paddr = sc->re_ldata.re_rx_paddr[idx];
1714 	d = &sc->re_ldata.re_rx_list[idx];
1715 
1716 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1717 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1718 
1719 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1720 	if (idx == (sc->re_rx_desc_cnt - 1))
1721 		cmdstat |= RE_RDESC_CMD_EOR;
1722 	d->re_cmdstat = htole32(cmdstat);
1723 }
1724 
1725 static int
1726 re_newbuf_std(struct re_softc *sc, int idx, int init)
1727 {
1728 	bus_dma_segment_t seg;
1729 	bus_dmamap_t map;
1730 	struct mbuf *m;
1731 	int error, nsegs;
1732 
1733 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1734 	if (m == NULL) {
1735 		error = ENOBUFS;
1736 
1737 		if (init) {
1738 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1739 			return error;
1740 		} else {
1741 			goto back;
1742 		}
1743 	}
1744 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1745 
1746 	/*
1747 	 * NOTE:
1748 	 * re(4) chips need address of the receive buffer to be 8-byte
1749 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1750 	 */
1751 
1752 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1753 			sc->re_ldata.re_rx_spare, m,
1754 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1755 	if (error) {
1756 		m_freem(m);
1757 		if (init) {
1758 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1759 			return error;
1760 		} else {
1761 			goto back;
1762 		}
1763 	}
1764 
1765 	if (!init) {
1766 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1767 				sc->re_ldata.re_rx_dmamap[idx],
1768 				BUS_DMASYNC_POSTREAD);
1769 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1770 				  sc->re_ldata.re_rx_dmamap[idx]);
1771 	}
1772 	sc->re_ldata.re_rx_mbuf[idx] = m;
1773 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1774 
1775 	map = sc->re_ldata.re_rx_dmamap[idx];
1776 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1777 	sc->re_ldata.re_rx_spare = map;
1778 back:
1779 	re_setup_rxdesc(sc, idx);
1780 	return error;
1781 }
1782 
1783 static int
1784 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1785 {
1786 	struct mbuf *m;
1787 	struct re_jbuf *jbuf;
1788 	int error = 0;
1789 
1790 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1791 	if (m == NULL) {
1792 		error = ENOBUFS;
1793 		if (init) {
1794 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1795 			return error;
1796 		} else {
1797 			goto back;
1798 		}
1799 	}
1800 
1801 	jbuf = re_jbuf_alloc(sc);
1802 	if (jbuf == NULL) {
1803 		m_freem(m);
1804 
1805 		error = ENOBUFS;
1806 		if (init) {
1807 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1808 			return error;
1809 		} else {
1810 			goto back;
1811 		}
1812 	}
1813 
1814 	m->m_ext.ext_arg = jbuf;
1815 	m->m_ext.ext_buf = jbuf->re_buf;
1816 	m->m_ext.ext_free = re_jbuf_free;
1817 	m->m_ext.ext_ref = re_jbuf_ref;
1818 	m->m_ext.ext_size = sc->re_rxbuf_size;
1819 
1820 	m->m_data = m->m_ext.ext_buf;
1821 	m->m_flags |= M_EXT;
1822 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1823 
1824 	/*
1825 	 * NOTE:
1826 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1827 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1828 	 */
1829 
1830 	sc->re_ldata.re_rx_mbuf[idx] = m;
1831 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1832 back:
1833 	re_setup_rxdesc(sc, idx);
1834 	return error;
1835 }
1836 
1837 static int
1838 re_tx_list_init(struct re_softc *sc)
1839 {
1840 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1841 
1842 	sc->re_ldata.re_tx_prodidx = 0;
1843 	sc->re_ldata.re_tx_considx = 0;
1844 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1845 
1846 	return(0);
1847 }
1848 
1849 static int
1850 re_rx_list_init(struct re_softc *sc)
1851 {
1852 	int i, error;
1853 
1854 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1855 
1856 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1857 		error = sc->re_newbuf(sc, i, 1);
1858 		if (error)
1859 			return(error);
1860 	}
1861 
1862 	sc->re_ldata.re_rx_prodidx = 0;
1863 	sc->re_head = sc->re_tail = NULL;
1864 
1865 	return(0);
1866 }
1867 
1868 #define RE_IP4_PACKET	0x1
1869 #define RE_TCP_PACKET	0x2
1870 #define RE_UDP_PACKET	0x4
1871 
1872 static __inline uint8_t
1873 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1874 {
1875 	uint8_t packet_type = 0;
1876 
1877 	if (sc->re_caps & RE_C_MAC2) {
1878 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1879 			packet_type |= RE_IP4_PACKET;
1880 	} else {
1881 		if (rxstat & RE_RDESC_STAT_PROTOID)
1882 			packet_type |= RE_IP4_PACKET;
1883 	}
1884 	if (RE_TCPPKT(rxstat))
1885 		packet_type |= RE_TCP_PACKET;
1886 	else if (RE_UDPPKT(rxstat))
1887 		packet_type |= RE_UDP_PACKET;
1888 	return packet_type;
1889 }
1890 
1891 /*
1892  * RX handler for C+ and 8169. For the gigE chips, we support
1893  * the reception of jumbo frames that have been fragmented
1894  * across multiple 2K mbuf cluster buffers.
1895  */
1896 static int
1897 re_rxeof(struct re_softc *sc)
1898 {
1899 	struct ifnet *ifp = &sc->arpcom.ac_if;
1900 	struct mbuf *m;
1901 	struct re_desc 	*cur_rx;
1902 	uint32_t rxstat, rxctrl;
1903 	int i, total_len, rx = 0;
1904 
1905 	for (i = sc->re_ldata.re_rx_prodidx;
1906 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1907 		cur_rx = &sc->re_ldata.re_rx_list[i];
1908 		m = sc->re_ldata.re_rx_mbuf[i];
1909 		total_len = RE_RXBYTES(cur_rx);
1910 		rxstat = le32toh(cur_rx->re_cmdstat);
1911 		rxctrl = le32toh(cur_rx->re_control);
1912 
1913 		rx = 1;
1914 
1915 #ifdef INVARIANTS
1916 		if (sc->re_flags & RE_F_USE_JPOOL)
1917 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1918 #endif
1919 
1920 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1921 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1922 				re_setup_rxdesc(sc, i);
1923 				continue;
1924 			}
1925 
1926 			if (sc->re_newbuf(sc, i, 0)) {
1927 				/* Drop upcoming fragments */
1928 				sc->re_flags |= RE_F_DROP_RXFRAG;
1929 				continue;
1930 			}
1931 
1932 			m->m_len = MCLBYTES;
1933 			if (sc->re_head == NULL) {
1934 				sc->re_head = sc->re_tail = m;
1935 			} else {
1936 				sc->re_tail->m_next = m;
1937 				sc->re_tail = m;
1938 			}
1939 			continue;
1940 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1941 			/*
1942 			 * Last fragment of a multi-fragment packet.
