xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 31c068aaf635ad9fa72dbc4c65b32d890ff7544d)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include "pcidevs.h"
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static const struct re_type {
162 	uint16_t	re_vid;
163 	uint16_t	re_did;
164 	const char	*re_name;
165 } re_devs[] = {
166 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
167 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
168 
169 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
170 	  "RealTek 8139C+ 10/100BaseTX" },
171 
172 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
173 	  "RealTek 810x PCIe 10/100baseTX" },
174 
175 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
176 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
177 
178 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
179 	  "RealTek 8110/8169 Gigabit Ethernet" },
180 
181 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
182 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183 
184 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
185 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
186 
187 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
188 	  "Linksys EG1032 Gigabit Ethernet" },
189 
190 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
191 	  "US Robotics 997902 Gigabit Ethernet" },
192 
193 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
194 	  "TTTech MC322 Gigabit Ethernet" },
195 
196 	{ 0, 0, NULL }
197 };
198 
199 static const struct re_hwrev re_hwrevs[] = {
200 	{ RE_HWREV_8139CPLUS,	ETHERMTU,
201 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
202 
203 	{ RE_HWREV_8169,	ETHERMTU,
204 	  RE_C_HWCSUM | RE_C_8169 },
205 
206 	{ RE_HWREV_8110S,	RE_MTU_6K,
207 	  RE_C_HWCSUM | RE_C_8169 },
208 
209 	{ RE_HWREV_8169S,	RE_MTU_6K,
210 	  RE_C_HWCSUM | RE_C_8169 },
211 
212 	{ RE_HWREV_8169SB,	RE_MTU_6K,
213 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
214 
215 	{ RE_HWREV_8169SC,	RE_MTU_6K,
216 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
217 
218 	{ RE_HWREV_8168B1,	RE_MTU_6K,
219 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
220 
221 	{ RE_HWREV_8168B2,	RE_MTU_6K,
222 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
223 
224 	{ RE_HWREV_8168C,	RE_MTU_6K,
225 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
226 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
227 
228 	{ RE_HWREV_8168CP,	RE_MTU_6K,
229 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
230 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
231 
232 	{ RE_HWREV_8168D,	RE_MTU_9K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168DP,	RE_MTU_9K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168E,	RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8168F,	RE_MTU_9K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8111F,	RE_MTU_9K,
249 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
251 
252 	{ RE_HWREV_8411,	ETHERMTU,
253 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
255 
256 	{ RE_HWREV_8168G,	ETHERMTU,
257 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
258 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
259 
260 	{ RE_HWREV_8168EP,	ETHERMTU,
261 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
262 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
263 
264 	{ RE_HWREV_8168GU,	ETHERMTU,
265 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
266 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
267 
268 	{ RE_HWREV_8411B,	ETHERMTU,
269 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
270 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
271 
272 	{ RE_HWREV_8100E,	ETHERMTU,
273 	  RE_C_HWCSUM | RE_C_FASTE },
274 
275 	{ RE_HWREV_8101E,	ETHERMTU,
276 	  RE_C_HWCSUM | RE_C_FASTE },
277 
278 	{ RE_HWREV_8102E,	ETHERMTU,
279 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
280 	  RE_C_FASTE },
281 
282 	{ RE_HWREV_8102EL,	ETHERMTU,
283 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
284 	  RE_C_FASTE },
285 
286 	{ RE_HWREV_8105E,	ETHERMTU,
287 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
288 	  RE_C_STOP_RXTX | RE_C_FASTE },
289 
290 	{ RE_HWREV_8401E,	ETHERMTU,
291 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
292 	  RE_C_STOP_RXTX | RE_C_FASTE },
293 
294 	{ RE_HWREV_8402,	ETHERMTU,
295 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
296 	  RE_C_STOP_RXTX | RE_C_FASTE },
297 
298 	{ RE_HWREV_8106E,	ETHERMTU,
299 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
300 	  RE_C_STOP_RXTX | RE_C_FASTE },
301 
302 	{ RE_HWREV_NULL, 0, 0 }
303 };
304 
305 static int	re_probe(device_t);
306 static int	re_attach(device_t);
307 static int	re_detach(device_t);
308 static int	re_suspend(device_t);
309 static int	re_resume(device_t);
310 static void	re_shutdown(device_t);
311 
312 static int	re_allocmem(device_t);
313 static void	re_freemem(device_t);
314 static void	re_freebufmem(struct re_softc *, int, int);
315 static int	re_encap(struct re_softc *, struct mbuf **, int *);
316 static int	re_newbuf_std(struct re_softc *, int, int);
317 static int	re_newbuf_jumbo(struct re_softc *, int, int);
318 static void	re_setup_rxdesc(struct re_softc *, int);
319 static int	re_rx_list_init(struct re_softc *);
320 static int	re_tx_list_init(struct re_softc *);
321 static int	re_rxeof(struct re_softc *);
322 static int	re_txeof(struct re_softc *);
323 static int	re_tx_collect(struct re_softc *);
324 static void	re_intr(void *);
325 static void	re_tick(void *);
326 static void	re_tick_serialized(void *);
327 
328 static void	re_start(struct ifnet *, struct ifaltq_subque *);
329 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
330 static void	re_init(void *);
331 static void	re_stop(struct re_softc *);
332 static void	re_watchdog(struct ifnet *);
333 static int	re_ifmedia_upd(struct ifnet *);
334 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
335 
336 static void	re_eeprom_putbyte(struct re_softc *, int);
337 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
338 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
339 static void	re_get_eewidth(struct re_softc *);
340 
341 static int	re_gmii_readreg(device_t, int, int);
342 static int	re_gmii_writereg(device_t, int, int, int);
343 
344 static int	re_miibus_readreg(device_t, int, int);
345 static int	re_miibus_writereg(device_t, int, int, int);
346 static void	re_miibus_statchg(device_t);
347 
348 static void	re_setmulti(struct re_softc *);
349 static void	re_reset(struct re_softc *, int);
350 static void	re_get_eaddr(struct re_softc *, uint8_t *);
351 
352 static void	re_setup_hw_im(struct re_softc *);
353 static void	re_setup_sim_im(struct re_softc *);
354 static void	re_disable_hw_im(struct re_softc *);
355 static void	re_disable_sim_im(struct re_softc *);
356 static void	re_config_imtype(struct re_softc *, int);
357 static void	re_setup_intr(struct re_softc *, int, int);
358 
359 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
360 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
361 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
362 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
363 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
364 
365 static int	re_jpool_alloc(struct re_softc *);
366 static void	re_jpool_free(struct re_softc *);
367 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
368 static void	re_jbuf_free(void *);
369 static void	re_jbuf_ref(void *);
370 
371 #ifdef RE_DIAG
372 static int	re_diag(struct re_softc *);
373 #endif
374 
375 #ifdef IFPOLL_ENABLE
376 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
377 static void	re_npoll_compat(struct ifnet *, void *, int);
378 #endif
379 
380 static device_method_t re_methods[] = {
381 	/* Device interface */
382 	DEVMETHOD(device_probe,		re_probe),
383 	DEVMETHOD(device_attach,	re_attach),
384 	DEVMETHOD(device_detach,	re_detach),
385 	DEVMETHOD(device_suspend,	re_suspend),
386 	DEVMETHOD(device_resume,	re_resume),
387 	DEVMETHOD(device_shutdown,	re_shutdown),
388 
389 	/* bus interface */
390 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
391 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
392 
393 	/* MII interface */
394 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
395 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
396 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
397 
398 	DEVMETHOD_END
399 };
400 
401 static driver_t re_driver = {
402 	"re",
403 	re_methods,
404 	sizeof(struct re_softc)
405 };
406 
407 static devclass_t re_devclass;
408 
409 DECLARE_DUMMY_MODULE(if_re);
410 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
411 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
412 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
413 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
414 
415 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
416 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
417 static int	re_msi_enable = 0;
418 
419 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
420 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
421 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
422 
423 #define EE_SET(x)	\
424 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
425 
426 #define EE_CLR(x)	\
427 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
428 
429 static __inline void
430 re_free_rxchain(struct re_softc *sc)
431 {
432 	if (sc->re_head != NULL) {
433 		m_freem(sc->re_head);
434 		sc->re_head = sc->re_tail = NULL;
435 	}
436 }
437 
438 /*
439  * Send a read command and address to the EEPROM, check for ACK.
440  */
441 static void
442 re_eeprom_putbyte(struct re_softc *sc, int addr)
443 {
444 	int d, i;
445 
446 	d = addr | (RE_9346_READ << sc->re_eewidth);
447 
448 	/*
449 	 * Feed in each bit and strobe the clock.
450 	 */
451 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
452 		if (d & i)
453 			EE_SET(RE_EE_DATAIN);
454 		else
455 			EE_CLR(RE_EE_DATAIN);
456 		DELAY(100);
457 		EE_SET(RE_EE_CLK);
458 		DELAY(150);
459 		EE_CLR(RE_EE_CLK);
460 		DELAY(100);
461 	}
462 }
463 
464 /*
465  * Read a word of data stored in the EEPROM at address 'addr.'
466  */
467 static void
468 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
469 {
470 	int i;
471 	uint16_t word = 0;
472 
473 	/*
474 	 * Send address of word we want to read.
475 	 */
476 	re_eeprom_putbyte(sc, addr);
477 
478 	/*
479 	 * Start reading bits from EEPROM.
480 	 */
481 	for (i = 0x8000; i != 0; i >>= 1) {
482 		EE_SET(RE_EE_CLK);
483 		DELAY(100);
484 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
485 			word |= i;
486 		EE_CLR(RE_EE_CLK);
487 		DELAY(100);
488 	}
489 
490 	*dest = word;
491 }
492 
493 /*
494  * Read a sequence of words from the EEPROM.
495  */
496 static void
497 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
498 {
499 	int i;
500 	uint16_t word = 0, *ptr;
501 
502 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
503 	DELAY(100);
504 
505 	for (i = 0; i < cnt; i++) {
506 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
507 		re_eeprom_getword(sc, off + i, &word);
508 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
509 		ptr = (uint16_t *)(dest + (i * 2));
510 		*ptr = word;
511 	}
512 
513 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
514 }
515 
516 static void
517 re_get_eewidth(struct re_softc *sc)
518 {
519 	uint16_t re_did = 0;
520 
521 	sc->re_eewidth = 6;
522 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
523 	if (re_did != 0x8129)
524 		sc->re_eewidth = 8;
525 }
526 
527 static int
528 re_gmii_readreg(device_t dev, int phy, int reg)
529 {
530 	struct re_softc *sc = device_get_softc(dev);
531 	u_int32_t rval;
532 	int i;
533 
534 	if (phy != 1)
535 		return(0);
536 
537 	/* Let the rgephy driver read the GMEDIASTAT register */
538 
539 	if (reg == RE_GMEDIASTAT)
540 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
541 
542 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
543 	DELAY(1000);
544 
545 	for (i = 0; i < RE_TIMEOUT; i++) {
546 		rval = CSR_READ_4(sc, RE_PHYAR);
547 		if (rval & RE_PHYAR_BUSY)
548 			break;
549 		DELAY(100);
550 	}
551 
552 	if (i == RE_TIMEOUT) {
553 		device_printf(dev, "PHY read failed\n");
554 		return(0);
555 	}
556 
557 	return(rval & RE_PHYAR_PHYDATA);
558 }
559 
560 static int
561 re_gmii_writereg(device_t dev, int phy, int reg, int data)
562 {
563 	struct re_softc *sc = device_get_softc(dev);
564 	uint32_t rval;
565 	int i;
566 
567 	CSR_WRITE_4(sc, RE_PHYAR,
568 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
569 	DELAY(1000);
570 
571 	for (i = 0; i < RE_TIMEOUT; i++) {
572 		rval = CSR_READ_4(sc, RE_PHYAR);
573 		if ((rval & RE_PHYAR_BUSY) == 0)
574 			break;
575 		DELAY(100);
576 	}
577 
578 	if (i == RE_TIMEOUT)
579 		device_printf(dev, "PHY write failed\n");
580 
581 	return(0);
582 }
583 
584 static int
585 re_miibus_readreg(device_t dev, int phy, int reg)
586 {
587 	struct re_softc	*sc = device_get_softc(dev);
588 	uint16_t rval = 0;
589 	uint16_t re8139_reg = 0;
590 
591 	if (!RE_IS_8139CP(sc)) {
592 		rval = re_gmii_readreg(dev, phy, reg);
593 		return(rval);
594 	}
595 
596 	/* Pretend the internal PHY is only at address 0 */
597 	if (phy)
598 		return(0);
599 
600 	switch(reg) {
601 	case MII_BMCR:
602 		re8139_reg = RE_BMCR;
603 		break;
604 	case MII_BMSR:
605 		re8139_reg = RE_BMSR;
606 		break;
607 	case MII_ANAR:
608 		re8139_reg = RE_ANAR;
609 		break;
610 	case MII_ANER:
611 		re8139_reg = RE_ANER;
612 		break;
613 	case MII_ANLPAR:
614 		re8139_reg = RE_LPAR;
615 		break;
616 	case MII_PHYIDR1:
617 	case MII_PHYIDR2:
618 		return(0);
619 	/*
620 	 * Allow the rlphy driver to read the media status
621 	 * register. If we have a link partner which does not
622 	 * support NWAY, this is the register which will tell
623 	 * us the results of parallel detection.
