xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 2d12c69a9e8f519ee15ef19279e83041cf427ad3)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_polling.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_types.h>
139 #include <net/vlan/if_vlan_var.h>
140 #include <net/vlan/if_vlan_ether.h>
141 
142 #include <netinet/ip.h>
143 
144 #include <dev/netif/mii_layer/mii.h>
145 #include <dev/netif/mii_layer/miivar.h>
146 
147 #include <bus/pci/pcidevs.h>
148 #include <bus/pci/pcireg.h>
149 #include <bus/pci/pcivar.h>
150 
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153 
154 #include <dev/netif/re/if_rereg.h>
155 #include <dev/netif/re/if_revar.h>
156 
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static const struct re_type {
163 	uint16_t	re_vid;
164 	uint16_t	re_did;
165 	const char	*re_name;
166 } re_devs[] = {
167 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
168 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
169 
170 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
171 	  "RealTek 8139C+ 10/100BaseTX" },
172 
173 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
174 	  "RealTek 810x PCIe 10/100baseTX" },
175 
176 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
177 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
178 
179 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
180 	  "RealTek 8110/8169 Gigabit Ethernet" },
181 
182 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
183 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
184 
185 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
186 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
187 
188 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
189 	  "Linksys EG1032 Gigabit Ethernet" },
190 
191 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
192 	  "US Robotics 997902 Gigabit Ethernet" },
193 
194 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
195 	  "TTTech MC322 Gigabit Ethernet" },
196 
197 	{ 0, 0, NULL }
198 };
199 
200 static const struct re_hwrev re_hwrevs[] = {
201 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
202 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
203 
204 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
205 	  RE_C_HWCSUM | RE_C_8169 },
206 
207 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
208 	  RE_C_HWCSUM | RE_C_8169 },
209 
210 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
211 	  RE_C_HWCSUM | RE_C_8169 },
212 
213 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
214 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
215 
216 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
217 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
218 
219 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
220 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
221 
222 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
223 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
224 
225 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
226 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
227 
228 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
229 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
230 
231 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
232 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
233 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
234 
235 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
236 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
237 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
238 
239 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
240 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
241 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
242 
243 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
244 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
245 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
246 
247 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
248 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
249 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
250 
251 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
252 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
253 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
254 
255 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
256 	  RE_C_HWCSUM | RE_C_FASTE },
257 
258 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
259 	  RE_C_HWCSUM | RE_C_FASTE },
260 
261 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
262 	  RE_C_HWCSUM | RE_C_FASTE },
263 
264 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
265 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
266 	  RE_C_FASTE },
267 
268 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
269 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
270 	  RE_C_FASTE },
271 
272 	{ RE_HWREV_NULL, 0, 0, 0 }
273 };
274 
275 static int	re_probe(device_t);
276 static int	re_attach(device_t);
277 static int	re_detach(device_t);
278 static int	re_suspend(device_t);
279 static int	re_resume(device_t);
280 static void	re_shutdown(device_t);
281 
282 static int	re_allocmem(device_t);
283 static void	re_freemem(device_t);
284 static void	re_freebufmem(struct re_softc *, int, int);
285 static int	re_encap(struct re_softc *, struct mbuf **, int *);
286 static int	re_newbuf_std(struct re_softc *, int, int);
287 static int	re_newbuf_jumbo(struct re_softc *, int, int);
288 static void	re_setup_rxdesc(struct re_softc *, int);
289 static int	re_rx_list_init(struct re_softc *);
290 static int	re_tx_list_init(struct re_softc *);
291 static int	re_rxeof(struct re_softc *);
292 static int	re_txeof(struct re_softc *);
293 static int	re_tx_collect(struct re_softc *);
294 static void	re_intr(void *);
295 static void	re_tick(void *);
296 static void	re_tick_serialized(void *);
297 
298 static void	re_start(struct ifnet *);
299 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
300 static void	re_init(void *);
301 static void	re_stop(struct re_softc *);
302 static void	re_watchdog(struct ifnet *);
303 static int	re_ifmedia_upd(struct ifnet *);
304 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
305 
306 static void	re_eeprom_putbyte(struct re_softc *, int);
307 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
308 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
309 static void	re_get_eewidth(struct re_softc *);
310 
311 static int	re_gmii_readreg(device_t, int, int);
312 static int	re_gmii_writereg(device_t, int, int, int);
313 
314 static int	re_miibus_readreg(device_t, int, int);
315 static int	re_miibus_writereg(device_t, int, int, int);
316 static void	re_miibus_statchg(device_t);
317 
318 static void	re_setmulti(struct re_softc *);
319 static void	re_reset(struct re_softc *, int);
320 static void	re_get_eaddr(struct re_softc *, uint8_t *);
321 
322 static void	re_setup_hw_im(struct re_softc *);
323 static void	re_setup_sim_im(struct re_softc *);
324 static void	re_disable_hw_im(struct re_softc *);
325 static void	re_disable_sim_im(struct re_softc *);
326 static void	re_config_imtype(struct re_softc *, int);
327 static void	re_setup_intr(struct re_softc *, int, int);
328 
329 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
330 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
331 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
332 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
333 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
334 
335 static int	re_jpool_alloc(struct re_softc *);
336 static void	re_jpool_free(struct re_softc *);
337 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
338 static void	re_jbuf_free(void *);
339 static void	re_jbuf_ref(void *);
340 
341 #ifdef RE_DIAG
342 static int	re_diag(struct re_softc *);
343 #endif
344 
345 #ifdef DEVICE_POLLING
346 static void	re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
347 #endif
348 
349 static device_method_t re_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		re_probe),
352 	DEVMETHOD(device_attach,	re_attach),
353 	DEVMETHOD(device_detach,	re_detach),
354 	DEVMETHOD(device_suspend,	re_suspend),
355 	DEVMETHOD(device_resume,	re_resume),
356 	DEVMETHOD(device_shutdown,	re_shutdown),
357 
358 	/* bus interface */
359 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
360 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
361 
362 	/* MII interface */
363 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
364 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
365 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
366 
367 	{ 0, 0 }
368 };
369 
370 static driver_t re_driver = {
371 	"re",
372 	re_methods,
373 	sizeof(struct re_softc)
374 };
375 
376 static devclass_t re_devclass;
377 
378 DECLARE_DUMMY_MODULE(if_re);
379 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
380 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
381 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
382 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
383 
384 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
385 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
386 
387 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
388 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
389 
390 #define EE_SET(x)	\
391 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
392 
393 #define EE_CLR(x)	\
394 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
395 
396 static __inline void
397 re_free_rxchain(struct re_softc *sc)
398 {
399 	if (sc->re_head != NULL) {
400 		m_freem(sc->re_head);
401 		sc->re_head = sc->re_tail = NULL;
402 	}
403 }
404 
405 /*
406  * Send a read command and address to the EEPROM, check for ACK.
407  */
408 static void
409 re_eeprom_putbyte(struct re_softc *sc, int addr)
410 {
411 	int d, i;
412 
413 	d = addr | (RE_9346_READ << sc->re_eewidth);
414 
415 	/*
416 	 * Feed in each bit and strobe the clock.
417 	 */
418 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
419 		if (d & i)
420 			EE_SET(RE_EE_DATAIN);
421 		else
422 			EE_CLR(RE_EE_DATAIN);
423 		DELAY(100);
424 		EE_SET(RE_EE_CLK);
425 		DELAY(150);
426 		EE_CLR(RE_EE_CLK);
427 		DELAY(100);
428 	}
429 }
430 
431 /*
432  * Read a word of data stored in the EEPROM at address 'addr.'
433  */
434 static void
435 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
436 {
437 	int i;
438 	uint16_t word = 0;
439 
440 	/*
441 	 * Send address of word we want to read.
442 	 */
443 	re_eeprom_putbyte(sc, addr);
444 
445 	/*
446 	 * Start reading bits from EEPROM.
447 	 */
448 	for (i = 0x8000; i != 0; i >>= 1) {
449 		EE_SET(RE_EE_CLK);
450 		DELAY(100);
451 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
452 			word |= i;
453 		EE_CLR(RE_EE_CLK);
454 		DELAY(100);
455 	}
456 
457 	*dest = word;
458 }
459 
460 /*
461  * Read a sequence of words from the EEPROM.
