xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.19 2005/11/28 17:13:43 dillon Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51  * and the RTL8110S.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7.5K, so the max MTU possible with this
111  * driver is 7500 bytes.
112  */
113 
114 #include "opt_polling.h"
115 
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/module.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/serialize.h>
126 #include <sys/thread2.h>
127 
128 #include <net/if.h>
129 #include <net/ifq_var.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/vlan/if_vlan_var.h>
136 
137 #include <net/bpf.h>
138 
139 #include <machine/bus_pio.h>
140 #include <machine/bus_memio.h>
141 #include <machine/bus.h>
142 #include <machine/resource.h>
143 #include <sys/bus.h>
144 #include <sys/rman.h>
145 
146 #include <dev/netif/mii_layer/mii.h>
147 #include <dev/netif/mii_layer/miivar.h>
148 
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "controller miibus0" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 
157 /*
158  * The hardware supports checksumming but, as usual, some chipsets screw it
159  * all up and produce bogus packets, so we disable it by default.
160  */
161 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
162 #define RE_DISABLE_HWCSUM
163 
164 /*
165  * Various supported device vendors/types and their names.
166  */
167 static struct re_type re_devs[] = {
168 	{ RT_VENDORID, RT_DEVICEID_8139, RE_HWREV_8139CPLUS,
169 		"RealTek 8139C+ 10/100BaseTX" },
170 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169,
171 		"RealTek 8169 Gigabit Ethernet" },
172 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169S,
173 		"RealTek 8169S Single-chip Gigabit Ethernet" },
174 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8110S,
175 		"RealTek 8110S Single-chip Gigabit Ethernet" },
176 	{ 0, 0, 0, NULL }
177 };
178 
179 static struct re_hwrev re_hwrevs[] = {
180 	{ RE_HWREV_8139CPLUS, RE_8139CPLUS, "C+"},
181 	{ RE_HWREV_8169, RE_8169, "8169"},
182 	{ RE_HWREV_8169S, RE_8169, "8169S"},
183 	{ RE_HWREV_8110S, RE_8169, "8110S"},
184 	{ 0, 0, NULL }
185 };
186 
187 static int	re_probe(device_t);
188 static int	re_attach(device_t);
189 static int	re_detach(device_t);
190 
191 static int	re_encap(struct re_softc *, struct mbuf **, int *, int *);
192 
193 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
194 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
195 				bus_size_t, int);
196 static int	re_allocmem(device_t, struct re_softc *);
197 static int	re_newbuf(struct re_softc *, int, struct mbuf *);
198 static int	re_rx_list_init(struct re_softc *);
199 static int	re_tx_list_init(struct re_softc *);
200 static void	re_rxeof(struct re_softc *);
201 static void	re_txeof(struct re_softc *);
202 static void	re_intr(void *);
203 static void	re_tick(void *);
204 static void	re_tick_serialized(void *);
205 static void	re_start(struct ifnet *);
206 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
207 static void	re_init(void *);
208 static void	re_stop(struct re_softc *);
209 static void	re_watchdog(struct ifnet *);
210 static int	re_suspend(device_t);
211 static int	re_resume(device_t);
212 static void	re_shutdown(device_t);
213 static int	re_ifmedia_upd(struct ifnet *);
214 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215 
216 static void	re_eeprom_putbyte(struct re_softc *, int);
217 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
218 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int, int);
219 static int	re_gmii_readreg(device_t, int, int);
220 static int	re_gmii_writereg(device_t, int, int, int);
221 
222 static int	re_miibus_readreg(device_t, int, int);
223 static int	re_miibus_writereg(device_t, int, int, int);
224 static void	re_miibus_statchg(device_t);
225 
226 static void	re_setmulti(struct re_softc *);
227 static void	re_reset(struct re_softc *);
228 
229 static int	re_diag(struct re_softc *);
230 #ifdef DEVICE_POLLING
231 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
232 #endif
233 
234 static device_method_t re_methods[] = {
235 	/* Device interface */
236 	DEVMETHOD(device_probe,		re_probe),
237 	DEVMETHOD(device_attach,	re_attach),
238 	DEVMETHOD(device_detach,	re_detach),
239 	DEVMETHOD(device_suspend,	re_suspend),
240 	DEVMETHOD(device_resume,	re_resume),
241 	DEVMETHOD(device_shutdown,	re_shutdown),
242 
243 	/* bus interface */
244 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
245 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
246 
247 	/* MII interface */
248 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
249 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
250 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
251 
252 	{ 0, 0 }
253 };
254 
255 static driver_t re_driver = {
256 	"re",
257 	re_methods,
258 	sizeof(struct re_softc)
259 };
260 
261 static devclass_t re_devclass;
262 
263 DECLARE_DUMMY_MODULE(if_re);
264 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
265 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
266 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
267 
268 #define EE_SET(x)	\
269 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
270 
271 #define EE_CLR(x)	\
272 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
273 
274 /*
275  * Send a read command and address to the EEPROM, check for ACK.
276  */
277 static void
278 re_eeprom_putbyte(struct re_softc *sc, int addr)
279 {
280 	int d, i;
281 
282 	d = addr | sc->re_eecmd_read;
283 
284 	/*
285 	 * Feed in each bit and strobe the clock.
286 	 */
287 	for (i = 0x400; i != 0; i >>= 1) {
288 		if (d & i)
289 			EE_SET(RE_EE_DATAIN);
290 		else
291 			EE_CLR(RE_EE_DATAIN);
292 		DELAY(100);
293 		EE_SET(RE_EE_CLK);
294 		DELAY(150);
295 		EE_CLR(RE_EE_CLK);
296 		DELAY(100);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
305 {
306 	int i;
307 	uint16_t word = 0;
308 
309 	/* Enter EEPROM access mode. */
310 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
311 
312 	/*
313 	 * Send address of word we want to read.
314 	 */
315 	re_eeprom_putbyte(sc, addr);
316 
317 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
318 
319 	/*
320 	 * Start reading bits from EEPROM.
321 	 */
322 	for (i = 0x8000; i != 0; i >>= 1) {
323 		EE_SET(RE_EE_CLK);
324 		DELAY(100);
325 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
326 			word |= i;
327 		EE_CLR(RE_EE_CLK);
328 		DELAY(100);
329 	}
330 
331 	/* Turn off EEPROM access mode. */
332 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
333 
334 	*dest = word;
335 }
336 
337 /*
338  * Read a sequence of words from the EEPROM.
339  */
340 static void
341 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt, int swap)
342 {
343 	int i;
344 	uint16_t word = 0, *ptr;
345 
346 	for (i = 0; i < cnt; i++) {
347 		re_eeprom_getword(sc, off + i, &word);
348 		ptr = (u_int16_t *)(dest + (i * 2));
349 		if (swap)
350 			*ptr = be16toh(word);
351 		else
352 			*ptr = word;
353 	}
354 }
355 
356 static int
357 re_gmii_readreg(device_t dev, int phy, int reg)
358 {
359 	struct re_softc *sc = device_get_softc(dev);
360 	u_int32_t rval;
361 	int i;
362 
363 	if (phy != 1)
364 		return(0);
365 
366 	/* Let the rgephy driver read the GMEDIASTAT register */
367 
368 	if (reg == RE_GMEDIASTAT)
369 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
370 
371 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
372 	DELAY(1000);
373 
374 	for (i = 0; i < RE_TIMEOUT; i++) {
375 		rval = CSR_READ_4(sc, RE_PHYAR);
376 		if (rval & RE_PHYAR_BUSY)
377 			break;
378 		DELAY(100);
379 	}
380 
381 	if (i == RE_TIMEOUT) {
382 		device_printf(dev, "PHY read failed\n");
383 		return(0);
384 	}
385 
386 	return(rval & RE_PHYAR_PHYDATA);
387 }
388 
389 static int
390 re_gmii_writereg(device_t dev, int phy, int reg, int data)
391 {
392 	struct re_softc *sc = device_get_softc(dev);
393 	uint32_t rval;
394 	int i;
395 
396 	CSR_WRITE_4(sc, RE_PHYAR,
397 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
398 	DELAY(1000);
399 
400 	for (i = 0; i < RE_TIMEOUT; i++) {
401 		rval = CSR_READ_4(sc, RE_PHYAR);
402 		if ((rval & RE_PHYAR_BUSY) == 0)
403 			break;
404 		DELAY(100);
405 	}
406 
407 	if (i == RE_TIMEOUT)
408 		device_printf(dev, "PHY write failed\n");
409 
410 	return(0);
411 }
412 
413 static int
414 re_miibus_readreg(device_t dev, int phy, int reg)
415 {
416 	struct re_softc	*sc = device_get_softc(dev);
417 	uint16_t rval = 0;
418 	uint16_t re8139_reg = 0;
419 
420 	if (sc->re_type == RE_8169) {
421 		rval = re_gmii_readreg(dev, phy, reg);
422 		return(rval);
423 	}
424 
425 	/* Pretend the internal PHY is only at address 0 */
426 	if (phy)
427 		return(0);
428 
429 	switch(reg) {
430 	case MII_BMCR:
431 		re8139_reg = RE_BMCR;
432 		break;
433 	case MII_BMSR:
434 		re8139_reg = RE_BMSR;
435 		break;
436 	case MII_ANAR:
437 		re8139_reg = RE_ANAR;
438 		break;
439 	case MII_ANER:
440 		re8139_reg = RE_ANER;
441 		break;
442 	case MII_ANLPAR:
443 		re8139_reg = RE_LPAR;
444 		break;
445 	case MII_PHYIDR1:
446 	case MII_PHYIDR2:
447 		return(0);
448 	/*
449 	 * Allow the rlphy driver to read the media status
450 	 * register. If we have a link partner which does not
451 	 * support NWAY, this is the register which will tell
452 	 * us the results of parallel detection.
