xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 48d201a5a8c1dab4aa7166b0812594c101fc43c3)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.6 2004/08/02 15:10:08 joerg Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51  * and the RTL8110S.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7.5K, so the max MTU possible with this
111  * driver is 7500 bytes.
112  */
113 
114 #include <sys/param.h>
115 #include <sys/endian.h>
116 #include <sys/systm.h>
117 #include <sys/sockio.h>
118 #include <sys/mbuf.h>
119 #include <sys/malloc.h>
120 #include <sys/module.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 
124 #include <net/if.h>
125 #include <net/if_arp.h>
126 #include <net/ethernet.h>
127 #include <net/if_dl.h>
128 #include <net/if_media.h>
129 #include <net/if_types.h>
130 #include <net/vlan/if_vlan_var.h>
131 
132 #include <net/bpf.h>
133 
134 #include <machine/bus_pio.h>
135 #include <machine/bus_memio.h>
136 #include <machine/bus.h>
137 #include <machine/resource.h>
138 #include <sys/bus.h>
139 #include <sys/rman.h>
140 
141 #include <dev/netif/mii_layer/mii.h>
142 #include <dev/netif/mii_layer/miivar.h>
143 
144 #include <bus/pci/pcireg.h>
145 #include <bus/pci/pcivar.h>
146 
147 /* "controller miibus0" required.  See GENERIC if you get errors here. */
148 #include "miibus_if.h"
149 
150 #include <dev/netif/re/if_rereg.h>
151 
152 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
153 
154 /*
155  * Various supported device vendors/types and their names.
156  */
157 static struct re_type re_devs[] = {
158 	{ RT_VENDORID, RT_DEVICEID_8139, RE_HWREV_8139CPLUS,
159 		"RealTek 8139C+ 10/100BaseTX" },
160 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169,
161 		"RealTek 8169 Gigabit Ethernet" },
162 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169S,
163 		"RealTek 8169S Single-chip Gigabit Ethernet" },
164 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8110S,
165 		"RealTek 8110S Single-chip Gigabit Ethernet" },
166 	{ 0, 0, 0, NULL }
167 };
168 
169 static struct re_hwrev re_hwrevs[] = {
170 	{ RE_HWREV_8139CPLUS, RE_8139CPLUS, "C+"},
171 	{ RE_HWREV_8169, RE_8169, "8169"},
172 	{ RE_HWREV_8169S, RE_8169, "8169S"},
173 	{ RE_HWREV_8110S, RE_8169, "8110S"},
174 	{ 0, 0, NULL }
175 };
176 
177 static int	re_probe(device_t);
178 static int	re_attach(device_t);
179 static int	re_detach(device_t);
180 
181 static int	re_encap(struct re_softc *, struct mbuf *, int *);
182 
183 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
184 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
185 				bus_size_t, int);
186 static int	re_allocmem(device_t, struct re_softc *);
187 static int	re_newbuf(struct re_softc *, int, struct mbuf *);
188 static int	re_rx_list_init(struct re_softc *);
189 static int	re_tx_list_init(struct re_softc *);
190 static void	re_rxeof(struct re_softc *);
191 static void	re_txeof(struct re_softc *);
192 static void	re_intr(void *);
193 static void	re_tick(void *);
194 static void	re_start(struct ifnet *);
195 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void	re_init(void *);
197 static void	re_stop(struct re_softc *);
198 static void	re_watchdog(struct ifnet *);
199 static int	re_suspend(device_t);
200 static int	re_resume(device_t);
201 static void	re_shutdown(device_t);
202 static int	re_ifmedia_upd(struct ifnet *);
203 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
204 
205 static void	re_eeprom_putbyte(struct re_softc *, int);
206 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
207 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int, int);
208 static int	re_gmii_readreg(device_t, int, int);
209 static int	re_gmii_writereg(device_t, int, int, int);
210 
211 static int	re_miibus_readreg(device_t, int, int);
212 static int	re_miibus_writereg(device_t, int, int, int);
213 static void	re_miibus_statchg(device_t);
214 
215 static void	re_setmulti(struct re_softc *);
216 static void	re_reset(struct re_softc *);
217 
218 static int	re_diag(struct re_softc *);
219 
220 static device_method_t re_methods[] = {
221 	/* Device interface */
222 	DEVMETHOD(device_probe,		re_probe),
223 	DEVMETHOD(device_attach,	re_attach),
224 	DEVMETHOD(device_detach,	re_detach),
225 	DEVMETHOD(device_suspend,	re_suspend),
226 	DEVMETHOD(device_resume,	re_resume),
227 	DEVMETHOD(device_shutdown,	re_shutdown),
228 
229 	/* bus interface */
230 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
231 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
232 
233 	/* MII interface */
234 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
235 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
236 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
237 
238 	{ 0, 0 }
239 };
240 
241 static driver_t re_driver = {
242 	"re",
243 	re_methods,
244 	sizeof(struct re_softc)
245 };
246 
247 static devclass_t re_devclass;
248 
249 DECLARE_DUMMY_MODULE(if_re);
250 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
251 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
252 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
253 
254 #define EE_SET(x)	\
255 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
256 
257 #define EE_CLR(x)	\
258 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
259 
260 /*
261  * Send a read command and address to the EEPROM, check for ACK.
262  */
263 static void
264 re_eeprom_putbyte(struct re_softc *sc, int addr)
265 {
266 	int d, i;
267 
268 	d = addr | sc->re_eecmd_read;
269 
270 	/*
271 	 * Feed in each bit and strobe the clock.
272 	 */
273 	for (i = 0x400; i != 0; i >>= 1) {
274 		if (d & i)
275 			EE_SET(RE_EE_DATAIN);
276 		else
277 			EE_CLR(RE_EE_DATAIN);
278 		DELAY(100);
279 		EE_SET(RE_EE_CLK);
280 		DELAY(150);
281 		EE_CLR(RE_EE_CLK);
282 		DELAY(100);
283 	}
284 }
285 
286 /*
287  * Read a word of data stored in the EEPROM at address 'addr.'
288  */
289 static void
290 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
291 {
292 	int i;
293 	uint16_t word = 0;
294 
295 	/* Enter EEPROM access mode. */
296 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
297 
298 	/*
299 	 * Send address of word we want to read.
300 	 */
301 	re_eeprom_putbyte(sc, addr);
302 
303 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
304 
305 	/*
306 	 * Start reading bits from EEPROM.
307 	 */
308 	for (i = 0x8000; i != 0; i >>= 1) {
309 		EE_SET(RE_EE_CLK);
310 		DELAY(100);
311 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
312 			word |= i;
313 		EE_CLR(RE_EE_CLK);
314 		DELAY(100);
315 	}
316 
317 	/* Turn off EEPROM access mode. */
318 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
319 
320 	*dest = word;
321 }
322 
323 /*
324  * Read a sequence of words from the EEPROM.
