xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 4c77af2da1d56e9bf10a0f03e974dbbf6a967810)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
249 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
251 
252 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
253 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
255 
256 	{ RE_HWREV_8111F,	RE_MACVER_UNKN,		RE_MTU_9K,
257 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
258 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
259 
260 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
261 	  RE_C_HWCSUM | RE_C_FASTE },
262 
263 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
264 	  RE_C_HWCSUM | RE_C_FASTE },
265 
266 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
267 	  RE_C_HWCSUM | RE_C_FASTE },
268 
269 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
270 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
271 	  RE_C_FASTE },
272 
273 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
274 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
275 	  RE_C_FASTE },
276 
277 	{ RE_HWREV_8105E,	RE_MACVER_UNKN,		ETHERMTU,
278 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
279 	  RE_C_STOP_RXTX | RE_C_FASTE },
280 
281 	{ RE_HWREV_NULL, 0, 0, 0 }
282 };
283 
284 static int	re_probe(device_t);
285 static int	re_attach(device_t);
286 static int	re_detach(device_t);
287 static int	re_suspend(device_t);
288 static int	re_resume(device_t);
289 static void	re_shutdown(device_t);
290 
291 static int	re_allocmem(device_t);
292 static void	re_freemem(device_t);
293 static void	re_freebufmem(struct re_softc *, int, int);
294 static int	re_encap(struct re_softc *, struct mbuf **, int *);
295 static int	re_newbuf_std(struct re_softc *, int, int);
296 static int	re_newbuf_jumbo(struct re_softc *, int, int);
297 static void	re_setup_rxdesc(struct re_softc *, int);
298 static int	re_rx_list_init(struct re_softc *);
299 static int	re_tx_list_init(struct re_softc *);
300 static int	re_rxeof(struct re_softc *);
301 static int	re_txeof(struct re_softc *);
302 static int	re_tx_collect(struct re_softc *);
303 static void	re_intr(void *);
304 static void	re_tick(void *);
305 static void	re_tick_serialized(void *);
306 
307 static void	re_start(struct ifnet *, struct ifaltq_subque *);
308 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
309 static void	re_init(void *);
310 static void	re_stop(struct re_softc *);
311 static void	re_watchdog(struct ifnet *);
312 static int	re_ifmedia_upd(struct ifnet *);
313 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
314 
315 static void	re_eeprom_putbyte(struct re_softc *, int);
316 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
317 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
318 static void	re_get_eewidth(struct re_softc *);
319 
320 static int	re_gmii_readreg(device_t, int, int);
321 static int	re_gmii_writereg(device_t, int, int, int);
322 
323 static int	re_miibus_readreg(device_t, int, int);
324 static int	re_miibus_writereg(device_t, int, int, int);
325 static void	re_miibus_statchg(device_t);
326 
327 static void	re_setmulti(struct re_softc *);
328 static void	re_reset(struct re_softc *, int);
329 static void	re_get_eaddr(struct re_softc *, uint8_t *);
330 
331 static void	re_setup_hw_im(struct re_softc *);
332 static void	re_setup_sim_im(struct re_softc *);
333 static void	re_disable_hw_im(struct re_softc *);
334 static void	re_disable_sim_im(struct re_softc *);
335 static void	re_config_imtype(struct re_softc *, int);
336 static void	re_setup_intr(struct re_softc *, int, int);
337 
338 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
339 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
340 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
341 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
342 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
343 
344 static int	re_jpool_alloc(struct re_softc *);
345 static void	re_jpool_free(struct re_softc *);
346 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
347 static void	re_jbuf_free(void *);
348 static void	re_jbuf_ref(void *);
349 
350 #ifdef RE_DIAG
351 static int	re_diag(struct re_softc *);
352 #endif
353 
354 #ifdef IFPOLL_ENABLE
355 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
356 static void	re_npoll_compat(struct ifnet *, void *, int);
357 #endif
358 
359 static device_method_t re_methods[] = {
360 	/* Device interface */
361 	DEVMETHOD(device_probe,		re_probe),
362 	DEVMETHOD(device_attach,	re_attach),
363 	DEVMETHOD(device_detach,	re_detach),
364 	DEVMETHOD(device_suspend,	re_suspend),
365 	DEVMETHOD(device_resume,	re_resume),
366 	DEVMETHOD(device_shutdown,	re_shutdown),
367 
368 	/* bus interface */
369 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
370 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
371 
372 	/* MII interface */
373 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
374 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
375 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
376 
377 	DEVMETHOD_END
378 };
379 
380 static driver_t re_driver = {
381 	"re",
382 	re_methods,
383 	sizeof(struct re_softc)
384 };
385 
386 static devclass_t re_devclass;
387 
388 DECLARE_DUMMY_MODULE(if_re);
389 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
390 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
391 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
392 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
393 
394 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
395 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
396 static int	re_msi_enable = 0;
397 
398 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
399 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
400 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
401 
402 #define EE_SET(x)	\
403 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
404 
405 #define EE_CLR(x)	\
406 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
407 
408 static __inline void
409 re_free_rxchain(struct re_softc *sc)
410 {
411 	if (sc->re_head != NULL) {
412 		m_freem(sc->re_head);
413 		sc->re_head = sc->re_tail = NULL;
414 	}
415 }
416 
417 /*
418  * Send a read command and address to the EEPROM, check for ACK.
419  */
420 static void
421 re_eeprom_putbyte(struct re_softc *sc, int addr)
422 {
423 	int d, i;
424 
425 	d = addr | (RE_9346_READ << sc->re_eewidth);
426 
427 	/*
428 	 * Feed in each bit and strobe the clock.
429 	 */
430 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
431 		if (d & i)
432 			EE_SET(RE_EE_DATAIN);
433 		else
434 			EE_CLR(RE_EE_DATAIN);
435 		DELAY(100);
436 		EE_SET(RE_EE_CLK);
437 		DELAY(150);
438 		EE_CLR(RE_EE_CLK);
439 		DELAY(100);
440 	}
441 }
442 
443 /*
444  * Read a word of data stored in the EEPROM at address 'addr.'
445  */
446 static void
447 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
448 {
449 	int i;
450 	uint16_t word = 0;
451 
452 	/*
453 	 * Send address of word we want to read.
454 	 */
455 	re_eeprom_putbyte(sc, addr);
456 
457 	/*
458 	 * Start reading bits from EEPROM.
459 	 */
460 	for (i = 0x8000; i != 0; i >>= 1) {
461 		EE_SET(RE_EE_CLK);
462 		DELAY(100);
463 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
464 			word |= i;
465 		EE_CLR(RE_EE_CLK);
466 		DELAY(100);
467 	}
468 
469 	*dest = word;
470 }
471 
472 /*
473  * Read a sequence of words from the EEPROM.
474  */
475 static void
476 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
477 {
478 	int i;
479 	uint16_t word = 0, *ptr;
480 
481 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
482 	DELAY(100);
483 
484 	for (i = 0; i < cnt; i++) {
485 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
486 		re_eeprom_getword(sc, off + i, &word);
487 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
488 		ptr = (uint16_t *)(dest + (i * 2));
489 		*ptr = word;
490 	}
491 
492 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
493 }
494 
495 static void
496 re_get_eewidth(struct re_softc *sc)
497 {
498 	uint16_t re_did = 0;
499 
500 	sc->re_eewidth = 6;
501 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
502 	if (re_did != 0x8129)
503 		sc->re_eewidth = 8;
504 }
505 
506 static int
507 re_gmii_readreg(device_t dev, int phy, int reg)
508 {
509 	struct re_softc *sc = device_get_softc(dev);
510 	u_int32_t rval;
511 	int i;
512 
513 	if (phy != 1)
514 		return(0);
515 
516 	/* Let the rgephy driver read the GMEDIASTAT register */
517 
518 	if (reg == RE_GMEDIASTAT)
519 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
520 
521 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
522 	DELAY(1000);
523 
524 	for (i = 0; i < RE_TIMEOUT; i++) {
525 		rval = CSR_READ_4(sc, RE_PHYAR);
526 		if (rval & RE_PHYAR_BUSY)
527 			break;
528 		DELAY(100);
529 	}
530 
531 	if (i == RE_TIMEOUT) {
532 		device_printf(dev, "PHY read failed\n");
533 		return(0);
534 	}
535 
536 	return(rval & RE_PHYAR_PHYDATA);
537 }
538 
539 static int
540 re_gmii_writereg(device_t dev, int phy, int reg, int data)
541 {
542 	struct re_softc *sc = device_get_softc(dev);
543 	uint32_t rval;
544 	int i;
545 
546 	CSR_WRITE_4(sc, RE_PHYAR,
547 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
548 	DELAY(1000);
549 
550 	for (i = 0; i < RE_TIMEOUT; i++) {
551 		rval = CSR_READ_4(sc, RE_PHYAR);
552 		if ((rval & RE_PHYAR_BUSY) == 0)
553 			break;
554 		DELAY(100);
555 	}
556 
557 	if (i == RE_TIMEOUT)
558 		device_printf(dev, "PHY write failed\n");
559 
560 	return(0);
561 }
562 
563 static int
564 re_miibus_readreg(device_t dev, int phy, int reg)
565 {
566 	struct re_softc	*sc = device_get_softc(dev);
567 	uint16_t rval = 0;
568 	uint16_t re8139_reg = 0;
569 
570 	if (!RE_IS_8139CP(sc)) {
571 		rval = re_gmii_readreg(dev, phy, reg);
572 		return(rval);
573 	}
574 
575 	/* Pretend the internal PHY is only at address 0 */
576 	if (phy)
577 		return(0);
578 
579 	switch(reg) {
580 	case MII_BMCR:
581 		re8139_reg = RE_BMCR;
582 		break;
583 	case MII_BMSR:
584 		re8139_reg = RE_BMSR;
585 		break;
586 	case MII_ANAR:
587 		re8139_reg = RE_ANAR;
588 		break;
589 	case MII_ANER:
590 		re8139_reg = RE_ANER;
591 		break;
592 	case MII_ANLPAR:
593 		re8139_reg = RE_LPAR;
594 		break;
595 	case MII_PHYIDR1:
596 	case MII_PHYIDR2:
597 		return(0);
598 	/*
599 	 * Allow the rlphy driver to read the media status
600 	 * register. If we have a link partner which does not
601 	 * support NWAY, this is the register which will tell
602 	 * us the results of parallel detection.
603 	 */
604 	case RE_MEDIASTAT:
605 		return(CSR_READ_1(sc, RE_MEDIASTAT));
606 	default:
607 		device_printf(dev, "bad phy register\n");
608 		return(0);
609 	}
610 	rval = CSR_READ_2(sc, re8139_reg);
611 	if (re8139_reg == RE_BMCR) {
612 		/* 8139C+ has different bit layout. */
613 		rval &= ~(BMCR_LOOP | BMCR_ISO);
614 	}
615 	return(rval);
616 }
617 
618 static int
619 re_miibus_writereg(device_t dev, int phy, int reg, int data)
620 {
621 	struct re_softc *sc= device_get_softc(dev);
622 	u_int16_t re8139_reg = 0;
623 
624 	if (!RE_IS_8139CP(sc))
625 		return(re_gmii_writereg(dev, phy, reg, data));
626 
627 	/* Pretend the internal PHY is only at address 0 */
628 	if (phy)
629 		return(0);
630 
631 	switch(reg) {
632 	case MII_BMCR:
633 		re8139_reg = RE_BMCR;
634 		/* 8139C+ has different bit layout. */
635 		data &= ~(BMCR_LOOP | BMCR_ISO);
636 		break;
637 	case MII_BMSR:
638 		re8139_reg = RE_BMSR;
639 		break;
640 	case MII_ANAR:
641 		re8139_reg = RE_ANAR;
642 		break;
643 	case MII_ANER:
644 		re8139_reg = RE_ANER;
645 		break;
646 	case MII_ANLPAR:
647 		re8139_reg = RE_LPAR;
648 		break;
649 	case MII_PHYIDR1:
650 	case MII_PHYIDR2:
651 		return(0);
652 	default:
653 		device_printf(dev, "bad phy register\n");
654 		return(0);
655 	}
656 	CSR_WRITE_2(sc, re8139_reg, data);
657 	return(0);
658 }
659 
660 static void
661 re_miibus_statchg(device_t dev)
662 {
663 }
664 
665 /*
666  * Program the 64-bit multicast hash filter.
