xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 39b5d600dedf02a61b8b1213f9fdaaee4b8292e0)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.17 2005/10/24 08:06:15 sephe Exp $
37  */
38 
39 /*
40  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46 
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51  * and the RTL8110S.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *	o Descriptor based DMA mechanism. Each descriptor represents
59  *	  a single packet fragment. Data buffers may be aligned on
60  *	  any byte boundary.
61  *
62  *	o 64-bit DMA
63  *
64  *	o TCP/IP checksum offload for both RX and TX
65  *
66  *	o High and normal priority transmit DMA rings
67  *
68  *	o VLAN tag insertion and extraction
69  *
70  *	o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *	o 1000Mbps mode
82  *
83  *	o Jumbo frames
84  *
85  * 	o GMII and TBI ports/registers for interfacing with copper
86  *	  or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *	o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  *
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7.5K, so the max MTU possible with this
111  * driver is 7500 bytes.
112  */
113 
114 #include "opt_polling.h"
115 
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/module.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/thread2.h>
126 
127 #include <net/if.h>
128 #include <net/ifq_var.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/vlan/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus_pio.h>
139 #include <machine/bus_memio.h>
140 #include <machine/bus.h>
141 #include <machine/resource.h>
142 #include <sys/bus.h>
143 #include <sys/rman.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcireg.h>
149 #include <bus/pci/pcivar.h>
150 
151 /* "controller miibus0" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 #include <dev/netif/re/if_rereg.h>
155 
156 /*
157  * The hardware supports checksumming but, as usual, some chipsets screw it
158  * all up and produce bogus packets, so we disable it by default.
159  */
160 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
161 #define RE_DISABLE_HWCSUM
162 
163 /*
164  * Various supported device vendors/types and their names.
165  */
166 static struct re_type re_devs[] = {
167 	{ RT_VENDORID, RT_DEVICEID_8139, RE_HWREV_8139CPLUS,
168 		"RealTek 8139C+ 10/100BaseTX" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169,
170 		"RealTek 8169 Gigabit Ethernet" },
171 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8169S,
172 		"RealTek 8169S Single-chip Gigabit Ethernet" },
173 	{ RT_VENDORID, RT_DEVICEID_8169, RE_HWREV_8110S,
174 		"RealTek 8110S Single-chip Gigabit Ethernet" },
175 	{ 0, 0, 0, NULL }
176 };
177 
178 static struct re_hwrev re_hwrevs[] = {
179 	{ RE_HWREV_8139CPLUS, RE_8139CPLUS, "C+"},
180 	{ RE_HWREV_8169, RE_8169, "8169"},
181 	{ RE_HWREV_8169S, RE_8169, "8169S"},
182 	{ RE_HWREV_8110S, RE_8169, "8110S"},
183 	{ 0, 0, NULL }
184 };
185 
186 static int	re_probe(device_t);
187 static int	re_attach(device_t);
188 static int	re_detach(device_t);
189 
190 static int	re_encap(struct re_softc *, struct mbuf **, int *, int *);
191 
192 static void	re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
193 static void	re_dma_map_desc(void *, bus_dma_segment_t *, int,
194 				bus_size_t, int);
195 static int	re_allocmem(device_t, struct re_softc *);
196 static int	re_newbuf(struct re_softc *, int, struct mbuf *);
197 static int	re_rx_list_init(struct re_softc *);
198 static int	re_tx_list_init(struct re_softc *);
199 static void	re_rxeof(struct re_softc *);
200 static void	re_txeof(struct re_softc *);
201 static void	re_intr(void *);
202 static void	re_tick(void *);
203 static void	re_start(struct ifnet *);
204 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
205 static void	re_init(void *);
206 static void	re_stop(struct re_softc *);
207 static void	re_watchdog(struct ifnet *);
208 static int	re_suspend(device_t);
209 static int	re_resume(device_t);
210 static void	re_shutdown(device_t);
211 static int	re_ifmedia_upd(struct ifnet *);
212 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
213 
214 static void	re_eeprom_putbyte(struct re_softc *, int);
215 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
216 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int, int);
217 static int	re_gmii_readreg(device_t, int, int);
218 static int	re_gmii_writereg(device_t, int, int, int);
219 
220 static int	re_miibus_readreg(device_t, int, int);
221 static int	re_miibus_writereg(device_t, int, int, int);
222 static void	re_miibus_statchg(device_t);
223 
224 static void	re_setmulti(struct re_softc *);
225 static void	re_reset(struct re_softc *);
226 
227 static int	re_diag(struct re_softc *);
228 #ifdef DEVICE_POLLING
229 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
230 #endif
231 
232 static device_method_t re_methods[] = {
233 	/* Device interface */
234 	DEVMETHOD(device_probe,		re_probe),
235 	DEVMETHOD(device_attach,	re_attach),
236 	DEVMETHOD(device_detach,	re_detach),
237 	DEVMETHOD(device_suspend,	re_suspend),
238 	DEVMETHOD(device_resume,	re_resume),
239 	DEVMETHOD(device_shutdown,	re_shutdown),
240 
241 	/* bus interface */
242 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
243 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
244 
245 	/* MII interface */
246 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
248 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
249 
250 	{ 0, 0 }
251 };
252 
253 static driver_t re_driver = {
254 	"re",
255 	re_methods,
256 	sizeof(struct re_softc)
257 };
258 
259 static devclass_t re_devclass;
260 
261 DECLARE_DUMMY_MODULE(if_re);
262 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
263 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
264 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
265 
266 #define EE_SET(x)	\
267 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
268 
269 #define EE_CLR(x)	\
270 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
271 
272 /*
273  * Send a read command and address to the EEPROM, check for ACK.
274  */
275 static void
276 re_eeprom_putbyte(struct re_softc *sc, int addr)
277 {
278 	int d, i;
279 
280 	d = addr | sc->re_eecmd_read;
281 
282 	/*
283 	 * Feed in each bit and strobe the clock.
284 	 */
285 	for (i = 0x400; i != 0; i >>= 1) {
286 		if (d & i)
287 			EE_SET(RE_EE_DATAIN);
288 		else
289 			EE_CLR(RE_EE_DATAIN);
290 		DELAY(100);
291 		EE_SET(RE_EE_CLK);
292 		DELAY(150);
293 		EE_CLR(RE_EE_CLK);
294 		DELAY(100);
295 	}
296 }
297 
298 /*
299  * Read a word of data stored in the EEPROM at address 'addr.'
300  */
301 static void
302 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
303 {
304 	int i;
305 	uint16_t word = 0;
306 
307 	/* Enter EEPROM access mode. */
308 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
309 
310 	/*
311 	 * Send address of word we want to read.
312 	 */
313 	re_eeprom_putbyte(sc, addr);
314 
315 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_PROGRAM|RE_EE_SEL);
316 
317 	/*
318 	 * Start reading bits from EEPROM.
319 	 */
320 	for (i = 0x8000; i != 0; i >>= 1) {
321 		EE_SET(RE_EE_CLK);
322 		DELAY(100);
323 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
324 			word |= i;
325 		EE_CLR(RE_EE_CLK);
326 		DELAY(100);
327 	}
328 
329 	/* Turn off EEPROM access mode. */
330 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
331 
332 	*dest = word;
333 }
334 
335 /*
336  * Read a sequence of words from the EEPROM.