1943 			 *
1944 			 * Since error already happened, this fragment
1945 			 * must be dropped as well as the fragment chain.
1946 			 */
1947 			re_setup_rxdesc(sc, i);
1948 			re_free_rxchain(sc);
1949 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1950 			continue;
1951 		}
1952 
1953 		/*
1954 		 * NOTE: for the 8139C+, the frame length field
1955 		 * is always 12 bits in size, but for the gigE chips,
1956 		 * it is 13 bits (since the max RX frame length is 16K).
1957 		 * Unfortunately, all 32 bits in the status word
1958 		 * were already used, so to make room for the extra
1959 		 * length bit, RealTek took out the 'frame alignment
1960 		 * error' bit and shifted the other status bits
1961 		 * over one slot. The OWN, EOR, FS and LS bits are
1962 		 * still in the same places. We have already extracted
1963 		 * the frame length and checked the OWN bit, so rather
1964 		 * than using an alternate bit mapping, we shift the
1965 		 * status bits one space to the right so we can evaluate
1966 		 * them using the 8169 status as though it was in the
1967 		 * same format as that of the 8139C+.
1968 		 */
1969 		if (!RE_IS_8139CP(sc))
1970 			rxstat >>= 1;
1971 
1972 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1973 			IFNET_STAT_INC(ifp, ierrors, 1);
1974 			/*
1975 			 * If this is part of a multi-fragment packet,
1976 			 * discard all the pieces.
1977 			 */
1978 			re_free_rxchain(sc);
1979 			re_setup_rxdesc(sc, i);
1980 			continue;
1981 		}
1982 
1983 		/*
1984 		 * If allocating a replacement mbuf fails,
1985 		 * reload the current one.
1986 		 */
1987 
1988 		if (sc->re_newbuf(sc, i, 0)) {
1989 			IFNET_STAT_INC(ifp, ierrors, 1);
1990 			continue;
1991 		}
1992 
1993 		if (sc->re_head != NULL) {
1994 			m->m_len = total_len % MCLBYTES;
1995 			/*
1996 			 * Special case: if there's 4 bytes or less
1997 			 * in this buffer, the mbuf can be discarded:
1998 			 * the last 4 bytes is the CRC, which we don't
1999 			 * care about anyway.
2000 			 */
2001 			if (m->m_len <= ETHER_CRC_LEN) {
2002 				sc->re_tail->m_len -=
2003 				    (ETHER_CRC_LEN - m->m_len);
2004 				m_freem(m);
2005 			} else {
2006 				m->m_len -= ETHER_CRC_LEN;
2007 				sc->re_tail->m_next = m;
2008 			}
2009 			m = sc->re_head;
2010 			sc->re_head = sc->re_tail = NULL;
2011 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2012 		} else {
2013 			m->m_pkthdr.len = m->m_len =
2014 			    (total_len - ETHER_CRC_LEN);
2015 		}
2016 
2017 		IFNET_STAT_INC(ifp, ipackets, 1);
2018 		m->m_pkthdr.rcvif = ifp;
2019 
2020 		/* Do RX checksumming if enabled */
2021 
2022 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2023 			uint8_t packet_type;
2024 
2025 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2026 
2027 			/* Check IP header checksum */
2028 			if (packet_type & RE_IP4_PACKET) {
2029 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2030 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2031 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2032 			}
2033 
2034 			/* Check TCP/UDP checksum */
2035 			if (((packet_type & RE_TCP_PACKET) &&
2036 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2037 			    ((packet_type & RE_UDP_PACKET) &&
2038 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2039 				m->m_pkthdr.csum_flags |=
2040 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2041 				    CSUM_FRAG_NOT_CHECKED;
2042 				m->m_pkthdr.csum_data = 0xffff;
2043 			}
2044 		}
2045 
2046 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2047 			m->m_flags |= M_VLANTAG;
2048 			m->m_pkthdr.ether_vlantag =
2049 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2050 		}
2051 		ifp->if_input(ifp, m);
2052 	}
2053 
2054 	sc->re_ldata.re_rx_prodidx = i;
2055 
2056 	return rx;
2057 }
2058 
2059 #undef RE_IP4_PACKET
2060 #undef RE_TCP_PACKET
2061 #undef RE_UDP_PACKET
2062 
2063 static int
2064 re_tx_collect(struct re_softc *sc)
2065 {
2066 	struct ifnet *ifp = &sc->arpcom.ac_if;
2067 	uint32_t txstat;
2068 	int idx, tx = 0;
2069 
2070 	for (idx = sc->re_ldata.re_tx_considx;
2071 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2072 	     RE_TXDESC_INC(sc, idx)) {
2073 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2074 		if (txstat & RE_TDESC_CMD_OWN)
2075 			break;
2076 
2077 		tx = 1;
2078 
2079 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2080 
2081 		/*
2082 		 * We only stash mbufs in the last descriptor
2083 		 * in a fragment chain, which also happens to
2084 		 * be the only place where the TX status bits
2085 		 * are valid.
2086 		 */
2087 		if (txstat & RE_TDESC_CMD_EOF) {
2088 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2089 			    sc->re_ldata.re_tx_dmamap[idx]);
2090 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2091 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2092 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2093 			    RE_TDESC_STAT_COLCNT))
2094 				IFNET_STAT_INC(ifp, collisions, 1);
2095 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2096 				IFNET_STAT_INC(ifp, oerrors, 1);
2097 			else
2098 				IFNET_STAT_INC(ifp, opackets, 1);
2099 		}
2100 		sc->re_ldata.re_tx_free++;
2101 	}
2102 	sc->re_ldata.re_tx_considx = idx;
2103 
2104 	return tx;
2105 }
2106 
2107 static int
2108 re_txeof(struct re_softc *sc)
2109 {
2110 	struct ifnet *ifp = &sc->arpcom.ac_if;
2111 	int tx;
2112 
2113 	tx = re_tx_collect(sc);
2114 
2115 	/* There is enough free TX descs */
2116 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2117 		ifq_clr_oactive(&ifp->if_snd);
2118 
2119 	/*
2120 	 * Some chips will ignore a second TX request issued while an
2121 	 * existing transmission is in progress. If the transmitter goes
2122 	 * idle but there are still packets waiting to be sent, we need
2123 	 * to restart the channel here to flush them out. This only seems
2124 	 * to be required with the PCIe devices.
