xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision c6cf4f8f1ebc9e3fe2a8c566f08adfc86122c7bf)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.10 2005/02/20 00:36:23 joerg Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51  * and the RTL8110S.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7.5K, so the max MTU possible with this
111  * driver is 7500 bytes.
112  */
113 
114 #include <sys/param.h>
115 #include <sys/endian.h>
116 #include <sys/systm.h>
117 #include <sys/sockio.h>
118 #include <sys/mbuf.h>
119 #include <sys/malloc.h>
120 #include <sys/module.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 
124 #include <net/if.h>
125 #include <net/ifq_var.h>
126 #include <net/if_arp.h>
127 #include <net/ethernet.h>
128 #include <net/if_dl.h>
129 #include <net/if_media.h>
130 #include <net/if_types.h>
131 #include <net/vlan/if_vlan_var.h>
132 
133 #include <net/bpf.h>
134 
135 #include <machine/bus_pio.h>
136 #include <machine/bus_memio.h>
137 #include <machine/bus.h>
138 #include <machine/resource.h>
139 #include <sys/bus.h>
140 #include <sys/rman.h>
141 
142 #include <dev/netif/mii_layer/mii.h>
143 #include <dev/netif/mii_layer/miivar.h>
144 
145 #include <bus/pci/pcireg.h>
146 #include <bus/pci/pcivar.h>
147 
148 /* "controller miibus0" required.  See GENERIC if you get errors here. */
149 #include "miibus_if.h"
150 
151 #include <dev/netif/re/if_rereg.h>
152 
153 /*
154  * The hardware supports checksumming but, as usual, some chipsets screw it
155  * all up and produce bogus packets, so we disable it by default.
156  */
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 #define RE_DISABLE_HWCSUM
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static struct re_type re_devs[] = {
164 	{ RT_VENDORID, RT_DEVICEID_8139, RE_HWREV_8139CPLUS,
165 		"RealTek 8139C+ 10/100BaseTX" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169,
167 		"RealTek 8169 Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169S,
169 		"RealTek 8169S Single-chip Gigabit Ethernet" },
170 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8110S,
171 		"RealTek 8110S Single-chip Gigabit Ethernet" },
172 	{ 0, 0, 0, NULL }
173 };
174 
175 static struct re_hwrev re_hwrevs[] = {
176 	{ RE_HWREV_8139CPLUS, RE_8139CPLUS, "C+"},
177 	{ RE_HWREV_8169, RE_8169, "8169"},
178 	{ RE_HWREV_8169S, RE_8169, "8169S"},
179 	{ RE_HWREV_8110S, RE_8169, "8110S"},
180 	{ 0, 0, NULL }
181 };
182 
183 static int	re_probe(device_t);
184 static int	re_attach(device_t);
185 static int	re_detach(device_t);
186 
187 static int	re_encap(struct re_softc *, struct mbuf **, int *, int *);
188 
189 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
190 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
191 				bus_size_t, int);
192 static int	re_allocmem(device_t, struct re_softc *);
193 static int	re_newbuf(struct re_softc *, int, struct mbuf *);
194 static int	re_rx_list_init(struct re_softc *);
195 static int	re_tx_list_init(struct re_softc *);
196 static void	re_rxeof(struct re_softc *);
197 static void	re_txeof(struct re_softc *);
198 static void	re_intr(void *);
199 static void	re_tick(void *);
200 static void	re_start(struct ifnet *);
201 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
202 static void	re_init(void *);
203 static void	re_stop(struct re_softc *);
204 static void	re_watchdog(struct ifnet *);
205 static int	re_suspend(device_t);
206 static int	re_resume(device_t);
207 static void	re_shutdown(device_t);
208 static int	re_ifmedia_upd(struct ifnet *);
209 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
210 
211 static void	re_eeprom_putbyte(struct re_softc *, int);
212 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
213 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int, int);
214 static int	re_gmii_readreg(device_t, int, int);
215 static int	re_gmii_writereg(device_t, int, int, int);
216 
217 static int	re_miibus_readreg(device_t, int, int);
218 static int	re_miibus_writereg(device_t, int, int, int);
219 static void	re_miibus_statchg(device_t);
220 
221 static void	re_setmulti(struct re_softc *);
222 static void	re_reset(struct re_softc *);
223 
224 static int	re_diag(struct re_softc *);
225 
226 static device_method_t re_methods[] = {
227 	/* Device interface */
228 	DEVMETHOD(device_probe,		re_probe),
229 	DEVMETHOD(device_attach,	re_attach),
230 	DEVMETHOD(device_detach,	re_detach),
231 	DEVMETHOD(device_suspend,	re_suspend),
232 	DEVMETHOD(device_resume,	re_resume),
233 	DEVMETHOD(device_shutdown,	re_shutdown),
234 
235 	/* bus interface */
236 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
237 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
238 
239 	/* MII interface */
240 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
241 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
242 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
243 
244 	{ 0, 0 }
245 };
246 
247 static driver_t re_driver = {
248 	"re",
249 	re_methods,
250 	sizeof(struct re_softc)
251 };
252 
253 static devclass_t re_devclass;
254 
255 DECLARE_DUMMY_MODULE(if_re);
256 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
257 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
258 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
259 
260 #define EE_SET(x)	\
261 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
262 
263 #define EE_CLR(x)	\
264 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
265 
266 /*
267  * Send a read command and address to the EEPROM, check for ACK.
268  */
269 static void
270 re_eeprom_putbyte(struct re_softc *sc, int addr)
271 {
272 	int d, i;
273 
274 	d = addr | sc->re_eecmd_read;
275 
276 	/*
277 	 * Feed in each bit and strobe the clock.
278 	 */
279 	for (i = 0x400; i != 0; i >>= 1) {
280 		if (d & i)
281 			EE_SET(RE_EE_DATAIN);
282 		else
283 			EE_CLR(RE_EE_DATAIN);
284 		DELAY(100);
285 		EE_SET(RE_EE_CLK);
286 		DELAY(150);
287 		EE_CLR(RE_EE_CLK);
288 		DELAY(100);
289 	}
290 }
291 
292 /*
293  * Read a word of data stored in the EEPROM at address 'addr.'
294  */
295 static void
296 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
297 {
298 	int i;
299 	uint16_t word = 0;
300 
301 	/* Enter EEPROM access mode. */
302 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
303 
304 	/*
305 	 * Send address of word we want to read.
306 	 */
307 	re_eeprom_putbyte(sc, addr);
308 
309 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
310 
311 	/*
312 	 * Start reading bits from EEPROM.
313 	 */
314 	for (i = 0x8000; i != 0; i >>= 1) {
315 		EE_SET(RE_EE_CLK);
316 		DELAY(100);
317 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
318 			word |= i;
319 		EE_CLR(RE_EE_CLK);
320 		DELAY(100);
321 	}
322 
323 	/* Turn off EEPROM access mode. */
324 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
325 
326 	*dest = word;
327 }
328 
329 /*
330  * Read a sequence of words from the EEPROM.