624 	 */
625 	case RE_MEDIASTAT:
626 		return(CSR_READ_1(sc, RE_MEDIASTAT));
627 	default:
628 		device_printf(dev, "bad phy register\n");
629 		return(0);
630 	}
631 	rval = CSR_READ_2(sc, re8139_reg);
632 	if (re8139_reg == RE_BMCR) {
633 		/* 8139C+ has different bit layout. */
634 		rval &= ~(BMCR_LOOP | BMCR_ISO);
635 	}
636 	return(rval);
637 }
638 
639 static int
640 re_miibus_writereg(device_t dev, int phy, int reg, int data)
641 {
642 	struct re_softc *sc= device_get_softc(dev);
643 	u_int16_t re8139_reg = 0;
644 
645 	if (!RE_IS_8139CP(sc))
646 		return(re_gmii_writereg(dev, phy, reg, data));
647 
648 	/* Pretend the internal PHY is only at address 0 */
649 	if (phy)
650 		return(0);
651 
652 	switch(reg) {
653 	case MII_BMCR:
654 		re8139_reg = RE_BMCR;
655 		/* 8139C+ has different bit layout. */
656 		data &= ~(BMCR_LOOP | BMCR_ISO);
657 		break;
658 	case MII_BMSR:
659 		re8139_reg = RE_BMSR;
660 		break;
661 	case MII_ANAR:
662 		re8139_reg = RE_ANAR;
663 		break;
664 	case MII_ANER:
665 		re8139_reg = RE_ANER;
666 		break;
667 	case MII_ANLPAR:
668 		re8139_reg = RE_LPAR;
669 		break;
670 	case MII_PHYIDR1:
671 	case MII_PHYIDR2:
672 		return(0);
673 	default:
674 		device_printf(dev, "bad phy register\n");
675 		return(0);
676 	}
677 	CSR_WRITE_2(sc, re8139_reg, data);
678 	return(0);
679 }
680 
681 static void
682 re_miibus_statchg(device_t dev)
683 {
684 }
685 
686 /*
687  * Program the 64-bit multicast hash filter.
688  */
689 static void
690 re_setmulti(struct re_softc *sc)
691 {
692 	struct ifnet *ifp = &sc->arpcom.ac_if;
693 	int h = 0;
694 	uint32_t hashes[2] = { 0, 0 };
695 	struct ifmultiaddr *ifma;
696 	uint32_t rxfilt;
697 	int mcnt = 0;
698 
699 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
700 
701 	/* Set the individual bit to receive frames for this host only. */
702 	rxfilt |= RE_RXCFG_RX_INDIV;
703 	/* Set capture broadcast bit to capture broadcast frames. */
704 	rxfilt |= RE_RXCFG_RX_BROAD;
705 
706 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
707 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
708 		rxfilt |= RE_RXCFG_RX_MULTI;
709 
710 		/* If we want promiscuous mode, set the allframes bit. */
711 		if (ifp->if_flags & IFF_PROMISC)
712 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
713 
714 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
715 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
716 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
717 		return;
718 	}
719 
720 	/* first, zot all the existing hash bits */
721 	CSR_WRITE_4(sc, RE_MAR0, 0);
722 	CSR_WRITE_4(sc, RE_MAR4, 0);
723 
724 	/* now program new ones */
725 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
726 		if (ifma->ifma_addr->sa_family != AF_LINK)
727 			continue;
728 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
729 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
730 		if (h < 32)
731 			hashes[0] |= (1 << h);
732 		else
733 			hashes[1] |= (1 << (h - 32));
734 		mcnt++;
735 	}
736 
737 	if (mcnt)
738 		rxfilt |= RE_RXCFG_RX_MULTI;
739 	else
740 		rxfilt &= ~RE_RXCFG_RX_MULTI;
741 
742 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
743 
744 	/*
745 	 * For some unfathomable reason, RealTek decided to reverse
746 	 * the order of the multicast hash registers in the PCI Express
747 	 * parts. This means we have to write the hash pattern in reverse
748 	 * order for those devices.
749 	 */
750 	if (sc->re_caps & RE_C_PCIE) {
751 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
752 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
753 	} else {
754 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
755 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
756 	}
757 }
758 
759 static void
760 re_reset(struct re_softc *sc, int running)
761 {
762 	int i;
763 
764 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
765 		CSR_WRITE_1(sc, RE_COMMAND,
766 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
767 		DELAY(100);
768 	}
769 
770 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
771 
772 	for (i = 0; i < RE_TIMEOUT; i++) {
773 		DELAY(10);
774 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
775 			break;
776 	}
777 	if (i == RE_TIMEOUT)
778 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
779 }
780 
781 #ifdef RE_DIAG
782 /*
783  * The following routine is designed to test for a defect on some
784  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
785  * lines connected to the bus, however for a 32-bit only card, they
786  * should be pulled high. The result of this defect is that the
787  * NIC will not work right if you plug it into a 64-bit slot: DMA
788  * operations will be done with 64-bit transfers, which will fail
789  * because the 64-bit data lines aren't connected.
790  *
791  * There's no way to work around this (short of talking a soldering
792  * iron to the board), however we can detect it. The method we use
793  * here is to put the NIC into digital loopback mode, set the receiver
794  * to promiscuous mode, and then try to send a frame. We then compare
795  * the frame data we sent to what was received. If the data matches,
796  * then the NIC is working correctly, otherwise we know the user has
797  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
798  * slot. In the latter case, there's no way the NIC can work correctly,
799  * so we print out a message on the console and abort the device attach.
800  */
801 
802 static int
803 re_diag(struct re_softc *sc)
804 {
805 	struct ifnet *ifp = &sc->arpcom.ac_if;
806 	struct mbuf *m0;
807 	struct ether_header *eh;
808 	struct re_desc *cur_rx;
809 	uint16_t status;
810 	int total_len, i, error = 0, phyaddr;
811 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
812 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
813 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
814 
815 	/* Allocate a single mbuf */
816 
817 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
818 	if (m0 == NULL)
819 		return(ENOBUFS);
820 
821 	/*
822 	 * Initialize the NIC in test mode. This sets the chip up
823 	 * so that it can send and receive frames, but performs the
824 	 * following special functions:
825 	 * - Puts receiver in promiscuous mode
826 	 * - Enables digital loopback mode
827 	 * - Leaves interrupts turned off
828 	 */
829 
830 	ifp->if_flags |= IFF_PROMISC;
831 	sc->re_flags |= RE_F_TESTMODE;
832 	re_init(sc);
833 	sc->re_flags |= RE_F_LINKED;
834 	if (!RE_IS_8139CP(sc))
835 		phyaddr = 1;
836 	else
837 		phyaddr = 0;
838 
839 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
840 	for (i = 0; i < RE_TIMEOUT; i++) {
841 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
842 		if (!(status & BMCR_RESET))
843 			break;
844 	}
845 
846 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
847 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
848 
849 	DELAY(100000);
850 
851 	/* Put some data in the mbuf */
852 
853 	eh = mtod(m0, struct ether_header *);
854 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
855 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
856 	eh->ether_type = htons(ETHERTYPE_IP);
857 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
858 
859 	/*
860 	 * Queue the packet, start transmission.
861 	 * Note: ifq_handoff() ultimately calls re_start() for us.
862 	 */
863 
864 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
865 	error = ifq_handoff(ifp, m0, NULL);
866 	if (error) {
867 		m0 = NULL;
868 		goto done;
869 	}
870 	m0 = NULL;
871 
872 	/* Wait for it to propagate through the chip */
873 
874 	DELAY(100000);
875 	for (i = 0; i < RE_TIMEOUT; i++) {
876 		status = CSR_READ_2(sc, RE_ISR);
877 		CSR_WRITE_2(sc, RE_ISR, status);
878 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
879 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
880 			break;
881 		DELAY(10);
882 	}
883 
884 	if (i == RE_TIMEOUT) {
885 		if_printf(ifp, "diagnostic failed to receive packet "
886 			  "in loopback mode\n");
887 		error = EIO;
888 		goto done;
889 	}
890 
891 	/*
892 	 * The packet should have been dumped into the first
893 	 * entry in the RX DMA ring. Grab it from there.
894 	 */
895 
896 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
897 			BUS_DMASYNC_POSTREAD);
898 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
899 			  sc->re_ldata.re_rx_dmamap[0]);
900 
901 	m0 = sc->re_ldata.re_rx_mbuf[0];
902 	sc->re_ldata.re_rx_mbuf[0] = NULL;
903 	eh = mtod(m0, struct ether_header *);
904 
905 	cur_rx = &sc->re_ldata.re_rx_list[0];
906 	total_len = RE_RXBYTES(cur_rx);
907 
908 	if (total_len != ETHER_MIN_LEN) {
909 		if_printf(ifp, "diagnostic failed, received short packet\n");
910 		error = EIO;
911 		goto done;
912 	}
913 
914 	/* Test that the received packet data matches what we sent. */
915 
916 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
917 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
918 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
919 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
920 		if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
921 		    kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
922 		if_printf(ifp, "received RX data: %s/%s/0x%x\n",
923 		    kether_ntoa(eh->ether_dhost, ethstr[0]),
924 		    kether_ntoa(eh->ether_shost, ethstr[1]),
925 		    ntohs(eh->ether_type));
926 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
927 		    "into a 64-bit PCI slot.\n");
928 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
929 		    "for proper operation.\n");
930 		if_printf(ifp, "Read the re(4) man page for more details.\n");
931 		error = EIO;
932 	}
933 
934 done:
935 	/* Turn interface off, release resources */
936 
937 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
938 	ifp->if_flags &= ~IFF_PROMISC;
939 	re_stop(sc);
940 	if (m0 != NULL)
941 		m_freem(m0);
942 
943 	return (error);
944 }
945 #endif	/* RE_DIAG */
946 
947 /*
948  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
949  * IDs against our list and return a device name if we find a match.
950  */
951 static int
952 re_probe(device_t dev)
953 {
954 	const struct re_type *t;
955 	const struct re_hwrev *hw_rev;
956 	struct re_softc *sc;
957 	int rid;
958 	uint32_t hwrev, macmode, txcfg;
959 	uint16_t vendor, product;
960 
961 	vendor = pci_get_vendor(dev);
962 	product = pci_get_device(dev);
963 
964 	/*
965 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
966 	 * Rev.2 is supported by sk(4).
967 	 */
968 	if (vendor == PCI_VENDOR_LINKSYS &&
969 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
970 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
971 		return ENXIO;
972 
973 	if (vendor == PCI_VENDOR_REALTEK &&
974 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
975 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
976 		/* Poor 8139 */
977 		return ENXIO;
978 	}
979 
980 	for (t = re_devs; t->re_name != NULL; t++) {
981 		if (product == t->re_did && vendor == t->re_vid)
982 			break;
983 	}
984 
985 	/*
986 	 * Check if we found a RealTek device.
987 	 */
988 	if (t->re_name == NULL)
989 		return ENXIO;
990 
991 	/*
992 	 * Temporarily map the I/O space so we can read the chip ID register.
993 	 */
994 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
995 	rid = RE_PCI_LOIO;
996 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
997 					    RF_ACTIVE);
998 	if (sc->re_res == NULL) {
999 		device_printf(dev, "couldn't map ports/memory\n");
1000 		kfree(sc, M_TEMP);
1001 		return ENXIO;
1002 	}
1003 
1004 	sc->re_btag = rman_get_bustag(sc->re_res);
1005 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1006 
1007 	txcfg = CSR_READ_4(sc, RE_TXCFG);
1008 	hwrev = txcfg & RE_TXCFG_HWREV;
1009 	macmode = txcfg & RE_TXCFG_MACMODE;
1010 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
1011 	kfree(sc, M_TEMP);
1012 
1013 	/*
1014 	 * and continue matching for the specific chip...