2125 	 */
2126 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2127 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2128 	else
2129 		ifp->if_timer = 0;
2130 
2131 	return tx;
2132 }
2133 
2134 static void
2135 re_tick(void *xsc)
2136 {
2137 	struct re_softc *sc = xsc;
2138 
2139 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2140 	re_tick_serialized(xsc);
2141 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2142 }
2143 
2144 static void
2145 re_tick_serialized(void *xsc)
2146 {
2147 	struct re_softc *sc = xsc;
2148 	struct ifnet *ifp = &sc->arpcom.ac_if;
2149 	struct mii_data *mii;
2150 
2151 	ASSERT_SERIALIZED(ifp->if_serializer);
2152 
2153 	mii = device_get_softc(sc->re_miibus);
2154 	mii_tick(mii);
2155 	if (sc->re_flags & RE_F_LINKED) {
2156 		if (!(mii->mii_media_status & IFM_ACTIVE))
2157 			sc->re_flags &= ~RE_F_LINKED;
2158 	} else {
2159 		if (mii->mii_media_status & IFM_ACTIVE &&
2160 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2161 			sc->re_flags |= RE_F_LINKED;
2162 			if (!ifq_is_empty(&ifp->if_snd))
2163 				if_devstart(ifp);
2164 		}
2165 	}
2166 
2167 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2168 }
2169 
2170 #ifdef IFPOLL_ENABLE
2171 
2172 static void
2173 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2174 {
2175 	struct re_softc *sc = ifp->if_softc;
2176 
2177 	ASSERT_SERIALIZED(ifp->if_serializer);
2178 
2179 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2180 		uint16_t       status;
2181 
2182 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2183 
2184 		status = CSR_READ_2(sc, RE_ISR);
2185 		if (status == 0xffff)
2186 			return;
2187 		if (status)
2188 			CSR_WRITE_2(sc, RE_ISR, status);
2189 
2190 		/*
2191 		 * XXX check behaviour on receiver stalls.
2192 		 */
2193 
2194 		if (status & RE_ISR_SYSTEM_ERR)
2195 			re_init(sc);
2196 	}
2197 
2198 	sc->rxcycles = count;
2199 	re_rxeof(sc);
2200 	re_txeof(sc);
2201 
2202 	if (!ifq_is_empty(&ifp->if_snd))
2203 		if_devstart(ifp);
2204 }
2205 
2206 static void
2207 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2208 {
2209 	struct re_softc *sc = ifp->if_softc;
2210 
2211 	ASSERT_SERIALIZED(ifp->if_serializer);
2212 
2213 	if (info != NULL) {
2214 		int cpuid = sc->re_npoll.ifpc_cpuid;
2215 
2216 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2217 		info->ifpi_rx[cpuid].arg = NULL;
2218 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2219 
2220 		if (ifp->if_flags & IFF_RUNNING)
2221 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2222 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2223 	} else {
2224 		if (ifp->if_flags & IFF_RUNNING)
2225 			re_setup_intr(sc, 1, sc->re_imtype);
2226 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
2227 	}
2228 }
2229 #endif /* IFPOLL_ENABLE */
2230 
2231 static void
2232 re_intr(void *arg)
2233 {
2234 	struct re_softc	*sc = arg;
2235 	struct ifnet *ifp = &sc->arpcom.ac_if;
2236 	uint16_t status;
2237 	int rx, tx;
2238 
2239 	ASSERT_SERIALIZED(ifp->if_serializer);
2240 
2241 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2242 	    (ifp->if_flags & IFF_RUNNING) == 0)
2243 		return;
2244 
2245 	rx = tx = 0;
2246 
2247 	status = CSR_READ_2(sc, RE_ISR);
2248 	/* If the card has gone away the read returns 0xffff. */
2249 	if (status == 0xffff)
2250 		goto reload;
2251 	if (status)
2252 		CSR_WRITE_2(sc, RE_ISR, status);
2253 
2254 	if ((status & sc->re_intrs) == 0)
2255 		goto reload;
2256 
2257 	if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2258 		rx |= re_rxeof(sc);
2259 
2260 	if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2261 		tx |= re_txeof(sc);
2262 
2263 	if (status & RE_ISR_SYSTEM_ERR)
2264 		re_init(sc);
2265 
2266 	if (status & RE_ISR_LINKCHG) {
2267 		callout_stop(&sc->re_timer);
2268 		re_tick_serialized(sc);
2269 	}
2270 
2271 reload:
2272 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2273 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2274 			if ((tx | rx) == 0) {
2275 				/*
2276 				 * Nothing needs to be processed, fallback
2277 				 * to use TX/RX interrupts.
2278 				 */
2279 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2280 
2281 				/*
2282 				 * Recollect, mainly to avoid the possible
2283 				 * race introduced by changing interrupt
2284 				 * masks.
2285 				 */
2286 				re_rxeof(sc);
2287 				tx = re_txeof(sc);
2288 			} else {
2289 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2290 			}
2291 		} else if (tx | rx) {
2292 			/*
2293 			 * Assume that using simulated interrupt moderation
2294 			 * (hardware timer based) could reduce the interript
2295 			 * rate.
2296 			 */
2297 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2298 		}
2299 	}
2300 
2301 	if (tx && !ifq_is_empty(&ifp->if_snd))
2302 		if_devstart(ifp);
2303 }
2304 
2305 static int
2306 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2307 {
2308 	struct mbuf *m = *m_head;
2309 	bus_dma_segment_t segs[RE_MAXSEGS];
2310 	bus_dmamap_t map;
2311 	int error, maxsegs, idx, i, nsegs;
2312 	struct re_desc *d, *tx_ring;
2313 	uint32_t cmd_csum, ctl_csum, vlantag;
2314 
2315 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2316 		("not enough free TX desc"));
2317 
2318 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2319 
2320 	/*
2321 	 * Set up checksum offload. Note: checksum offload bits must
2322 	 * appear in all descriptors of a multi-descriptor transmit
2323 	 * attempt. (This is according to testing done with an 8169
2324 	 * chip. I'm not sure if this is a requirement or a bug.)
2325 	 */
2326 	cmd_csum = ctl_csum = 0;
2327 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2328 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2329 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2330 	}
2331 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2332 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2333 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2334 	}
2335 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2336 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2337 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2338 	}
2339 
2340 	/* For MAC2 chips, csum flags are set on re_control */
2341 	if (sc->re_caps & RE_C_MAC2)
2342 		cmd_csum = 0;
2343 	else
2344 		ctl_csum = 0;
2345 
2346 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2347 		/*
2348 		 * With some of the RealTek chips, using the checksum offload
2349 		 * support in conjunction with the autopadding feature results
2350 		 * in the transmission of corrupt frames. For example, if we
2351 		 * need to send a really small IP fragment that's less than 60
2352 		 * bytes in size, and IP header checksumming is enabled, the
2353 		 * resulting ethernet frame that appears on the wire will
2354 		 * have garbled payload. To work around this, if TX checksum
2355 		 * offload is enabled, we always manually pad short frames out
2356 		 * to the minimum ethernet frame size.