331  */
332 static void
333 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt, int swap)
334 {
335 	int i;
336 	uint16_t word = 0, *ptr;
337 
338 	for (i = 0; i < cnt; i++) {
339 		re_eeprom_getword(sc, off + i, &word);
340 		ptr = (u_int16_t *)(dest + (i * 2));
341 		if (swap)
342 			*ptr = be16toh(word);
343 		else
344 			*ptr = word;
345 	}
346 }
347 
348 static int
349 re_gmii_readreg(device_t dev, int phy, int reg)
350 {
351 	struct re_softc *sc = device_get_softc(dev);
352 	u_int32_t rval;
353 	int i;
354 
355 	if (phy != 1)
356 		return(0);
357 
358 	/* Let the rgephy driver read the GMEDIASTAT register */
359 
360 	if (reg == RE_GMEDIASTAT)
361 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
362 
363 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
364 	DELAY(1000);
365 
366 	for (i = 0; i < RE_TIMEOUT; i++) {
367 		rval = CSR_READ_4(sc, RE_PHYAR);
368 		if (rval & RE_PHYAR_BUSY)
369 			break;
370 		DELAY(100);
371 	}
372 
373 	if (i == RE_TIMEOUT) {
374 		device_printf(dev, "PHY read failed\n");
375 		return(0);
376 	}
377 
378 	return(rval & RE_PHYAR_PHYDATA);
379 }
380 
381 static int
382 re_gmii_writereg(device_t dev, int phy, int reg, int data)
383 {
384 	struct re_softc *sc = device_get_softc(dev);
385 	uint32_t rval;
386 	int i;
387 
388 	CSR_WRITE_4(sc, RE_PHYAR,
389 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
390 	DELAY(1000);
391 
392 	for (i = 0; i < RE_TIMEOUT; i++) {
393 		rval = CSR_READ_4(sc, RE_PHYAR);
394 		if ((rval & RE_PHYAR_BUSY) == 0)
395 			break;
396 		DELAY(100);
397 	}
398 
399 	if (i == RE_TIMEOUT)
400 		device_printf(dev, "PHY write failed\n");
401 
402 	return(0);
403 }
404 
405 static int
406 re_miibus_readreg(device_t dev, int phy, int reg)
407 {
408 	struct re_softc	*sc = device_get_softc(dev);
409 	uint16_t rval = 0;
410 	uint16_t re8139_reg = 0;
411 
412 	if (sc->re_type == RE_8169) {
413 		rval = re_gmii_readreg(dev, phy, reg);
414 		return(rval);
415 	}
416 
417 	/* Pretend the internal PHY is only at address 0 */
418 	if (phy)
419 		return(0);
420 
421 	switch(reg) {
422 	case MII_BMCR:
423 		re8139_reg = RE_BMCR;
424 		break;
425 	case MII_BMSR:
426 		re8139_reg = RE_BMSR;
427 		break;
428 	case MII_ANAR:
429 		re8139_reg = RE_ANAR;
430 		break;
431 	case MII_ANER:
432 		re8139_reg = RE_ANER;
433 		break;
434 	case MII_ANLPAR:
435 		re8139_reg = RE_LPAR;
436 		break;
437 	case MII_PHYIDR1:
438 	case MII_PHYIDR2:
439 		return(0);
440 	/*
441 	 * Allow the rlphy driver to read the media status
442 	 * register. If we have a link partner which does not
443 	 * support NWAY, this is the register which will tell
444 	 * us the results of parallel detection.
445 	 */
446 	case RE_MEDIASTAT:
447 		return(CSR_READ_1(sc, RE_MEDIASTAT));
448 	default:
449 		device_printf(dev, "bad phy register\n");
450 		return(0);
451 	}
452 	rval = CSR_READ_2(sc, re8139_reg);
453 	return(rval);
454 }
455 
456 static int
457 re_miibus_writereg(device_t dev, int phy, int reg, int data)
458 {
459 	struct re_softc *sc= device_get_softc(dev);
460 	u_int16_t re8139_reg = 0;
461 
462 	if (sc->re_type == RE_8169)
463 		return(re_gmii_writereg(dev, phy, reg, data));
464 
465 	/* Pretend the internal PHY is only at address 0 */
466 	if (phy)
467 		return(0);
468 
469 	switch(reg) {
470 	case MII_BMCR:
471 		re8139_reg = RE_BMCR;
472 		break;
473 	case MII_BMSR:
474 		re8139_reg = RE_BMSR;
475 		break;
476 	case MII_ANAR:
477 		re8139_reg = RE_ANAR;
478 		break;
479 	case MII_ANER:
480 		re8139_reg = RE_ANER;
481 		break;
482 	case MII_ANLPAR:
483 		re8139_reg = RE_LPAR;
484 		break;
485 	case MII_PHYIDR1:
486 	case MII_PHYIDR2:
487 		return(0);
488 	default:
489 		device_printf(dev, "bad phy register\n");
490 		return(0);
491 	}
492 	CSR_WRITE_2(sc, re8139_reg, data);
493 	return(0);
494 }
495 
496 static void
497 re_miibus_statchg(device_t dev)
498 {
499 }
500 
501 /*
502  * Program the 64-bit multicast hash filter.
503  */
504 static void
505 re_setmulti(struct re_softc *sc)
506 {
507 	struct ifnet *ifp = &sc->arpcom.ac_if;
508 	int h = 0;
509 	uint32_t hashes[2] = { 0, 0 };
510 	struct ifmultiaddr *ifma;
511 	uint32_t rxfilt;
512 	int mcnt = 0;
513 
514 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
515 
516 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
517 		rxfilt |= RE_RXCFG_RX_MULTI;
518 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
519 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
520 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
521 		return;
522 	}
523 
524 	/* first, zot all the existing hash bits */
525 	CSR_WRITE_4(sc, RE_MAR0, 0);
526 	CSR_WRITE_4(sc, RE_MAR4, 0);
527 
528 	/* now program new ones */
529 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
530 		if (ifma->ifma_addr->sa_family != AF_LINK)
531 			continue;
532 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
533 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
534 		if (h < 32)
535 			hashes[0] |= (1 << h);
536 		else
537 			hashes[1] |= (1 << (h - 32));
538 		mcnt++;
539 	}
540 
541 	if (mcnt)
542 		rxfilt |= RE_RXCFG_RX_MULTI;
543 	else
544 		rxfilt &= ~RE_RXCFG_RX_MULTI;
545 
546 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
547 	CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
548 	CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
549 }
550 
551 static void
552 re_reset(struct re_softc *sc)
553 {
554 	int i;
555 
556 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
557 
558 	for (i = 0; i < RE_TIMEOUT; i++) {
559 		DELAY(10);
560 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
561 			break;
562 	}
563 	if (i == RE_TIMEOUT)
564 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
565 
566 	CSR_WRITE_1(sc, 0x82, 1);
567 }
568 
569 /*
570  * The following routine is designed to test for a defect on some
571  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
572  * lines connected to the bus, however for a 32-bit only card, they
573  * should be pulled high. The result of this defect is that the
574  * NIC will not work right if you plug it into a 64-bit slot: DMA
575  * operations will be done with 64-bit transfers, which will fail
576  * because the 64-bit data lines aren't connected.
577  *
578  * There's no way to work around this (short of talking a soldering
579  * iron to the board), however we can detect it. The method we use
580  * here is to put the NIC into digital loopback mode, set the receiver
581  * to promiscuous mode, and then try to send a frame. We then compare
582  * the frame data we sent to what was received. If the data matches,
583  * then the NIC is working correctly, otherwise we know the user has
584  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
585  * slot. In the latter case, there's no way the NIC can work correctly,
586  * so we print out a message on the console and abort the device attach.
587  */
588 
589 static int
590 re_diag(struct re_softc *sc)
591 {
592 	struct ifnet *ifp = &sc->arpcom.ac_if;
593 	struct mbuf *m0;
594 	struct ether_header *eh;
595 	struct re_desc *cur_rx;
596 	uint16_t status;
597 	uint32_t rxstat;
598 	int total_len, i, error = 0;
599 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
600 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
601 
602 	/* Allocate a single mbuf */
603 
604 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
605 	if (m0 == NULL)
606 		return(ENOBUFS);
607 
608 	/*
609 	 * Initialize the NIC in test mode. This sets the chip up
610 	 * so that it can send and receive frames, but performs the
611 	 * following special functions:
612 	 * - Puts receiver in promiscuous mode
613 	 * - Enables digital loopback mode
614 	 * - Leaves interrupts turned off
615 	 */
616 
617 	ifp->if_flags |= IFF_PROMISC;
618 	sc->re_testmode = 1;
619 	re_init(sc);
620 	re_stop(sc);
621 	DELAY(100000);
622 	re_init(sc);
623 
624 	/* Put some data in the mbuf */
625 
626 	eh = mtod(m0, struct ether_header *);
627 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
628 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
629 	eh->ether_type = htons(ETHERTYPE_IP);
630 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
631 
632 	/*
633 	 * Queue the packet, start transmission.
634 	 * Note: ifq_handoff() ultimately calls re_start() for us.
635 	 */
636 
637 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
638 	error = ifq_handoff(ifp, m0, NULL);
639 	if (error) {
640 		m0 = NULL;
641 		goto done;
642 	}
643 	m0 = NULL;
644 
645 	/* Wait for it to propagate through the chip */
646 
647 	DELAY(100000);
648 	for (i = 0; i < RE_TIMEOUT; i++) {
649 		status = CSR_READ_2(sc, RE_ISR);
650 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
651 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
652 			break;
653 		DELAY(10);
654 	}
655 
656 	if (i == RE_TIMEOUT) {
657 		if_printf(ifp, "diagnostic failed to receive packet "
658 			  "in loopback mode\n");
659 		error = EIO;
660 		goto done;
661 	}
662 
663 	/*
664 	 * The packet should have been dumped into the first
665 	 * entry in the RX DMA ring. Grab it from there.