667  */
668 static void
669 re_setmulti(struct re_softc *sc)
670 {
671 	struct ifnet *ifp = &sc->arpcom.ac_if;
672 	int h = 0;
673 	uint32_t hashes[2] = { 0, 0 };
674 	struct ifmultiaddr *ifma;
675 	uint32_t rxfilt;
676 	int mcnt = 0;
677 
678 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
679 
680 	/* Set the individual bit to receive frames for this host only. */
681 	rxfilt |= RE_RXCFG_RX_INDIV;
682 	/* Set capture broadcast bit to capture broadcast frames. */
683 	rxfilt |= RE_RXCFG_RX_BROAD;
684 
685 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
686 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
687 		rxfilt |= RE_RXCFG_RX_MULTI;
688 
689 		/* If we want promiscuous mode, set the allframes bit. */
690 		if (ifp->if_flags & IFF_PROMISC)
691 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
692 
693 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
694 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
695 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
696 		return;
697 	}
698 
699 	/* first, zot all the existing hash bits */
700 	CSR_WRITE_4(sc, RE_MAR0, 0);
701 	CSR_WRITE_4(sc, RE_MAR4, 0);
702 
703 	/* now program new ones */
704 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
705 		if (ifma->ifma_addr->sa_family != AF_LINK)
706 			continue;
707 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
708 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
709 		if (h < 32)
710 			hashes[0] |= (1 << h);
711 		else
712 			hashes[1] |= (1 << (h - 32));
713 		mcnt++;
714 	}
715 
716 	if (mcnt)
717 		rxfilt |= RE_RXCFG_RX_MULTI;
718 	else
719 		rxfilt &= ~RE_RXCFG_RX_MULTI;
720 
721 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
722 
723 	/*
724 	 * For some unfathomable reason, RealTek decided to reverse
725 	 * the order of the multicast hash registers in the PCI Express
726 	 * parts. This means we have to write the hash pattern in reverse
727 	 * order for those devices.
728 	 */
729 	if (sc->re_caps & RE_C_PCIE) {
730 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
731 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
732 	} else {
733 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
734 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
735 	}
736 }
737 
738 static void
739 re_reset(struct re_softc *sc, int running)
740 {
741 	int i;
742 
743 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
744 		CSR_WRITE_1(sc, RE_COMMAND,
745 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
746 		DELAY(100);
747 	}
748 
749 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
750 
751 	for (i = 0; i < RE_TIMEOUT; i++) {
752 		DELAY(10);
753 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
754 			break;
755 	}
756 	if (i == RE_TIMEOUT)
757 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
758 }
759 
760 #ifdef RE_DIAG
761 /*
762  * The following routine is designed to test for a defect on some
763  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
764  * lines connected to the bus, however for a 32-bit only card, they
765  * should be pulled high. The result of this defect is that the
766  * NIC will not work right if you plug it into a 64-bit slot: DMA
767  * operations will be done with 64-bit transfers, which will fail
768  * because the 64-bit data lines aren't connected.
769  *
770  * There's no way to work around this (short of talking a soldering
771  * iron to the board), however we can detect it. The method we use
772  * here is to put the NIC into digital loopback mode, set the receiver
773  * to promiscuous mode, and then try to send a frame. We then compare
774  * the frame data we sent to what was received. If the data matches,
775  * then the NIC is working correctly, otherwise we know the user has
776  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
777  * slot. In the latter case, there's no way the NIC can work correctly,
778  * so we print out a message on the console and abort the device attach.
779  */
780 
781 static int
782 re_diag(struct re_softc *sc)
783 {
784 	struct ifnet *ifp = &sc->arpcom.ac_if;
785 	struct mbuf *m0;
786 	struct ether_header *eh;
787 	struct re_desc *cur_rx;
788 	uint16_t status;
789 	int total_len, i, error = 0, phyaddr;
790 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
791 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
792 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
793 
794 	/* Allocate a single mbuf */
795 
796 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
797 	if (m0 == NULL)
798 		return(ENOBUFS);
799 
800 	/*
801 	 * Initialize the NIC in test mode. This sets the chip up
802 	 * so that it can send and receive frames, but performs the
803 	 * following special functions:
804 	 * - Puts receiver in promiscuous mode
805 	 * - Enables digital loopback mode
806 	 * - Leaves interrupts turned off
807 	 */
808 
809 	ifp->if_flags |= IFF_PROMISC;
810 	sc->re_flags |= RE_F_TESTMODE;
811 	re_init(sc);
812 	sc->re_flags |= RE_F_LINKED;
813 	if (!RE_IS_8139CP(sc))
814 		phyaddr = 1;
815 	else
816 		phyaddr = 0;
817 
818 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
819 	for (i = 0; i < RE_TIMEOUT; i++) {
820 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
821 		if (!(status & BMCR_RESET))
822 			break;
823 	}
824 
825 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
826 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
827 
828 	DELAY(100000);
829 
830 	/* Put some data in the mbuf */
831 
832 	eh = mtod(m0, struct ether_header *);
833 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
834 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
835 	eh->ether_type = htons(ETHERTYPE_IP);
836 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
837 
838 	/*
839 	 * Queue the packet, start transmission.
840 	 * Note: ifq_handoff() ultimately calls re_start() for us.
841 	 */
842 
843 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
844 	error = ifq_handoff(ifp, m0, NULL);
845 	if (error) {
846 		m0 = NULL;
847 		goto done;
848 	}
849 	m0 = NULL;
850 
851 	/* Wait for it to propagate through the chip */
852 
853 	DELAY(100000);
854 	for (i = 0; i < RE_TIMEOUT; i++) {
855 		status = CSR_READ_2(sc, RE_ISR);
856 		CSR_WRITE_2(sc, RE_ISR, status);
857 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
858 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
859 			break;
860 		DELAY(10);
861 	}
862 
863 	if (i == RE_TIMEOUT) {
864 		if_printf(ifp, "diagnostic failed to receive packet "
865 			  "in loopback mode\n");
866 		error = EIO;
867 		goto done;
868 	}
869 
870 	/*
871 	 * The packet should have been dumped into the first
872 	 * entry in the RX DMA ring. Grab it from there.
873 	 */
874 
875 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
876 			BUS_DMASYNC_POSTREAD);
877 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
878 			  sc->re_ldata.re_rx_dmamap[0]);
879 
880 	m0 = sc->re_ldata.re_rx_mbuf[0];
881 	sc->re_ldata.re_rx_mbuf[0] = NULL;
882 	eh = mtod(m0, struct ether_header *);
883 
884 	cur_rx = &sc->re_ldata.re_rx_list[0];
885 	total_len = RE_RXBYTES(cur_rx);
886 
887 	if (total_len != ETHER_MIN_LEN) {
888 		if_printf(ifp, "diagnostic failed, received short packet\n");
889 		error = EIO;
890 		goto done;
891 	}
892 
893 	/* Test that the received packet data matches what we sent. */
894 
895 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
896 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
897 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
898 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
899 		if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
900 		    kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
901 		if_printf(ifp, "received RX data: %s/%s/0x%x\n",
902 		    kether_ntoa(eh->ether_dhost, ethstr[0]),
903 		    kether_ntoa(eh->ether_shost, ethstr[1]),
904 		    ntohs(eh->ether_type));
905 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
906 		    "into a 64-bit PCI slot.\n");
907 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
908 		    "for proper operation.\n");
909 		if_printf(ifp, "Read the re(4) man page for more details.\n");
910 		error = EIO;
911 	}
912 
913 done:
914 	/* Turn interface off, release resources */
915 
916 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
917 	ifp->if_flags &= ~IFF_PROMISC;
918 	re_stop(sc);
919 	if (m0 != NULL)
920 		m_freem(m0);
921 
922 	return (error);
923 }
924 #endif	/* RE_DIAG */
925 
926 /*
927  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
928  * IDs against our list and return a device name if we find a match.
929  */
930 static int
931 re_probe(device_t dev)
932 {
933 	const struct re_type *t;
934 	const struct re_hwrev *hw_rev;
935 	struct re_softc *sc;
936 	int rid;
937 	uint32_t hwrev, macmode, txcfg;
938 	uint16_t vendor, product;
939 
940 	vendor = pci_get_vendor(dev);
941 	product = pci_get_device(dev);
942 
943 	/*
944 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
945 	 * Rev.2 is supported by sk(4).
946 	 */
947 	if (vendor == PCI_VENDOR_LINKSYS &&
948 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
949 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
950 		return ENXIO;
951 
952 	if (vendor == PCI_VENDOR_REALTEK &&
953 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
954 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
955 		/* Poor 8139 */
956 		return ENXIO;
957 	}
958 
959 	for (t = re_devs; t->re_name != NULL; t++) {
960 		if (product == t->re_did && vendor == t->re_vid)
961 			break;
962 	}
963 
964 	/*
965 	 * Check if we found a RealTek device.
966 	 */
967 	if (t->re_name == NULL)
968 		return ENXIO;
969 
970 	/*
971 	 * Temporarily map the I/O space so we can read the chip ID register.
972 	 */
973 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
974 	rid = RE_PCI_LOIO;
975 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
976 					    RF_ACTIVE);
977 	if (sc->re_res == NULL) {
978 		device_printf(dev, "couldn't map ports/memory\n");
979 		kfree(sc, M_TEMP);
980 		return ENXIO;
981 	}
982 
983 	sc->re_btag = rman_get_bustag(sc->re_res);
984 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
985 
986 	txcfg = CSR_READ_4(sc, RE_TXCFG);
987 	hwrev = txcfg & RE_TXCFG_HWREV;
988 	macmode = txcfg & RE_TXCFG_MACMODE;
989 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
990 	kfree(sc, M_TEMP);
991 
992 	/*
993 	 * and continue matching for the specific chip...
994 	 */
995 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
996 		if (hw_rev->re_hwrev == hwrev) {
997 			sc = device_get_softc(dev);
998 
999 			sc->re_hwrev = hw_rev->re_hwrev;
1000 			sc->re_macver = hw_rev->re_macver;
1001 			sc->re_caps = hw_rev->re_caps;
1002 			sc->re_maxmtu = hw_rev->re_maxmtu;
1003 
1004 			/*
1005 			 * Apply chip property fixup
1006 			 */
1007 			switch (sc->re_hwrev) {
1008 			case RE_HWREV_8101E1:
1009 			case RE_HWREV_8101E2:
1010 				if (macmode == 0)
1011 					sc->re_macver = RE_MACVER_11;
1012 				else if (macmode == 0x200000)
1013 					sc->re_macver = RE_MACVER_12;
1014 				break;
1015 			case RE_HWREV_8102E:
1016 			case RE_HWREV_8102EL:
1017 				if (macmode == 0)
1018 					sc->re_macver = RE_MACVER_13;
1019 				else if (macmode == 0x100000)
1020 					sc->re_macver = RE_MACVER_14;
1021 				break;
1022 			case RE_HWREV_8168B2:
1023 			case RE_HWREV_8168B3:
1024 				if (macmode == 0)
1025 					sc->re_macver = RE_MACVER_22;
1026 				break;
1027 			case RE_HWREV_8168C:
1028 				if (macmode == 0)
1029 					sc->re_macver = RE_MACVER_24;
1030 				else if (macmode == 0x200000)
1031 					sc->re_macver = RE_MACVER_25;
1032 				else if (macmode == 0x300000)
1033 					sc->re_macver = RE_MACVER_27;
1034 				break;
1035 			case RE_HWREV_8168CP:
1036 				if (macmode == 0)
1037 					sc->re_macver = RE_MACVER_26;
1038 				else if (macmode == 0x100000)
1039 					sc->re_macver = RE_MACVER_28;
1040 				break;
1041 			case RE_HWREV_8168DP:
1042 				if (macmode == 0)
1043 					sc->re_macver = RE_MACVER_2B;
1044 				else if (macmode == 0x200000)
1045 					sc->re_macver = RE_MACVER_2C;
1046 				break;
1047 			case RE_HWREV_8168E:
1048 				if (macmode == 0x100000)
1049 					sc->re_macver = RE_MACVER_2E;
1050 				else if (macmode == 0x200000)
1051 					sc->re_macver = RE_MACVER_2F;
1052 				break;
1053 			case RE_HWREV_8168F:
1054 			case RE_HWREV_8111F:
1055 				if (macmode == 0x000000)
1056 					sc->re_macver = RE_MACVER_30;
1057 				else if (macmode == 0x100000)
1058 					sc->re_macver = RE_MACVER_31;
1059 				break;
1060 			}
1061 			if (pci_is_pcie(dev))
1062 				sc->re_caps |= RE_C_PCIE;
1063 
1064 			device_set_desc(dev, t->re_name);
1065 			return 0;
1066 		}
1067 	}
1068 
1069 	if (bootverbose) {
1070 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1071 			      hwrev, macmode);
1072 	}
1073 	return ENXIO;
1074 }
1075 
1076 static int
1077 re_allocmem(device_t dev)
1078 {
1079 	struct re_softc *sc = device_get_softc(dev);
1080 	bus_dmamem_t dmem;
1081 	int error, i;
1082 
1083 	/*
1084 	 * Allocate list data
1085 	 */
1086 	sc->re_ldata.re_tx_mbuf =
1087 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1088 		M_DEVBUF, M_ZERO | M_WAITOK);
1089 
1090 	sc->re_ldata.re_rx_mbuf =
1091 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1092 		M_DEVBUF, M_ZERO | M_WAITOK);
1093 
1094 	sc->re_ldata.re_rx_paddr =
1095 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1096 		M_DEVBUF, M_ZERO | M_WAITOK);
1097 
1098 	sc->re_ldata.re_tx_dmamap =
1099 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1100 		M_DEVBUF, M_ZERO | M_WAITOK);
1101 
1102 	sc->re_ldata.re_rx_dmamap =
1103 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1104 		M_DEVBUF, M_ZERO | M_WAITOK);
1105 
1106 	/*
1107 	 * Allocate the parent bus DMA tag appropriate for PCI.