462  */
463 static void
464 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
465 {
466 	int i;
467 	uint16_t word = 0, *ptr;
468 
469 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
470 	DELAY(100);
471 
472 	for (i = 0; i < cnt; i++) {
473 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
474 		re_eeprom_getword(sc, off + i, &word);
475 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
476 		ptr = (uint16_t *)(dest + (i * 2));
477 		*ptr = word;
478 	}
479 
480 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
481 }
482 
483 static void
484 re_get_eewidth(struct re_softc *sc)
485 {
486 	uint16_t re_did = 0;
487 
488 	sc->re_eewidth = 6;
489 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
490 	if (re_did != 0x8129)
491 		sc->re_eewidth = 8;
492 }
493 
494 static int
495 re_gmii_readreg(device_t dev, int phy, int reg)
496 {
497 	struct re_softc *sc = device_get_softc(dev);
498 	u_int32_t rval;
499 	int i;
500 
501 	if (phy != 1)
502 		return(0);
503 
504 	/* Let the rgephy driver read the GMEDIASTAT register */
505 
506 	if (reg == RE_GMEDIASTAT)
507 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
508 
509 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
510 	DELAY(1000);
511 
512 	for (i = 0; i < RE_TIMEOUT; i++) {
513 		rval = CSR_READ_4(sc, RE_PHYAR);
514 		if (rval & RE_PHYAR_BUSY)
515 			break;
516 		DELAY(100);
517 	}
518 
519 	if (i == RE_TIMEOUT) {
520 		device_printf(dev, "PHY read failed\n");
521 		return(0);
522 	}
523 
524 	return(rval & RE_PHYAR_PHYDATA);
525 }
526 
527 static int
528 re_gmii_writereg(device_t dev, int phy, int reg, int data)
529 {
530 	struct re_softc *sc = device_get_softc(dev);
531 	uint32_t rval;
532 	int i;
533 
534 	CSR_WRITE_4(sc, RE_PHYAR,
535 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
536 	DELAY(1000);
537 
538 	for (i = 0; i < RE_TIMEOUT; i++) {
539 		rval = CSR_READ_4(sc, RE_PHYAR);
540 		if ((rval & RE_PHYAR_BUSY) == 0)
541 			break;
542 		DELAY(100);
543 	}
544 
545 	if (i == RE_TIMEOUT)
546 		device_printf(dev, "PHY write failed\n");
547 
548 	return(0);
549 }
550 
551 static int
552 re_miibus_readreg(device_t dev, int phy, int reg)
553 {
554 	struct re_softc	*sc = device_get_softc(dev);
555 	uint16_t rval = 0;
556 	uint16_t re8139_reg = 0;
557 
558 	if (!RE_IS_8139CP(sc)) {
559 		rval = re_gmii_readreg(dev, phy, reg);
560 		return(rval);
561 	}
562 
563 	/* Pretend the internal PHY is only at address 0 */
564 	if (phy)
565 		return(0);
566 
567 	switch(reg) {
568 	case MII_BMCR:
569 		re8139_reg = RE_BMCR;
570 		break;
571 	case MII_BMSR:
572 		re8139_reg = RE_BMSR;
573 		break;
574 	case MII_ANAR:
575 		re8139_reg = RE_ANAR;
576 		break;
577 	case MII_ANER:
578 		re8139_reg = RE_ANER;
579 		break;
580 	case MII_ANLPAR:
581 		re8139_reg = RE_LPAR;
582 		break;
583 	case MII_PHYIDR1:
584 	case MII_PHYIDR2:
585 		return(0);
586 	/*
587 	 * Allow the rlphy driver to read the media status
588 	 * register. If we have a link partner which does not
589 	 * support NWAY, this is the register which will tell
590 	 * us the results of parallel detection.
591 	 */
592 	case RE_MEDIASTAT:
593 		return(CSR_READ_1(sc, RE_MEDIASTAT));
594 	default:
595 		device_printf(dev, "bad phy register\n");
596 		return(0);
597 	}
598 	rval = CSR_READ_2(sc, re8139_reg);
599 	if (re8139_reg == RE_BMCR) {
600 		/* 8139C+ has different bit layout. */
601 		rval &= ~(BMCR_LOOP | BMCR_ISO);
602 	}
603 	return(rval);
604 }
605 
606 static int
607 re_miibus_writereg(device_t dev, int phy, int reg, int data)
608 {
609 	struct re_softc *sc= device_get_softc(dev);
610 	u_int16_t re8139_reg = 0;
611 
612 	if (!RE_IS_8139CP(sc))
613 		return(re_gmii_writereg(dev, phy, reg, data));
614 
615 	/* Pretend the internal PHY is only at address 0 */
616 	if (phy)
617 		return(0);
618 
619 	switch(reg) {
620 	case MII_BMCR:
621 		re8139_reg = RE_BMCR;
622 		/* 8139C+ has different bit layout. */
623 		data &= ~(BMCR_LOOP | BMCR_ISO);
624 		break;
625 	case MII_BMSR:
626 		re8139_reg = RE_BMSR;
627 		break;
628 	case MII_ANAR:
629 		re8139_reg = RE_ANAR;
630 		break;
631 	case MII_ANER:
632 		re8139_reg = RE_ANER;
633 		break;
634 	case MII_ANLPAR:
635 		re8139_reg = RE_LPAR;
636 		break;
637 	case MII_PHYIDR1:
638 	case MII_PHYIDR2:
639 		return(0);
640 	default:
641 		device_printf(dev, "bad phy register\n");
642 		return(0);
643 	}
644 	CSR_WRITE_2(sc, re8139_reg, data);
645 	return(0);
646 }
647 
648 static void
649 re_miibus_statchg(device_t dev)
650 {
651 }
652 
653 /*
654  * Program the 64-bit multicast hash filter.
655  */
656 static void
657 re_setmulti(struct re_softc *sc)
658 {
659 	struct ifnet *ifp = &sc->arpcom.ac_if;
660 	int h = 0;
661 	uint32_t hashes[2] = { 0, 0 };
662 	struct ifmultiaddr *ifma;
663 	uint32_t rxfilt;
664 	int mcnt = 0;
665 
666 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
667 
668 	/* Set the individual bit to receive frames for this host only. */
669 	rxfilt |= RE_RXCFG_RX_INDIV;
670 	/* Set capture broadcast bit to capture broadcast frames. */
671 	rxfilt |= RE_RXCFG_RX_BROAD;
672 
673 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
674 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
675 		rxfilt |= RE_RXCFG_RX_MULTI;
676 
677 		/* If we want promiscuous mode, set the allframes bit. */
678 		if (ifp->if_flags & IFF_PROMISC)
679 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
680 
681 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
682 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
683 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
684 		return;
685 	}
686 
687 	/* first, zot all the existing hash bits */
688 	CSR_WRITE_4(sc, RE_MAR0, 0);
689 	CSR_WRITE_4(sc, RE_MAR4, 0);
690 
691 	/* now program new ones */
692 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
693 		if (ifma->ifma_addr->sa_family != AF_LINK)
694 			continue;
695 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
696 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
697 		if (h < 32)
698 			hashes[0] |= (1 << h);
699 		else
700 			hashes[1] |= (1 << (h - 32));
701 		mcnt++;
702 	}
703 
704 	if (mcnt)
705 		rxfilt |= RE_RXCFG_RX_MULTI;
706 	else
707 		rxfilt &= ~RE_RXCFG_RX_MULTI;
708 
709 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
710 
711 	/*
712 	 * For some unfathomable reason, RealTek decided to reverse
713 	 * the order of the multicast hash registers in the PCI Express
714 	 * parts. This means we have to write the hash pattern in reverse
715 	 * order for those devices.
716 	 */
717 	if (sc->re_caps & RE_C_PCIE) {
718 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
719 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
720 	} else {
721 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
722 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
723 	}
724 }
725 
726 static void
727 re_reset(struct re_softc *sc, int running)
728 {
729 	int i;
730 
731 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
732 		CSR_WRITE_1(sc, RE_COMMAND,
733 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
734 		DELAY(100);
735 	}
736 
737 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
738 
739 	for (i = 0; i < RE_TIMEOUT; i++) {
740 		DELAY(10);
741 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
742 			break;
743 	}
744 	if (i == RE_TIMEOUT)
745 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
746 }
747 
748 #ifdef RE_DIAG
749 /*
750  * The following routine is designed to test for a defect on some
751  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
752  * lines connected to the bus, however for a 32-bit only card, they
753  * should be pulled high. The result of this defect is that the
754  * NIC will not work right if you plug it into a 64-bit slot: DMA
755  * operations will be done with 64-bit transfers, which will fail
756  * because the 64-bit data lines aren't connected.
757  *
758  * There's no way to work around this (short of talking a soldering
759  * iron to the board), however we can detect it. The method we use
760  * here is to put the NIC into digital loopback mode, set the receiver
761  * to promiscuous mode, and then try to send a frame. We then compare
762  * the frame data we sent to what was received. If the data matches,
763  * then the NIC is working correctly, otherwise we know the user has
764  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
765  * slot. In the latter case, there's no way the NIC can work correctly,
766  * so we print out a message on the console and abort the device attach.
767  */
768 
769 static int
770 re_diag(struct re_softc *sc)
771 {
772 	struct ifnet *ifp = &sc->arpcom.ac_if;
773 	struct mbuf *m0;
774 	struct ether_header *eh;
775 	struct re_desc *cur_rx;
776 	uint16_t status;
777 	uint32_t rxstat;
778 	int total_len, i, error = 0, phyaddr;
779 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
780 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
781 
782 	/* Allocate a single mbuf */
783 
784 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
785 	if (m0 == NULL)
786 		return(ENOBUFS);
787 
788 	/*
789 	 * Initialize the NIC in test mode. This sets the chip up
790 	 * so that it can send and receive frames, but performs the
791 	 * following special functions:
792 	 * - Puts receiver in promiscuous mode
793 	 * - Enables digital loopback mode
794 	 * - Leaves interrupts turned off
795 	 */
796 
797 	ifp->if_flags |= IFF_PROMISC;
798 	sc->re_flags |= RE_F_TESTMODE;
799 	re_init(sc);
800 	sc->re_flags |= RE_F_LINKED;
801 	if (!RE_IS_8139CP(sc))
802 		phyaddr = 1;
803 	else
804 		phyaddr = 0;
805 
806 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
807 	for (i = 0; i < RE_TIMEOUT; i++) {
808 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
809 		if (!(status & BMCR_RESET))
810 			break;
811 	}
812 
813 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
814 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
815 
816 	DELAY(100000);
817 
818 	/* Put some data in the mbuf */
819 
820 	eh = mtod(m0, struct ether_header *);
821 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
822 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
823 	eh->ether_type = htons(ETHERTYPE_IP);
824 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
825 
826 	/*
827 	 * Queue the packet, start transmission.