2357 		 *
2358 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2359 		 * with PCIe adapters seems to result in bad checksums.
2360 		 */
2361 		if ((m->m_pkthdr.csum_flags &
2362 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2363 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2364 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2365 			error = m_devpad(m, RE_MIN_FRAMELEN);
2366 			if (error)
2367 				goto back;
2368 		}
2369 	}
2370 
2371 	vlantag = 0;
2372 	if (m->m_flags & M_VLANTAG) {
2373 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2374 			  RE_TDESC_CTL_INSTAG;
2375 	}
2376 
2377 	maxsegs = sc->re_ldata.re_tx_free;
2378 	if (maxsegs > RE_MAXSEGS)
2379 		maxsegs = RE_MAXSEGS;
2380 
2381 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2382 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2383 	if (error)
2384 		goto back;
2385 
2386 	m = *m_head;
2387 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2388 
2389 	/*
2390 	 * Map the segment array into descriptors.  We also keep track
2391 	 * of the end of the ring and set the end-of-ring bits as needed,
2392 	 * and we set the ownership bits in all except the very first
2393 	 * descriptor, whose ownership bits will be turned on later.
2394 	 */
2395 	tx_ring = sc->re_ldata.re_tx_list;
2396 	idx = *idx0;
2397 	i = 0;
2398 	for (;;) {
2399 		uint32_t cmdstat;
2400 
2401 		d = &tx_ring[idx];
2402 
2403 		cmdstat = segs[i].ds_len;
2404 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2405 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2406 		if (i == 0)
2407 			cmdstat |= RE_TDESC_CMD_SOF;
2408 		else
2409 			cmdstat |= RE_TDESC_CMD_OWN;
2410 		if (idx == (sc->re_tx_desc_cnt - 1))
2411 			cmdstat |= RE_TDESC_CMD_EOR;
2412 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2413 		d->re_control = htole32(ctl_csum | vlantag);
2414 
2415 		i++;
2416 		if (i == nsegs)
2417 			break;
2418 		RE_TXDESC_INC(sc, idx);
2419 	}
2420 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2421 
2422 	/* Transfer ownership of packet to the chip. */
2423 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2424 	if (*idx0 != idx)
2425 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2426 
2427 	/*
2428 	 * Insure that the map for this transmission
2429 	 * is placed at the array index of the last descriptor
2430 	 * in this chain.
2431 	 */
2432 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2433 	sc->re_ldata.re_tx_dmamap[idx] = map;
2434 
2435 	sc->re_ldata.re_tx_mbuf[idx] = m;
2436 	sc->re_ldata.re_tx_free -= nsegs;
2437 
2438 	RE_TXDESC_INC(sc, idx);
2439 	*idx0 = idx;
2440 back:
2441 	if (error) {
2442 		m_freem(*m_head);
2443 		*m_head = NULL;
2444 	}
2445 	return error;
2446 }
2447 
2448 /*
2449  * Main transmit routine for C+ and gigE NICs.
2450  */
2451 
2452 static void
2453 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2454 {
2455 	struct re_softc	*sc = ifp->if_softc;
2456 	struct mbuf *m_head;
2457 	int idx, need_trans, oactive, error;
2458 
2459 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2460 	ASSERT_SERIALIZED(ifp->if_serializer);
2461 
2462 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2463 		ifq_purge(&ifp->if_snd);
2464 		return;
2465 	}
2466 
2467 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2468 		return;
2469 
2470 	idx = sc->re_ldata.re_tx_prodidx;
2471 
2472 	need_trans = 0;
2473 	oactive = 0;
2474 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2475 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2476 			if (!oactive) {
2477 				if (re_tx_collect(sc)) {
2478 					oactive = 1;
2479 					continue;
2480 				}
2481 			}
2482 			ifq_set_oactive(&ifp->if_snd);
2483 			break;
2484 		}
2485 
2486 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2487 		if (m_head == NULL)
2488 			break;
2489 
2490 		error = re_encap(sc, &m_head, &idx);
2491 		if (error) {
2492 			/* m_head is freed by re_encap(), if we reach here */
2493 			IFNET_STAT_INC(ifp, oerrors, 1);
2494 
2495 			if (error == EFBIG && !oactive) {
2496 				if (re_tx_collect(sc)) {
2497 					oactive = 1;
2498 					continue;
2499 				}
2500 			}
2501 			ifq_set_oactive(&ifp->if_snd);
2502 			break;
2503 		}
2504 
2505 		oactive = 0;
2506 		need_trans = 1;
2507 
2508 		/*
2509 		 * If there's a BPF listener, bounce a copy of this frame
2510 		 * to him.
2511 		 */
2512 		ETHER_BPF_MTAP(ifp, m_head);
2513 	}
2514 
2515 	/*
2516 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2517 	 * for OACTIVE to not be properly set when we also do not
2518 	 * have sufficient free tx descriptors, leaving packet in
2519 	 * ifp->if_snd.  This can cause if_start_dispatch() to loop
2520 	 * infinitely so make sure OACTIVE is set properly.
2521 	 */
2522 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2523 		if (!ifq_is_oactive(&ifp->if_snd)) {
2524 			if_printf(ifp, "Debug: OACTIVE was not set when "
2525 			    "re_tx_free was below minimum!\n");
2526 			ifq_set_oactive(&ifp->if_snd);
2527 		}
2528 	}
2529 	if (!need_trans)
2530 		return;
2531 
2532 	sc->re_ldata.re_tx_prodidx = idx;
2533 
2534 	/*
2535 	 * RealTek put the TX poll request register in a different
2536 	 * location on the 8169 gigE chip. I don't know why.
2537 	 */
2538 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2539 
2540 	/*
2541 	 * Set a timeout in case the chip goes out to lunch.
2542 	 */
2543 	ifp->if_timer = 5;
2544 }
2545 
2546 static void
2547 re_init(void *xsc)
2548 {
2549 	struct re_softc *sc = xsc;
2550 	struct ifnet *ifp = &sc->arpcom.ac_if;
2551 	struct mii_data *mii;
2552 	int error, framelen;
2553 
2554 	ASSERT_SERIALIZED(ifp->if_serializer);
2555 
2556 	mii = device_get_softc(sc->re_miibus);
2557 
2558 	/*
2559 	 * Cancel pending I/O and free all RX/TX buffers.
