xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision db2fb6bfc5e5239290da1bd205e31eabc915b9e0)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113 
114 #define _IP_VHL
115 
116 #include "opt_polling.h"
117 
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131 
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
245 	  RE_C_HWCSUM | RE_C_FASTE },
246 
247 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
248 	  RE_C_HWCSUM | RE_C_FASTE },
249 
250 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
251 	  RE_C_HWCSUM | RE_C_FASTE },
252 
253 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
254 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
255 	  RE_C_FASTE },
256 
257 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
258 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259 	  RE_C_FASTE },
260 
261 	{ RE_HWREV_NULL, 0, 0, 0 }
262 };
263 
264 static int	re_probe(device_t);
265 static int	re_attach(device_t);
266 static int	re_detach(device_t);
267 static int	re_suspend(device_t);
268 static int	re_resume(device_t);
269 static void	re_shutdown(device_t);
270 
271 static int	re_allocmem(device_t);
272 static void	re_freemem(device_t);
273 static void	re_freebufmem(struct re_softc *, int, int);
274 static int	re_encap(struct re_softc *, struct mbuf **, int *);
275 static int	re_newbuf_std(struct re_softc *, int, int);
276 static int	re_newbuf_jumbo(struct re_softc *, int, int);
277 static void	re_setup_rxdesc(struct re_softc *, int);
278 static int	re_rx_list_init(struct re_softc *);
279 static int	re_tx_list_init(struct re_softc *);
280 static int	re_rxeof(struct re_softc *);
281 static int	re_txeof(struct re_softc *);
282 static int	re_tx_collect(struct re_softc *);
283 static void	re_intr(void *);
284 static void	re_tick(void *);
285 static void	re_tick_serialized(void *);
286 
287 static void	re_start(struct ifnet *);
288 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
289 static void	re_init(void *);
290 static void	re_stop(struct re_softc *);
291 static void	re_watchdog(struct ifnet *);
292 static int	re_ifmedia_upd(struct ifnet *);
293 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
294 
295 static void	re_eeprom_putbyte(struct re_softc *, int);
296 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
297 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
298 static void	re_get_eewidth(struct re_softc *);
299 
300 static int	re_gmii_readreg(device_t, int, int);
301 static int	re_gmii_writereg(device_t, int, int, int);
302 
303 static int	re_miibus_readreg(device_t, int, int);
304 static int	re_miibus_writereg(device_t, int, int, int);
305 static void	re_miibus_statchg(device_t);
306 
307 static void	re_setmulti(struct re_softc *);
308 static void	re_reset(struct re_softc *, int);
309 static void	re_get_eaddr(struct re_softc *, uint8_t *);
310 
311 static void	re_setup_hw_im(struct re_softc *);
312 static void	re_setup_sim_im(struct re_softc *);
313 static void	re_disable_hw_im(struct re_softc *);
314 static void	re_disable_sim_im(struct re_softc *);
315 static void	re_config_imtype(struct re_softc *, int);
316 static void	re_setup_intr(struct re_softc *, int, int);
317 
318 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
319 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
320 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
321 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
322 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
323 
324 static int	re_jpool_alloc(struct re_softc *);
325 static void	re_jpool_free(struct re_softc *);
326 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
327 static void	re_jbuf_free(void *);
328 static void	re_jbuf_ref(void *);
329 
330 #ifdef RE_DIAG
331 static int	re_diag(struct re_softc *);
332 #endif
333 
334 #ifdef DEVICE_POLLING
335 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
336 #endif
337 
338 static device_method_t re_methods[] = {
339 	/* Device interface */
340 	DEVMETHOD(device_probe,		re_probe),
341 	DEVMETHOD(device_attach,	re_attach),
342 	DEVMETHOD(device_detach,	re_detach),
343 	DEVMETHOD(device_suspend,	re_suspend),
344 	DEVMETHOD(device_resume,	re_resume),
345 	DEVMETHOD(device_shutdown,	re_shutdown),
346 
347 	/* bus interface */
348 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
349 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
350 
351 	/* MII interface */
352 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
353 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
354 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
355 
356 	{ 0, 0 }
357 };
358 
359 static driver_t re_driver = {
360 	"re",
361 	re_methods,
362 	sizeof(struct re_softc)
363 };
364 
365 static devclass_t re_devclass;
366 
367 DECLARE_DUMMY_MODULE(if_re);
368 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
369 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
370 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
371 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
372 
373 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
374 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
375 
376 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
377 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
378 
379 #define EE_SET(x)	\
380 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
381 
382 #define EE_CLR(x)	\
383 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
384 
385 static __inline void
386 re_free_rxchain(struct re_softc *sc)
387 {
388 	if (sc->re_head != NULL) {
389 		m_freem(sc->re_head);
390 		sc->re_head = sc->re_tail = NULL;
391 	}
392 }
393 
394 /*
395  * Send a read command and address to the EEPROM, check for ACK.
396  */
397 static void
398 re_eeprom_putbyte(struct re_softc *sc, int addr)
399 {
400 	int d, i;
401 
402 	d = addr | (RE_9346_READ << sc->re_eewidth);
403 
404 	/*
405 	 * Feed in each bit and strobe the clock.
406 	 */
407 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
408 		if (d & i)
409 			EE_SET(RE_EE_DATAIN);
410 		else
411 			EE_CLR(RE_EE_DATAIN);
412 		DELAY(100);
413 		EE_SET(RE_EE_CLK);
414 		DELAY(150);
415 		EE_CLR(RE_EE_CLK);
416 		DELAY(100);
417 	}
418 }
419 
420 /*
421  * Read a word of data stored in the EEPROM at address 'addr.'
422  */
423 static void
424 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
425 {
426 	int i;
427 	uint16_t word = 0;
428 
429 	/*
430 	 * Send address of word we want to read.
431 	 */
432 	re_eeprom_putbyte(sc, addr);
433 
434 	/*
435 	 * Start reading bits from EEPROM.
436 	 */
437 	for (i = 0x8000; i != 0; i >>= 1) {
438 		EE_SET(RE_EE_CLK);
439 		DELAY(100);
440 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
441 			word |= i;
442 		EE_CLR(RE_EE_CLK);
443 		DELAY(100);
444 	}
445 
446 	*dest = word;
447 }
448 
449 /*
450  * Read a sequence of words from the EEPROM.
451  */
452 static void
453 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
454 {
455 	int i;
456 	uint16_t word = 0, *ptr;
457 
458 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
459 	DELAY(100);
460 
461 	for (i = 0; i < cnt; i++) {
462 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
463 		re_eeprom_getword(sc, off + i, &word);
464 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
465 		ptr = (uint16_t *)(dest + (i * 2));
466 		*ptr = word;
467 	}
468 
469 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
470 }
471 
472 static void
473 re_get_eewidth(struct re_softc *sc)
474 {
475 	uint16_t re_did = 0;
476 
477 	sc->re_eewidth = 6;
478 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
479 	if (re_did != 0x8129)
480 		sc->re_eewidth = 8;
481 }
482 
483 static int
484 re_gmii_readreg(device_t dev, int phy, int reg)
485 {
486 	struct re_softc *sc = device_get_softc(dev);
487 	u_int32_t rval;
488 	int i;
489 
490 	if (phy != 1)
491 		return(0);
492 
493 	/* Let the rgephy driver read the GMEDIASTAT register */
494 
495 	if (reg == RE_GMEDIASTAT)
496 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
497 
498 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
499 	DELAY(1000);
500 
501 	for (i = 0; i < RE_TIMEOUT; i++) {
502 		rval = CSR_READ_4(sc, RE_PHYAR);
503 		if (rval & RE_PHYAR_BUSY)
504 			break;
505 		DELAY(100);
506 	}
507 
508 	if (i == RE_TIMEOUT) {
509 		device_printf(dev, "PHY read failed\n");
510 		return(0);
511 	}
512 
513 	return(rval & RE_PHYAR_PHYDATA);
514 }
515 
516 static int
517 re_gmii_writereg(device_t dev, int phy, int reg, int data)
518 {
519 	struct re_softc *sc = device_get_softc(dev);
520 	uint32_t rval;
521 	int i;
522 
523 	CSR_WRITE_4(sc, RE_PHYAR,
524 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
525 	DELAY(1000);
526 
527 	for (i = 0; i < RE_TIMEOUT; i++) {
528 		rval = CSR_READ_4(sc, RE_PHYAR);
529 		if ((rval & RE_PHYAR_BUSY) == 0)
530 			break;
531 		DELAY(100);
532 	}
533 
534 	if (i == RE_TIMEOUT)
535 		device_printf(dev, "PHY write failed\n");
536 
537 	return(0);
538 }
539 
540 static int
541 re_miibus_readreg(device_t dev, int phy, int reg)
542 {
543 	struct re_softc	*sc = device_get_softc(dev);
544 	uint16_t rval = 0;
545 	uint16_t re8139_reg = 0;
546 
547 	if (!RE_IS_8139CP(sc)) {
548 		rval = re_gmii_readreg(dev, phy, reg);
549 		return(rval);
550 	}
551 
552 	/* Pretend the internal PHY is only at address 0 */
553 	if (phy)
554 		return(0);
555 
556 	switch(reg) {
557 	case MII_BMCR:
558 		re8139_reg = RE_BMCR;
559 		break;
560 	case MII_BMSR:
561 		re8139_reg = RE_BMSR;
562 		break;
563 	case MII_ANAR:
564 		re8139_reg = RE_ANAR;
565 		break;
566 	case MII_ANER:
567 		re8139_reg = RE_ANER;
568 		break;
569 	case MII_ANLPAR:
570 		re8139_reg = RE_LPAR;
571 		break;
572 	case MII_PHYIDR1:
573 	case MII_PHYIDR2:
574 		return(0);
575 	/*
576 	 * Allow the rlphy driver to read the media status
577 	 * register. If we have a link partner which does not
578 	 * support NWAY, this is the register which will tell
579 	 * us the results of parallel detection.
580 	 */
581 	case RE_MEDIASTAT:
582 		return(CSR_READ_1(sc, RE_MEDIASTAT));
583 	default:
584 		device_printf(dev, "bad phy register\n");
585 		return(0);
586 	}
587 	rval = CSR_READ_2(sc, re8139_reg);
588 	if (re8139_reg == RE_BMCR) {
589 		/* 8139C+ has different bit layout. */
590 		rval &= ~(BMCR_LOOP | BMCR_ISO);
591 	}
592 	return(rval);
593 }
594 
595 static int
596 re_miibus_writereg(device_t dev, int phy, int reg, int data)
597 {
598 	struct re_softc *sc= device_get_softc(dev);
599 	u_int16_t re8139_reg = 0;
600 
601 	if (!RE_IS_8139CP(sc))
602 		return(re_gmii_writereg(dev, phy, reg, data));
603 
604 	/* Pretend the internal PHY is only at address 0 */
605 	if (phy)
606 		return(0);
607 
608 	switch(reg) {
609 	case MII_BMCR:
610 		re8139_reg = RE_BMCR;
611 		/* 8139C+ has different bit layout. */
612 		data &= ~(BMCR_LOOP | BMCR_ISO);
613 		break;
614 	case MII_BMSR:
615 		re8139_reg = RE_BMSR;
616 		break;
617 	case MII_ANAR:
618 		re8139_reg = RE_ANAR;
619 		break;
620 	case MII_ANER:
621 		re8139_reg = RE_ANER;
622 		break;
623 	case MII_ANLPAR:
624 		re8139_reg = RE_LPAR;
625 		break;
626 	case MII_PHYIDR1:
627 	case MII_PHYIDR2:
628 		return(0);
629 	default:
630 		device_printf(dev, "bad phy register\n");
631 		return(0);
632 	}
633 	CSR_WRITE_2(sc, re8139_reg, data);
634 	return(0);
635 }
636 
637 static void
638 re_miibus_statchg(device_t dev)
639 {
640 }
641 
642 /*
643  * Program the 64-bit multicast hash filter.