325  */
326 static void
327 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt, int swap)
328 {
329 	int i;
330 	uint16_t word = 0, *ptr;
331 
332 	for (i = 0; i < cnt; i++) {
333 		re_eeprom_getword(sc, off + i, &word);
334 		ptr = (u_int16_t *)(dest + (i * 2));
335 		if (swap)
336 			*ptr = be16toh(word);
337 		else
338 			*ptr = word;
339 	}
340 }
341 
342 static int
343 re_gmii_readreg(device_t dev, int phy, int reg)
344 {
345 	struct re_softc *sc = device_get_softc(dev);
346 	u_int32_t rval;
347 	int i;
348 
349 	if (phy != 1)
350 		return(0);
351 
352 	/* Let the rgephy driver read the GMEDIASTAT register */
353 
354 	if (reg == RE_GMEDIASTAT)
355 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
356 
357 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
358 	DELAY(1000);
359 
360 	for (i = 0; i < RE_TIMEOUT; i++) {
361 		rval = CSR_READ_4(sc, RE_PHYAR);
362 		if (rval & RE_PHYAR_BUSY)
363 			break;
364 		DELAY(100);
365 	}
366 
367 	if (i == RE_TIMEOUT) {
368 		device_printf(dev, "PHY read failed\n");
369 		return(0);
370 	}
371 
372 	return(rval & RE_PHYAR_PHYDATA);
373 }
374 
375 static int
376 re_gmii_writereg(device_t dev, int phy, int reg, int data)
377 {
378 	struct re_softc *sc = device_get_softc(dev);
379 	uint32_t rval;
380 	int i;
381 
382 	CSR_WRITE_4(sc, RE_PHYAR,
383 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
384 	DELAY(1000);
385 
386 	for (i = 0; i < RE_TIMEOUT; i++) {
387 		rval = CSR_READ_4(sc, RE_PHYAR);
388 		if ((rval & RE_PHYAR_BUSY) == 0)
389 			break;
390 		DELAY(100);
391 	}
392 
393 	if (i == RE_TIMEOUT)
394 		device_printf(dev, "PHY write failed\n");
395 
396 	return(0);
397 }
398 
399 static int
400 re_miibus_readreg(device_t dev, int phy, int reg)
401 {
402 	struct re_softc	*sc = device_get_softc(dev);
403 	uint16_t rval = 0;
404 	uint16_t re8139_reg = 0;
405 
406 	if (sc->re_type == RE_8169) {
407 		rval = re_gmii_readreg(dev, phy, reg);
408 		return(rval);
409 	}
410 
411 	/* Pretend the internal PHY is only at address 0 */
412 	if (phy)
413 		return(0);
414 
415 	switch(reg) {
416 	case MII_BMCR:
417 		re8139_reg = RE_BMCR;
418 		break;
419 	case MII_BMSR:
420 		re8139_reg = RE_BMSR;
421 		break;
422 	case MII_ANAR:
423 		re8139_reg = RE_ANAR;
424 		break;
425 	case MII_ANER:
426 		re8139_reg = RE_ANER;
427 		break;
428 	case MII_ANLPAR:
429 		re8139_reg = RE_LPAR;
430 		break;
431 	case MII_PHYIDR1:
432 	case MII_PHYIDR2:
433 		return(0);
434 	/*
435 	 * Allow the rlphy driver to read the media status
436 	 * register. If we have a link partner which does not
437 	 * support NWAY, this is the register which will tell
438 	 * us the results of parallel detection.
439 	 */
440 	case RE_MEDIASTAT:
441 		return(CSR_READ_1(sc, RE_MEDIASTAT));
442 	default:
443 		device_printf(dev, "bad phy register\n");
444 		return(0);
445 	}
446 	rval = CSR_READ_2(sc, re8139_reg);
447 	return(rval);
448 }
449 
450 static int
451 re_miibus_writereg(device_t dev, int phy, int reg, int data)
452 {
453 	struct re_softc *sc= device_get_softc(dev);
454 	u_int16_t re8139_reg = 0;
455 
456 	if (sc->re_type == RE_8169)
457 		return(re_gmii_writereg(dev, phy, reg, data));
458 
459 	/* Pretend the internal PHY is only at address 0 */
460 	if (phy)
461 		return(0);
462 
463 	switch(reg) {
464 	case MII_BMCR:
465 		re8139_reg = RE_BMCR;
466 		break;
467 	case MII_BMSR:
468 		re8139_reg = RE_BMSR;
469 		break;
470 	case MII_ANAR:
471 		re8139_reg = RE_ANAR;
472 		break;
473 	case MII_ANER:
474 		re8139_reg = RE_ANER;
475 		break;
476 	case MII_ANLPAR:
477 		re8139_reg = RE_LPAR;
478 		break;
479 	case MII_PHYIDR1:
480 	case MII_PHYIDR2:
481 		return(0);
482 	default:
483 		device_printf(dev, "bad phy register\n");
484 		return(0);
485 	}
486 	CSR_WRITE_2(sc, re8139_reg, data);
487 	return(0);
488 }
489 
490 static void
491 re_miibus_statchg(device_t dev)
492 {
493 }
494 
495 /*
496  * Program the 64-bit multicast hash filter.
497  */
498 static void
499 re_setmulti(struct re_softc *sc)
500 {
501 	struct ifnet *ifp = &sc->arpcom.ac_if;
502 	int h = 0;
503 	uint32_t hashes[2] = { 0, 0 };
504 	struct ifmultiaddr *ifma;
505 	uint32_t rxfilt;
506 	int mcnt = 0;
507 
508 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
509 
510 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
511 		rxfilt |= RE_RXCFG_RX_MULTI;
512 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
513 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
514 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
515 		return;
516 	}
517 
518 	/* first, zot all the existing hash bits */
519 	CSR_WRITE_4(sc, RE_MAR0, 0);
520 	CSR_WRITE_4(sc, RE_MAR4, 0);
521 
522 	/* now program new ones */
523 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
524 		if (ifma->ifma_addr->sa_family != AF_LINK)
525 			continue;
526 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
527 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
528 		if (h < 32)
529 			hashes[0] |= (1 << h);
530 		else
531 			hashes[1] |= (1 << (h - 32));
532 		mcnt++;
533 	}
534 
535 	if (mcnt)
536 		rxfilt |= RE_RXCFG_RX_MULTI;
537 	else
538 		rxfilt &= ~RE_RXCFG_RX_MULTI;
539 
540 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
541 	CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
542 	CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
543 }
544 
545 static void
546 re_reset(struct re_softc *sc)
547 {
548 	int i;
549 
550 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
551 
552 	for (i = 0; i < RE_TIMEOUT; i++) {
553 		DELAY(10);
554 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
555 			break;
556 	}
557 	if (i == RE_TIMEOUT)
558 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
559 
560 	CSR_WRITE_1(sc, 0x82, 1);
561 }
562 
563 /*
564  * The following routine is designed to test for a defect on some
565  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
566  * lines connected to the bus, however for a 32-bit only card, they
567  * should be pulled high. The result of this defect is that the
568  * NIC will not work right if you plug it into a 64-bit slot: DMA
569  * operations will be done with 64-bit transfers, which will fail
570  * because the 64-bit data lines aren't connected.
571  *
572  * There's no way to work around this (short of talking a soldering
573  * iron to the board), however we can detect it. The method we use
574  * here is to put the NIC into digital loopback mode, set the receiver
575  * to promiscuous mode, and then try to send a frame. We then compare
576  * the frame data we sent to what was received. If the data matches,
577  * then the NIC is working correctly, otherwise we know the user has
578  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
579  * slot. In the latter case, there's no way the NIC can work correctly,
580  * so we print out a message on the console and abort the device attach.
581  */
582 
583 static int
584 re_diag(struct re_softc *sc)
585 {
586 	struct ifnet *ifp = &sc->arpcom.ac_if;
587 	struct mbuf *m0;
588 	struct ether_header *eh;
589 	struct re_desc *cur_rx;
590 	uint16_t status;
591 	uint32_t rxstat;
592 	int total_len, i, error = 0;
593 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
594 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
595 
596 	/* Allocate a single mbuf */
597 
598 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
599 	if (m0 == NULL)
600 		return(ENOBUFS);
601 
602 	/*
603 	 * Initialize the NIC in test mode. This sets the chip up
604 	 * so that it can send and receive frames, but performs the
605 	 * following special functions:
606 	 * - Puts receiver in promiscuous mode
607 	 * - Enables digital loopback mode
608 	 * - Leaves interrupts turned off
609 	 */
610 
611 	ifp->if_flags |= IFF_PROMISC;
612 	sc->re_testmode = 1;
613 	re_init(sc);
614 	re_stop(sc);
615 	DELAY(100000);
616 	re_init(sc);
617 
618 	/* Put some data in the mbuf */
619 
620 	eh = mtod(m0, struct ether_header *);
621 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
622 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
623 	eh->ether_type = htons(ETHERTYPE_IP);
624 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
625 
626 	/*
627 	 * Queue the packet, start transmission.
628 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
629 	 */
630 
631 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
632 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
633 	m0 = NULL;
634 
635 	/* Wait for it to propagate through the chip */
636 
637 	DELAY(100000);
638 	for (i = 0; i < RE_TIMEOUT; i++) {
639 		status = CSR_READ_2(sc, RE_ISR);
640 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
641 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
642 			break;
643 		DELAY(10);
644 	}
645 
646 	if (i == RE_TIMEOUT) {
647 		if_printf(ifp, "diagnostic failed to receive packet "
648 			  "in loopback mode\n");
649 		error = EIO;
650 		goto done;
651 	}
652 
653 	/*
654 	 * The packet should have been dumped into the first
655 	 * entry in the RX DMA ring. Grab it from there.