1015 	 */
1016 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
1017 		if (hw_rev->re_hwrev == hwrev) {
1018 			sc = device_get_softc(dev);
1019 
1020 			sc->re_hwrev = hw_rev->re_hwrev;
1021 			sc->re_caps = hw_rev->re_caps;
1022 			sc->re_maxmtu = hw_rev->re_maxmtu;
1023 
1024 			/*
1025 			 * Apply chip property fixup
1026 			 */
1027 			switch (sc->re_hwrev) {
1028 			case RE_HWREV_8168GU:
1029 				if (vendor == PCI_VENDOR_REALTEK &&
1030 				    product == PCI_PRODUCT_REALTEK_RT8101E) {
1031 					/* 8106EUS */
1032 					sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
1033 					    RE_C_PHYPMGT | RE_C_AUTOPAD |
1034 					    RE_C_STOP_RXTX | RE_C_FASTE;
1035 					sc->re_maxmtu = ETHERMTU;
1036 					device_printf(dev, "8106EUS fixup\n");
1037 				} else {
1038 					/* 8168GU */
1039 					goto ee_eaddr1;
1040 				}
1041 				break;
1042 
1043 			case RE_HWREV_8168E:
1044 				if (vendor == PCI_VENDOR_REALTEK &&
1045 				    product == PCI_PRODUCT_REALTEK_RT8101E) {
1046 					/* 8105E */
1047 					sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
1048 					    RE_C_PHYPMGT | RE_C_AUTOPAD |
1049 					    RE_C_STOP_RXTX | RE_C_FASTE;
1050 					sc->re_maxmtu = ETHERMTU;
1051 					device_printf(dev, "8105E fixup\n");
1052 					goto ee_eaddr0;
1053 				}
1054 				/* 8168E */
1055 				break;
1056 
1057 			case RE_HWREV_8101E:
1058 			case RE_HWREV_8102E:
1059 			case RE_HWREV_8102EL:
1060 			case RE_HWREV_8401E:
1061 			case RE_HWREV_8105E:
1062 			case RE_HWREV_8106E:
1063 ee_eaddr0:
1064 				sc->re_caps |= RE_C_EE_EADDR;
1065 				sc->re_ee_eaddr = RE_EE_EADDR0;
1066 				break;
1067 
1068 			case RE_HWREV_8168F:
1069 			case RE_HWREV_8111F:
1070 			case RE_HWREV_8168G:
1071 				if (macmode == 0 ||
1072 				    macmode == 0x100000) {
1073 					sc->re_caps |= RE_C_EE_EADDR;
1074 					sc->re_ee_eaddr = RE_EE_EADDR1;
1075 				}
1076 				break;
1077 
1078 			case RE_HWREV_8411:
1079 			case RE_HWREV_8168EP:
1080 			case RE_HWREV_8411B:
1081 ee_eaddr1:
1082 				sc->re_caps |= RE_C_EE_EADDR;
1083 				sc->re_ee_eaddr = RE_EE_EADDR1;
1084 				break;
1085 			}
1086 			if (pci_is_pcie(dev))
1087 				sc->re_caps |= RE_C_PCIE;
1088 
1089 			device_set_desc(dev, t->re_name);
1090 			return 0;
1091 		}
1092 	}
1093 	device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1094 	    hwrev, macmode);
1095 
1096 	return ENXIO;
1097 }
1098 
1099 static int
1100 re_allocmem(device_t dev)
1101 {
1102 	struct re_softc *sc = device_get_softc(dev);
1103 	bus_dmamem_t dmem;
1104 	int error, i;
1105 
1106 	/*
1107 	 * Allocate list data
1108 	 */
1109 	sc->re_ldata.re_tx_mbuf =
1110 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1111 		M_DEVBUF, M_ZERO | M_WAITOK);
1112 
1113 	sc->re_ldata.re_rx_mbuf =
1114 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1115 		M_DEVBUF, M_ZERO | M_WAITOK);
1116 
1117 	sc->re_ldata.re_rx_paddr =
1118 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1119 		M_DEVBUF, M_ZERO | M_WAITOK);
1120 
1121 	sc->re_ldata.re_tx_dmamap =
1122 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1123 		M_DEVBUF, M_ZERO | M_WAITOK);
1124 
1125 	sc->re_ldata.re_rx_dmamap =
1126 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1127 		M_DEVBUF, M_ZERO | M_WAITOK);
1128 
1129 	/*
1130 	 * Allocate the parent bus DMA tag appropriate for PCI.
1131 	 */
1132 	error = bus_dma_tag_create(NULL,	/* parent */
1133 			1, 0,			/* alignment, boundary */
1134 			BUS_SPACE_MAXADDR,	/* lowaddr */
1135 			BUS_SPACE_MAXADDR,	/* highaddr */
1136 			NULL, NULL,		/* filter, filterarg */
1137 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1138 			0,			/* nsegments */
1139 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1140 			0,			/* flags */
1141 			&sc->re_parent_tag);
1142 	if (error) {
1143 		device_printf(dev, "could not allocate parent dma tag\n");
1144 		return error;
1145 	}
1146 
1147 	/* Allocate TX descriptor list. */
1148 	error = bus_dmamem_coherent(sc->re_parent_tag,
1149 			RE_RING_ALIGN, 0,
1150 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1151 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1152 			&dmem);
1153 	if (error) {
1154 		device_printf(dev, "could not allocate TX ring\n");
1155 		return error;
1156 	}
1157 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1158 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1159 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1160 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1161 
1162 	/* Allocate RX descriptor list. */
1163 	error = bus_dmamem_coherent(sc->re_parent_tag,
1164 			RE_RING_ALIGN, 0,
1165 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1166 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1167 			&dmem);
1168 	if (error) {
1169 		device_printf(dev, "could not allocate RX ring\n");
1170 		return error;
1171 	}
1172 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1173 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1174 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1175 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1176 
1177 	/* Allocate maps for TX mbufs. */
1178 	error = bus_dma_tag_create(sc->re_parent_tag,
1179 			1, 0,
1180 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1181 			NULL, NULL,
1182 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1183 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1184 			&sc->re_ldata.re_tx_mtag);
1185 	if (error) {
1186 		device_printf(dev, "could not allocate TX buf dma tag\n");
1187 		return(error);
1188 	}
1189 
1190 	/* Create DMA maps for TX buffers */
1191 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1192 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1193 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1194 				&sc->re_ldata.re_tx_dmamap[i]);
1195 		if (error) {
1196 			device_printf(dev, "can't create DMA map for TX buf\n");
1197 			re_freebufmem(sc, i, 0);
1198 			return(error);
1199 		}
1200 	}
1201 
1202 	/* Allocate maps for RX mbufs. */
1203 	error = bus_dma_tag_create(sc->re_parent_tag,
1204 			RE_RXBUF_ALIGN, 0,
1205 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1206 			NULL, NULL,
1207 			MCLBYTES, 1, MCLBYTES,
1208 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1209 			&sc->re_ldata.re_rx_mtag);
1210 	if (error) {
1211 		device_printf(dev, "could not allocate RX buf dma tag\n");
1212 		return(error);
1213 	}
1214 
1215 	/* Create spare DMA map for RX */
1216 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1217 			&sc->re_ldata.re_rx_spare);
1218 	if (error) {
1219 		device_printf(dev, "can't create spare DMA map for RX\n");
1220 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1221 		sc->re_ldata.re_rx_mtag = NULL;
1222 		return error;
1223 	}
1224 
1225 	/* Create DMA maps for RX buffers */
1226 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1227 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1228 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1229 		if (error) {
1230 			device_printf(dev, "can't create DMA map for RX buf\n");
1231 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1232 			return(error);
1233 		}
1234 	}
1235 
1236 	/* Create jumbo buffer pool for RX if required */
1237 	if (sc->re_caps & RE_C_CONTIGRX) {
1238 		error = re_jpool_alloc(sc);
1239 		if (error) {
1240 			re_jpool_free(sc);
1241 			/* Disable jumbo frame support */
1242 			sc->re_maxmtu = ETHERMTU;
1243 		}
1244 	}
1245 	return(0);
1246 }
1247 
1248 static void
1249 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1250 {
1251 	int i;
1252 
1253 	/* Destroy all the RX and TX buffer maps */
1254 	if (sc->re_ldata.re_tx_mtag) {
1255 		for (i = 0; i < tx_cnt; i++) {
1256 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1257 					   sc->re_ldata.re_tx_dmamap[i]);
1258 		}
1259 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1260 		sc->re_ldata.re_tx_mtag = NULL;
1261 	}
1262 
1263 	if (sc->re_ldata.re_rx_mtag) {
1264 		for (i = 0; i < rx_cnt; i++) {
1265 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1266 					   sc->re_ldata.re_rx_dmamap[i]);
1267 		}
1268 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1269 				   sc->re_ldata.re_rx_spare);
1270 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1271 		sc->re_ldata.re_rx_mtag = NULL;
1272 	}
1273 }
1274 
1275 static void
1276 re_freemem(device_t dev)
1277 {
1278 	struct re_softc *sc = device_get_softc(dev);
1279 
1280 	/* Unload and free the RX DMA ring memory and map */
1281 	if (sc->re_ldata.re_rx_list_tag) {
1282 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1283 				  sc->re_ldata.re_rx_list_map);
1284 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1285 				sc->re_ldata.re_rx_list,
1286 				sc->re_ldata.re_rx_list_map);
1287 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1288 	}
1289 
1290 	/* Unload and free the TX DMA ring memory and map */
1291 	if (sc->re_ldata.re_tx_list_tag) {
1292 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1293 				  sc->re_ldata.re_tx_list_map);
1294 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1295 				sc->re_ldata.re_tx_list,
1296 				sc->re_ldata.re_tx_list_map);
1297 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1298 	}
1299 
1300 	/* Free RX/TX buf DMA stuffs */
1301 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1302 
1303 	/* Unload and free the stats buffer and map */
1304 	if (sc->re_ldata.re_stag) {
1305 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1306 		bus_dmamem_free(sc->re_ldata.re_stag,
1307 				sc->re_ldata.re_stats,
1308 				sc->re_ldata.re_smap);
1309 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1310 	}
1311 
1312 	if (sc->re_caps & RE_C_CONTIGRX)
1313 		re_jpool_free(sc);
1314 
1315 	if (sc->re_parent_tag)
1316 		bus_dma_tag_destroy(sc->re_parent_tag);
1317 
1318 	if (sc->re_ldata.re_tx_mbuf != NULL)
1319 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1320 	if (sc->re_ldata.re_rx_mbuf != NULL)
1321 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1322 	if (sc->re_ldata.re_rx_paddr != NULL)
1323 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1324 	if (sc->re_ldata.re_tx_dmamap != NULL)
1325 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1326 	if (sc->re_ldata.re_rx_dmamap != NULL)
1327 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1328 }
1329 
1330 /*
1331  * Attach the interface. Allocate softc structures, do ifmedia
1332  * setup and ethernet/BPF attach.
1333  */
1334 static int
1335 re_attach(device_t dev)
1336 {
1337 	struct re_softc	*sc = device_get_softc(dev);
1338 	struct ifnet *ifp;
1339 	struct sysctl_ctx_list *ctx;
1340 	struct sysctl_oid *tree;
1341 	uint8_t eaddr[ETHER_ADDR_LEN];
1342 	int error = 0, qlen, msi_enable;
1343 	u_int irq_flags;
1344 
1345 	callout_init_mp(&sc->re_timer);
1346 	sc->re_dev = dev;
1347 
1348 	if (RE_IS_8139CP(sc)) {
1349 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1350 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1351 	} else {
1352 		sc->re_rx_desc_cnt = re_rx_desc_count;
1353 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1354 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1355 
1356 		sc->re_tx_desc_cnt = re_tx_desc_count;
1357 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1358 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1359 	}
1360 
1361 	qlen = RE_IFQ_MAXLEN;
1362 	if (sc->re_tx_desc_cnt > qlen)
1363 		qlen = sc->re_tx_desc_cnt;
1364 
1365 	sc->re_rxbuf_size = MCLBYTES;
1366 	sc->re_newbuf = re_newbuf_std;
1367 
1368 	sc->re_tx_time = 5;		/* 125us */
1369 	sc->re_rx_time = 2;		/* 50us */
1370 	if (sc->re_caps & RE_C_PCIE)
1371 		sc->re_sim_time = 75;	/* 75us */
1372 	else
1373 		sc->re_sim_time = 125;	/* 125us */
1374 	if (!RE_IS_8139CP(sc)) {
1375 		/* simulated interrupt moderation */
1376 		sc->re_imtype = RE_IMTYPE_SIM;
1377 	} else {
1378 		sc->re_imtype = RE_IMTYPE_NONE;
1379 	}
1380 	re_config_imtype(sc, sc->re_imtype);
1381 
1382 	ctx = device_get_sysctl_ctx(dev);
1383 	tree = device_get_sysctl_tree(dev);
1384 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1385 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1386 		       0, "RX desc count");
1387 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1388 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1389 		       0, "TX desc count");
1390 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sim_time",
1391 			CTLTYPE_INT | CTLFLAG_RW,
1392 			sc, 0, re_sysctl_simtime, "I",
1393 			"Simulated interrupt moderation time (usec).");
1394 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "imtype",
1395 			CTLTYPE_INT | CTLFLAG_RW,
1396 			sc, 0, re_sysctl_imtype, "I",
1397 			"Interrupt moderation type -- "
1398 			"0:disable, 1:simulated, "
1399 			"2:hardware(if supported)");
1400 	if (sc->re_caps & RE_C_HWIM) {
1401 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1402 				OID_AUTO, "hw_rxtime",
1403 				CTLTYPE_INT | CTLFLAG_RW,
1404 				sc, 0, re_sysctl_rxtime, "I",
1405 				"Hardware interrupt moderation time "
1406 				"(unit: 25usec).");
1407 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1408 				OID_AUTO, "hw_txtime",
1409 				CTLTYPE_INT | CTLFLAG_RW,
1410 				sc, 0, re_sysctl_txtime, "I",
1411 				"Hardware interrupt moderation time "
1412 				"(unit: 25usec).");
1413 	}
1414 
1415 #ifndef BURN_BRIDGES
1416 	/*
1417 	 * Handle power management nonsense.