453 	 */
454 	case RE_MEDIASTAT:
455 		return(CSR_READ_1(sc, RE_MEDIASTAT));
456 	default:
457 		device_printf(dev, "bad phy register\n");
458 		return(0);
459 	}
460 	rval = CSR_READ_2(sc, re8139_reg);
461 	return(rval);
462 }
463 
464 static int
465 re_miibus_writereg(device_t dev, int phy, int reg, int data)
466 {
467 	struct re_softc *sc= device_get_softc(dev);
468 	u_int16_t re8139_reg = 0;
469 
470 	if (sc->re_type == RE_8169)
471 		return(re_gmii_writereg(dev, phy, reg, data));
472 
473 	/* Pretend the internal PHY is only at address 0 */
474 	if (phy)
475 		return(0);
476 
477 	switch(reg) {
478 	case MII_BMCR:
479 		re8139_reg = RE_BMCR;
480 		break;
481 	case MII_BMSR:
482 		re8139_reg = RE_BMSR;
483 		break;
484 	case MII_ANAR:
485 		re8139_reg = RE_ANAR;
486 		break;
487 	case MII_ANER:
488 		re8139_reg = RE_ANER;
489 		break;
490 	case MII_ANLPAR:
491 		re8139_reg = RE_LPAR;
492 		break;
493 	case MII_PHYIDR1:
494 	case MII_PHYIDR2:
495 		return(0);
496 	default:
497 		device_printf(dev, "bad phy register\n");
498 		return(0);
499 	}
500 	CSR_WRITE_2(sc, re8139_reg, data);
501 	return(0);
502 }
503 
504 static void
505 re_miibus_statchg(device_t dev)
506 {
507 }
508 
509 /*
510  * Program the 64-bit multicast hash filter.
511  */
512 static void
513 re_setmulti(struct re_softc *sc)
514 {
515 	struct ifnet *ifp = &sc->arpcom.ac_if;
516 	int h = 0;
517 	uint32_t hashes[2] = { 0, 0 };
518 	struct ifmultiaddr *ifma;
519 	uint32_t rxfilt;
520 	int mcnt = 0;
521 
522 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
523 
524 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
525 		rxfilt |= RE_RXCFG_RX_MULTI;
526 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
527 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
528 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
529 		return;
530 	}
531 
532 	/* first, zot all the existing hash bits */
533 	CSR_WRITE_4(sc, RE_MAR0, 0);
534 	CSR_WRITE_4(sc, RE_MAR4, 0);
535 
536 	/* now program new ones */
537 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
538 		if (ifma->ifma_addr->sa_family != AF_LINK)
539 			continue;
540 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
541 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
542 		if (h < 32)
543 			hashes[0] |= (1 << h);
544 		else
545 			hashes[1] |= (1 << (h - 32));
546 		mcnt++;
547 	}
548 
549 	if (mcnt)
550 		rxfilt |= RE_RXCFG_RX_MULTI;
551 	else
552 		rxfilt &= ~RE_RXCFG_RX_MULTI;
553 
554 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
555 	CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
556 	CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
557 }
558 
559 static void
560 re_reset(struct re_softc *sc)
561 {
562 	int i;
563 
564 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
565 
566 	for (i = 0; i < RE_TIMEOUT; i++) {
567 		DELAY(10);
568 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
569 			break;
570 	}
571 	if (i == RE_TIMEOUT)
572 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
573 
574 	CSR_WRITE_1(sc, 0x82, 1);
575 }
576 
577 /*
578  * The following routine is designed to test for a defect on some
579  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
580  * lines connected to the bus, however for a 32-bit only card, they
581  * should be pulled high. The result of this defect is that the
582  * NIC will not work right if you plug it into a 64-bit slot: DMA
583  * operations will be done with 64-bit transfers, which will fail
584  * because the 64-bit data lines aren't connected.
585  *
586  * There's no way to work around this (short of talking a soldering
587  * iron to the board), however we can detect it. The method we use
588  * here is to put the NIC into digital loopback mode, set the receiver
589  * to promiscuous mode, and then try to send a frame. We then compare
590  * the frame data we sent to what was received. If the data matches,
591  * then the NIC is working correctly, otherwise we know the user has
592  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
593  * slot. In the latter case, there's no way the NIC can work correctly,
594  * so we print out a message on the console and abort the device attach.
595  */
596 
597 static int
598 re_diag(struct re_softc *sc)
599 {
600 	struct ifnet *ifp = &sc->arpcom.ac_if;
601 	struct mbuf *m0;
602 	struct ether_header *eh;
603 	struct re_desc *cur_rx;
604 	uint16_t status;
605 	uint32_t rxstat;
606 	int total_len, i, error = 0;
607 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
608 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
609 
610 	/* Allocate a single mbuf */
611 
612 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
613 	if (m0 == NULL)
614 		return(ENOBUFS);
615 
616 	/*
617 	 * Initialize the NIC in test mode. This sets the chip up
618 	 * so that it can send and receive frames, but performs the
619 	 * following special functions:
620 	 * - Puts receiver in promiscuous mode
621 	 * - Enables digital loopback mode
622 	 * - Leaves interrupts turned off
623 	 */
624 
625 	ifp->if_flags |= IFF_PROMISC;
626 	sc->re_testmode = 1;
627 	re_init(sc);
628 	re_stop(sc);
629 	DELAY(100000);
630 	re_init(sc);
631 
632 	/* Put some data in the mbuf */
633 
634 	eh = mtod(m0, struct ether_header *);
635 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
636 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
637 	eh->ether_type = htons(ETHERTYPE_IP);
638 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
639 
640 	/*
641 	 * Queue the packet, start transmission.
642 	 * Note: ifq_handoff() ultimately calls re_start() for us.
643 	 */
644 
645 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
646 	error = ifq_handoff(ifp, m0, NULL);
647 	if (error) {
648 		m0 = NULL;
649 		goto done;
650 	}
651 	m0 = NULL;
652 
653 	/* Wait for it to propagate through the chip */
654 
655 	DELAY(100000);
656 	for (i = 0; i < RE_TIMEOUT; i++) {
657 		status = CSR_READ_2(sc, RE_ISR);
658 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
659 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
660 			break;
661 		DELAY(10);
662 	}
663 
664 	if (i == RE_TIMEOUT) {
665 		if_printf(ifp, "diagnostic failed to receive packet "
666 			  "in loopback mode\n");
667 		error = EIO;
668 		goto done;
669 	}
670 
671 	/*
672 	 * The packet should have been dumped into the first
673 	 * entry in the RX DMA ring. Grab it from there.