656 	 */
657 
658 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
659 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
660 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
661 			BUS_DMASYNC_POSTWRITE);
662 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
663 
664 	m0 = sc->re_ldata.re_rx_mbuf[0];
665 	sc->re_ldata.re_rx_mbuf[0] = NULL;
666 	eh = mtod(m0, struct ether_header *);
667 
668 	cur_rx = &sc->re_ldata.re_rx_list[0];
669 	total_len = RE_RXBYTES(cur_rx);
670 	rxstat = le32toh(cur_rx->re_cmdstat);
671 
672 	if (total_len != ETHER_MIN_LEN) {
673 		if_printf(ifp, "diagnostic failed, received short packet\n");
674 		error = EIO;
675 		goto done;
676 	}
677 
678 	/* Test that the received packet data matches what we sent. */
679 
680 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
681 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
682 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
683 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
684 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
685 		    dst, ":", src, ":", ETHERTYPE_IP);
686 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
687 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
688 		    ntohs(eh->ether_type));
689 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
690 		    "into a 64-bit PCI slot.\n");
691 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
692 		    "for proper operation.\n");
693 		if_printf(ifp, "Read the re(4) man page for more details.\n");
694 		error = EIO;
695 	}
696 
697 done:
698 	/* Turn interface off, release resources */
699 
700 	sc->re_testmode = 0;
701 	ifp->if_flags &= ~IFF_PROMISC;
702 	re_stop(sc);
703 	if (m0 != NULL)
704 		m_freem(m0);
705 
706 	return (error);
707 }
708 
709 /*
710  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
711  * IDs against our list and return a device name if we find a match.
712  */
713 static int
714 re_probe(device_t dev)
715 {
716 	struct re_type *t;
717 	struct re_softc *sc;
718 	int rid;
719 	uint32_t hwrev;
720 	uint16_t vendor, product;
721 
722 	t = re_devs;
723 
724 	vendor = pci_get_vendor(dev);
725 	product = pci_get_device(dev);
726 
727 	for (t = re_devs; t->re_name != NULL; t++) {
728 		if (product == t->re_did && vendor == t->re_vid)
729 			break;
730 	}
731 
732 	/*
733 	 * Check if we found a RealTek device.
734 	 */
735 	if (t->re_name == NULL)
736 		return(ENXIO);
737 
738 	/*
739 	 * Temporarily map the I/O space so we can read the chip ID register.
740 	 */
741 	sc = malloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
742 	rid = RE_PCI_LOIO;
743 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
744 					    RF_ACTIVE);
745 	if (sc->re_res == NULL) {
746 		device_printf(dev, "couldn't map ports/memory\n");
747 		free(sc, M_TEMP);
748 		return(ENXIO);
749 	}
750 
751 	sc->re_btag = rman_get_bustag(sc->re_res);
752 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
753 
754 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
755 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
756 	free(sc, M_TEMP);
757 
758 	/*
759 	 * and continue matching for the specific chip...
760 	 */
761 	for (; t->re_name != NULL; t++) {
762 		if (product == t->re_did && vendor == t->re_vid &&
763 		    t->re_basetype == hwrev) {
764 			device_set_desc(dev, t->re_name);
765 			return(0);
766 		}
767 	}
768 	return(ENXIO);
769 }
770 
771 /*
772  * This routine takes the segment list provided as the result of
773  * a bus_dma_map_load() operation and assigns the addresses/lengths
774  * to RealTek DMA descriptors. This can be called either by the RX
775  * code or the TX code. In the RX case, we'll probably wind up mapping
776  * at most one segment. For the TX case, there could be any number of
777  * segments since TX packets may span multiple mbufs. In either case,
778  * if the number of segments is larger than the re_maxsegs limit
779  * specified by the caller, we abort the mapping operation. Sadly,
780  * whoever designed the buffer mapping API did not provide a way to
781  * return an error from here, so we have to fake it a bit.
782  */
783 
784 static void
785 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
786 		bus_size_t mapsize, int error)
787 {
788 	struct re_dmaload_arg *ctx;
789 	struct re_desc *d = NULL;
790 	int i = 0, idx;
791 	uint32_t cmdstat;
792 
793 	if (error)
794 		return;
795 
796 	ctx = arg;
797 
798 	/* Signal error to caller if there's too many segments */
799 	if (nseg > ctx->re_maxsegs) {
800 		ctx->re_maxsegs = 0;
801 		return;
802 	}
803 
804 	/*
805 	 * Map the segment array into descriptors. Note that we set the
806 	 * start-of-frame and end-of-frame markers for either TX or RX, but
807 	 * they really only have meaning in the TX case. (In the RX case,
808 	 * it's the chip that tells us where packets begin and end.)
809 	 * We also keep track of the end of the ring and set the
810 	 * end-of-ring bits as needed, and we set the ownership bits
811 	 * in all except the very first descriptor. (The caller will
812 	 * set this descriptor later when it start transmission or
813 	 * reception.)
814 	 */
815 	idx = ctx->re_idx;
816 	for (;;) {
817 		d = &ctx->re_ring[idx];
818 		if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
819 			ctx->re_maxsegs = 0;
820 			return;
821 		}
822 		cmdstat = segs[i].ds_len;
823 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
824 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
825 		if (i == 0)
826 			cmdstat |= RE_TDESC_CMD_SOF;
827 		else
828 			cmdstat |= RE_TDESC_CMD_OWN;
829 		if (idx == (RE_RX_DESC_CNT - 1))
830 			cmdstat |= RE_TDESC_CMD_EOR;
831 		d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
832 		i++;
833 		if (i == nseg)
834 			break;
835 		RE_DESC_INC(idx);
836 	}
837 
838 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
839 	ctx->re_maxsegs = nseg;
840 	ctx->re_idx = idx;
841 }
842 
843 /*
844  * Map a single buffer address.
845  */
846 
847 static void
848 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
849 {
850 	uint32_t *addr;
851 
852 	if (error)
853 		return;
854 
855 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
856 	addr = arg;
857 	*addr = segs->ds_addr;
858 }
859 
860 static int
861 re_allocmem(device_t dev, struct re_softc *sc)
862 {
863 	int error, i, nseg;
864 
865 	/*
866 	 * Allocate map for RX mbufs.
867 	 */
868 	nseg = 32;
869 	error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
870 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
871 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
872 	    &sc->re_ldata.re_mtag);
873 	if (error) {
874 		device_printf(dev, "could not allocate dma tag\n");
875 		return(error);
876 	}
877 
878 	/*
879 	 * Allocate map for TX descriptor list.
880 	 */
881 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
882 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
883             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
884 	    &sc->re_ldata.re_tx_list_tag);
885 	if (error) {
886 		device_printf(dev, "could not allocate dma tag\n");
887 		return(error);
888 	}
889 
890 	/* Allocate DMA'able memory for the TX ring */
891 
892         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
893 	    (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
894             &sc->re_ldata.re_tx_list_map);
895         if (error) {
896 		device_printf(dev, "could not allocate TX ring\n");
897                 return(error);
898 	}
899 
900 	/* Load the map for the TX ring. */
901 
902 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
903 	     sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
904 	     RE_TX_LIST_SZ, re_dma_map_addr,
905 	     &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
906 	if (error) {
907 		device_printf(dev, "could not get addres of TX ring\n");
908 		return(error);
909 	}
910 
911 	/* Create DMA maps for TX buffers */
912 
913 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
914 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
915 			    &sc->re_ldata.re_tx_dmamap[i]);
916 		if (error) {
917 			device_printf(dev, "can't create DMA map for TX\n");
918 			return(error);
919 		}
920 	}
921 
922 	/*
923 	 * Allocate map for RX descriptor list.