666 	 */
667 
668 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
669 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
670 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
671 			BUS_DMASYNC_POSTWRITE);
672 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
673 
674 	m0 = sc->re_ldata.re_rx_mbuf[0];
675 	sc->re_ldata.re_rx_mbuf[0] = NULL;
676 	eh = mtod(m0, struct ether_header *);
677 
678 	cur_rx = &sc->re_ldata.re_rx_list[0];
679 	total_len = RE_RXBYTES(cur_rx);
680 	rxstat = le32toh(cur_rx->re_cmdstat);
681 
682 	if (total_len != ETHER_MIN_LEN) {
683 		if_printf(ifp, "diagnostic failed, received short packet\n");
684 		error = EIO;
685 		goto done;
686 	}
687 
688 	/* Test that the received packet data matches what we sent. */
689 
690 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
691 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
692 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
693 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
694 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
695 		    dst, ":", src, ":", ETHERTYPE_IP);
696 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
697 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
698 		    ntohs(eh->ether_type));
699 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
700 		    "into a 64-bit PCI slot.\n");
701 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
702 		    "for proper operation.\n");
703 		if_printf(ifp, "Read the re(4) man page for more details.\n");
704 		error = EIO;
705 	}
706 
707 done:
708 	/* Turn interface off, release resources */
709 
710 	sc->re_testmode = 0;
711 	ifp->if_flags &= ~IFF_PROMISC;
712 	re_stop(sc);
713 	if (m0 != NULL)
714 		m_freem(m0);
715 
716 	return (error);
717 }
718 
719 /*
720  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
721  * IDs against our list and return a device name if we find a match.
722  */
723 static int
724 re_probe(device_t dev)
725 {
726 	struct re_type *t;
727 	struct re_softc *sc;
728 	int rid;
729 	uint32_t hwrev;
730 	uint16_t vendor, product;
731 
732 	t = re_devs;
733 
734 	vendor = pci_get_vendor(dev);
735 	product = pci_get_device(dev);
736 
737 	for (t = re_devs; t->re_name != NULL; t++) {
738 		if (product == t->re_did && vendor == t->re_vid)
739 			break;
740 	}
741 
742 	/*
743 	 * Check if we found a RealTek device.
744 	 */
745 	if (t->re_name == NULL)
746 		return(ENXIO);
747 
748 	/*
749 	 * Temporarily map the I/O space so we can read the chip ID register.
750 	 */
751 	sc = malloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
752 	rid = RE_PCI_LOIO;
753 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
754 					    RF_ACTIVE);
755 	if (sc->re_res == NULL) {
756 		device_printf(dev, "couldn't map ports/memory\n");
757 		free(sc, M_TEMP);
758 		return(ENXIO);
759 	}
760 
761 	sc->re_btag = rman_get_bustag(sc->re_res);
762 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
763 
764 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
765 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
766 	free(sc, M_TEMP);
767 
768 	/*
769 	 * and continue matching for the specific chip...
770 	 */
771 	for (; t->re_name != NULL; t++) {
772 		if (product == t->re_did && vendor == t->re_vid &&
773 		    t->re_basetype == hwrev) {
774 			device_set_desc(dev, t->re_name);
775 			return(0);
776 		}
777 	}
778 	return(ENXIO);
779 }
780 
781 /*
782  * This routine takes the segment list provided as the result of
783  * a bus_dma_map_load() operation and assigns the addresses/lengths
784  * to RealTek DMA descriptors. This can be called either by the RX
785  * code or the TX code. In the RX case, we'll probably wind up mapping
786  * at most one segment. For the TX case, there could be any number of
787  * segments since TX packets may span multiple mbufs. In either case,
788  * if the number of segments is larger than the re_maxsegs limit
789  * specified by the caller, we abort the mapping operation. Sadly,
790  * whoever designed the buffer mapping API did not provide a way to
791  * return an error from here, so we have to fake it a bit.
792  */
793 
794 static void
795 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
796 		bus_size_t mapsize, int error)
797 {
798 	struct re_dmaload_arg *ctx;
799 	struct re_desc *d = NULL;
800 	int i = 0, idx;
801 	uint32_t cmdstat;
802 
803 	if (error)
804 		return;
805 
806 	ctx = arg;
807 
808 	/* Signal error to caller if there's too many segments */
809 	if (nseg > ctx->re_maxsegs) {
810 		ctx->re_maxsegs = 0;
811 		return;
812 	}
813 
814 	/*
815 	 * Map the segment array into descriptors. Note that we set the
816 	 * start-of-frame and end-of-frame markers for either TX or RX, but
817 	 * they really only have meaning in the TX case. (In the RX case,
818 	 * it's the chip that tells us where packets begin and end.)
819 	 * We also keep track of the end of the ring and set the
820 	 * end-of-ring bits as needed, and we set the ownership bits
821 	 * in all except the very first descriptor. (The caller will
822 	 * set this descriptor later when it start transmission or
823 	 * reception.)
824 	 */
825 	idx = ctx->re_idx;
826 	for (;;) {
827 		d = &ctx->re_ring[idx];
828 		if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
829 			ctx->re_maxsegs = 0;
830 			return;
831 		}
832 		cmdstat = segs[i].ds_len;
833 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
834 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
835 		if (i == 0)
836 			cmdstat |= RE_TDESC_CMD_SOF;
837 		else
838 			cmdstat |= RE_TDESC_CMD_OWN;
839 		if (idx == (RE_RX_DESC_CNT - 1))
840 			cmdstat |= RE_TDESC_CMD_EOR;
841 		d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
842 		i++;
843 		if (i == nseg)
844 			break;
845 		RE_DESC_INC(idx);
846 	}
847 
848 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
849 	ctx->re_maxsegs = nseg;
850 	ctx->re_idx = idx;
851 }
852 
853 /*
854  * Map a single buffer address.
855  */
856 
857 static void
858 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
859 {
860 	uint32_t *addr;
861 
862 	if (error)
863 		return;
864 
865 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
866 	addr = arg;
867 	*addr = segs->ds_addr;
868 }
869 
870 static int
871 re_allocmem(device_t dev, struct re_softc *sc)
872 {
873 	int error, i, nseg;
874 
875 	/*
876 	 * Allocate map for RX mbufs.
877 	 */
878 	nseg = 32;
879 	error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
880 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
881 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
882 	    &sc->re_ldata.re_mtag);
883 	if (error) {
884 		device_printf(dev, "could not allocate dma tag\n");
885 		return(error);
886 	}
887 
888 	/*
889 	 * Allocate map for TX descriptor list.
890 	 */
891 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
892 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
893             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
894 	    &sc->re_ldata.re_tx_list_tag);
895 	if (error) {
896 		device_printf(dev, "could not allocate dma tag\n");
897 		return(error);
898 	}
899 
900 	/* Allocate DMA'able memory for the TX ring */
901 
902         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
903 	    (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
904             &sc->re_ldata.re_tx_list_map);
905         if (error) {
906 		device_printf(dev, "could not allocate TX ring\n");
907                 return(error);
908 	}
909 
910 	/* Load the map for the TX ring. */
911 
912 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
913 	     sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
914 	     RE_TX_LIST_SZ, re_dma_map_addr,
915 	     &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
916 	if (error) {
917 		device_printf(dev, "could not get addres of TX ring\n");
918 		return(error);
919 	}
920 
921 	/* Create DMA maps for TX buffers */
922 
923 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
924 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
925 			    &sc->re_ldata.re_tx_dmamap[i]);
926 		if (error) {
927 			device_printf(dev, "can't create DMA map for TX\n");
928 			return(error);
929 		}
930 	}
931 
932 	/*
933 	 * Allocate map for RX descriptor list.
934 	 */
935 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
936 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
937             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
938 	    &sc->re_ldata.re_rx_list_tag);
939 	if (error) {
940 		device_printf(dev, "could not allocate dma tag\n");
941 		return(error);
942 	}
943 
944 	/* Allocate DMA'able memory for the RX ring */
945 
946         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
947 	    (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
948             &sc->re_ldata.re_rx_list_map);
949         if (error) {
950 		device_printf(dev, "could not allocate RX ring\n");
951                 return(error);
952 	}
953 
954 	/* Load the map for the RX ring. */
955 
956 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
957 	     sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
958 	     RE_TX_LIST_SZ, re_dma_map_addr,
959 	     &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
960 	if (error) {
961 		device_printf(dev, "could not get address of RX ring\n");
962 		return(error);
963 	}
964 
965 	/* Create DMA maps for RX buffers */
966 
967 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
968 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
969 			    &sc->re_ldata.re_rx_dmamap[i]);
970 		if (error) {
971 			device_printf(dev, "can't create DMA map for RX\n");
972 			return(ENOMEM);
973 		}
974 	}
975 
976 	return(0);
977 }
978 
979 /*
980  * Attach the interface. Allocate softc structures, do ifmedia
981  * setup and ethernet/BPF attach.