644  */
645 static void
646 re_setmulti(struct re_softc *sc)
647 {
648 	struct ifnet *ifp = &sc->arpcom.ac_if;
649 	int h = 0;
650 	uint32_t hashes[2] = { 0, 0 };
651 	struct ifmultiaddr *ifma;
652 	uint32_t rxfilt;
653 	int mcnt = 0;
654 
655 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
656 
657 	/* Set the individual bit to receive frames for this host only. */
658 	rxfilt |= RE_RXCFG_RX_INDIV;
659 	/* Set capture broadcast bit to capture broadcast frames. */
660 	rxfilt |= RE_RXCFG_RX_BROAD;
661 
662 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
663 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
664 		rxfilt |= RE_RXCFG_RX_MULTI;
665 
666 		/* If we want promiscuous mode, set the allframes bit. */
667 		if (ifp->if_flags & IFF_PROMISC)
668 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
669 
670 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
671 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
672 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
673 		return;
674 	}
675 
676 	/* first, zot all the existing hash bits */
677 	CSR_WRITE_4(sc, RE_MAR0, 0);
678 	CSR_WRITE_4(sc, RE_MAR4, 0);
679 
680 	/* now program new ones */
681 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
682 		if (ifma->ifma_addr->sa_family != AF_LINK)
683 			continue;
684 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
685 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
686 		if (h < 32)
687 			hashes[0] |= (1 << h);
688 		else
689 			hashes[1] |= (1 << (h - 32));
690 		mcnt++;
691 	}
692 
693 	if (mcnt)
694 		rxfilt |= RE_RXCFG_RX_MULTI;
695 	else
696 		rxfilt &= ~RE_RXCFG_RX_MULTI;
697 
698 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
699 
700 	/*
701 	 * For some unfathomable reason, RealTek decided to reverse
702 	 * the order of the multicast hash registers in the PCI Express
703 	 * parts. This means we have to write the hash pattern in reverse
704 	 * order for those devices.
705 	 */
706 	if (sc->re_caps & RE_C_PCIE) {
707 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[0]));
708 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[1]));
709 	} else {
710 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
711 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
712 	}
713 }
714 
715 static void
716 re_reset(struct re_softc *sc, int running)
717 {
718 	int i;
719 
720 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
721 		CSR_WRITE_1(sc, RE_COMMAND,
722 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
723 		DELAY(100);
724 	}
725 
726 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
727 
728 	for (i = 0; i < RE_TIMEOUT; i++) {
729 		DELAY(10);
730 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
731 			break;
732 	}
733 	if (i == RE_TIMEOUT)
734 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
735 }
736 
737 #ifdef RE_DIAG
738 /*
739  * The following routine is designed to test for a defect on some
740  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
741  * lines connected to the bus, however for a 32-bit only card, they
742  * should be pulled high. The result of this defect is that the
743  * NIC will not work right if you plug it into a 64-bit slot: DMA
744  * operations will be done with 64-bit transfers, which will fail
745  * because the 64-bit data lines aren't connected.
746  *
747  * There's no way to work around this (short of talking a soldering
748  * iron to the board), however we can detect it. The method we use
749  * here is to put the NIC into digital loopback mode, set the receiver
750  * to promiscuous mode, and then try to send a frame. We then compare
751  * the frame data we sent to what was received. If the data matches,
752  * then the NIC is working correctly, otherwise we know the user has
753  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
754  * slot. In the latter case, there's no way the NIC can work correctly,
755  * so we print out a message on the console and abort the device attach.
756  */
757 
758 static int
759 re_diag(struct re_softc *sc)
760 {
761 	struct ifnet *ifp = &sc->arpcom.ac_if;
762 	struct mbuf *m0;
763 	struct ether_header *eh;
764 	struct re_desc *cur_rx;
765 	uint16_t status;
766 	uint32_t rxstat;
767 	int total_len, i, error = 0, phyaddr;
768 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
769 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
770 
771 	/* Allocate a single mbuf */
772 
773 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
774 	if (m0 == NULL)
775 		return(ENOBUFS);
776 
777 	/*
778 	 * Initialize the NIC in test mode. This sets the chip up
779 	 * so that it can send and receive frames, but performs the
780 	 * following special functions:
781 	 * - Puts receiver in promiscuous mode
782 	 * - Enables digital loopback mode
783 	 * - Leaves interrupts turned off
784 	 */
785 
786 	ifp->if_flags |= IFF_PROMISC;
787 	sc->re_flags |= RE_F_TESTMODE;
788 	re_init(sc);
789 	sc->re_flags |= RE_F_LINKED;
790 	if (!RE_IS_8139CP(sc))
791 		phyaddr = 1;
792 	else
793 		phyaddr = 0;
794 
795 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
796 	for (i = 0; i < RE_TIMEOUT; i++) {
797 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
798 		if (!(status & BMCR_RESET))
799 			break;
800 	}
801 
802 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
803 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
804 
805 	DELAY(100000);
806 
807 	/* Put some data in the mbuf */
808 
809 	eh = mtod(m0, struct ether_header *);
810 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
811 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
812 	eh->ether_type = htons(ETHERTYPE_IP);
813 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
814 
815 	/*
816 	 * Queue the packet, start transmission.
817 	 * Note: ifq_handoff() ultimately calls re_start() for us.
818 	 */
819 
820 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
821 	error = ifq_handoff(ifp, m0, NULL);
822 	if (error) {
823 		m0 = NULL;
824 		goto done;
825 	}
826 	m0 = NULL;
827 
828 	/* Wait for it to propagate through the chip */
829 
830 	DELAY(100000);
831 	for (i = 0; i < RE_TIMEOUT; i++) {
832 		status = CSR_READ_2(sc, RE_ISR);
833 		CSR_WRITE_2(sc, RE_ISR, status);
834 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
835 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
836 			break;
837 		DELAY(10);
838 	}
839 
840 	if (i == RE_TIMEOUT) {
841 		if_printf(ifp, "diagnostic failed to receive packet "
842 			  "in loopback mode\n");
843 		error = EIO;
844 		goto done;
845 	}
846 
847 	/*
848 	 * The packet should have been dumped into the first
849 	 * entry in the RX DMA ring. Grab it from there.
850 	 */
851 
852 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
853 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
854 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
855 			BUS_DMASYNC_POSTREAD);
856 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
857 			  sc->re_ldata.re_rx_dmamap[0]);
858 
859 	m0 = sc->re_ldata.re_rx_mbuf[0];
860 	sc->re_ldata.re_rx_mbuf[0] = NULL;
861 	eh = mtod(m0, struct ether_header *);
862 
863 	cur_rx = &sc->re_ldata.re_rx_list[0];
864 	total_len = RE_RXBYTES(cur_rx);
865 	rxstat = le32toh(cur_rx->re_cmdstat);
866 
867 	if (total_len != ETHER_MIN_LEN) {
868 		if_printf(ifp, "diagnostic failed, received short packet\n");
869 		error = EIO;
870 		goto done;
871 	}
872 
873 	/* Test that the received packet data matches what we sent. */
874 
875 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
876 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
877 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
878 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
879 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
880 		    dst, ":", src, ":", ETHERTYPE_IP);
881 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
882 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
883 		    ntohs(eh->ether_type));
884 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
885 		    "into a 64-bit PCI slot.\n");
886 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
887 		    "for proper operation.\n");
888 		if_printf(ifp, "Read the re(4) man page for more details.\n");
889 		error = EIO;
890 	}
891 
892 done:
893 	/* Turn interface off, release resources */
894 
895 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
896 	ifp->if_flags &= ~IFF_PROMISC;
897 	re_stop(sc);
898 	if (m0 != NULL)
899 		m_freem(m0);
900 
901 	return (error);
902 }
903 #endif	/* RE_DIAG */
904 
905 /*
906  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
907  * IDs against our list and return a device name if we find a match.
908  */
909 static int
910 re_probe(device_t dev)
911 {
912 	const struct re_type *t;
913 	const struct re_hwrev *hw_rev;
914 	struct re_softc *sc;
915 	int rid;
916 	uint32_t hwrev, macmode, txcfg;
917 	uint16_t vendor, product;
918 
919 	vendor = pci_get_vendor(dev);
920 	product = pci_get_device(dev);
921 
922 	/*
923 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
924 	 * Rev.2 is supported by sk(4).
925 	 */
926 	if (vendor == PCI_VENDOR_LINKSYS &&
927 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
928 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
929 		return ENXIO;
930 
931 	if (vendor == PCI_VENDOR_REALTEK &&
932 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
933 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
934 		/* Poor 8139 */
935 		return ENXIO;
936 	}
937 
938 	for (t = re_devs; t->re_name != NULL; t++) {
939 		if (product == t->re_did && vendor == t->re_vid)
940 			break;
941 	}
942 
943 	/*
944 	 * Check if we found a RealTek device.
945 	 */
946 	if (t->re_name == NULL)
947 		return ENXIO;
948 
949 	/*
950 	 * Temporarily map the I/O space so we can read the chip ID register.
951 	 */
952 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
953 	rid = RE_PCI_LOIO;
954 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
955 					    RF_ACTIVE);
956 	if (sc->re_res == NULL) {
957 		device_printf(dev, "couldn't map ports/memory\n");
958 		kfree(sc, M_TEMP);
959 		return ENXIO;
960 	}
961 
962 	sc->re_btag = rman_get_bustag(sc->re_res);
963 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
964 
965 	txcfg = CSR_READ_4(sc, RE_TXCFG);
966 	hwrev = txcfg & RE_TXCFG_HWREV;
967 	macmode = txcfg & RE_TXCFG_MACMODE;
968 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
969 	kfree(sc, M_TEMP);
970 
971 	/*
972 	 * and continue matching for the specific chip...
973 	 */
974 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
975 		if (hw_rev->re_hwrev == hwrev) {
976 			sc = device_get_softc(dev);
977 
978 			sc->re_hwrev = hw_rev->re_hwrev;
979 			sc->re_macver = hw_rev->re_macver;
980 			sc->re_caps = hw_rev->re_caps;
981 			sc->re_maxmtu = hw_rev->re_maxmtu;
982 
983 			/*
984 			 * Apply chip property fixup
985 			 */
986 			switch (sc->re_hwrev) {
987 			case RE_HWREV_8101E1:
988 			case RE_HWREV_8101E2:
989 				if (macmode == 0)
990 					sc->re_macver = RE_MACVER_11;
991 				else if (macmode == 0x200000)
992 					sc->re_macver = RE_MACVER_12;
993 				break;
994 			case RE_HWREV_8102E:
995 			case RE_HWREV_8102EL:
996 				if (macmode == 0)
997 					sc->re_macver = RE_MACVER_13;
998 				else if (macmode == 0x100000)
999 					sc->re_macver = RE_MACVER_14;
1000 				break;
1001 			case RE_HWREV_8168B2:
1002 			case RE_HWREV_8168B3:
1003 				if (macmode == 0)
1004 					sc->re_macver = RE_MACVER_22;
1005 				break;
1006 			case RE_HWREV_8168C:
1007 				if (macmode == 0)
1008 					sc->re_macver = RE_MACVER_24;
1009 				else if (macmode == 0x200000)
1010 					sc->re_macver = RE_MACVER_25;
1011 				else if (macmode == 0x300000)
1012 					sc->re_macver = RE_MACVER_27;
1013 				break;
1014 			case RE_HWREV_8168CP:
1015 				if (macmode == 0)
1016 					sc->re_macver = RE_MACVER_26;
1017 				else if (macmode == 0x100000)
1018 					sc->re_macver = RE_MACVER_28;
1019 				break;
1020 			}
1021 			if (pci_is_pcie(dev))
1022 				sc->re_caps |= RE_C_PCIE;
1023 
1024 			device_set_desc(dev, t->re_name);
1025 			return 0;
1026 		}
1027 	}
1028 
1029 	if (bootverbose) {
1030 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1031 			      hwrev, macmode);
1032 	}
1033 	return ENXIO;
1034 }
1035 
1036 static int
1037 re_allocmem(device_t dev)
1038 {
1039 	struct re_softc *sc = device_get_softc(dev);
1040 	bus_dmamem_t dmem;
1041 	int error, i;
1042 
1043 	/*
1044 	 * Allocate list data
1045 	 */
1046 	sc->re_ldata.re_tx_mbuf =
1047 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1048 		M_DEVBUF, M_ZERO | M_WAITOK);
1049 
1050 	sc->re_ldata.re_rx_mbuf =
1051 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1052 		M_DEVBUF, M_ZERO | M_WAITOK);
1053 
1054 	sc->re_ldata.re_rx_paddr =
1055 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1056 		M_DEVBUF, M_ZERO | M_WAITOK);
1057 
1058 	sc->re_ldata.re_tx_dmamap =
1059 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1060 		M_DEVBUF, M_ZERO | M_WAITOK);
1061 
1062 	sc->re_ldata.re_rx_dmamap =
1063 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1064 		M_DEVBUF, M_ZERO | M_WAITOK);
1065 
1066 	/*
1067 	 * Allocate the parent bus DMA tag appropriate for PCI.