924 	 */
925 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
926 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
927             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
928 	    &sc->re_ldata.re_rx_list_tag);
929 	if (error) {
930 		device_printf(dev, "could not allocate dma tag\n");
931 		return(error);
932 	}
933 
934 	/* Allocate DMA'able memory for the RX ring */
935 
936         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
937 	    (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
938             &sc->re_ldata.re_rx_list_map);
939         if (error) {
940 		device_printf(dev, "could not allocate RX ring\n");
941                 return(error);
942 	}
943 
944 	/* Load the map for the RX ring. */
945 
946 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
947 	     sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
948 	     RE_TX_LIST_SZ, re_dma_map_addr,
949 	     &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
950 	if (error) {
951 		device_printf(dev, "could not get address of RX ring\n");
952 		return(error);
953 	}
954 
955 	/* Create DMA maps for RX buffers */
956 
957 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
958 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
959 			    &sc->re_ldata.re_rx_dmamap[i]);
960 		if (error) {
961 			device_printf(dev, "can't create DMA map for RX\n");
962 			return(ENOMEM);
963 		}
964 	}
965 
966 	return(0);
967 }
968 
969 /*
970  * Attach the interface. Allocate softc structures, do ifmedia
971  * setup and ethernet/BPF attach.
972  */
973 static int
974 re_attach(device_t dev)
975 {
976 	struct re_softc	*sc = device_get_softc(dev);
977 	struct ifnet *ifp;
978 	struct re_hwrev *hw_rev;
979 	uint8_t eaddr[ETHER_ADDR_LEN];
980 	int hwrev;
981 	u_int16_t re_did = 0;
982 	int error = 0, rid, i;
983 
984 	callout_init(&sc->re_timer);
985 
986 #ifndef BURN_BRIDGES
987 	/*
988 	 * Handle power management nonsense.
989 	 */
990 
991 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
992 		uint32_t membase, irq;
993 
994 		/* Save important PCI config data. */
995 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
996 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
997 
998 		/* Reset the power state. */
999 		device_printf(dev, "chip is is in D%d power mode "
1000 		    "-- setting to D0\n", pci_get_powerstate(dev));
1001 
1002 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1003 
1004 		/* Restore PCI config data. */
1005 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1006 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1007 	}
1008 #endif
1009 	/*
1010 	 * Map control/status registers.
1011 	 */
1012 	pci_enable_busmaster(dev);
1013 
1014 	rid = RE_PCI_LOIO;
1015 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1016 					    RF_ACTIVE);
1017 
1018 	if (sc->re_res == NULL) {
1019 		device_printf(dev, "couldn't map ports/memory\n");
1020 		error = ENXIO;
1021 		goto fail;
1022 	}
1023 
1024 	sc->re_btag = rman_get_bustag(sc->re_res);
1025 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1026 
1027 	/* Allocate interrupt */
1028 	rid = 0;
1029 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1030 					    RF_SHAREABLE | RF_ACTIVE);
1031 
1032 	if (sc->re_irq == NULL) {
1033 		device_printf(dev, "couldn't map interrupt\n");
1034 		error = ENXIO;
1035 		goto fail;
1036 	}
1037 
1038 	/* Reset the adapter. */
1039 	re_reset(sc);
1040 
1041 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1042 	for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1043 		if (hw_rev->re_rev == hwrev) {
1044 			sc->re_type = hw_rev->re_type;
1045 			break;
1046 		}
1047 	}
1048 
1049 	if (sc->re_type == RE_8169) {
1050 		/* Set RX length mask */
1051 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1052 
1053 		/* Force station address autoload from the EEPROM */
1054 		CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_AUTOLOAD);
1055 		for (i = 0; i < RE_TIMEOUT; i++) {
1056 			if ((CSR_READ_1(sc, RE_EECMD) & RE_EEMODE_AUTOLOAD) == 0)
1057 				break;
1058 			DELAY(100);
1059 		}
1060 		if (i == RE_TIMEOUT)
1061 			device_printf(dev, "eeprom autoload timed out\n");
1062 
1063 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1064 			eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
1065 	} else {
1066 		uint16_t as[3];
1067 
1068 		/* Set RX length mask */
1069 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1070 
1071 		sc->re_eecmd_read = RE_EECMD_READ_6BIT;
1072 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1073 		if (re_did != 0x8129)
1074 			sc->re_eecmd_read = RE_EECMD_READ_8BIT;
1075 
1076 		/*
1077 		 * Get station address from the EEPROM.
1078 		 */
1079 		re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3, 0);
1080 		for (i = 0; i < 3; i++) {
1081 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1082 			eaddr[(i * 2) + 1] = as[i] >> 8;
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Allocate the parent bus DMA tag appropriate for PCI.
1088 	 */
1089 #define RE_NSEG_NEW 32
1090 	error = bus_dma_tag_create(NULL,	/* parent */
1091 			1, 0,			/* alignment, boundary */
1092 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1093 			BUS_SPACE_MAXADDR,	/* highaddr */
1094 			NULL, NULL,		/* filter, filterarg */
1095 			MAXBSIZE, RE_NSEG_NEW,	/* maxsize, nsegments */
1096 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1097 			BUS_DMA_ALLOCNOW,	/* flags */
1098 			&sc->re_parent_tag);
1099 	if (error)
1100 		goto fail;
1101 
1102 	error = re_allocmem(dev, sc);
1103 
1104 	if (error)
1105 		goto fail;
1106 
1107 	/* Do MII setup */
1108 	if (mii_phy_probe(dev, &sc->re_miibus,
1109 	    re_ifmedia_upd, re_ifmedia_sts)) {
1110 		device_printf(dev, "MII without any phy!\n");
1111 		error = ENXIO;
1112 		goto fail;
1113 	}
1114 
1115 	ifp = &sc->arpcom.ac_if;
1116 	ifp->if_softc = sc;
1117 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1118 	ifp->if_mtu = ETHERMTU;
1119 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1120 	ifp->if_ioctl = re_ioctl;
1121 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1122 	ifp->if_start = re_start;
1123 	ifp->if_hwassist = RE_CSUM_FEATURES;
1124 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1125 #ifdef DEVICE_POLLING
1126 	ifp->if_capabilities |= IFCAP_POLLING;
1127 #endif
1128 	ifp->if_watchdog = re_watchdog;
1129 	ifp->if_init = re_init;
1130 	if (sc->re_type == RE_8169)
1131 		ifp->if_baudrate = 1000000000;
1132 	else
1133 		ifp->if_baudrate = 100000000;
1134 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
1135 	ifp->if_capenable = ifp->if_capabilities;
1136 
1137 	/*
1138 	 * Call MI attach routine.
1139 	 */
1140 	ether_ifattach(ifp, eaddr);
1141 
1142 	/* Perform hardware diagnostic. */
1143 	error = re_diag(sc);
1144 
1145 	if (error) {
1146 		device_printf(dev, "hardware diagnostic failure\n");
1147 		ether_ifdetach(ifp);
1148 		goto fail;
1149 	}
1150 
1151 	/* Hook interrupt last to avoid having to lock softc */
1152 	error = bus_setup_intr(dev, sc->re_irq, INTR_TYPE_NET, re_intr, sc,
1153 			       &sc->re_intrhand);
1154 
1155 	if (error) {
1156 		device_printf(dev, "couldn't set up irq\n");
1157 		ether_ifdetach(ifp);
1158 		goto fail;
1159 	}
1160 
1161 fail:
1162 	if (error)
1163 		re_detach(dev);
1164 
1165 	return (error);
1166 }
1167 
1168 /*
1169  * Shutdown hardware and free up resources. This can be called any
1170  * time after the mutex has been initialized. It is called in both
1171  * the error case in attach and the normal detach case so it needs
1172  * to be careful about only freeing resources that have actually been
1173  * allocated.