1108 	 */
1109 	error = bus_dma_tag_create(NULL,	/* parent */
1110 			1, 0,			/* alignment, boundary */
1111 			BUS_SPACE_MAXADDR,	/* lowaddr */
1112 			BUS_SPACE_MAXADDR,	/* highaddr */
1113 			NULL, NULL,		/* filter, filterarg */
1114 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1115 			0,			/* nsegments */
1116 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1117 			0,			/* flags */
1118 			&sc->re_parent_tag);
1119 	if (error) {
1120 		device_printf(dev, "could not allocate parent dma tag\n");
1121 		return error;
1122 	}
1123 
1124 	/* Allocate TX descriptor list. */
1125 	error = bus_dmamem_coherent(sc->re_parent_tag,
1126 			RE_RING_ALIGN, 0,
1127 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1128 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1129 			&dmem);
1130 	if (error) {
1131 		device_printf(dev, "could not allocate TX ring\n");
1132 		return error;
1133 	}
1134 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1135 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1136 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1137 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1138 
1139 	/* Allocate RX descriptor list. */
1140 	error = bus_dmamem_coherent(sc->re_parent_tag,
1141 			RE_RING_ALIGN, 0,
1142 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1143 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1144 			&dmem);
1145 	if (error) {
1146 		device_printf(dev, "could not allocate RX ring\n");
1147 		return error;
1148 	}
1149 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1150 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1151 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1152 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1153 
1154 	/* Allocate maps for TX mbufs. */
1155 	error = bus_dma_tag_create(sc->re_parent_tag,
1156 			1, 0,
1157 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1158 			NULL, NULL,
1159 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1160 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1161 			&sc->re_ldata.re_tx_mtag);
1162 	if (error) {
1163 		device_printf(dev, "could not allocate TX buf dma tag\n");
1164 		return(error);
1165 	}
1166 
1167 	/* Create DMA maps for TX buffers */
1168 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1169 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1170 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1171 				&sc->re_ldata.re_tx_dmamap[i]);
1172 		if (error) {
1173 			device_printf(dev, "can't create DMA map for TX buf\n");
1174 			re_freebufmem(sc, i, 0);
1175 			return(error);
1176 		}
1177 	}
1178 
1179 	/* Allocate maps for RX mbufs. */
1180 	error = bus_dma_tag_create(sc->re_parent_tag,
1181 			RE_RXBUF_ALIGN, 0,
1182 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1183 			NULL, NULL,
1184 			MCLBYTES, 1, MCLBYTES,
1185 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1186 			&sc->re_ldata.re_rx_mtag);
1187 	if (error) {
1188 		device_printf(dev, "could not allocate RX buf dma tag\n");
1189 		return(error);
1190 	}
1191 
1192 	/* Create spare DMA map for RX */
1193 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1194 			&sc->re_ldata.re_rx_spare);
1195 	if (error) {
1196 		device_printf(dev, "can't create spare DMA map for RX\n");
1197 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1198 		sc->re_ldata.re_rx_mtag = NULL;
1199 		return error;
1200 	}
1201 
1202 	/* Create DMA maps for RX buffers */
1203 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1204 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1205 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1206 		if (error) {
1207 			device_printf(dev, "can't create DMA map for RX buf\n");
1208 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1209 			return(error);
1210 		}
1211 	}
1212 
1213 	/* Create jumbo buffer pool for RX if required */
1214 	if (sc->re_caps & RE_C_CONTIGRX) {
1215 		error = re_jpool_alloc(sc);
1216 		if (error) {
1217 			re_jpool_free(sc);
1218 			/* Disable jumbo frame support */
1219 			sc->re_maxmtu = ETHERMTU;
1220 		}
1221 	}
1222 	return(0);
1223 }
1224 
1225 static void
1226 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1227 {
1228 	int i;
1229 
1230 	/* Destroy all the RX and TX buffer maps */
1231 	if (sc->re_ldata.re_tx_mtag) {
1232 		for (i = 0; i < tx_cnt; i++) {
1233 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1234 					   sc->re_ldata.re_tx_dmamap[i]);
1235 		}
1236 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1237 		sc->re_ldata.re_tx_mtag = NULL;
1238 	}
1239 
1240 	if (sc->re_ldata.re_rx_mtag) {
1241 		for (i = 0; i < rx_cnt; i++) {
1242 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1243 					   sc->re_ldata.re_rx_dmamap[i]);
1244 		}
1245 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1246 				   sc->re_ldata.re_rx_spare);
1247 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1248 		sc->re_ldata.re_rx_mtag = NULL;
1249 	}
1250 }
1251 
1252 static void
1253 re_freemem(device_t dev)
1254 {
1255 	struct re_softc *sc = device_get_softc(dev);
1256 
1257 	/* Unload and free the RX DMA ring memory and map */
1258 	if (sc->re_ldata.re_rx_list_tag) {
1259 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1260 				  sc->re_ldata.re_rx_list_map);
1261 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1262 				sc->re_ldata.re_rx_list,
1263 				sc->re_ldata.re_rx_list_map);
1264 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1265 	}
1266 
1267 	/* Unload and free the TX DMA ring memory and map */
1268 	if (sc->re_ldata.re_tx_list_tag) {
1269 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1270 				  sc->re_ldata.re_tx_list_map);
1271 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1272 				sc->re_ldata.re_tx_list,
1273 				sc->re_ldata.re_tx_list_map);
1274 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1275 	}
1276 
1277 	/* Free RX/TX buf DMA stuffs */
1278 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1279 
1280 	/* Unload and free the stats buffer and map */
1281 	if (sc->re_ldata.re_stag) {
1282 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1283 		bus_dmamem_free(sc->re_ldata.re_stag,
1284 				sc->re_ldata.re_stats,
1285 				sc->re_ldata.re_smap);
1286 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1287 	}
1288 
1289 	if (sc->re_caps & RE_C_CONTIGRX)
1290 		re_jpool_free(sc);
1291 
1292 	if (sc->re_parent_tag)
1293 		bus_dma_tag_destroy(sc->re_parent_tag);
1294 
1295 	if (sc->re_ldata.re_tx_mbuf != NULL)
1296 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1297 	if (sc->re_ldata.re_rx_mbuf != NULL)
1298 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1299 	if (sc->re_ldata.re_rx_paddr != NULL)
1300 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1301 	if (sc->re_ldata.re_tx_dmamap != NULL)
1302 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1303 	if (sc->re_ldata.re_rx_dmamap != NULL)
1304 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1305 }
1306 
1307 /*
1308  * Attach the interface. Allocate softc structures, do ifmedia
1309  * setup and ethernet/BPF attach.
1310  */
1311 static int
1312 re_attach(device_t dev)
1313 {
1314 	struct re_softc	*sc = device_get_softc(dev);
1315 	struct ifnet *ifp;
1316 	uint8_t eaddr[ETHER_ADDR_LEN];
1317 	int error = 0, rid, qlen;
1318 	u_int irq_flags;
1319 
1320 	callout_init(&sc->re_timer);
1321 	sc->re_dev = dev;
1322 
1323 	if (RE_IS_8139CP(sc)) {
1324 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1325 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1326 	} else {
1327 		sc->re_rx_desc_cnt = re_rx_desc_count;
1328 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1329 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1330 
1331 		sc->re_tx_desc_cnt = re_tx_desc_count;
1332 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1333 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1334 	}
1335 
1336 	qlen = RE_IFQ_MAXLEN;
1337 	if (sc->re_tx_desc_cnt > qlen)
1338 		qlen = sc->re_tx_desc_cnt;
1339 
1340 	sc->re_rxbuf_size = MCLBYTES;
1341 	sc->re_newbuf = re_newbuf_std;
1342 
1343 	sc->re_tx_time = 5;		/* 125us */
1344 	sc->re_rx_time = 2;		/* 50us */
1345 	if (sc->re_caps & RE_C_PCIE)
1346 		sc->re_sim_time = 75;	/* 75us */
1347 	else
1348 		sc->re_sim_time = 125;	/* 125us */
1349 	if (!RE_IS_8139CP(sc)) {
1350 		/* simulated interrupt moderation */
1351 		sc->re_imtype = RE_IMTYPE_SIM;
1352 	} else {
1353 		sc->re_imtype = RE_IMTYPE_NONE;
1354 	}
1355 	re_config_imtype(sc, sc->re_imtype);
1356 
1357 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1358 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1359 					     SYSCTL_STATIC_CHILDREN(_hw),
1360 					     OID_AUTO,
1361 					     device_get_nameunit(dev),
1362 					     CTLFLAG_RD, 0, "");
1363 	if (sc->re_sysctl_tree == NULL) {
1364 		device_printf(dev, "can't add sysctl node\n");
1365 		error = ENXIO;
1366 		goto fail;
1367 	}
1368 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1369 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1370 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1371 		       0, "RX desc count");
1372 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1373 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1374 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1375 		       0, "TX desc count");
1376 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1377 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1378 			OID_AUTO, "sim_time",
1379 			CTLTYPE_INT | CTLFLAG_RW,
1380 			sc, 0, re_sysctl_simtime, "I",
1381 			"Simulated interrupt moderation time (usec).");
1382 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1383 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1384 			OID_AUTO, "imtype",
1385 			CTLTYPE_INT | CTLFLAG_RW,
1386 			sc, 0, re_sysctl_imtype, "I",
1387 			"Interrupt moderation type -- "
1388 			"0:disable, 1:simulated, "
1389 			"2:hardware(if supported)");
1390 	if (sc->re_caps & RE_C_HWIM) {
1391 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1392 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1393 				OID_AUTO, "hw_rxtime",
1394 				CTLTYPE_INT | CTLFLAG_RW,
1395 				sc, 0, re_sysctl_rxtime, "I",
1396 				"Hardware interrupt moderation time "
1397 				"(unit: 25usec).");
1398 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1399 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1400 				OID_AUTO, "hw_txtime",
1401 				CTLTYPE_INT | CTLFLAG_RW,
1402 				sc, 0, re_sysctl_txtime, "I",
1403 				"Hardware interrupt moderation time "
1404 				"(unit: 25usec).");
1405 	}
1406 
1407 #ifndef BURN_BRIDGES
1408 	/*
1409 	 * Handle power management nonsense.
1410 	 */
1411 
1412 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1413 		uint32_t membase, irq;
1414 
1415 		/* Save important PCI config data. */
1416 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1417 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1418 
1419 		/* Reset the power state. */
1420 		device_printf(dev, "chip is in D%d power mode "
1421 		    "-- setting to D0\n", pci_get_powerstate(dev));
1422 
1423 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1424 
1425 		/* Restore PCI config data. */
1426 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1427 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1428 	}
1429 #endif
1430 	/*
1431 	 * Map control/status registers.