337  */
338 static void
339 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt, int swap)
340 {
341 	int i;
342 	uint16_t word = 0, *ptr;
343 
344 	for (i = 0; i < cnt; i++) {
345 		re_eeprom_getword(sc, off + i, &word);
346 		ptr = (u_int16_t *)(dest + (i * 2));
347 		if (swap)
348 			*ptr = be16toh(word);
349 		else
350 			*ptr = word;
351 	}
352 }
353 
354 static int
355 re_gmii_readreg(device_t dev, int phy, int reg)
356 {
357 	struct re_softc *sc = device_get_softc(dev);
358 	u_int32_t rval;
359 	int i;
360 
361 	if (phy != 1)
362 		return(0);
363 
364 	/* Let the rgephy driver read the GMEDIASTAT register */
365 
366 	if (reg == RE_GMEDIASTAT)
367 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
368 
369 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
370 	DELAY(1000);
371 
372 	for (i = 0; i < RE_TIMEOUT; i++) {
373 		rval = CSR_READ_4(sc, RE_PHYAR);
374 		if (rval & RE_PHYAR_BUSY)
375 			break;
376 		DELAY(100);
377 	}
378 
379 	if (i == RE_TIMEOUT) {
380 		device_printf(dev, "PHY read failed\n");
381 		return(0);
382 	}
383 
384 	return(rval & RE_PHYAR_PHYDATA);
385 }
386 
387 static int
388 re_gmii_writereg(device_t dev, int phy, int reg, int data)
389 {
390 	struct re_softc *sc = device_get_softc(dev);
391 	uint32_t rval;
392 	int i;
393 
394 	CSR_WRITE_4(sc, RE_PHYAR,
395 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
396 	DELAY(1000);
397 
398 	for (i = 0; i < RE_TIMEOUT; i++) {
399 		rval = CSR_READ_4(sc, RE_PHYAR);
400 		if ((rval & RE_PHYAR_BUSY) == 0)
401 			break;
402 		DELAY(100);
403 	}
404 
405 	if (i == RE_TIMEOUT)
406 		device_printf(dev, "PHY write failed\n");
407 
408 	return(0);
409 }
410 
411 static int
412 re_miibus_readreg(device_t dev, int phy, int reg)
413 {
414 	struct re_softc	*sc = device_get_softc(dev);
415 	uint16_t rval = 0;
416 	uint16_t re8139_reg = 0;
417 
418 	if (sc->re_type == RE_8169) {
419 		rval = re_gmii_readreg(dev, phy, reg);
420 		return(rval);
421 	}
422 
423 	/* Pretend the internal PHY is only at address 0 */
424 	if (phy)
425 		return(0);
426 
427 	switch(reg) {
428 	case MII_BMCR:
429 		re8139_reg = RE_BMCR;
430 		break;
431 	case MII_BMSR:
432 		re8139_reg = RE_BMSR;
433 		break;
434 	case MII_ANAR:
435 		re8139_reg = RE_ANAR;
436 		break;
437 	case MII_ANER:
438 		re8139_reg = RE_ANER;
439 		break;
440 	case MII_ANLPAR:
441 		re8139_reg = RE_LPAR;
442 		break;
443 	case MII_PHYIDR1:
444 	case MII_PHYIDR2:
445 		return(0);
446 	/*
447 	 * Allow the rlphy driver to read the media status
448 	 * register. If we have a link partner which does not
449 	 * support NWAY, this is the register which will tell
450 	 * us the results of parallel detection.
451 	 */
452 	case RE_MEDIASTAT:
453 		return(CSR_READ_1(sc, RE_MEDIASTAT));
454 	default:
455 		device_printf(dev, "bad phy register\n");
456 		return(0);
457 	}
458 	rval = CSR_READ_2(sc, re8139_reg);
459 	return(rval);
460 }
461 
462 static int
463 re_miibus_writereg(device_t dev, int phy, int reg, int data)
464 {
465 	struct re_softc *sc= device_get_softc(dev);
466 	u_int16_t re8139_reg = 0;
467 
468 	if (sc->re_type == RE_8169)
469 		return(re_gmii_writereg(dev, phy, reg, data));
470 
471 	/* Pretend the internal PHY is only at address 0 */
472 	if (phy)
473 		return(0);
474 
475 	switch(reg) {
476 	case MII_BMCR:
477 		re8139_reg = RE_BMCR;
478 		break;
479 	case MII_BMSR:
480 		re8139_reg = RE_BMSR;
481 		break;
482 	case MII_ANAR:
483 		re8139_reg = RE_ANAR;
484 		break;
485 	case MII_ANER:
486 		re8139_reg = RE_ANER;
487 		break;
488 	case MII_ANLPAR:
489 		re8139_reg = RE_LPAR;
490 		break;
491 	case MII_PHYIDR1:
492 	case MII_PHYIDR2:
493 		return(0);
494 	default:
495 		device_printf(dev, "bad phy register\n");
496 		return(0);
497 	}
498 	CSR_WRITE_2(sc, re8139_reg, data);
499 	return(0);
500 }
501 
502 static void
503 re_miibus_statchg(device_t dev)
504 {
505 }
506 
507 /*
508  * Program the 64-bit multicast hash filter.
509  */
510 static void
511 re_setmulti(struct re_softc *sc)
512 {
513 	struct ifnet *ifp = &sc->arpcom.ac_if;
514 	int h = 0;
515 	uint32_t hashes[2] = { 0, 0 };
516 	struct ifmultiaddr *ifma;
517 	uint32_t rxfilt;
518 	int mcnt = 0;
519 
520 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
521 
522 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
523 		rxfilt |= RE_RXCFG_RX_MULTI;
524 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
525 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
526 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
527 		return;
528 	}
529 
530 	/* first, zot all the existing hash bits */
531 	CSR_WRITE_4(sc, RE_MAR0, 0);
532 	CSR_WRITE_4(sc, RE_MAR4, 0);
533 
534 	/* now program new ones */
535 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
536 		if (ifma->ifma_addr->sa_family != AF_LINK)
537 			continue;
538 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
539 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
540 		if (h < 32)
541 			hashes[0] |= (1 << h);
542 		else
543 			hashes[1] |= (1 << (h - 32));
544 		mcnt++;
545 	}
546 
547 	if (mcnt)
548 		rxfilt |= RE_RXCFG_RX_MULTI;
549 	else
550 		rxfilt &= ~RE_RXCFG_RX_MULTI;
551 
552 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
553 	CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
554 	CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
555 }
556 
557 static void
558 re_reset(struct re_softc *sc)
559 {
560 	int i;
561 
562 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
563 
564 	for (i = 0; i < RE_TIMEOUT; i++) {
565 		DELAY(10);
566 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
567 			break;
568 	}
569 	if (i == RE_TIMEOUT)
570 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
571 
572 	CSR_WRITE_1(sc, 0x82, 1);
573 }
574 
575 /*
576  * The following routine is designed to test for a defect on some
577  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
578  * lines connected to the bus, however for a 32-bit only card, they
579  * should be pulled high. The result of this defect is that the
580  * NIC will not work right if you plug it into a 64-bit slot: DMA
581  * operations will be done with 64-bit transfers, which will fail
582  * because the 64-bit data lines aren't connected.
583  *
584  * There's no way to work around this (short of talking a soldering
585  * iron to the board), however we can detect it. The method we use
586  * here is to put the NIC into digital loopback mode, set the receiver
587  * to promiscuous mode, and then try to send a frame. We then compare
588  * the frame data we sent to what was received. If the data matches,
589  * then the NIC is working correctly, otherwise we know the user has
590  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
591  * slot. In the latter case, there's no way the NIC can work correctly,
592  * so we print out a message on the console and abort the device attach.
593  */
594 
595 static int
596 re_diag(struct re_softc *sc)
597 {
598 	struct ifnet *ifp = &sc->arpcom.ac_if;
599 	struct mbuf *m0;
600 	struct ether_header *eh;
601 	struct re_desc *cur_rx;
602 	uint16_t status;
603 	uint32_t rxstat;
604 	int total_len, i, error = 0;
605 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
606 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
607 
608 	/* Allocate a single mbuf */
609 
610 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
611 	if (m0 == NULL)
612 		return(ENOBUFS);
613 
614 	/*
615 	 * Initialize the NIC in test mode. This sets the chip up
616 	 * so that it can send and receive frames, but performs the
617 	 * following special functions:
618 	 * - Puts receiver in promiscuous mode
619 	 * - Enables digital loopback mode
620 	 * - Leaves interrupts turned off
621 	 */
622 
623 	ifp->if_flags |= IFF_PROMISC;
624 	sc->re_testmode = 1;
625 	re_init(sc);
626 	re_stop(sc);
627 	DELAY(100000);
628 	re_init(sc);
629 
630 	/* Put some data in the mbuf */
631 
632 	eh = mtod(m0, struct ether_header *);
633 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
634 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
635 	eh->ether_type = htons(ETHERTYPE_IP);
636 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
637 
638 	/*
639 	 * Queue the packet, start transmission.
640 	 * Note: ifq_handoff() ultimately calls re_start() for us.
641 	 */
642 
643 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
644 	error = ifq_handoff(ifp, m0, NULL);
645 	if (error) {
646 		m0 = NULL;
647 		goto done;
648 	}
649 	m0 = NULL;
650 
651 	/* Wait for it to propagate through the chip */
652 
653 	DELAY(100000);
654 	for (i = 0; i < RE_TIMEOUT; i++) {
655 		status = CSR_READ_2(sc, RE_ISR);
656 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
657 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
658 			break;
659 		DELAY(10);
660 	}
661 
662 	if (i == RE_TIMEOUT) {
663 		if_printf(ifp, "diagnostic failed to receive packet "
664 			  "in loopback mode\n");
665 		error = EIO;
666 		goto done;
667 	}
668 
669 	/*
670 	 * The packet should have been dumped into the first
671 	 * entry in the RX DMA ring. Grab it from there.