982  */
983 static int
984 re_attach(device_t dev)
985 {
986 	struct re_softc	*sc = device_get_softc(dev);
987 	struct ifnet *ifp;
988 	struct re_hwrev *hw_rev;
989 	uint8_t eaddr[ETHER_ADDR_LEN];
990 	int hwrev;
991 	u_int16_t re_did = 0;
992 	int error = 0, rid, i;
993 
994 	callout_init(&sc->re_timer);
995 
996 #ifndef BURN_BRIDGES
997 	/*
998 	 * Handle power management nonsense.
999 	 */
1000 
1001 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1002 		uint32_t membase, irq;
1003 
1004 		/* Save important PCI config data. */
1005 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1006 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1007 
1008 		/* Reset the power state. */
1009 		device_printf(dev, "chip is is in D%d power mode "
1010 		    "-- setting to D0\n", pci_get_powerstate(dev));
1011 
1012 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1013 
1014 		/* Restore PCI config data. */
1015 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1016 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1017 	}
1018 #endif
1019 	/*
1020 	 * Map control/status registers.
1021 	 */
1022 	pci_enable_busmaster(dev);
1023 
1024 	rid = RE_PCI_LOIO;
1025 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1026 					    RF_ACTIVE);
1027 
1028 	if (sc->re_res == NULL) {
1029 		device_printf(dev, "couldn't map ports/memory\n");
1030 		error = ENXIO;
1031 		goto fail;
1032 	}
1033 
1034 	sc->re_btag = rman_get_bustag(sc->re_res);
1035 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1036 
1037 	/* Allocate interrupt */
1038 	rid = 0;
1039 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1040 					    RF_SHAREABLE | RF_ACTIVE);
1041 
1042 	if (sc->re_irq == NULL) {
1043 		device_printf(dev, "couldn't map interrupt\n");
1044 		error = ENXIO;
1045 		goto fail;
1046 	}
1047 
1048 	/* Reset the adapter. */
1049 	re_reset(sc);
1050 
1051 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1052 	for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1053 		if (hw_rev->re_rev == hwrev) {
1054 			sc->re_type = hw_rev->re_type;
1055 			break;
1056 		}
1057 	}
1058 
1059 	if (sc->re_type == RE_8169) {
1060 		/* Set RX length mask */
1061 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1062 
1063 		/* Force station address autoload from the EEPROM */
1064 		CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_AUTOLOAD);
1065 		for (i = 0; i < RE_TIMEOUT; i++) {
1066 			if ((CSR_READ_1(sc, RE_EECMD) & RE_EEMODE_AUTOLOAD) == 0)
1067 				break;
1068 			DELAY(100);
1069 		}
1070 		if (i == RE_TIMEOUT)
1071 			device_printf(dev, "eeprom autoload timed out\n");
1072 
1073 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1074 			eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
1075 	} else {
1076 		uint16_t as[3];
1077 
1078 		/* Set RX length mask */
1079 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1080 
1081 		sc->re_eecmd_read = RE_EECMD_READ_6BIT;
1082 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1083 		if (re_did != 0x8129)
1084 			sc->re_eecmd_read = RE_EECMD_READ_8BIT;
1085 
1086 		/*
1087 		 * Get station address from the EEPROM.
1088 		 */
1089 		re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3, 0);
1090 		for (i = 0; i < 3; i++) {
1091 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1092 			eaddr[(i * 2) + 1] = as[i] >> 8;
1093 		}
1094 	}
1095 
1096 	/*
1097 	 * Allocate the parent bus DMA tag appropriate for PCI.
1098 	 */
1099 #define RE_NSEG_NEW 32
1100 	error = bus_dma_tag_create(NULL,	/* parent */
1101 			1, 0,			/* alignment, boundary */
1102 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1103 			BUS_SPACE_MAXADDR,	/* highaddr */
1104 			NULL, NULL,		/* filter, filterarg */
1105 			MAXBSIZE, RE_NSEG_NEW,	/* maxsize, nsegments */
1106 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1107 			BUS_DMA_ALLOCNOW,	/* flags */
1108 			&sc->re_parent_tag);
1109 	if (error)
1110 		goto fail;
1111 
1112 	error = re_allocmem(dev, sc);
1113 
1114 	if (error)
1115 		goto fail;
1116 
1117 	/* Do MII setup */
1118 	if (mii_phy_probe(dev, &sc->re_miibus,
1119 	    re_ifmedia_upd, re_ifmedia_sts)) {
1120 		device_printf(dev, "MII without any phy!\n");
1121 		error = ENXIO;
1122 		goto fail;
1123 	}
1124 
1125 	ifp = &sc->arpcom.ac_if;
1126 	ifp->if_softc = sc;
1127 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1128 	ifp->if_mtu = ETHERMTU;
1129 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1130 	ifp->if_ioctl = re_ioctl;
1131 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1132 	ifp->if_start = re_start;
1133 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1134 #ifdef DEVICE_POLLING
1135 	ifp->if_capabilities |= IFCAP_POLLING;
1136 #endif
1137 	ifp->if_watchdog = re_watchdog;
1138 	ifp->if_init = re_init;
1139 	if (sc->re_type == RE_8169)
1140 		ifp->if_baudrate = 1000000000;
1141 	else
1142 		ifp->if_baudrate = 100000000;
1143 	ifq_set_maxlen(&ifp->if_snd, RE_IFQ_MAXLEN);
1144 	ifq_set_ready(&ifp->if_snd);
1145 #ifdef RE_DISABLE_HWCSUM
1146 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1147 	ifp->if_hwassist = 0;
1148 #else
1149 	ifp->if_capenable = ifp->if_capabilities;
1150 	ifp->if_hwassist = RE_CSUM_FEATURES;
1151 #endif
1152 
1153 	/*
1154 	 * Call MI attach routine.
1155 	 */
1156 	ether_ifattach(ifp, eaddr);
1157 
1158 	/* Perform hardware diagnostic. */
1159 	error = re_diag(sc);
1160 
1161 	if (error) {
1162 		device_printf(dev, "hardware diagnostic failure\n");
1163 		ether_ifdetach(ifp);
1164 		goto fail;
1165 	}
1166 
1167 	/* Hook interrupt last to avoid having to lock softc */
1168 	error = bus_setup_intr(dev, sc->re_irq, INTR_TYPE_NET, re_intr, sc,
1169 			       &sc->re_intrhand);
1170 
1171 	if (error) {
1172 		device_printf(dev, "couldn't set up irq\n");
1173 		ether_ifdetach(ifp);
1174 		goto fail;
1175 	}
1176 
1177 fail:
1178 	if (error)
1179 		re_detach(dev);
1180 
1181 	return (error);
1182 }
1183 
1184 /*
1185  * Shutdown hardware and free up resources. This can be called any
1186  * time after the mutex has been initialized. It is called in both
1187  * the error case in attach and the normal detach case so it needs
1188  * to be careful about only freeing resources that have actually been
1189  * allocated.