1432 	 */
1433 	pci_enable_busmaster(dev);
1434 
1435 	rid = RE_PCI_LOIO;
1436 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1437 					    RF_ACTIVE);
1438 
1439 	if (sc->re_res == NULL) {
1440 		device_printf(dev, "couldn't map ports\n");
1441 		error = ENXIO;
1442 		goto fail;
1443 	}
1444 
1445 	sc->re_btag = rman_get_bustag(sc->re_res);
1446 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1447 
1448 	/* Allocate interrupt */
1449 	sc->re_irq_type = pci_alloc_1intr(dev, re_msi_enable,
1450 					   &sc->re_irq_rid, &irq_flags);
1451 
1452 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1453 					    irq_flags);
1454 	if (sc->re_irq == NULL) {
1455 		device_printf(dev, "couldn't map interrupt\n");
1456 		error = ENXIO;
1457 		goto fail;
1458 	}
1459 
1460 	/* Reset the adapter. */
1461 	re_reset(sc, 0);
1462 
1463 	if (RE_IS_8139CP(sc)) {
1464 		sc->re_bus_speed = 33; /* XXX */
1465 	} else if (sc->re_caps & RE_C_PCIE) {
1466 		sc->re_bus_speed = 125;
1467 	} else {
1468 		uint8_t cfg2;
1469 
1470 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1471 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1472 		case RE_CFG2_PCICLK_33MHZ:
1473 			sc->re_bus_speed = 33;
1474 			break;
1475 		case RE_CFG2_PCICLK_66MHZ:
1476 			sc->re_bus_speed = 66;
1477 			break;
1478 		default:
1479 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1480 			sc->re_bus_speed = 33;
1481 			break;
1482 		}
1483 		if (cfg2 & RE_CFG2_PCI64)
1484 			sc->re_caps |= RE_C_PCI64;
1485 	}
1486 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1487 		      "PCI%s %dMHz\n",
1488 		      sc->re_hwrev, sc->re_macver,
1489 		      (sc->re_caps & RE_C_PCIE) ?
1490 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1491 		      sc->re_bus_speed);
1492 
1493 	/*
1494 	 * NOTE:
1495 	 * DO NOT try to adjust config1 and config5 which was spotted in
1496 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1497 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1498 	 */
1499 
1500 	re_get_eaddr(sc, eaddr);
1501 
1502 	if (!RE_IS_8139CP(sc)) {
1503 		/* Set RX length mask */
1504 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1505 		sc->re_txstart = RE_GTXSTART;
1506 	} else {
1507 		/* Set RX length mask */
1508 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1509 		sc->re_txstart = RE_TXSTART;
1510 	}
1511 
1512 	/* Allocate DMA stuffs */
1513 	error = re_allocmem(dev);
1514 	if (error)
1515 		goto fail;
1516 
1517 	/*
1518 	 * Apply some magic PCI settings from Realtek ...
1519 	 */
1520 	if (RE_IS_8169(sc)) {
1521 		CSR_WRITE_1(sc, 0x82, 1);
1522 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1523 	}
1524 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1525 
1526 	if (sc->re_caps & RE_C_MAC2) {
1527 		/*
1528 		 * Following part is extracted from Realtek BSD driver v176.
1529 		 * However, this does _not_ make much/any sense:
1530 		 * 8168C's PCI Express device control is located at 0x78,
1531 		 * so the reading from 0x79 (higher part of 0x78) and setting
1532 		 * the 4~6bits intend to enlarge the "max read request size"
1533 		 * (we will do it).  The content of the rest part of this
1534 		 * register is not meaningful to other PCI registers, so
1535 		 * writing the value to 0x54 could be completely wrong.
1536 		 * 0x80 is the lower part of PCI Express device status, non-
1537 		 * reserved bits are RW1C, writing 0 to them will not have
1538 		 * any effect at all.
1539 		 */
1540 #ifdef foo
1541 		uint8_t val;
1542 
1543 		val = pci_read_config(dev, 0x79, 1);
1544 		val = (val & ~0x70) | 0x50;
1545 		pci_write_config(dev, 0x54, val, 1);
1546 		pci_write_config(dev, 0x80, 0, 1);
1547 #endif
1548 	}
1549 
1550 	/*
1551 	 * Apply some PHY fixup from Realtek ...
1552 	 */
1553 	if (sc->re_hwrev == RE_HWREV_8110S) {
1554 		CSR_WRITE_1(sc, 0x82, 1);
1555 		re_miibus_writereg(dev, 1, 0xb, 0);
1556 	}
1557 	if (sc->re_caps & RE_C_PHYPMGT) {
1558 		/* Power up PHY */
1559 		re_miibus_writereg(dev, 1, 0x1f, 0);
1560 		re_miibus_writereg(dev, 1, 0xe, 0);
1561 	}
1562 
1563 	/* Do MII setup */
1564 	if (mii_phy_probe(dev, &sc->re_miibus,
1565 	    re_ifmedia_upd, re_ifmedia_sts)) {
1566 		device_printf(dev, "MII without any phy!\n");
1567 		error = ENXIO;
1568 		goto fail;
1569 	}
1570 
1571 	ifp = &sc->arpcom.ac_if;
1572 	ifp->if_softc = sc;
1573 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1574 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1575 	ifp->if_ioctl = re_ioctl;
1576 	ifp->if_start = re_start;
1577 #ifdef IFPOLL_ENABLE
1578 	ifp->if_npoll = re_npoll;
1579 #endif
1580 	ifp->if_watchdog = re_watchdog;
1581 	ifp->if_init = re_init;
1582 	if (!RE_IS_8139CP(sc)) /* XXX */
1583 		ifp->if_baudrate = 1000000000;
1584 	else
1585 		ifp->if_baudrate = 100000000;
1586 	ifq_set_maxlen(&ifp->if_snd, qlen);
1587 	ifq_set_ready(&ifp->if_snd);
1588 
1589 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1590 	if (sc->re_caps & RE_C_HWCSUM)
1591 		ifp->if_capabilities |= IFCAP_HWCSUM;
1592 
1593 	ifp->if_capenable = ifp->if_capabilities;
1594 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1595 		ifp->if_hwassist = RE_CSUM_FEATURES;
1596 	else
1597 		ifp->if_hwassist = 0;
1598 
1599 	/*
1600 	 * Call MI attach routine.
1601 	 */
1602 	ether_ifattach(ifp, eaddr, NULL);
1603 
1604 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1605 
1606 #ifdef IFPOLL_ENABLE
1607 	ifpoll_compat_setup(&sc->re_npoll,
1608 	    &sc->re_sysctl_ctx, sc->re_sysctl_tree, device_get_unit(dev),
1609 	    ifp->if_serializer);
1610 #endif
1611 
1612 #ifdef RE_DIAG
1613 	/*
1614 	 * Perform hardware diagnostic on the original RTL8169.
1615 	 * Some 32-bit cards were incorrectly wired and would
1616 	 * malfunction if plugged into a 64-bit slot.
1617 	 */
1618 	if (sc->re_hwrev == RE_HWREV_8169) {
1619 		lwkt_serialize_enter(ifp->if_serializer);
1620 		error = re_diag(sc);
1621 		lwkt_serialize_exit(ifp->if_serializer);
1622 
1623 		if (error) {
1624 			device_printf(dev, "hardware diagnostic failure\n");
1625 			ether_ifdetach(ifp);
1626 			goto fail;
1627 		}
1628 	}
1629 #endif	/* RE_DIAG */
1630 
1631 	/* Hook interrupt last to avoid having to lock softc */
1632 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1633 			       &sc->re_intrhand, ifp->if_serializer);
1634 
1635 	if (error) {
1636 		device_printf(dev, "couldn't set up irq\n");
1637 		ether_ifdetach(ifp);
1638 		goto fail;
1639 	}
1640 
1641 fail:
1642 	if (error)
1643 		re_detach(dev);
1644 
1645 	return (error);
1646 }
1647 
1648 /*
1649  * Shutdown hardware and free up resources. This can be called any
1650  * time after the mutex has been initialized. It is called in both
1651  * the error case in attach and the normal detach case so it needs
1652  * to be careful about only freeing resources that have actually been
1653  * allocated.
1654  */
1655 static int
1656 re_detach(device_t dev)
1657 {
1658 	struct re_softc *sc = device_get_softc(dev);
1659 	struct ifnet *ifp = &sc->arpcom.ac_if;
1660 
1661 	/* These should only be active if attach succeeded */
1662 	if (device_is_attached(dev)) {
1663 		lwkt_serialize_enter(ifp->if_serializer);
1664 		re_stop(sc);
1665 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1666 		lwkt_serialize_exit(ifp->if_serializer);
1667 
1668 		ether_ifdetach(ifp);
1669 	}
1670 	if (sc->re_miibus)
1671 		device_delete_child(dev, sc->re_miibus);
1672 	bus_generic_detach(dev);
1673 
1674 	if (sc->re_sysctl_tree != NULL)
1675 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1676 
1677 	if (sc->re_irq)
1678 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1679 				     sc->re_irq);
1680 
1681 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1682 		pci_release_msi(dev);
1683 
1684 	if (sc->re_res) {
1685 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1686 				     sc->re_res);
1687 	}
1688 
1689 	/* Free DMA stuffs */
1690 	re_freemem(dev);
1691 
1692 	return(0);
1693 }
1694 
1695 static void
1696 re_setup_rxdesc(struct re_softc *sc, int idx)
1697 {
1698 	bus_addr_t paddr;
1699 	uint32_t cmdstat;
1700 	struct re_desc *d;
1701 
1702 	paddr = sc->re_ldata.re_rx_paddr[idx];
1703 	d = &sc->re_ldata.re_rx_list[idx];
1704 
1705 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1706 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1707 
1708 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1709 	if (idx == (sc->re_rx_desc_cnt - 1))
1710 		cmdstat |= RE_RDESC_CMD_EOR;
1711 	d->re_cmdstat = htole32(cmdstat);
1712 }
1713 
1714 static int
1715 re_newbuf_std(struct re_softc *sc, int idx, int init)
1716 {
1717 	bus_dma_segment_t seg;
1718 	bus_dmamap_t map;
1719 	struct mbuf *m;
1720 	int error, nsegs;
1721 
1722 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1723 	if (m == NULL) {
1724 		error = ENOBUFS;
1725 
1726 		if (init) {
1727 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1728 			return error;
1729 		} else {
1730 			goto back;
1731 		}
1732 	}
1733 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1734 
1735 	/*
1736 	 * NOTE:
1737 	 * re(4) chips need address of the receive buffer to be 8-byte
1738 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1739 	 */
1740 
1741 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1742 			sc->re_ldata.re_rx_spare, m,
1743 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1744 	if (error) {
1745 		m_freem(m);
1746 		if (init) {
1747 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1748 			return error;
1749 		} else {
1750 			goto back;
1751 		}
1752 	}
1753 
1754 	if (!init) {
1755 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1756 				sc->re_ldata.re_rx_dmamap[idx],
1757 				BUS_DMASYNC_POSTREAD);
1758 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1759 				  sc->re_ldata.re_rx_dmamap[idx]);
1760 	}
1761 	sc->re_ldata.re_rx_mbuf[idx] = m;
1762 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1763 
1764 	map = sc->re_ldata.re_rx_dmamap[idx];
1765 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1766 	sc->re_ldata.re_rx_spare = map;
1767 back:
1768 	re_setup_rxdesc(sc, idx);
1769 	return error;
1770 }
1771 
1772 static int
1773 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1774 {
1775 	struct mbuf *m;
1776 	struct re_jbuf *jbuf;
1777 	int error = 0;
1778 
1779 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1780 	if (m == NULL) {
1781 		error = ENOBUFS;
1782 		if (init) {
1783 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1784 			return error;
1785 		} else {
1786 			goto back;
1787 		}
1788 	}
1789 
1790 	jbuf = re_jbuf_alloc(sc);
1791 	if (jbuf == NULL) {
1792 		m_freem(m);
1793 
1794 		error = ENOBUFS;
1795 		if (init) {
1796 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1797 			return error;
1798 		} else {
1799 			goto back;
1800 		}
1801 	}
1802 
1803 	m->m_ext.ext_arg = jbuf;
1804 	m->m_ext.ext_buf = jbuf->re_buf;
1805 	m->m_ext.ext_free = re_jbuf_free;
1806 	m->m_ext.ext_ref = re_jbuf_ref;
1807 	m->m_ext.ext_size = sc->re_rxbuf_size;
1808 
1809 	m->m_data = m->m_ext.ext_buf;
1810 	m->m_flags |= M_EXT;
1811 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1812 
1813 	/*
1814 	 * NOTE:
1815 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1816 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1817 	 */
1818 
1819 	sc->re_ldata.re_rx_mbuf[idx] = m;
1820 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1821 back:
1822 	re_setup_rxdesc(sc, idx);
1823 	return error;
1824 }
1825 
1826 static int
1827 re_tx_list_init(struct re_softc *sc)
1828 {
1829 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1830 
1831 	sc->re_ldata.re_tx_prodidx = 0;
1832 	sc->re_ldata.re_tx_considx = 0;
1833 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1834 
1835 	return(0);
1836 }
1837 
1838 static int
1839 re_rx_list_init(struct re_softc *sc)
1840 {
1841 	int i, error;
1842 
1843 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1844 
1845 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1846 		error = sc->re_newbuf(sc, i, 1);
1847 		if (error)
1848 			return(error);
1849 	}
1850 
1851 	sc->re_ldata.re_rx_prodidx = 0;
1852 	sc->re_head = sc->re_tail = NULL;
1853 
1854 	return(0);
1855 }
1856 
1857 #define RE_IP4_PACKET	0x1
1858 #define RE_TCP_PACKET	0x2
1859 #define RE_UDP_PACKET	0x4
1860 
1861 static __inline uint8_t
1862 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1863 {
1864 	uint8_t packet_type = 0;
1865 
1866 	if (sc->re_caps & RE_C_MAC2) {
1867 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1868 			packet_type |= RE_IP4_PACKET;
1869 	} else {
1870 		if (rxstat & RE_RDESC_STAT_PROTOID)
1871 			packet_type |= RE_IP4_PACKET;
1872 	}
1873 	if (RE_TCPPKT(rxstat))
1874 		packet_type |= RE_TCP_PACKET;
1875 	else if (RE_UDPPKT(rxstat))
1876 		packet_type |= RE_UDP_PACKET;
1877 	return packet_type;
1878 }
1879 
1880 /*
1881  * RX handler for C+ and 8169. For the gigE chips, we support
1882  * the reception of jumbo frames that have been fragmented
1883  * across multiple 2K mbuf cluster buffers.