1418 	 */
1419 
1420 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1421 		uint32_t membase, irq;
1422 
1423 		/* Save important PCI config data. */
1424 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1425 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1426 
1427 		/* Reset the power state. */
1428 		device_printf(dev, "chip is in D%d power mode "
1429 		    "-- setting to D0\n", pci_get_powerstate(dev));
1430 
1431 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1432 
1433 		/* Restore PCI config data. */
1434 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1435 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1436 	}
1437 #endif
1438 	/*
1439 	 * Map control/status registers.
1440 	 */
1441 	pci_enable_busmaster(dev);
1442 
1443 	if (pci_is_pcie(dev)) {
1444 		sc->re_res_rid = PCIR_BAR(2);
1445 		sc->re_res_type = SYS_RES_MEMORY;
1446 	} else {
1447 		sc->re_res_rid = PCIR_BAR(0);
1448 		sc->re_res_type = SYS_RES_IOPORT;
1449 	}
1450 	sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
1451 	    &sc->re_res_rid, RF_ACTIVE);
1452 	if (sc->re_res == NULL) {
1453 		device_printf(dev, "couldn't map IO\n");
1454 		error = ENXIO;
1455 		goto fail;
1456 	}
1457 
1458 	sc->re_btag = rman_get_bustag(sc->re_res);
1459 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1460 
1461 	/*
1462 	 * Allocate interrupt
1463 	 */
1464 	if (pci_is_pcie(dev))
1465 		msi_enable = re_msi_enable;
1466 	else
1467 		msi_enable = 0;
1468 	sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
1469 	    &sc->re_irq_rid, &irq_flags);
1470 
1471 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1472 					    irq_flags);
1473 	if (sc->re_irq == NULL) {
1474 		device_printf(dev, "couldn't map interrupt\n");
1475 		error = ENXIO;
1476 		goto fail;
1477 	}
1478 
1479 	/* Reset the adapter. */
1480 	re_reset(sc, 0);
1481 
1482 	if (RE_IS_8139CP(sc)) {
1483 		sc->re_bus_speed = 33; /* XXX */
1484 	} else if (sc->re_caps & RE_C_PCIE) {
1485 		sc->re_bus_speed = 125;
1486 	} else {
1487 		uint8_t cfg2;
1488 
1489 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1490 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1491 		case RE_CFG2_PCICLK_33MHZ:
1492 			sc->re_bus_speed = 33;
1493 			break;
1494 		case RE_CFG2_PCICLK_66MHZ:
1495 			sc->re_bus_speed = 66;
1496 			break;
1497 		default:
1498 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1499 			sc->re_bus_speed = 33;
1500 			break;
1501 		}
1502 		if (cfg2 & RE_CFG2_PCI64)
1503 			sc->re_caps |= RE_C_PCI64;
1504 	}
1505 	device_printf(dev, "Hardware rev. 0x%08x; PCI%s %dMHz\n",
1506 		      sc->re_hwrev,
1507 		      (sc->re_caps & RE_C_PCIE) ?
1508 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1509 		      sc->re_bus_speed);
1510 
1511 	/*
1512 	 * NOTE:
1513 	 * DO NOT try to adjust config1 and config5 which was spotted in
1514 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1515 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1516 	 */
1517 
1518 	re_get_eaddr(sc, eaddr);
1519 
1520 	if (!RE_IS_8139CP(sc)) {
1521 		/* Set RX length mask */
1522 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1523 		sc->re_txstart = RE_GTXSTART;
1524 	} else {
1525 		/* Set RX length mask */
1526 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1527 		sc->re_txstart = RE_TXSTART;
1528 	}
1529 
1530 	/* Allocate DMA stuffs */
1531 	error = re_allocmem(dev);
1532 	if (error)
1533 		goto fail;
1534 
1535 	/*
1536 	 * Apply some magic PCI settings from Realtek ...
1537 	 */
1538 	if (RE_IS_8169(sc)) {
1539 		CSR_WRITE_1(sc, 0x82, 1);
1540 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1541 	}
1542 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1543 
1544 	if (sc->re_caps & RE_C_MAC2) {
1545 		/*
1546 		 * Following part is extracted from Realtek BSD driver v176.
1547 		 * However, this does _not_ make much/any sense:
1548 		 * 8168C's PCI Express device control is located at 0x78,
1549 		 * so the reading from 0x79 (higher part of 0x78) and setting
1550 		 * the 4~6bits intend to enlarge the "max read request size"
1551 		 * (we will do it).  The content of the rest part of this
1552 		 * register is not meaningful to other PCI registers, so
1553 		 * writing the value to 0x54 could be completely wrong.
1554 		 * 0x80 is the lower part of PCI Express device status, non-
1555 		 * reserved bits are RW1C, writing 0 to them will not have
1556 		 * any effect at all.
1557 		 */
1558 #ifdef foo
1559 		uint8_t val;
1560 
1561 		val = pci_read_config(dev, 0x79, 1);
1562 		val = (val & ~0x70) | 0x50;
1563 		pci_write_config(dev, 0x54, val, 1);
1564 		pci_write_config(dev, 0x80, 0, 1);
1565 #endif
1566 	}
1567 
1568 	/*
1569 	 * Apply some PHY fixup from Realtek ...
1570 	 */
1571 	if (sc->re_hwrev == RE_HWREV_8110S) {
1572 		CSR_WRITE_1(sc, 0x82, 1);
1573 		re_miibus_writereg(dev, 1, 0xb, 0);
1574 	}
1575 	if (sc->re_caps & RE_C_PHYPMGT) {
1576 		/* Power up PHY */
1577 		re_miibus_writereg(dev, 1, 0x1f, 0);
1578 		re_miibus_writereg(dev, 1, 0xe, 0);
1579 	}
1580 
1581 	/* Do MII setup */
1582 	if (mii_phy_probe(dev, &sc->re_miibus,
1583 	    re_ifmedia_upd, re_ifmedia_sts)) {
1584 		device_printf(dev, "MII without any phy!\n");
1585 		error = ENXIO;
1586 		goto fail;
1587 	}
1588 
1589 	ifp = &sc->arpcom.ac_if;
1590 	ifp->if_softc = sc;
1591 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1592 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1593 	ifp->if_ioctl = re_ioctl;
1594 	ifp->if_start = re_start;
1595 #ifdef IFPOLL_ENABLE
1596 	ifp->if_npoll = re_npoll;
1597 #endif
1598 	ifp->if_watchdog = re_watchdog;
1599 	ifp->if_init = re_init;
1600 	if (!RE_IS_8139CP(sc)) /* XXX */
1601 		ifp->if_baudrate = 1000000000;
1602 	else
1603 		ifp->if_baudrate = 100000000;
1604 	ifq_set_maxlen(&ifp->if_snd, qlen);
1605 	ifq_set_ready(&ifp->if_snd);
1606 
1607 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1608 	if (sc->re_caps & RE_C_HWCSUM)
1609 		ifp->if_capabilities |= IFCAP_HWCSUM;
1610 
1611 	ifp->if_capenable = ifp->if_capabilities;
1612 	if (ifp->if_capabilities & IFCAP_HWCSUM) {
1613 		/*
1614 		 * RTL8168/8111C generates wrong IP checksummed frame if the
1615 		 * packet has IP options so disable TX IP checksum offloading.
1616 		 */
1617 		if (sc->re_hwrev == RE_HWREV_8168CP ||
1618 		    sc->re_hwrev == RE_HWREV_8168C)
1619 			sc->re_hwassist = CSUM_TCP | CSUM_UDP;
1620 		else
1621 			sc->re_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1622 	}
1623 	ifp->if_hwassist = sc->re_hwassist;
1624 
1625 	/*
1626 	 * Call MI attach routine.
1627 	 */
1628 	ether_ifattach(ifp, eaddr, NULL);
1629 
1630 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1631 
1632 #ifdef IFPOLL_ENABLE
1633 	ifpoll_compat_setup(&sc->re_npoll, ctx, (struct sysctl_oid *)tree,
1634 	    device_get_unit(dev), ifp->if_serializer);
1635 #endif
1636 
1637 #ifdef RE_DIAG
1638 	/*
1639 	 * Perform hardware diagnostic on the original RTL8169.
1640 	 * Some 32-bit cards were incorrectly wired and would
1641 	 * malfunction if plugged into a 64-bit slot.
1642 	 */
1643 	if (sc->re_hwrev == RE_HWREV_8169) {
1644 		lwkt_serialize_enter(ifp->if_serializer);
1645 		error = re_diag(sc);
1646 		lwkt_serialize_exit(ifp->if_serializer);
1647 
1648 		if (error) {
1649 			device_printf(dev, "hardware diagnostic failure\n");
1650 			ether_ifdetach(ifp);
1651 			goto fail;
1652 		}
1653 	}
1654 #endif	/* RE_DIAG */
1655 
1656 	/* Hook interrupt last to avoid having to lock softc */
1657 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1658 			       &sc->re_intrhand, ifp->if_serializer);
1659 
1660 	if (error) {
1661 		device_printf(dev, "couldn't set up irq\n");
1662 		ether_ifdetach(ifp);
1663 		goto fail;
1664 	}
1665 
1666 fail:
1667 	if (error)
1668 		re_detach(dev);
1669 
1670 	return (error);
1671 }
1672 
1673 /*
1674  * Shutdown hardware and free up resources. This can be called any
1675  * time after the mutex has been initialized. It is called in both
1676  * the error case in attach and the normal detach case so it needs
1677  * to be careful about only freeing resources that have actually been
1678  * allocated.