828 	 * Note: ifq_handoff() ultimately calls re_start() for us.
829 	 */
830 
831 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
832 	error = ifq_handoff(ifp, m0, NULL);
833 	if (error) {
834 		m0 = NULL;
835 		goto done;
836 	}
837 	m0 = NULL;
838 
839 	/* Wait for it to propagate through the chip */
840 
841 	DELAY(100000);
842 	for (i = 0; i < RE_TIMEOUT; i++) {
843 		status = CSR_READ_2(sc, RE_ISR);
844 		CSR_WRITE_2(sc, RE_ISR, status);
845 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
846 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
847 			break;
848 		DELAY(10);
849 	}
850 
851 	if (i == RE_TIMEOUT) {
852 		if_printf(ifp, "diagnostic failed to receive packet "
853 			  "in loopback mode\n");
854 		error = EIO;
855 		goto done;
856 	}
857 
858 	/*
859 	 * The packet should have been dumped into the first
860 	 * entry in the RX DMA ring. Grab it from there.
861 	 */
862 
863 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
864 			BUS_DMASYNC_POSTREAD);
865 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
866 			  sc->re_ldata.re_rx_dmamap[0]);
867 
868 	m0 = sc->re_ldata.re_rx_mbuf[0];
869 	sc->re_ldata.re_rx_mbuf[0] = NULL;
870 	eh = mtod(m0, struct ether_header *);
871 
872 	cur_rx = &sc->re_ldata.re_rx_list[0];
873 	total_len = RE_RXBYTES(cur_rx);
874 	rxstat = le32toh(cur_rx->re_cmdstat);
875 
876 	if (total_len != ETHER_MIN_LEN) {
877 		if_printf(ifp, "diagnostic failed, received short packet\n");
878 		error = EIO;
879 		goto done;
880 	}
881 
882 	/* Test that the received packet data matches what we sent. */
883 
884 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
885 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
886 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
887 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
888 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
889 		    dst, ":", src, ":", ETHERTYPE_IP);
890 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
891 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
892 		    ntohs(eh->ether_type));
893 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
894 		    "into a 64-bit PCI slot.\n");
895 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
896 		    "for proper operation.\n");
897 		if_printf(ifp, "Read the re(4) man page for more details.\n");
898 		error = EIO;
899 	}
900 
901 done:
902 	/* Turn interface off, release resources */
903 
904 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
905 	ifp->if_flags &= ~IFF_PROMISC;
906 	re_stop(sc);
907 	if (m0 != NULL)
908 		m_freem(m0);
909 
910 	return (error);
911 }
912 #endif	/* RE_DIAG */
913 
914 /*
915  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
916  * IDs against our list and return a device name if we find a match.
917  */
918 static int
919 re_probe(device_t dev)
920 {
921 	const struct re_type *t;
922 	const struct re_hwrev *hw_rev;
923 	struct re_softc *sc;
924 	int rid;
925 	uint32_t hwrev, macmode, txcfg;
926 	uint16_t vendor, product;
927 
928 	vendor = pci_get_vendor(dev);
929 	product = pci_get_device(dev);
930 
931 	/*
932 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
933 	 * Rev.2 is supported by sk(4).
934 	 */
935 	if (vendor == PCI_VENDOR_LINKSYS &&
936 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
937 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
938 		return ENXIO;
939 
940 	if (vendor == PCI_VENDOR_REALTEK &&
941 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
942 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
943 		/* Poor 8139 */
944 		return ENXIO;
945 	}
946 
947 	for (t = re_devs; t->re_name != NULL; t++) {
948 		if (product == t->re_did && vendor == t->re_vid)
949 			break;
950 	}
951 
952 	/*
953 	 * Check if we found a RealTek device.
954 	 */
955 	if (t->re_name == NULL)
956 		return ENXIO;
957 
958 	/*
959 	 * Temporarily map the I/O space so we can read the chip ID register.
960 	 */
961 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
962 	rid = RE_PCI_LOIO;
963 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
964 					    RF_ACTIVE);
965 	if (sc->re_res == NULL) {
966 		device_printf(dev, "couldn't map ports/memory\n");
967 		kfree(sc, M_TEMP);
968 		return ENXIO;
969 	}
970 
971 	sc->re_btag = rman_get_bustag(sc->re_res);
972 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
973 
974 	txcfg = CSR_READ_4(sc, RE_TXCFG);
975 	hwrev = txcfg & RE_TXCFG_HWREV;
976 	macmode = txcfg & RE_TXCFG_MACMODE;
977 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
978 	kfree(sc, M_TEMP);
979 
980 	/*
981 	 * and continue matching for the specific chip...
982 	 */
983 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
984 		if (hw_rev->re_hwrev == hwrev) {
985 			sc = device_get_softc(dev);
986 
987 			sc->re_hwrev = hw_rev->re_hwrev;
988 			sc->re_macver = hw_rev->re_macver;
989 			sc->re_caps = hw_rev->re_caps;
990 			sc->re_maxmtu = hw_rev->re_maxmtu;
991 
992 			/*
993 			 * Apply chip property fixup
994 			 */
995 			switch (sc->re_hwrev) {
996 			case RE_HWREV_8101E1:
997 			case RE_HWREV_8101E2:
998 				if (macmode == 0)
999 					sc->re_macver = RE_MACVER_11;
1000 				else if (macmode == 0x200000)
1001 					sc->re_macver = RE_MACVER_12;
1002 				break;
1003 			case RE_HWREV_8102E:
1004 			case RE_HWREV_8102EL:
1005 				if (macmode == 0)
1006 					sc->re_macver = RE_MACVER_13;
1007 				else if (macmode == 0x100000)
1008 					sc->re_macver = RE_MACVER_14;
1009 				break;
1010 			case RE_HWREV_8168B2:
1011 			case RE_HWREV_8168B3:
1012 				if (macmode == 0)
1013 					sc->re_macver = RE_MACVER_22;
1014 				break;
1015 			case RE_HWREV_8168C:
1016 				if (macmode == 0)
1017 					sc->re_macver = RE_MACVER_24;
1018 				else if (macmode == 0x200000)
1019 					sc->re_macver = RE_MACVER_25;
1020 				else if (macmode == 0x300000)
1021 					sc->re_macver = RE_MACVER_27;
1022 				break;
1023 			case RE_HWREV_8168CP:
1024 				if (macmode == 0)
1025 					sc->re_macver = RE_MACVER_26;
1026 				else if (macmode == 0x100000)
1027 					sc->re_macver = RE_MACVER_28;
1028 				break;
1029 			case RE_HWREV_8168DP:
1030 				if (macmode == 0)
1031 					sc->re_macver = RE_MACVER_2B;
1032 				else if (macmode == 0x200000)
1033 					sc->re_macver = RE_MACVER_2C;
1034 				break;
1035 			case RE_HWREV_8168E:
1036 				if (macmode == 0x100000)
1037 					sc->re_macver = RE_MACVER_2E;
1038 				else if (macmode == 0x200000)
1039 					sc->re_macver = RE_MACVER_2F;
1040 				break;
1041 			case RE_HWREV_8168F:
1042 				if (macmode == 0x000000)
1043 					sc->re_macver = RE_MACVER_30;
1044 				else if (macmode == 0x100000)
1045 					sc->re_macver = RE_MACVER_31;
1046 				break;
1047 			}
1048 			if (pci_is_pcie(dev))
1049 				sc->re_caps |= RE_C_PCIE;
1050 
1051 			device_set_desc(dev, t->re_name);
1052 			return 0;
1053 		}
1054 	}
1055 
1056 	if (bootverbose) {
1057 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1058 			      hwrev, macmode);
1059 	}
1060 	return ENXIO;
1061 }
1062 
1063 static int
1064 re_allocmem(device_t dev)
1065 {
1066 	struct re_softc *sc = device_get_softc(dev);
1067 	bus_dmamem_t dmem;
1068 	int error, i;
1069 
1070 	/*
1071 	 * Allocate list data
1072 	 */
1073 	sc->re_ldata.re_tx_mbuf =
1074 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1075 		M_DEVBUF, M_ZERO | M_WAITOK);
1076 
1077 	sc->re_ldata.re_rx_mbuf =
1078 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1079 		M_DEVBUF, M_ZERO | M_WAITOK);
1080 
1081 	sc->re_ldata.re_rx_paddr =
1082 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1083 		M_DEVBUF, M_ZERO | M_WAITOK);
1084 
1085 	sc->re_ldata.re_tx_dmamap =
1086 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1087 		M_DEVBUF, M_ZERO | M_WAITOK);
1088 
1089 	sc->re_ldata.re_rx_dmamap =
1090 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1091 		M_DEVBUF, M_ZERO | M_WAITOK);
1092 
1093 	/*
1094 	 * Allocate the parent bus DMA tag appropriate for PCI.