1884  */
1885 static int
1886 re_rxeof(struct re_softc *sc)
1887 {
1888 	struct ifnet *ifp = &sc->arpcom.ac_if;
1889 	struct mbuf *m;
1890 	struct re_desc 	*cur_rx;
1891 	uint32_t rxstat, rxctrl;
1892 	int i, total_len, rx = 0;
1893 
1894 	for (i = sc->re_ldata.re_rx_prodidx;
1895 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1896 		cur_rx = &sc->re_ldata.re_rx_list[i];
1897 		m = sc->re_ldata.re_rx_mbuf[i];
1898 		total_len = RE_RXBYTES(cur_rx);
1899 		rxstat = le32toh(cur_rx->re_cmdstat);
1900 		rxctrl = le32toh(cur_rx->re_control);
1901 
1902 		rx = 1;
1903 
1904 #ifdef INVARIANTS
1905 		if (sc->re_flags & RE_F_USE_JPOOL)
1906 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1907 #endif
1908 
1909 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1910 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1911 				re_setup_rxdesc(sc, i);
1912 				continue;
1913 			}
1914 
1915 			if (sc->re_newbuf(sc, i, 0)) {
1916 				/* Drop upcoming fragments */
1917 				sc->re_flags |= RE_F_DROP_RXFRAG;
1918 				continue;
1919 			}
1920 
1921 			m->m_len = MCLBYTES;
1922 			if (sc->re_head == NULL) {
1923 				sc->re_head = sc->re_tail = m;
1924 			} else {
1925 				sc->re_tail->m_next = m;
1926 				sc->re_tail = m;
1927 			}
1928 			continue;
1929 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1930 			/*
1931 			 * Last fragment of a multi-fragment packet.
1932 			 *
1933 			 * Since error already happened, this fragment
1934 			 * must be dropped as well as the fragment chain.
1935 			 */
1936 			re_setup_rxdesc(sc, i);
1937 			re_free_rxchain(sc);
1938 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1939 			continue;
1940 		}
1941 
1942 		/*
1943 		 * NOTE: for the 8139C+, the frame length field
1944 		 * is always 12 bits in size, but for the gigE chips,
1945 		 * it is 13 bits (since the max RX frame length is 16K).
1946 		 * Unfortunately, all 32 bits in the status word
1947 		 * were already used, so to make room for the extra
1948 		 * length bit, RealTek took out the 'frame alignment
1949 		 * error' bit and shifted the other status bits
1950 		 * over one slot. The OWN, EOR, FS and LS bits are
1951 		 * still in the same places. We have already extracted
1952 		 * the frame length and checked the OWN bit, so rather
1953 		 * than using an alternate bit mapping, we shift the
1954 		 * status bits one space to the right so we can evaluate
1955 		 * them using the 8169 status as though it was in the
1956 		 * same format as that of the 8139C+.
1957 		 */
1958 		if (!RE_IS_8139CP(sc))
1959 			rxstat >>= 1;
1960 
1961 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1962 			IFNET_STAT_INC(ifp, ierrors, 1);
1963 			/*
1964 			 * If this is part of a multi-fragment packet,
1965 			 * discard all the pieces.
1966 			 */
1967 			re_free_rxchain(sc);
1968 			re_setup_rxdesc(sc, i);
1969 			continue;
1970 		}
1971 
1972 		/*
1973 		 * If allocating a replacement mbuf fails,
1974 		 * reload the current one.
1975 		 */
1976 
1977 		if (sc->re_newbuf(sc, i, 0)) {
1978 			IFNET_STAT_INC(ifp, ierrors, 1);
1979 			continue;
1980 		}
1981 
1982 		if (sc->re_head != NULL) {
1983 			m->m_len = total_len % MCLBYTES;
1984 			/*
1985 			 * Special case: if there's 4 bytes or less
1986 			 * in this buffer, the mbuf can be discarded:
1987 			 * the last 4 bytes is the CRC, which we don't
1988 			 * care about anyway.
1989 			 */
1990 			if (m->m_len <= ETHER_CRC_LEN) {
1991 				sc->re_tail->m_len -=
1992 				    (ETHER_CRC_LEN - m->m_len);
1993 				m_freem(m);
1994 			} else {
1995 				m->m_len -= ETHER_CRC_LEN;
1996 				sc->re_tail->m_next = m;
1997 			}
1998 			m = sc->re_head;
1999 			sc->re_head = sc->re_tail = NULL;
2000 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2001 		} else {
2002 			m->m_pkthdr.len = m->m_len =
2003 			    (total_len - ETHER_CRC_LEN);
2004 		}
2005 
2006 		IFNET_STAT_INC(ifp, ipackets, 1);
2007 		m->m_pkthdr.rcvif = ifp;
2008 
2009 		/* Do RX checksumming if enabled */
2010 
2011 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2012 			uint8_t packet_type;
2013 
2014 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2015 
2016 			/* Check IP header checksum */
2017 			if (packet_type & RE_IP4_PACKET) {
2018 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2019 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2020 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2021 			}
2022 
2023 			/* Check TCP/UDP checksum */
2024 			if (((packet_type & RE_TCP_PACKET) &&
2025 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2026 			    ((packet_type & RE_UDP_PACKET) &&
2027 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2028 				m->m_pkthdr.csum_flags |=
2029 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2030 				    CSUM_FRAG_NOT_CHECKED;
2031 				m->m_pkthdr.csum_data = 0xffff;
2032 			}
2033 		}
2034 
2035 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2036 			m->m_flags |= M_VLANTAG;
2037 			m->m_pkthdr.ether_vlantag =
2038 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2039 		}
2040 		ifp->if_input(ifp, m);
2041 	}
2042 
2043 	sc->re_ldata.re_rx_prodidx = i;
2044 
2045 	return rx;
2046 }
2047 
2048 #undef RE_IP4_PACKET
2049 #undef RE_TCP_PACKET
2050 #undef RE_UDP_PACKET
2051 
2052 static int
2053 re_tx_collect(struct re_softc *sc)
2054 {
2055 	struct ifnet *ifp = &sc->arpcom.ac_if;
2056 	uint32_t txstat;
2057 	int idx, tx = 0;
2058 
2059 	for (idx = sc->re_ldata.re_tx_considx;
2060 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2061 	     RE_TXDESC_INC(sc, idx)) {
2062 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2063 		if (txstat & RE_TDESC_CMD_OWN)
2064 			break;
2065 
2066 		tx = 1;
2067 
2068 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2069 
2070 		/*
2071 		 * We only stash mbufs in the last descriptor
2072 		 * in a fragment chain, which also happens to
2073 		 * be the only place where the TX status bits
2074 		 * are valid.
2075 		 */
2076 		if (txstat & RE_TDESC_CMD_EOF) {
2077 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2078 			    sc->re_ldata.re_tx_dmamap[idx]);
2079 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2080 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2081 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2082 			    RE_TDESC_STAT_COLCNT))
2083 				IFNET_STAT_INC(ifp, collisions, 1);
2084 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2085 				IFNET_STAT_INC(ifp, oerrors, 1);
2086 			else
2087 				IFNET_STAT_INC(ifp, opackets, 1);
2088 		}
2089 		sc->re_ldata.re_tx_free++;
2090 	}
2091 	sc->re_ldata.re_tx_considx = idx;
2092 
2093 	return tx;
2094 }
2095 
2096 static int
2097 re_txeof(struct re_softc *sc)
2098 {
2099 	struct ifnet *ifp = &sc->arpcom.ac_if;
2100 	int tx;
2101 
2102 	tx = re_tx_collect(sc);
2103 
2104 	/* There is enough free TX descs */
2105 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2106 		ifq_clr_oactive(&ifp->if_snd);
2107 
2108 	/*
2109 	 * Some chips will ignore a second TX request issued while an
2110 	 * existing transmission is in progress. If the transmitter goes
2111 	 * idle but there are still packets waiting to be sent, we need
2112 	 * to restart the channel here to flush them out. This only seems
2113 	 * to be required with the PCIe devices.
2114 	 */
2115 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2116 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2117 	else
2118 		ifp->if_timer = 0;
2119 
2120 	return tx;
2121 }
2122 
2123 static void
2124 re_tick(void *xsc)
2125 {
2126 	struct re_softc *sc = xsc;
2127 
2128 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2129 	re_tick_serialized(xsc);
2130 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2131 }
2132 
2133 static void
2134 re_tick_serialized(void *xsc)
2135 {
2136 	struct re_softc *sc = xsc;
2137 	struct ifnet *ifp = &sc->arpcom.ac_if;
2138 	struct mii_data *mii;
2139 
2140 	ASSERT_SERIALIZED(ifp->if_serializer);
2141 
2142 	mii = device_get_softc(sc->re_miibus);
2143 	mii_tick(mii);
2144 	if (sc->re_flags & RE_F_LINKED) {
2145 		if (!(mii->mii_media_status & IFM_ACTIVE))
2146 			sc->re_flags &= ~RE_F_LINKED;
2147 	} else {
2148 		if (mii->mii_media_status & IFM_ACTIVE &&
2149 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2150 			sc->re_flags |= RE_F_LINKED;
2151 			if (!ifq_is_empty(&ifp->if_snd))
2152 				if_devstart(ifp);
2153 		}
2154 	}
2155 
2156 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2157 }
2158 
2159 #ifdef IFPOLL_ENABLE
2160 
2161 static void
2162 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2163 {
2164 	struct re_softc *sc = ifp->if_softc;
2165 
2166 	ASSERT_SERIALIZED(ifp->if_serializer);
2167 
2168 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2169 		uint16_t       status;
2170 
2171 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2172 
2173 		status = CSR_READ_2(sc, RE_ISR);
2174 		if (status == 0xffff)
2175 			return;
2176 		if (status)
2177 			CSR_WRITE_2(sc, RE_ISR, status);
2178 
2179 		/*
2180 		 * XXX check behaviour on receiver stalls.