1679  */
1680 static int
1681 re_detach(device_t dev)
1682 {
1683 	struct re_softc *sc = device_get_softc(dev);
1684 	struct ifnet *ifp = &sc->arpcom.ac_if;
1685 
1686 	/* These should only be active if attach succeeded */
1687 	if (device_is_attached(dev)) {
1688 		lwkt_serialize_enter(ifp->if_serializer);
1689 		re_stop(sc);
1690 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1691 		lwkt_serialize_exit(ifp->if_serializer);
1692 
1693 		ether_ifdetach(ifp);
1694 	}
1695 	if (sc->re_miibus)
1696 		device_delete_child(dev, sc->re_miibus);
1697 	bus_generic_detach(dev);
1698 
1699 	if (sc->re_irq)
1700 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1701 				     sc->re_irq);
1702 
1703 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1704 		pci_release_msi(dev);
1705 
1706 	if (sc->re_res) {
1707 		bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
1708 		    sc->re_res);
1709 	}
1710 
1711 	/* Free DMA stuffs */
1712 	re_freemem(dev);
1713 
1714 	return(0);
1715 }
1716 
1717 static void
1718 re_setup_rxdesc(struct re_softc *sc, int idx)
1719 {
1720 	bus_addr_t paddr;
1721 	uint32_t cmdstat;
1722 	struct re_desc *d;
1723 
1724 	paddr = sc->re_ldata.re_rx_paddr[idx];
1725 	d = &sc->re_ldata.re_rx_list[idx];
1726 
1727 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1728 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1729 
1730 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1731 	if (idx == (sc->re_rx_desc_cnt - 1))
1732 		cmdstat |= RE_RDESC_CMD_EOR;
1733 	d->re_cmdstat = htole32(cmdstat);
1734 }
1735 
1736 static int
1737 re_newbuf_std(struct re_softc *sc, int idx, int init)
1738 {
1739 	bus_dma_segment_t seg;
1740 	bus_dmamap_t map;
1741 	struct mbuf *m;
1742 	int error, nsegs;
1743 
1744 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1745 	if (m == NULL) {
1746 		error = ENOBUFS;
1747 
1748 		if (init) {
1749 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1750 			return error;
1751 		} else {
1752 			goto back;
1753 		}
1754 	}
1755 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1756 
1757 	/*
1758 	 * NOTE:
1759 	 * re(4) chips need address of the receive buffer to be 8-byte
1760 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1761 	 */
1762 
1763 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1764 			sc->re_ldata.re_rx_spare, m,
1765 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1766 	if (error) {
1767 		m_freem(m);
1768 		if (init) {
1769 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1770 			return error;
1771 		} else {
1772 			goto back;
1773 		}
1774 	}
1775 
1776 	if (!init) {
1777 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1778 				sc->re_ldata.re_rx_dmamap[idx],
1779 				BUS_DMASYNC_POSTREAD);
1780 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1781 				  sc->re_ldata.re_rx_dmamap[idx]);
1782 	}
1783 	sc->re_ldata.re_rx_mbuf[idx] = m;
1784 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1785 
1786 	map = sc->re_ldata.re_rx_dmamap[idx];
1787 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1788 	sc->re_ldata.re_rx_spare = map;
1789 back:
1790 	re_setup_rxdesc(sc, idx);
1791 	return error;
1792 }
1793 
1794 static int
1795 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1796 {
1797 	struct mbuf *m;
1798 	struct re_jbuf *jbuf;
1799 	int error = 0;
1800 
1801 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1802 	if (m == NULL) {
1803 		error = ENOBUFS;
1804 		if (init) {
1805 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1806 			return error;
1807 		} else {
1808 			goto back;
1809 		}
1810 	}
1811 
1812 	jbuf = re_jbuf_alloc(sc);
1813 	if (jbuf == NULL) {
1814 		m_freem(m);
1815 
1816 		error = ENOBUFS;
1817 		if (init) {
1818 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1819 			return error;
1820 		} else {
1821 			goto back;
1822 		}
1823 	}
1824 
1825 	m->m_ext.ext_arg = jbuf;
1826 	m->m_ext.ext_buf = jbuf->re_buf;
1827 	m->m_ext.ext_free = re_jbuf_free;
1828 	m->m_ext.ext_ref = re_jbuf_ref;
1829 	m->m_ext.ext_size = sc->re_rxbuf_size;
1830 
1831 	m->m_data = m->m_ext.ext_buf;
1832 	m->m_flags |= M_EXT;
1833 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1834 
1835 	/*
1836 	 * NOTE:
1837 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1838 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1839 	 */
1840 
1841 	sc->re_ldata.re_rx_mbuf[idx] = m;
1842 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1843 back:
1844 	re_setup_rxdesc(sc, idx);
1845 	return error;
1846 }
1847 
1848 static int
1849 re_tx_list_init(struct re_softc *sc)
1850 {
1851 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1852 
1853 	sc->re_ldata.re_tx_prodidx = 0;
1854 	sc->re_ldata.re_tx_considx = 0;
1855 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1856 
1857 	return(0);
1858 }
1859 
1860 static int
1861 re_rx_list_init(struct re_softc *sc)
1862 {
1863 	int i, error;
1864 
1865 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1866 
1867 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1868 		error = sc->re_newbuf(sc, i, 1);
1869 		if (error)
1870 			return(error);
1871 	}
1872 
1873 	sc->re_ldata.re_rx_prodidx = 0;
1874 	sc->re_head = sc->re_tail = NULL;
1875 
1876 	return(0);
1877 }
1878 
1879 #define RE_IP4_PACKET	0x1
1880 #define RE_TCP_PACKET	0x2
1881 #define RE_UDP_PACKET	0x4
1882 
1883 static __inline uint8_t
1884 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1885 {
1886 	uint8_t packet_type = 0;
1887 
1888 	if (sc->re_caps & RE_C_MAC2) {
1889 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1890 			packet_type |= RE_IP4_PACKET;
1891 	} else {
1892 		if (rxstat & RE_RDESC_STAT_PROTOID)
1893 			packet_type |= RE_IP4_PACKET;
1894 	}
1895 	if (RE_TCPPKT(rxstat))
1896 		packet_type |= RE_TCP_PACKET;
1897 	else if (RE_UDPPKT(rxstat))
1898 		packet_type |= RE_UDP_PACKET;
1899 	return packet_type;
1900 }
1901 
1902 /*
1903  * RX handler for C+ and 8169. For the gigE chips, we support
1904  * the reception of jumbo frames that have been fragmented
1905  * across multiple 2K mbuf cluster buffers.
1906  */
1907 static int
1908 re_rxeof(struct re_softc *sc)
1909 {
1910 	struct ifnet *ifp = &sc->arpcom.ac_if;
1911 	struct mbuf *m;
1912 	struct re_desc 	*cur_rx;
1913 	uint32_t rxstat, rxctrl;
1914 	int i, total_len, rx = 0;
1915 
1916 	for (i = sc->re_ldata.re_rx_prodidx;
1917 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1918 		cur_rx = &sc->re_ldata.re_rx_list[i];
1919 		m = sc->re_ldata.re_rx_mbuf[i];
1920 		total_len = RE_RXBYTES(cur_rx);
1921 		rxstat = le32toh(cur_rx->re_cmdstat);
1922 		rxctrl = le32toh(cur_rx->re_control);
1923 
1924 		rx = 1;
1925 
1926 #ifdef INVARIANTS
1927 		if (sc->re_flags & RE_F_USE_JPOOL)
1928 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1929 #endif
1930 
1931 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1932 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1933 				re_setup_rxdesc(sc, i);
1934 				continue;
1935 			}
1936 
1937 			if (sc->re_newbuf(sc, i, 0)) {
1938 				/* Drop upcoming fragments */
1939 				sc->re_flags |= RE_F_DROP_RXFRAG;
1940 				continue;
1941 			}
1942 
1943 			m->m_len = MCLBYTES;
1944 			if (sc->re_head == NULL) {
1945 				sc->re_head = sc->re_tail = m;
1946 			} else {
1947 				sc->re_tail->m_next = m;
1948 				sc->re_tail = m;
1949 			}
1950 			continue;
1951 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1952 			/*
1953 			 * Last fragment of a multi-fragment packet.
1954 			 *
1955 			 * Since error already happened, this fragment
1956 			 * must be dropped as well as the fragment chain.
1957 			 */
1958 			re_setup_rxdesc(sc, i);
1959 			re_free_rxchain(sc);
1960 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1961 			continue;
1962 		}
1963 
1964 		/*
1965 		 * NOTE: for the 8139C+, the frame length field
1966 		 * is always 12 bits in size, but for the gigE chips,
1967 		 * it is 13 bits (since the max RX frame length is 16K).
1968 		 * Unfortunately, all 32 bits in the status word
1969 		 * were already used, so to make room for the extra
1970 		 * length bit, RealTek took out the 'frame alignment
1971 		 * error' bit and shifted the other status bits
1972 		 * over one slot. The OWN, EOR, FS and LS bits are
1973 		 * still in the same places. We have already extracted
1974 		 * the frame length and checked the OWN bit, so rather
1975 		 * than using an alternate bit mapping, we shift the
1976 		 * status bits one space to the right so we can evaluate
1977 		 * them using the 8169 status as though it was in the
1978 		 * same format as that of the 8139C+.
1979 		 */
1980 		if (!RE_IS_8139CP(sc))
1981 			rxstat >>= 1;
1982 
1983 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1984 			IFNET_STAT_INC(ifp, ierrors, 1);
1985 			/*
1986 			 * If this is part of a multi-fragment packet,
1987 			 * discard all the pieces.
1988 			 */
1989 			re_free_rxchain(sc);
1990 			re_setup_rxdesc(sc, i);
1991 			continue;
1992 		}
1993 
1994 		/*
1995 		 * If allocating a replacement mbuf fails,
1996 		 * reload the current one.
1997 		 */
1998 
1999 		if (sc->re_newbuf(sc, i, 0)) {
2000 			IFNET_STAT_INC(ifp, ierrors, 1);
2001 			continue;
2002 		}
2003 
2004 		if (sc->re_head != NULL) {
2005 			m->m_len = total_len % MCLBYTES;
2006 			/*
2007 			 * Special case: if there's 4 bytes or less
2008 			 * in this buffer, the mbuf can be discarded:
2009 			 * the last 4 bytes is the CRC, which we don't
2010 			 * care about anyway.
2011 			 */
2012 			if (m->m_len <= ETHER_CRC_LEN) {
2013 				sc->re_tail->m_len -=
2014 				    (ETHER_CRC_LEN - m->m_len);
2015 				m_freem(m);
2016 			} else {
2017 				m->m_len -= ETHER_CRC_LEN;
2018 				sc->re_tail->m_next = m;
2019 			}
2020 			m = sc->re_head;
2021 			sc->re_head = sc->re_tail = NULL;
2022 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2023 		} else {
2024 			m->m_pkthdr.len = m->m_len =
2025 			    (total_len - ETHER_CRC_LEN);
2026 		}
2027 
2028 		IFNET_STAT_INC(ifp, ipackets, 1);
2029 		m->m_pkthdr.rcvif = ifp;
2030 
2031 		/* Do RX checksumming if enabled */
2032 
2033 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2034 			uint8_t packet_type;
2035 
2036 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2037 
2038 			/* Check IP header checksum */
2039 			if (packet_type & RE_IP4_PACKET) {
2040 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2041 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2042 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2043 			}
2044 
2045 			/* Check TCP/UDP checksum */
2046 			if (((packet_type & RE_TCP_PACKET) &&
2047 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2048 			    ((packet_type & RE_UDP_PACKET) &&
2049 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2050 				m->m_pkthdr.csum_flags |=
2051 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2052 				    CSUM_FRAG_NOT_CHECKED;
2053 				m->m_pkthdr.csum_data = 0xffff;
2054 			}
2055 		}
2056 
2057 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2058 			m->m_flags |= M_VLANTAG;
2059 			m->m_pkthdr.ether_vlantag =
2060 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2061 		}
2062 		ifp->if_input(ifp, m, NULL, -1);
2063 	}
2064 
2065 	sc->re_ldata.re_rx_prodidx = i;
2066 
2067 	return rx;
2068 }
2069 
2070 #undef RE_IP4_PACKET
2071 #undef RE_TCP_PACKET
2072 #undef RE_UDP_PACKET
2073 
2074 static int
2075 re_tx_collect(struct re_softc *sc)
2076 {
2077 	struct ifnet *ifp = &sc->arpcom.ac_if;
2078 	uint32_t txstat;
2079 	int idx, tx = 0;
2080 
2081 	for (idx = sc->re_ldata.re_tx_considx;
2082 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2083 	     RE_TXDESC_INC(sc, idx)) {
2084 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2085 		if (txstat & RE_TDESC_CMD_OWN)
2086 			break;
2087 
2088 		tx = 1;
2089 
2090 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2091 
2092 		/*
2093 		 * We only stash mbufs in the last descriptor
2094 		 * in a fragment chain, which also happens to
2095 		 * be the only place where the TX status bits
2096 		 * are valid.
2097 		 */
2098 		if (txstat & RE_TDESC_CMD_EOF) {
2099 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2100 			    sc->re_ldata.re_tx_dmamap[idx]);
2101 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2102 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2103 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2104 			    RE_TDESC_STAT_COLCNT))
2105 				IFNET_STAT_INC(ifp, collisions, 1);
2106 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2107 				IFNET_STAT_INC(ifp, oerrors, 1);
2108 			else
2109 				IFNET_STAT_INC(ifp, opackets, 1);
2110 		}
2111 		sc->re_ldata.re_tx_free++;
2112 	}
2113 	sc->re_ldata.re_tx_considx = idx;
2114 
2115 	return tx;
2116 }
2117 
2118 static int
2119 re_txeof(struct re_softc *sc)
2120 {
2121 	struct ifnet *ifp = &sc->arpcom.ac_if;
2122 	int tx;
2123 
2124 	tx = re_tx_collect(sc);
2125 
2126 	/* There is enough free TX descs */
2127 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2128 		ifq_clr_oactive(&ifp->if_snd);
2129 
2130 	/*
2131 	 * Some chips will ignore a second TX request issued while an
2132 	 * existing transmission is in progress. If the transmitter goes
2133 	 * idle but there are still packets waiting to be sent, we need
2134 	 * to restart the channel here to flush them out. This only seems
2135 	 * to be required with the PCIe devices.