672 	 */
673 
674 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
675 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
676 	bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
677 			BUS_DMASYNC_POSTWRITE);
678 	bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
679 
680 	m0 = sc->re_ldata.re_rx_mbuf[0];
681 	sc->re_ldata.re_rx_mbuf[0] = NULL;
682 	eh = mtod(m0, struct ether_header *);
683 
684 	cur_rx = &sc->re_ldata.re_rx_list[0];
685 	total_len = RE_RXBYTES(cur_rx);
686 	rxstat = le32toh(cur_rx->re_cmdstat);
687 
688 	if (total_len != ETHER_MIN_LEN) {
689 		if_printf(ifp, "diagnostic failed, received short packet\n");
690 		error = EIO;
691 		goto done;
692 	}
693 
694 	/* Test that the received packet data matches what we sent. */
695 
696 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
697 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
698 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
699 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
700 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
701 		    dst, ":", src, ":", ETHERTYPE_IP);
702 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
703 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
704 		    ntohs(eh->ether_type));
705 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
706 		    "into a 64-bit PCI slot.\n");
707 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
708 		    "for proper operation.\n");
709 		if_printf(ifp, "Read the re(4) man page for more details.\n");
710 		error = EIO;
711 	}
712 
713 done:
714 	/* Turn interface off, release resources */
715 
716 	sc->re_testmode = 0;
717 	ifp->if_flags &= ~IFF_PROMISC;
718 	re_stop(sc);
719 	if (m0 != NULL)
720 		m_freem(m0);
721 
722 	return (error);
723 }
724 
725 /*
726  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
727  * IDs against our list and return a device name if we find a match.
728  */
729 static int
730 re_probe(device_t dev)
731 {
732 	struct re_type *t;
733 	struct re_softc *sc;
734 	int rid;
735 	uint32_t hwrev;
736 	uint16_t vendor, product;
737 
738 	t = re_devs;
739 
740 	vendor = pci_get_vendor(dev);
741 	product = pci_get_device(dev);
742 
743 	for (t = re_devs; t->re_name != NULL; t++) {
744 		if (product == t->re_did && vendor == t->re_vid)
745 			break;
746 	}
747 
748 	/*
749 	 * Check if we found a RealTek device.
750 	 */
751 	if (t->re_name == NULL)
752 		return(ENXIO);
753 
754 	/*
755 	 * Temporarily map the I/O space so we can read the chip ID register.
756 	 */
757 	sc = malloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
758 	rid = RE_PCI_LOIO;
759 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
760 					    RF_ACTIVE);
761 	if (sc->re_res == NULL) {
762 		device_printf(dev, "couldn't map ports/memory\n");
763 		free(sc, M_TEMP);
764 		return(ENXIO);
765 	}
766 
767 	sc->re_btag = rman_get_bustag(sc->re_res);
768 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
769 
770 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
771 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
772 	free(sc, M_TEMP);
773 
774 	/*
775 	 * and continue matching for the specific chip...
776 	 */
777 	for (; t->re_name != NULL; t++) {
778 		if (product == t->re_did && vendor == t->re_vid &&
779 		    t->re_basetype == hwrev) {
780 			device_set_desc(dev, t->re_name);
781 			return(0);
782 		}
783 	}
784 	return(ENXIO);
785 }
786 
787 /*
788  * This routine takes the segment list provided as the result of
789  * a bus_dma_map_load() operation and assigns the addresses/lengths
790  * to RealTek DMA descriptors. This can be called either by the RX
791  * code or the TX code. In the RX case, we'll probably wind up mapping
792  * at most one segment. For the TX case, there could be any number of
793  * segments since TX packets may span multiple mbufs. In either case,
794  * if the number of segments is larger than the re_maxsegs limit
795  * specified by the caller, we abort the mapping operation. Sadly,
796  * whoever designed the buffer mapping API did not provide a way to
797  * return an error from here, so we have to fake it a bit.
798  */
799 
800 static void
801 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
802 		bus_size_t mapsize, int error)
803 {
804 	struct re_dmaload_arg *ctx;
805 	struct re_desc *d = NULL;
806 	int i = 0, idx;
807 	uint32_t cmdstat;
808 
809 	if (error)
810 		return;
811 
812 	ctx = arg;
813 
814 	/* Signal error to caller if there's too many segments */
815 	if (nseg > ctx->re_maxsegs) {
816 		ctx->re_maxsegs = 0;
817 		return;
818 	}
819 
820 	/*
821 	 * Map the segment array into descriptors. Note that we set the
822 	 * start-of-frame and end-of-frame markers for either TX or RX, but
823 	 * they really only have meaning in the TX case. (In the RX case,
824 	 * it's the chip that tells us where packets begin and end.)
825 	 * We also keep track of the end of the ring and set the
826 	 * end-of-ring bits as needed, and we set the ownership bits
827 	 * in all except the very first descriptor. (The caller will
828 	 * set this descriptor later when it start transmission or
829 	 * reception.)
830 	 */
831 	idx = ctx->re_idx;
832 	for (;;) {
833 		d = &ctx->re_ring[idx];
834 		if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
835 			ctx->re_maxsegs = 0;
836 			return;
837 		}
838 		cmdstat = segs[i].ds_len;
839 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
840 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
841 		if (i == 0)
842 			cmdstat |= RE_TDESC_CMD_SOF;
843 		else
844 			cmdstat |= RE_TDESC_CMD_OWN;
845 		if (idx == (RE_RX_DESC_CNT - 1))
846 			cmdstat |= RE_TDESC_CMD_EOR;
847 		d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
848 		i++;
849 		if (i == nseg)
850 			break;
851 		RE_DESC_INC(idx);
852 	}
853 
854 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
855 	ctx->re_maxsegs = nseg;
856 	ctx->re_idx = idx;
857 }
858 
859 /*
860  * Map a single buffer address.
861  */
862 
863 static void
864 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
865 {
866 	uint32_t *addr;
867 
868 	if (error)
869 		return;
870 
871 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
872 	addr = arg;
873 	*addr = segs->ds_addr;
874 }
875 
876 static int
877 re_allocmem(device_t dev, struct re_softc *sc)
878 {
879 	int error, i, nseg;
880 
881 	/*
882 	 * Allocate map for RX mbufs.
883 	 */
884 	nseg = 32;
885 	error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
886 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
887 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
888 	    &sc->re_ldata.re_mtag);
889 	if (error) {
890 		device_printf(dev, "could not allocate dma tag\n");
891 		return(error);
892 	}
893 
894 	/*
895 	 * Allocate map for TX descriptor list.
896 	 */
897 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
898 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
899             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
900 	    &sc->re_ldata.re_tx_list_tag);
901 	if (error) {
902 		device_printf(dev, "could not allocate dma tag\n");
903 		return(error);
904 	}
905 
906 	/* Allocate DMA'able memory for the TX ring */
907 
908         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
909 	    (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
910             &sc->re_ldata.re_tx_list_map);
911         if (error) {
912 		device_printf(dev, "could not allocate TX ring\n");
913                 return(error);
914 	}
915 
916 	/* Load the map for the TX ring. */
917 
918 	error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
919 	     sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
920 	     RE_TX_LIST_SZ, re_dma_map_addr,
921 	     &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
922 	if (error) {
923 		device_printf(dev, "could not get addres of TX ring\n");
924 		return(error);
925 	}
926 
927 	/* Create DMA maps for TX buffers */
928 
929 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
930 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
931 			    &sc->re_ldata.re_tx_dmamap[i]);
932 		if (error) {
933 			device_printf(dev, "can't create DMA map for TX\n");
934 			return(error);
935 		}
936 	}
937 
938 	/*
939 	 * Allocate map for RX descriptor list.