2181 		 */
2182 
2183 		if (status & RE_ISR_SYSTEM_ERR)
2184 			re_init(sc);
2185 	}
2186 
2187 	sc->rxcycles = count;
2188 	re_rxeof(sc);
2189 	re_txeof(sc);
2190 
2191 	if (!ifq_is_empty(&ifp->if_snd))
2192 		if_devstart(ifp);
2193 }
2194 
2195 static void
2196 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2197 {
2198 	struct re_softc *sc = ifp->if_softc;
2199 
2200 	ASSERT_SERIALIZED(ifp->if_serializer);
2201 
2202 	if (info != NULL) {
2203 		int cpuid = sc->re_npoll.ifpc_cpuid;
2204 
2205 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2206 		info->ifpi_rx[cpuid].arg = NULL;
2207 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2208 
2209 		if (ifp->if_flags & IFF_RUNNING)
2210 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2211 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2212 	} else {
2213 		if (ifp->if_flags & IFF_RUNNING)
2214 			re_setup_intr(sc, 1, sc->re_imtype);
2215 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
2216 	}
2217 }
2218 #endif /* IFPOLL_ENABLE */
2219 
2220 static void
2221 re_intr(void *arg)
2222 {
2223 	struct re_softc	*sc = arg;
2224 	struct ifnet *ifp = &sc->arpcom.ac_if;
2225 	uint16_t status;
2226 	int rx, tx;
2227 
2228 	ASSERT_SERIALIZED(ifp->if_serializer);
2229 
2230 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2231 	    (ifp->if_flags & IFF_RUNNING) == 0)
2232 		return;
2233 
2234 	rx = tx = 0;
2235 	for (;;) {
2236 		status = CSR_READ_2(sc, RE_ISR);
2237 		/* If the card has gone away the read returns 0xffff. */
2238 		if (status == 0xffff)
2239 			break;
2240 		if (status)
2241 			CSR_WRITE_2(sc, RE_ISR, status);
2242 
2243 		if ((status & sc->re_intrs) == 0)
2244 			break;
2245 
2246 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2247 			rx |= re_rxeof(sc);
2248 
2249 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2250 			tx |= re_txeof(sc);
2251 
2252 		if (status & RE_ISR_SYSTEM_ERR)
2253 			re_init(sc);
2254 
2255 		if (status & RE_ISR_LINKCHG) {
2256 			callout_stop(&sc->re_timer);
2257 			re_tick_serialized(sc);
2258 		}
2259 	}
2260 
2261 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2262 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2263 			if ((tx | rx) == 0) {
2264 				/*
2265 				 * Nothing needs to be processed, fallback
2266 				 * to use TX/RX interrupts.
2267 				 */
2268 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2269 
2270 				/*
2271 				 * Recollect, mainly to avoid the possible
2272 				 * race introduced by changing interrupt
2273 				 * masks.
2274 				 */
2275 				re_rxeof(sc);
2276 				tx = re_txeof(sc);
2277 			} else {
2278 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2279 			}
2280 		} else if (tx | rx) {
2281 			/*
2282 			 * Assume that using simulated interrupt moderation
2283 			 * (hardware timer based) could reduce the interript
2284 			 * rate.
2285 			 */
2286 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2287 		}
2288 	}
2289 
2290 	if (tx && !ifq_is_empty(&ifp->if_snd))
2291 		if_devstart(ifp);
2292 }
2293 
2294 static int
2295 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2296 {
2297 	struct mbuf *m = *m_head;
2298 	bus_dma_segment_t segs[RE_MAXSEGS];
2299 	bus_dmamap_t map;
2300 	int error, maxsegs, idx, i, nsegs;
2301 	struct re_desc *d, *tx_ring;
2302 	uint32_t cmd_csum, ctl_csum, vlantag;
2303 
2304 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2305 		("not enough free TX desc"));
2306 
2307 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2308 
2309 	/*
2310 	 * Set up checksum offload. Note: checksum offload bits must
2311 	 * appear in all descriptors of a multi-descriptor transmit
2312 	 * attempt. (This is according to testing done with an 8169
2313 	 * chip. I'm not sure if this is a requirement or a bug.)
2314 	 */
2315 	cmd_csum = ctl_csum = 0;
2316 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2317 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2318 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2319 	}
2320 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2321 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2322 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2323 	}
2324 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2325 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2326 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2327 	}
2328 
2329 	/* For MAC2 chips, csum flags are set on re_control */
2330 	if (sc->re_caps & RE_C_MAC2)
2331 		cmd_csum = 0;
2332 	else
2333 		ctl_csum = 0;
2334 
2335 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2336 		/*
2337 		 * With some of the RealTek chips, using the checksum offload
2338 		 * support in conjunction with the autopadding feature results
2339 		 * in the transmission of corrupt frames. For example, if we
2340 		 * need to send a really small IP fragment that's less than 60
2341 		 * bytes in size, and IP header checksumming is enabled, the
2342 		 * resulting ethernet frame that appears on the wire will
2343 		 * have garbled payload. To work around this, if TX checksum
2344 		 * offload is enabled, we always manually pad short frames out
2345 		 * to the minimum ethernet frame size.
2346 		 *
2347 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2348 		 * with PCIe adapters seems to result in bad checksums.
2349 		 */
2350 		if ((m->m_pkthdr.csum_flags &
2351 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2352 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2353 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2354 			error = m_devpad(m, RE_MIN_FRAMELEN);
2355 			if (error)
2356 				goto back;
2357 		}
2358 	}
2359 
2360 	vlantag = 0;
2361 	if (m->m_flags & M_VLANTAG) {
2362 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2363 			  RE_TDESC_CTL_INSTAG;
2364 	}
2365 
2366 	maxsegs = sc->re_ldata.re_tx_free;
2367 	if (maxsegs > RE_MAXSEGS)
2368 		maxsegs = RE_MAXSEGS;
2369 
2370 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2371 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2372 	if (error)
2373 		goto back;
2374 
2375 	m = *m_head;
2376 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2377 
2378 	/*
2379 	 * Map the segment array into descriptors.  We also keep track
2380 	 * of the end of the ring and set the end-of-ring bits as needed,
2381 	 * and we set the ownership bits in all except the very first
2382 	 * descriptor, whose ownership bits will be turned on later.
2383 	 */
2384 	tx_ring = sc->re_ldata.re_tx_list;
2385 	idx = *idx0;
2386 	i = 0;
2387 	for (;;) {
2388 		uint32_t cmdstat;
2389 
2390 		d = &tx_ring[idx];
2391 
2392 		cmdstat = segs[i].ds_len;
2393 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2394 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2395 		if (i == 0)
2396 			cmdstat |= RE_TDESC_CMD_SOF;
2397 		else
2398 			cmdstat |= RE_TDESC_CMD_OWN;
2399 		if (idx == (sc->re_tx_desc_cnt - 1))
2400 			cmdstat |= RE_TDESC_CMD_EOR;
2401 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2402 		d->re_control = htole32(ctl_csum | vlantag);
2403 
2404 		i++;
2405 		if (i == nsegs)
2406 			break;
2407 		RE_TXDESC_INC(sc, idx);
2408 	}
2409 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2410 
2411 	/* Transfer ownership of packet to the chip. */
2412 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2413 	if (*idx0 != idx)
2414 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2415 
2416 	/*
2417 	 * Insure that the map for this transmission
2418 	 * is placed at the array index of the last descriptor
2419 	 * in this chain.
2420 	 */
2421 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2422 	sc->re_ldata.re_tx_dmamap[idx] = map;
2423 
2424 	sc->re_ldata.re_tx_mbuf[idx] = m;
2425 	sc->re_ldata.re_tx_free -= nsegs;
2426 
2427 	RE_TXDESC_INC(sc, idx);
2428 	*idx0 = idx;
2429 back:
2430 	if (error) {
2431 		m_freem(*m_head);
2432 		*m_head = NULL;
2433 	}
2434 	return error;
2435 }
2436 
2437 /*
2438  * Main transmit routine for C+ and gigE NICs.
2439  */
2440 
2441 static void
2442 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2443 {
2444 	struct re_softc	*sc = ifp->if_softc;
2445 	struct mbuf *m_head;
2446 	int idx, need_trans, oactive, error;
2447 
2448 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2449 	ASSERT_SERIALIZED(ifp->if_serializer);
2450 
2451 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2452 		ifq_purge(&ifp->if_snd);
2453 		return;
2454 	}
2455 
2456 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2457 		return;
2458 
2459 	idx = sc->re_ldata.re_tx_prodidx;
2460 
2461 	need_trans = 0;
2462 	oactive = 0;
2463 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2464 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2465 			if (!oactive) {
2466 				if (re_tx_collect(sc)) {
2467 					oactive = 1;
2468 					continue;
2469 				}
2470 			}
2471 			ifq_set_oactive(&ifp->if_snd);
2472 			break;
2473 		}
2474 
2475 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2476 		if (m_head == NULL)
2477 			break;
2478 
2479 		error = re_encap(sc, &m_head, &idx);
2480 		if (error) {
2481 			/* m_head is freed by re_encap(), if we reach here */
2482 			IFNET_STAT_INC(ifp, oerrors, 1);
2483 
2484 			if (error == EFBIG && !oactive) {
2485 				if (re_tx_collect(sc)) {
2486 					oactive = 1;
2487 					continue;
2488 				}
2489 			}
2490 			ifq_set_oactive(&ifp->if_snd);
2491 			break;
2492 		}
2493 
2494 		oactive = 0;
2495 		need_trans = 1;
2496 
2497 		/*
2498 		 * If there's a BPF listener, bounce a copy of this frame
2499 		 * to him.
2500 		 */
2501 		ETHER_BPF_MTAP(ifp, m_head);
2502 	}
2503 
2504 	/*
2505 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2506 	 * for OACTIVE to not be properly set when we also do not
2507 	 * have sufficient free tx descriptors, leaving packet in
2508 	 * ifp->if_snd.  This can cause if_start_dispatch() to loop
2509 	 * infinitely so make sure OACTIVE is set properly.
2510 	 */
2511 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2512 		if (!ifq_is_oactive(&ifp->if_snd)) {
2513 			if_printf(ifp, "Debug: OACTIVE was not set when "
2514 			    "re_tx_free was below minimum!\n");
2515 			ifq_set_oactive(&ifp->if_snd);
2516 		}
2517 	}
2518 	if (!need_trans)
2519 		return;
2520 
2521 	sc->re_ldata.re_tx_prodidx = idx;
2522 
2523 	/*
2524 	 * RealTek put the TX poll request register in a different
2525 	 * location on the 8169 gigE chip. I don't know why.
2526 	 */
2527 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2528 
2529 	/*
2530 	 * Set a timeout in case the chip goes out to lunch.
2531 	 */
2532 	ifp->if_timer = 5;
2533 }
2534 
2535 static void
2536 re_init(void *xsc)
2537 {
2538 	struct re_softc *sc = xsc;
2539 	struct ifnet *ifp = &sc->arpcom.ac_if;
2540 	struct mii_data *mii;
2541 	int error, framelen;
2542 
2543 	ASSERT_SERIALIZED(ifp->if_serializer);
2544 
2545 	mii = device_get_softc(sc->re_miibus);
2546 
2547 	/*
2548 	 * Cancel pending I/O and free all RX/TX buffers.
2549 	 */
2550 	re_stop(sc);
2551 
2552 	if (sc->re_caps & RE_C_CONTIGRX) {
2553 		if (ifp->if_mtu > ETHERMTU) {
2554 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2555 			sc->re_flags |= RE_F_USE_JPOOL;
2556 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2557 			sc->re_newbuf = re_newbuf_jumbo;
2558 		} else {
2559 			sc->re_flags &= ~RE_F_USE_JPOOL;
2560 			sc->re_rxbuf_size = MCLBYTES;
2561 			sc->re_newbuf = re_newbuf_std;
2562 		}
2563 	}
2564 
2565 	/*
2566 	 * Adjust max read request size according to MTU; mainly to
2567 	 * improve TX performance for common case (ETHERMTU) on GigE
2568 	 * NICs.  However, this could _not_ be done on 10/100 only
2569 	 * NICs; their DMA engines will malfunction using non-default
2570 	 * max read request size.
2571 	 */
2572 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2573 		if (ifp->if_mtu > ETHERMTU) {
2574 			/*
2575 			 * 512 seems to be the only value that works
2576 			 * reliably with jumbo frame
2577 			 */
2578 			pcie_set_max_readrq(sc->re_dev,
2579 				PCIEM_DEVCTL_MAX_READRQ_512);
2580 		} else {
2581 			pcie_set_max_readrq(sc->re_dev,
2582 				PCIEM_DEVCTL_MAX_READRQ_4096);
2583 		}
2584 	}
2585 
2586 	/*
2587 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2588 	 * RX checksum offload. We must configure the C+ register
2589 	 * before all others.