674 	 */
675 
676 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
677 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
678 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
679 			BUS_DMASYNC_POSTWRITE);
680 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
681 
682 	m0 = sc->re_ldata.re_rx_mbuf[0];
683 	sc->re_ldata.re_rx_mbuf[0] = NULL;
684 	eh = mtod(m0, struct ether_header *);
685 
686 	cur_rx = &sc->re_ldata.re_rx_list[0];
687 	total_len = RE_RXBYTES(cur_rx);
688 	rxstat = le32toh(cur_rx->re_cmdstat);
689 
690 	if (total_len != ETHER_MIN_LEN) {
691 		if_printf(ifp, "diagnostic failed, received short packet\n");
692 		error = EIO;
693 		goto done;
694 	}
695 
696 	/* Test that the received packet data matches what we sent. */
697 
698 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
699 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
700 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
701 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
702 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
703 		    dst, ":", src, ":", ETHERTYPE_IP);
704 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
705 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
706 		    ntohs(eh->ether_type));
707 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
708 		    "into a 64-bit PCI slot.\n");
709 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
710 		    "for proper operation.\n");
711 		if_printf(ifp, "Read the re(4) man page for more details.\n");
712 		error = EIO;
713 	}
714 
715 done:
716 	/* Turn interface off, release resources */
717 
718 	sc->re_testmode = 0;
719 	ifp->if_flags &= ~IFF_PROMISC;
720 	re_stop(sc);
721 	if (m0 != NULL)
722 		m_freem(m0);
723 
724 	return (error);
725 }
726 
727 /*
728  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
729  * IDs against our list and return a device name if we find a match.
730  */
731 static int
732 re_probe(device_t dev)
733 {
734 	struct re_type *t;
735 	struct re_softc *sc;
736 	int rid;
737 	uint32_t hwrev;
738 	uint16_t vendor, product;
739 
740 	t = re_devs;
741 
742 	vendor = pci_get_vendor(dev);
743 	product = pci_get_device(dev);
744 
745 	for (t = re_devs; t->re_name != NULL; t++) {
746 		if (product == t->re_did && vendor == t->re_vid)
747 			break;
748 	}
749 
750 	/*
751 	 * Check if we found a RealTek device.
752 	 */
753 	if (t->re_name == NULL)
754 		return(ENXIO);
755 
756 	/*
757 	 * Temporarily map the I/O space so we can read the chip ID register.
758 	 */
759 	sc = malloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
760 	rid = RE_PCI_LOIO;
761 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
762 					    RF_ACTIVE);
763 	if (sc->re_res == NULL) {
764 		device_printf(dev, "couldn't map ports/memory\n");
765 		free(sc, M_TEMP);
766 		return(ENXIO);
767 	}
768 
769 	sc->re_btag = rman_get_bustag(sc->re_res);
770 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
771 
772 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
773 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
774 	free(sc, M_TEMP);
775 
776 	/*
777 	 * and continue matching for the specific chip...
778 	 */
779 	for (; t->re_name != NULL; t++) {
780 		if (product == t->re_did && vendor == t->re_vid &&
781 		    t->re_basetype == hwrev) {
782 			device_set_desc(dev, t->re_name);
783 			return(0);
784 		}
785 	}
786 	return(ENXIO);
787 }
788 
789 /*
790  * This routine takes the segment list provided as the result of
791  * a bus_dma_map_load() operation and assigns the addresses/lengths
792  * to RealTek DMA descriptors. This can be called either by the RX
793  * code or the TX code. In the RX case, we'll probably wind up mapping
794  * at most one segment. For the TX case, there could be any number of
795  * segments since TX packets may span multiple mbufs. In either case,
796  * if the number of segments is larger than the re_maxsegs limit
797  * specified by the caller, we abort the mapping operation. Sadly,
798  * whoever designed the buffer mapping API did not provide a way to
799  * return an error from here, so we have to fake it a bit.
800  */
801 
802 static void
803 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
804 		bus_size_t mapsize, int error)
805 {
806 	struct re_dmaload_arg *ctx;
807 	struct re_desc *d = NULL;
808 	int i = 0, idx;
809 	uint32_t cmdstat;
810 
811 	if (error)
812 		return;
813 
814 	ctx = arg;
815 
816 	/* Signal error to caller if there's too many segments */
817 	if (nseg > ctx->re_maxsegs) {
818 		ctx->re_maxsegs = 0;
819 		return;
820 	}
821 
822 	/*
823 	 * Map the segment array into descriptors. Note that we set the
824 	 * start-of-frame and end-of-frame markers for either TX or RX, but
825 	 * they really only have meaning in the TX case. (In the RX case,
826 	 * it's the chip that tells us where packets begin and end.)
827 	 * We also keep track of the end of the ring and set the
828 	 * end-of-ring bits as needed, and we set the ownership bits
829 	 * in all except the very first descriptor. (The caller will
830 	 * set this descriptor later when it start transmission or
831 	 * reception.)
832 	 */
833 	idx = ctx->re_idx;
834 	for (;;) {
835 		d = &ctx->re_ring[idx];
836 		if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
837 			ctx->re_maxsegs = 0;
838 			return;
839 		}
840 		cmdstat = segs[i].ds_len;
841 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
842 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
843 		if (i == 0)
844 			cmdstat |= RE_TDESC_CMD_SOF;
845 		else
846 			cmdstat |= RE_TDESC_CMD_OWN;
847 		if (idx == (RE_RX_DESC_CNT - 1))
848 			cmdstat |= RE_TDESC_CMD_EOR;
849 		d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
850 		i++;
851 		if (i == nseg)
852 			break;
853 		RE_DESC_INC(idx);
854 	}
855 
856 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
857 	ctx->re_maxsegs = nseg;
858 	ctx->re_idx = idx;
859 }
860 
861 /*
862  * Map a single buffer address.
863  */
864 
865 static void
866 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
867 {
868 	uint32_t *addr;
869 
870 	if (error)
871 		return;
872 
873 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
874 	addr = arg;
875 	*addr = segs->ds_addr;
876 }
877 
878 static int
879 re_allocmem(device_t dev, struct re_softc *sc)
880 {
881 	int error, i, nseg;
882 
883 	/*
884 	 * Allocate map for RX mbufs.
885 	 */
886 	nseg = 32;
887 	error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
888 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
889 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
890 	    &sc->re_ldata.re_mtag);
891 	if (error) {
892 		device_printf(dev, "could not allocate dma tag\n");
893 		return(error);
894 	}
895 
896 	/*
897 	 * Allocate map for TX descriptor list.
898 	 */
899 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
900 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
901             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
902 	    &sc->re_ldata.re_tx_list_tag);
903 	if (error) {
904 		device_printf(dev, "could not allocate dma tag\n");
905 		return(error);
906 	}
907 
908 	/* Allocate DMA'able memory for the TX ring */
909 
910         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
911 	    (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
912             &sc->re_ldata.re_tx_list_map);
913         if (error) {
914 		device_printf(dev, "could not allocate TX ring\n");
915                 return(error);
916 	}
917 
918 	/* Load the map for the TX ring. */
919 
920 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
921 	     sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
922 	     RE_TX_LIST_SZ, re_dma_map_addr,
923 	     &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
924 	if (error) {
925 		device_printf(dev, "could not get addres of TX ring\n");
926 		return(error);
927 	}
928 
929 	/* Create DMA maps for TX buffers */
930 
931 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
932 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
933 			    &sc->re_ldata.re_tx_dmamap[i]);
934 		if (error) {
935 			device_printf(dev, "can't create DMA map for TX\n");
936 			return(error);
937 		}
938 	}
939 
940 	/*
941 	 * Allocate map for RX descriptor list.
942 	 */
943 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
944 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
945             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
946 	    &sc->re_ldata.re_rx_list_tag);
947 	if (error) {
948 		device_printf(dev, "could not allocate dma tag\n");
949 		return(error);
950 	}
951 
952 	/* Allocate DMA'able memory for the RX ring */
953 
954         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
955 	    (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
956             &sc->re_ldata.re_rx_list_map);
957         if (error) {
958 		device_printf(dev, "could not allocate RX ring\n");
959                 return(error);
960 	}
961 
962 	/* Load the map for the RX ring. */
963 
964 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
965 	     sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
966 	     RE_TX_LIST_SZ, re_dma_map_addr,
967 	     &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
968 	if (error) {
969 		device_printf(dev, "could not get address of RX ring\n");
970 		return(error);
971 	}
972 
973 	/* Create DMA maps for RX buffers */
974 
975 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
976 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
977 			    &sc->re_ldata.re_rx_dmamap[i]);
978 		if (error) {
979 			device_printf(dev, "can't create DMA map for RX\n");
980 			return(ENOMEM);
981 		}
982 	}
983 
984 	return(0);
985 }
986 
987 /*
988  * Attach the interface. Allocate softc structures, do ifmedia
989  * setup and ethernet/BPF attach.