2560 	 */
2561 	re_stop(sc);
2562 
2563 	if (sc->re_caps & RE_C_CONTIGRX) {
2564 		if (ifp->if_mtu > ETHERMTU) {
2565 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2566 			sc->re_flags |= RE_F_USE_JPOOL;
2567 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2568 			sc->re_newbuf = re_newbuf_jumbo;
2569 		} else {
2570 			sc->re_flags &= ~RE_F_USE_JPOOL;
2571 			sc->re_rxbuf_size = MCLBYTES;
2572 			sc->re_newbuf = re_newbuf_std;
2573 		}
2574 	}
2575 
2576 	/*
2577 	 * Adjust max read request size according to MTU; mainly to
2578 	 * improve TX performance for common case (ETHERMTU) on GigE
2579 	 * NICs.  However, this could _not_ be done on 10/100 only
2580 	 * NICs; their DMA engines will malfunction using non-default
2581 	 * max read request size.
2582 	 */
2583 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2584 		if (ifp->if_mtu > ETHERMTU) {
2585 			/*
2586 			 * 512 seems to be the only value that works
2587 			 * reliably with jumbo frame
2588 			 */
2589 			pcie_set_max_readrq(sc->re_dev,
2590 				PCIEM_DEVCTL_MAX_READRQ_512);
2591 		} else {
2592 			pcie_set_max_readrq(sc->re_dev,
2593 				PCIEM_DEVCTL_MAX_READRQ_4096);
2594 		}
2595 	}
2596 
2597 	/*
2598 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2599 	 * RX checksum offload. We must configure the C+ register
2600 	 * before all others.
2601 	 */
2602 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2603 		    RE_CPLUSCMD_PCI_MRW |
2604 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2605 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2606 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2607 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2608 
2609 	/*
2610 	 * Init our MAC address.  Even though the chipset
2611 	 * documentation doesn't mention it, we need to enter "Config
2612 	 * register write enable" mode to modify the ID registers.
2613 	 */
2614 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2615 	CSR_WRITE_4(sc, RE_IDR0,
2616 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2617 	CSR_WRITE_2(sc, RE_IDR4,
2618 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2619 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2620 
2621 	/*
2622 	 * For C+ mode, initialize the RX descriptors and mbufs.
2623 	 */
2624 	error = re_rx_list_init(sc);
2625 	if (error) {
2626 		re_stop(sc);
2627 		return;
2628 	}
2629 	error = re_tx_list_init(sc);
2630 	if (error) {
2631 		re_stop(sc);
2632 		return;
2633 	}
2634 
2635 	/*
2636 	 * Load the addresses of the RX and TX lists into the chip.
2637 	 */
2638 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2639 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2640 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2641 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2642 
2643 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2644 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2645 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2646 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2647 
2648 	/*
2649 	 * Enable transmit and receive.
2650 	 */
2651 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2652 
2653 	/*
2654 	 * Set the initial TX and RX configuration.
2655 	 */
2656 	if (sc->re_flags & RE_F_TESTMODE) {
2657 		if (!RE_IS_8139CP(sc))
2658 			CSR_WRITE_4(sc, RE_TXCFG,
2659 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2660 		else
2661 			CSR_WRITE_4(sc, RE_TXCFG,
2662 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2663 	} else
2664 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2665 
2666 	framelen = RE_FRAMELEN(ifp->if_mtu);
2667 	if (framelen < MCLBYTES)
2668 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2669 	else
2670 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2671 
2672 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2673 
2674 	/*
2675 	 * Program the multicast filter, if necessary.
2676 	 */
2677 	re_setmulti(sc);
2678 
2679 #ifdef IFPOLL_ENABLE
2680 	/*
2681 	 * Disable interrupts if we are polling.
2682 	 */
2683 	if (ifp->if_flags & IFF_NPOLLING)
2684 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2685 	else	/* otherwise ... */
2686 #endif /* IFPOLL_ENABLE */
2687 	/*
2688 	 * Enable interrupts.
2689 	 */
2690 	if (sc->re_flags & RE_F_TESTMODE)
2691 		CSR_WRITE_2(sc, RE_IMR, 0);
2692 	else
2693 		re_setup_intr(sc, 1, sc->re_imtype);
2694 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2695 
2696 	/* Start RX/TX process. */
2697 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2698 
2699 #ifdef notdef
2700 	/* Enable receiver and transmitter. */
2701 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2702 #endif
2703 
2704 	/*
2705 	 * For 8169 gigE NICs, set the max allowed RX packet
2706 	 * size so we can receive jumbo frames.
2707 	 */
2708 	if (!RE_IS_8139CP(sc)) {
2709 		if (sc->re_caps & RE_C_CONTIGRX)
2710 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2711 		else
2712 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2713 	}
2714 
2715 	if (sc->re_flags & RE_F_TESTMODE)
2716 		return;
2717 
2718 	mii_mediachg(mii);
2719 
2720 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2721 
2722 	ifp->if_flags |= IFF_RUNNING;
2723 	ifq_clr_oactive(&ifp->if_snd);
2724 
2725 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2726 }
2727 
2728 /*
2729  * Set media options.
2730  */
2731 static int
2732 re_ifmedia_upd(struct ifnet *ifp)
2733 {
2734 	struct re_softc *sc = ifp->if_softc;
2735 	struct mii_data *mii;
2736 
2737 	ASSERT_SERIALIZED(ifp->if_serializer);
2738 
2739 	mii = device_get_softc(sc->re_miibus);
2740 	mii_mediachg(mii);
2741 
2742 	return(0);
2743 }
2744 
2745 /*
2746  * Report current media status.