1095 	 */
1096 	error = bus_dma_tag_create(NULL,	/* parent */
1097 			1, 0,			/* alignment, boundary */
1098 			BUS_SPACE_MAXADDR,	/* lowaddr */
1099 			BUS_SPACE_MAXADDR,	/* highaddr */
1100 			NULL, NULL,		/* filter, filterarg */
1101 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1102 			0,			/* nsegments */
1103 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1104 			0,			/* flags */
1105 			&sc->re_parent_tag);
1106 	if (error) {
1107 		device_printf(dev, "could not allocate parent dma tag\n");
1108 		return error;
1109 	}
1110 
1111 	/* Allocate TX descriptor list. */
1112 	error = bus_dmamem_coherent(sc->re_parent_tag,
1113 			RE_RING_ALIGN, 0,
1114 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1115 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1116 			&dmem);
1117 	if (error) {
1118 		device_printf(dev, "could not allocate TX ring\n");
1119 		return error;
1120 	}
1121 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1122 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1123 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1124 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1125 
1126 	/* Allocate RX descriptor list. */
1127 	error = bus_dmamem_coherent(sc->re_parent_tag,
1128 			RE_RING_ALIGN, 0,
1129 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1130 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1131 			&dmem);
1132 	if (error) {
1133 		device_printf(dev, "could not allocate RX ring\n");
1134 		return error;
1135 	}
1136 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1137 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1138 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1139 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1140 
1141 	/* Allocate maps for TX mbufs. */
1142 	error = bus_dma_tag_create(sc->re_parent_tag,
1143 			1, 0,
1144 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1145 			NULL, NULL,
1146 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1147 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1148 			&sc->re_ldata.re_tx_mtag);
1149 	if (error) {
1150 		device_printf(dev, "could not allocate TX buf dma tag\n");
1151 		return(error);
1152 	}
1153 
1154 	/* Create DMA maps for TX buffers */
1155 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1156 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1157 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1158 				&sc->re_ldata.re_tx_dmamap[i]);
1159 		if (error) {
1160 			device_printf(dev, "can't create DMA map for TX buf\n");
1161 			re_freebufmem(sc, i, 0);
1162 			return(error);
1163 		}
1164 	}
1165 
1166 	/* Allocate maps for RX mbufs. */
1167 	error = bus_dma_tag_create(sc->re_parent_tag,
1168 			RE_RXBUF_ALIGN, 0,
1169 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1170 			NULL, NULL,
1171 			MCLBYTES, 1, MCLBYTES,
1172 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1173 			&sc->re_ldata.re_rx_mtag);
1174 	if (error) {
1175 		device_printf(dev, "could not allocate RX buf dma tag\n");
1176 		return(error);
1177 	}
1178 
1179 	/* Create spare DMA map for RX */
1180 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1181 			&sc->re_ldata.re_rx_spare);
1182 	if (error) {
1183 		device_printf(dev, "can't create spare DMA map for RX\n");
1184 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1185 		sc->re_ldata.re_rx_mtag = NULL;
1186 		return error;
1187 	}
1188 
1189 	/* Create DMA maps for RX buffers */
1190 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1191 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1192 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1193 		if (error) {
1194 			device_printf(dev, "can't create DMA map for RX buf\n");
1195 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1196 			return(error);
1197 		}
1198 	}
1199 
1200 	/* Create jumbo buffer pool for RX if required */
1201 	if (sc->re_caps & RE_C_CONTIGRX) {
1202 		error = re_jpool_alloc(sc);
1203 		if (error) {
1204 			re_jpool_free(sc);
1205 			/* Disable jumbo frame support */
1206 			sc->re_maxmtu = ETHERMTU;
1207 		}
1208 	}
1209 	return(0);
1210 }
1211 
1212 static void
1213 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1214 {
1215 	int i;
1216 
1217 	/* Destroy all the RX and TX buffer maps */
1218 	if (sc->re_ldata.re_tx_mtag) {
1219 		for (i = 0; i < tx_cnt; i++) {
1220 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1221 					   sc->re_ldata.re_tx_dmamap[i]);
1222 		}
1223 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1224 		sc->re_ldata.re_tx_mtag = NULL;
1225 	}
1226 
1227 	if (sc->re_ldata.re_rx_mtag) {
1228 		for (i = 0; i < rx_cnt; i++) {
1229 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1230 					   sc->re_ldata.re_rx_dmamap[i]);
1231 		}
1232 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1233 				   sc->re_ldata.re_rx_spare);
1234 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1235 		sc->re_ldata.re_rx_mtag = NULL;
1236 	}
1237 }
1238 
1239 static void
1240 re_freemem(device_t dev)
1241 {
1242 	struct re_softc *sc = device_get_softc(dev);
1243 
1244 	/* Unload and free the RX DMA ring memory and map */
1245 	if (sc->re_ldata.re_rx_list_tag) {
1246 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1247 				  sc->re_ldata.re_rx_list_map);
1248 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1249 				sc->re_ldata.re_rx_list,
1250 				sc->re_ldata.re_rx_list_map);
1251 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1252 	}
1253 
1254 	/* Unload and free the TX DMA ring memory and map */
1255 	if (sc->re_ldata.re_tx_list_tag) {
1256 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1257 				  sc->re_ldata.re_tx_list_map);
1258 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1259 				sc->re_ldata.re_tx_list,
1260 				sc->re_ldata.re_tx_list_map);
1261 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1262 	}
1263 
1264 	/* Free RX/TX buf DMA stuffs */
1265 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1266 
1267 	/* Unload and free the stats buffer and map */
1268 	if (sc->re_ldata.re_stag) {
1269 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1270 		bus_dmamem_free(sc->re_ldata.re_stag,
1271 				sc->re_ldata.re_stats,
1272 				sc->re_ldata.re_smap);
1273 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1274 	}
1275 
1276 	if (sc->re_caps & RE_C_CONTIGRX)
1277 		re_jpool_free(sc);
1278 
1279 	if (sc->re_parent_tag)
1280 		bus_dma_tag_destroy(sc->re_parent_tag);
1281 
1282 	if (sc->re_ldata.re_tx_mbuf != NULL)
1283 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1284 	if (sc->re_ldata.re_rx_mbuf != NULL)
1285 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1286 	if (sc->re_ldata.re_rx_paddr != NULL)
1287 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1288 	if (sc->re_ldata.re_tx_dmamap != NULL)
1289 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1290 	if (sc->re_ldata.re_rx_dmamap != NULL)
1291 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1292 }
1293 
1294 /*
1295  * Attach the interface. Allocate softc structures, do ifmedia
1296  * setup and ethernet/BPF attach.
1297  */
1298 static int
1299 re_attach(device_t dev)
1300 {
1301 	struct re_softc	*sc = device_get_softc(dev);
1302 	struct ifnet *ifp;
1303 	uint8_t eaddr[ETHER_ADDR_LEN];
1304 	int error = 0, rid, qlen;
1305 
1306 	callout_init(&sc->re_timer);
1307 	sc->re_dev = dev;
1308 
1309 	if (RE_IS_8139CP(sc)) {
1310 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1311 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1312 	} else {
1313 		sc->re_rx_desc_cnt = re_rx_desc_count;
1314 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1315 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1316 
1317 		sc->re_tx_desc_cnt = re_tx_desc_count;
1318 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1319 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1320 	}
1321 
1322 	qlen = RE_IFQ_MAXLEN;
1323 	if (sc->re_tx_desc_cnt > qlen)
1324 		qlen = sc->re_tx_desc_cnt;
1325 
1326 	sc->re_rxbuf_size = MCLBYTES;
1327 	sc->re_newbuf = re_newbuf_std;
1328 
1329 	sc->re_tx_time = 5;		/* 125us */
1330 	sc->re_rx_time = 2;		/* 50us */
1331 	if (sc->re_caps & RE_C_PCIE)
1332 		sc->re_sim_time = 75;	/* 75us */
1333 	else
1334 		sc->re_sim_time = 125;	/* 125us */
1335 	if (!RE_IS_8139CP(sc)) {
1336 		/* simulated interrupt moderation */
1337 		sc->re_imtype = RE_IMTYPE_SIM;
1338 	} else {
1339 		sc->re_imtype = RE_IMTYPE_NONE;
1340 	}
1341 	re_config_imtype(sc, sc->re_imtype);
1342 
1343 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1344 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1345 					     SYSCTL_STATIC_CHILDREN(_hw),
1346 					     OID_AUTO,
1347 					     device_get_nameunit(dev),
1348 					     CTLFLAG_RD, 0, "");
1349 	if (sc->re_sysctl_tree == NULL) {
1350 		device_printf(dev, "can't add sysctl node\n");
1351 		error = ENXIO;
1352 		goto fail;
1353 	}
1354 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1355 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1356 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1357 		       0, "RX desc count");
1358 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1359 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1360 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1361 		       0, "TX desc count");
1362 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1363 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1364 			OID_AUTO, "sim_time",
1365 			CTLTYPE_INT | CTLFLAG_RW,
1366 			sc, 0, re_sysctl_simtime, "I",
1367 			"Simulated interrupt moderation time (usec).");
1368 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1369 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1370 			OID_AUTO, "imtype",
1371 			CTLTYPE_INT | CTLFLAG_RW,
1372 			sc, 0, re_sysctl_imtype, "I",
1373 			"Interrupt moderation type -- "
1374 			"0:disable, 1:simulated, "
1375 			"2:hardware(if supported)");
1376 	if (sc->re_caps & RE_C_HWIM) {
1377 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1378 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1379 				OID_AUTO, "hw_rxtime",
1380 				CTLTYPE_INT | CTLFLAG_RW,
1381 				sc, 0, re_sysctl_rxtime, "I",
1382 				"Hardware interrupt moderation time "
1383 				"(unit: 25usec).");
1384 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1385 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1386 				OID_AUTO, "hw_txtime",
1387 				CTLTYPE_INT | CTLFLAG_RW,
1388 				sc, 0, re_sysctl_txtime, "I",
1389 				"Hardware interrupt moderation time "
1390 				"(unit: 25usec).");
1391 	}
1392 
1393 #ifndef BURN_BRIDGES
1394 	/*
1395 	 * Handle power management nonsense.