990  */
991 static int
992 re_attach(device_t dev)
993 {
994 	struct re_softc	*sc = device_get_softc(dev);
995 	struct ifnet *ifp;
996 	struct re_hwrev *hw_rev;
997 	uint8_t eaddr[ETHER_ADDR_LEN];
998 	int hwrev;
999 	u_int16_t re_did = 0;
1000 	int error = 0, rid, i;
1001 
1002 	callout_init(&sc->re_timer);
1003 
1004 #ifndef BURN_BRIDGES
1005 	/*
1006 	 * Handle power management nonsense.
1007 	 */
1008 
1009 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1010 		uint32_t membase, irq;
1011 
1012 		/* Save important PCI config data. */
1013 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1014 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1015 
1016 		/* Reset the power state. */
1017 		device_printf(dev, "chip is is in D%d power mode "
1018 		    "-- setting to D0\n", pci_get_powerstate(dev));
1019 
1020 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1021 
1022 		/* Restore PCI config data. */
1023 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1024 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1025 	}
1026 #endif
1027 	/*
1028 	 * Map control/status registers.
1029 	 */
1030 	pci_enable_busmaster(dev);
1031 
1032 	rid = RE_PCI_LOIO;
1033 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1034 					    RF_ACTIVE);
1035 
1036 	if (sc->re_res == NULL) {
1037 		device_printf(dev, "couldn't map ports/memory\n");
1038 		error = ENXIO;
1039 		goto fail;
1040 	}
1041 
1042 	sc->re_btag = rman_get_bustag(sc->re_res);
1043 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1044 
1045 	/* Allocate interrupt */
1046 	rid = 0;
1047 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048 					    RF_SHAREABLE | RF_ACTIVE);
1049 
1050 	if (sc->re_irq == NULL) {
1051 		device_printf(dev, "couldn't map interrupt\n");
1052 		error = ENXIO;
1053 		goto fail;
1054 	}
1055 
1056 	/* Reset the adapter. */
1057 	re_reset(sc);
1058 
1059 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1060 	for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1061 		if (hw_rev->re_rev == hwrev) {
1062 			sc->re_type = hw_rev->re_type;
1063 			break;
1064 		}
1065 	}
1066 
1067 	if (sc->re_type == RE_8169) {
1068 		/* Set RX length mask */
1069 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1070 
1071 		/* Force station address autoload from the EEPROM */
1072 		CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_AUTOLOAD);
1073 		for (i = 0; i < RE_TIMEOUT; i++) {
1074 			if ((CSR_READ_1(sc, RE_EECMD) & RE_EEMODE_AUTOLOAD) == 0)
1075 				break;
1076 			DELAY(100);
1077 		}
1078 		if (i == RE_TIMEOUT)
1079 			device_printf(dev, "eeprom autoload timed out\n");
1080 
1081 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1082 			eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
1083 	} else {
1084 		uint16_t as[3];
1085 
1086 		/* Set RX length mask */
1087 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1088 
1089 		sc->re_eecmd_read = RE_EECMD_READ_6BIT;
1090 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1091 		if (re_did != 0x8129)
1092 			sc->re_eecmd_read = RE_EECMD_READ_8BIT;
1093 
1094 		/*
1095 		 * Get station address from the EEPROM.
1096 		 */
1097 		re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3, 0);
1098 		for (i = 0; i < 3; i++) {
1099 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1100 			eaddr[(i * 2) + 1] = as[i] >> 8;
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * Allocate the parent bus DMA tag appropriate for PCI.
1106 	 */
1107 #define RE_NSEG_NEW 32
1108 	error = bus_dma_tag_create(NULL,	/* parent */
1109 			1, 0,			/* alignment, boundary */
1110 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1111 			BUS_SPACE_MAXADDR,	/* highaddr */
1112 			NULL, NULL,		/* filter, filterarg */
1113 			MAXBSIZE, RE_NSEG_NEW,	/* maxsize, nsegments */
1114 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1115 			BUS_DMA_ALLOCNOW,	/* flags */
1116 			&sc->re_parent_tag);
1117 	if (error)
1118 		goto fail;
1119 
1120 	error = re_allocmem(dev, sc);
1121 
1122 	if (error)
1123 		goto fail;
1124 
1125 	/* Do MII setup */
1126 	if (mii_phy_probe(dev, &sc->re_miibus,
1127 	    re_ifmedia_upd, re_ifmedia_sts)) {
1128 		device_printf(dev, "MII without any phy!\n");
1129 		error = ENXIO;
1130 		goto fail;
1131 	}
1132 
1133 	ifp = &sc->arpcom.ac_if;
1134 	ifp->if_softc = sc;
1135 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1136 	ifp->if_mtu = ETHERMTU;
1137 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1138 	ifp->if_ioctl = re_ioctl;
1139 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1140 	ifp->if_start = re_start;
1141 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1142 #ifdef DEVICE_POLLING
1143 	ifp->if_poll = re_poll;
1144 #endif
1145 	ifp->if_watchdog = re_watchdog;
1146 	ifp->if_init = re_init;
1147 	if (sc->re_type == RE_8169)
1148 		ifp->if_baudrate = 1000000000;
1149 	else
1150 		ifp->if_baudrate = 100000000;
1151 	ifq_set_maxlen(&ifp->if_snd, RE_IFQ_MAXLEN);
1152 	ifq_set_ready(&ifp->if_snd);
1153 #ifdef RE_DISABLE_HWCSUM
1154 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1155 	ifp->if_hwassist = 0;
1156 #else
1157 	ifp->if_capenable = ifp->if_capabilities;
1158 	ifp->if_hwassist = RE_CSUM_FEATURES;
1159 #endif
1160 
1161 	/*
1162 	 * Call MI attach routine.
1163 	 */
1164 	ether_ifattach(ifp, eaddr, NULL);
1165 
1166 	lwkt_serialize_enter(ifp->if_serializer);
1167 	/* Perform hardware diagnostic. */
1168 	error = re_diag(sc);
1169 	lwkt_serialize_exit(ifp->if_serializer);
1170 
1171 	if (error) {
1172 		device_printf(dev, "hardware diagnostic failure\n");
1173 		ether_ifdetach(ifp);
1174 		goto fail;
1175 	}
1176 
1177 	/* Hook interrupt last to avoid having to lock softc */
1178 	error = bus_setup_intr(dev, sc->re_irq, INTR_NETSAFE, re_intr, sc,
1179 			       &sc->re_intrhand, ifp->if_serializer);
1180 
1181 	if (error) {
1182 		device_printf(dev, "couldn't set up irq\n");
1183 		ether_ifdetach(ifp);
1184 		goto fail;
1185 	}
1186 
1187 fail:
1188 	if (error)
1189 		re_detach(dev);
1190 
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Shutdown hardware and free up resources. This can be called any
1196  * time after the mutex has been initialized. It is called in both
1197  * the error case in attach and the normal detach case so it needs
1198  * to be careful about only freeing resources that have actually been
1199  * allocated.