1068 	 */
1069 	error = bus_dma_tag_create(NULL,	/* parent */
1070 			1, 0,			/* alignment, boundary */
1071 			BUS_SPACE_MAXADDR,	/* lowaddr */
1072 			BUS_SPACE_MAXADDR,	/* highaddr */
1073 			NULL, NULL,		/* filter, filterarg */
1074 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1075 			0,			/* nsegments */
1076 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1077 			0,			/* flags */
1078 			&sc->re_parent_tag);
1079 	if (error) {
1080 		device_printf(dev, "could not allocate parent dma tag\n");
1081 		return error;
1082 	}
1083 
1084 	/* Allocate TX descriptor list. */
1085 	error = bus_dmamem_coherent(sc->re_parent_tag,
1086 			RE_RING_ALIGN, 0,
1087 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1088 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1089 			&dmem);
1090 	if (error) {
1091 		device_printf(dev, "could not allocate TX ring\n");
1092 		return error;
1093 	}
1094 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1095 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1096 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1097 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1098 
1099 	/* Allocate RX descriptor list. */
1100 	error = bus_dmamem_coherent(sc->re_parent_tag,
1101 			RE_RING_ALIGN, 0,
1102 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1103 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1104 			&dmem);
1105 	if (error) {
1106 		device_printf(dev, "could not allocate RX ring\n");
1107 		return error;
1108 	}
1109 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1110 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1111 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1112 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1113 
1114 	/* Allocate maps for TX mbufs. */
1115 	error = bus_dma_tag_create(sc->re_parent_tag,
1116 			1, 0,
1117 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1118 			NULL, NULL,
1119 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1120 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1121 			&sc->re_ldata.re_tx_mtag);
1122 	if (error) {
1123 		device_printf(dev, "could not allocate TX buf dma tag\n");
1124 		return(error);
1125 	}
1126 
1127 	/* Create DMA maps for TX buffers */
1128 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1129 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1130 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1131 				&sc->re_ldata.re_tx_dmamap[i]);
1132 		if (error) {
1133 			device_printf(dev, "can't create DMA map for TX buf\n");
1134 			re_freebufmem(sc, i, 0);
1135 			return(error);
1136 		}
1137 	}
1138 
1139 	/* Allocate maps for RX mbufs. */
1140 	error = bus_dma_tag_create(sc->re_parent_tag,
1141 			RE_RXBUF_ALIGN, 0,
1142 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1143 			NULL, NULL,
1144 			MCLBYTES, 1, MCLBYTES,
1145 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1146 			&sc->re_ldata.re_rx_mtag);
1147 	if (error) {
1148 		device_printf(dev, "could not allocate RX buf dma tag\n");
1149 		return(error);
1150 	}
1151 
1152 	/* Create spare DMA map for RX */
1153 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1154 			&sc->re_ldata.re_rx_spare);
1155 	if (error) {
1156 		device_printf(dev, "can't create spare DMA map for RX\n");
1157 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1158 		sc->re_ldata.re_rx_mtag = NULL;
1159 		return error;
1160 	}
1161 
1162 	/* Create DMA maps for RX buffers */
1163 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1164 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1165 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1166 		if (error) {
1167 			device_printf(dev, "can't create DMA map for RX buf\n");
1168 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1169 			return(error);
1170 		}
1171 	}
1172 
1173 	/* Create jumbo buffer pool for RX if required */
1174 	if (sc->re_caps & RE_C_CONTIGRX) {
1175 		error = re_jpool_alloc(sc);
1176 		if (error) {
1177 			re_jpool_free(sc);
1178 			/* Disable jumbo frame support */
1179 			sc->re_maxmtu = ETHERMTU;
1180 		}
1181 	}
1182 	return(0);
1183 }
1184 
1185 static void
1186 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1187 {
1188 	int i;
1189 
1190 	/* Destroy all the RX and TX buffer maps */
1191 	if (sc->re_ldata.re_tx_mtag) {
1192 		for (i = 0; i < tx_cnt; i++) {
1193 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1194 					   sc->re_ldata.re_tx_dmamap[i]);
1195 		}
1196 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1197 		sc->re_ldata.re_tx_mtag = NULL;
1198 	}
1199 
1200 	if (sc->re_ldata.re_rx_mtag) {
1201 		for (i = 0; i < rx_cnt; i++) {
1202 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1203 					   sc->re_ldata.re_rx_dmamap[i]);
1204 		}
1205 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1206 				   sc->re_ldata.re_rx_spare);
1207 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1208 		sc->re_ldata.re_rx_mtag = NULL;
1209 	}
1210 }
1211 
1212 static void
1213 re_freemem(device_t dev)
1214 {
1215 	struct re_softc *sc = device_get_softc(dev);
1216 
1217 	/* Unload and free the RX DMA ring memory and map */
1218 	if (sc->re_ldata.re_rx_list_tag) {
1219 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1220 				  sc->re_ldata.re_rx_list_map);
1221 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1222 				sc->re_ldata.re_rx_list,
1223 				sc->re_ldata.re_rx_list_map);
1224 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1225 	}
1226 
1227 	/* Unload and free the TX DMA ring memory and map */
1228 	if (sc->re_ldata.re_tx_list_tag) {
1229 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1230 				  sc->re_ldata.re_tx_list_map);
1231 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1232 				sc->re_ldata.re_tx_list,
1233 				sc->re_ldata.re_tx_list_map);
1234 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1235 	}
1236 
1237 	/* Free RX/TX buf DMA stuffs */
1238 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1239 
1240 	/* Unload and free the stats buffer and map */
1241 	if (sc->re_ldata.re_stag) {
1242 		bus_dmamap_unload(sc->re_ldata.re_stag,
1243 				  sc->re_ldata.re_rx_list_map);
1244 		bus_dmamem_free(sc->re_ldata.re_stag,
1245 				sc->re_ldata.re_stats,
1246 				sc->re_ldata.re_smap);
1247 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1248 	}
1249 
1250 	if (sc->re_caps & RE_C_CONTIGRX)
1251 		re_jpool_free(sc);
1252 
1253 	if (sc->re_parent_tag)
1254 		bus_dma_tag_destroy(sc->re_parent_tag);
1255 
1256 	if (sc->re_ldata.re_tx_mbuf != NULL)
1257 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1258 	if (sc->re_ldata.re_rx_mbuf != NULL)
1259 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1260 	if (sc->re_ldata.re_rx_paddr != NULL)
1261 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1262 	if (sc->re_ldata.re_tx_dmamap != NULL)
1263 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1264 	if (sc->re_ldata.re_rx_dmamap != NULL)
1265 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1266 }
1267 
1268 /*
1269  * Attach the interface. Allocate softc structures, do ifmedia
1270  * setup and ethernet/BPF attach.
1271  */
1272 static int
1273 re_attach(device_t dev)
1274 {
1275 	struct re_softc	*sc = device_get_softc(dev);
1276 	struct ifnet *ifp;
1277 	uint8_t eaddr[ETHER_ADDR_LEN];
1278 	int error = 0, rid, qlen;
1279 
1280 	callout_init(&sc->re_timer);
1281 	sc->re_dev = dev;
1282 
1283 	if (RE_IS_8139CP(sc)) {
1284 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1285 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1286 	} else {
1287 		sc->re_rx_desc_cnt = re_rx_desc_count;
1288 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1289 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1290 
1291 		sc->re_tx_desc_cnt = re_tx_desc_count;
1292 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1293 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1294 	}
1295 
1296 	qlen = RE_IFQ_MAXLEN;
1297 	if (sc->re_tx_desc_cnt > qlen)
1298 		qlen = sc->re_tx_desc_cnt;
1299 
1300 	sc->re_rxbuf_size = MCLBYTES;
1301 	sc->re_newbuf = re_newbuf_std;
1302 
1303 	sc->re_tx_time = 5;		/* 125us */
1304 	sc->re_rx_time = 2;		/* 50us */
1305 	if (sc->re_caps & RE_C_PCIE)
1306 		sc->re_sim_time = 75;	/* 75us */
1307 	else
1308 		sc->re_sim_time = 125;	/* 125us */
1309 	if (!RE_IS_8139CP(sc)) {
1310 		/* simulated interrupt moderation */
1311 		sc->re_imtype = RE_IMTYPE_SIM;
1312 	} else {
1313 		sc->re_imtype = RE_IMTYPE_NONE;
1314 	}
1315 	re_config_imtype(sc, sc->re_imtype);
1316 
1317 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1318 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1319 					     SYSCTL_STATIC_CHILDREN(_hw),
1320 					     OID_AUTO,
1321 					     device_get_nameunit(dev),
1322 					     CTLFLAG_RD, 0, "");
1323 	if (sc->re_sysctl_tree == NULL) {
1324 		device_printf(dev, "can't add sysctl node\n");
1325 		error = ENXIO;
1326 		goto fail;
1327 	}
1328 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1329 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1330 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1331 		       0, "RX desc count");
1332 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1333 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1334 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1335 		       0, "TX desc count");
1336 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1337 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1338 			OID_AUTO, "sim_time",
1339 			CTLTYPE_INT | CTLFLAG_RW,
1340 			sc, 0, re_sysctl_simtime, "I",
1341 			"Simulated interrupt moderation time (usec).");
1342 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1343 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1344 			OID_AUTO, "imtype",
1345 			CTLTYPE_INT | CTLFLAG_RW,
1346 			sc, 0, re_sysctl_imtype, "I",
1347 			"Interrupt moderation type -- "
1348 			"0:disable, 1:simulated, "
1349 			"2:hardware(if supported)");
1350 	if (sc->re_caps & RE_C_HWIM) {
1351 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1352 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1353 				OID_AUTO, "hw_rxtime",
1354 				CTLTYPE_INT | CTLFLAG_RW,
1355 				sc, 0, re_sysctl_rxtime, "I",
1356 				"Hardware interrupt moderation time "
1357 				"(unit: 25usec).");
1358 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1359 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1360 				OID_AUTO, "hw_txtime",
1361 				CTLTYPE_INT | CTLFLAG_RW,
1362 				sc, 0, re_sysctl_txtime, "I",
1363 				"Hardware interrupt moderation time "
1364 				"(unit: 25usec).");
1365 	}
1366 
1367 #ifndef BURN_BRIDGES
1368 	/*
1369 	 * Handle power management nonsense.
1370 	 */
1371 
1372 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1373 		uint32_t membase, irq;
1374 
1375 		/* Save important PCI config data. */
1376 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1377 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1378 
1379 		/* Reset the power state. */
1380 		device_printf(dev, "chip is in D%d power mode "
1381 		    "-- setting to D0\n", pci_get_powerstate(dev));
1382 
1383 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1384 
1385 		/* Restore PCI config data. */
1386 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1387 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1388 	}
1389 #endif
1390 	/*
1391 	 * Map control/status registers.