1174  */
1175 static int
1176 re_detach(device_t dev)
1177 {
1178 	struct re_softc *sc = device_get_softc(dev);
1179 	struct ifnet *ifp = &sc->arpcom.ac_if;
1180 	int i, s;
1181 
1182 	s = splimp();
1183 
1184 	/* These should only be active if attach succeeded */
1185 	if (device_is_attached(dev)) {
1186 		re_stop(sc);
1187 		ether_ifdetach(ifp);
1188 	}
1189 	if (sc->re_miibus)
1190 		device_delete_child(dev, sc->re_miibus);
1191 	bus_generic_detach(dev);
1192 
1193 	if (sc->re_intrhand)
1194 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1195 	if (sc->re_irq)
1196 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1197 	if (sc->re_res)
1198 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1199 				     sc->re_res);
1200 
1201 	/* Unload and free the RX DMA ring memory and map */
1202 
1203 	if (sc->re_ldata.re_rx_list_tag) {
1204 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1205 		    sc->re_ldata.re_rx_list_map);
1206 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1207 		    sc->re_ldata.re_rx_list,
1208 		    sc->re_ldata.re_rx_list_map);
1209 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1210 	}
1211 
1212 	/* Unload and free the TX DMA ring memory and map */
1213 
1214 	if (sc->re_ldata.re_tx_list_tag) {
1215 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1216 		    sc->re_ldata.re_tx_list_map);
1217 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1218 		    sc->re_ldata.re_tx_list,
1219 		    sc->re_ldata.re_tx_list_map);
1220 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1221 	}
1222 
1223 	/* Destroy all the RX and TX buffer maps */
1224 
1225 	if (sc->re_ldata.re_mtag) {
1226 		for (i = 0; i < RE_TX_DESC_CNT; i++)
1227 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1228 			    sc->re_ldata.re_tx_dmamap[i]);
1229 		for (i = 0; i < RE_RX_DESC_CNT; i++)
1230 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1231 			    sc->re_ldata.re_rx_dmamap[i]);
1232 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1233 	}
1234 
1235 	/* Unload and free the stats buffer and map */
1236 
1237 	if (sc->re_ldata.re_stag) {
1238 		bus_dmamap_unload(sc->re_ldata.re_stag,
1239 		    sc->re_ldata.re_rx_list_map);
1240 		bus_dmamem_free(sc->re_ldata.re_stag,
1241 		    sc->re_ldata.re_stats,
1242 		    sc->re_ldata.re_smap);
1243 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1244 	}
1245 
1246 	if (sc->re_parent_tag)
1247 		bus_dma_tag_destroy(sc->re_parent_tag);
1248 
1249 	splx(s);
1250 
1251 	return(0);
1252 }
1253 
1254 static int
1255 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1256 {
1257 	struct re_dmaload_arg arg;
1258 	struct mbuf *n = NULL;
1259 	int error;
1260 
1261 	if (m == NULL) {
1262 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1263 		if (n == NULL)
1264 			return(ENOBUFS);
1265 		m = n;
1266 	} else
1267 		m->m_data = m->m_ext.ext_buf;
1268 
1269 	/*
1270 	 * Initialize mbuf length fields and fixup
1271 	 * alignment so that the frame payload is
1272 	 * longword aligned.
1273 	 */
1274 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1275 	m_adj(m, ETHER_ALIGN);
1276 
1277 	arg.sc = sc;
1278 	arg.re_idx = idx;
1279 	arg.re_maxsegs = 1;
1280 	arg.re_flags = 0;
1281 	arg.re_ring = sc->re_ldata.re_rx_list;
1282 
1283         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1284 	    sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1285 	    &arg, BUS_DMA_NOWAIT);
1286 	if (error || arg.re_maxsegs != 1) {
1287 		if (n != NULL)
1288 			m_freem(n);
1289 		return (ENOMEM);
1290 	}
1291 
1292 	sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1293 	sc->re_ldata.re_rx_mbuf[idx] = m;
1294 
1295         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1296 		        BUS_DMASYNC_PREREAD);
1297 
1298 	return(0);
1299 }
1300 
1301 static int
1302 re_tx_list_init(struct re_softc *sc)
1303 {
1304 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1305 	bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1306 
1307 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1308 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1309 	sc->re_ldata.re_tx_prodidx = 0;
1310 	sc->re_ldata.re_tx_considx = 0;
1311 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1312 
1313 	return(0);
1314 }
1315 
1316 static int
1317 re_rx_list_init(struct re_softc *sc)
1318 {
1319 	int i, error;
1320 
1321 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1322 	bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1323 
1324 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1325 		error = re_newbuf(sc, i, NULL);
1326 		if (error)
1327 			return(error);
1328 	}
1329 
1330 	/* Flush the RX descriptors */
1331 
1332 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1333 	    sc->re_ldata.re_rx_list_map,
1334 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1335 
1336 	sc->re_ldata.re_rx_prodidx = 0;
1337 	sc->re_head = sc->re_tail = NULL;
1338 
1339 	return(0);
1340 }
1341 
1342 /*
1343  * RX handler for C+ and 8169. For the gigE chips, we support
1344  * the reception of jumbo frames that have been fragmented
1345  * across multiple 2K mbuf cluster buffers.
1346  */
1347 static void
1348 re_rxeof(struct re_softc *sc)
1349 {
1350 	struct ifnet *ifp = &sc->arpcom.ac_if;
1351 	struct mbuf *m;
1352 	struct re_desc 	*cur_rx;
1353 	uint32_t rxstat, rxvlan;
1354 	int i, total_len;
1355 
1356 	/* Invalidate the descriptor memory */
1357 
1358 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1359 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1360 
1361 	for (i = sc->re_ldata.re_rx_prodidx;
1362 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1363 		cur_rx = &sc->re_ldata.re_rx_list[i];
1364 		m = sc->re_ldata.re_rx_mbuf[i];
1365 		total_len = RE_RXBYTES(cur_rx);
1366 		rxstat = le32toh(cur_rx->re_cmdstat);
1367 		rxvlan = le32toh(cur_rx->re_vlanctl);
1368 
1369 		/* Invalidate the RX mbuf and unload its map */
1370 
1371 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1372 				sc->re_ldata.re_rx_dmamap[i],
1373 				BUS_DMASYNC_POSTWRITE);
1374 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1375 				  sc->re_ldata.re_rx_dmamap[i]);
1376 
1377 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1378 			m->m_len = MCLBYTES - ETHER_ALIGN;
1379 			if (sc->re_head == NULL) {
1380 				sc->re_head = sc->re_tail = m;
1381 			} else {
1382 				m->m_flags &= ~M_PKTHDR;
1383 				sc->re_tail->m_next = m;
1384 				sc->re_tail = m;
1385 			}
1386 			re_newbuf(sc, i, NULL);
1387 			continue;
1388 		}
1389 
1390 		/*
1391 		 * NOTE: for the 8139C+, the frame length field
1392 		 * is always 12 bits in size, but for the gigE chips,
1393 		 * it is 13 bits (since the max RX frame length is 16K).
1394 		 * Unfortunately, all 32 bits in the status word
1395 		 * were already used, so to make room for the extra
1396 		 * length bit, RealTek took out the 'frame alignment
1397 		 * error' bit and shifted the other status bits
1398 		 * over one slot. The OWN, EOR, FS and LS bits are
1399 		 * still in the same places. We have already extracted
1400 		 * the frame length and checked the OWN bit, so rather
1401 		 * than using an alternate bit mapping, we shift the
1402 		 * status bits one space to the right so we can evaluate
1403 		 * them using the 8169 status as though it was in the
1404 		 * same format as that of the 8139C+.
1405 		 */
1406 		if (sc->re_type == RE_8169)
1407 			rxstat >>= 1;
1408 
1409 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1410 			ifp->if_ierrors++;
1411 			/*
1412 			 * If this is part of a multi-fragment packet,
1413 			 * discard all the pieces.
1414 			 */
1415 			if (sc->re_head != NULL) {
1416 				m_freem(sc->re_head);
1417 				sc->re_head = sc->re_tail = NULL;
1418 			}
1419 			re_newbuf(sc, i, m);
1420 			continue;
1421 		}
1422 
1423 		/*
1424 		 * If allocating a replacement mbuf fails,
1425 		 * reload the current one.
1426 		 */
1427 
1428 		if (re_newbuf(sc, i, NULL)) {
1429 			ifp->if_ierrors++;
1430 			if (sc->re_head != NULL) {
1431 				m_freem(sc->re_head);
1432 				sc->re_head = sc->re_tail = NULL;
1433 			}
1434 			re_newbuf(sc, i, m);
1435 			continue;
1436 		}
1437 
1438 		if (sc->re_head != NULL) {
1439 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1440 			/*
1441 			 * Special case: if there's 4 bytes or less
1442 			 * in this buffer, the mbuf can be discarded:
1443 			 * the last 4 bytes is the CRC, which we don't
1444 			 * care about anyway.