2136 	 */
2137 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2138 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2139 	else
2140 		ifp->if_timer = 0;
2141 
2142 	return tx;
2143 }
2144 
2145 static void
2146 re_tick(void *xsc)
2147 {
2148 	struct re_softc *sc = xsc;
2149 
2150 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2151 	re_tick_serialized(xsc);
2152 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2153 }
2154 
2155 static void
2156 re_tick_serialized(void *xsc)
2157 {
2158 	struct re_softc *sc = xsc;
2159 	struct ifnet *ifp = &sc->arpcom.ac_if;
2160 	struct mii_data *mii;
2161 
2162 	ASSERT_SERIALIZED(ifp->if_serializer);
2163 
2164 	mii = device_get_softc(sc->re_miibus);
2165 	mii_tick(mii);
2166 	if (sc->re_flags & RE_F_LINKED) {
2167 		if (!(mii->mii_media_status & IFM_ACTIVE))
2168 			sc->re_flags &= ~RE_F_LINKED;
2169 	} else {
2170 		if (mii->mii_media_status & IFM_ACTIVE &&
2171 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2172 			sc->re_flags |= RE_F_LINKED;
2173 			if (!ifq_is_empty(&ifp->if_snd))
2174 				if_devstart(ifp);
2175 		}
2176 	}
2177 
2178 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2179 }
2180 
2181 #ifdef IFPOLL_ENABLE
2182 
2183 static void
2184 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2185 {
2186 	struct re_softc *sc = ifp->if_softc;
2187 
2188 	ASSERT_SERIALIZED(ifp->if_serializer);
2189 
2190 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2191 		uint16_t       status;
2192 
2193 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2194 
2195 		status = CSR_READ_2(sc, RE_ISR);
2196 		if (status == 0xffff)
2197 			return;
2198 		if (status)
2199 			CSR_WRITE_2(sc, RE_ISR, status);
2200 
2201 		/*
2202 		 * XXX check behaviour on receiver stalls.
2203 		 */
2204 
2205 		if (status & RE_ISR_SYSTEM_ERR)
2206 			re_init(sc);
2207 	}
2208 
2209 	sc->rxcycles = count;
2210 	re_rxeof(sc);
2211 	re_txeof(sc);
2212 
2213 	if (!ifq_is_empty(&ifp->if_snd))
2214 		if_devstart(ifp);
2215 }
2216 
2217 static void
2218 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2219 {
2220 	struct re_softc *sc = ifp->if_softc;
2221 
2222 	ASSERT_SERIALIZED(ifp->if_serializer);
2223 
2224 	if (info != NULL) {
2225 		int cpuid = sc->re_npoll.ifpc_cpuid;
2226 
2227 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2228 		info->ifpi_rx[cpuid].arg = NULL;
2229 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2230 
2231 		if (ifp->if_flags & IFF_RUNNING)
2232 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2233 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2234 	} else {
2235 		if (ifp->if_flags & IFF_RUNNING)
2236 			re_setup_intr(sc, 1, sc->re_imtype);
2237 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
2238 	}
2239 }
2240 #endif /* IFPOLL_ENABLE */
2241 
2242 static void
2243 re_intr(void *arg)
2244 {
2245 	struct re_softc	*sc = arg;
2246 	struct ifnet *ifp = &sc->arpcom.ac_if;
2247 	uint16_t status;
2248 	int rx, tx;
2249 
2250 	ASSERT_SERIALIZED(ifp->if_serializer);
2251 
2252 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2253 	    (ifp->if_flags & IFF_RUNNING) == 0)
2254 		return;
2255 
2256 	rx = tx = 0;
2257 
2258 	status = CSR_READ_2(sc, RE_ISR);
2259 	/* If the card has gone away the read returns 0xffff. */
2260 	if (status == 0xffff)
2261 		goto reload;
2262 	if (status)
2263 		CSR_WRITE_2(sc, RE_ISR, status);
2264 
2265 	if ((status & sc->re_intrs) == 0)
2266 		goto reload;
2267 
2268 	if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2269 		rx |= re_rxeof(sc);
2270 
2271 	if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2272 		tx |= re_txeof(sc);
2273 
2274 	if (status & RE_ISR_SYSTEM_ERR)
2275 		re_init(sc);
2276 
2277 	if (status & RE_ISR_LINKCHG) {
2278 		callout_stop(&sc->re_timer);
2279 		re_tick_serialized(sc);
2280 	}
2281 
2282 reload:
2283 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2284 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2285 			if ((tx | rx) == 0) {
2286 				/*
2287 				 * Nothing needs to be processed, fallback
2288 				 * to use TX/RX interrupts.
2289 				 */
2290 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2291 
2292 				/*
2293 				 * Recollect, mainly to avoid the possible
2294 				 * race introduced by changing interrupt
2295 				 * masks.
2296 				 */
2297 				re_rxeof(sc);
2298 				tx = re_txeof(sc);
2299 			} else {
2300 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2301 			}
2302 		} else if (tx | rx) {
2303 			/*
2304 			 * Assume that using simulated interrupt moderation
2305 			 * (hardware timer based) could reduce the interript
2306 			 * rate.
2307 			 */
2308 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2309 		}
2310 	}
2311 
2312 	if (tx && !ifq_is_empty(&ifp->if_snd))
2313 		if_devstart(ifp);
2314 }
2315 
2316 static int
2317 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2318 {
2319 	struct mbuf *m = *m_head;
2320 	bus_dma_segment_t segs[RE_MAXSEGS];
2321 	bus_dmamap_t map;
2322 	int error, maxsegs, idx, i, nsegs;
2323 	struct re_desc *d, *tx_ring;
2324 	uint32_t cmd_csum, ctl_csum, vlantag;
2325 
2326 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2327 		("not enough free TX desc"));
2328 
2329 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2330 
2331 	/*
2332 	 * Set up checksum offload. Note: checksum offload bits must
2333 	 * appear in all descriptors of a multi-descriptor transmit
2334 	 * attempt. (This is according to testing done with an 8169
2335 	 * chip. I'm not sure if this is a requirement or a bug.)
2336 	 */
2337 	cmd_csum = ctl_csum = 0;
2338 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2339 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2340 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2341 	}
2342 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2343 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2344 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2345 	}
2346 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2347 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2348 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2349 	}
2350 
2351 	/* For MAC2 chips, csum flags are set on re_control */
2352 	if (sc->re_caps & RE_C_MAC2)
2353 		cmd_csum = 0;
2354 	else
2355 		ctl_csum = 0;
2356 
2357 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2358 		/*
2359 		 * With some of the RealTek chips, using the checksum offload
2360 		 * support in conjunction with the autopadding feature results
2361 		 * in the transmission of corrupt frames. For example, if we
2362 		 * need to send a really small IP fragment that's less than 60
2363 		 * bytes in size, and IP header checksumming is enabled, the
2364 		 * resulting ethernet frame that appears on the wire will
2365 		 * have garbled payload. To work around this, if TX checksum
2366 		 * offload is enabled, we always manually pad short frames out
2367 		 * to the minimum ethernet frame size.
2368 		 *
2369 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2370 		 * with PCIe adapters seems to result in bad checksums.
2371 		 */
2372 		if ((m->m_pkthdr.csum_flags &
2373 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2374 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2375 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2376 			error = m_devpad(m, RE_MIN_FRAMELEN);
2377 			if (error)
2378 				goto back;
2379 		}
2380 	}
2381 
2382 	vlantag = 0;
2383 	if (m->m_flags & M_VLANTAG) {
2384 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2385 			  RE_TDESC_CTL_INSTAG;
2386 	}
2387 
2388 	maxsegs = sc->re_ldata.re_tx_free;
2389 	if (maxsegs > RE_MAXSEGS)
2390 		maxsegs = RE_MAXSEGS;
2391 
2392 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2393 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2394 	if (error)
2395 		goto back;
2396 
2397 	m = *m_head;
2398 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2399 
2400 	/*
2401 	 * Map the segment array into descriptors.  We also keep track
2402 	 * of the end of the ring and set the end-of-ring bits as needed,
2403 	 * and we set the ownership bits in all except the very first
2404 	 * descriptor, whose ownership bits will be turned on later.
2405 	 */
2406 	tx_ring = sc->re_ldata.re_tx_list;
2407 	idx = *idx0;
2408 	i = 0;
2409 	for (;;) {
2410 		uint32_t cmdstat;
2411 
2412 		d = &tx_ring[idx];
2413 
2414 		cmdstat = segs[i].ds_len;
2415 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2416 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2417 		if (i == 0)
2418 			cmdstat |= RE_TDESC_CMD_SOF;
2419 		else
2420 			cmdstat |= RE_TDESC_CMD_OWN;
2421 		if (idx == (sc->re_tx_desc_cnt - 1))
2422 			cmdstat |= RE_TDESC_CMD_EOR;
2423 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2424 		d->re_control = htole32(ctl_csum | vlantag);
2425 
2426 		i++;
2427 		if (i == nsegs)
2428 			break;
2429 		RE_TXDESC_INC(sc, idx);
2430 	}
2431 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2432 
2433 	/* Transfer ownership of packet to the chip. */
2434 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2435 	if (*idx0 != idx)
2436 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2437 
2438 	/*
2439 	 * Insure that the map for this transmission
2440 	 * is placed at the array index of the last descriptor
2441 	 * in this chain.
2442 	 */
2443 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2444 	sc->re_ldata.re_tx_dmamap[idx] = map;
2445 
2446 	sc->re_ldata.re_tx_mbuf[idx] = m;
2447 	sc->re_ldata.re_tx_free -= nsegs;
2448 
2449 	RE_TXDESC_INC(sc, idx);
2450 	*idx0 = idx;
2451 back:
2452 	if (error) {
2453 		m_freem(*m_head);
2454 		*m_head = NULL;
2455 	}
2456 	return error;
2457 }
2458 
2459 /*
2460  * Main transmit routine for C+ and gigE NICs.
2461  */
2462 
2463 static void
2464 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2465 {
2466 	struct re_softc	*sc = ifp->if_softc;
2467 	struct mbuf *m_head;
2468 	int idx, need_trans, oactive, error;
2469 
2470 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2471 	ASSERT_SERIALIZED(ifp->if_serializer);
2472 
2473 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2474 		ifq_purge(&ifp->if_snd);
2475 		return;
2476 	}
2477 
2478 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2479 		return;
2480 
2481 	idx = sc->re_ldata.re_tx_prodidx;
2482 
2483 	need_trans = 0;
2484 	oactive = 0;
2485 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2486 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2487 			if (!oactive) {
2488 				if (re_tx_collect(sc)) {
2489 					oactive = 1;
2490 					continue;
2491 				}
2492 			}
2493 			ifq_set_oactive(&ifp->if_snd);
2494 			break;
2495 		}
2496 
2497 		m_head = ifq_dequeue(&ifp->if_snd);
2498 		if (m_head == NULL)
2499 			break;
2500 
2501 		error = re_encap(sc, &m_head, &idx);
2502 		if (error) {
2503 			/* m_head is freed by re_encap(), if we reach here */
2504 			IFNET_STAT_INC(ifp, oerrors, 1);
2505 
2506 			if (error == EFBIG && !oactive) {
2507 				if (re_tx_collect(sc)) {
2508 					oactive = 1;
2509 					continue;
2510 				}
2511 			}
2512 			ifq_set_oactive(&ifp->if_snd);
2513 			break;
2514 		}
2515 
2516 		oactive = 0;
2517 		need_trans = 1;
2518 
2519 		/*
2520 		 * If there's a BPF listener, bounce a copy of this frame
2521 		 * to him.
2522 		 */
2523 		ETHER_BPF_MTAP(ifp, m_head);
2524 	}
2525 
2526 	/*
2527 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2528 	 * for OACTIVE to not be properly set when we also do not
2529 	 * have sufficient free tx descriptors, leaving packet in
2530 	 * ifp->if_snd.  This can cause if_start_dispatch() to loop
2531 	 * infinitely so make sure OACTIVE is set properly.
2532 	 */
2533 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2534 		if (!ifq_is_oactive(&ifp->if_snd)) {
2535 			if_printf(ifp, "Debug: OACTIVE was not set when "
2536 			    "re_tx_free was below minimum!\n");
2537 			ifq_set_oactive(&ifp->if_snd);
2538 		}
2539 	}
2540 	if (!need_trans)
2541 		return;
2542 
2543 	sc->re_ldata.re_tx_prodidx = idx;
2544 
2545 	/*
2546 	 * RealTek put the TX poll request register in a different
2547 	 * location on the 8169 gigE chip. I don't know why.
2548 	 */
2549 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2550 
2551 	/*
2552 	 * Set a timeout in case the chip goes out to lunch.
2553 	 */
2554 	ifp->if_timer = 5;
2555 }
2556 
2557 static void
2558 re_init(void *xsc)
2559 {
2560 	struct re_softc *sc = xsc;
2561 	struct ifnet *ifp = &sc->arpcom.ac_if;
2562 	struct mii_data *mii;
2563 	int error, framelen;
2564 
2565 	ASSERT_SERIALIZED(ifp->if_serializer);
2566 
2567 	mii = device_get_softc(sc->re_miibus);
2568 
2569 	/*
2570 	 * Cancel pending I/O and free all RX/TX buffers.