1200  */
1201 static int
1202 re_detach(device_t dev)
1203 {
1204 	struct re_softc *sc = device_get_softc(dev);
1205 	struct ifnet *ifp = &sc->arpcom.ac_if;
1206 	int i;
1207 
1208 	lwkt_serialize_enter(ifp->if_serializer);
1209 
1210 	/* These should only be active if attach succeeded */
1211 	if (device_is_attached(dev)) {
1212 		re_stop(sc);
1213 		ether_ifdetach(ifp);
1214 	}
1215 	if (sc->re_miibus)
1216 		device_delete_child(dev, sc->re_miibus);
1217 	bus_generic_detach(dev);
1218 
1219 	if (sc->re_intrhand)
1220 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1221 
1222 	if (sc->re_irq)
1223 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1224 	if (sc->re_res)
1225 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1226 				     sc->re_res);
1227 
1228 	/* Unload and free the RX DMA ring memory and map */
1229 
1230 	if (sc->re_ldata.re_rx_list_tag) {
1231 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1232 		    sc->re_ldata.re_rx_list_map);
1233 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1234 		    sc->re_ldata.re_rx_list,
1235 		    sc->re_ldata.re_rx_list_map);
1236 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1237 	}
1238 
1239 	/* Unload and free the TX DMA ring memory and map */
1240 
1241 	if (sc->re_ldata.re_tx_list_tag) {
1242 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1243 		    sc->re_ldata.re_tx_list_map);
1244 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1245 		    sc->re_ldata.re_tx_list,
1246 		    sc->re_ldata.re_tx_list_map);
1247 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1248 	}
1249 
1250 	/* Destroy all the RX and TX buffer maps */
1251 
1252 	if (sc->re_ldata.re_mtag) {
1253 		for (i = 0; i < RE_TX_DESC_CNT; i++)
1254 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1255 			    sc->re_ldata.re_tx_dmamap[i]);
1256 		for (i = 0; i < RE_RX_DESC_CNT; i++)
1257 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1258 			    sc->re_ldata.re_rx_dmamap[i]);
1259 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1260 	}
1261 
1262 	/* Unload and free the stats buffer and map */
1263 
1264 	if (sc->re_ldata.re_stag) {
1265 		bus_dmamap_unload(sc->re_ldata.re_stag,
1266 		    sc->re_ldata.re_rx_list_map);
1267 		bus_dmamem_free(sc->re_ldata.re_stag,
1268 		    sc->re_ldata.re_stats,
1269 		    sc->re_ldata.re_smap);
1270 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1271 	}
1272 
1273 	if (sc->re_parent_tag)
1274 		bus_dma_tag_destroy(sc->re_parent_tag);
1275 
1276 	lwkt_serialize_exit(ifp->if_serializer);
1277 	return(0);
1278 }
1279 
1280 static int
1281 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1282 {
1283 	struct re_dmaload_arg arg;
1284 	struct mbuf *n = NULL;
1285 	int error;
1286 
1287 	if (m == NULL) {
1288 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1289 		if (n == NULL)
1290 			return(ENOBUFS);
1291 		m = n;
1292 	} else
1293 		m->m_data = m->m_ext.ext_buf;
1294 
1295 	/*
1296 	 * Initialize mbuf length fields and fixup
1297 	 * alignment so that the frame payload is
1298 	 * longword aligned.
1299 	 */
1300 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1301 	m_adj(m, ETHER_ALIGN);
1302 
1303 	arg.sc = sc;
1304 	arg.re_idx = idx;
1305 	arg.re_maxsegs = 1;
1306 	arg.re_flags = 0;
1307 	arg.re_ring = sc->re_ldata.re_rx_list;
1308 
1309         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1310 	    sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1311 	    &arg, BUS_DMA_NOWAIT);
1312 	if (error || arg.re_maxsegs != 1) {
1313 		if (n != NULL)
1314 			m_freem(n);
1315 		return (ENOMEM);
1316 	}
1317 
1318 	sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1319 	sc->re_ldata.re_rx_mbuf[idx] = m;
1320 
1321         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1322 		        BUS_DMASYNC_PREREAD);
1323 
1324 	return(0);
1325 }
1326 
1327 static int
1328 re_tx_list_init(struct re_softc *sc)
1329 {
1330 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1331 	bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1332 
1333 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1334 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1335 	sc->re_ldata.re_tx_prodidx = 0;
1336 	sc->re_ldata.re_tx_considx = 0;
1337 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1338 
1339 	return(0);
1340 }
1341 
1342 static int
1343 re_rx_list_init(struct re_softc *sc)
1344 {
1345 	int i, error;
1346 
1347 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1348 	bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1349 
1350 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1351 		error = re_newbuf(sc, i, NULL);
1352 		if (error)
1353 			return(error);
1354 	}
1355 
1356 	/* Flush the RX descriptors */
1357 
1358 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1359 	    sc->re_ldata.re_rx_list_map,
1360 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1361 
1362 	sc->re_ldata.re_rx_prodidx = 0;
1363 	sc->re_head = sc->re_tail = NULL;
1364 
1365 	return(0);
1366 }
1367 
1368 /*
1369  * RX handler for C+ and 8169. For the gigE chips, we support
1370  * the reception of jumbo frames that have been fragmented
1371  * across multiple 2K mbuf cluster buffers.
1372  */
1373 static void
1374 re_rxeof(struct re_softc *sc)
1375 {
1376 	struct ifnet *ifp = &sc->arpcom.ac_if;
1377 	struct mbuf *m;
1378 	struct re_desc 	*cur_rx;
1379 	uint32_t rxstat, rxvlan;
1380 	int i, total_len;
1381 
1382 	/* Invalidate the descriptor memory */
1383 
1384 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1385 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1386 
1387 	for (i = sc->re_ldata.re_rx_prodidx;
1388 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1389 		cur_rx = &sc->re_ldata.re_rx_list[i];
1390 		m = sc->re_ldata.re_rx_mbuf[i];
1391 		total_len = RE_RXBYTES(cur_rx);
1392 		rxstat = le32toh(cur_rx->re_cmdstat);
1393 		rxvlan = le32toh(cur_rx->re_vlanctl);
1394 
1395 		/* Invalidate the RX mbuf and unload its map */
1396 
1397 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1398 				sc->re_ldata.re_rx_dmamap[i],
1399 				BUS_DMASYNC_POSTWRITE);
1400 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1401 				  sc->re_ldata.re_rx_dmamap[i]);
1402 
1403 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1404 			m->m_len = MCLBYTES - ETHER_ALIGN;
1405 			if (sc->re_head == NULL) {
1406 				sc->re_head = sc->re_tail = m;
1407 			} else {
1408 				sc->re_tail->m_next = m;
1409 				sc->re_tail = m;
1410 			}
1411 			re_newbuf(sc, i, NULL);
1412 			continue;
1413 		}
1414 
1415 		/*
1416 		 * NOTE: for the 8139C+, the frame length field
1417 		 * is always 12 bits in size, but for the gigE chips,
1418 		 * it is 13 bits (since the max RX frame length is 16K).
1419 		 * Unfortunately, all 32 bits in the status word
1420 		 * were already used, so to make room for the extra
1421 		 * length bit, RealTek took out the 'frame alignment
1422 		 * error' bit and shifted the other status bits
1423 		 * over one slot. The OWN, EOR, FS and LS bits are
1424 		 * still in the same places. We have already extracted
1425 		 * the frame length and checked the OWN bit, so rather
1426 		 * than using an alternate bit mapping, we shift the
1427 		 * status bits one space to the right so we can evaluate
1428 		 * them using the 8169 status as though it was in the
1429 		 * same format as that of the 8139C+.
1430 		 */
1431 		if (sc->re_type == RE_8169)
1432 			rxstat >>= 1;
1433 
1434 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1435 			ifp->if_ierrors++;
1436 			/*
1437 			 * If this is part of a multi-fragment packet,
1438 			 * discard all the pieces.
1439 			 */
1440 			if (sc->re_head != NULL) {
1441 				m_freem(sc->re_head);
1442 				sc->re_head = sc->re_tail = NULL;
1443 			}
1444 			re_newbuf(sc, i, m);
1445 			continue;
1446 		}
1447 
1448 		/*
1449 		 * If allocating a replacement mbuf fails,
1450 		 * reload the current one.
1451 		 */
1452 
1453 		if (re_newbuf(sc, i, NULL)) {
1454 			ifp->if_ierrors++;
1455 			if (sc->re_head != NULL) {
1456 				m_freem(sc->re_head);
1457 				sc->re_head = sc->re_tail = NULL;
1458 			}
1459 			re_newbuf(sc, i, m);
1460 			continue;
1461 		}
1462 
1463 		if (sc->re_head != NULL) {
1464 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1465 			/*
1466 			 * Special case: if there's 4 bytes or less
1467 			 * in this buffer, the mbuf can be discarded:
1468 			 * the last 4 bytes is the CRC, which we don't
1469 			 * care about anyway.