1392 	 */
1393 	pci_enable_busmaster(dev);
1394 
1395 	rid = RE_PCI_LOIO;
1396 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1397 					    RF_ACTIVE);
1398 
1399 	if (sc->re_res == NULL) {
1400 		device_printf(dev, "couldn't map ports\n");
1401 		error = ENXIO;
1402 		goto fail;
1403 	}
1404 
1405 	sc->re_btag = rman_get_bustag(sc->re_res);
1406 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1407 
1408 	/* Allocate interrupt */
1409 	rid = 0;
1410 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1411 					    RF_SHAREABLE | RF_ACTIVE);
1412 
1413 	if (sc->re_irq == NULL) {
1414 		device_printf(dev, "couldn't map interrupt\n");
1415 		error = ENXIO;
1416 		goto fail;
1417 	}
1418 
1419 	/* Reset the adapter. */
1420 	re_reset(sc, 0);
1421 
1422 	if (RE_IS_8139CP(sc)) {
1423 		sc->re_bus_speed = 33; /* XXX */
1424 	} else if (sc->re_caps & RE_C_PCIE) {
1425 		sc->re_bus_speed = 125;
1426 	} else {
1427 		uint8_t cfg2;
1428 
1429 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1430 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1431 		case RE_CFG2_PCICLK_33MHZ:
1432 			sc->re_bus_speed = 33;
1433 			break;
1434 		case RE_CFG2_PCICLK_66MHZ:
1435 			sc->re_bus_speed = 66;
1436 			break;
1437 		default:
1438 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1439 			sc->re_bus_speed = 33;
1440 			break;
1441 		}
1442 		if (cfg2 & RE_CFG2_PCI64)
1443 			sc->re_caps |= RE_C_PCI64;
1444 	}
1445 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1446 		      "PCI%s %dMHz\n",
1447 		      sc->re_hwrev, sc->re_macver,
1448 		      (sc->re_caps & RE_C_PCIE) ?
1449 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1450 		      sc->re_bus_speed);
1451 
1452 	/*
1453 	 * NOTE:
1454 	 * DO NOT try to adjust config1 and config5 which was spotted in
1455 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1456 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1457 	 */
1458 
1459 	re_get_eaddr(sc, eaddr);
1460 
1461 	if (!RE_IS_8139CP(sc)) {
1462 		/* Set RX length mask */
1463 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1464 		sc->re_txstart = RE_GTXSTART;
1465 	} else {
1466 		/* Set RX length mask */
1467 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1468 		sc->re_txstart = RE_TXSTART;
1469 	}
1470 
1471 	/* Allocate DMA stuffs */
1472 	error = re_allocmem(dev);
1473 	if (error)
1474 		goto fail;
1475 
1476 	/*
1477 	 * Apply some magic PCI settings from Realtek ...
1478 	 */
1479 	if (RE_IS_8169(sc)) {
1480 		CSR_WRITE_1(sc, 0x82, 1);
1481 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1482 	}
1483 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1484 
1485 	if (sc->re_caps & RE_C_MAC2) {
1486 		/*
1487 		 * Following part is extracted from Realtek BSD driver v176.
1488 		 * However, this does _not_ make much/any sense:
1489 		 * 8168C's PCI Express device control is located at 0x78,
1490 		 * so the reading from 0x79 (higher part of 0x78) and setting
1491 		 * the 4~6bits intend to enlarge the "max read request size"
1492 		 * (we will do it).  The content of the rest part of this
1493 		 * register is not meaningful to other PCI registers, so
1494 		 * writing the value to 0x54 could be completely wrong.
1495 		 * 0x80 is the lower part of PCI Express device status, non-
1496 		 * reserved bits are RW1C, writing 0 to them will not have
1497 		 * any effect at all.
1498 		 */
1499 #ifdef foo
1500 		uint8_t val;
1501 
1502 		val = pci_read_config(dev, 0x79, 1);
1503 		val = (val & ~0x70) | 0x50;
1504 		pci_write_config(dev, 0x54, val, 1);
1505 		pci_write_config(dev, 0x80, 0, 1);
1506 #endif
1507 	}
1508 
1509 	/*
1510 	 * Apply some PHY fixup from Realtek ...
1511 	 */
1512 	if (sc->re_hwrev == RE_HWREV_8110S) {
1513 		CSR_WRITE_1(sc, 0x82, 1);
1514 		re_miibus_writereg(dev, 1, 0xb, 0);
1515 	}
1516 	if (sc->re_caps & RE_C_PHYPMGT) {
1517 		/* Power up PHY */
1518 		re_miibus_writereg(dev, 1, 0x1f, 0);
1519 		re_miibus_writereg(dev, 1, 0xe, 0);
1520 	}
1521 
1522 	/* Do MII setup */
1523 	if (mii_phy_probe(dev, &sc->re_miibus,
1524 	    re_ifmedia_upd, re_ifmedia_sts)) {
1525 		device_printf(dev, "MII without any phy!\n");
1526 		error = ENXIO;
1527 		goto fail;
1528 	}
1529 
1530 	ifp = &sc->arpcom.ac_if;
1531 	ifp->if_softc = sc;
1532 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1533 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1534 	ifp->if_ioctl = re_ioctl;
1535 	ifp->if_start = re_start;
1536 #ifdef DEVICE_POLLING
1537 	ifp->if_poll = re_poll;
1538 #endif
1539 	ifp->if_watchdog = re_watchdog;
1540 	ifp->if_init = re_init;
1541 	if (!RE_IS_8139CP(sc)) /* XXX */
1542 		ifp->if_baudrate = 1000000000;
1543 	else
1544 		ifp->if_baudrate = 100000000;
1545 	ifq_set_maxlen(&ifp->if_snd, qlen);
1546 	ifq_set_ready(&ifp->if_snd);
1547 
1548 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1549 	if (sc->re_caps & RE_C_HWCSUM)
1550 		ifp->if_capabilities |= IFCAP_HWCSUM;
1551 
1552 	ifp->if_capenable = ifp->if_capabilities;
1553 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1554 		ifp->if_hwassist = RE_CSUM_FEATURES;
1555 	else
1556 		ifp->if_hwassist = 0;
1557 
1558 	/*
1559 	 * Call MI attach routine.
1560 	 */
1561 	ether_ifattach(ifp, eaddr, NULL);
1562 
1563 #ifdef RE_DIAG
1564 	/*
1565 	 * Perform hardware diagnostic on the original RTL8169.
1566 	 * Some 32-bit cards were incorrectly wired and would
1567 	 * malfunction if plugged into a 64-bit slot.
1568 	 */
1569 	if (sc->re_hwrev == RE_HWREV_8169) {
1570 		lwkt_serialize_enter(ifp->if_serializer);
1571 		error = re_diag(sc);
1572 		lwkt_serialize_exit(ifp->if_serializer);
1573 
1574 		if (error) {
1575 			device_printf(dev, "hardware diagnostic failure\n");
1576 			ether_ifdetach(ifp);
1577 			goto fail;
1578 		}
1579 	}
1580 #endif	/* RE_DIAG */
1581 
1582 	/* Hook interrupt last to avoid having to lock softc */
1583 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1584 			       &sc->re_intrhand, ifp->if_serializer);
1585 
1586 	if (error) {
1587 		device_printf(dev, "couldn't set up irq\n");
1588 		ether_ifdetach(ifp);
1589 		goto fail;
1590 	}
1591 
1592 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1593 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1594 
1595 fail:
1596 	if (error)
1597 		re_detach(dev);
1598 
1599 	return (error);
1600 }
1601 
1602 /*
1603  * Shutdown hardware and free up resources. This can be called any
1604  * time after the mutex has been initialized. It is called in both
1605  * the error case in attach and the normal detach case so it needs
1606  * to be careful about only freeing resources that have actually been
1607  * allocated.
1608  */
1609 static int
1610 re_detach(device_t dev)
1611 {
1612 	struct re_softc *sc = device_get_softc(dev);
1613 	struct ifnet *ifp = &sc->arpcom.ac_if;
1614 
1615 	/* These should only be active if attach succeeded */
1616 	if (device_is_attached(dev)) {
1617 		lwkt_serialize_enter(ifp->if_serializer);
1618 		re_stop(sc);
1619 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1620 		lwkt_serialize_exit(ifp->if_serializer);
1621 
1622 		ether_ifdetach(ifp);
1623 	}
1624 	if (sc->re_miibus)
1625 		device_delete_child(dev, sc->re_miibus);
1626 	bus_generic_detach(dev);
1627 
1628 	if (sc->re_sysctl_tree != NULL)
1629 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1630 
1631 	if (sc->re_irq)
1632 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1633 	if (sc->re_res) {
1634 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1635 				     sc->re_res);
1636 	}
1637 
1638 	/* Free DMA stuffs */
1639 	re_freemem(dev);
1640 
1641 	return(0);
1642 }
1643 
1644 static void
1645 re_setup_rxdesc(struct re_softc *sc, int idx)
1646 {
1647 	bus_addr_t paddr;
1648 	uint32_t cmdstat;
1649 	struct re_desc *d;
1650 
1651 	paddr = sc->re_ldata.re_rx_paddr[idx];
1652 	d = &sc->re_ldata.re_rx_list[idx];
1653 
1654 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1655 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1656 
1657 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1658 	if (idx == (sc->re_rx_desc_cnt - 1))
1659 		cmdstat |= RE_RDESC_CMD_EOR;
1660 	d->re_cmdstat = htole32(cmdstat);
1661 }
1662 
1663 static int
1664 re_newbuf_std(struct re_softc *sc, int idx, int init)
1665 {
1666 	bus_dma_segment_t seg;
1667 	bus_dmamap_t map;
1668 	struct mbuf *m;
1669 	int error, nsegs;
1670 
1671 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1672 	if (m == NULL) {
1673 		error = ENOBUFS;
1674 
1675 		if (init) {
1676 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1677 			return error;
1678 		} else {
1679 			goto back;
1680 		}
1681 	}
1682 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1683 
1684 	/*
1685 	 * NOTE:
1686 	 * re(4) chips need address of the receive buffer to be 8-byte
1687 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1688 	 */
1689 
1690 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1691 			sc->re_ldata.re_rx_spare, m,
1692 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1693 	if (error) {
1694 		m_freem(m);
1695 		if (init) {
1696 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1697 			return error;
1698 		} else {
1699 			goto back;
1700 		}
1701 	}
1702 
1703 	if (!init) {
1704 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1705 				sc->re_ldata.re_rx_dmamap[idx],
1706 				BUS_DMASYNC_POSTREAD);
1707 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1708 				  sc->re_ldata.re_rx_dmamap[idx]);
1709 	}
1710 	sc->re_ldata.re_rx_mbuf[idx] = m;
1711 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1712 
1713 	map = sc->re_ldata.re_rx_dmamap[idx];
1714 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1715 	sc->re_ldata.re_rx_spare = map;
1716 back:
1717 	re_setup_rxdesc(sc, idx);
1718 	return error;
1719 }
1720 
1721 static int
1722 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1723 {
1724 	struct mbuf *m;
1725 	struct re_jbuf *jbuf;
1726 	int error = 0;
1727 
1728 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1729 	if (m == NULL) {
1730 		error = ENOBUFS;
1731 		if (init) {
1732 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1733 			return error;
1734 		} else {
1735 			goto back;
1736 		}
1737 	}
1738 
1739 	jbuf = re_jbuf_alloc(sc);
1740 	if (jbuf == NULL) {
1741 		m_freem(m);
1742 
1743 		error = ENOBUFS;
1744 		if (init) {
1745 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1746 			return error;
1747 		} else {
1748 			goto back;
1749 		}
1750 	}
1751 
1752 	m->m_ext.ext_arg = jbuf;
1753 	m->m_ext.ext_buf = jbuf->re_buf;
1754 	m->m_ext.ext_free = re_jbuf_free;
1755 	m->m_ext.ext_ref = re_jbuf_ref;
1756 	m->m_ext.ext_size = sc->re_rxbuf_size;
1757 
1758 	m->m_data = m->m_ext.ext_buf;
1759 	m->m_flags |= M_EXT;
1760 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1761 
1762 	/*
1763 	 * NOTE:
1764 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1765 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1766 	 */
1767 
1768 	sc->re_ldata.re_rx_mbuf[idx] = m;
1769 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1770 back:
1771 	re_setup_rxdesc(sc, idx);
1772 	return error;
1773 }
1774 
1775 static int
1776 re_tx_list_init(struct re_softc *sc)
1777 {
1778 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1779 
1780 	/* Flush the TX descriptors */
1781 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1782 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1783 
1784 	sc->re_ldata.re_tx_prodidx = 0;
1785 	sc->re_ldata.re_tx_considx = 0;
1786 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1787 
1788 	return(0);
1789 }
1790 
1791 static int
1792 re_rx_list_init(struct re_softc *sc)
1793 {
1794 	int i, error;
1795 
1796 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1797 
1798 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1799 		error = sc->re_newbuf(sc, i, 1);
1800 		if (error)
1801 			return(error);
1802 	}
1803 
1804 	/* Flush the RX descriptors */
1805 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1806 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1807 
1808 	sc->re_ldata.re_rx_prodidx = 0;
1809 	sc->re_head = sc->re_tail = NULL;
1810 
1811 	return(0);
1812 }
1813 
1814 #define RE_IP4_PACKET	0x1
1815 #define RE_TCP_PACKET	0x2
1816 #define RE_UDP_PACKET	0x4
1817 
1818 static __inline uint8_t
1819 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1820 {
1821 	uint8_t packet_type = 0;
1822 
1823 	if (sc->re_caps & RE_C_MAC2) {
1824 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1825 			packet_type |= RE_IP4_PACKET;
1826 	} else {
1827 		if (rxstat & RE_RDESC_STAT_PROTOID)
1828 			packet_type |= RE_IP4_PACKET;
1829 	}
1830 	if (RE_TCPPKT(rxstat))
1831 		packet_type |= RE_TCP_PACKET;
1832 	else if (RE_UDPPKT(rxstat))
1833 		packet_type |= RE_UDP_PACKET;
1834 	return packet_type;
1835 }
1836 
1837 /*
1838  * RX handler for C+ and 8169. For the gigE chips, we support
1839  * the reception of jumbo frames that have been fragmented
1840  * across multiple 2K mbuf cluster buffers.