1445 			 */
1446 			if (m->m_len <= ETHER_CRC_LEN) {
1447 				sc->re_tail->m_len -=
1448 				    (ETHER_CRC_LEN - m->m_len);
1449 				m_freem(m);
1450 			} else {
1451 				m->m_len -= ETHER_CRC_LEN;
1452 				m->m_flags &= ~M_PKTHDR;
1453 				sc->re_tail->m_next = m;
1454 			}
1455 			m = sc->re_head;
1456 			sc->re_head = sc->re_tail = NULL;
1457 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1458 		} else
1459 			m->m_pkthdr.len = m->m_len =
1460 			    (total_len - ETHER_CRC_LEN);
1461 
1462 		ifp->if_ipackets++;
1463 		m->m_pkthdr.rcvif = ifp;
1464 
1465 		/* Do RX checksumming if enabled */
1466 
1467 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1468 
1469 			/* Check IP header checksum */
1470 			if (rxstat & RE_RDESC_STAT_PROTOID)
1471 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1472 			if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1473 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1474 
1475 			/* Check TCP/UDP checksum */
1476 			if ((RE_TCPPKT(rxstat) &&
1477 			    (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1478 			    (RE_UDPPKT(rxstat) &&
1479 			    (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1480 				m->m_pkthdr.csum_flags |=
1481 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1482 				m->m_pkthdr.csum_data = 0xffff;
1483 			}
1484 		}
1485 
1486 		if (rxvlan & RE_RDESC_VLANCTL_TAG)
1487 			VLAN_INPUT_TAG(m,
1488 			   be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1489 		else
1490 			(*ifp->if_input)(ifp, m);
1491 	}
1492 
1493 	/* Flush the RX DMA ring */
1494 
1495 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1496 			sc->re_ldata.re_rx_list_map,
1497 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1498 
1499 	sc->re_ldata.re_rx_prodidx = i;
1500 }
1501 
1502 static void
1503 re_txeof(struct re_softc *sc)
1504 {
1505 	struct ifnet *ifp = &sc->arpcom.ac_if;
1506 	uint32_t txstat;
1507 	int idx;
1508 
1509 	/* Invalidate the TX descriptor list */
1510 
1511 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1512 	    sc->re_ldata.re_tx_list_map,
1513 	    BUS_DMASYNC_POSTREAD);
1514 
1515 	for (idx = sc->re_ldata.re_tx_considx;
1516 	     idx != sc->re_ldata.re_tx_prodidx; RE_DESC_INC(idx)) {
1517 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1518 		if (txstat & RE_TDESC_CMD_OWN)
1519 			break;
1520 
1521 		/*
1522 		 * We only stash mbufs in the last descriptor
1523 		 * in a fragment chain, which also happens to
1524 		 * be the only place where the TX status bits
1525 		 * are valid.
1526 		 */
1527 		if (txstat & RE_TDESC_CMD_EOF) {
1528 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1529 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
1530 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1531 			    sc->re_ldata.re_tx_dmamap[idx]);
1532 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1533 			    RE_TDESC_STAT_COLCNT))
1534 				ifp->if_collisions++;
1535 			if (txstat & RE_TDESC_STAT_TXERRSUM)
1536 				ifp->if_oerrors++;
1537 			else
1538 				ifp->if_opackets++;
1539 		}
1540 		sc->re_ldata.re_tx_free++;
1541 	}
1542 
1543 	/* No changes made to the TX ring, so no flush needed */
1544 	if (idx != sc->re_ldata.re_tx_considx) {
1545 		sc->re_ldata.re_tx_considx = idx;
1546 		ifp->if_flags &= ~IFF_OACTIVE;
1547 		ifp->if_timer = 0;
1548 	}
1549 
1550 	/*
1551 	 * If not all descriptors have been released reaped yet,
1552 	 * reload the timer so that we will eventually get another
1553 	 * interrupt that will cause us to re-enter this routine.
1554 	 * This is done in case the transmitter has gone idle.
1555 	 */
1556 	if (sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
1557                 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1558 }
1559 
1560 static void
1561 re_tick(void *xsc)
1562 {
1563 	struct re_softc *sc = xsc;
1564 	struct mii_data *mii;
1565 	int s;
1566 
1567 	s = splimp();
1568 
1569 	mii = device_get_softc(sc->re_miibus);
1570 	mii_tick(mii);
1571 
1572 	callout_reset(&sc->re_timer, hz, re_tick, sc);
1573 	splx(s);
1574 }
1575 
1576 #ifdef DEVICE_POLLING
1577 static void
1578 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1579 {
1580 	struct re_softc *sc = ifp->if_softc;
1581 
1582 	if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1583 		ether_poll_deregister(ifp);
1584 		cmd = POLL_DEREGISTER;
1585 	}
1586 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1587 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1588 		return;
1589 	}
1590 
1591 	sc->rxcycles = count;
1592 	re_rxeof(sc);
1593 	re_txeof(sc);
1594 
1595 	if (ifp->if_snd.ifq_head != NULL)
1596 		(*ifp->if_start)(ifp);
1597 
1598 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1599 		uint16_t       status;
1600 
1601 		status = CSR_READ_2(sc, RE_ISR);
1602 		if (status == 0xffff)
1603 			return;
1604 		if (status)
1605 			CSR_WRITE_2(sc, RE_ISR, status);
1606 
1607 		/*
1608 		 * XXX check behaviour on receiver stalls.
1609 		 */
1610 
1611 		if (status & RE_ISR_SYSTEM_ERR) {
1612 			re_reset(sc);
1613 			re_init(sc);
1614 		}
1615 	}
1616 }
1617 #endif /* DEVICE_POLLING */
1618 
1619 static void
1620 re_intr(void *arg)
1621 {
1622 	struct re_softc	*sc = arg;
1623 	struct ifnet *ifp = &sc->arpcom.ac_if;
1624 	uint16_t status;
1625 	int s;
1626 
1627 	if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1628 		return;
1629 
1630 #ifdef DEVICE_POLLING
1631 	if  (ifp->if_flags & IFF_POLLING)
1632 		return;
1633 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1634 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1635 		CSR_WRITE_2(sc, RE_IMR, 0x0000);
1636 		re_poll(ifp, 0, 1);
1637 		return;
1638 	}
1639 #endif /* DEVICE_POLLING */
1640 
1641 	s = splimp();
1642 
1643 	for (;;) {
1644 		status = CSR_READ_2(sc, RE_ISR);
1645 		/* If the card has gone away the read returns 0xffff. */
1646 		if (status == 0xffff)
1647 			break;
1648 		if (status)
1649 			CSR_WRITE_2(sc, RE_ISR, status);
1650 
1651 		if ((status & RE_INTRS_CPLUS) == 0)
1652 			break;
1653 
1654 		if (status & RE_ISR_RX_OK)
1655 			re_rxeof(sc);
1656 
1657 		if (status & RE_ISR_RX_ERR)
1658 			re_rxeof(sc);
1659 
1660 		if ((status & RE_ISR_TIMEOUT_EXPIRED) ||
1661 		    (status & RE_ISR_TX_ERR) ||
1662 		    (status & RE_ISR_TX_DESC_UNAVAIL))
1663 			re_txeof(sc);
1664 
1665 		if (status & RE_ISR_SYSTEM_ERR) {
1666 			re_reset(sc);
1667 			re_init(sc);
1668 		}
1669 
1670 		if (status & RE_ISR_LINKCHG)
1671 			re_tick(sc);
1672 	}
1673 
1674 	if (ifp->if_snd.ifq_head != NULL)
1675 		(*ifp->if_start)(ifp);
1676 
1677 	splx(s);
1678 }
1679 
1680 static int
1681 re_encap(sc, m_head, idx)
1682 	struct re_softc		*sc;
1683 	struct mbuf		*m_head;
1684 	int			*idx;
1685 {
1686 	struct ifnet *ifp = &sc->arpcom.ac_if;
1687 	struct mbuf		*m_new = NULL;
1688 	struct re_dmaload_arg	arg;
1689 	bus_dmamap_t		map;
1690 	int			error;
1691 
1692 	if (sc->re_ldata.re_tx_free <= 4)
1693 		return(EFBIG);
1694 
1695 	/*
1696 	 * Set up checksum offload. Note: checksum offload bits must
1697 	 * appear in all descriptors of a multi-descriptor transmit
1698 	 * attempt. (This is according to testing done with an 8169
1699 	 * chip. I'm not sure if this is a requirement or a bug.)