2590 	 */
2591 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2592 		    RE_CPLUSCMD_PCI_MRW |
2593 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2594 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2595 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2596 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2597 
2598 	/*
2599 	 * Init our MAC address.  Even though the chipset
2600 	 * documentation doesn't mention it, we need to enter "Config
2601 	 * register write enable" mode to modify the ID registers.
2602 	 */
2603 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2604 	CSR_WRITE_4(sc, RE_IDR0,
2605 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2606 	CSR_WRITE_2(sc, RE_IDR4,
2607 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2608 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2609 
2610 	/*
2611 	 * For C+ mode, initialize the RX descriptors and mbufs.
2612 	 */
2613 	error = re_rx_list_init(sc);
2614 	if (error) {
2615 		re_stop(sc);
2616 		return;
2617 	}
2618 	error = re_tx_list_init(sc);
2619 	if (error) {
2620 		re_stop(sc);
2621 		return;
2622 	}
2623 
2624 	/*
2625 	 * Load the addresses of the RX and TX lists into the chip.
2626 	 */
2627 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2628 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2629 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2630 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2631 
2632 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2633 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2634 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2635 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2636 
2637 	/*
2638 	 * Enable transmit and receive.
2639 	 */
2640 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2641 
2642 	/*
2643 	 * Set the initial TX and RX configuration.
2644 	 */
2645 	if (sc->re_flags & RE_F_TESTMODE) {
2646 		if (!RE_IS_8139CP(sc))
2647 			CSR_WRITE_4(sc, RE_TXCFG,
2648 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2649 		else
2650 			CSR_WRITE_4(sc, RE_TXCFG,
2651 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2652 	} else
2653 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2654 
2655 	framelen = RE_FRAMELEN(ifp->if_mtu);
2656 	if (framelen < MCLBYTES)
2657 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2658 	else
2659 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2660 
2661 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2662 
2663 	/*
2664 	 * Program the multicast filter, if necessary.
2665 	 */
2666 	re_setmulti(sc);
2667 
2668 #ifdef IFPOLL_ENABLE
2669 	/*
2670 	 * Disable interrupts if we are polling.
2671 	 */
2672 	if (ifp->if_flags & IFF_NPOLLING)
2673 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2674 	else	/* otherwise ... */
2675 #endif /* IFPOLL_ENABLE */
2676 	/*
2677 	 * Enable interrupts.
2678 	 */
2679 	if (sc->re_flags & RE_F_TESTMODE)
2680 		CSR_WRITE_2(sc, RE_IMR, 0);
2681 	else
2682 		re_setup_intr(sc, 1, sc->re_imtype);
2683 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2684 
2685 	/* Start RX/TX process. */
2686 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2687 
2688 #ifdef notdef
2689 	/* Enable receiver and transmitter. */
2690 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2691 #endif
2692 
2693 	/*
2694 	 * For 8169 gigE NICs, set the max allowed RX packet
2695 	 * size so we can receive jumbo frames.
2696 	 */
2697 	if (!RE_IS_8139CP(sc)) {
2698 		if (sc->re_caps & RE_C_CONTIGRX)
2699 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2700 		else
2701 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2702 	}
2703 
2704 	if (sc->re_flags & RE_F_TESTMODE)
2705 		return;
2706 
2707 	mii_mediachg(mii);
2708 
2709 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2710 
2711 	ifp->if_flags |= IFF_RUNNING;
2712 	ifq_clr_oactive(&ifp->if_snd);
2713 
2714 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2715 }
2716 
2717 /*
2718  * Set media options.
2719  */
2720 static int
2721 re_ifmedia_upd(struct ifnet *ifp)
2722 {
2723 	struct re_softc *sc = ifp->if_softc;
2724 	struct mii_data *mii;
2725 
2726 	ASSERT_SERIALIZED(ifp->if_serializer);
2727 
2728 	mii = device_get_softc(sc->re_miibus);
2729 	mii_mediachg(mii);
2730 
2731 	return(0);
2732 }
2733 
2734 /*
2735  * Report current media status.
2736  */
2737 static void
2738 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2739 {
2740 	struct re_softc *sc = ifp->if_softc;
2741 	struct mii_data *mii;
2742 
2743 	ASSERT_SERIALIZED(ifp->if_serializer);
2744 
2745 	mii = device_get_softc(sc->re_miibus);
2746 
2747 	mii_pollstat(mii);
2748 	ifmr->ifm_active = mii->mii_media_active;
2749 	ifmr->ifm_status = mii->mii_media_status;
2750 }
2751 
2752 static int
2753 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2754 {
2755 	struct re_softc *sc = ifp->if_softc;
2756 	struct ifreq *ifr = (struct ifreq *) data;
2757 	struct mii_data *mii;
2758 	int error = 0, mask;
2759 
2760 	ASSERT_SERIALIZED(ifp->if_serializer);
2761 
2762 	switch(command) {
2763 	case SIOCSIFMTU:
2764 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2765 			error = EINVAL;
2766 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2767 			ifp->if_mtu = ifr->ifr_mtu;
2768 			if (ifp->if_flags & IFF_RUNNING)
2769 				ifp->if_init(sc);
2770 		}
2771 		break;
2772 
2773 	case SIOCSIFFLAGS:
2774 		if (ifp->if_flags & IFF_UP) {
2775 			if (ifp->if_flags & IFF_RUNNING) {
2776 				if ((ifp->if_flags ^ sc->re_if_flags) &
2777 				    (IFF_PROMISC | IFF_ALLMULTI))
2778 					re_setmulti(sc);
2779 			} else {
2780 				re_init(sc);
2781 			}
2782 		} else if (ifp->if_flags & IFF_RUNNING) {
2783 			re_stop(sc);
2784 		}
2785 		sc->re_if_flags = ifp->if_flags;
2786 		break;
2787 
2788 	case SIOCADDMULTI:
2789 	case SIOCDELMULTI:
2790 		re_setmulti(sc);
2791 		break;
2792 
2793 	case SIOCGIFMEDIA:
2794 	case SIOCSIFMEDIA:
2795 		mii = device_get_softc(sc->re_miibus);
2796 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2797 		break;
2798 
2799 	case SIOCSIFCAP:
2800 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2801 		       ifp->if_capabilities;
2802 		ifp->if_capenable ^= mask;
2803 
2804 		if (mask & IFCAP_HWCSUM) {
2805 			if (ifp->if_capenable & IFCAP_TXCSUM)
2806 				ifp->if_hwassist = RE_CSUM_FEATURES;
2807 			else
2808 				ifp->if_hwassist = 0;
2809 		}
2810 		if (mask && (ifp->if_flags & IFF_RUNNING))
2811 			re_init(sc);
2812 		break;
2813 
2814 	default:
2815 		error = ether_ioctl(ifp, command, data);
2816 		break;
2817 	}
2818 	return(error);
2819 }
2820 
2821 static void
2822 re_watchdog(struct ifnet *ifp)
2823 {
2824 	struct re_softc *sc = ifp->if_softc;
2825 
2826 	ASSERT_SERIALIZED(ifp->if_serializer);
2827 
2828 	if_printf(ifp, "watchdog timeout\n");
2829 
2830 	IFNET_STAT_INC(ifp, oerrors, 1);
2831 
2832 	re_txeof(sc);
2833 	re_rxeof(sc);
2834 
2835 	re_init(sc);
2836 
2837 	if (!ifq_is_empty(&ifp->if_snd))
2838 		if_devstart(ifp);
2839 }
2840 
2841 /*
2842  * Stop the adapter and free any mbufs allocated to the
2843  * RX and TX lists.
2844  */
2845 static void
2846 re_stop(struct re_softc *sc)
2847 {
2848 	struct ifnet *ifp = &sc->arpcom.ac_if;
2849 	int i;
2850 
2851 	ASSERT_SERIALIZED(ifp->if_serializer);
2852 
2853 	/* Reset the adapter. */
2854 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2855 
2856 	ifp->if_timer = 0;
2857 	callout_stop(&sc->re_timer);
2858 
2859 	ifp->if_flags &= ~IFF_RUNNING;
2860 	ifq_clr_oactive(&ifp->if_snd);
2861 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2862 
2863 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2864 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2865 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2866 
2867 	re_free_rxchain(sc);
2868 
2869 	/* Free the TX list buffers. */
2870 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2871 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2872 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2873 					  sc->re_ldata.re_tx_dmamap[i]);
2874 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2875 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2876 		}
2877 	}
2878 
2879 	/* Free the RX list buffers. */
2880 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2881 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2882 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2883 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2884 						  sc->re_ldata.re_rx_dmamap[i]);
2885 			}
2886 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2887 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2888 		}
2889 	}
2890 }
2891 
2892 /*
2893  * Device suspend routine.  Stop the interface and save some PCI
2894  * settings in case the BIOS doesn't restore them properly on
2895  * resume.
2896  */
2897 static int
2898 re_suspend(device_t dev)
2899 {
2900 #ifndef BURN_BRIDGES
2901 	int i;
2902 #endif
2903 	struct re_softc *sc = device_get_softc(dev);
2904 	struct ifnet *ifp = &sc->arpcom.ac_if;
2905 
2906 	lwkt_serialize_enter(ifp->if_serializer);
2907 
2908 	re_stop(sc);
2909 
2910 #ifndef BURN_BRIDGES
2911 	for (i = 0; i < 5; i++)
2912 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2913 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2914 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2915 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2916 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2917 #endif
2918 
2919 	sc->re_flags |= RE_F_SUSPENDED;
2920 
2921 	lwkt_serialize_exit(ifp->if_serializer);
2922 
2923 	return (0);
2924 }
2925 
2926 /*
2927  * Device resume routine.  Restore some PCI settings in case the BIOS
2928  * doesn't, re-enable busmastering, and restart the interface if
2929  * appropriate.
2930  */
2931 static int
2932 re_resume(device_t dev)
2933 {
2934 	struct re_softc *sc = device_get_softc(dev);
2935 	struct ifnet *ifp = &sc->arpcom.ac_if;
2936 #ifndef BURN_BRIDGES
2937 	int i;
2938 #endif
2939 
2940 	lwkt_serialize_enter(ifp->if_serializer);
2941 
2942 #ifndef BURN_BRIDGES
2943 	/* better way to do this? */
2944 	for (i = 0; i < 5; i++)
2945 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2946 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2947 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2948 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2949 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2950 
2951 	/* reenable busmastering */
2952 	pci_enable_busmaster(dev);
2953 	pci_enable_io(dev, SYS_RES_IOPORT);
2954 #endif
2955 
2956 	/* reinitialize interface if necessary */
2957 	if (ifp->if_flags & IFF_UP)
2958 		re_init(sc);
2959 
2960 	sc->re_flags &= ~RE_F_SUSPENDED;
2961 
2962 	lwkt_serialize_exit(ifp->if_serializer);
2963 
2964 	return (0);
2965 }
2966 
2967 /*
2968  * Stop all chip I/O so that the kernel's probe routines don't
2969  * get confused by errant DMAs when rebooting.
2970  */
2971 static void
2972 re_shutdown(device_t dev)
2973 {
2974 	struct re_softc *sc = device_get_softc(dev);
2975 	struct ifnet *ifp = &sc->arpcom.ac_if;
2976 
2977 	lwkt_serialize_enter(ifp->if_serializer);
2978 	re_stop(sc);
2979 	lwkt_serialize_exit(ifp->if_serializer);
2980 }
2981 
2982 static int
2983 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2984 {
2985 	struct re_softc *sc = arg1;
2986 
2987 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2988 }
2989 
2990 static int
2991 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2992 {
2993 	struct re_softc *sc = arg1;
2994 
2995 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2996 }
2997 
2998 static int
2999 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3000 {
3001 	struct re_softc *sc = arg1;
3002 	struct ifnet *ifp = &sc->arpcom.ac_if;
3003 	int error, v;
3004 
3005 	lwkt_serialize_enter(ifp->if_serializer);
3006 
3007 	v = *hwtime;
3008 	error = sysctl_handle_int(oidp, &v, 0, req);
3009 	if (error || req->newptr == NULL)
3010 		goto back;
3011 
3012 	if (v <= 0) {
3013 		error = EINVAL;
3014 		goto back;
3015 	}
3016 
3017 	if (v != *hwtime) {
3018 		*hwtime = v;
3019 
3020 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3021 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3022 			re_setup_hw_im(sc);
3023 	}
3024 back:
3025 	lwkt_serialize_exit(ifp->if_serializer);
3026 	return error;
3027 }
3028 
3029 static int
3030 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3031 {
3032 	struct re_softc *sc = arg1;
3033 	struct ifnet *ifp = &sc->arpcom.ac_if;
3034 	int error, v;
3035 
3036 	lwkt_serialize_enter(ifp->if_serializer);
3037 
3038 	v = sc->re_sim_time;
3039 	error = sysctl_handle_int(oidp, &v, 0, req);
3040 	if (error || req->newptr == NULL)
3041 		goto back;
3042 
3043 	if (v <= 0) {
3044 		error = EINVAL;
3045 		goto back;
3046 	}
3047 
3048 	if (v != sc->re_sim_time) {
3049 		sc->re_sim_time = v;
3050 
3051 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3052 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3053 #ifdef foo
3054 			int reg;
3055 
3056 			/*
3057 			 * Following code causes various strange
3058 			 * performance problems.  Hmm ...