1396 	 */
1397 
1398 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1399 		uint32_t membase, irq;
1400 
1401 		/* Save important PCI config data. */
1402 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1403 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1404 
1405 		/* Reset the power state. */
1406 		device_printf(dev, "chip is in D%d power mode "
1407 		    "-- setting to D0\n", pci_get_powerstate(dev));
1408 
1409 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1410 
1411 		/* Restore PCI config data. */
1412 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1413 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1414 	}
1415 #endif
1416 	/*
1417 	 * Map control/status registers.
1418 	 */
1419 	pci_enable_busmaster(dev);
1420 
1421 	rid = RE_PCI_LOIO;
1422 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1423 					    RF_ACTIVE);
1424 
1425 	if (sc->re_res == NULL) {
1426 		device_printf(dev, "couldn't map ports\n");
1427 		error = ENXIO;
1428 		goto fail;
1429 	}
1430 
1431 	sc->re_btag = rman_get_bustag(sc->re_res);
1432 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1433 
1434 	/* Allocate interrupt */
1435 	rid = 0;
1436 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1437 					    RF_SHAREABLE | RF_ACTIVE);
1438 
1439 	if (sc->re_irq == NULL) {
1440 		device_printf(dev, "couldn't map interrupt\n");
1441 		error = ENXIO;
1442 		goto fail;
1443 	}
1444 
1445 	/* Reset the adapter. */
1446 	re_reset(sc, 0);
1447 
1448 	if (RE_IS_8139CP(sc)) {
1449 		sc->re_bus_speed = 33; /* XXX */
1450 	} else if (sc->re_caps & RE_C_PCIE) {
1451 		sc->re_bus_speed = 125;
1452 	} else {
1453 		uint8_t cfg2;
1454 
1455 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1456 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1457 		case RE_CFG2_PCICLK_33MHZ:
1458 			sc->re_bus_speed = 33;
1459 			break;
1460 		case RE_CFG2_PCICLK_66MHZ:
1461 			sc->re_bus_speed = 66;
1462 			break;
1463 		default:
1464 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1465 			sc->re_bus_speed = 33;
1466 			break;
1467 		}
1468 		if (cfg2 & RE_CFG2_PCI64)
1469 			sc->re_caps |= RE_C_PCI64;
1470 	}
1471 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1472 		      "PCI%s %dMHz\n",
1473 		      sc->re_hwrev, sc->re_macver,
1474 		      (sc->re_caps & RE_C_PCIE) ?
1475 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1476 		      sc->re_bus_speed);
1477 
1478 	/*
1479 	 * NOTE:
1480 	 * DO NOT try to adjust config1 and config5 which was spotted in
1481 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1482 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1483 	 */
1484 
1485 	re_get_eaddr(sc, eaddr);
1486 
1487 	if (!RE_IS_8139CP(sc)) {
1488 		/* Set RX length mask */
1489 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1490 		sc->re_txstart = RE_GTXSTART;
1491 	} else {
1492 		/* Set RX length mask */
1493 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1494 		sc->re_txstart = RE_TXSTART;
1495 	}
1496 
1497 	/* Allocate DMA stuffs */
1498 	error = re_allocmem(dev);
1499 	if (error)
1500 		goto fail;
1501 
1502 	/*
1503 	 * Apply some magic PCI settings from Realtek ...
1504 	 */
1505 	if (RE_IS_8169(sc)) {
1506 		CSR_WRITE_1(sc, 0x82, 1);
1507 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1508 	}
1509 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1510 
1511 	if (sc->re_caps & RE_C_MAC2) {
1512 		/*
1513 		 * Following part is extracted from Realtek BSD driver v176.
1514 		 * However, this does _not_ make much/any sense:
1515 		 * 8168C's PCI Express device control is located at 0x78,
1516 		 * so the reading from 0x79 (higher part of 0x78) and setting
1517 		 * the 4~6bits intend to enlarge the "max read request size"
1518 		 * (we will do it).  The content of the rest part of this
1519 		 * register is not meaningful to other PCI registers, so
1520 		 * writing the value to 0x54 could be completely wrong.
1521 		 * 0x80 is the lower part of PCI Express device status, non-
1522 		 * reserved bits are RW1C, writing 0 to them will not have
1523 		 * any effect at all.
1524 		 */
1525 #ifdef foo
1526 		uint8_t val;
1527 
1528 		val = pci_read_config(dev, 0x79, 1);
1529 		val = (val & ~0x70) | 0x50;
1530 		pci_write_config(dev, 0x54, val, 1);
1531 		pci_write_config(dev, 0x80, 0, 1);
1532 #endif
1533 	}
1534 
1535 	/*
1536 	 * Apply some PHY fixup from Realtek ...
1537 	 */
1538 	if (sc->re_hwrev == RE_HWREV_8110S) {
1539 		CSR_WRITE_1(sc, 0x82, 1);
1540 		re_miibus_writereg(dev, 1, 0xb, 0);
1541 	}
1542 	if (sc->re_caps & RE_C_PHYPMGT) {
1543 		/* Power up PHY */
1544 		re_miibus_writereg(dev, 1, 0x1f, 0);
1545 		re_miibus_writereg(dev, 1, 0xe, 0);
1546 	}
1547 
1548 	/* Do MII setup */
1549 	if (mii_phy_probe(dev, &sc->re_miibus,
1550 	    re_ifmedia_upd, re_ifmedia_sts)) {
1551 		device_printf(dev, "MII without any phy!\n");
1552 		error = ENXIO;
1553 		goto fail;
1554 	}
1555 
1556 	ifp = &sc->arpcom.ac_if;
1557 	ifp->if_softc = sc;
1558 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1559 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1560 	ifp->if_ioctl = re_ioctl;
1561 	ifp->if_start = re_start;
1562 #ifdef DEVICE_POLLING
1563 	ifp->if_poll = re_poll;
1564 #endif
1565 	ifp->if_watchdog = re_watchdog;
1566 	ifp->if_init = re_init;
1567 	if (!RE_IS_8139CP(sc)) /* XXX */
1568 		ifp->if_baudrate = 1000000000;
1569 	else
1570 		ifp->if_baudrate = 100000000;
1571 	ifq_set_maxlen(&ifp->if_snd, qlen);
1572 	ifq_set_ready(&ifp->if_snd);
1573 
1574 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1575 	if (sc->re_caps & RE_C_HWCSUM)
1576 		ifp->if_capabilities |= IFCAP_HWCSUM;
1577 
1578 	ifp->if_capenable = ifp->if_capabilities;
1579 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1580 		ifp->if_hwassist = RE_CSUM_FEATURES;
1581 	else
1582 		ifp->if_hwassist = 0;
1583 
1584 	/*
1585 	 * Call MI attach routine.
1586 	 */
1587 	ether_ifattach(ifp, eaddr, NULL);
1588 
1589 #ifdef RE_DIAG
1590 	/*
1591 	 * Perform hardware diagnostic on the original RTL8169.
1592 	 * Some 32-bit cards were incorrectly wired and would
1593 	 * malfunction if plugged into a 64-bit slot.
1594 	 */
1595 	if (sc->re_hwrev == RE_HWREV_8169) {
1596 		lwkt_serialize_enter(ifp->if_serializer);
1597 		error = re_diag(sc);
1598 		lwkt_serialize_exit(ifp->if_serializer);
1599 
1600 		if (error) {
1601 			device_printf(dev, "hardware diagnostic failure\n");
1602 			ether_ifdetach(ifp);
1603 			goto fail;
1604 		}
1605 	}
1606 #endif	/* RE_DIAG */
1607 
1608 	/* Hook interrupt last to avoid having to lock softc */
1609 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1610 			       &sc->re_intrhand, ifp->if_serializer);
1611 
1612 	if (error) {
1613 		device_printf(dev, "couldn't set up irq\n");
1614 		ether_ifdetach(ifp);
1615 		goto fail;
1616 	}
1617 
1618 	ifp->if_cpuid = rman_get_cpuid(sc->re_irq);
1619 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1620 
1621 fail:
1622 	if (error)
1623 		re_detach(dev);
1624 
1625 	return (error);
1626 }
1627 
1628 /*
1629  * Shutdown hardware and free up resources. This can be called any
1630  * time after the mutex has been initialized. It is called in both
1631  * the error case in attach and the normal detach case so it needs
1632  * to be careful about only freeing resources that have actually been
1633  * allocated.