1700 	 */
1701 
1702 	arg.re_flags = 0;
1703 
1704 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1705 		arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1706 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1707 		arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1708 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1709 		arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1710 
1711 	arg.sc = sc;
1712 	arg.re_idx = *idx;
1713 	arg.re_maxsegs = sc->re_ldata.re_tx_free;
1714 	if (arg.re_maxsegs > 4)
1715 		arg.re_maxsegs -= 4;
1716 	arg.re_ring = sc->re_ldata.re_tx_list;
1717 
1718 	map = sc->re_ldata.re_tx_dmamap[*idx];
1719 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1720 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1721 
1722 	if (error && error != EFBIG) {
1723 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
1724 		return(ENOBUFS);
1725 	}
1726 
1727 	/* Too many segments to map, coalesce into a single mbuf */
1728 
1729 	if (error || arg.re_maxsegs == 0) {
1730 		m_new = m_defrag(m_head, MB_DONTWAIT);
1731 		if (m_new == NULL)
1732 			return(1);
1733 		else
1734 			m_head = m_new;
1735 
1736 		arg.sc = sc;
1737 		arg.re_idx = *idx;
1738 		arg.re_maxsegs = sc->re_ldata.re_tx_free;
1739 		arg.re_ring = sc->re_ldata.re_tx_list;
1740 
1741 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1742 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1743 		if (error) {
1744 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
1745 			return(EFBIG);
1746 		}
1747 	}
1748 
1749 	/*
1750 	 * Insure that the map for this transmission
1751 	 * is placed at the array index of the last descriptor
1752 	 * in this chain.
1753 	 */
1754 	sc->re_ldata.re_tx_dmamap[*idx] =
1755 	    sc->re_ldata.re_tx_dmamap[arg.re_idx];
1756 	sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1757 
1758 	sc->re_ldata.re_tx_mbuf[arg.re_idx] = m_head;
1759 	sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1760 
1761 	/*
1762 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1763 	 * appear in the first descriptor of a multi-descriptor
1764 	 * transmission attempt.
1765 	 */
1766 
1767 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1768 	    m_head->m_pkthdr.rcvif != NULL &&
1769 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1770 	    	struct ifvlan *ifv;
1771 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1772 		if (ifv != NULL)
1773 			sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1774 			    htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1775 	}
1776 
1777 	/* Transfer ownership of packet to the chip. */
1778 
1779 	sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1780 	    htole32(RE_TDESC_CMD_OWN);
1781 	if (*idx != arg.re_idx)
1782 		sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1783 		    htole32(RE_TDESC_CMD_OWN);
1784 
1785 	RE_DESC_INC(arg.re_idx);
1786 	*idx = arg.re_idx;
1787 
1788 	return(0);
1789 }
1790 
1791 /*
1792  * Main transmit routine for C+ and gigE NICs.
1793  */
1794 
1795 static void
1796 re_start(struct ifnet *ifp)
1797 {
1798 	struct re_softc	*sc = ifp->if_softc;
1799 	struct mbuf *m_head = NULL;
1800 	int idx, s;
1801 
1802 	s = splimp();
1803 
1804 	idx = sc->re_ldata.re_tx_prodidx;
1805 
1806 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1807 		IF_DEQUEUE(&ifp->if_snd, m_head);
1808 		if (m_head == NULL)
1809 			break;
1810 
1811 		if (re_encap(sc, m_head, &idx)) {
1812 			IF_PREPEND(&ifp->if_snd, m_head);
1813 			ifp->if_flags |= IFF_OACTIVE;
1814 			break;
1815 		}
1816 
1817 		/*
1818 		 * If there's a BPF listener, bounce a copy of this frame
1819 		 * to him.
1820 		 */
1821 		BPF_MTAP(ifp, m_head);
1822 	}
1823 
1824 	/* Flush the TX descriptors */
1825 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1826 			sc->re_ldata.re_tx_list_map,
1827 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1828 
1829 	sc->re_ldata.re_tx_prodidx = idx;
1830 
1831 	/*
1832 	 * RealTek put the TX poll request register in a different
1833 	 * location on the 8169 gigE chip. I don't know why.
1834 	 */
1835 	if (sc->re_type == RE_8169)
1836 		CSR_WRITE_2(sc, RE_GTXSTART, RE_TXSTART_START);
1837 	else
1838 		CSR_WRITE_2(sc, RE_TXSTART, RE_TXSTART_START);
1839 
1840 	/*
1841 	 * Use the countdown timer for interrupt moderation.
1842 	 * 'TX done' interrupts are disabled. Instead, we reset the
1843 	 * countdown timer, which will begin counting until it hits
1844 	 * the value in the TIMERINT register, and then trigger an
1845 	 * interrupt. Each time we write to the TIMERCNT register,
1846 	 * the timer count is reset to 0.
1847 	 */
1848 	CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1849 
1850 	splx(s);
1851 
1852 	/*
1853 	 * Set a timeout in case the chip goes out to lunch.
1854 	 */
1855 	ifp->if_timer = 5;
1856 }
1857 
1858 static void
1859 re_init(void *xsc)
1860 {
1861 	struct re_softc *sc = xsc;
1862 	struct ifnet *ifp = &sc->arpcom.ac_if;
1863 	struct mii_data *mii;
1864 	uint32_t rxcfg = 0;
1865 	int s;
1866 
1867 	s = splimp();
1868 	mii = device_get_softc(sc->re_miibus);
1869 
1870 	/*
1871 	 * Cancel pending I/O and free all RX/TX buffers.
1872 	 */
1873 	re_stop(sc);
1874 
1875 	/*
1876 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1877 	 * RX checksum offload. We must configure the C+ register
1878 	 * before all others.
1879 	 */
1880 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
1881 		    RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
1882 		    (ifp->if_capenable & IFCAP_RXCSUM ?
1883 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
1884 
1885 	/*
1886 	 * Init our MAC address.  Even though the chipset
1887 	 * documentation doesn't mention it, we need to enter "Config
1888 	 * register write enable" mode to modify the ID registers.
1889 	 */
1890 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
1891 	CSR_WRITE_STREAM_4(sc, RE_IDR0,
1892 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1893 	CSR_WRITE_STREAM_4(sc, RE_IDR4,
1894 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1895 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
1896 
1897 	/*
1898 	 * For C+ mode, initialize the RX descriptors and mbufs.
1899 	 */
1900 	re_rx_list_init(sc);
1901 	re_tx_list_init(sc);
1902 
1903 	/*
1904 	 * Enable transmit and receive.
1905 	 */
1906 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1907 
1908 	/*
1909 	 * Set the initial TX and RX configuration.
1910 	 */
1911 	if (sc->re_testmode) {
1912 		if (sc->re_type == RE_8169)
1913 			CSR_WRITE_4(sc, RE_TXCFG,
1914 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
1915 		else
1916 			CSR_WRITE_4(sc, RE_TXCFG,
1917 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
1918 	} else
1919 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
1920 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
1921 
1922 	/* Set the individual bit to receive frames for this host only. */
1923 	rxcfg = CSR_READ_4(sc, RE_RXCFG);
1924 	rxcfg |= RE_RXCFG_RX_INDIV;
1925 
1926 	/* If we want promiscuous mode, set the allframes bit. */
1927 	if (ifp->if_flags & IFF_PROMISC) {
1928 		rxcfg |= RE_RXCFG_RX_ALLPHYS;
1929 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1930 	} else {
1931 		rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
1932 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1933 	}
1934 
1935 	/*
1936 	 * Set capture broadcast bit to capture broadcast frames.
1937 	 */
1938 	if (ifp->if_flags & IFF_BROADCAST) {
1939 		rxcfg |= RE_RXCFG_RX_BROAD;
1940 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1941 	} else {
1942 		rxcfg &= ~RE_RXCFG_RX_BROAD;
1943 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1944 	}
1945 
1946 	/*
1947 	 * Program the multicast filter, if necessary.
1948 	 */
1949 	re_setmulti(sc);
1950 
1951 #ifdef DEVICE_POLLING
1952 	/*
1953 	 * Disable interrupts if we are polling.
1954 	 */
1955 	if (ifp->if_flags & IFF_POLLING)
1956 		CSR_WRITE_2(sc, RE_IMR, 0);
1957 	else	/* otherwise ... */
1958 #endif /* DEVICE_POLLING */
1959 	/*
1960 	 * Enable interrupts.