3059 			 */
3060 			CSR_WRITE_2(sc, RE_IMR, 0);
3061 			if (!RE_IS_8139CP(sc))
3062 				reg = RE_TIMERINT_8169;
3063 			else
3064 				reg = RE_TIMERINT;
3065 			CSR_WRITE_4(sc, reg, 0);
3066 			CSR_READ_4(sc, reg); /* flush */
3067 
3068 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3069 			re_setup_sim_im(sc);
3070 #else
3071 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3072 			DELAY(10);
3073 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3074 #endif
3075 		}
3076 	}
3077 back:
3078 	lwkt_serialize_exit(ifp->if_serializer);
3079 	return error;
3080 }
3081 
3082 static int
3083 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3084 {
3085 	struct re_softc *sc = arg1;
3086 	struct ifnet *ifp = &sc->arpcom.ac_if;
3087 	int error, v;
3088 
3089 	lwkt_serialize_enter(ifp->if_serializer);
3090 
3091 	v = sc->re_imtype;
3092 	error = sysctl_handle_int(oidp, &v, 0, req);
3093 	if (error || req->newptr == NULL)
3094 		goto back;
3095 
3096 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3097 		error = EINVAL;
3098 		goto back;
3099 	}
3100 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3101 		/* Can't do hardware interrupt moderation */
3102 		error = EOPNOTSUPP;
3103 		goto back;
3104 	}
3105 
3106 	if (v != sc->re_imtype) {
3107 		sc->re_imtype = v;
3108 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3109 		    IFF_RUNNING)
3110 			re_setup_intr(sc, 1, sc->re_imtype);
3111 	}
3112 back:
3113 	lwkt_serialize_exit(ifp->if_serializer);
3114 	return error;
3115 }
3116 
3117 static void
3118 re_setup_hw_im(struct re_softc *sc)
3119 {
3120 	KKASSERT(sc->re_caps & RE_C_HWIM);
3121 
3122 	/*
3123 	 * Interrupt moderation
3124 	 *
3125 	 * 0xABCD
3126 	 * A - unknown (maybe TX related)
3127 	 * B - TX timer (unit: 25us)
3128 	 * C - unknown (maybe RX related)
3129 	 * D - RX timer (unit: 25us)
3130 	 *
3131 	 *
3132 	 * re(4)'s interrupt moderation is actually controlled by
3133 	 * two variables, like most other NICs (bge, bce etc.)
3134 	 * o  timer
3135 	 * o  number of packets [P]
3136 	 *
3137 	 * The logic relationship between these two variables is
3138 	 * similar to other NICs too:
3139 	 * if (timer expire || packets > [P])
3140 	 *     Interrupt is delivered
3141 	 *
3142 	 * Currently we only know how to set 'timer', but not
3143 	 * 'number of packets', which should be ~30, as far as I
3144 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3145 	 */
3146 	CSR_WRITE_2(sc, RE_IM,
3147 		    RE_IM_RXTIME(sc->re_rx_time) |
3148 		    RE_IM_TXTIME(sc->re_tx_time) |
3149 		    RE_IM_MAGIC);
3150 }
3151 
3152 static void
3153 re_disable_hw_im(struct re_softc *sc)
3154 {
3155 	if (sc->re_caps & RE_C_HWIM)
3156 		CSR_WRITE_2(sc, RE_IM, 0);
3157 }
3158 
3159 static void
3160 re_setup_sim_im(struct re_softc *sc)
3161 {
3162 	if (!RE_IS_8139CP(sc)) {
3163 		uint32_t ticks;
3164 
3165 		/*
3166 		 * Datasheet says tick decreases at bus speed,
3167 		 * but it seems the clock runs a little bit
3168 		 * faster, so we do some compensation here.
3169 		 */
3170 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3171 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3172 	} else {
3173 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3174 	}
3175 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3176 	sc->re_flags |= RE_F_TIMER_INTR;
3177 }
3178 
3179 static void
3180 re_disable_sim_im(struct re_softc *sc)
3181 {
3182 	if (!RE_IS_8139CP(sc))
3183 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3184 	else
3185 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3186 	sc->re_flags &= ~RE_F_TIMER_INTR;
3187 }
3188 
3189 static void
3190 re_config_imtype(struct re_softc *sc, int imtype)
3191 {
3192 	switch (imtype) {
3193 	case RE_IMTYPE_HW:
3194 		KKASSERT(sc->re_caps & RE_C_HWIM);
3195 		/* FALL THROUGH */
3196 	case RE_IMTYPE_NONE:
3197 		sc->re_intrs = RE_INTRS;
3198 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3199 				RE_ISR_RX_OVERRUN;
3200 		sc->re_tx_ack = RE_ISR_TX_OK;
3201 		break;
3202 
3203 	case RE_IMTYPE_SIM:
3204 		sc->re_intrs = RE_INTRS_TIMER;
3205 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3206 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3207 		break;
3208 
3209 	default:
3210 		panic("%s: unknown imtype %d",
3211 		      sc->arpcom.ac_if.if_xname, imtype);
3212 	}
3213 }
3214 
3215 static void
3216 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3217 {
3218 	re_config_imtype(sc, imtype);
3219 
3220 	if (enable_intrs)
3221 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3222 	else
3223 		CSR_WRITE_2(sc, RE_IMR, 0);
3224 
3225 	sc->re_npoll.ifpc_stcount = 0;
3226 
3227 	switch (imtype) {
3228 	case RE_IMTYPE_NONE:
3229 		re_disable_sim_im(sc);
3230 		re_disable_hw_im(sc);
3231 		break;
3232 
3233 	case RE_IMTYPE_HW:
3234 		KKASSERT(sc->re_caps & RE_C_HWIM);
3235 		re_disable_sim_im(sc);
3236 		re_setup_hw_im(sc);
3237 		break;
3238 
3239 	case RE_IMTYPE_SIM:
3240 		re_disable_hw_im(sc);
3241 		re_setup_sim_im(sc);
3242 		break;
3243 
3244 	default:
3245 		panic("%s: unknown imtype %d",
3246 		      sc->arpcom.ac_if.if_xname, imtype);
3247 	}
3248 }
3249 
3250 static void
3251 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3252 {
3253 	int i;
3254 
3255 	if (sc->re_macver == RE_MACVER_11 ||
3256 	    sc->re_macver == RE_MACVER_12 ||
3257 	    sc->re_macver == RE_MACVER_30 ||
3258 	    sc->re_macver == RE_MACVER_31) {
3259 		uint16_t re_did;
3260 
3261 		re_get_eewidth(sc);
3262 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3263 		if (re_did == 0x8128) {
3264 			uint16_t as[ETHER_ADDR_LEN / 2];
3265 			int eaddr_off;
3266 
3267 			if (sc->re_macver == RE_MACVER_30 ||
3268 			    sc->re_macver == RE_MACVER_31)
3269 				eaddr_off = RE_EE_EADDR1;
3270 			else
3271 				eaddr_off = RE_EE_EADDR0;
3272 
3273 			/*
3274 			 * Get station address from the EEPROM.
3275 			 */
3276 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3277 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3278 				as[i] = le16toh(as[i]);
3279 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3280 			return;
3281 		}
3282 	}
3283 
3284 	/*
3285 	 * Get station address from IDRx.
3286 	 */
3287 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3288 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3289 }
3290 
3291 static int
3292 re_jpool_alloc(struct re_softc *sc)
3293 {
3294 	struct re_list_data *ldata = &sc->re_ldata;
3295 	struct re_jbuf *jbuf;
3296 	bus_addr_t paddr;
3297 	bus_size_t jpool_size;
3298 	bus_dmamem_t dmem;
3299 	caddr_t buf;
3300 	int i, error;
3301 
3302 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3303 
3304 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3305 				 M_DEVBUF, M_WAITOK | M_ZERO);
3306 
3307 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3308 
3309 	error = bus_dmamem_coherent(sc->re_parent_tag,
3310 			RE_RXBUF_ALIGN, 0,
3311 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3312 			jpool_size, BUS_DMA_WAITOK, &dmem);
3313 	if (error) {
3314 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3315 		return error;
3316 	}
3317 	ldata->re_jpool_tag = dmem.dmem_tag;
3318 	ldata->re_jpool_map = dmem.dmem_map;
3319 	ldata->re_jpool = dmem.dmem_addr;
3320 	paddr = dmem.dmem_busaddr;
3321 
3322 	/* ..and split it into 9KB chunks */
3323 	SLIST_INIT(&ldata->re_jbuf_free);
3324 
3325 	buf = ldata->re_jpool;
3326 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3327 		jbuf = &ldata->re_jbuf[i];
3328 
3329 		jbuf->re_sc = sc;
3330 		jbuf->re_inuse = 0;
3331 		jbuf->re_slot = i;
3332 		jbuf->re_buf = buf;
3333 		jbuf->re_paddr = paddr;
3334 
3335 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3336 
3337 		buf += RE_JBUF_SIZE;
3338 		paddr += RE_JBUF_SIZE;
3339 	}
3340 	return 0;
3341 }
3342 
3343 static void
3344 re_jpool_free(struct re_softc *sc)
3345 {
3346 	struct re_list_data *ldata = &sc->re_ldata;
3347 
3348 	if (ldata->re_jpool_tag != NULL) {
3349 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3350 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3351 				ldata->re_jpool_map);
3352 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3353 		ldata->re_jpool_tag = NULL;
3354 	}
3355 
3356 	if (ldata->re_jbuf != NULL) {
3357 		kfree(ldata->re_jbuf, M_DEVBUF);
3358 		ldata->re_jbuf = NULL;
3359 	}
3360 }
3361 
3362 static struct re_jbuf *
3363 re_jbuf_alloc(struct re_softc *sc)
3364 {
3365 	struct re_list_data *ldata = &sc->re_ldata;
3366 	struct re_jbuf *jbuf;
3367 
3368 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3369 
3370 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3371 	if (jbuf != NULL) {
3372 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3373 		jbuf->re_inuse = 1;
3374 	}
3375 
3376 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3377 
3378 	return jbuf;
3379 }
3380 
3381 static void
3382 re_jbuf_free(void *arg)
3383 {
3384 	struct re_jbuf *jbuf = arg;
3385 	struct re_softc *sc = jbuf->re_sc;
3386 	struct re_list_data *ldata = &sc->re_ldata;
3387 
3388 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3389 		panic("%s: free wrong jumbo buffer",
3390 		      sc->arpcom.ac_if.if_xname);
3391 	} else if (jbuf->re_inuse == 0) {
3392 		panic("%s: jumbo buffer already freed",
3393 		      sc->arpcom.ac_if.if_xname);
3394 	}
3395 
3396 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3397 	atomic_subtract_int(&jbuf->re_inuse, 1);
3398 	if (jbuf->re_inuse == 0)
3399 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3400 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3401 }
3402 
3403 static void
3404 re_jbuf_ref(void *arg)
3405 {
3406 	struct re_jbuf *jbuf = arg;
3407 	struct re_softc *sc = jbuf->re_sc;
3408 	struct re_list_data *ldata = &sc->re_ldata;
3409 
3410 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3411 		panic("%s: ref wrong jumbo buffer",
3412 		      sc->arpcom.ac_if.if_xname);
3413 	} else if (jbuf->re_inuse == 0) {
3414 		panic("%s: jumbo buffer already freed",
3415 		      sc->arpcom.ac_if.if_xname);
3416 	}
3417 	atomic_add_int(&jbuf->re_inuse, 1);
3418 }
3419