1190  */
1191 static int
1192 re_detach(device_t dev)
1193 {
1194 	struct re_softc *sc = device_get_softc(dev);
1195 	struct ifnet *ifp = &sc->arpcom.ac_if;
1196 	int i, s;
1197 
1198 	s = splimp();
1199 
1200 	/* These should only be active if attach succeeded */
1201 	if (device_is_attached(dev)) {
1202 		re_stop(sc);
1203 		ether_ifdetach(ifp);
1204 	}
1205 	if (sc->re_miibus)
1206 		device_delete_child(dev, sc->re_miibus);
1207 	bus_generic_detach(dev);
1208 
1209 	if (sc->re_intrhand)
1210 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1211 	if (sc->re_irq)
1212 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1213 	if (sc->re_res)
1214 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1215 				     sc->re_res);
1216 
1217 	/* Unload and free the RX DMA ring memory and map */
1218 
1219 	if (sc->re_ldata.re_rx_list_tag) {
1220 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1221 		    sc->re_ldata.re_rx_list_map);
1222 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1223 		    sc->re_ldata.re_rx_list,
1224 		    sc->re_ldata.re_rx_list_map);
1225 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1226 	}
1227 
1228 	/* Unload and free the TX DMA ring memory and map */
1229 
1230 	if (sc->re_ldata.re_tx_list_tag) {
1231 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1232 		    sc->re_ldata.re_tx_list_map);
1233 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1234 		    sc->re_ldata.re_tx_list,
1235 		    sc->re_ldata.re_tx_list_map);
1236 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1237 	}
1238 
1239 	/* Destroy all the RX and TX buffer maps */
1240 
1241 	if (sc->re_ldata.re_mtag) {
1242 		for (i = 0; i < RE_TX_DESC_CNT; i++)
1243 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1244 			    sc->re_ldata.re_tx_dmamap[i]);
1245 		for (i = 0; i < RE_RX_DESC_CNT; i++)
1246 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1247 			    sc->re_ldata.re_rx_dmamap[i]);
1248 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1249 	}
1250 
1251 	/* Unload and free the stats buffer and map */
1252 
1253 	if (sc->re_ldata.re_stag) {
1254 		bus_dmamap_unload(sc->re_ldata.re_stag,
1255 		    sc->re_ldata.re_rx_list_map);
1256 		bus_dmamem_free(sc->re_ldata.re_stag,
1257 		    sc->re_ldata.re_stats,
1258 		    sc->re_ldata.re_smap);
1259 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1260 	}
1261 
1262 	if (sc->re_parent_tag)
1263 		bus_dma_tag_destroy(sc->re_parent_tag);
1264 
1265 	splx(s);
1266 
1267 	return(0);
1268 }
1269 
1270 static int
1271 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1272 {
1273 	struct re_dmaload_arg arg;
1274 	struct mbuf *n = NULL;
1275 	int error;
1276 
1277 	if (m == NULL) {
1278 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1279 		if (n == NULL)
1280 			return(ENOBUFS);
1281 		m = n;
1282 	} else
1283 		m->m_data = m->m_ext.ext_buf;
1284 
1285 	/*
1286 	 * Initialize mbuf length fields and fixup
1287 	 * alignment so that the frame payload is
1288 	 * longword aligned.
1289 	 */
1290 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1291 	m_adj(m, ETHER_ALIGN);
1292 
1293 	arg.sc = sc;
1294 	arg.re_idx = idx;
1295 	arg.re_maxsegs = 1;
1296 	arg.re_flags = 0;
1297 	arg.re_ring = sc->re_ldata.re_rx_list;
1298 
1299         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1300 	    sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1301 	    &arg, BUS_DMA_NOWAIT);
1302 	if (error || arg.re_maxsegs != 1) {
1303 		if (n != NULL)
1304 			m_freem(n);
1305 		return (ENOMEM);
1306 	}
1307 
1308 	sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1309 	sc->re_ldata.re_rx_mbuf[idx] = m;
1310 
1311         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1312 		        BUS_DMASYNC_PREREAD);
1313 
1314 	return(0);
1315 }
1316 
1317 static int
1318 re_tx_list_init(struct re_softc *sc)
1319 {
1320 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1321 	bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1322 
1323 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1324 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1325 	sc->re_ldata.re_tx_prodidx = 0;
1326 	sc->re_ldata.re_tx_considx = 0;
1327 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1328 
1329 	return(0);
1330 }
1331 
1332 static int
1333 re_rx_list_init(struct re_softc *sc)
1334 {
1335 	int i, error;
1336 
1337 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1338 	bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1339 
1340 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1341 		error = re_newbuf(sc, i, NULL);
1342 		if (error)
1343 			return(error);
1344 	}
1345 
1346 	/* Flush the RX descriptors */
1347 
1348 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1349 	    sc->re_ldata.re_rx_list_map,
1350 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1351 
1352 	sc->re_ldata.re_rx_prodidx = 0;
1353 	sc->re_head = sc->re_tail = NULL;
1354 
1355 	return(0);
1356 }
1357 
1358 /*
1359  * RX handler for C+ and 8169. For the gigE chips, we support
1360  * the reception of jumbo frames that have been fragmented
1361  * across multiple 2K mbuf cluster buffers.
1362  */
1363 static void
1364 re_rxeof(struct re_softc *sc)
1365 {
1366 	struct ifnet *ifp = &sc->arpcom.ac_if;
1367 	struct mbuf *m;
1368 	struct re_desc 	*cur_rx;
1369 	uint32_t rxstat, rxvlan;
1370 	int i, total_len;
1371 
1372 	/* Invalidate the descriptor memory */
1373 
1374 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1375 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1376 
1377 	for (i = sc->re_ldata.re_rx_prodidx;
1378 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1379 		cur_rx = &sc->re_ldata.re_rx_list[i];
1380 		m = sc->re_ldata.re_rx_mbuf[i];
1381 		total_len = RE_RXBYTES(cur_rx);
1382 		rxstat = le32toh(cur_rx->re_cmdstat);
1383 		rxvlan = le32toh(cur_rx->re_vlanctl);
1384 
1385 		/* Invalidate the RX mbuf and unload its map */
1386 
1387 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1388 				sc->re_ldata.re_rx_dmamap[i],
1389 				BUS_DMASYNC_POSTWRITE);
1390 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1391 				  sc->re_ldata.re_rx_dmamap[i]);
1392 
1393 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1394 			m->m_len = MCLBYTES - ETHER_ALIGN;
1395 			if (sc->re_head == NULL) {
1396 				sc->re_head = sc->re_tail = m;
1397 			} else {
1398 				m->m_flags &= ~M_PKTHDR;
1399 				sc->re_tail->m_next = m;
1400 				sc->re_tail = m;
1401 			}
1402 			re_newbuf(sc, i, NULL);
1403 			continue;
1404 		}
1405 
1406 		/*
1407 		 * NOTE: for the 8139C+, the frame length field
1408 		 * is always 12 bits in size, but for the gigE chips,
1409 		 * it is 13 bits (since the max RX frame length is 16K).
1410 		 * Unfortunately, all 32 bits in the status word
1411 		 * were already used, so to make room for the extra
1412 		 * length bit, RealTek took out the 'frame alignment
1413 		 * error' bit and shifted the other status bits
1414 		 * over one slot. The OWN, EOR, FS and LS bits are
1415 		 * still in the same places. We have already extracted
1416 		 * the frame length and checked the OWN bit, so rather
1417 		 * than using an alternate bit mapping, we shift the
1418 		 * status bits one space to the right so we can evaluate
1419 		 * them using the 8169 status as though it was in the
1420 		 * same format as that of the 8139C+.
1421 		 */
1422 		if (sc->re_type == RE_8169)
1423 			rxstat >>= 1;
1424 
1425 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1426 			ifp->if_ierrors++;
1427 			/*
1428 			 * If this is part of a multi-fragment packet,
1429 			 * discard all the pieces.
1430 			 */
1431 			if (sc->re_head != NULL) {
1432 				m_freem(sc->re_head);
1433 				sc->re_head = sc->re_tail = NULL;
1434 			}
1435 			re_newbuf(sc, i, m);
1436 			continue;
1437 		}
1438 
1439 		/*
1440 		 * If allocating a replacement mbuf fails,
1441 		 * reload the current one.
1442 		 */
1443 
1444 		if (re_newbuf(sc, i, NULL)) {
1445 			ifp->if_ierrors++;
1446 			if (sc->re_head != NULL) {
1447 				m_freem(sc->re_head);
1448 				sc->re_head = sc->re_tail = NULL;
1449 			}
1450 			re_newbuf(sc, i, m);
1451 			continue;
1452 		}
1453 
1454 		if (sc->re_head != NULL) {
1455 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1456 			/*
1457 			 * Special case: if there's 4 bytes or less
1458 			 * in this buffer, the mbuf can be discarded:
1459 			 * the last 4 bytes is the CRC, which we don't
1460 			 * care about anyway.