940 	 */
941 	error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
942 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
943             NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
944 	    &sc->re_ldata.re_rx_list_tag);
945 	if (error) {
946 		device_printf(dev, "could not allocate dma tag\n");
947 		return(error);
948 	}
949 
950 	/* Allocate DMA'able memory for the RX ring */
951 
952         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
953 	    (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
954             &sc->re_ldata.re_rx_list_map);
955         if (error) {
956 		device_printf(dev, "could not allocate RX ring\n");
957                 return(error);
958 	}
959 
960 	/* Load the map for the RX ring. */
961 
962 	error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
963 	     sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
964 	     RE_TX_LIST_SZ, re_dma_map_addr,
965 	     &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
966 	if (error) {
967 		device_printf(dev, "could not get address of RX ring\n");
968 		return(error);
969 	}
970 
971 	/* Create DMA maps for RX buffers */
972 
973 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
974 		error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
975 			    &sc->re_ldata.re_rx_dmamap[i]);
976 		if (error) {
977 			device_printf(dev, "can't create DMA map for RX\n");
978 			return(ENOMEM);
979 		}
980 	}
981 
982 	return(0);
983 }
984 
985 /*
986  * Attach the interface. Allocate softc structures, do ifmedia
987  * setup and ethernet/BPF attach.
988  */
989 static int
990 re_attach(device_t dev)
991 {
992 	struct re_softc	*sc = device_get_softc(dev);
993 	struct ifnet *ifp;
994 	struct re_hwrev *hw_rev;
995 	uint8_t eaddr[ETHER_ADDR_LEN];
996 	int hwrev;
997 	u_int16_t re_did = 0;
998 	int error = 0, rid, i;
999 
1000 	callout_init(&sc->re_timer);
1001 
1002 #ifndef BURN_BRIDGES
1003 	/*
1004 	 * Handle power management nonsense.
1005 	 */
1006 
1007 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1008 		uint32_t membase, irq;
1009 
1010 		/* Save important PCI config data. */
1011 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1012 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1013 
1014 		/* Reset the power state. */
1015 		device_printf(dev, "chip is is in D%d power mode "
1016 		    "-- setting to D0\n", pci_get_powerstate(dev));
1017 
1018 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1019 
1020 		/* Restore PCI config data. */
1021 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1022 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1023 	}
1024 #endif
1025 	/*
1026 	 * Map control/status registers.
1027 	 */
1028 	pci_enable_busmaster(dev);
1029 
1030 	rid = RE_PCI_LOIO;
1031 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1032 					    RF_ACTIVE);
1033 
1034 	if (sc->re_res == NULL) {
1035 		device_printf(dev, "couldn't map ports/memory\n");
1036 		error = ENXIO;
1037 		goto fail;
1038 	}
1039 
1040 	sc->re_btag = rman_get_bustag(sc->re_res);
1041 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1042 
1043 	/* Allocate interrupt */
1044 	rid = 0;
1045 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1046 					    RF_SHAREABLE | RF_ACTIVE);
1047 
1048 	if (sc->re_irq == NULL) {
1049 		device_printf(dev, "couldn't map interrupt\n");
1050 		error = ENXIO;
1051 		goto fail;
1052 	}
1053 
1054 	/* Reset the adapter. */
1055 	re_reset(sc);
1056 
1057 	hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1058 	for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1059 		if (hw_rev->re_rev == hwrev) {
1060 			sc->re_type = hw_rev->re_type;
1061 			break;
1062 		}
1063 	}
1064 
1065 	if (sc->re_type == RE_8169) {
1066 		/* Set RX length mask */
1067 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1068 
1069 		/* Force station address autoload from the EEPROM */
1070 		CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_AUTOLOAD);
1071 		for (i = 0; i < RE_TIMEOUT; i++) {
1072 			if ((CSR_READ_1(sc, RE_EECMD) & RE_EEMODE_AUTOLOAD) == 0)
1073 				break;
1074 			DELAY(100);
1075 		}
1076 		if (i == RE_TIMEOUT)
1077 			device_printf(dev, "eeprom autoload timed out\n");
1078 
1079 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1080 			eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
1081 	} else {
1082 		uint16_t as[3];
1083 
1084 		/* Set RX length mask */
1085 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1086 
1087 		sc->re_eecmd_read = RE_EECMD_READ_6BIT;
1088 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1089 		if (re_did != 0x8129)
1090 			sc->re_eecmd_read = RE_EECMD_READ_8BIT;
1091 
1092 		/*
1093 		 * Get station address from the EEPROM.
1094 		 */
1095 		re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3, 0);
1096 		for (i = 0; i < 3; i++) {
1097 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1098 			eaddr[(i * 2) + 1] = as[i] >> 8;
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * Allocate the parent bus DMA tag appropriate for PCI.
1104 	 */
1105 #define RE_NSEG_NEW 32
1106 	error = bus_dma_tag_create(NULL,	/* parent */
1107 			1, 0,			/* alignment, boundary */
1108 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1109 			BUS_SPACE_MAXADDR,	/* highaddr */
1110 			NULL, NULL,		/* filter, filterarg */
1111 			MAXBSIZE, RE_NSEG_NEW,	/* maxsize, nsegments */
1112 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1113 			BUS_DMA_ALLOCNOW,	/* flags */
1114 			&sc->re_parent_tag);
1115 	if (error)
1116 		goto fail;
1117 
1118 	error = re_allocmem(dev, sc);
1119 
1120 	if (error)
1121 		goto fail;
1122 
1123 	/* Do MII setup */
1124 	if (mii_phy_probe(dev, &sc->re_miibus,
1125 	    re_ifmedia_upd, re_ifmedia_sts)) {
1126 		device_printf(dev, "MII without any phy!\n");
1127 		error = ENXIO;
1128 		goto fail;
1129 	}
1130 
1131 	ifp = &sc->arpcom.ac_if;
1132 	ifp->if_softc = sc;
1133 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1134 	ifp->if_mtu = ETHERMTU;
1135 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1136 	ifp->if_ioctl = re_ioctl;
1137 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1138 	ifp->if_start = re_start;
1139 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1140 #ifdef DEVICE_POLLING
1141 	ifp->if_poll = re_poll;
1142 #endif
1143 	ifp->if_watchdog = re_watchdog;
1144 	ifp->if_init = re_init;
1145 	if (sc->re_type == RE_8169)
1146 		ifp->if_baudrate = 1000000000;
1147 	else
1148 		ifp->if_baudrate = 100000000;
1149 	ifq_set_maxlen(&ifp->if_snd, RE_IFQ_MAXLEN);
1150 	ifq_set_ready(&ifp->if_snd);
1151 #ifdef RE_DISABLE_HWCSUM
1152 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1153 	ifp->if_hwassist = 0;
1154 #else
1155 	ifp->if_capenable = ifp->if_capabilities;
1156 	ifp->if_hwassist = RE_CSUM_FEATURES;
1157 #endif
1158 
1159 	/*
1160 	 * Call MI attach routine.
1161 	 */
1162 	ether_ifattach(ifp, eaddr);
1163 
1164 	/* Perform hardware diagnostic. */
1165 	error = re_diag(sc);
1166 
1167 	if (error) {
1168 		device_printf(dev, "hardware diagnostic failure\n");
1169 		ether_ifdetach(ifp);
1170 		goto fail;
1171 	}
1172 
1173 	/* Hook interrupt last to avoid having to lock softc */
1174 	error = bus_setup_intr(dev, sc->re_irq, 0, re_intr, sc,
1175 			       &sc->re_intrhand, NULL);
1176 
1177 	if (error) {
1178 		device_printf(dev, "couldn't set up irq\n");
1179 		ether_ifdetach(ifp);
1180 		goto fail;
1181 	}
1182 
1183 fail:
1184 	if (error)
1185 		re_detach(dev);
1186 
1187 	return (error);
1188 }
1189 
1190 /*
1191  * Shutdown hardware and free up resources. This can be called any
1192  * time after the mutex has been initialized. It is called in both
1193  * the error case in attach and the normal detach case so it needs
1194  * to be careful about only freeing resources that have actually been
1195  * allocated.