1961 	 */
1962 	if (sc->re_testmode)
1963 		CSR_WRITE_2(sc, RE_IMR, 0);
1964 	else
1965 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1966 
1967 	/* Set initial TX threshold */
1968 	sc->re_txthresh = RE_TX_THRESH_INIT;
1969 
1970 	/* Start RX/TX process. */
1971 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
1972 #ifdef notdef
1973 	/* Enable receiver and transmitter. */
1974 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1975 #endif
1976 	/*
1977 	 * Load the addresses of the RX and TX lists into the chip.
1978 	 */
1979 
1980 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
1981 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
1982 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
1983 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
1984 
1985 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
1986 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
1987 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
1988 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
1989 
1990 	CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
1991 
1992 	/*
1993 	 * Initialize the timer interrupt register so that
1994 	 * a timer interrupt will be generated once the timer
1995 	 * reaches a certain number of ticks. The timer is
1996 	 * reloaded on each transmit. This gives us TX interrupt
1997 	 * moderation, which dramatically improves TX frame rate.
1998 	 */
1999 
2000 	if (sc->re_type == RE_8169)
2001 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2002 	else
2003 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2004 
2005 	/*
2006 	 * For 8169 gigE NICs, set the max allowed RX packet
2007 	 * size so we can receive jumbo frames.
2008 	 */
2009 	if (sc->re_type == RE_8169)
2010 		CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2011 
2012 	if (sc->re_testmode) {
2013 		splx(s);
2014 		return;
2015 	}
2016 
2017 	mii_mediachg(mii);
2018 
2019 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2020 
2021 	ifp->if_flags |= IFF_RUNNING;
2022 	ifp->if_flags &= ~IFF_OACTIVE;
2023 
2024 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2025 	splx(s);
2026 }
2027 
2028 /*
2029  * Set media options.
2030  */
2031 static int
2032 re_ifmedia_upd(struct ifnet *ifp)
2033 {
2034 	struct re_softc *sc = ifp->if_softc;
2035 	struct mii_data *mii;
2036 
2037 	mii = device_get_softc(sc->re_miibus);
2038 	mii_mediachg(mii);
2039 
2040 	return(0);
2041 }
2042 
2043 /*
2044  * Report current media status.
2045  */
2046 static void
2047 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2048 {
2049 	struct re_softc *sc = ifp->if_softc;
2050 	struct mii_data *mii;
2051 
2052 	mii = device_get_softc(sc->re_miibus);
2053 
2054 	mii_pollstat(mii);
2055 	ifmr->ifm_active = mii->mii_media_active;
2056 	ifmr->ifm_status = mii->mii_media_status;
2057 }
2058 
2059 static int
2060 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2061 {
2062 	struct re_softc *sc = ifp->if_softc;
2063 	struct ifreq *ifr = (struct ifreq *) data;
2064 	struct mii_data *mii;
2065 	int error = 0, s;
2066 
2067 	s = splimp();
2068 
2069 	switch(command) {
2070 	case SIOCSIFMTU:
2071 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
2072 			error = EINVAL;
2073 		ifp->if_mtu = ifr->ifr_mtu;
2074 		break;
2075 	case SIOCSIFFLAGS:
2076 		if (ifp->if_flags & IFF_UP)
2077 			re_init(sc);
2078 		else if (ifp->if_flags & IFF_RUNNING)
2079 				re_stop(sc);
2080 		error = 0;
2081 		break;
2082 	case SIOCADDMULTI:
2083 	case SIOCDELMULTI:
2084 		re_setmulti(sc);
2085 		error = 0;
2086 		break;
2087 	case SIOCGIFMEDIA:
2088 	case SIOCSIFMEDIA:
2089 		mii = device_get_softc(sc->re_miibus);
2090 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2091 		break;
2092 	case SIOCSIFCAP:
2093 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2094 		ifp->if_capenable |=
2095 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2096 		if (ifp->if_capenable & IFCAP_TXCSUM)
2097 			ifp->if_hwassist = RE_CSUM_FEATURES;
2098 		else
2099 			ifp->if_hwassist = 0;
2100 		if (ifp->if_flags & IFF_RUNNING)
2101 			re_init(sc);
2102 		break;
2103 	default:
2104 		error = ether_ioctl(ifp, command, data);
2105 		break;
2106 	}
2107 
2108 	splx(s);
2109 
2110 	return(error);
2111 }
2112 
2113 static void
2114 re_watchdog(struct ifnet *ifp)
2115 {
2116 	struct re_softc *sc = ifp->if_softc;
2117 	int s;
2118 
2119 	s = splimp();
2120 	if_printf(ifp, "watchdog timeout\n");
2121 	ifp->if_oerrors++;
2122 
2123 	re_txeof(sc);
2124 	re_rxeof(sc);
2125 
2126 	re_init(sc);
2127 
2128 	splx(s);
2129 }
2130 
2131 /*
2132  * Stop the adapter and free any mbufs allocated to the
2133  * RX and TX lists.
2134  */
2135 static void
2136 re_stop(struct re_softc *sc)
2137 {
2138 	struct ifnet *ifp = &sc->arpcom.ac_if;
2139 	int i, s;
2140 
2141 	s = splimp();
2142 	ifp->if_timer = 0;
2143 	callout_stop(&sc->re_timer);
2144 
2145 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2146 #ifdef DEVICE_POLLING
2147 	ether_poll_deregister(ifp);
2148 #endif /* DEVICE_POLLING */
2149 
2150 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2151 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2152 
2153 	if (sc->re_head != NULL) {
2154 		m_freem(sc->re_head);
2155 		sc->re_head = sc->re_tail = NULL;
2156 	}
2157 
2158 	/* Free the TX list buffers. */
2159 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
2160 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2161 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2162 					  sc->re_ldata.re_tx_dmamap[i]);
2163 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2164 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2165 		}
2166 	}
2167 
2168 	/* Free the RX list buffers. */
2169 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
2170 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2171 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2172 					  sc->re_ldata.re_rx_dmamap[i]);
2173 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2174 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2175 		}
2176 	}
2177 
2178 	splx(s);
2179 }
2180 
2181 /*
2182  * Device suspend routine.  Stop the interface and save some PCI
2183  * settings in case the BIOS doesn't restore them properly on
2184  * resume.
2185  */
2186 static int
2187 re_suspend(device_t dev)
2188 {
2189 #ifndef BURN_BRIDGES
2190 	int i;
2191 #endif
2192 	struct re_softc *sc = device_get_softc(dev);
2193 
2194 	re_stop(sc);
2195 
2196 #ifndef BURN_BRIDGES
2197 	for (i = 0; i < 5; i++)
2198 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2199 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2200 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2201 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2202 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2203 #endif
2204 
2205 	sc->suspended = 1;
2206 
2207 	return (0);
2208 }
2209 
2210 /*
2211  * Device resume routine.  Restore some PCI settings in case the BIOS
2212  * doesn't, re-enable busmastering, and restart the interface if
2213  * appropriate.
2214  */
2215 static int
2216 re_resume(device_t dev)
2217 {
2218 	struct re_softc *sc = device_get_softc(dev);
2219 	struct ifnet *ifp = &sc->arpcom.ac_if;
2220 #ifndef BURN_BRIDGES
2221 	int i;
2222 #endif
2223 
2224 #ifndef BURN_BRIDGES
2225 	/* better way to do this? */
2226 	for (i = 0; i < 5; i++)
2227 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2228 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2229 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2230 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2231 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2232 
2233 	/* reenable busmastering */
2234 	pci_enable_busmaster(dev);
2235 	pci_enable_io(dev, SYS_RES_IOPORT);
2236 #endif
2237 
2238 	/* reinitialize interface if necessary */
2239 	if (ifp->if_flags & IFF_UP)
2240 		re_init(sc);
2241 
2242 	sc->suspended = 0;
2243 
2244 	return (0);
2245 }
2246 
2247 /*
2248  * Stop all chip I/O so that the kernel's probe routines don't
2249  * get confused by errant DMAs when rebooting.
2250  */
2251 static void
2252 re_shutdown(device_t dev)
2253 {
2254 	struct re_softc *sc = device_get_softc(dev);
2255 
2256 	re_stop(sc);
2257 }
2258