1461 			 */
1462 			if (m->m_len <= ETHER_CRC_LEN) {
1463 				sc->re_tail->m_len -=
1464 				    (ETHER_CRC_LEN - m->m_len);
1465 				m_freem(m);
1466 			} else {
1467 				m->m_len -= ETHER_CRC_LEN;
1468 				m->m_flags &= ~M_PKTHDR;
1469 				sc->re_tail->m_next = m;
1470 			}
1471 			m = sc->re_head;
1472 			sc->re_head = sc->re_tail = NULL;
1473 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1474 		} else
1475 			m->m_pkthdr.len = m->m_len =
1476 			    (total_len - ETHER_CRC_LEN);
1477 
1478 		ifp->if_ipackets++;
1479 		m->m_pkthdr.rcvif = ifp;
1480 
1481 		/* Do RX checksumming if enabled */
1482 
1483 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1484 
1485 			/* Check IP header checksum */
1486 			if (rxstat & RE_RDESC_STAT_PROTOID)
1487 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1488 			if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1489 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1490 
1491 			/* Check TCP/UDP checksum */
1492 			if ((RE_TCPPKT(rxstat) &&
1493 			    (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1494 			    (RE_UDPPKT(rxstat) &&
1495 			    (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1496 				m->m_pkthdr.csum_flags |=
1497 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1498 				m->m_pkthdr.csum_data = 0xffff;
1499 			}
1500 		}
1501 
1502 		if (rxvlan & RE_RDESC_VLANCTL_TAG)
1503 			VLAN_INPUT_TAG(m,
1504 			   be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1505 		else
1506 			(*ifp->if_input)(ifp, m);
1507 	}
1508 
1509 	/* Flush the RX DMA ring */
1510 
1511 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1512 			sc->re_ldata.re_rx_list_map,
1513 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1514 
1515 	sc->re_ldata.re_rx_prodidx = i;
1516 }
1517 
1518 static void
1519 re_txeof(struct re_softc *sc)
1520 {
1521 	struct ifnet *ifp = &sc->arpcom.ac_if;
1522 	uint32_t txstat;
1523 	int idx;
1524 
1525 	/* Invalidate the TX descriptor list */
1526 
1527 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1528 	    sc->re_ldata.re_tx_list_map,
1529 	    BUS_DMASYNC_POSTREAD);
1530 
1531 	for (idx = sc->re_ldata.re_tx_considx;
1532 	     idx != sc->re_ldata.re_tx_prodidx; RE_DESC_INC(idx)) {
1533 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1534 		if (txstat & RE_TDESC_CMD_OWN)
1535 			break;
1536 
1537 		/*
1538 		 * We only stash mbufs in the last descriptor
1539 		 * in a fragment chain, which also happens to
1540 		 * be the only place where the TX status bits
1541 		 * are valid.
1542 		 */
1543 		if (txstat & RE_TDESC_CMD_EOF) {
1544 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1545 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
1546 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1547 			    sc->re_ldata.re_tx_dmamap[idx]);
1548 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1549 			    RE_TDESC_STAT_COLCNT))
1550 				ifp->if_collisions++;
1551 			if (txstat & RE_TDESC_STAT_TXERRSUM)
1552 				ifp->if_oerrors++;
1553 			else
1554 				ifp->if_opackets++;
1555 		}
1556 		sc->re_ldata.re_tx_free++;
1557 	}
1558 
1559 	/* No changes made to the TX ring, so no flush needed */
1560 	if (idx != sc->re_ldata.re_tx_considx) {
1561 		sc->re_ldata.re_tx_considx = idx;
1562 		ifp->if_flags &= ~IFF_OACTIVE;
1563 		ifp->if_timer = 0;
1564 	}
1565 
1566 	/*
1567 	 * If not all descriptors have been released reaped yet,
1568 	 * reload the timer so that we will eventually get another
1569 	 * interrupt that will cause us to re-enter this routine.
1570 	 * This is done in case the transmitter has gone idle.
1571 	 */
1572 	if (sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
1573                 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1574 }
1575 
1576 static void
1577 re_tick(void *xsc)
1578 {
1579 	struct re_softc *sc = xsc;
1580 	struct mii_data *mii;
1581 	int s;
1582 
1583 	s = splimp();
1584 
1585 	mii = device_get_softc(sc->re_miibus);
1586 	mii_tick(mii);
1587 
1588 	callout_reset(&sc->re_timer, hz, re_tick, sc);
1589 	splx(s);
1590 }
1591 
1592 #ifdef DEVICE_POLLING
1593 static void
1594 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1595 {
1596 	struct re_softc *sc = ifp->if_softc;
1597 
1598 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1599 		ether_poll_deregister(ifp);
1600 		cmd = POLL_DEREGISTER;
1601 	}
1602 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1603 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1604 		return;
1605 	}
1606 
1607 	sc->rxcycles = count;
1608 	re_rxeof(sc);
1609 	re_txeof(sc);
1610 
1611 	if (!ifq_is_empty(&ifp->if_snd))
1612 		(*ifp->if_start)(ifp);
1613 
1614 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1615 		uint16_t       status;
1616 
1617 		status = CSR_READ_2(sc, RE_ISR);
1618 		if (status == 0xffff)
1619 			return;
1620 		if (status)
1621 			CSR_WRITE_2(sc, RE_ISR, status);
1622 
1623 		/*
1624 		 * XXX check behaviour on receiver stalls.
1625 		 */
1626 
1627 		if (status & RE_ISR_SYSTEM_ERR) {
1628 			re_reset(sc);
1629 			re_init(sc);
1630 		}
1631 	}
1632 }
1633 #endif /* DEVICE_POLLING */
1634 
1635 static void
1636 re_intr(void *arg)
1637 {
1638 	struct re_softc	*sc = arg;
1639 	struct ifnet *ifp = &sc->arpcom.ac_if;
1640 	uint16_t status;
1641 	int s;
1642 
1643 	if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1644 		return;
1645 
1646 #ifdef DEVICE_POLLING
1647 	if  (ifp->if_flags & IFF_POLLING)
1648 		return;
1649 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1650 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1651 		CSR_WRITE_2(sc, RE_IMR, 0x0000);
1652 		re_poll(ifp, 0, 1);
1653 		return;
1654 	}
1655 #endif /* DEVICE_POLLING */
1656 
1657 	s = splimp();
1658 
1659 	for (;;) {
1660 		status = CSR_READ_2(sc, RE_ISR);
1661 		/* If the card has gone away the read returns 0xffff. */
1662 		if (status == 0xffff)
1663 			break;
1664 		if (status)
1665 			CSR_WRITE_2(sc, RE_ISR, status);
1666 
1667 		if ((status & RE_INTRS_CPLUS) == 0)
1668 			break;
1669 
1670 		if (status & RE_ISR_RX_OK)
1671 			re_rxeof(sc);
1672 
1673 		if (status & RE_ISR_RX_ERR)
1674 			re_rxeof(sc);
1675 
1676 		if ((status & RE_ISR_TIMEOUT_EXPIRED) ||
1677 		    (status & RE_ISR_TX_ERR) ||
1678 		    (status & RE_ISR_TX_DESC_UNAVAIL))
1679 			re_txeof(sc);
1680 
1681 		if (status & RE_ISR_SYSTEM_ERR) {
1682 			re_reset(sc);
1683 			re_init(sc);
1684 		}
1685 
1686 		if (status & RE_ISR_LINKCHG)
1687 			re_tick(sc);
1688 	}
1689 
1690 	if (!ifq_is_empty(&ifp->if_snd))
1691 		(*ifp->if_start)(ifp);
1692 
1693 	splx(s);
1694 }
1695 
1696 static int
1697 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx, int *called_defrag)
1698 {
1699 	struct ifnet *ifp = &sc->arpcom.ac_if;
1700 	struct mbuf *m, *m_new = NULL;
1701 	struct re_dmaload_arg	arg;
1702 	bus_dmamap_t		map;
1703 	int			error;
1704 
1705 	*called_defrag = 0;
1706 	if (sc->re_ldata.re_tx_free <= 4)
1707 		return(EFBIG);
1708 
1709 	m = *m_head;
1710 
1711 	/*
1712 	 * Set up checksum offload. Note: checksum offload bits must
1713 	 * appear in all descriptors of a multi-descriptor transmit
1714 	 * attempt. (This is according to testing done with an 8169
1715 	 * chip. I'm not sure if this is a requirement or a bug.)