2571 	 */
2572 	re_stop(sc);
2573 
2574 	if (sc->re_caps & RE_C_CONTIGRX) {
2575 		if (ifp->if_mtu > ETHERMTU) {
2576 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2577 			sc->re_flags |= RE_F_USE_JPOOL;
2578 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2579 			sc->re_newbuf = re_newbuf_jumbo;
2580 		} else {
2581 			sc->re_flags &= ~RE_F_USE_JPOOL;
2582 			sc->re_rxbuf_size = MCLBYTES;
2583 			sc->re_newbuf = re_newbuf_std;
2584 		}
2585 	}
2586 
2587 	/*
2588 	 * Adjust max read request size according to MTU; mainly to
2589 	 * improve TX performance for common case (ETHERMTU) on GigE
2590 	 * NICs.  However, this could _not_ be done on 10/100 only
2591 	 * NICs; their DMA engines will malfunction using non-default
2592 	 * max read request size.
2593 	 */
2594 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2595 		if (ifp->if_mtu > ETHERMTU) {
2596 			/*
2597 			 * 512 seems to be the only value that works
2598 			 * reliably with jumbo frame
2599 			 */
2600 			pcie_set_max_readrq(sc->re_dev,
2601 				PCIEM_DEVCTL_MAX_READRQ_512);
2602 		} else {
2603 			pcie_set_max_readrq(sc->re_dev,
2604 				PCIEM_DEVCTL_MAX_READRQ_4096);
2605 		}
2606 	}
2607 
2608 	/*
2609 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2610 	 * RX checksum offload. We must configure the C+ register
2611 	 * before all others.
2612 	 */
2613 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2614 		    RE_CPLUSCMD_PCI_MRW |
2615 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2616 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2617 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2618 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2619 
2620 	/*
2621 	 * Init our MAC address.  Even though the chipset
2622 	 * documentation doesn't mention it, we need to enter "Config
2623 	 * register write enable" mode to modify the ID registers.
2624 	 */
2625 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2626 	CSR_WRITE_4(sc, RE_IDR0,
2627 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2628 	CSR_WRITE_2(sc, RE_IDR4,
2629 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2630 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2631 
2632 	/*
2633 	 * For C+ mode, initialize the RX descriptors and mbufs.
2634 	 */
2635 	error = re_rx_list_init(sc);
2636 	if (error) {
2637 		re_stop(sc);
2638 		return;
2639 	}
2640 	error = re_tx_list_init(sc);
2641 	if (error) {
2642 		re_stop(sc);
2643 		return;
2644 	}
2645 
2646 	/*
2647 	 * Load the addresses of the RX and TX lists into the chip.
2648 	 */
2649 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2650 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2651 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2652 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2653 
2654 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2655 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2656 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2657 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2658 
2659 	/*
2660 	 * Enable transmit and receive.
2661 	 */
2662 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2663 
2664 	/*
2665 	 * Set the initial TX and RX configuration.
2666 	 */
2667 	if (sc->re_flags & RE_F_TESTMODE) {
2668 		if (!RE_IS_8139CP(sc))
2669 			CSR_WRITE_4(sc, RE_TXCFG,
2670 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2671 		else
2672 			CSR_WRITE_4(sc, RE_TXCFG,
2673 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2674 	} else
2675 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2676 
2677 	framelen = RE_FRAMELEN(ifp->if_mtu);
2678 	if (framelen < MCLBYTES)
2679 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2680 	else
2681 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2682 
2683 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2684 
2685 	/*
2686 	 * Program the multicast filter, if necessary.
2687 	 */
2688 	re_setmulti(sc);
2689 
2690 #ifdef IFPOLL_ENABLE
2691 	/*
2692 	 * Disable interrupts if we are polling.
2693 	 */
2694 	if (ifp->if_flags & IFF_NPOLLING)
2695 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2696 	else	/* otherwise ... */
2697 #endif /* IFPOLL_ENABLE */
2698 	/*
2699 	 * Enable interrupts.
2700 	 */
2701 	if (sc->re_flags & RE_F_TESTMODE)
2702 		CSR_WRITE_2(sc, RE_IMR, 0);
2703 	else
2704 		re_setup_intr(sc, 1, sc->re_imtype);
2705 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2706 
2707 	/* Start RX/TX process. */
2708 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2709 
2710 #ifdef notdef
2711 	/* Enable receiver and transmitter. */
2712 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2713 #endif
2714 
2715 	/*
2716 	 * For 8169 gigE NICs, set the max allowed RX packet
2717 	 * size so we can receive jumbo frames.
2718 	 */
2719 	if (!RE_IS_8139CP(sc)) {
2720 		if (sc->re_caps & RE_C_CONTIGRX)
2721 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2722 		else
2723 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2724 	}
2725 
2726 	if (sc->re_flags & RE_F_TESTMODE)
2727 		return;
2728 
2729 	mii_mediachg(mii);
2730 
2731 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2732 
2733 	ifp->if_flags |= IFF_RUNNING;
2734 	ifq_clr_oactive(&ifp->if_snd);
2735 
2736 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2737 }
2738 
2739 /*
2740  * Set media options.
2741  */
2742 static int
2743 re_ifmedia_upd(struct ifnet *ifp)
2744 {
2745 	struct re_softc *sc = ifp->if_softc;
2746 	struct mii_data *mii;
2747 
2748 	ASSERT_SERIALIZED(ifp->if_serializer);
2749 
2750 	mii = device_get_softc(sc->re_miibus);
2751 	mii_mediachg(mii);
2752 
2753 	return(0);
2754 }
2755 
2756 /*
2757  * Report current media status.
2758  */
2759 static void
2760 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2761 {
2762 	struct re_softc *sc = ifp->if_softc;
2763 	struct mii_data *mii;
2764 
2765 	ASSERT_SERIALIZED(ifp->if_serializer);
2766 
2767 	mii = device_get_softc(sc->re_miibus);
2768 
2769 	mii_pollstat(mii);
2770 	ifmr->ifm_active = mii->mii_media_active;
2771 	ifmr->ifm_status = mii->mii_media_status;
2772 }
2773 
2774 static int
2775 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2776 {
2777 	struct re_softc *sc = ifp->if_softc;
2778 	struct ifreq *ifr = (struct ifreq *) data;
2779 	struct mii_data *mii;
2780 	int error = 0, mask;
2781 
2782 	ASSERT_SERIALIZED(ifp->if_serializer);
2783 
2784 	switch(command) {
2785 	case SIOCSIFMTU:
2786 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2787 			error = EINVAL;
2788 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2789 			ifp->if_mtu = ifr->ifr_mtu;
2790 			if (ifp->if_flags & IFF_RUNNING)
2791 				ifp->if_init(sc);
2792 		}
2793 		break;
2794 
2795 	case SIOCSIFFLAGS:
2796 		if (ifp->if_flags & IFF_UP) {
2797 			if (ifp->if_flags & IFF_RUNNING) {
2798 				if ((ifp->if_flags ^ sc->re_if_flags) &
2799 				    (IFF_PROMISC | IFF_ALLMULTI))
2800 					re_setmulti(sc);
2801 			} else {
2802 				re_init(sc);
2803 			}
2804 		} else if (ifp->if_flags & IFF_RUNNING) {
2805 			re_stop(sc);
2806 		}
2807 		sc->re_if_flags = ifp->if_flags;
2808 		break;
2809 
2810 	case SIOCADDMULTI:
2811 	case SIOCDELMULTI:
2812 		re_setmulti(sc);
2813 		break;
2814 
2815 	case SIOCGIFMEDIA:
2816 	case SIOCSIFMEDIA:
2817 		mii = device_get_softc(sc->re_miibus);
2818 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2819 		break;
2820 
2821 	case SIOCSIFCAP:
2822 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2823 		       ifp->if_capabilities;
2824 		ifp->if_capenable ^= mask;
2825 
2826 		if (mask & IFCAP_HWCSUM) {
2827 			if (ifp->if_capenable & IFCAP_TXCSUM)
2828 				ifp->if_hwassist = sc->re_hwassist;
2829 			else
2830 				ifp->if_hwassist = 0;
2831 		}
2832 		if (mask && (ifp->if_flags & IFF_RUNNING))
2833 			re_init(sc);
2834 		break;
2835 
2836 	default:
2837 		error = ether_ioctl(ifp, command, data);
2838 		break;
2839 	}
2840 	return(error);
2841 }
2842 
2843 static void
2844 re_watchdog(struct ifnet *ifp)
2845 {
2846 	struct re_softc *sc = ifp->if_softc;
2847 
2848 	ASSERT_SERIALIZED(ifp->if_serializer);
2849 
2850 	if_printf(ifp, "watchdog timeout\n");
2851 
2852 	IFNET_STAT_INC(ifp, oerrors, 1);
2853 
2854 	re_txeof(sc);
2855 	re_rxeof(sc);
2856 
2857 	re_init(sc);
2858 
2859 	if (!ifq_is_empty(&ifp->if_snd))
2860 		if_devstart(ifp);
2861 }
2862 
2863 /*
2864  * Stop the adapter and free any mbufs allocated to the
2865  * RX and TX lists.
2866  */
2867 static void
2868 re_stop(struct re_softc *sc)
2869 {
2870 	struct ifnet *ifp = &sc->arpcom.ac_if;
2871 	int i;
2872 
2873 	ASSERT_SERIALIZED(ifp->if_serializer);
2874 
2875 	/* Reset the adapter. */
2876 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2877 
2878 	ifp->if_timer = 0;
2879 	callout_stop(&sc->re_timer);
2880 
2881 	ifp->if_flags &= ~IFF_RUNNING;
2882 	ifq_clr_oactive(&ifp->if_snd);
2883 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2884 
2885 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2886 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2887 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2888 
2889 	re_free_rxchain(sc);
2890 
2891 	/* Free the TX list buffers. */
2892 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2893 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2894 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2895 					  sc->re_ldata.re_tx_dmamap[i]);
2896 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2897 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2898 		}
2899 	}
2900 
2901 	/* Free the RX list buffers. */
2902 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2903 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2904 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2905 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2906 						  sc->re_ldata.re_rx_dmamap[i]);
2907 			}
2908 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2909 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2910 		}
2911 	}
2912 }
2913 
2914 /*
2915  * Device suspend routine.  Stop the interface and save some PCI
2916  * settings in case the BIOS doesn't restore them properly on
2917  * resume.
2918  */
2919 static int
2920 re_suspend(device_t dev)
2921 {
2922 #ifndef BURN_BRIDGES
2923 	int i;
2924 #endif
2925 	struct re_softc *sc = device_get_softc(dev);
2926 	struct ifnet *ifp = &sc->arpcom.ac_if;
2927 
2928 	lwkt_serialize_enter(ifp->if_serializer);
2929 
2930 	re_stop(sc);
2931 
2932 #ifndef BURN_BRIDGES
2933 	for (i = 0; i < 5; i++)
2934 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2935 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2936 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2937 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2938 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2939 #endif
2940 
2941 	sc->re_flags |= RE_F_SUSPENDED;
2942 
2943 	lwkt_serialize_exit(ifp->if_serializer);
2944 
2945 	return (0);
2946 }
2947 
2948 /*
2949  * Device resume routine.  Restore some PCI settings in case the BIOS
2950  * doesn't, re-enable busmastering, and restart the interface if
2951  * appropriate.
2952  */
2953 static int
2954 re_resume(device_t dev)
2955 {
2956 	struct re_softc *sc = device_get_softc(dev);
2957 	struct ifnet *ifp = &sc->arpcom.ac_if;
2958 #ifndef BURN_BRIDGES
2959 	int i;
2960 #endif
2961 
2962 	lwkt_serialize_enter(ifp->if_serializer);
2963 
2964 #ifndef BURN_BRIDGES
2965 	/* better way to do this? */
2966 	for (i = 0; i < 5; i++)
2967 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2968 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2969 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2970 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2971 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2972 
2973 	/* reenable busmastering */
2974 	pci_enable_busmaster(dev);
2975 	pci_enable_io(dev, SYS_RES_IOPORT);
2976 #endif
2977 
2978 	/* reinitialize interface if necessary */
2979 	if (ifp->if_flags & IFF_UP)
2980 		re_init(sc);
2981 
2982 	sc->re_flags &= ~RE_F_SUSPENDED;
2983 
2984 	lwkt_serialize_exit(ifp->if_serializer);
2985 
2986 	return (0);
2987 }
2988 
2989 /*
2990  * Stop all chip I/O so that the kernel's probe routines don't
2991  * get confused by errant DMAs when rebooting.