1196  */
1197 static int
1198 re_detach(device_t dev)
1199 {
1200 	struct re_softc *sc = device_get_softc(dev);
1201 	struct ifnet *ifp = &sc->arpcom.ac_if;
1202 	int i;
1203 
1204 	crit_enter();
1205 
1206 	/* These should only be active if attach succeeded */
1207 	if (device_is_attached(dev)) {
1208 		re_stop(sc);
1209 		ether_ifdetach(ifp);
1210 	}
1211 	if (sc->re_miibus)
1212 		device_delete_child(dev, sc->re_miibus);
1213 	bus_generic_detach(dev);
1214 
1215 	if (sc->re_intrhand)
1216 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1217 
1218 	crit_exit();
1219 
1220 	if (sc->re_irq)
1221 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1222 	if (sc->re_res)
1223 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1224 				     sc->re_res);
1225 
1226 	/* Unload and free the RX DMA ring memory and map */
1227 
1228 	if (sc->re_ldata.re_rx_list_tag) {
1229 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1230 		    sc->re_ldata.re_rx_list_map);
1231 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1232 		    sc->re_ldata.re_rx_list,
1233 		    sc->re_ldata.re_rx_list_map);
1234 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1235 	}
1236 
1237 	/* Unload and free the TX DMA ring memory and map */
1238 
1239 	if (sc->re_ldata.re_tx_list_tag) {
1240 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1241 		    sc->re_ldata.re_tx_list_map);
1242 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1243 		    sc->re_ldata.re_tx_list,
1244 		    sc->re_ldata.re_tx_list_map);
1245 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1246 	}
1247 
1248 	/* Destroy all the RX and TX buffer maps */
1249 
1250 	if (sc->re_ldata.re_mtag) {
1251 		for (i = 0; i < RE_TX_DESC_CNT; i++)
1252 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1253 			    sc->re_ldata.re_tx_dmamap[i]);
1254 		for (i = 0; i < RE_RX_DESC_CNT; i++)
1255 			bus_dmamap_destroy(sc->re_ldata.re_mtag,
1256 			    sc->re_ldata.re_rx_dmamap[i]);
1257 		bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1258 	}
1259 
1260 	/* Unload and free the stats buffer and map */
1261 
1262 	if (sc->re_ldata.re_stag) {
1263 		bus_dmamap_unload(sc->re_ldata.re_stag,
1264 		    sc->re_ldata.re_rx_list_map);
1265 		bus_dmamem_free(sc->re_ldata.re_stag,
1266 		    sc->re_ldata.re_stats,
1267 		    sc->re_ldata.re_smap);
1268 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1269 	}
1270 
1271 	if (sc->re_parent_tag)
1272 		bus_dma_tag_destroy(sc->re_parent_tag);
1273 
1274 	return(0);
1275 }
1276 
1277 static int
1278 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1279 {
1280 	struct re_dmaload_arg arg;
1281 	struct mbuf *n = NULL;
1282 	int error;
1283 
1284 	if (m == NULL) {
1285 		n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1286 		if (n == NULL)
1287 			return(ENOBUFS);
1288 		m = n;
1289 	} else
1290 		m->m_data = m->m_ext.ext_buf;
1291 
1292 	/*
1293 	 * Initialize mbuf length fields and fixup
1294 	 * alignment so that the frame payload is
1295 	 * longword aligned.
1296 	 */
1297 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1298 	m_adj(m, ETHER_ALIGN);
1299 
1300 	arg.sc = sc;
1301 	arg.re_idx = idx;
1302 	arg.re_maxsegs = 1;
1303 	arg.re_flags = 0;
1304 	arg.re_ring = sc->re_ldata.re_rx_list;
1305 
1306         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1307 	    sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1308 	    &arg, BUS_DMA_NOWAIT);
1309 	if (error || arg.re_maxsegs != 1) {
1310 		if (n != NULL)
1311 			m_freem(n);
1312 		return (ENOMEM);
1313 	}
1314 
1315 	sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1316 	sc->re_ldata.re_rx_mbuf[idx] = m;
1317 
1318         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1319 		        BUS_DMASYNC_PREREAD);
1320 
1321 	return(0);
1322 }
1323 
1324 static int
1325 re_tx_list_init(struct re_softc *sc)
1326 {
1327 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1328 	bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1329 
1330 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1331 			sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1332 	sc->re_ldata.re_tx_prodidx = 0;
1333 	sc->re_ldata.re_tx_considx = 0;
1334 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1335 
1336 	return(0);
1337 }
1338 
1339 static int
1340 re_rx_list_init(struct re_softc *sc)
1341 {
1342 	int i, error;
1343 
1344 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1345 	bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1346 
1347 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
1348 		error = re_newbuf(sc, i, NULL);
1349 		if (error)
1350 			return(error);
1351 	}
1352 
1353 	/* Flush the RX descriptors */
1354 
1355 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1356 	    sc->re_ldata.re_rx_list_map,
1357 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1358 
1359 	sc->re_ldata.re_rx_prodidx = 0;
1360 	sc->re_head = sc->re_tail = NULL;
1361 
1362 	return(0);
1363 }
1364 
1365 /*
1366  * RX handler for C+ and 8169. For the gigE chips, we support
1367  * the reception of jumbo frames that have been fragmented
1368  * across multiple 2K mbuf cluster buffers.
1369  */
1370 static void
1371 re_rxeof(struct re_softc *sc)
1372 {
1373 	struct ifnet *ifp = &sc->arpcom.ac_if;
1374 	struct mbuf *m;
1375 	struct re_desc 	*cur_rx;
1376 	uint32_t rxstat, rxvlan;
1377 	int i, total_len;
1378 
1379 	/* Invalidate the descriptor memory */
1380 
1381 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1382 			sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1383 
1384 	for (i = sc->re_ldata.re_rx_prodidx;
1385 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1386 		cur_rx = &sc->re_ldata.re_rx_list[i];
1387 		m = sc->re_ldata.re_rx_mbuf[i];
1388 		total_len = RE_RXBYTES(cur_rx);
1389 		rxstat = le32toh(cur_rx->re_cmdstat);
1390 		rxvlan = le32toh(cur_rx->re_vlanctl);
1391 
1392 		/* Invalidate the RX mbuf and unload its map */
1393 
1394 		bus_dmamap_sync(sc->re_ldata.re_mtag,
1395 				sc->re_ldata.re_rx_dmamap[i],
1396 				BUS_DMASYNC_POSTWRITE);
1397 		bus_dmamap_unload(sc->re_ldata.re_mtag,
1398 				  sc->re_ldata.re_rx_dmamap[i]);
1399 
1400 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1401 			m->m_len = MCLBYTES - ETHER_ALIGN;
1402 			if (sc->re_head == NULL) {
1403 				sc->re_head = sc->re_tail = m;
1404 			} else {
1405 				sc->re_tail->m_next = m;
1406 				sc->re_tail = m;
1407 			}
1408 			re_newbuf(sc, i, NULL);
1409 			continue;
1410 		}
1411 
1412 		/*
1413 		 * NOTE: for the 8139C+, the frame length field
1414 		 * is always 12 bits in size, but for the gigE chips,
1415 		 * it is 13 bits (since the max RX frame length is 16K).
1416 		 * Unfortunately, all 32 bits in the status word
1417 		 * were already used, so to make room for the extra
1418 		 * length bit, RealTek took out the 'frame alignment
1419 		 * error' bit and shifted the other status bits
1420 		 * over one slot. The OWN, EOR, FS and LS bits are
1421 		 * still in the same places. We have already extracted
1422 		 * the frame length and checked the OWN bit, so rather
1423 		 * than using an alternate bit mapping, we shift the
1424 		 * status bits one space to the right so we can evaluate
1425 		 * them using the 8169 status as though it was in the
1426 		 * same format as that of the 8139C+.
1427 		 */
1428 		if (sc->re_type == RE_8169)
1429 			rxstat >>= 1;
1430 
1431 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1432 			ifp->if_ierrors++;
1433 			/*
1434 			 * If this is part of a multi-fragment packet,
1435 			 * discard all the pieces.
1436 			 */
1437 			if (sc->re_head != NULL) {
1438 				m_freem(sc->re_head);
1439 				sc->re_head = sc->re_tail = NULL;
1440 			}
1441 			re_newbuf(sc, i, m);
1442 			continue;
1443 		}
1444 
1445 		/*
1446 		 * If allocating a replacement mbuf fails,
1447 		 * reload the current one.
1448 		 */
1449 
1450 		if (re_newbuf(sc, i, NULL)) {
1451 			ifp->if_ierrors++;
1452 			if (sc->re_head != NULL) {
1453 				m_freem(sc->re_head);
1454 				sc->re_head = sc->re_tail = NULL;
1455 			}
1456 			re_newbuf(sc, i, m);
1457 			continue;
1458 		}
1459 
1460 		if (sc->re_head != NULL) {
1461 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1462 			/*
1463 			 * Special case: if there's 4 bytes or less
1464 			 * in this buffer, the mbuf can be discarded:
1465 			 * the last 4 bytes is the CRC, which we don't
1466 			 * care about anyway.