1470 			 */
1471 			if (m->m_len <= ETHER_CRC_LEN) {
1472 				sc->re_tail->m_len -=
1473 				    (ETHER_CRC_LEN - m->m_len);
1474 				m_freem(m);
1475 			} else {
1476 				m->m_len -= ETHER_CRC_LEN;
1477 				sc->re_tail->m_next = m;
1478 			}
1479 			m = sc->re_head;
1480 			sc->re_head = sc->re_tail = NULL;
1481 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1482 		} else
1483 			m->m_pkthdr.len = m->m_len =
1484 			    (total_len - ETHER_CRC_LEN);
1485 
1486 		ifp->if_ipackets++;
1487 		m->m_pkthdr.rcvif = ifp;
1488 
1489 		/* Do RX checksumming if enabled */
1490 
1491 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1492 
1493 			/* Check IP header checksum */
1494 			if (rxstat & RE_RDESC_STAT_PROTOID)
1495 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1496 			if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1497 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1498 
1499 			/* Check TCP/UDP checksum */
1500 			if ((RE_TCPPKT(rxstat) &&
1501 			    (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1502 			    (RE_UDPPKT(rxstat) &&
1503 			    (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1504 				m->m_pkthdr.csum_flags |=
1505 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1506 				m->m_pkthdr.csum_data = 0xffff;
1507 			}
1508 		}
1509 
1510 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1511 			VLAN_INPUT_TAG(m,
1512 			   be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1513 		} else {
1514 			ifp->if_input(ifp, m);
1515 		}
1516 	}
1517 
1518 	/* Flush the RX DMA ring */
1519 
1520 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1521 			sc->re_ldata.re_rx_list_map,
1522 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1523 
1524 	sc->re_ldata.re_rx_prodidx = i;
1525 }
1526 
1527 static void
1528 re_txeof(struct re_softc *sc)
1529 {
1530 	struct ifnet *ifp = &sc->arpcom.ac_if;
1531 	uint32_t txstat;
1532 	int idx;
1533 
1534 	/* Invalidate the TX descriptor list */
1535 
1536 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1537 	    sc->re_ldata.re_tx_list_map,
1538 	    BUS_DMASYNC_POSTREAD);
1539 
1540 	for (idx = sc->re_ldata.re_tx_considx;
1541 	     idx != sc->re_ldata.re_tx_prodidx; RE_DESC_INC(idx)) {
1542 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1543 		if (txstat & RE_TDESC_CMD_OWN)
1544 			break;
1545 
1546 		/*
1547 		 * We only stash mbufs in the last descriptor
1548 		 * in a fragment chain, which also happens to
1549 		 * be the only place where the TX status bits
1550 		 * are valid.
1551 		 */
1552 		if (txstat & RE_TDESC_CMD_EOF) {
1553 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1554 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
1555 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1556 			    sc->re_ldata.re_tx_dmamap[idx]);
1557 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1558 			    RE_TDESC_STAT_COLCNT))
1559 				ifp->if_collisions++;
1560 			if (txstat & RE_TDESC_STAT_TXERRSUM)
1561 				ifp->if_oerrors++;
1562 			else
1563 				ifp->if_opackets++;
1564 		}
1565 		sc->re_ldata.re_tx_free++;
1566 	}
1567 
1568 	/* No changes made to the TX ring, so no flush needed */
1569 	if (idx != sc->re_ldata.re_tx_considx) {
1570 		sc->re_ldata.re_tx_considx = idx;
1571 		ifp->if_flags &= ~IFF_OACTIVE;
1572 		ifp->if_timer = 0;
1573 	}
1574 
1575 	/*
1576 	 * If not all descriptors have been released reaped yet,
1577 	 * reload the timer so that we will eventually get another
1578 	 * interrupt that will cause us to re-enter this routine.
1579 	 * This is done in case the transmitter has gone idle.
1580 	 */
1581 	if (sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
1582                 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1583 }
1584 
1585 static void
1586 re_tick(void *xsc)
1587 {
1588 	struct re_softc *sc = xsc;
1589 
1590 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1591 	re_tick_serialized(xsc);
1592 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1593 }
1594 
1595 static void
1596 re_tick_serialized(void *xsc)
1597 {
1598 	struct re_softc *sc = xsc;
1599 	struct mii_data *mii;
1600 
1601 	mii = device_get_softc(sc->re_miibus);
1602 	mii_tick(mii);
1603 
1604 	callout_reset(&sc->re_timer, hz, re_tick, sc);
1605 }
1606 
1607 #ifdef DEVICE_POLLING
1608 
1609 static void
1610 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1611 {
1612 	struct re_softc *sc = ifp->if_softc;
1613 
1614 	switch(cmd) {
1615 	case POLL_REGISTER:
1616 		/* disable interrupts */
1617 		CSR_WRITE_2(sc, RE_IMR, 0x0000);
1618 		break;
1619 	case POLL_DEREGISTER:
1620 		/* enable interrupts */
1621 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1622 		break;
1623 	default:
1624 		sc->rxcycles = count;
1625 		re_rxeof(sc);
1626 		re_txeof(sc);
1627 
1628 		if (!ifq_is_empty(&ifp->if_snd))
1629 			(*ifp->if_start)(ifp);
1630 
1631 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1632 			uint16_t       status;
1633 
1634 			status = CSR_READ_2(sc, RE_ISR);
1635 			if (status == 0xffff)
1636 				return;
1637 			if (status)
1638 				CSR_WRITE_2(sc, RE_ISR, status);
1639 
1640 			/*
1641 			 * XXX check behaviour on receiver stalls.
1642 			 */
1643 
1644 			if (status & RE_ISR_SYSTEM_ERR) {
1645 				re_reset(sc);
1646 				re_init(sc);
1647 			}
1648 		}
1649 		break;
1650 	}
1651 }
1652 #endif /* DEVICE_POLLING */
1653 
1654 static void
1655 re_intr(void *arg)
1656 {
1657 	struct re_softc	*sc = arg;
1658 	struct ifnet *ifp = &sc->arpcom.ac_if;
1659 	uint16_t status;
1660 
1661 	if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1662 		return;
1663 
1664 	for (;;) {
1665 		status = CSR_READ_2(sc, RE_ISR);
1666 		/* If the card has gone away the read returns 0xffff. */
1667 		if (status == 0xffff)
1668 			break;
1669 		if (status)
1670 			CSR_WRITE_2(sc, RE_ISR, status);
1671 
1672 		if ((status & RE_INTRS_CPLUS) == 0)
1673 			break;
1674 
1675 		if (status & RE_ISR_RX_OK)
1676 			re_rxeof(sc);
1677 
1678 		if (status & RE_ISR_RX_ERR)
1679 			re_rxeof(sc);
1680 
1681 		if ((status & RE_ISR_TIMEOUT_EXPIRED) ||
1682 		    (status & RE_ISR_TX_ERR) ||
1683 		    (status & RE_ISR_TX_DESC_UNAVAIL))
1684 			re_txeof(sc);
1685 
1686 		if (status & RE_ISR_SYSTEM_ERR) {
1687 			re_reset(sc);
1688 			re_init(sc);
1689 		}
1690 
1691 		if (status & RE_ISR_LINKCHG)
1692 			re_tick_serialized(sc);
1693 	}
1694 
1695 	if (!ifq_is_empty(&ifp->if_snd))
1696 		(*ifp->if_start)(ifp);
1697 }
1698 
1699 static int
1700 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx, int *called_defrag)
1701 {
1702 	struct ifnet *ifp = &sc->arpcom.ac_if;
1703 	struct mbuf *m, *m_new = NULL;
1704 	struct re_dmaload_arg	arg;
1705 	bus_dmamap_t		map;
1706 	int			error;
1707 
1708 	*called_defrag = 0;
1709 	if (sc->re_ldata.re_tx_free <= 4)
1710 		return(EFBIG);
1711 
1712 	m = *m_head;
1713 
1714 	/*
1715 	 * Set up checksum offload. Note: checksum offload bits must
1716 	 * appear in all descriptors of a multi-descriptor transmit
1717 	 * attempt. (This is according to testing done with an 8169
1718 	 * chip. I'm not sure if this is a requirement or a bug.)