2747  */
2748 static void
2749 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2750 {
2751 	struct re_softc *sc = ifp->if_softc;
2752 	struct mii_data *mii;
2753 
2754 	ASSERT_SERIALIZED(ifp->if_serializer);
2755 
2756 	mii = device_get_softc(sc->re_miibus);
2757 
2758 	mii_pollstat(mii);
2759 	ifmr->ifm_active = mii->mii_media_active;
2760 	ifmr->ifm_status = mii->mii_media_status;
2761 }
2762 
2763 static int
2764 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2765 {
2766 	struct re_softc *sc = ifp->if_softc;
2767 	struct ifreq *ifr = (struct ifreq *) data;
2768 	struct mii_data *mii;
2769 	int error = 0, mask;
2770 
2771 	ASSERT_SERIALIZED(ifp->if_serializer);
2772 
2773 	switch(command) {
2774 	case SIOCSIFMTU:
2775 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2776 			error = EINVAL;
2777 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2778 			ifp->if_mtu = ifr->ifr_mtu;
2779 			if (ifp->if_flags & IFF_RUNNING)
2780 				ifp->if_init(sc);
2781 		}
2782 		break;
2783 
2784 	case SIOCSIFFLAGS:
2785 		if (ifp->if_flags & IFF_UP) {
2786 			if (ifp->if_flags & IFF_RUNNING) {
2787 				if ((ifp->if_flags ^ sc->re_if_flags) &
2788 				    (IFF_PROMISC | IFF_ALLMULTI))
2789 					re_setmulti(sc);
2790 			} else {
2791 				re_init(sc);
2792 			}
2793 		} else if (ifp->if_flags & IFF_RUNNING) {
2794 			re_stop(sc);
2795 		}
2796 		sc->re_if_flags = ifp->if_flags;
2797 		break;
2798 
2799 	case SIOCADDMULTI:
2800 	case SIOCDELMULTI:
2801 		re_setmulti(sc);
2802 		break;
2803 
2804 	case SIOCGIFMEDIA:
2805 	case SIOCSIFMEDIA:
2806 		mii = device_get_softc(sc->re_miibus);
2807 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2808 		break;
2809 
2810 	case SIOCSIFCAP:
2811 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2812 		       ifp->if_capabilities;
2813 		ifp->if_capenable ^= mask;
2814 
2815 		if (mask & IFCAP_HWCSUM) {
2816 			if (ifp->if_capenable & IFCAP_TXCSUM)
2817 				ifp->if_hwassist = RE_CSUM_FEATURES;
2818 			else
2819 				ifp->if_hwassist = 0;
2820 		}
2821 		if (mask && (ifp->if_flags & IFF_RUNNING))
2822 			re_init(sc);
2823 		break;
2824 
2825 	default:
2826 		error = ether_ioctl(ifp, command, data);
2827 		break;
2828 	}
2829 	return(error);
2830 }
2831 
2832 static void
2833 re_watchdog(struct ifnet *ifp)
2834 {
2835 	struct re_softc *sc = ifp->if_softc;
2836 
2837 	ASSERT_SERIALIZED(ifp->if_serializer);
2838 
2839 	if_printf(ifp, "watchdog timeout\n");
2840 
2841 	IFNET_STAT_INC(ifp, oerrors, 1);
2842 
2843 	re_txeof(sc);
2844 	re_rxeof(sc);
2845 
2846 	re_init(sc);
2847 
2848 	if (!ifq_is_empty(&ifp->if_snd))
2849 		if_devstart(ifp);
2850 }
2851 
2852 /*
2853  * Stop the adapter and free any mbufs allocated to the
2854  * RX and TX lists.
2855  */
2856 static void
2857 re_stop(struct re_softc *sc)
2858 {
2859 	struct ifnet *ifp = &sc->arpcom.ac_if;
2860 	int i;
2861 
2862 	ASSERT_SERIALIZED(ifp->if_serializer);
2863 
2864 	/* Reset the adapter. */
2865 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2866 
2867 	ifp->if_timer = 0;
2868 	callout_stop(&sc->re_timer);
2869 
2870 	ifp->if_flags &= ~IFF_RUNNING;
2871 	ifq_clr_oactive(&ifp->if_snd);
2872 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2873 
2874 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2875 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2876 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2877 
2878 	re_free_rxchain(sc);
2879 
2880 	/* Free the TX list buffers. */
2881 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2882 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2883 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2884 					  sc->re_ldata.re_tx_dmamap[i]);
2885 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2886 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2887 		}
2888 	}
2889 
2890 	/* Free the RX list buffers. */
2891 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2892 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2893 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2894 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2895 						  sc->re_ldata.re_rx_dmamap[i]);
2896 			}
2897 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2898 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2899 		}
2900 	}
2901 }
2902 
2903 /*
2904  * Device suspend routine.  Stop the interface and save some PCI
2905  * settings in case the BIOS doesn't restore them properly on
2906  * resume.
2907  */
2908 static int
2909 re_suspend(device_t dev)
2910 {
2911 #ifndef BURN_BRIDGES
2912 	int i;
2913 #endif
2914 	struct re_softc *sc = device_get_softc(dev);
2915 	struct ifnet *ifp = &sc->arpcom.ac_if;
2916 
2917 	lwkt_serialize_enter(ifp->if_serializer);
2918 
2919 	re_stop(sc);
2920 
2921 #ifndef BURN_BRIDGES
2922 	for (i = 0; i < 5; i++)
2923 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2924 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2925 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2926 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2927 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2928 #endif
2929 
2930 	sc->re_flags |= RE_F_SUSPENDED;
2931 
2932 	lwkt_serialize_exit(ifp->if_serializer);
2933 
2934 	return (0);
2935 }
2936 
2937 /*
2938  * Device resume routine.  Restore some PCI settings in case the BIOS
2939  * doesn't, re-enable busmastering, and restart the interface if
2940  * appropriate.
2941  */
2942 static int
2943 re_resume(device_t dev)
2944 {
2945 	struct re_softc *sc = device_get_softc(dev);
2946 	struct ifnet *ifp = &sc->arpcom.ac_if;
2947 #ifndef BURN_BRIDGES
2948 	int i;
2949 #endif
2950 
2951 	lwkt_serialize_enter(ifp->if_serializer);
2952 
2953 #ifndef BURN_BRIDGES
2954 	/* better way to do this? */
2955 	for (i = 0; i < 5; i++)
2956 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2957 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2958 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2959 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2960 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2961 
2962 	/* reenable busmastering */
2963 	pci_enable_busmaster(dev);
2964 	pci_enable_io(dev, SYS_RES_IOPORT);
2965 #endif
2966 
2967 	/* reinitialize interface if necessary */
2968 	if (ifp->if_flags & IFF_UP)
2969 		re_init(sc);
2970 
2971 	sc->re_flags &= ~RE_F_SUSPENDED;
2972 
2973 	lwkt_serialize_exit(ifp->if_serializer);
2974 
2975 	return (0);
2976 }
2977 
2978 /*
2979  * Stop all chip I/O so that the kernel's probe routines don't
2980  * get confused by errant DMAs when rebooting.