1467 			 */
1468 			if (m->m_len <= ETHER_CRC_LEN) {
1469 				sc->re_tail->m_len -=
1470 				    (ETHER_CRC_LEN - m->m_len);
1471 				m_freem(m);
1472 			} else {
1473 				m->m_len -= ETHER_CRC_LEN;
1474 				sc->re_tail->m_next = m;
1475 			}
1476 			m = sc->re_head;
1477 			sc->re_head = sc->re_tail = NULL;
1478 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1479 		} else
1480 			m->m_pkthdr.len = m->m_len =
1481 			    (total_len - ETHER_CRC_LEN);
1482 
1483 		ifp->if_ipackets++;
1484 		m->m_pkthdr.rcvif = ifp;
1485 
1486 		/* Do RX checksumming if enabled */
1487 
1488 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1489 
1490 			/* Check IP header checksum */
1491 			if (rxstat & RE_RDESC_STAT_PROTOID)
1492 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1493 			if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1494 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1495 
1496 			/* Check TCP/UDP checksum */
1497 			if ((RE_TCPPKT(rxstat) &&
1498 			    (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1499 			    (RE_UDPPKT(rxstat) &&
1500 			    (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1501 				m->m_pkthdr.csum_flags |=
1502 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1503 				m->m_pkthdr.csum_data = 0xffff;
1504 			}
1505 		}
1506 
1507 		if (rxvlan & RE_RDESC_VLANCTL_TAG)
1508 			VLAN_INPUT_TAG(m,
1509 			   be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1510 		else
1511 			(*ifp->if_input)(ifp, m);
1512 	}
1513 
1514 	/* Flush the RX DMA ring */
1515 
1516 	bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1517 			sc->re_ldata.re_rx_list_map,
1518 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1519 
1520 	sc->re_ldata.re_rx_prodidx = i;
1521 }
1522 
1523 static void
1524 re_txeof(struct re_softc *sc)
1525 {
1526 	struct ifnet *ifp = &sc->arpcom.ac_if;
1527 	uint32_t txstat;
1528 	int idx;
1529 
1530 	/* Invalidate the TX descriptor list */
1531 
1532 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1533 	    sc->re_ldata.re_tx_list_map,
1534 	    BUS_DMASYNC_POSTREAD);
1535 
1536 	for (idx = sc->re_ldata.re_tx_considx;
1537 	     idx != sc->re_ldata.re_tx_prodidx; RE_DESC_INC(idx)) {
1538 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1539 		if (txstat & RE_TDESC_CMD_OWN)
1540 			break;
1541 
1542 		/*
1543 		 * We only stash mbufs in the last descriptor
1544 		 * in a fragment chain, which also happens to
1545 		 * be the only place where the TX status bits
1546 		 * are valid.
1547 		 */
1548 		if (txstat & RE_TDESC_CMD_EOF) {
1549 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1550 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
1551 			bus_dmamap_unload(sc->re_ldata.re_mtag,
1552 			    sc->re_ldata.re_tx_dmamap[idx]);
1553 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1554 			    RE_TDESC_STAT_COLCNT))
1555 				ifp->if_collisions++;
1556 			if (txstat & RE_TDESC_STAT_TXERRSUM)
1557 				ifp->if_oerrors++;
1558 			else
1559 				ifp->if_opackets++;
1560 		}
1561 		sc->re_ldata.re_tx_free++;
1562 	}
1563 
1564 	/* No changes made to the TX ring, so no flush needed */
1565 	if (idx != sc->re_ldata.re_tx_considx) {
1566 		sc->re_ldata.re_tx_considx = idx;
1567 		ifp->if_flags &= ~IFF_OACTIVE;
1568 		ifp->if_timer = 0;
1569 	}
1570 
1571 	/*
1572 	 * If not all descriptors have been released reaped yet,
1573 	 * reload the timer so that we will eventually get another
1574 	 * interrupt that will cause us to re-enter this routine.
1575 	 * This is done in case the transmitter has gone idle.
1576 	 */
1577 	if (sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
1578                 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1579 }
1580 
1581 static void
1582 re_tick(void *xsc)
1583 {
1584 	struct re_softc *sc = xsc;
1585 	struct mii_data *mii;
1586 
1587 	crit_enter();
1588 
1589 	mii = device_get_softc(sc->re_miibus);
1590 	mii_tick(mii);
1591 
1592 	callout_reset(&sc->re_timer, hz, re_tick, sc);
1593 
1594 	crit_exit();
1595 }
1596 
1597 #ifdef DEVICE_POLLING
1598 
1599 static void
1600 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1601 {
1602 	struct re_softc *sc = ifp->if_softc;
1603 
1604 	switch(cmd) {
1605 	case POLL_REGISTER:
1606 		/* disable interrupts */
1607 		CSR_WRITE_2(sc, RE_IMR, 0x0000);
1608 		break;
1609 	case POLL_DEREGISTER:
1610 		/* enable interrupts */
1611 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1612 		break;
1613 	default:
1614 		sc->rxcycles = count;
1615 		re_rxeof(sc);
1616 		re_txeof(sc);
1617 
1618 		if (!ifq_is_empty(&ifp->if_snd))
1619 			(*ifp->if_start)(ifp);
1620 
1621 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1622 			uint16_t       status;
1623 
1624 			status = CSR_READ_2(sc, RE_ISR);
1625 			if (status == 0xffff)
1626 				return;
1627 			if (status)
1628 				CSR_WRITE_2(sc, RE_ISR, status);
1629 
1630 			/*
1631 			 * XXX check behaviour on receiver stalls.
1632 			 */
1633 
1634 			if (status & RE_ISR_SYSTEM_ERR) {
1635 				re_reset(sc);
1636 				re_init(sc);
1637 			}
1638 		}
1639 		break;
1640 	}
1641 }
1642 #endif /* DEVICE_POLLING */
1643 
1644 static void
1645 re_intr(void *arg)
1646 {
1647 	struct re_softc	*sc = arg;
1648 	struct ifnet *ifp = &sc->arpcom.ac_if;
1649 	uint16_t status;
1650 
1651 	if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1652 		return;
1653 
1654 	for (;;) {
1655 		status = CSR_READ_2(sc, RE_ISR);
1656 		/* If the card has gone away the read returns 0xffff. */
1657 		if (status == 0xffff)
1658 			break;
1659 		if (status)
1660 			CSR_WRITE_2(sc, RE_ISR, status);
1661 
1662 		if ((status & RE_INTRS_CPLUS) == 0)
1663 			break;
1664 
1665 		if (status & RE_ISR_RX_OK)
1666 			re_rxeof(sc);
1667 
1668 		if (status & RE_ISR_RX_ERR)
1669 			re_rxeof(sc);
1670 
1671 		if ((status & RE_ISR_TIMEOUT_EXPIRED) ||
1672 		    (status & RE_ISR_TX_ERR) ||
1673 		    (status & RE_ISR_TX_DESC_UNAVAIL))
1674 			re_txeof(sc);
1675 
1676 		if (status & RE_ISR_SYSTEM_ERR) {
1677 			re_reset(sc);
1678 			re_init(sc);
1679 		}
1680 
1681 		if (status & RE_ISR_LINKCHG)
1682 			re_tick(sc);
1683 	}
1684 
1685 	if (!ifq_is_empty(&ifp->if_snd))
1686 		(*ifp->if_start)(ifp);
1687 }
1688 
1689 static int
1690 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx, int *called_defrag)
1691 {
1692 	struct ifnet *ifp = &sc->arpcom.ac_if;
1693 	struct mbuf *m, *m_new = NULL;
1694 	struct re_dmaload_arg	arg;
1695 	bus_dmamap_t		map;
1696 	int			error;
1697 
1698 	*called_defrag = 0;
1699 	if (sc->re_ldata.re_tx_free <= 4)
1700 		return(EFBIG);
1701 
1702 	m = *m_head;
1703 
1704 	/*
1705 	 * Set up checksum offload. Note: checksum offload bits must
1706 	 * appear in all descriptors of a multi-descriptor transmit
1707 	 * attempt. (This is according to testing done with an 8169
1708 	 * chip. I'm not sure if this is a requirement or a bug.)