1634  */
1635 static int
1636 re_detach(device_t dev)
1637 {
1638 	struct re_softc *sc = device_get_softc(dev);
1639 	struct ifnet *ifp = &sc->arpcom.ac_if;
1640 
1641 	/* These should only be active if attach succeeded */
1642 	if (device_is_attached(dev)) {
1643 		lwkt_serialize_enter(ifp->if_serializer);
1644 		re_stop(sc);
1645 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1646 		lwkt_serialize_exit(ifp->if_serializer);
1647 
1648 		ether_ifdetach(ifp);
1649 	}
1650 	if (sc->re_miibus)
1651 		device_delete_child(dev, sc->re_miibus);
1652 	bus_generic_detach(dev);
1653 
1654 	if (sc->re_sysctl_tree != NULL)
1655 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1656 
1657 	if (sc->re_irq)
1658 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1659 	if (sc->re_res) {
1660 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1661 				     sc->re_res);
1662 	}
1663 
1664 	/* Free DMA stuffs */
1665 	re_freemem(dev);
1666 
1667 	return(0);
1668 }
1669 
1670 static void
1671 re_setup_rxdesc(struct re_softc *sc, int idx)
1672 {
1673 	bus_addr_t paddr;
1674 	uint32_t cmdstat;
1675 	struct re_desc *d;
1676 
1677 	paddr = sc->re_ldata.re_rx_paddr[idx];
1678 	d = &sc->re_ldata.re_rx_list[idx];
1679 
1680 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1681 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1682 
1683 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1684 	if (idx == (sc->re_rx_desc_cnt - 1))
1685 		cmdstat |= RE_RDESC_CMD_EOR;
1686 	d->re_cmdstat = htole32(cmdstat);
1687 }
1688 
1689 static int
1690 re_newbuf_std(struct re_softc *sc, int idx, int init)
1691 {
1692 	bus_dma_segment_t seg;
1693 	bus_dmamap_t map;
1694 	struct mbuf *m;
1695 	int error, nsegs;
1696 
1697 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1698 	if (m == NULL) {
1699 		error = ENOBUFS;
1700 
1701 		if (init) {
1702 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1703 			return error;
1704 		} else {
1705 			goto back;
1706 		}
1707 	}
1708 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1709 
1710 	/*
1711 	 * NOTE:
1712 	 * re(4) chips need address of the receive buffer to be 8-byte
1713 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1714 	 */
1715 
1716 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1717 			sc->re_ldata.re_rx_spare, m,
1718 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1719 	if (error) {
1720 		m_freem(m);
1721 		if (init) {
1722 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1723 			return error;
1724 		} else {
1725 			goto back;
1726 		}
1727 	}
1728 
1729 	if (!init) {
1730 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1731 				sc->re_ldata.re_rx_dmamap[idx],
1732 				BUS_DMASYNC_POSTREAD);
1733 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1734 				  sc->re_ldata.re_rx_dmamap[idx]);
1735 	}
1736 	sc->re_ldata.re_rx_mbuf[idx] = m;
1737 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1738 
1739 	map = sc->re_ldata.re_rx_dmamap[idx];
1740 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1741 	sc->re_ldata.re_rx_spare = map;
1742 back:
1743 	re_setup_rxdesc(sc, idx);
1744 	return error;
1745 }
1746 
1747 static int
1748 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1749 {
1750 	struct mbuf *m;
1751 	struct re_jbuf *jbuf;
1752 	int error = 0;
1753 
1754 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1755 	if (m == NULL) {
1756 		error = ENOBUFS;
1757 		if (init) {
1758 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1759 			return error;
1760 		} else {
1761 			goto back;
1762 		}
1763 	}
1764 
1765 	jbuf = re_jbuf_alloc(sc);
1766 	if (jbuf == NULL) {
1767 		m_freem(m);
1768 
1769 		error = ENOBUFS;
1770 		if (init) {
1771 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1772 			return error;
1773 		} else {
1774 			goto back;
1775 		}
1776 	}
1777 
1778 	m->m_ext.ext_arg = jbuf;
1779 	m->m_ext.ext_buf = jbuf->re_buf;
1780 	m->m_ext.ext_free = re_jbuf_free;
1781 	m->m_ext.ext_ref = re_jbuf_ref;
1782 	m->m_ext.ext_size = sc->re_rxbuf_size;
1783 
1784 	m->m_data = m->m_ext.ext_buf;
1785 	m->m_flags |= M_EXT;
1786 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1787 
1788 	/*
1789 	 * NOTE:
1790 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1791 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1792 	 */
1793 
1794 	sc->re_ldata.re_rx_mbuf[idx] = m;
1795 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1796 back:
1797 	re_setup_rxdesc(sc, idx);
1798 	return error;
1799 }
1800 
1801 static int
1802 re_tx_list_init(struct re_softc *sc)
1803 {
1804 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1805 
1806 	sc->re_ldata.re_tx_prodidx = 0;
1807 	sc->re_ldata.re_tx_considx = 0;
1808 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1809 
1810 	return(0);
1811 }
1812 
1813 static int
1814 re_rx_list_init(struct re_softc *sc)
1815 {
1816 	int i, error;
1817 
1818 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1819 
1820 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1821 		error = sc->re_newbuf(sc, i, 1);
1822 		if (error)
1823 			return(error);
1824 	}
1825 
1826 	sc->re_ldata.re_rx_prodidx = 0;
1827 	sc->re_head = sc->re_tail = NULL;
1828 
1829 	return(0);
1830 }
1831 
1832 #define RE_IP4_PACKET	0x1
1833 #define RE_TCP_PACKET	0x2
1834 #define RE_UDP_PACKET	0x4
1835 
1836 static __inline uint8_t
1837 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1838 {
1839 	uint8_t packet_type = 0;
1840 
1841 	if (sc->re_caps & RE_C_MAC2) {
1842 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1843 			packet_type |= RE_IP4_PACKET;
1844 	} else {
1845 		if (rxstat & RE_RDESC_STAT_PROTOID)
1846 			packet_type |= RE_IP4_PACKET;
1847 	}
1848 	if (RE_TCPPKT(rxstat))
1849 		packet_type |= RE_TCP_PACKET;
1850 	else if (RE_UDPPKT(rxstat))
1851 		packet_type |= RE_UDP_PACKET;
1852 	return packet_type;
1853 }
1854 
1855 /*
1856  * RX handler for C+ and 8169. For the gigE chips, we support
1857  * the reception of jumbo frames that have been fragmented
1858  * across multiple 2K mbuf cluster buffers.
1859  */
1860 static int
1861 re_rxeof(struct re_softc *sc)
1862 {
1863 	struct ifnet *ifp = &sc->arpcom.ac_if;
1864 	struct mbuf *m;
1865 	struct re_desc 	*cur_rx;
1866 	uint32_t rxstat, rxctrl;
1867 	int i, total_len, rx = 0;
1868 	struct mbuf_chain chain[MAXCPU];
1869 
1870 	ether_input_chain_init(chain);
1871 
1872 	for (i = sc->re_ldata.re_rx_prodidx;
1873 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1874 		cur_rx = &sc->re_ldata.re_rx_list[i];
1875 		m = sc->re_ldata.re_rx_mbuf[i];
1876 		total_len = RE_RXBYTES(cur_rx);
1877 		rxstat = le32toh(cur_rx->re_cmdstat);
1878 		rxctrl = le32toh(cur_rx->re_control);
1879 
1880 		rx = 1;
1881 
1882 #ifdef INVARIANTS
1883 		if (sc->re_flags & RE_F_USE_JPOOL)
1884 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1885 #endif
1886 
1887 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1888 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1889 				re_setup_rxdesc(sc, i);
1890 				continue;
1891 			}
1892 
1893 			if (sc->re_newbuf(sc, i, 0)) {
1894 				/* Drop upcoming fragments */
1895 				sc->re_flags |= RE_F_DROP_RXFRAG;
1896 				continue;
1897 			}
1898 
1899 			m->m_len = MCLBYTES;
1900 			if (sc->re_head == NULL) {
1901 				sc->re_head = sc->re_tail = m;
1902 			} else {
1903 				sc->re_tail->m_next = m;
1904 				sc->re_tail = m;
1905 			}
1906 			continue;
1907 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1908 			/*
1909 			 * Last fragment of a multi-fragment packet.
1910 			 *
1911 			 * Since error already happened, this fragment
1912 			 * must be dropped as well as the fragment chain.
1913 			 */
1914 			re_setup_rxdesc(sc, i);
1915 			re_free_rxchain(sc);
1916 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1917 			continue;
1918 		}
1919 
1920 		/*
1921 		 * NOTE: for the 8139C+, the frame length field
1922 		 * is always 12 bits in size, but for the gigE chips,
1923 		 * it is 13 bits (since the max RX frame length is 16K).
1924 		 * Unfortunately, all 32 bits in the status word
1925 		 * were already used, so to make room for the extra
1926 		 * length bit, RealTek took out the 'frame alignment
1927 		 * error' bit and shifted the other status bits
1928 		 * over one slot. The OWN, EOR, FS and LS bits are
1929 		 * still in the same places. We have already extracted
1930 		 * the frame length and checked the OWN bit, so rather
1931 		 * than using an alternate bit mapping, we shift the
1932 		 * status bits one space to the right so we can evaluate
1933 		 * them using the 8169 status as though it was in the
1934 		 * same format as that of the 8139C+.
1935 		 */
1936 		if (!RE_IS_8139CP(sc))
1937 			rxstat >>= 1;
1938 
1939 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1940 			ifp->if_ierrors++;
1941 			/*
1942 			 * If this is part of a multi-fragment packet,
1943 			 * discard all the pieces.
1944 			 */
1945 			re_free_rxchain(sc);
1946 			re_setup_rxdesc(sc, i);
1947 			continue;
1948 		}
1949 
1950 		/*
1951 		 * If allocating a replacement mbuf fails,
1952 		 * reload the current one.
1953 		 */
1954 
1955 		if (sc->re_newbuf(sc, i, 0)) {
1956 			ifp->if_ierrors++;
1957 			continue;
1958 		}
1959 
1960 		if (sc->re_head != NULL) {
1961 			m->m_len = total_len % MCLBYTES;
1962 			/*
1963 			 * Special case: if there's 4 bytes or less
1964 			 * in this buffer, the mbuf can be discarded:
1965 			 * the last 4 bytes is the CRC, which we don't
1966 			 * care about anyway.