1719 	 */
1720 
1721 	arg.re_flags = 0;
1722 
1723 	if (m->m_pkthdr.csum_flags & CSUM_IP)
1724 		arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1725 	if (m->m_pkthdr.csum_flags & CSUM_TCP)
1726 		arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1727 	if (m->m_pkthdr.csum_flags & CSUM_UDP)
1728 		arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1729 
1730 	arg.sc = sc;
1731 	arg.re_idx = *idx;
1732 	arg.re_maxsegs = sc->re_ldata.re_tx_free;
1733 	if (arg.re_maxsegs > 4)
1734 		arg.re_maxsegs -= 4;
1735 	arg.re_ring = sc->re_ldata.re_tx_list;
1736 
1737 	map = sc->re_ldata.re_tx_dmamap[*idx];
1738 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1739 	    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1740 
1741 	if (error && error != EFBIG) {
1742 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
1743 		return(ENOBUFS);
1744 	}
1745 
1746 	/* Too many segments to map, coalesce into a single mbuf */
1747 
1748 	if (error || arg.re_maxsegs == 0) {
1749 		m_new = m_defrag_nofree(m, MB_DONTWAIT);
1750 		if (m_new == NULL)
1751 			return(1);
1752 		else {
1753 			m = m_new;
1754 			*m_head = m;
1755 		}
1756 
1757 		*called_defrag = 1;
1758 		arg.sc = sc;
1759 		arg.re_idx = *idx;
1760 		arg.re_maxsegs = sc->re_ldata.re_tx_free;
1761 		arg.re_ring = sc->re_ldata.re_tx_list;
1762 
1763 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1764 		    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1765 		if (error) {
1766 			m_freem(m);
1767 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
1768 			return(EFBIG);
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * Insure that the map for this transmission
1774 	 * is placed at the array index of the last descriptor
1775 	 * in this chain.
1776 	 */
1777 	sc->re_ldata.re_tx_dmamap[*idx] =
1778 	    sc->re_ldata.re_tx_dmamap[arg.re_idx];
1779 	sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1780 
1781 	sc->re_ldata.re_tx_mbuf[arg.re_idx] = m;
1782 	sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1783 
1784 	/*
1785 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1786 	 * appear in the first descriptor of a multi-descriptor
1787 	 * transmission attempt.
1788 	 */
1789 
1790 	if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1791 	    m->m_pkthdr.rcvif != NULL &&
1792 	    m->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1793 	    	struct ifvlan *ifv;
1794 		ifv = m->m_pkthdr.rcvif->if_softc;
1795 		if (ifv != NULL)
1796 			sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1797 			    htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1798 	}
1799 
1800 	/* Transfer ownership of packet to the chip. */
1801 
1802 	sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1803 	    htole32(RE_TDESC_CMD_OWN);
1804 	if (*idx != arg.re_idx)
1805 		sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1806 		    htole32(RE_TDESC_CMD_OWN);
1807 
1808 	RE_DESC_INC(arg.re_idx);
1809 	*idx = arg.re_idx;
1810 
1811 	return(0);
1812 }
1813 
1814 /*
1815  * Main transmit routine for C+ and gigE NICs.
1816  */
1817 
1818 static void
1819 re_start(struct ifnet *ifp)
1820 {
1821 	struct re_softc	*sc = ifp->if_softc;
1822 	struct mbuf *m_head;
1823 	struct mbuf *m_head2;
1824 	int called_defrag, idx, need_trans;
1825 
1826 	idx = sc->re_ldata.re_tx_prodidx;
1827 
1828 	need_trans = 0;
1829 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1830 		m_head = ifq_poll(&ifp->if_snd);
1831 		if (m_head == NULL)
1832 			break;
1833 		m_head2 = m_head;
1834 		if (re_encap(sc, &m_head2, &idx, &called_defrag)) {
1835 			/*
1836 			 * If we could not encapsulate the defragged packet,
1837 			 * the returned m_head2 is garbage and we must dequeue
1838 			 * and throw away the original packet.
1839 			 */
1840 			if (called_defrag) {
1841 				ifq_dequeue(&ifp->if_snd, m_head);
1842 				m_freem(m_head);
1843 			}
1844 			ifp->if_flags |= IFF_OACTIVE;
1845 			break;
1846 		}
1847 
1848 		/*
1849 		 * Clean out the packet we encapsulated.  If we defragged
1850 		 * the packet the m_head2 is the one that got encapsulated
1851 		 * and the original must be thrown away.  Otherwise m_head2
1852 		 * *IS* the original.
1853 		 */
1854 		ifq_dequeue(&ifp->if_snd, m_head);
1855 		if (called_defrag)
1856 			m_freem(m_head);
1857 		need_trans = 1;
1858 
1859 		/*
1860 		 * If there's a BPF listener, bounce a copy of this frame
1861 		 * to him.
1862 		 */
1863 		BPF_MTAP(ifp, m_head2);
1864 	}
1865 
1866 	if (!need_trans) {
1867 		return;
1868 	}
1869 
1870 	/* Flush the TX descriptors */
1871 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1872 			sc->re_ldata.re_tx_list_map,
1873 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1874 
1875 	sc->re_ldata.re_tx_prodidx = idx;
1876 
1877 	/*
1878 	 * RealTek put the TX poll request register in a different
1879 	 * location on the 8169 gigE chip. I don't know why.
1880 	 */
1881 	if (sc->re_type == RE_8169)
1882 		CSR_WRITE_2(sc, RE_GTXSTART, RE_TXSTART_START);
1883 	else
1884 		CSR_WRITE_2(sc, RE_TXSTART, RE_TXSTART_START);
1885 
1886 	/*
1887 	 * Use the countdown timer for interrupt moderation.
1888 	 * 'TX done' interrupts are disabled. Instead, we reset the
1889 	 * countdown timer, which will begin counting until it hits
1890 	 * the value in the TIMERINT register, and then trigger an
1891 	 * interrupt. Each time we write to the TIMERCNT register,
1892 	 * the timer count is reset to 0.
1893 	 */
1894 	CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1895 
1896 	/*
1897 	 * Set a timeout in case the chip goes out to lunch.
1898 	 */
1899 	ifp->if_timer = 5;
1900 }
1901 
1902 static void
1903 re_init(void *xsc)
1904 {
1905 	struct re_softc *sc = xsc;
1906 	struct ifnet *ifp = &sc->arpcom.ac_if;
1907 	struct mii_data *mii;
1908 	uint32_t rxcfg = 0;
1909 
1910 	mii = device_get_softc(sc->re_miibus);
1911 
1912 	/*
1913 	 * Cancel pending I/O and free all RX/TX buffers.
1914 	 */
1915 	re_stop(sc);
1916 
1917 	/*
1918 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1919 	 * RX checksum offload. We must configure the C+ register
1920 	 * before all others.
1921 	 */
1922 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
1923 		    RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
1924 		    (ifp->if_capenable & IFCAP_RXCSUM ?
1925 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
1926 
1927 	/*
1928 	 * Init our MAC address.  Even though the chipset
1929 	 * documentation doesn't mention it, we need to enter "Config
1930 	 * register write enable" mode to modify the ID registers.
1931 	 */
1932 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
1933 	CSR_WRITE_STREAM_4(sc, RE_IDR0,
1934 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1935 	CSR_WRITE_STREAM_4(sc, RE_IDR4,
1936 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1937 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
1938 
1939 	/*
1940 	 * For C+ mode, initialize the RX descriptors and mbufs.
1941 	 */
1942 	re_rx_list_init(sc);
1943 	re_tx_list_init(sc);
1944 
1945 	/*
1946 	 * Enable transmit and receive.
1947 	 */
1948 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1949 
1950 	/*
1951 	 * Set the initial TX and RX configuration.
1952 	 */
1953 	if (sc->re_testmode) {
1954 		if (sc->re_type == RE_8169)
1955 			CSR_WRITE_4(sc, RE_TXCFG,
1956 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
1957 		else
1958 			CSR_WRITE_4(sc, RE_TXCFG,
1959 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
1960 	} else
1961 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
1962 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
1963 
1964 	/* Set the individual bit to receive frames for this host only. */
1965 	rxcfg = CSR_READ_4(sc, RE_RXCFG);
1966 	rxcfg |= RE_RXCFG_RX_INDIV;
1967 
1968 	/* If we want promiscuous mode, set the allframes bit. */
1969 	if (ifp->if_flags & IFF_PROMISC) {
1970 		rxcfg |= RE_RXCFG_RX_ALLPHYS;
1971 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1972 	} else {
1973 		rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
1974 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1975 	}
1976 
1977 	/*
1978 	 * Set capture broadcast bit to capture broadcast frames.
1979 	 */
1980 	if (ifp->if_flags & IFF_BROADCAST) {
1981 		rxcfg |= RE_RXCFG_RX_BROAD;
1982 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1983 	} else {
1984 		rxcfg &= ~RE_RXCFG_RX_BROAD;
1985 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1986 	}
1987 
1988 	/*
1989 	 * Program the multicast filter, if necessary.