2981  */
2982 static void
2983 re_shutdown(device_t dev)
2984 {
2985 	struct re_softc *sc = device_get_softc(dev);
2986 	struct ifnet *ifp = &sc->arpcom.ac_if;
2987 
2988 	lwkt_serialize_enter(ifp->if_serializer);
2989 	re_stop(sc);
2990 	lwkt_serialize_exit(ifp->if_serializer);
2991 }
2992 
2993 static int
2994 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2995 {
2996 	struct re_softc *sc = arg1;
2997 
2998 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2999 }
3000 
3001 static int
3002 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3003 {
3004 	struct re_softc *sc = arg1;
3005 
3006 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3007 }
3008 
3009 static int
3010 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3011 {
3012 	struct re_softc *sc = arg1;
3013 	struct ifnet *ifp = &sc->arpcom.ac_if;
3014 	int error, v;
3015 
3016 	lwkt_serialize_enter(ifp->if_serializer);
3017 
3018 	v = *hwtime;
3019 	error = sysctl_handle_int(oidp, &v, 0, req);
3020 	if (error || req->newptr == NULL)
3021 		goto back;
3022 
3023 	if (v <= 0) {
3024 		error = EINVAL;
3025 		goto back;
3026 	}
3027 
3028 	if (v != *hwtime) {
3029 		*hwtime = v;
3030 
3031 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3032 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3033 			re_setup_hw_im(sc);
3034 	}
3035 back:
3036 	lwkt_serialize_exit(ifp->if_serializer);
3037 	return error;
3038 }
3039 
3040 static int
3041 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3042 {
3043 	struct re_softc *sc = arg1;
3044 	struct ifnet *ifp = &sc->arpcom.ac_if;
3045 	int error, v;
3046 
3047 	lwkt_serialize_enter(ifp->if_serializer);
3048 
3049 	v = sc->re_sim_time;
3050 	error = sysctl_handle_int(oidp, &v, 0, req);
3051 	if (error || req->newptr == NULL)
3052 		goto back;
3053 
3054 	if (v <= 0) {
3055 		error = EINVAL;
3056 		goto back;
3057 	}
3058 
3059 	if (v != sc->re_sim_time) {
3060 		sc->re_sim_time = v;
3061 
3062 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3063 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3064 #ifdef foo
3065 			int reg;
3066 
3067 			/*
3068 			 * Following code causes various strange
3069 			 * performance problems.  Hmm ...
3070 			 */
3071 			CSR_WRITE_2(sc, RE_IMR, 0);
3072 			if (!RE_IS_8139CP(sc))
3073 				reg = RE_TIMERINT_8169;
3074 			else
3075 				reg = RE_TIMERINT;
3076 			CSR_WRITE_4(sc, reg, 0);
3077 			CSR_READ_4(sc, reg); /* flush */
3078 
3079 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3080 			re_setup_sim_im(sc);
3081 #else
3082 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3083 			DELAY(10);
3084 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3085 #endif
3086 		}
3087 	}
3088 back:
3089 	lwkt_serialize_exit(ifp->if_serializer);
3090 	return error;
3091 }
3092 
3093 static int
3094 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3095 {
3096 	struct re_softc *sc = arg1;
3097 	struct ifnet *ifp = &sc->arpcom.ac_if;
3098 	int error, v;
3099 
3100 	lwkt_serialize_enter(ifp->if_serializer);
3101 
3102 	v = sc->re_imtype;
3103 	error = sysctl_handle_int(oidp, &v, 0, req);
3104 	if (error || req->newptr == NULL)
3105 		goto back;
3106 
3107 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3108 		error = EINVAL;
3109 		goto back;
3110 	}
3111 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3112 		/* Can't do hardware interrupt moderation */
3113 		error = EOPNOTSUPP;
3114 		goto back;
3115 	}
3116 
3117 	if (v != sc->re_imtype) {
3118 		sc->re_imtype = v;
3119 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3120 		    IFF_RUNNING)
3121 			re_setup_intr(sc, 1, sc->re_imtype);
3122 	}
3123 back:
3124 	lwkt_serialize_exit(ifp->if_serializer);
3125 	return error;
3126 }
3127 
3128 static void
3129 re_setup_hw_im(struct re_softc *sc)
3130 {
3131 	KKASSERT(sc->re_caps & RE_C_HWIM);
3132 
3133 	/*
3134 	 * Interrupt moderation
3135 	 *
3136 	 * 0xABCD
3137 	 * A - unknown (maybe TX related)
3138 	 * B - TX timer (unit: 25us)
3139 	 * C - unknown (maybe RX related)
3140 	 * D - RX timer (unit: 25us)
3141 	 *
3142 	 *
3143 	 * re(4)'s interrupt moderation is actually controlled by
3144 	 * two variables, like most other NICs (bge, bce etc.)
3145 	 * o  timer
3146 	 * o  number of packets [P]
3147 	 *
3148 	 * The logic relationship between these two variables is
3149 	 * similar to other NICs too:
3150 	 * if (timer expire || packets > [P])
3151 	 *     Interrupt is delivered
3152 	 *
3153 	 * Currently we only know how to set 'timer', but not
3154 	 * 'number of packets', which should be ~30, as far as I
3155 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3156 	 */
3157 	CSR_WRITE_2(sc, RE_IM,
3158 		    RE_IM_RXTIME(sc->re_rx_time) |
3159 		    RE_IM_TXTIME(sc->re_tx_time) |
3160 		    RE_IM_MAGIC);
3161 }
3162 
3163 static void
3164 re_disable_hw_im(struct re_softc *sc)
3165 {
3166 	if (sc->re_caps & RE_C_HWIM)
3167 		CSR_WRITE_2(sc, RE_IM, 0);
3168 }
3169 
3170 static void
3171 re_setup_sim_im(struct re_softc *sc)
3172 {
3173 	if (!RE_IS_8139CP(sc)) {
3174 		uint32_t ticks;
3175 
3176 		/*
3177 		 * Datasheet says tick decreases at bus speed,
3178 		 * but it seems the clock runs a little bit
3179 		 * faster, so we do some compensation here.