1709 	 */
1710 
1711 	arg.re_flags = 0;
1712 
1713 	if (m->m_pkthdr.csum_flags & CSUM_IP)
1714 		arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1715 	if (m->m_pkthdr.csum_flags & CSUM_TCP)
1716 		arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1717 	if (m->m_pkthdr.csum_flags & CSUM_UDP)
1718 		arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1719 
1720 	arg.sc = sc;
1721 	arg.re_idx = *idx;
1722 	arg.re_maxsegs = sc->re_ldata.re_tx_free;
1723 	if (arg.re_maxsegs > 4)
1724 		arg.re_maxsegs -= 4;
1725 	arg.re_ring = sc->re_ldata.re_tx_list;
1726 
1727 	map = sc->re_ldata.re_tx_dmamap[*idx];
1728 	error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1729 	    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1730 
1731 	if (error && error != EFBIG) {
1732 		if_printf(ifp, "can't map mbuf (error %d)\n", error);
1733 		return(ENOBUFS);
1734 	}
1735 
1736 	/* Too many segments to map, coalesce into a single mbuf */
1737 
1738 	if (error || arg.re_maxsegs == 0) {
1739 		m_new = m_defrag_nofree(m, MB_DONTWAIT);
1740 		if (m_new == NULL)
1741 			return(1);
1742 		else {
1743 			m = m_new;
1744 			*m_head = m;
1745 		}
1746 
1747 		*called_defrag = 1;
1748 		arg.sc = sc;
1749 		arg.re_idx = *idx;
1750 		arg.re_maxsegs = sc->re_ldata.re_tx_free;
1751 		arg.re_ring = sc->re_ldata.re_tx_list;
1752 
1753 		error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1754 		    m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1755 		if (error) {
1756 			m_freem(m);
1757 			if_printf(ifp, "can't map mbuf (error %d)\n", error);
1758 			return(EFBIG);
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * Insure that the map for this transmission
1764 	 * is placed at the array index of the last descriptor
1765 	 * in this chain.
1766 	 */
1767 	sc->re_ldata.re_tx_dmamap[*idx] =
1768 	    sc->re_ldata.re_tx_dmamap[arg.re_idx];
1769 	sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1770 
1771 	sc->re_ldata.re_tx_mbuf[arg.re_idx] = m;
1772 	sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1773 
1774 	/*
1775 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1776 	 * appear in the first descriptor of a multi-descriptor
1777 	 * transmission attempt.
1778 	 */
1779 
1780 	if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1781 	    m->m_pkthdr.rcvif != NULL &&
1782 	    m->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1783 	    	struct ifvlan *ifv;
1784 		ifv = m->m_pkthdr.rcvif->if_softc;
1785 		if (ifv != NULL)
1786 			sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1787 			    htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1788 	}
1789 
1790 	/* Transfer ownership of packet to the chip. */
1791 
1792 	sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1793 	    htole32(RE_TDESC_CMD_OWN);
1794 	if (*idx != arg.re_idx)
1795 		sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1796 		    htole32(RE_TDESC_CMD_OWN);
1797 
1798 	RE_DESC_INC(arg.re_idx);
1799 	*idx = arg.re_idx;
1800 
1801 	return(0);
1802 }
1803 
1804 /*
1805  * Main transmit routine for C+ and gigE NICs.
1806  */
1807 
1808 static void
1809 re_start(struct ifnet *ifp)
1810 {
1811 	struct re_softc	*sc = ifp->if_softc;
1812 	struct mbuf *m_head = NULL, *m_head2;
1813 	int called_defrag, idx, need_trans;
1814 
1815 	crit_enter();
1816 
1817 	idx = sc->re_ldata.re_tx_prodidx;
1818 
1819 	need_trans = 0;
1820 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1821 		m_head = ifq_poll(&ifp->if_snd);
1822 		if (m_head == NULL)
1823 			break;
1824 
1825 		if (re_encap(sc, &m_head, &idx, &called_defrag)) {
1826 			if (called_defrag) {
1827 				m_head2 = ifq_dequeue(&ifp->if_snd);
1828 				m_freem(m_head2);
1829 			}
1830 			ifp->if_flags |= IFF_OACTIVE;
1831 			break;
1832 		}
1833 
1834 		m_head2 = ifq_dequeue(&ifp->if_snd);
1835 		if (called_defrag)
1836 			m_freem(m_head2);
1837 		need_trans = 1;
1838 
1839 		/*
1840 		 * If there's a BPF listener, bounce a copy of this frame
1841 		 * to him.
1842 		 */
1843 		BPF_MTAP(ifp, m_head);
1844 	}
1845 
1846 	if (!need_trans) {
1847 		crit_exit();
1848 		return;
1849 	}
1850 
1851 	/* Flush the TX descriptors */
1852 	bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1853 			sc->re_ldata.re_tx_list_map,
1854 			BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1855 
1856 	sc->re_ldata.re_tx_prodidx = idx;
1857 
1858 	/*
1859 	 * RealTek put the TX poll request register in a different
1860 	 * location on the 8169 gigE chip. I don't know why.
1861 	 */
1862 	if (sc->re_type == RE_8169)
1863 		CSR_WRITE_2(sc, RE_GTXSTART, RE_TXSTART_START);
1864 	else
1865 		CSR_WRITE_2(sc, RE_TXSTART, RE_TXSTART_START);
1866 
1867 	/*
1868 	 * Use the countdown timer for interrupt moderation.
1869 	 * 'TX done' interrupts are disabled. Instead, we reset the
1870 	 * countdown timer, which will begin counting until it hits
1871 	 * the value in the TIMERINT register, and then trigger an
1872 	 * interrupt. Each time we write to the TIMERCNT register,
1873 	 * the timer count is reset to 0.
1874 	 */
1875 	CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1876 
1877 	/*
1878 	 * Set a timeout in case the chip goes out to lunch.
1879 	 */
1880 	ifp->if_timer = 5;
1881 
1882 	crit_exit();
1883 }
1884 
1885 static void
1886 re_init(void *xsc)
1887 {
1888 	struct re_softc *sc = xsc;
1889 	struct ifnet *ifp = &sc->arpcom.ac_if;
1890 	struct mii_data *mii;
1891 	uint32_t rxcfg = 0;
1892 
1893 	crit_enter();
1894 
1895 	mii = device_get_softc(sc->re_miibus);
1896 
1897 	/*
1898 	 * Cancel pending I/O and free all RX/TX buffers.
1899 	 */
1900 	re_stop(sc);
1901 
1902 	/*
1903 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
1904 	 * RX checksum offload. We must configure the C+ register
1905 	 * before all others.
1906 	 */
1907 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
1908 		    RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
1909 		    (ifp->if_capenable & IFCAP_RXCSUM ?
1910 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
1911 
1912 	/*
1913 	 * Init our MAC address.  Even though the chipset
1914 	 * documentation doesn't mention it, we need to enter "Config
1915 	 * register write enable" mode to modify the ID registers.
1916 	 */
1917 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
1918 	CSR_WRITE_STREAM_4(sc, RE_IDR0,
1919 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1920 	CSR_WRITE_STREAM_4(sc, RE_IDR4,
1921 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1922 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
1923 
1924 	/*
1925 	 * For C+ mode, initialize the RX descriptors and mbufs.
1926 	 */
1927 	re_rx_list_init(sc);
1928 	re_tx_list_init(sc);
1929 
1930 	/*
1931 	 * Enable transmit and receive.
1932 	 */
1933 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
1934 
1935 	/*
1936 	 * Set the initial TX and RX configuration.
1937 	 */
1938 	if (sc->re_testmode) {
1939 		if (sc->re_type == RE_8169)
1940 			CSR_WRITE_4(sc, RE_TXCFG,
1941 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
1942 		else
1943 			CSR_WRITE_4(sc, RE_TXCFG,
1944 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
1945 	} else
1946 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
1947 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
1948 
1949 	/* Set the individual bit to receive frames for this host only. */
1950 	rxcfg = CSR_READ_4(sc, RE_RXCFG);
1951 	rxcfg |= RE_RXCFG_RX_INDIV;
1952 
1953 	/* If we want promiscuous mode, set the allframes bit. */
1954 	if (ifp->if_flags & IFF_PROMISC) {
1955 		rxcfg |= RE_RXCFG_RX_ALLPHYS;
1956 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1957 	} else {
1958 		rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
1959 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1960 	}
1961 
1962 	/*
1963 	 * Set capture broadcast bit to capture broadcast frames.
1964 	 */
1965 	if (ifp->if_flags & IFF_BROADCAST) {
1966 		rxcfg |= RE_RXCFG_RX_BROAD;
1967 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1968 	} else {
1969 		rxcfg &= ~RE_RXCFG_RX_BROAD;
1970 		CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
1971 	}
1972 
1973 	/*
1974 	 * Program the multicast filter, if necessary.
1975 	 */
1976 	re_setmulti(sc);
1977 
1978 #ifdef DEVICE_POLLING
1979 	/*
1980 	 * Disable interrupts if we are polling.
1981 	 */
1982 	if (ifp->if_flags & IFF_POLLING)
1983 		CSR_WRITE_2(sc, RE_IMR, 0);
1984 	else	/* otherwise ... */
1985 #endif /* DEVICE_POLLING */
1986 	/*
1987 	 * Enable interrupts.