1841  */
1842 static int
1843 re_rxeof(struct re_softc *sc)
1844 {
1845 	struct ifnet *ifp = &sc->arpcom.ac_if;
1846 	struct mbuf *m;
1847 	struct re_desc 	*cur_rx;
1848 	uint32_t rxstat, rxctrl;
1849 	int i, total_len, rx = 0;
1850 	struct mbuf_chain chain[MAXCPU];
1851 
1852 	/* Invalidate the descriptor memory */
1853 
1854 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1855 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1856 
1857 	ether_input_chain_init(chain);
1858 
1859 	for (i = sc->re_ldata.re_rx_prodidx;
1860 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1861 		cur_rx = &sc->re_ldata.re_rx_list[i];
1862 		m = sc->re_ldata.re_rx_mbuf[i];
1863 		total_len = RE_RXBYTES(cur_rx);
1864 		rxstat = le32toh(cur_rx->re_cmdstat);
1865 		rxctrl = le32toh(cur_rx->re_control);
1866 
1867 		rx = 1;
1868 
1869 #ifdef INVARIANTS
1870 		if (sc->re_flags & RE_F_USE_JPOOL)
1871 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1872 #endif
1873 
1874 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1875 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1876 				re_setup_rxdesc(sc, i);
1877 				continue;
1878 			}
1879 
1880 			if (sc->re_newbuf(sc, i, 0)) {
1881 				/* Drop upcoming fragments */
1882 				sc->re_flags |= RE_F_DROP_RXFRAG;
1883 				continue;
1884 			}
1885 
1886 			m->m_len = MCLBYTES;
1887 			if (sc->re_head == NULL) {
1888 				sc->re_head = sc->re_tail = m;
1889 			} else {
1890 				sc->re_tail->m_next = m;
1891 				sc->re_tail = m;
1892 			}
1893 			continue;
1894 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1895 			/*
1896 			 * Last fragment of a multi-fragment packet.
1897 			 *
1898 			 * Since error already happened, this fragment
1899 			 * must be dropped as well as the fragment chain.
1900 			 */
1901 			re_setup_rxdesc(sc, i);
1902 			re_free_rxchain(sc);
1903 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1904 			continue;
1905 		}
1906 
1907 		/*
1908 		 * NOTE: for the 8139C+, the frame length field
1909 		 * is always 12 bits in size, but for the gigE chips,
1910 		 * it is 13 bits (since the max RX frame length is 16K).
1911 		 * Unfortunately, all 32 bits in the status word
1912 		 * were already used, so to make room for the extra
1913 		 * length bit, RealTek took out the 'frame alignment
1914 		 * error' bit and shifted the other status bits
1915 		 * over one slot. The OWN, EOR, FS and LS bits are
1916 		 * still in the same places. We have already extracted
1917 		 * the frame length and checked the OWN bit, so rather
1918 		 * than using an alternate bit mapping, we shift the
1919 		 * status bits one space to the right so we can evaluate
1920 		 * them using the 8169 status as though it was in the
1921 		 * same format as that of the 8139C+.
1922 		 */
1923 		if (!RE_IS_8139CP(sc))
1924 			rxstat >>= 1;
1925 
1926 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1927 			ifp->if_ierrors++;
1928 			/*
1929 			 * If this is part of a multi-fragment packet,
1930 			 * discard all the pieces.
1931 			 */
1932 			re_free_rxchain(sc);
1933 			re_setup_rxdesc(sc, i);
1934 			continue;
1935 		}
1936 
1937 		/*
1938 		 * If allocating a replacement mbuf fails,
1939 		 * reload the current one.
1940 		 */
1941 
1942 		if (sc->re_newbuf(sc, i, 0)) {
1943 			ifp->if_ierrors++;
1944 			continue;
1945 		}
1946 
1947 		if (sc->re_head != NULL) {
1948 			m->m_len = total_len % MCLBYTES;
1949 			/*
1950 			 * Special case: if there's 4 bytes or less
1951 			 * in this buffer, the mbuf can be discarded:
1952 			 * the last 4 bytes is the CRC, which we don't
1953 			 * care about anyway.
1954 			 */
1955 			if (m->m_len <= ETHER_CRC_LEN) {
1956 				sc->re_tail->m_len -=
1957 				    (ETHER_CRC_LEN - m->m_len);
1958 				m_freem(m);
1959 			} else {
1960 				m->m_len -= ETHER_CRC_LEN;
1961 				sc->re_tail->m_next = m;
1962 			}
1963 			m = sc->re_head;
1964 			sc->re_head = sc->re_tail = NULL;
1965 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1966 		} else {
1967 			m->m_pkthdr.len = m->m_len =
1968 			    (total_len - ETHER_CRC_LEN);
1969 		}
1970 
1971 		ifp->if_ipackets++;
1972 		m->m_pkthdr.rcvif = ifp;
1973 
1974 		/* Do RX checksumming if enabled */
1975 
1976 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1977 			uint8_t packet_type;
1978 
1979 			packet_type = re_packet_type(sc, rxstat, rxctrl);
1980 
1981 			/* Check IP header checksum */
1982 			if (packet_type & RE_IP4_PACKET) {
1983 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1984 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1985 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1986 			}
1987 
1988 			/* Check TCP/UDP checksum */
1989 			if (((packet_type & RE_TCP_PACKET) &&
1990 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1991 			    ((packet_type & RE_UDP_PACKET) &&
1992 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
1993 				m->m_pkthdr.csum_flags |=
1994 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1995 				    CSUM_FRAG_NOT_CHECKED;
1996 				m->m_pkthdr.csum_data = 0xffff;
1997 			}
1998 		}
1999 
2000 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2001 			m->m_flags |= M_VLANTAG;
2002 			m->m_pkthdr.ether_vlantag =
2003 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2004 		}
2005 		ether_input_chain(ifp, m, chain);
2006 	}
2007 
2008 	ether_input_dispatch(chain);
2009 
2010 	/* Flush the RX DMA ring */
2011 
2012 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
2013 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
2014 
2015 	sc->re_ldata.re_rx_prodidx = i;
2016 
2017 	return rx;
2018 }
2019 
2020 #undef RE_IP4_PACKET
2021 #undef RE_TCP_PACKET
2022 #undef RE_UDP_PACKET
2023 
2024 static int
2025 re_tx_collect(struct re_softc *sc)
2026 {
2027 	struct ifnet *ifp = &sc->arpcom.ac_if;
2028 	uint32_t txstat;
2029 	int idx, tx = 0;
2030 
2031 	/* Invalidate the TX descriptor list */
2032 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2033 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
2034 
2035 	for (idx = sc->re_ldata.re_tx_considx;
2036 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2037 	     RE_TXDESC_INC(sc, idx)) {
2038 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2039 		if (txstat & RE_TDESC_CMD_OWN)
2040 			break;
2041 
2042 		tx = 1;
2043 
2044 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2045 
2046 		/*
2047 		 * We only stash mbufs in the last descriptor
2048 		 * in a fragment chain, which also happens to
2049 		 * be the only place where the TX status bits
2050 		 * are valid.
2051 		 */
2052 		if (txstat & RE_TDESC_CMD_EOF) {
2053 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2054 			    sc->re_ldata.re_tx_dmamap[idx]);
2055 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2056 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2057 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2058 			    RE_TDESC_STAT_COLCNT))
2059 				ifp->if_collisions++;
2060 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2061 				ifp->if_oerrors++;
2062 			else
2063 				ifp->if_opackets++;
2064 		}
2065 		sc->re_ldata.re_tx_free++;
2066 	}
2067 	sc->re_ldata.re_tx_considx = idx;
2068 
2069 	return tx;
2070 }
2071 
2072 static int
2073 re_txeof(struct re_softc *sc)
2074 {
2075 	struct ifnet *ifp = &sc->arpcom.ac_if;
2076 	int tx;
2077 
2078 	tx = re_tx_collect(sc);
2079 
2080 	/* There is enough free TX descs */
2081 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2082 		ifp->if_flags &= ~IFF_OACTIVE;
2083 
2084 	/*
2085 	 * Some chips will ignore a second TX request issued while an
2086 	 * existing transmission is in progress. If the transmitter goes
2087 	 * idle but there are still packets waiting to be sent, we need
2088 	 * to restart the channel here to flush them out. This only seems
2089 	 * to be required with the PCIe devices.
2090 	 */
2091 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2092 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2093 	else
2094 		ifp->if_timer = 0;
2095 
2096 	return tx;
2097 }
2098 
2099 static void
2100 re_tick(void *xsc)
2101 {
2102 	struct re_softc *sc = xsc;
2103 
2104 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2105 	re_tick_serialized(xsc);
2106 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2107 }
2108 
2109 static void
2110 re_tick_serialized(void *xsc)
2111 {
2112 	struct re_softc *sc = xsc;
2113 	struct ifnet *ifp = &sc->arpcom.ac_if;
2114 	struct mii_data *mii;
2115 
2116 	ASSERT_SERIALIZED(ifp->if_serializer);
2117 
2118 	mii = device_get_softc(sc->re_miibus);
2119 	mii_tick(mii);
2120 	if (sc->re_flags & RE_F_LINKED) {
2121 		if (!(mii->mii_media_status & IFM_ACTIVE))
2122 			sc->re_flags &= ~RE_F_LINKED;
2123 	} else {
2124 		if (mii->mii_media_status & IFM_ACTIVE &&
2125 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2126 			sc->re_flags |= RE_F_LINKED;
2127 			if (!ifq_is_empty(&ifp->if_snd))
2128 				if_devstart(ifp);
2129 		}
2130 	}
2131 
2132 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2133 }
2134 
2135 #ifdef DEVICE_POLLING
2136 
2137 static void
2138 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2139 {
2140 	struct re_softc *sc = ifp->if_softc;
2141 
2142 	ASSERT_SERIALIZED(ifp->if_serializer);
2143 
2144 	switch(cmd) {
2145 	case POLL_REGISTER:
2146 		/* disable interrupts */
2147 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2148 		break;
2149 
2150 	case POLL_DEREGISTER:
2151 		/* enable interrupts */
2152 		re_setup_intr(sc, 1, sc->re_imtype);
2153 		break;
2154 
2155 	default:
2156 		sc->rxcycles = count;
2157 		re_rxeof(sc);
2158 		re_txeof(sc);
2159 
2160 		if (!ifq_is_empty(&ifp->if_snd))
2161 			if_devstart(ifp);
2162 
2163 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2164 			uint16_t       status;
2165 
2166 			status = CSR_READ_2(sc, RE_ISR);
2167 			if (status == 0xffff)
2168 				return;
2169 			if (status)
2170 				CSR_WRITE_2(sc, RE_ISR, status);
2171 
2172 			/*
2173 			 * XXX check behaviour on receiver stalls.