1716 	 */
1717 
1718 	arg.re_flags = 0;
1719 
1720 	if (m->m_pkthdr.csum_flags & CSUM_IP)
1721 		arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1722 	if (m->m_pkthdr.csum_flags & CSUM_TCP)
1723 		arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1724 	if (m->m_pkthdr.csum_flags & CSUM_UDP)
1725 		arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1726 
1727 	arg.sc = sc;
1728 	arg.re_idx = *idx;
1729 	arg.re_maxsegs = sc->re_ldata.re_tx_free;
1730 	if (arg.re_maxsegs > 4)
1731 		arg.re_maxsegs -= 4;
1732 	arg.re_ring = sc->re_ldata.re_tx_list;
1733 
1734 	map = sc->re_ldata.re_tx_dmamap[*idx];
1735 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1736 	    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1737 
1738 	if (error && error != EFBIG) {
1739 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
1740 		return(ENOBUFS);
1741 	}
1742 
1743 	/* Too many segments to map, coalesce into a single mbuf */
1744 
1745 	if (error || arg.re_maxsegs == 0) {
1746 		m_new = m_defrag_nofree(m, MB_DONTWAIT);
1747 		if (m_new == NULL)
1748 			return(1);
1749 		else {
1750 			m = m_new;
1751 			*m_head = m;
1752 		}
1753 
1754 		*called_defrag = 1;
1755 		arg.sc = sc;
1756 		arg.re_idx = *idx;
1757 		arg.re_maxsegs = sc->re_ldata.re_tx_free;
1758 		arg.re_ring = sc->re_ldata.re_tx_list;
1759 
1760 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1761 		    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1762 		if (error) {
1763 			m_freem(m);
1764 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
1765 			return(EFBIG);
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * Insure that the map for this transmission
1771 	 * is placed at the array index of the last descriptor
1772 	 * in this chain.
1773 	 */
1774 	sc->re_ldata.re_tx_dmamap[*idx] =
1775 	    sc->re_ldata.re_tx_dmamap[arg.re_idx];
1776 	sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1777 
1778 	sc->re_ldata.re_tx_mbuf[arg.re_idx] = m;
1779 	sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1780 
1781 	/*
1782 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1783 	 * appear in the first descriptor of a multi-descriptor
1784 	 * transmission attempt.
1785 	 */
1786 
1787 	if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1788 	    m->m_pkthdr.rcvif != NULL &&
1789 	    m->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1790 	    	struct ifvlan *ifv;
1791 		ifv = m->m_pkthdr.rcvif->if_softc;
1792 		if (ifv != NULL)
1793 			sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1794 			    htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1795 	}
1796 
1797 	/* Transfer ownership of packet to the chip. */
1798 
1799 	sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1800 	    htole32(RE_TDESC_CMD_OWN);
1801 	if (*idx != arg.re_idx)
1802 		sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1803 		    htole32(RE_TDESC_CMD_OWN);
1804 
1805 	RE_DESC_INC(arg.re_idx);
1806 	*idx = arg.re_idx;
1807 
1808 	return(0);
1809 }
1810 
1811 /*
1812  * Main transmit routine for C+ and gigE NICs.
1813  */
1814 
1815 static void
1816 re_start(struct ifnet *ifp)
1817 {
1818 	struct re_softc	*sc = ifp->if_softc;
1819 	struct mbuf *m_head = NULL, *m_head2;
1820 	int called_defrag, idx, s;
1821 
1822 	s = splimp();
1823 
1824 	idx = sc->re_ldata.re_tx_prodidx;
1825 
1826 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1827 		m_head = ifq_poll(&ifp->if_snd);
1828 		if (m_head == NULL)
1829 			break;
1830 
1831 		if (re_encap(sc, &m_head, &idx, &called_defrag)) {
1832 			if (called_defrag) {
1833 				m_head2 = ifq_dequeue(&ifp->if_snd);
1834 				m_freem(m_head2);
1835 			}
1836 			ifp->if_flags |= IFF_OACTIVE;
1837 			break;
1838 		}
1839 
1840 		m_head2 = ifq_dequeue(&ifp->if_snd);
1841 		if (called_defrag)
1842 			m_freem(m_head2);
1843 
1844 		/*
1845 		 * If there's a BPF listener, bounce a copy of this frame
1846 		 * to him.
1847 		 */
1848 		BPF_MTAP(ifp, m_head);
1849 	}
1850 
1851 	/* Flush the TX descriptors */
1852 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1853 			sc->re_ldata.re_tx_list_map,
1854 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1855 
1856 	sc->re_ldata.re_tx_prodidx = idx;
1857 
1858 	/*
1859 	 * RealTek put the TX poll request register in a different
1860 	 * location on the 8169 gigE chip. I don't know why.
1861 	 */
1862 	if (sc->re_type == RE_8169)
1863 		CSR_WRITE_2(sc, RE_GTXSTART, RE_TXSTART_START);
1864 	else
1865 		CSR_WRITE_2(sc, RE_TXSTART, RE_TXSTART_START);
1866 
1867 	/*
1868 	 * Use the countdown timer for interrupt moderation.
1869 	 * 'TX done' interrupts are disabled. Instead, we reset the
1870 	 * countdown timer, which will begin counting until it hits
1871 	 * the value in the TIMERINT register, and then trigger an
1872 	 * interrupt. Each time we write to the TIMERCNT register,
1873 	 * the timer count is reset to 0.
1874 	 */
1875 	CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1876 
1877 	splx(s);
1878 
1879 	/*
1880 	 * Set a timeout in case the chip goes out to lunch.
1881 	 */
1882 	ifp->if_timer = 5;
1883 }
1884 
1885 static void
1886 re_init(void *xsc)
1887 {
1888 	struct re_softc *sc = xsc;
1889 	struct ifnet *ifp = &sc->arpcom.ac_if;
1890 	struct mii_data *mii;
1891 	uint32_t rxcfg = 0;
1892 	int s;
1893 
1894 	s = splimp();
1895 	mii = device_get_softc(sc->re_miibus);
1896 
1897 	/*
1898 	 * Cancel pending I/O and free all RX/TX buffers.
1899 	 */
1900 	re_stop(sc);
1901 
1902 	/*
1903 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1904 	 * RX checksum offload. We must configure the C+ register
1905 	 * before all others.
1906 	 */
1907 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
1908 		    RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
1909 		    (ifp->if_capenable & IFCAP_RXCSUM ?
1910 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
1911 
1912 	/*
1913 	 * Init our MAC address.  Even though the chipset
1914 	 * documentation doesn't mention it, we need to enter "Config
1915 	 * register write enable" mode to modify the ID registers.
1916 	 */
1917 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
1918 	CSR_WRITE_STREAM_4(sc, RE_IDR0,
1919 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1920 	CSR_WRITE_STREAM_4(sc, RE_IDR4,
1921 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1922 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
1923 
1924 	/*
1925 	 * For C+ mode, initialize the RX descriptors and mbufs.
1926 	 */
1927 	re_rx_list_init(sc);
1928 	re_tx_list_init(sc);
1929 
1930 	/*
1931 	 * Enable transmit and receive.
1932 	 */
1933 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1934 
1935 	/*
1936 	 * Set the initial TX and RX configuration.
1937 	 */
1938 	if (sc->re_testmode) {
1939 		if (sc->re_type == RE_8169)
1940 			CSR_WRITE_4(sc, RE_TXCFG,
1941 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
1942 		else
1943 			CSR_WRITE_4(sc, RE_TXCFG,
1944 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
1945 	} else
1946 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
1947 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
1948 
1949 	/* Set the individual bit to receive frames for this host only. */
1950 	rxcfg = CSR_READ_4(sc, RE_RXCFG);
1951 	rxcfg |= RE_RXCFG_RX_INDIV;
1952 
1953 	/* If we want promiscuous mode, set the allframes bit. */
1954 	if (ifp->if_flags & IFF_PROMISC) {
1955 		rxcfg |= RE_RXCFG_RX_ALLPHYS;
1956 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1957 	} else {
1958 		rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
1959 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1960 	}
1961 
1962 	/*
1963 	 * Set capture broadcast bit to capture broadcast frames.
1964 	 */
1965 	if (ifp->if_flags & IFF_BROADCAST) {
1966 		rxcfg |= RE_RXCFG_RX_BROAD;
1967 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1968 	} else {
1969 		rxcfg &= ~RE_RXCFG_RX_BROAD;
1970 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1971 	}
1972 
1973 	/*
1974 	 * Program the multicast filter, if necessary.
1975 	 */
1976 	re_setmulti(sc);
1977 
1978 #ifdef DEVICE_POLLING
1979 	/*
1980 	 * Disable interrupts if we are polling.