1988 	 */
1989 	if (sc->re_testmode)
1990 		CSR_WRITE_2(sc, RE_IMR, 0);
1991 	else
1992 		CSR_WRITE_2(sc, RE_IMR, RE_INTRS_CPLUS);
1993 
1994 	/* Set initial TX threshold */
1995 	sc->re_txthresh = RE_TX_THRESH_INIT;
1996 
1997 	/* Start RX/TX process. */
1998 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
1999 #ifdef notdef
2000 	/* Enable receiver and transmitter. */
2001 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2002 #endif
2003 	/*
2004 	 * Load the addresses of the RX and TX lists into the chip.
2005 	 */
2006 
2007 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2008 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2009 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2010 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2011 
2012 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2013 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2014 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2015 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2016 
2017 	CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
2018 
2019 	/*
2020 	 * Initialize the timer interrupt register so that
2021 	 * a timer interrupt will be generated once the timer
2022 	 * reaches a certain number of ticks. The timer is
2023 	 * reloaded on each transmit. This gives us TX interrupt
2024 	 * moderation, which dramatically improves TX frame rate.
2025 	 */
2026 
2027 	if (sc->re_type == RE_8169)
2028 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2029 	else
2030 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2031 
2032 	/*
2033 	 * For 8169 gigE NICs, set the max allowed RX packet
2034 	 * size so we can receive jumbo frames.
2035 	 */
2036 	if (sc->re_type == RE_8169)
2037 		CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2038 
2039 	if (sc->re_testmode) {
2040 		crit_exit();
2041 		return;
2042 	}
2043 
2044 	mii_mediachg(mii);
2045 
2046 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2047 
2048 	ifp->if_flags |= IFF_RUNNING;
2049 	ifp->if_flags &= ~IFF_OACTIVE;
2050 
2051 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2052 
2053 	crit_exit();
2054 }
2055 
2056 /*
2057  * Set media options.
2058  */
2059 static int
2060 re_ifmedia_upd(struct ifnet *ifp)
2061 {
2062 	struct re_softc *sc = ifp->if_softc;
2063 	struct mii_data *mii;
2064 
2065 	mii = device_get_softc(sc->re_miibus);
2066 	mii_mediachg(mii);
2067 
2068 	return(0);
2069 }
2070 
2071 /*
2072  * Report current media status.
2073  */
2074 static void
2075 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2076 {
2077 	struct re_softc *sc = ifp->if_softc;
2078 	struct mii_data *mii;
2079 
2080 	mii = device_get_softc(sc->re_miibus);
2081 
2082 	mii_pollstat(mii);
2083 	ifmr->ifm_active = mii->mii_media_active;
2084 	ifmr->ifm_status = mii->mii_media_status;
2085 }
2086 
2087 static int
2088 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2089 {
2090 	struct re_softc *sc = ifp->if_softc;
2091 	struct ifreq *ifr = (struct ifreq *) data;
2092 	struct mii_data *mii;
2093 	int error = 0;
2094 
2095 	crit_enter();
2096 
2097 	switch(command) {
2098 	case SIOCSIFMTU:
2099 		if (ifr->ifr_mtu > RE_JUMBO_MTU)
2100 			error = EINVAL;
2101 		ifp->if_mtu = ifr->ifr_mtu;
2102 		break;
2103 	case SIOCSIFFLAGS:
2104 		if (ifp->if_flags & IFF_UP)
2105 			re_init(sc);
2106 		else if (ifp->if_flags & IFF_RUNNING)
2107 				re_stop(sc);
2108 		error = 0;
2109 		break;
2110 	case SIOCADDMULTI:
2111 	case SIOCDELMULTI:
2112 		re_setmulti(sc);
2113 		error = 0;
2114 		break;
2115 	case SIOCGIFMEDIA:
2116 	case SIOCSIFMEDIA:
2117 		mii = device_get_softc(sc->re_miibus);
2118 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2119 		break;
2120 	case SIOCSIFCAP:
2121 		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2122 		ifp->if_capenable |=
2123 		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2124 		if (ifp->if_capenable & IFCAP_TXCSUM)
2125 			ifp->if_hwassist = RE_CSUM_FEATURES;
2126 		else
2127 			ifp->if_hwassist = 0;
2128 		if (ifp->if_flags & IFF_RUNNING)
2129 			re_init(sc);
2130 		break;
2131 	default:
2132 		error = ether_ioctl(ifp, command, data);
2133 		break;
2134 	}
2135 
2136 	crit_exit();
2137 
2138 	return(error);
2139 }
2140 
2141 static void
2142 re_watchdog(struct ifnet *ifp)
2143 {
2144 	struct re_softc *sc = ifp->if_softc;
2145 
2146 	if_printf(ifp, "watchdog timeout\n");
2147 
2148 	crit_enter();
2149 
2150 	ifp->if_oerrors++;
2151 
2152 	re_txeof(sc);
2153 	re_rxeof(sc);
2154 
2155 	re_init(sc);
2156 
2157 	if (!ifq_is_empty(&ifp->if_snd))
2158 		ifp->if_start(ifp);
2159 
2160 	crit_exit();
2161 }
2162 
2163 /*
2164  * Stop the adapter and free any mbufs allocated to the
2165  * RX and TX lists.
2166  */
2167 static void
2168 re_stop(struct re_softc *sc)
2169 {
2170 	struct ifnet *ifp = &sc->arpcom.ac_if;
2171 	int i;
2172 
2173 	crit_enter();
2174 
2175 	ifp->if_timer = 0;
2176 	callout_stop(&sc->re_timer);
2177 
2178 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2179 
2180 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2181 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2182 
2183 	if (sc->re_head != NULL) {
2184 		m_freem(sc->re_head);
2185 		sc->re_head = sc->re_tail = NULL;
2186 	}
2187 
2188 	/* Free the TX list buffers. */
2189 	for (i = 0; i < RE_TX_DESC_CNT; i++) {
2190 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2191 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2192 					  sc->re_ldata.re_tx_dmamap[i]);
2193 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2194 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2195 		}
2196 	}
2197 
2198 	/* Free the RX list buffers. */
2199 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
2200 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2201 			bus_dmamap_unload(sc->re_ldata.re_mtag,
2202 					  sc->re_ldata.re_rx_dmamap[i]);
2203 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2204 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2205 		}
2206 	}
2207 
2208 	crit_exit();
2209 }
2210 
2211 /*
2212  * Device suspend routine.  Stop the interface and save some PCI
2213  * settings in case the BIOS doesn't restore them properly on
2214  * resume.
2215  */
2216 static int
2217 re_suspend(device_t dev)
2218 {
2219 #ifndef BURN_BRIDGES
2220 	int i;
2221 #endif
2222 	struct re_softc *sc = device_get_softc(dev);
2223 
2224 	re_stop(sc);
2225 
2226 #ifndef BURN_BRIDGES
2227 	for (i = 0; i < 5; i++)
2228 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2229 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2230 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2231 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2232 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2233 #endif
2234 
2235 	sc->suspended = 1;
2236 
2237 	return (0);
2238 }
2239 
2240 /*
2241  * Device resume routine.  Restore some PCI settings in case the BIOS
2242  * doesn't, re-enable busmastering, and restart the interface if
2243  * appropriate.
2244  */
2245 static int
2246 re_resume(device_t dev)
2247 {
2248 	struct re_softc *sc = device_get_softc(dev);
2249 	struct ifnet *ifp = &sc->arpcom.ac_if;
2250 #ifndef BURN_BRIDGES
2251 	int i;
2252 #endif
2253 
2254 #ifndef BURN_BRIDGES
2255 	/* better way to do this? */
2256 	for (i = 0; i < 5; i++)
2257 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2258 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2259 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2260 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2261 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2262 
2263 	/* reenable busmastering */
2264 	pci_enable_busmaster(dev);
2265 	pci_enable_io(dev, SYS_RES_IOPORT);
2266 #endif
2267 
2268 	/* reinitialize interface if necessary */
2269 	if (ifp->if_flags & IFF_UP)
2270 		re_init(sc);
2271 
2272 	sc->suspended = 0;
2273 
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Stop all chip I/O so that the kernel's probe routines don't
2279  * get confused by errant DMAs when rebooting.
2280  */
2281 static void
2282 re_shutdown(device_t dev)
2283 {
2284 	struct re_softc *sc = device_get_softc(dev);
2285 
2286 	re_stop(sc);
2287 }
2288