1990 	 */
1991 	re_setmulti(sc);
1992 
1993 #ifdef DEVICE_POLLING
1994 	/*
1995 	 * Disable interrupts if we are polling.
1996 	 */
1997 	if (ifp->if_flags & IFF_POLLING)
1998 		CSR_WRITE_2(sc, RE_IMR, 0);
1999 	else	/* otherwise ... */
2000 #endif /* DEVICE_POLLING */
2001 	/*
2002 	 * Enable interrupts.
2003 	 */
2004 	if (sc->re_testmode)
2005 		CSR_WRITE_2(sc, RE_IMR, 0);
2006 	else
2007 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
2008 
2009 	/* Set initial TX threshold */
2010 	sc->re_txthresh = RE_TX_THRESH_INIT;
2011 
2012 	/* Start RX/TX process. */
2013 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2014 #ifdef notdef
2015 	/* Enable receiver and transmitter. */
2016 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2017 #endif
2018 	/*
2019 	 * Load the addresses of the RX and TX lists into the chip.
2020 	 */
2021 
2022 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2023 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2024 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2025 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2026 
2027 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2028 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2029 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2030 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2031 
2032 	CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
2033 
2034 	/*
2035 	 * Initialize the timer interrupt register so that
2036 	 * a timer interrupt will be generated once the timer
2037 	 * reaches a certain number of ticks. The timer is
2038 	 * reloaded on each transmit. This gives us TX interrupt
2039 	 * moderation, which dramatically improves TX frame rate.
2040 	 */
2041 
2042 	if (sc->re_type == RE_8169)
2043 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2044 	else
2045 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2046 
2047 	/*
2048 	 * For 8169 gigE NICs, set the max allowed RX packet
2049 	 * size so we can receive jumbo frames.
2050 	 */
2051 	if (sc->re_type == RE_8169)
2052 		CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2053 
2054 	if (sc->re_testmode) {
2055 		return;
2056 	}
2057 
2058 	mii_mediachg(mii);
2059 
2060 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2061 
2062 	ifp->if_flags |= IFF_RUNNING;
2063 	ifp->if_flags &= ~IFF_OACTIVE;
2064 
2065 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2066 }
2067 
2068 /*
2069  * Set media options.
2070  */
2071 static int
2072 re_ifmedia_upd(struct ifnet *ifp)
2073 {
2074 	struct re_softc *sc = ifp->if_softc;
2075 	struct mii_data *mii;
2076 
2077 	mii = device_get_softc(sc->re_miibus);
2078 	mii_mediachg(mii);
2079 
2080 	return(0);
2081 }
2082 
2083 /*
2084  * Report current media status.
2085  */
2086 static void
2087 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2088 {
2089 	struct re_softc *sc = ifp->if_softc;
2090 	struct mii_data *mii;
2091 
2092 	mii = device_get_softc(sc->re_miibus);
2093 
2094 	mii_pollstat(mii);
2095 	ifmr->ifm_active = mii->mii_media_active;
2096 	ifmr->ifm_status = mii->mii_media_status;
2097 }
2098 
2099 static int
2100 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2101 {
2102 	struct re_softc *sc = ifp->if_softc;
2103 	struct ifreq *ifr = (struct ifreq *) data;
2104 	struct mii_data *mii;
2105 	int error = 0;
2106 
2107 	switch(command) {
2108 	case SIOCSIFMTU:
2109 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
2110 			error = EINVAL;
2111 		ifp->if_mtu = ifr->ifr_mtu;
2112 		break;
2113 	case SIOCSIFFLAGS:
2114 		if (ifp->if_flags & IFF_UP)
2115 			re_init(sc);
2116 		else if (ifp->if_flags & IFF_RUNNING)
2117 				re_stop(sc);
2118 		error = 0;
2119 		break;
2120 	case SIOCADDMULTI:
2121 	case SIOCDELMULTI:
2122 		re_setmulti(sc);
2123 		error = 0;
2124 		break;
2125 	case SIOCGIFMEDIA:
2126 	case SIOCSIFMEDIA:
2127 		mii = device_get_softc(sc->re_miibus);
2128 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2129 		break;
2130 	case SIOCSIFCAP:
2131 		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2132 		ifp->if_capenable |=
2133 		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2134 		if (ifp->if_capenable & IFCAP_TXCSUM)
2135 			ifp->if_hwassist = RE_CSUM_FEATURES;
2136 		else
2137 			ifp->if_hwassist = 0;
2138 		if (ifp->if_flags & IFF_RUNNING)
2139 			re_init(sc);
2140 		break;
2141 	default:
2142 		error = ether_ioctl(ifp, command, data);
2143 		break;
2144 	}
2145 	return(error);
2146 }
2147 
2148 static void
2149 re_watchdog(struct ifnet *ifp)
2150 {
2151 	struct re_softc *sc = ifp->if_softc;
2152 
2153 	if_printf(ifp, "watchdog timeout\n");
2154 
2155 	ifp->if_oerrors++;
2156 
2157 	re_txeof(sc);
2158 	re_rxeof(sc);
2159 
2160 	re_init(sc);
2161 
2162 	if (!ifq_is_empty(&ifp->if_snd))
2163 		ifp->if_start(ifp);
2164 }
2165 
2166 /*
2167  * Stop the adapter and free any mbufs allocated to the
2168  * RX and TX lists.
2169  */
2170 static void
2171 re_stop(struct re_softc *sc)
2172 {
2173 	struct ifnet *ifp = &sc->arpcom.ac_if;
2174 	int i;
2175 
2176 	ifp->if_timer = 0;
2177 	callout_stop(&sc->re_timer);
2178 
2179 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2180 
2181 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2182 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2183 
2184 	if (sc->re_head != NULL) {
2185 		m_freem(sc->re_head);
2186 		sc->re_head = sc->re_tail = NULL;
2187 	}
2188 
2189 	/* Free the TX list buffers. */
2190 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
2191 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2192 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2193 					  sc->re_ldata.re_tx_dmamap[i]);
2194 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2195 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2196 		}
2197 	}
2198 
2199 	/* Free the RX list buffers. */
2200 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
2201 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2202 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2203 					  sc->re_ldata.re_rx_dmamap[i]);
2204 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2205 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2206 		}
2207 	}
2208 }
2209 
2210 /*
2211  * Device suspend routine.  Stop the interface and save some PCI
2212  * settings in case the BIOS doesn't restore them properly on
2213  * resume.
2214  */
2215 static int
2216 re_suspend(device_t dev)
2217 {
2218 #ifndef BURN_BRIDGES
2219 	int i;
2220 #endif
2221 	struct re_softc *sc = device_get_softc(dev);
2222 
2223 	re_stop(sc);
2224 
2225 #ifndef BURN_BRIDGES
2226 	for (i = 0; i < 5; i++)
2227 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2228 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2229 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2230 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2231 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2232 #endif
2233 
2234 	sc->suspended = 1;
2235 
2236 	return (0);
2237 }
2238 
2239 /*
2240  * Device resume routine.  Restore some PCI settings in case the BIOS
2241  * doesn't, re-enable busmastering, and restart the interface if
2242  * appropriate.
2243  */
2244 static int
2245 re_resume(device_t dev)
2246 {
2247 	struct re_softc *sc = device_get_softc(dev);
2248 	struct ifnet *ifp = &sc->arpcom.ac_if;
2249 #ifndef BURN_BRIDGES
2250 	int i;
2251 #endif
2252 
2253 #ifndef BURN_BRIDGES
2254 	/* better way to do this? */
2255 	for (i = 0; i < 5; i++)
2256 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2257 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2258 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2259 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2260 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2261 
2262 	/* reenable busmastering */
2263 	pci_enable_busmaster(dev);
2264 	pci_enable_io(dev, SYS_RES_IOPORT);
2265 #endif
2266 
2267 	/* reinitialize interface if necessary */
2268 	if (ifp->if_flags & IFF_UP)
2269 		re_init(sc);
2270 
2271 	sc->suspended = 0;
2272 
2273 	return (0);
2274 }
2275 
2276 /*
2277  * Stop all chip I/O so that the kernel's probe routines don't
2278  * get confused by errant DMAs when rebooting.
2279  */
2280 static void
2281 re_shutdown(device_t dev)
2282 {
2283 	struct re_softc *sc = device_get_softc(dev);
2284 
2285 	re_stop(sc);
2286 }
2287