1981 	 */
1982 	if (ifp->if_flags & IFF_POLLING)
1983 		CSR_WRITE_2(sc, RE_IMR, 0);
1984 	else	/* otherwise ... */
1985 #endif /* DEVICE_POLLING */
1986 	/*
1987 	 * Enable interrupts.
1988 	 */
1989 	if (sc->re_testmode)
1990 		CSR_WRITE_2(sc, RE_IMR, 0);
1991 	else
1992 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1993 
1994 	/* Set initial TX threshold */
1995 	sc->re_txthresh = RE_TX_THRESH_INIT;
1996 
1997 	/* Start RX/TX process. */
1998 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
1999 #ifdef notdef
2000 	/* Enable receiver and transmitter. */
2001 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2002 #endif
2003 	/*
2004 	 * Load the addresses of the RX and TX lists into the chip.
2005 	 */
2006 
2007 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2008 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2009 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2010 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2011 
2012 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2013 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2014 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2015 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2016 
2017 	CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
2018 
2019 	/*
2020 	 * Initialize the timer interrupt register so that
2021 	 * a timer interrupt will be generated once the timer
2022 	 * reaches a certain number of ticks. The timer is
2023 	 * reloaded on each transmit. This gives us TX interrupt
2024 	 * moderation, which dramatically improves TX frame rate.
2025 	 */
2026 
2027 	if (sc->re_type == RE_8169)
2028 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2029 	else
2030 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2031 
2032 	/*
2033 	 * For 8169 gigE NICs, set the max allowed RX packet
2034 	 * size so we can receive jumbo frames.
2035 	 */
2036 	if (sc->re_type == RE_8169)
2037 		CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2038 
2039 	if (sc->re_testmode) {
2040 		splx(s);
2041 		return;
2042 	}
2043 
2044 	mii_mediachg(mii);
2045 
2046 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2047 
2048 	ifp->if_flags |= IFF_RUNNING;
2049 	ifp->if_flags &= ~IFF_OACTIVE;
2050 
2051 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2052 	splx(s);
2053 }
2054 
2055 /*
2056  * Set media options.
2057  */
2058 static int
2059 re_ifmedia_upd(struct ifnet *ifp)
2060 {
2061 	struct re_softc *sc = ifp->if_softc;
2062 	struct mii_data *mii;
2063 
2064 	mii = device_get_softc(sc->re_miibus);
2065 	mii_mediachg(mii);
2066 
2067 	return(0);
2068 }
2069 
2070 /*
2071  * Report current media status.
2072  */
2073 static void
2074 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2075 {
2076 	struct re_softc *sc = ifp->if_softc;
2077 	struct mii_data *mii;
2078 
2079 	mii = device_get_softc(sc->re_miibus);
2080 
2081 	mii_pollstat(mii);
2082 	ifmr->ifm_active = mii->mii_media_active;
2083 	ifmr->ifm_status = mii->mii_media_status;
2084 }
2085 
2086 static int
2087 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2088 {
2089 	struct re_softc *sc = ifp->if_softc;
2090 	struct ifreq *ifr = (struct ifreq *) data;
2091 	struct mii_data *mii;
2092 	int error = 0, s;
2093 
2094 	s = splimp();
2095 
2096 	switch(command) {
2097 	case SIOCSIFMTU:
2098 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
2099 			error = EINVAL;
2100 		ifp->if_mtu = ifr->ifr_mtu;
2101 		break;
2102 	case SIOCSIFFLAGS:
2103 		if (ifp->if_flags & IFF_UP)
2104 			re_init(sc);
2105 		else if (ifp->if_flags & IFF_RUNNING)
2106 				re_stop(sc);
2107 		error = 0;
2108 		break;
2109 	case SIOCADDMULTI:
2110 	case SIOCDELMULTI:
2111 		re_setmulti(sc);
2112 		error = 0;
2113 		break;
2114 	case SIOCGIFMEDIA:
2115 	case SIOCSIFMEDIA:
2116 		mii = device_get_softc(sc->re_miibus);
2117 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2118 		break;
2119 	case SIOCSIFCAP:
2120 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2121 		ifp->if_capenable |=
2122 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2123 		if (ifp->if_capenable & IFCAP_TXCSUM)
2124 			ifp->if_hwassist = RE_CSUM_FEATURES;
2125 		else
2126 			ifp->if_hwassist = 0;
2127 		if (ifp->if_flags & IFF_RUNNING)
2128 			re_init(sc);
2129 		break;
2130 	default:
2131 		error = ether_ioctl(ifp, command, data);
2132 		break;
2133 	}
2134 
2135 	splx(s);
2136 
2137 	return(error);
2138 }
2139 
2140 static void
2141 re_watchdog(struct ifnet *ifp)
2142 {
2143 	struct re_softc *sc = ifp->if_softc;
2144 	int s;
2145 
2146 	s = splimp();
2147 	if_printf(ifp, "watchdog timeout\n");
2148 	ifp->if_oerrors++;
2149 
2150 	re_txeof(sc);
2151 	re_rxeof(sc);
2152 
2153 	re_init(sc);
2154 
2155 	splx(s);
2156 }
2157 
2158 /*
2159  * Stop the adapter and free any mbufs allocated to the
2160  * RX and TX lists.
2161  */
2162 static void
2163 re_stop(struct re_softc *sc)
2164 {
2165 	struct ifnet *ifp = &sc->arpcom.ac_if;
2166 	int i, s;
2167 
2168 	s = splimp();
2169 	ifp->if_timer = 0;
2170 	callout_stop(&sc->re_timer);
2171 
2172 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2173 #ifdef DEVICE_POLLING
2174 	ether_poll_deregister(ifp);
2175 #endif /* DEVICE_POLLING */
2176 
2177 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2178 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2179 
2180 	if (sc->re_head != NULL) {
2181 		m_freem(sc->re_head);
2182 		sc->re_head = sc->re_tail = NULL;
2183 	}
2184 
2185 	/* Free the TX list buffers. */
2186 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
2187 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2188 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2189 					  sc->re_ldata.re_tx_dmamap[i]);
2190 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2191 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2192 		}
2193 	}
2194 
2195 	/* Free the RX list buffers. */
2196 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
2197 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2198 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2199 					  sc->re_ldata.re_rx_dmamap[i]);
2200 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2201 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2202 		}
2203 	}
2204 
2205 	splx(s);
2206 }
2207 
2208 /*
2209  * Device suspend routine.  Stop the interface and save some PCI
2210  * settings in case the BIOS doesn't restore them properly on
2211  * resume.
2212  */
2213 static int
2214 re_suspend(device_t dev)
2215 {
2216 #ifndef BURN_BRIDGES
2217 	int i;
2218 #endif
2219 	struct re_softc *sc = device_get_softc(dev);
2220 
2221 	re_stop(sc);
2222 
2223 #ifndef BURN_BRIDGES
2224 	for (i = 0; i < 5; i++)
2225 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2226 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2227 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2228 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2229 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2230 #endif
2231 
2232 	sc->suspended = 1;
2233 
2234 	return (0);
2235 }
2236 
2237 /*
2238  * Device resume routine.  Restore some PCI settings in case the BIOS
2239  * doesn't, re-enable busmastering, and restart the interface if
2240  * appropriate.
2241  */
2242 static int
2243 re_resume(device_t dev)
2244 {
2245 	struct re_softc *sc = device_get_softc(dev);
2246 	struct ifnet *ifp = &sc->arpcom.ac_if;
2247 #ifndef BURN_BRIDGES
2248 	int i;
2249 #endif
2250 
2251 #ifndef BURN_BRIDGES
2252 	/* better way to do this? */
2253 	for (i = 0; i < 5; i++)
2254 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2255 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2256 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2257 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2258 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2259 
2260 	/* reenable busmastering */
2261 	pci_enable_busmaster(dev);
2262 	pci_enable_io(dev, SYS_RES_IOPORT);
2263 #endif
2264 
2265 	/* reinitialize interface if necessary */
2266 	if (ifp->if_flags & IFF_UP)
2267 		re_init(sc);
2268 
2269 	sc->suspended = 0;
2270 
2271 	return (0);
2272 }
2273 
2274 /*
2275  * Stop all chip I/O so that the kernel's probe routines don't
2276  * get confused by errant DMAs when rebooting.
2277  */
2278 static void
2279 re_shutdown(device_t dev)
2280 {
2281 	struct re_softc *sc = device_get_softc(dev);
2282 
2283 	re_stop(sc);
2284 }
2285