2174 			 */
2175 
2176 			if (status & RE_ISR_SYSTEM_ERR)
2177 				re_init(sc);
2178 		}
2179 		break;
2180 	}
2181 }
2182 #endif /* DEVICE_POLLING */
2183 
2184 static void
2185 re_intr(void *arg)
2186 {
2187 	struct re_softc	*sc = arg;
2188 	struct ifnet *ifp = &sc->arpcom.ac_if;
2189 	uint16_t status;
2190 	int rx, tx;
2191 
2192 	ASSERT_SERIALIZED(ifp->if_serializer);
2193 
2194 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2195 	    (ifp->if_flags & IFF_RUNNING) == 0)
2196 		return;
2197 
2198 	rx = tx = 0;
2199 	for (;;) {
2200 		status = CSR_READ_2(sc, RE_ISR);
2201 		/* If the card has gone away the read returns 0xffff. */
2202 		if (status == 0xffff)
2203 			break;
2204 		if (status)
2205 			CSR_WRITE_2(sc, RE_ISR, status);
2206 
2207 		if ((status & sc->re_intrs) == 0)
2208 			break;
2209 
2210 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2211 			rx |= re_rxeof(sc);
2212 
2213 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2214 			tx |= re_txeof(sc);
2215 
2216 		if (status & RE_ISR_SYSTEM_ERR)
2217 			re_init(sc);
2218 
2219 		if (status & RE_ISR_LINKCHG) {
2220 			callout_stop(&sc->re_timer);
2221 			re_tick_serialized(sc);
2222 		}
2223 	}
2224 
2225 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2226 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2227 			if ((tx | rx) == 0) {
2228 				/*
2229 				 * Nothing needs to be processed, fallback
2230 				 * to use TX/RX interrupts.
2231 				 */
2232 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2233 
2234 				/*
2235 				 * Recollect, mainly to avoid the possible
2236 				 * race introduced by changing interrupt
2237 				 * masks.
2238 				 */
2239 				re_rxeof(sc);
2240 				tx = re_txeof(sc);
2241 			} else {
2242 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2243 			}
2244 		} else if (tx | rx) {
2245 			/*
2246 			 * Assume that using simulated interrupt moderation
2247 			 * (hardware timer based) could reduce the interript
2248 			 * rate.
2249 			 */
2250 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2251 		}
2252 	}
2253 
2254 	if (tx && !ifq_is_empty(&ifp->if_snd))
2255 		if_devstart(ifp);
2256 }
2257 
2258 static int
2259 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2260 {
2261 	struct mbuf *m = *m_head;
2262 	bus_dma_segment_t segs[RE_MAXSEGS];
2263 	bus_dmamap_t map;
2264 	int error, maxsegs, idx, i, nsegs;
2265 	struct re_desc *d, *tx_ring;
2266 	uint32_t cmd_csum, ctl_csum, vlantag;
2267 
2268 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2269 		("not enough free TX desc\n"));
2270 
2271 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2272 
2273 	/*
2274 	 * Set up checksum offload. Note: checksum offload bits must
2275 	 * appear in all descriptors of a multi-descriptor transmit
2276 	 * attempt. (This is according to testing done with an 8169
2277 	 * chip. I'm not sure if this is a requirement or a bug.)
2278 	 */
2279 	cmd_csum = ctl_csum = 0;
2280 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2281 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2282 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2283 	}
2284 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2285 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2286 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2287 	}
2288 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2289 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2290 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2291 	}
2292 
2293 	/* For MAC2 chips, csum flags are set on re_control */
2294 	if (sc->re_caps & RE_C_MAC2)
2295 		cmd_csum = 0;
2296 	else
2297 		ctl_csum = 0;
2298 
2299 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2300 		/*
2301 		 * With some of the RealTek chips, using the checksum offload
2302 		 * support in conjunction with the autopadding feature results
2303 		 * in the transmission of corrupt frames. For example, if we
2304 		 * need to send a really small IP fragment that's less than 60
2305 		 * bytes in size, and IP header checksumming is enabled, the
2306 		 * resulting ethernet frame that appears on the wire will
2307 		 * have garbled payload. To work around this, if TX checksum
2308 		 * offload is enabled, we always manually pad short frames out
2309 		 * to the minimum ethernet frame size.
2310 		 *
2311 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2312 		 * with PCIe adapters seems to result in bad checksums.
2313 		 */
2314 		if ((m->m_pkthdr.csum_flags &
2315 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2316 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2317 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2318 			error = m_devpad(m, RE_MIN_FRAMELEN);
2319 			if (error)
2320 				goto back;
2321 		}
2322 	}
2323 
2324 	vlantag = 0;
2325 	if (m->m_flags & M_VLANTAG) {
2326 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2327 			  RE_TDESC_CTL_INSTAG;
2328 	}
2329 
2330 	maxsegs = sc->re_ldata.re_tx_free;
2331 	if (maxsegs > RE_MAXSEGS)
2332 		maxsegs = RE_MAXSEGS;
2333 
2334 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2335 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2336 	if (error)
2337 		goto back;
2338 
2339 	m = *m_head;
2340 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2341 
2342 	/*
2343 	 * Map the segment array into descriptors.  We also keep track
2344 	 * of the end of the ring and set the end-of-ring bits as needed,
2345 	 * and we set the ownership bits in all except the very first
2346 	 * descriptor, whose ownership bits will be turned on later.
2347 	 */
2348 	tx_ring = sc->re_ldata.re_tx_list;
2349 	idx = *idx0;
2350 	i = 0;
2351 	for (;;) {
2352 		uint32_t cmdstat;
2353 
2354 		d = &tx_ring[idx];
2355 
2356 		cmdstat = segs[i].ds_len;
2357 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2358 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2359 		if (i == 0)
2360 			cmdstat |= RE_TDESC_CMD_SOF;
2361 		else
2362 			cmdstat |= RE_TDESC_CMD_OWN;
2363 		if (idx == (sc->re_tx_desc_cnt - 1))
2364 			cmdstat |= RE_TDESC_CMD_EOR;
2365 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2366 		d->re_control = htole32(ctl_csum | vlantag);
2367 
2368 		i++;
2369 		if (i == nsegs)
2370 			break;
2371 		RE_TXDESC_INC(sc, idx);
2372 	}
2373 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2374 
2375 	/* Transfer ownership of packet to the chip. */
2376 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2377 	if (*idx0 != idx)
2378 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2379 
2380 	/*
2381 	 * Insure that the map for this transmission
2382 	 * is placed at the array index of the last descriptor
2383 	 * in this chain.
2384 	 */
2385 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2386 	sc->re_ldata.re_tx_dmamap[idx] = map;
2387 
2388 	sc->re_ldata.re_tx_mbuf[idx] = m;
2389 	sc->re_ldata.re_tx_free -= nsegs;
2390 
2391 	RE_TXDESC_INC(sc, idx);
2392 	*idx0 = idx;
2393 back:
2394 	if (error) {
2395 		m_freem(*m_head);
2396 		*m_head = NULL;
2397 	}
2398 	return error;
2399 }
2400 
2401 /*
2402  * Main transmit routine for C+ and gigE NICs.
2403  */
2404 
2405 static void
2406 re_start(struct ifnet *ifp)
2407 {
2408 	struct re_softc	*sc = ifp->if_softc;
2409 	struct mbuf *m_head;
2410 	int idx, need_trans, oactive, error;
2411 
2412 	ASSERT_SERIALIZED(ifp->if_serializer);
2413 
2414 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2415 		ifq_purge(&ifp->if_snd);
2416 		return;
2417 	}
2418 
2419 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2420 		return;
2421 
2422 	idx = sc->re_ldata.re_tx_prodidx;
2423 
2424 	need_trans = 0;
2425 	oactive = 0;
2426 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2427 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2428 			if (!oactive) {
2429 				if (re_tx_collect(sc)) {
2430 					oactive = 1;
2431 					continue;
2432 				}
2433 			}
2434 			ifp->if_flags |= IFF_OACTIVE;
2435 			break;
2436 		}
2437 
2438 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2439 		if (m_head == NULL)
2440 			break;
2441 
2442 		error = re_encap(sc, &m_head, &idx);
2443 		if (error) {
2444 			/* m_head is freed by re_encap(), if we reach here */
2445 			ifp->if_oerrors++;
2446 
2447 			if (error == EFBIG && !oactive) {
2448 				if (re_tx_collect(sc)) {
2449 					oactive = 1;
2450 					continue;
2451 				}
2452 			}
2453 			ifp->if_flags |= IFF_OACTIVE;
2454 			break;
2455 		}
2456 
2457 		oactive = 0;
2458 		need_trans = 1;
2459 
2460 		/*
2461 		 * If there's a BPF listener, bounce a copy of this frame
2462 		 * to him.
2463 		 */
2464 		ETHER_BPF_MTAP(ifp, m_head);
2465 	}
2466 
2467 	if (!need_trans)
2468 		return;
2469 
2470 	/* Flush the TX descriptors */
2471 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2472 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2473 
2474 	sc->re_ldata.re_tx_prodidx = idx;
2475 
2476 	/*
2477 	 * RealTek put the TX poll request register in a different
2478 	 * location on the 8169 gigE chip. I don't know why.
2479 	 */
2480 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2481 
2482 	/*
2483 	 * Set a timeout in case the chip goes out to lunch.
2484 	 */
2485 	ifp->if_timer = 5;
2486 }
2487 
2488 static void
2489 re_init(void *xsc)
2490 {
2491 	struct re_softc *sc = xsc;
2492 	struct ifnet *ifp = &sc->arpcom.ac_if;
2493 	struct mii_data *mii;
2494 	int error, framelen;
2495 
2496 	ASSERT_SERIALIZED(ifp->if_serializer);
2497 
2498 	mii = device_get_softc(sc->re_miibus);
2499 
2500 	/*
2501 	 * Cancel pending I/O and free all RX/TX buffers.
2502 	 */
2503 	re_stop(sc);
2504 
2505 	if (sc->re_caps & RE_C_CONTIGRX) {
2506 		if (ifp->if_mtu > ETHERMTU) {
2507 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2508 			sc->re_flags |= RE_F_USE_JPOOL;
2509 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2510 			sc->re_newbuf = re_newbuf_jumbo;
2511 		} else {
2512 			sc->re_flags &= ~RE_F_USE_JPOOL;
2513 			sc->re_rxbuf_size = MCLBYTES;
2514 			sc->re_newbuf = re_newbuf_std;
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * Adjust max read request size according to MTU; mainly to
2520 	 * improve TX performance for common case (ETHERMTU) on GigE
2521 	 * NICs.  However, this could _not_ be done on 10/100 only
2522 	 * NICs; their DMA engines will malfunction using non-default
2523 	 * max read request size.
2524 	 */
2525 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2526 		if (ifp->if_mtu > ETHERMTU) {
2527 			/*
2528 			 * 512 seems to be the only value that works
2529 			 * reliably with jumbo frame
2530 			 */
2531 			pcie_set_max_readrq(sc->re_dev,
2532 				PCIEM_DEVCTL_MAX_READRQ_512);
2533 		} else {
2534 			pcie_set_max_readrq(sc->re_dev,
2535 				PCIEM_DEVCTL_MAX_READRQ_4096);
2536 		}
2537 	}
2538 
2539 	/*
2540 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2541 	 * RX checksum offload. We must configure the C+ register
2542 	 * before all others.