2992  */
2993 static void
2994 re_shutdown(device_t dev)
2995 {
2996 	struct re_softc *sc = device_get_softc(dev);
2997 	struct ifnet *ifp = &sc->arpcom.ac_if;
2998 
2999 	lwkt_serialize_enter(ifp->if_serializer);
3000 	re_stop(sc);
3001 	lwkt_serialize_exit(ifp->if_serializer);
3002 }
3003 
3004 static int
3005 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3006 {
3007 	struct re_softc *sc = arg1;
3008 
3009 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3010 }
3011 
3012 static int
3013 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3014 {
3015 	struct re_softc *sc = arg1;
3016 
3017 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3018 }
3019 
3020 static int
3021 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3022 {
3023 	struct re_softc *sc = arg1;
3024 	struct ifnet *ifp = &sc->arpcom.ac_if;
3025 	int error, v;
3026 
3027 	lwkt_serialize_enter(ifp->if_serializer);
3028 
3029 	v = *hwtime;
3030 	error = sysctl_handle_int(oidp, &v, 0, req);
3031 	if (error || req->newptr == NULL)
3032 		goto back;
3033 
3034 	if (v <= 0) {
3035 		error = EINVAL;
3036 		goto back;
3037 	}
3038 
3039 	if (v != *hwtime) {
3040 		*hwtime = v;
3041 
3042 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3043 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3044 			re_setup_hw_im(sc);
3045 	}
3046 back:
3047 	lwkt_serialize_exit(ifp->if_serializer);
3048 	return error;
3049 }
3050 
3051 static int
3052 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3053 {
3054 	struct re_softc *sc = arg1;
3055 	struct ifnet *ifp = &sc->arpcom.ac_if;
3056 	int error, v;
3057 
3058 	lwkt_serialize_enter(ifp->if_serializer);
3059 
3060 	v = sc->re_sim_time;
3061 	error = sysctl_handle_int(oidp, &v, 0, req);
3062 	if (error || req->newptr == NULL)
3063 		goto back;
3064 
3065 	if (v <= 0) {
3066 		error = EINVAL;
3067 		goto back;
3068 	}
3069 
3070 	if (v != sc->re_sim_time) {
3071 		sc->re_sim_time = v;
3072 
3073 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3074 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3075 #ifdef foo
3076 			int reg;
3077 
3078 			/*
3079 			 * Following code causes various strange
3080 			 * performance problems.  Hmm ...
3081 			 */
3082 			CSR_WRITE_2(sc, RE_IMR, 0);
3083 			if (!RE_IS_8139CP(sc))
3084 				reg = RE_TIMERINT_8169;
3085 			else
3086 				reg = RE_TIMERINT;
3087 			CSR_WRITE_4(sc, reg, 0);
3088 			CSR_READ_4(sc, reg); /* flush */
3089 
3090 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3091 			re_setup_sim_im(sc);
3092 #else
3093 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3094 			DELAY(10);
3095 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3096 #endif
3097 		}
3098 	}
3099 back:
3100 	lwkt_serialize_exit(ifp->if_serializer);
3101 	return error;
3102 }
3103 
3104 static int
3105 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3106 {
3107 	struct re_softc *sc = arg1;
3108 	struct ifnet *ifp = &sc->arpcom.ac_if;
3109 	int error, v;
3110 
3111 	lwkt_serialize_enter(ifp->if_serializer);
3112 
3113 	v = sc->re_imtype;
3114 	error = sysctl_handle_int(oidp, &v, 0, req);
3115 	if (error || req->newptr == NULL)
3116 		goto back;
3117 
3118 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3119 		error = EINVAL;
3120 		goto back;
3121 	}
3122 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3123 		/* Can't do hardware interrupt moderation */
3124 		error = EOPNOTSUPP;
3125 		goto back;
3126 	}
3127 
3128 	if (v != sc->re_imtype) {
3129 		sc->re_imtype = v;
3130 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3131 		    IFF_RUNNING)
3132 			re_setup_intr(sc, 1, sc->re_imtype);
3133 	}
3134 back:
3135 	lwkt_serialize_exit(ifp->if_serializer);
3136 	return error;
3137 }
3138 
3139 static void
3140 re_setup_hw_im(struct re_softc *sc)
3141 {
3142 	KKASSERT(sc->re_caps & RE_C_HWIM);
3143 
3144 	/*
3145 	 * Interrupt moderation
3146 	 *
3147 	 * 0xABCD
3148 	 * A - unknown (maybe TX related)
3149 	 * B - TX timer (unit: 25us)
3150 	 * C - unknown (maybe RX related)
3151 	 * D - RX timer (unit: 25us)
3152 	 *
3153 	 *
3154 	 * re(4)'s interrupt moderation is actually controlled by
3155 	 * two variables, like most other NICs (bge, bce etc.)
3156 	 * o  timer
3157 	 * o  number of packets [P]
3158 	 *
3159 	 * The logic relationship between these two variables is
3160 	 * similar to other NICs too:
3161 	 * if (timer expire || packets > [P])
3162 	 *     Interrupt is delivered
3163 	 *
3164 	 * Currently we only know how to set 'timer', but not
3165 	 * 'number of packets', which should be ~30, as far as I
3166 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3167 	 */
3168 	CSR_WRITE_2(sc, RE_IM,
3169 		    RE_IM_RXTIME(sc->re_rx_time) |
3170 		    RE_IM_TXTIME(sc->re_tx_time) |
3171 		    RE_IM_MAGIC);
3172 }
3173 
3174 static void
3175 re_disable_hw_im(struct re_softc *sc)
3176 {
3177 	if (sc->re_caps & RE_C_HWIM)
3178 		CSR_WRITE_2(sc, RE_IM, 0);
3179 }
3180 
3181 static void
3182 re_setup_sim_im(struct re_softc *sc)
3183 {
3184 	if (!RE_IS_8139CP(sc)) {
3185 		uint32_t ticks;
3186 
3187 		/*
3188 		 * Datasheet says tick decreases at bus speed,
3189 		 * but it seems the clock runs a little bit
3190 		 * faster, so we do some compensation here.
3191 		 */
3192 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3193 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3194 	} else {
3195 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3196 	}
3197 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3198 	sc->re_flags |= RE_F_TIMER_INTR;
3199 }
3200 
3201 static void
3202 re_disable_sim_im(struct re_softc *sc)
3203 {
3204 	if (!RE_IS_8139CP(sc))
3205 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3206 	else
3207 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3208 	sc->re_flags &= ~RE_F_TIMER_INTR;
3209 }
3210 
3211 static void
3212 re_config_imtype(struct re_softc *sc, int imtype)
3213 {
3214 	switch (imtype) {
3215 	case RE_IMTYPE_HW:
3216 		KKASSERT(sc->re_caps & RE_C_HWIM);
3217 		/* FALL THROUGH */
3218 	case RE_IMTYPE_NONE:
3219 		sc->re_intrs = RE_INTRS;
3220 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3221 				RE_ISR_RX_OVERRUN;
3222 		sc->re_tx_ack = RE_ISR_TX_OK;
3223 		break;
3224 
3225 	case RE_IMTYPE_SIM:
3226 		sc->re_intrs = RE_INTRS_TIMER;
3227 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3228 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3229 		break;
3230 
3231 	default:
3232 		panic("%s: unknown imtype %d",
3233 		      sc->arpcom.ac_if.if_xname, imtype);
3234 	}
3235 }
3236 
3237 static void
3238 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3239 {
3240 	re_config_imtype(sc, imtype);
3241 
3242 	if (enable_intrs)
3243 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3244 	else
3245 		CSR_WRITE_2(sc, RE_IMR, 0);
3246 
3247 	sc->re_npoll.ifpc_stcount = 0;
3248 
3249 	switch (imtype) {
3250 	case RE_IMTYPE_NONE:
3251 		re_disable_sim_im(sc);
3252 		re_disable_hw_im(sc);
3253 		break;
3254 
3255 	case RE_IMTYPE_HW:
3256 		KKASSERT(sc->re_caps & RE_C_HWIM);
3257 		re_disable_sim_im(sc);
3258 		re_setup_hw_im(sc);
3259 		break;
3260 
3261 	case RE_IMTYPE_SIM:
3262 		re_disable_hw_im(sc);
3263 		re_setup_sim_im(sc);
3264 		break;
3265 
3266 	default:
3267 		panic("%s: unknown imtype %d",
3268 		      sc->arpcom.ac_if.if_xname, imtype);
3269 	}
3270 }
3271 
3272 static void
3273 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3274 {
3275 	int i;
3276 
3277 	if (sc->re_caps & RE_C_EE_EADDR) {
3278 		uint16_t re_did;
3279 
3280 		re_get_eewidth(sc);
3281 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3282 		if (re_did == 0x8128) {
3283 			uint16_t as[ETHER_ADDR_LEN / 2];
3284 
3285 			/*
3286 			 * Get station address from the EEPROM.
3287 			 */
3288 			re_read_eeprom(sc, (caddr_t)as, sc->re_ee_eaddr, 3);
3289 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3290 				as[i] = le16toh(as[i]);
3291 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3292 			return;
3293 		}
3294 	}
3295 
3296 	/*
3297 	 * Get station address from IDRx.
3298 	 */
3299 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3300 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3301 }
3302 
3303 static int
3304 re_jpool_alloc(struct re_softc *sc)
3305 {
3306 	struct re_list_data *ldata = &sc->re_ldata;
3307 	struct re_jbuf *jbuf;
3308 	bus_addr_t paddr;
3309 	bus_size_t jpool_size;
3310 	bus_dmamem_t dmem;
3311 	caddr_t buf;
3312 	int i, error;
3313 
3314 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3315 
3316 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3317 				 M_DEVBUF, M_WAITOK | M_ZERO);
3318 
3319 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3320 
3321 	error = bus_dmamem_coherent(sc->re_parent_tag,
3322 			RE_RXBUF_ALIGN, 0,
3323 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3324 			jpool_size, BUS_DMA_WAITOK, &dmem);
3325 	if (error) {
3326 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3327 		return error;
3328 	}
3329 	ldata->re_jpool_tag = dmem.dmem_tag;
3330 	ldata->re_jpool_map = dmem.dmem_map;
3331 	ldata->re_jpool = dmem.dmem_addr;
3332 	paddr = dmem.dmem_busaddr;
3333 
3334 	/* ..and split it into 9KB chunks */
3335 	SLIST_INIT(&ldata->re_jbuf_free);
3336 
3337 	buf = ldata->re_jpool;
3338 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3339 		jbuf = &ldata->re_jbuf[i];
3340 
3341 		jbuf->re_sc = sc;
3342 		jbuf->re_inuse = 0;
3343 		jbuf->re_slot = i;
3344 		jbuf->re_buf = buf;
3345 		jbuf->re_paddr = paddr;
3346 
3347 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3348 
3349 		buf += RE_JBUF_SIZE;
3350 		paddr += RE_JBUF_SIZE;
3351 	}
3352 	return 0;
3353 }
3354 
3355 static void
3356 re_jpool_free(struct re_softc *sc)
3357 {
3358 	struct re_list_data *ldata = &sc->re_ldata;
3359 
3360 	if (ldata->re_jpool_tag != NULL) {
3361 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3362 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3363 				ldata->re_jpool_map);
3364 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3365 		ldata->re_jpool_tag = NULL;
3366 	}
3367 
3368 	if (ldata->re_jbuf != NULL) {
3369 		kfree(ldata->re_jbuf, M_DEVBUF);
3370 		ldata->re_jbuf = NULL;
3371 	}
3372 }
3373 
3374 static struct re_jbuf *
3375 re_jbuf_alloc(struct re_softc *sc)
3376 {
3377 	struct re_list_data *ldata = &sc->re_ldata;
3378 	struct re_jbuf *jbuf;
3379 
3380 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3381 
3382 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3383 	if (jbuf != NULL) {
3384 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3385 		jbuf->re_inuse = 1;
3386 	}
3387 
3388 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3389 
3390 	return jbuf;
3391 }
3392 
3393 static void
3394 re_jbuf_free(void *arg)
3395 {
3396 	struct re_jbuf *jbuf = arg;
3397 	struct re_softc *sc = jbuf->re_sc;
3398 	struct re_list_data *ldata = &sc->re_ldata;
3399 
3400 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3401 		panic("%s: free wrong jumbo buffer",
3402 		      sc->arpcom.ac_if.if_xname);
3403 	} else if (jbuf->re_inuse == 0) {
3404 		panic("%s: jumbo buffer already freed",
3405 		      sc->arpcom.ac_if.if_xname);
3406 	}
3407 
3408 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3409 	atomic_subtract_int(&jbuf->re_inuse, 1);
3410 	if (jbuf->re_inuse == 0)
3411 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3412 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3413 }
3414 
3415 static void
3416 re_jbuf_ref(void *arg)
3417 {
3418 	struct re_jbuf *jbuf = arg;
3419 	struct re_softc *sc = jbuf->re_sc;
3420 	struct re_list_data *ldata = &sc->re_ldata;
3421 
3422 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3423 		panic("%s: ref wrong jumbo buffer",
3424 		      sc->arpcom.ac_if.if_xname);
3425 	} else if (jbuf->re_inuse == 0) {
3426 		panic("%s: jumbo buffer already freed",
3427 		      sc->arpcom.ac_if.if_xname);
3428 	}
3429 	atomic_add_int(&jbuf->re_inuse, 1);
3430 }
3431