1967 			 */
1968 			if (m->m_len <= ETHER_CRC_LEN) {
1969 				sc->re_tail->m_len -=
1970 				    (ETHER_CRC_LEN - m->m_len);
1971 				m_freem(m);
1972 			} else {
1973 				m->m_len -= ETHER_CRC_LEN;
1974 				sc->re_tail->m_next = m;
1975 			}
1976 			m = sc->re_head;
1977 			sc->re_head = sc->re_tail = NULL;
1978 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1979 		} else {
1980 			m->m_pkthdr.len = m->m_len =
1981 			    (total_len - ETHER_CRC_LEN);
1982 		}
1983 
1984 		ifp->if_ipackets++;
1985 		m->m_pkthdr.rcvif = ifp;
1986 
1987 		/* Do RX checksumming if enabled */
1988 
1989 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1990 			uint8_t packet_type;
1991 
1992 			packet_type = re_packet_type(sc, rxstat, rxctrl);
1993 
1994 			/* Check IP header checksum */
1995 			if (packet_type & RE_IP4_PACKET) {
1996 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1997 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1998 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1999 			}
2000 
2001 			/* Check TCP/UDP checksum */
2002 			if (((packet_type & RE_TCP_PACKET) &&
2003 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2004 			    ((packet_type & RE_UDP_PACKET) &&
2005 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2006 				m->m_pkthdr.csum_flags |=
2007 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2008 				    CSUM_FRAG_NOT_CHECKED;
2009 				m->m_pkthdr.csum_data = 0xffff;
2010 			}
2011 		}
2012 
2013 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2014 			m->m_flags |= M_VLANTAG;
2015 			m->m_pkthdr.ether_vlantag =
2016 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2017 		}
2018 		ether_input_chain(ifp, m, NULL, chain);
2019 	}
2020 
2021 	ether_input_dispatch(chain);
2022 
2023 	sc->re_ldata.re_rx_prodidx = i;
2024 
2025 	return rx;
2026 }
2027 
2028 #undef RE_IP4_PACKET
2029 #undef RE_TCP_PACKET
2030 #undef RE_UDP_PACKET
2031 
2032 static int
2033 re_tx_collect(struct re_softc *sc)
2034 {
2035 	struct ifnet *ifp = &sc->arpcom.ac_if;
2036 	uint32_t txstat;
2037 	int idx, tx = 0;
2038 
2039 	for (idx = sc->re_ldata.re_tx_considx;
2040 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2041 	     RE_TXDESC_INC(sc, idx)) {
2042 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2043 		if (txstat & RE_TDESC_CMD_OWN)
2044 			break;
2045 
2046 		tx = 1;
2047 
2048 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2049 
2050 		/*
2051 		 * We only stash mbufs in the last descriptor
2052 		 * in a fragment chain, which also happens to
2053 		 * be the only place where the TX status bits
2054 		 * are valid.
2055 		 */
2056 		if (txstat & RE_TDESC_CMD_EOF) {
2057 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2058 			    sc->re_ldata.re_tx_dmamap[idx]);
2059 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2060 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2061 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2062 			    RE_TDESC_STAT_COLCNT))
2063 				ifp->if_collisions++;
2064 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2065 				ifp->if_oerrors++;
2066 			else
2067 				ifp->if_opackets++;
2068 		}
2069 		sc->re_ldata.re_tx_free++;
2070 	}
2071 	sc->re_ldata.re_tx_considx = idx;
2072 
2073 	return tx;
2074 }
2075 
2076 static int
2077 re_txeof(struct re_softc *sc)
2078 {
2079 	struct ifnet *ifp = &sc->arpcom.ac_if;
2080 	int tx;
2081 
2082 	tx = re_tx_collect(sc);
2083 
2084 	/* There is enough free TX descs */
2085 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2086 		ifp->if_flags &= ~IFF_OACTIVE;
2087 
2088 	/*
2089 	 * Some chips will ignore a second TX request issued while an
2090 	 * existing transmission is in progress. If the transmitter goes
2091 	 * idle but there are still packets waiting to be sent, we need
2092 	 * to restart the channel here to flush them out. This only seems
2093 	 * to be required with the PCIe devices.
2094 	 */
2095 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2096 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2097 	else
2098 		ifp->if_timer = 0;
2099 
2100 	return tx;
2101 }
2102 
2103 static void
2104 re_tick(void *xsc)
2105 {
2106 	struct re_softc *sc = xsc;
2107 
2108 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2109 	re_tick_serialized(xsc);
2110 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2111 }
2112 
2113 static void
2114 re_tick_serialized(void *xsc)
2115 {
2116 	struct re_softc *sc = xsc;
2117 	struct ifnet *ifp = &sc->arpcom.ac_if;
2118 	struct mii_data *mii;
2119 
2120 	ASSERT_SERIALIZED(ifp->if_serializer);
2121 
2122 	mii = device_get_softc(sc->re_miibus);
2123 	mii_tick(mii);
2124 	if (sc->re_flags & RE_F_LINKED) {
2125 		if (!(mii->mii_media_status & IFM_ACTIVE))
2126 			sc->re_flags &= ~RE_F_LINKED;
2127 	} else {
2128 		if (mii->mii_media_status & IFM_ACTIVE &&
2129 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2130 			sc->re_flags |= RE_F_LINKED;
2131 			if (!ifq_is_empty(&ifp->if_snd))
2132 				if_devstart(ifp);
2133 		}
2134 	}
2135 
2136 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2137 }
2138 
2139 #ifdef DEVICE_POLLING
2140 
2141 static void
2142 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2143 {
2144 	struct re_softc *sc = ifp->if_softc;
2145 
2146 	ASSERT_SERIALIZED(ifp->if_serializer);
2147 
2148 	switch(cmd) {
2149 	case POLL_REGISTER:
2150 		/* disable interrupts */
2151 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2152 		break;
2153 
2154 	case POLL_DEREGISTER:
2155 		/* enable interrupts */
2156 		re_setup_intr(sc, 1, sc->re_imtype);
2157 		break;
2158 
2159 	default:
2160 		sc->rxcycles = count;
2161 		re_rxeof(sc);
2162 		re_txeof(sc);
2163 
2164 		if (!ifq_is_empty(&ifp->if_snd))
2165 			if_devstart(ifp);
2166 
2167 		if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2168 			uint16_t       status;
2169 
2170 			status = CSR_READ_2(sc, RE_ISR);
2171 			if (status == 0xffff)
2172 				return;
2173 			if (status)
2174 				CSR_WRITE_2(sc, RE_ISR, status);
2175 
2176 			/*
2177 			 * XXX check behaviour on receiver stalls.
2178 			 */
2179 
2180 			if (status & RE_ISR_SYSTEM_ERR)
2181 				re_init(sc);
2182 		}
2183 		break;
2184 	}
2185 }
2186 #endif /* DEVICE_POLLING */
2187 
2188 static void
2189 re_intr(void *arg)
2190 {
2191 	struct re_softc	*sc = arg;
2192 	struct ifnet *ifp = &sc->arpcom.ac_if;
2193 	uint16_t status;
2194 	int rx, tx;
2195 
2196 	ASSERT_SERIALIZED(ifp->if_serializer);
2197 
2198 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2199 	    (ifp->if_flags & IFF_RUNNING) == 0)
2200 		return;
2201 
2202 	rx = tx = 0;
2203 	for (;;) {
2204 		status = CSR_READ_2(sc, RE_ISR);
2205 		/* If the card has gone away the read returns 0xffff. */
2206 		if (status == 0xffff)
2207 			break;
2208 		if (status)
2209 			CSR_WRITE_2(sc, RE_ISR, status);
2210 
2211 		if ((status & sc->re_intrs) == 0)
2212 			break;
2213 
2214 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2215 			rx |= re_rxeof(sc);
2216 
2217 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2218 			tx |= re_txeof(sc);
2219 
2220 		if (status & RE_ISR_SYSTEM_ERR)
2221 			re_init(sc);
2222 
2223 		if (status & RE_ISR_LINKCHG) {
2224 			callout_stop(&sc->re_timer);
2225 			re_tick_serialized(sc);
2226 		}
2227 	}
2228 
2229 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2230 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2231 			if ((tx | rx) == 0) {
2232 				/*
2233 				 * Nothing needs to be processed, fallback
2234 				 * to use TX/RX interrupts.
2235 				 */
2236 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2237 
2238 				/*
2239 				 * Recollect, mainly to avoid the possible
2240 				 * race introduced by changing interrupt
2241 				 * masks.
2242 				 */
2243 				re_rxeof(sc);
2244 				tx = re_txeof(sc);
2245 			} else {
2246 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2247 			}
2248 		} else if (tx | rx) {
2249 			/*
2250 			 * Assume that using simulated interrupt moderation
2251 			 * (hardware timer based) could reduce the interript
2252 			 * rate.
2253 			 */
2254 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2255 		}
2256 	}
2257 
2258 	if (tx && !ifq_is_empty(&ifp->if_snd))
2259 		if_devstart(ifp);
2260 }
2261 
2262 static int
2263 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2264 {
2265 	struct mbuf *m = *m_head;
2266 	bus_dma_segment_t segs[RE_MAXSEGS];
2267 	bus_dmamap_t map;
2268 	int error, maxsegs, idx, i, nsegs;
2269 	struct re_desc *d, *tx_ring;
2270 	uint32_t cmd_csum, ctl_csum, vlantag;
2271 
2272 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2273 		("not enough free TX desc\n"));
2274 
2275 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2276 
2277 	/*
2278 	 * Set up checksum offload. Note: checksum offload bits must
2279 	 * appear in all descriptors of a multi-descriptor transmit
2280 	 * attempt. (This is according to testing done with an 8169
2281 	 * chip. I'm not sure if this is a requirement or a bug.)