2543 	 */
2544 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2545 		    RE_CPLUSCMD_PCI_MRW |
2546 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2547 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2548 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2549 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2550 
2551 	/*
2552 	 * Init our MAC address.  Even though the chipset
2553 	 * documentation doesn't mention it, we need to enter "Config
2554 	 * register write enable" mode to modify the ID registers.
2555 	 */
2556 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2557 	CSR_WRITE_4(sc, RE_IDR0,
2558 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2559 	CSR_WRITE_2(sc, RE_IDR4,
2560 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2561 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2562 
2563 	/*
2564 	 * For C+ mode, initialize the RX descriptors and mbufs.
2565 	 */
2566 	error = re_rx_list_init(sc);
2567 	if (error) {
2568 		re_stop(sc);
2569 		return;
2570 	}
2571 	error = re_tx_list_init(sc);
2572 	if (error) {
2573 		re_stop(sc);
2574 		return;
2575 	}
2576 
2577 	/*
2578 	 * Load the addresses of the RX and TX lists into the chip.
2579 	 */
2580 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2581 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2582 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2583 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2584 
2585 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2586 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2587 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2588 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2589 
2590 	/*
2591 	 * Enable transmit and receive.
2592 	 */
2593 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2594 
2595 	/*
2596 	 * Set the initial TX and RX configuration.
2597 	 */
2598 	if (sc->re_flags & RE_F_TESTMODE) {
2599 		if (!RE_IS_8139CP(sc))
2600 			CSR_WRITE_4(sc, RE_TXCFG,
2601 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2602 		else
2603 			CSR_WRITE_4(sc, RE_TXCFG,
2604 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2605 	} else
2606 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2607 
2608 	framelen = RE_FRAMELEN(ifp->if_mtu);
2609 	if (framelen < MCLBYTES)
2610 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2611 	else
2612 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2613 
2614 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2615 
2616 	/*
2617 	 * Program the multicast filter, if necessary.
2618 	 */
2619 	re_setmulti(sc);
2620 
2621 #ifdef DEVICE_POLLING
2622 	/*
2623 	 * Disable interrupts if we are polling.
2624 	 */
2625 	if (ifp->if_flags & IFF_POLLING)
2626 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2627 	else	/* otherwise ... */
2628 #endif /* DEVICE_POLLING */
2629 	/*
2630 	 * Enable interrupts.
2631 	 */
2632 	if (sc->re_flags & RE_F_TESTMODE)
2633 		CSR_WRITE_2(sc, RE_IMR, 0);
2634 	else
2635 		re_setup_intr(sc, 1, sc->re_imtype);
2636 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2637 
2638 	/* Start RX/TX process. */
2639 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2640 
2641 #ifdef notdef
2642 	/* Enable receiver and transmitter. */
2643 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2644 #endif
2645 
2646 	/*
2647 	 * For 8169 gigE NICs, set the max allowed RX packet
2648 	 * size so we can receive jumbo frames.
2649 	 */
2650 	if (!RE_IS_8139CP(sc)) {
2651 		if (sc->re_caps & RE_C_CONTIGRX)
2652 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2653 		else
2654 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2655 	}
2656 
2657 	if (sc->re_flags & RE_F_TESTMODE)
2658 		return;
2659 
2660 	mii_mediachg(mii);
2661 
2662 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2663 
2664 	ifp->if_flags |= IFF_RUNNING;
2665 	ifp->if_flags &= ~IFF_OACTIVE;
2666 
2667 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2668 }
2669 
2670 /*
2671  * Set media options.
2672  */
2673 static int
2674 re_ifmedia_upd(struct ifnet *ifp)
2675 {
2676 	struct re_softc *sc = ifp->if_softc;
2677 	struct mii_data *mii;
2678 
2679 	ASSERT_SERIALIZED(ifp->if_serializer);
2680 
2681 	mii = device_get_softc(sc->re_miibus);
2682 	mii_mediachg(mii);
2683 
2684 	return(0);
2685 }
2686 
2687 /*
2688  * Report current media status.
2689  */
2690 static void
2691 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2692 {
2693 	struct re_softc *sc = ifp->if_softc;
2694 	struct mii_data *mii;
2695 
2696 	ASSERT_SERIALIZED(ifp->if_serializer);
2697 
2698 	mii = device_get_softc(sc->re_miibus);
2699 
2700 	mii_pollstat(mii);
2701 	ifmr->ifm_active = mii->mii_media_active;
2702 	ifmr->ifm_status = mii->mii_media_status;
2703 }
2704 
2705 static int
2706 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2707 {
2708 	struct re_softc *sc = ifp->if_softc;
2709 	struct ifreq *ifr = (struct ifreq *) data;
2710 	struct mii_data *mii;
2711 	int error = 0, mask;
2712 
2713 	ASSERT_SERIALIZED(ifp->if_serializer);
2714 
2715 	switch(command) {
2716 	case SIOCSIFMTU:
2717 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2718 			error = EINVAL;
2719 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2720 			ifp->if_mtu = ifr->ifr_mtu;
2721 			if (ifp->if_flags & IFF_RUNNING)
2722 				ifp->if_init(sc);
2723 		}
2724 		break;
2725 
2726 	case SIOCSIFFLAGS:
2727 		if (ifp->if_flags & IFF_UP) {
2728 			if (ifp->if_flags & IFF_RUNNING) {
2729 				if ((ifp->if_flags ^ sc->re_if_flags) &
2730 				    (IFF_PROMISC | IFF_ALLMULTI))
2731 					re_setmulti(sc);
2732 			} else {
2733 				re_init(sc);
2734 			}
2735 		} else if (ifp->if_flags & IFF_RUNNING) {
2736 			re_stop(sc);
2737 		}
2738 		sc->re_if_flags = ifp->if_flags;
2739 		break;
2740 
2741 	case SIOCADDMULTI:
2742 	case SIOCDELMULTI:
2743 		re_setmulti(sc);
2744 		break;
2745 
2746 	case SIOCGIFMEDIA:
2747 	case SIOCSIFMEDIA:
2748 		mii = device_get_softc(sc->re_miibus);
2749 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2750 		break;
2751 
2752 	case SIOCSIFCAP:
2753 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2754 		       ifp->if_capabilities;
2755 		ifp->if_capenable ^= mask;
2756 
2757 		if (mask & IFCAP_HWCSUM) {
2758 			if (ifp->if_capenable & IFCAP_TXCSUM)
2759 				ifp->if_hwassist = RE_CSUM_FEATURES;
2760 			else
2761 				ifp->if_hwassist = 0;
2762 		}
2763 		if (mask && (ifp->if_flags & IFF_RUNNING))
2764 			re_init(sc);
2765 		break;
2766 
2767 	default:
2768 		error = ether_ioctl(ifp, command, data);
2769 		break;
2770 	}
2771 	return(error);
2772 }
2773 
2774 static void
2775 re_watchdog(struct ifnet *ifp)
2776 {
2777 	struct re_softc *sc = ifp->if_softc;
2778 
2779 	ASSERT_SERIALIZED(ifp->if_serializer);
2780 
2781 	if_printf(ifp, "watchdog timeout\n");
2782 
2783 	ifp->if_oerrors++;
2784 
2785 	re_txeof(sc);
2786 	re_rxeof(sc);
2787 
2788 	re_init(sc);
2789 
2790 	if (!ifq_is_empty(&ifp->if_snd))
2791 		if_devstart(ifp);
2792 }
2793 
2794 /*
2795  * Stop the adapter and free any mbufs allocated to the
2796  * RX and TX lists.
2797  */
2798 static void
2799 re_stop(struct re_softc *sc)
2800 {
2801 	struct ifnet *ifp = &sc->arpcom.ac_if;
2802 	int i;
2803 
2804 	ASSERT_SERIALIZED(ifp->if_serializer);
2805 
2806 	/* Reset the adapter. */
2807 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2808 
2809 	ifp->if_timer = 0;
2810 	callout_stop(&sc->re_timer);
2811 
2812 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2813 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2814 
2815 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2816 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2817 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2818 
2819 	re_free_rxchain(sc);
2820 
2821 	/* Free the TX list buffers. */
2822 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2823 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2824 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2825 					  sc->re_ldata.re_tx_dmamap[i]);
2826 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2827 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2828 		}
2829 	}
2830 
2831 	/* Free the RX list buffers. */
2832 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2833 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2834 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2835 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2836 						  sc->re_ldata.re_rx_dmamap[i]);
2837 			}
2838 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2839 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2840 		}
2841 	}
2842 }
2843 
2844 /*
2845  * Device suspend routine.  Stop the interface and save some PCI
2846  * settings in case the BIOS doesn't restore them properly on
2847  * resume.
2848  */
2849 static int
2850 re_suspend(device_t dev)
2851 {
2852 #ifndef BURN_BRIDGES
2853 	int i;
2854 #endif
2855 	struct re_softc *sc = device_get_softc(dev);
2856 	struct ifnet *ifp = &sc->arpcom.ac_if;
2857 
2858 	lwkt_serialize_enter(ifp->if_serializer);
2859 
2860 	re_stop(sc);
2861 
2862 #ifndef BURN_BRIDGES
2863 	for (i = 0; i < 5; i++)
2864 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2865 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2866 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2867 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2868 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2869 #endif
2870 
2871 	sc->re_flags |= RE_F_SUSPENDED;
2872 
2873 	lwkt_serialize_exit(ifp->if_serializer);
2874 
2875 	return (0);
2876 }
2877 
2878 /*
2879  * Device resume routine.  Restore some PCI settings in case the BIOS
2880  * doesn't, re-enable busmastering, and restart the interface if
2881  * appropriate.
2882  */
2883 static int
2884 re_resume(device_t dev)
2885 {
2886 	struct re_softc *sc = device_get_softc(dev);
2887 	struct ifnet *ifp = &sc->arpcom.ac_if;
2888 #ifndef BURN_BRIDGES
2889 	int i;
2890 #endif
2891 
2892 	lwkt_serialize_enter(ifp->if_serializer);
2893 
2894 #ifndef BURN_BRIDGES
2895 	/* better way to do this? */
2896 	for (i = 0; i < 5; i++)
2897 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2898 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2899 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2900 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2901 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2902 
2903 	/* reenable busmastering */
2904 	pci_enable_busmaster(dev);
2905 	pci_enable_io(dev, SYS_RES_IOPORT);
2906 #endif
2907 
2908 	/* reinitialize interface if necessary */
2909 	if (ifp->if_flags & IFF_UP)
2910 		re_init(sc);
2911 
2912 	sc->re_flags &= ~RE_F_SUSPENDED;
2913 
2914 	lwkt_serialize_exit(ifp->if_serializer);
2915 
2916 	return (0);
2917 }
2918 
2919 /*
2920  * Stop all chip I/O so that the kernel's probe routines don't
2921  * get confused by errant DMAs when rebooting.
2922  */
2923 static void
2924 re_shutdown(device_t dev)
2925 {
2926 	struct re_softc *sc = device_get_softc(dev);
2927 	struct ifnet *ifp = &sc->arpcom.ac_if;
2928 
2929 	lwkt_serialize_enter(ifp->if_serializer);
2930 	re_stop(sc);
2931 	lwkt_serialize_exit(ifp->if_serializer);
2932 }
2933 
2934 static int
2935 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2936 {
2937 	struct re_softc *sc = arg1;
2938 
2939 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2940 }
2941 
2942 static int
2943 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2944 {
2945 	struct re_softc *sc = arg1;
2946 
2947 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2948 }
2949 
2950 static int
2951 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2952 {
2953 	struct re_softc *sc = arg1;
2954 	struct ifnet *ifp = &sc->arpcom.ac_if;
2955 	int error, v;
2956 
2957 	lwkt_serialize_enter(ifp->if_serializer);
2958 
2959 	v = *hwtime;
2960 	error = sysctl_handle_int(oidp, &v, 0, req);
2961 	if (error || req->newptr == NULL)
2962 		goto back;
2963 
2964 	if (v <= 0) {
2965 		error = EINVAL;
2966 		goto back;
2967 	}
2968 
2969 	if (v != *hwtime) {
2970 		*hwtime = v;
2971 
2972 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2973 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2974 			re_setup_hw_im(sc);
2975 	}
2976 back:
2977 	lwkt_serialize_exit(ifp->if_serializer);
2978 	return error;
2979 }
2980 
2981 static int
2982 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2983 {
2984 	struct re_softc *sc = arg1;
2985 	struct ifnet *ifp = &sc->arpcom.ac_if;
2986 	int error, v;
2987 
2988 	lwkt_serialize_enter(ifp->if_serializer);
2989 
2990 	v = sc->re_sim_time;
2991 	error = sysctl_handle_int(oidp, &v, 0, req);
2992 	if (error || req->newptr == NULL)
2993 		goto back;
2994 
2995 	if (v <= 0) {
2996 		error = EINVAL;
2997 		goto back;
2998 	}
2999 
3000 	if (v != sc->re_sim_time) {
3001 		sc->re_sim_time = v;
3002 
3003 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3004 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3005 #ifdef foo
3006 			int reg;
3007 
3008 			/*
3009 			 * Following code causes various strange
3010 			 * performance problems.  Hmm ...