3180 		 */
3181 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3182 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3183 	} else {
3184 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3185 	}
3186 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3187 	sc->re_flags |= RE_F_TIMER_INTR;
3188 }
3189 
3190 static void
3191 re_disable_sim_im(struct re_softc *sc)
3192 {
3193 	if (!RE_IS_8139CP(sc))
3194 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3195 	else
3196 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3197 	sc->re_flags &= ~RE_F_TIMER_INTR;
3198 }
3199 
3200 static void
3201 re_config_imtype(struct re_softc *sc, int imtype)
3202 {
3203 	switch (imtype) {
3204 	case RE_IMTYPE_HW:
3205 		KKASSERT(sc->re_caps & RE_C_HWIM);
3206 		/* FALL THROUGH */
3207 	case RE_IMTYPE_NONE:
3208 		sc->re_intrs = RE_INTRS;
3209 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3210 				RE_ISR_RX_OVERRUN;
3211 		sc->re_tx_ack = RE_ISR_TX_OK;
3212 		break;
3213 
3214 	case RE_IMTYPE_SIM:
3215 		sc->re_intrs = RE_INTRS_TIMER;
3216 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3217 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3218 		break;
3219 
3220 	default:
3221 		panic("%s: unknown imtype %d",
3222 		      sc->arpcom.ac_if.if_xname, imtype);
3223 	}
3224 }
3225 
3226 static void
3227 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3228 {
3229 	re_config_imtype(sc, imtype);
3230 
3231 	if (enable_intrs)
3232 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3233 	else
3234 		CSR_WRITE_2(sc, RE_IMR, 0);
3235 
3236 	sc->re_npoll.ifpc_stcount = 0;
3237 
3238 	switch (imtype) {
3239 	case RE_IMTYPE_NONE:
3240 		re_disable_sim_im(sc);
3241 		re_disable_hw_im(sc);
3242 		break;
3243 
3244 	case RE_IMTYPE_HW:
3245 		KKASSERT(sc->re_caps & RE_C_HWIM);
3246 		re_disable_sim_im(sc);
3247 		re_setup_hw_im(sc);
3248 		break;
3249 
3250 	case RE_IMTYPE_SIM:
3251 		re_disable_hw_im(sc);
3252 		re_setup_sim_im(sc);
3253 		break;
3254 
3255 	default:
3256 		panic("%s: unknown imtype %d",
3257 		      sc->arpcom.ac_if.if_xname, imtype);
3258 	}
3259 }
3260 
3261 static void
3262 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3263 {
3264 	int i;
3265 
3266 	if (sc->re_macver == RE_MACVER_11 ||
3267 	    sc->re_macver == RE_MACVER_12 ||
3268 	    sc->re_macver == RE_MACVER_30 ||
3269 	    sc->re_macver == RE_MACVER_31) {
3270 		uint16_t re_did;
3271 
3272 		re_get_eewidth(sc);
3273 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3274 		if (re_did == 0x8128) {
3275 			uint16_t as[ETHER_ADDR_LEN / 2];
3276 			int eaddr_off;
3277 
3278 			if (sc->re_macver == RE_MACVER_30 ||
3279 			    sc->re_macver == RE_MACVER_31)
3280 				eaddr_off = RE_EE_EADDR1;
3281 			else
3282 				eaddr_off = RE_EE_EADDR0;
3283 
3284 			/*
3285 			 * Get station address from the EEPROM.
3286 			 */
3287 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3288 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3289 				as[i] = le16toh(as[i]);
3290 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3291 			return;
3292 		}
3293 	}
3294 
3295 	/*
3296 	 * Get station address from IDRx.
3297 	 */
3298 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3299 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3300 }
3301 
3302 static int
3303 re_jpool_alloc(struct re_softc *sc)
3304 {
3305 	struct re_list_data *ldata = &sc->re_ldata;
3306 	struct re_jbuf *jbuf;
3307 	bus_addr_t paddr;
3308 	bus_size_t jpool_size;
3309 	bus_dmamem_t dmem;
3310 	caddr_t buf;
3311 	int i, error;
3312 
3313 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3314 
3315 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3316 				 M_DEVBUF, M_WAITOK | M_ZERO);
3317 
3318 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3319 
3320 	error = bus_dmamem_coherent(sc->re_parent_tag,
3321 			RE_RXBUF_ALIGN, 0,
3322 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3323 			jpool_size, BUS_DMA_WAITOK, &dmem);
3324 	if (error) {
3325 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3326 		return error;
3327 	}
3328 	ldata->re_jpool_tag = dmem.dmem_tag;
3329 	ldata->re_jpool_map = dmem.dmem_map;
3330 	ldata->re_jpool = dmem.dmem_addr;
3331 	paddr = dmem.dmem_busaddr;
3332 
3333 	/* ..and split it into 9KB chunks */
3334 	SLIST_INIT(&ldata->re_jbuf_free);
3335 
3336 	buf = ldata->re_jpool;
3337 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3338 		jbuf = &ldata->re_jbuf[i];
3339 
3340 		jbuf->re_sc = sc;
3341 		jbuf->re_inuse = 0;
3342 		jbuf->re_slot = i;
3343 		jbuf->re_buf = buf;
3344 		jbuf->re_paddr = paddr;
3345 
3346 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3347 
3348 		buf += RE_JBUF_SIZE;
3349 		paddr += RE_JBUF_SIZE;
3350 	}
3351 	return 0;
3352 }
3353 
3354 static void
3355 re_jpool_free(struct re_softc *sc)
3356 {
3357 	struct re_list_data *ldata = &sc->re_ldata;
3358 
3359 	if (ldata->re_jpool_tag != NULL) {
3360 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3361 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3362 				ldata->re_jpool_map);
3363 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3364 		ldata->re_jpool_tag = NULL;
3365 	}
3366 
3367 	if (ldata->re_jbuf != NULL) {
3368 		kfree(ldata->re_jbuf, M_DEVBUF);
3369 		ldata->re_jbuf = NULL;
3370 	}
3371 }
3372 
3373 static struct re_jbuf *
3374 re_jbuf_alloc(struct re_softc *sc)
3375 {
3376 	struct re_list_data *ldata = &sc->re_ldata;
3377 	struct re_jbuf *jbuf;
3378 
3379 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3380 
3381 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3382 	if (jbuf != NULL) {
3383 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3384 		jbuf->re_inuse = 1;
3385 	}
3386 
3387 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3388 
3389 	return jbuf;
3390 }
3391 
3392 static void
3393 re_jbuf_free(void *arg)
3394 {
3395 	struct re_jbuf *jbuf = arg;
3396 	struct re_softc *sc = jbuf->re_sc;
3397 	struct re_list_data *ldata = &sc->re_ldata;
3398 
3399 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3400 		panic("%s: free wrong jumbo buffer",
3401 		      sc->arpcom.ac_if.if_xname);
3402 	} else if (jbuf->re_inuse == 0) {
3403 		panic("%s: jumbo buffer already freed",
3404 		      sc->arpcom.ac_if.if_xname);
3405 	}
3406 
3407 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3408 	atomic_subtract_int(&jbuf->re_inuse, 1);
3409 	if (jbuf->re_inuse == 0)
3410 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3411 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3412 }
3413 
3414 static void
3415 re_jbuf_ref(void *arg)
3416 {
3417 	struct re_jbuf *jbuf = arg;
3418 	struct re_softc *sc = jbuf->re_sc;
3419 	struct re_list_data *ldata = &sc->re_ldata;
3420 
3421 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3422 		panic("%s: ref wrong jumbo buffer",
3423 		      sc->arpcom.ac_if.if_xname);
3424 	} else if (jbuf->re_inuse == 0) {
3425 		panic("%s: jumbo buffer already freed",
3426 		      sc->arpcom.ac_if.if_xname);
3427 	}
3428 	atomic_add_int(&jbuf->re_inuse, 1);
3429 }
3430