3011 			 */
3012 			CSR_WRITE_2(sc, RE_IMR, 0);
3013 			if (!RE_IS_8139CP(sc))
3014 				reg = RE_TIMERINT_8169;
3015 			else
3016 				reg = RE_TIMERINT;
3017 			CSR_WRITE_4(sc, reg, 0);
3018 			CSR_READ_4(sc, reg); /* flush */
3019 
3020 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3021 			re_setup_sim_im(sc);
3022 #else
3023 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3024 			DELAY(10);
3025 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3026 #endif
3027 		}
3028 	}
3029 back:
3030 	lwkt_serialize_exit(ifp->if_serializer);
3031 	return error;
3032 }
3033 
3034 static int
3035 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3036 {
3037 	struct re_softc *sc = arg1;
3038 	struct ifnet *ifp = &sc->arpcom.ac_if;
3039 	int error, v;
3040 
3041 	lwkt_serialize_enter(ifp->if_serializer);
3042 
3043 	v = sc->re_imtype;
3044 	error = sysctl_handle_int(oidp, &v, 0, req);
3045 	if (error || req->newptr == NULL)
3046 		goto back;
3047 
3048 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3049 		error = EINVAL;
3050 		goto back;
3051 	}
3052 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3053 		/* Can't do hardware interrupt moderation */
3054 		error = EOPNOTSUPP;
3055 		goto back;
3056 	}
3057 
3058 	if (v != sc->re_imtype) {
3059 		sc->re_imtype = v;
3060 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3061 		    IFF_RUNNING)
3062 			re_setup_intr(sc, 1, sc->re_imtype);
3063 	}
3064 back:
3065 	lwkt_serialize_exit(ifp->if_serializer);
3066 	return error;
3067 }
3068 
3069 static void
3070 re_setup_hw_im(struct re_softc *sc)
3071 {
3072 	KKASSERT(sc->re_caps & RE_C_HWIM);
3073 
3074 	/*
3075 	 * Interrupt moderation
3076 	 *
3077 	 * 0xABCD
3078 	 * A - unknown (maybe TX related)
3079 	 * B - TX timer (unit: 25us)
3080 	 * C - unknown (maybe RX related)
3081 	 * D - RX timer (unit: 25us)
3082 	 *
3083 	 *
3084 	 * re(4)'s interrupt moderation is actually controlled by
3085 	 * two variables, like most other NICs (bge, bce etc.)
3086 	 * o  timer
3087 	 * o  number of packets [P]
3088 	 *
3089 	 * The logic relationship between these two variables is
3090 	 * similar to other NICs too:
3091 	 * if (timer expire || packets > [P])
3092 	 *     Interrupt is delivered
3093 	 *
3094 	 * Currently we only know how to set 'timer', but not
3095 	 * 'number of packets', which should be ~30, as far as I
3096 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3097 	 */
3098 	CSR_WRITE_2(sc, RE_IM,
3099 		    RE_IM_RXTIME(sc->re_rx_time) |
3100 		    RE_IM_TXTIME(sc->re_tx_time) |
3101 		    RE_IM_MAGIC);
3102 }
3103 
3104 static void
3105 re_disable_hw_im(struct re_softc *sc)
3106 {
3107 	if (sc->re_caps & RE_C_HWIM)
3108 		CSR_WRITE_2(sc, RE_IM, 0);
3109 }
3110 
3111 static void
3112 re_setup_sim_im(struct re_softc *sc)
3113 {
3114 	if (!RE_IS_8139CP(sc)) {
3115 		uint32_t ticks;
3116 
3117 		/*
3118 		 * Datasheet says tick decreases at bus speed,
3119 		 * but it seems the clock runs a little bit
3120 		 * faster, so we do some compensation here.
3121 		 */
3122 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3123 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3124 	} else {
3125 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3126 	}
3127 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3128 	sc->re_flags |= RE_F_TIMER_INTR;
3129 }
3130 
3131 static void
3132 re_disable_sim_im(struct re_softc *sc)
3133 {
3134 	if (!RE_IS_8139CP(sc))
3135 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3136 	else
3137 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3138 	sc->re_flags &= ~RE_F_TIMER_INTR;
3139 }
3140 
3141 static void
3142 re_config_imtype(struct re_softc *sc, int imtype)
3143 {
3144 	switch (imtype) {
3145 	case RE_IMTYPE_HW:
3146 		KKASSERT(sc->re_caps & RE_C_HWIM);
3147 		/* FALL THROUGH */
3148 	case RE_IMTYPE_NONE:
3149 		sc->re_intrs = RE_INTRS;
3150 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3151 				RE_ISR_RX_OVERRUN;
3152 		sc->re_tx_ack = RE_ISR_TX_OK;
3153 		break;
3154 
3155 	case RE_IMTYPE_SIM:
3156 		sc->re_intrs = RE_INTRS_TIMER;
3157 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3158 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3159 		break;
3160 
3161 	default:
3162 		panic("%s: unknown imtype %d\n",
3163 		      sc->arpcom.ac_if.if_xname, imtype);
3164 	}
3165 }
3166 
3167 static void
3168 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3169 {
3170 	re_config_imtype(sc, imtype);
3171 
3172 	if (enable_intrs)
3173 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3174 	else
3175 		CSR_WRITE_2(sc, RE_IMR, 0);
3176 
3177 	switch (imtype) {
3178 	case RE_IMTYPE_NONE:
3179 		re_disable_sim_im(sc);
3180 		re_disable_hw_im(sc);
3181 		break;
3182 
3183 	case RE_IMTYPE_HW:
3184 		KKASSERT(sc->re_caps & RE_C_HWIM);
3185 		re_disable_sim_im(sc);
3186 		re_setup_hw_im(sc);
3187 		break;
3188 
3189 	case RE_IMTYPE_SIM:
3190 		re_disable_hw_im(sc);
3191 		re_setup_sim_im(sc);
3192 		break;
3193 
3194 	default:
3195 		panic("%s: unknown imtype %d\n",
3196 		      sc->arpcom.ac_if.if_xname, imtype);
3197 	}
3198 }
3199 
3200 static void
3201 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3202 {
3203 	int i;
3204 
3205 	if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3206 		uint16_t re_did;
3207 
3208 		re_get_eewidth(sc);
3209 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3210 		if (re_did == 0x8128) {
3211 			uint16_t as[ETHER_ADDR_LEN / 2];
3212 
3213 			/*
3214 			 * Get station address from the EEPROM.
3215 			 */
3216 			re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3217 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3218 				as[i] = le16toh(as[i]);
3219 			bcopy(as, eaddr, sizeof(eaddr));
3220 			return;
3221 		}
3222 	}
3223 
3224 	/*
3225 	 * Get station address from IDRx.
3226 	 */
3227 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3228 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3229 }
3230 
3231 static int
3232 re_jpool_alloc(struct re_softc *sc)
3233 {
3234 	struct re_list_data *ldata = &sc->re_ldata;
3235 	struct re_jbuf *jbuf;
3236 	bus_addr_t paddr;
3237 	bus_size_t jpool_size;
3238 	bus_dmamem_t dmem;
3239 	caddr_t buf;
3240 	int i, error;
3241 
3242 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3243 
3244 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3245 				 M_DEVBUF, M_WAITOK | M_ZERO);
3246 
3247 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3248 
3249 	error = bus_dmamem_coherent(sc->re_parent_tag,
3250 			RE_RXBUF_ALIGN, 0,
3251 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3252 			jpool_size, BUS_DMA_WAITOK, &dmem);
3253 	if (error) {
3254 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3255 		return error;
3256 	}
3257 	ldata->re_jpool_tag = dmem.dmem_tag;
3258 	ldata->re_jpool_map = dmem.dmem_map;
3259 	ldata->re_jpool = dmem.dmem_addr;
3260 	paddr = dmem.dmem_busaddr;
3261 
3262 	/* ..and split it into 9KB chunks */
3263 	SLIST_INIT(&ldata->re_jbuf_free);
3264 
3265 	buf = ldata->re_jpool;
3266 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3267 		jbuf = &ldata->re_jbuf[i];
3268 
3269 		jbuf->re_sc = sc;
3270 		jbuf->re_inuse = 0;
3271 		jbuf->re_slot = i;
3272 		jbuf->re_buf = buf;
3273 		jbuf->re_paddr = paddr;
3274 
3275 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3276 
3277 		buf += RE_JBUF_SIZE;
3278 		paddr += RE_JBUF_SIZE;
3279 	}
3280 	return 0;
3281 }
3282 
3283 static void
3284 re_jpool_free(struct re_softc *sc)
3285 {
3286 	struct re_list_data *ldata = &sc->re_ldata;
3287 
3288 	if (ldata->re_jpool_tag != NULL) {
3289 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3290 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3291 				ldata->re_jpool_map);
3292 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3293 		ldata->re_jpool_tag = NULL;
3294 	}
3295 
3296 	if (ldata->re_jbuf != NULL) {
3297 		kfree(ldata->re_jbuf, M_DEVBUF);
3298 		ldata->re_jbuf = NULL;
3299 	}
3300 }
3301 
3302 static struct re_jbuf *
3303 re_jbuf_alloc(struct re_softc *sc)
3304 {
3305 	struct re_list_data *ldata = &sc->re_ldata;
3306 	struct re_jbuf *jbuf;
3307 
3308 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3309 
3310 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3311 	if (jbuf != NULL) {
3312 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3313 		jbuf->re_inuse = 1;
3314 	}
3315 
3316 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3317 
3318 	return jbuf;
3319 }
3320 
3321 static void
3322 re_jbuf_free(void *arg)
3323 {
3324 	struct re_jbuf *jbuf = arg;
3325 	struct re_softc *sc = jbuf->re_sc;
3326 	struct re_list_data *ldata = &sc->re_ldata;
3327 
3328 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3329 		panic("%s: free wrong jumbo buffer\n",
3330 		      sc->arpcom.ac_if.if_xname);
3331 	} else if (jbuf->re_inuse == 0) {
3332 		panic("%s: jumbo buffer already freed\n",
3333 		      sc->arpcom.ac_if.if_xname);
3334 	}
3335 
3336 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3337 	atomic_subtract_int(&jbuf->re_inuse, 1);
3338 	if (jbuf->re_inuse == 0)
3339 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3340 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3341 }
3342 
3343 static void
3344 re_jbuf_ref(void *arg)
3345 {
3346 	struct re_jbuf *jbuf = arg;
3347 	struct re_softc *sc = jbuf->re_sc;
3348 	struct re_list_data *ldata = &sc->re_ldata;
3349 
3350 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3351 		panic("%s: ref wrong jumbo buffer\n",
3352 		      sc->arpcom.ac_if.if_xname);
3353 	} else if (jbuf->re_inuse == 0) {
3354 		panic("%s: jumbo buffer already freed\n",
3355 		      sc->arpcom.ac_if.if_xname);
3356 	}
3357 	atomic_add_int(&jbuf->re_inuse, 1);
3358 }
3359