2282 	 */
2283 	cmd_csum = ctl_csum = 0;
2284 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2285 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2286 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2287 	}
2288 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2289 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2290 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2291 	}
2292 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2293 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2294 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2295 	}
2296 
2297 	/* For MAC2 chips, csum flags are set on re_control */
2298 	if (sc->re_caps & RE_C_MAC2)
2299 		cmd_csum = 0;
2300 	else
2301 		ctl_csum = 0;
2302 
2303 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2304 		/*
2305 		 * With some of the RealTek chips, using the checksum offload
2306 		 * support in conjunction with the autopadding feature results
2307 		 * in the transmission of corrupt frames. For example, if we
2308 		 * need to send a really small IP fragment that's less than 60
2309 		 * bytes in size, and IP header checksumming is enabled, the
2310 		 * resulting ethernet frame that appears on the wire will
2311 		 * have garbled payload. To work around this, if TX checksum
2312 		 * offload is enabled, we always manually pad short frames out
2313 		 * to the minimum ethernet frame size.
2314 		 *
2315 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2316 		 * with PCIe adapters seems to result in bad checksums.
2317 		 */
2318 		if ((m->m_pkthdr.csum_flags &
2319 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2320 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2321 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2322 			error = m_devpad(m, RE_MIN_FRAMELEN);
2323 			if (error)
2324 				goto back;
2325 		}
2326 	}
2327 
2328 	vlantag = 0;
2329 	if (m->m_flags & M_VLANTAG) {
2330 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2331 			  RE_TDESC_CTL_INSTAG;
2332 	}
2333 
2334 	maxsegs = sc->re_ldata.re_tx_free;
2335 	if (maxsegs > RE_MAXSEGS)
2336 		maxsegs = RE_MAXSEGS;
2337 
2338 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2339 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2340 	if (error)
2341 		goto back;
2342 
2343 	m = *m_head;
2344 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2345 
2346 	/*
2347 	 * Map the segment array into descriptors.  We also keep track
2348 	 * of the end of the ring and set the end-of-ring bits as needed,
2349 	 * and we set the ownership bits in all except the very first
2350 	 * descriptor, whose ownership bits will be turned on later.
2351 	 */
2352 	tx_ring = sc->re_ldata.re_tx_list;
2353 	idx = *idx0;
2354 	i = 0;
2355 	for (;;) {
2356 		uint32_t cmdstat;
2357 
2358 		d = &tx_ring[idx];
2359 
2360 		cmdstat = segs[i].ds_len;
2361 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2362 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2363 		if (i == 0)
2364 			cmdstat |= RE_TDESC_CMD_SOF;
2365 		else
2366 			cmdstat |= RE_TDESC_CMD_OWN;
2367 		if (idx == (sc->re_tx_desc_cnt - 1))
2368 			cmdstat |= RE_TDESC_CMD_EOR;
2369 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2370 		d->re_control = htole32(ctl_csum | vlantag);
2371 
2372 		i++;
2373 		if (i == nsegs)
2374 			break;
2375 		RE_TXDESC_INC(sc, idx);
2376 	}
2377 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2378 
2379 	/* Transfer ownership of packet to the chip. */
2380 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2381 	if (*idx0 != idx)
2382 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2383 
2384 	/*
2385 	 * Insure that the map for this transmission
2386 	 * is placed at the array index of the last descriptor
2387 	 * in this chain.
2388 	 */
2389 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2390 	sc->re_ldata.re_tx_dmamap[idx] = map;
2391 
2392 	sc->re_ldata.re_tx_mbuf[idx] = m;
2393 	sc->re_ldata.re_tx_free -= nsegs;
2394 
2395 	RE_TXDESC_INC(sc, idx);
2396 	*idx0 = idx;
2397 back:
2398 	if (error) {
2399 		m_freem(*m_head);
2400 		*m_head = NULL;
2401 	}
2402 	return error;
2403 }
2404 
2405 /*
2406  * Main transmit routine for C+ and gigE NICs.
2407  */
2408 
2409 static void
2410 re_start(struct ifnet *ifp)
2411 {
2412 	struct re_softc	*sc = ifp->if_softc;
2413 	struct mbuf *m_head;
2414 	int idx, need_trans, oactive, error;
2415 
2416 	ASSERT_SERIALIZED(ifp->if_serializer);
2417 
2418 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2419 		ifq_purge(&ifp->if_snd);
2420 		return;
2421 	}
2422 
2423 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2424 		return;
2425 
2426 	idx = sc->re_ldata.re_tx_prodidx;
2427 
2428 	need_trans = 0;
2429 	oactive = 0;
2430 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2431 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2432 			if (!oactive) {
2433 				if (re_tx_collect(sc)) {
2434 					oactive = 1;
2435 					continue;
2436 				}
2437 			}
2438 			ifp->if_flags |= IFF_OACTIVE;
2439 			break;
2440 		}
2441 
2442 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2443 		if (m_head == NULL)
2444 			break;
2445 
2446 		error = re_encap(sc, &m_head, &idx);
2447 		if (error) {
2448 			/* m_head is freed by re_encap(), if we reach here */
2449 			ifp->if_oerrors++;
2450 
2451 			if (error == EFBIG && !oactive) {
2452 				if (re_tx_collect(sc)) {
2453 					oactive = 1;
2454 					continue;
2455 				}
2456 			}
2457 			ifp->if_flags |= IFF_OACTIVE;
2458 			break;
2459 		}
2460 
2461 		oactive = 0;
2462 		need_trans = 1;
2463 
2464 		/*
2465 		 * If there's a BPF listener, bounce a copy of this frame
2466 		 * to him.
2467 		 */
2468 		ETHER_BPF_MTAP(ifp, m_head);
2469 	}
2470 
2471 	if (!need_trans)
2472 		return;
2473 
2474 	sc->re_ldata.re_tx_prodidx = idx;
2475 
2476 	/*
2477 	 * RealTek put the TX poll request register in a different
2478 	 * location on the 8169 gigE chip. I don't know why.
2479 	 */
2480 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2481 
2482 	/*
2483 	 * Set a timeout in case the chip goes out to lunch.
2484 	 */
2485 	ifp->if_timer = 5;
2486 }
2487 
2488 static void
2489 re_init(void *xsc)
2490 {
2491 	struct re_softc *sc = xsc;
2492 	struct ifnet *ifp = &sc->arpcom.ac_if;
2493 	struct mii_data *mii;
2494 	int error, framelen;
2495 
2496 	ASSERT_SERIALIZED(ifp->if_serializer);
2497 
2498 	mii = device_get_softc(sc->re_miibus);
2499 
2500 	/*
2501 	 * Cancel pending I/O and free all RX/TX buffers.
2502 	 */
2503 	re_stop(sc);
2504 
2505 	if (sc->re_caps & RE_C_CONTIGRX) {
2506 		if (ifp->if_mtu > ETHERMTU) {
2507 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2508 			sc->re_flags |= RE_F_USE_JPOOL;
2509 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2510 			sc->re_newbuf = re_newbuf_jumbo;
2511 		} else {
2512 			sc->re_flags &= ~RE_F_USE_JPOOL;
2513 			sc->re_rxbuf_size = MCLBYTES;
2514 			sc->re_newbuf = re_newbuf_std;
2515 		}
2516 	}
2517 
2518 	/*
2519 	 * Adjust max read request size according to MTU; mainly to
2520 	 * improve TX performance for common case (ETHERMTU) on GigE
2521 	 * NICs.  However, this could _not_ be done on 10/100 only
2522 	 * NICs; their DMA engines will malfunction using non-default
2523 	 * max read request size.
2524 	 */
2525 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2526 		if (ifp->if_mtu > ETHERMTU) {
2527 			/*
2528 			 * 512 seems to be the only value that works
2529 			 * reliably with jumbo frame
2530 			 */
2531 			pcie_set_max_readrq(sc->re_dev,
2532 				PCIEM_DEVCTL_MAX_READRQ_512);
2533 		} else {
2534 			pcie_set_max_readrq(sc->re_dev,
2535 				PCIEM_DEVCTL_MAX_READRQ_4096);
2536 		}
2537 	}
2538 
2539 	/*
2540 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2541 	 * RX checksum offload. We must configure the C+ register
2542 	 * before all others.
2543 	 */
2544 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2545 		    RE_CPLUSCMD_PCI_MRW |
2546 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2547 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2548 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2549 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2550 
2551 	/*
2552 	 * Init our MAC address.  Even though the chipset
2553 	 * documentation doesn't mention it, we need to enter "Config
2554 	 * register write enable" mode to modify the ID registers.
2555 	 */
2556 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2557 	CSR_WRITE_4(sc, RE_IDR0,
2558 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2559 	CSR_WRITE_2(sc, RE_IDR4,
2560 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2561 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2562 
2563 	/*
2564 	 * For C+ mode, initialize the RX descriptors and mbufs.
2565 	 */
2566 	error = re_rx_list_init(sc);
2567 	if (error) {
2568 		re_stop(sc);
2569 		return;
2570 	}
2571 	error = re_tx_list_init(sc);
2572 	if (error) {
2573 		re_stop(sc);
2574 		return;
2575 	}
2576 
2577 	/*
2578 	 * Load the addresses of the RX and TX lists into the chip.
2579 	 */
2580 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2581 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2582 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2583 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2584 
2585 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2586 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2587 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2588 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2589 
2590 	/*
2591 	 * Enable transmit and receive.
2592 	 */
2593 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2594 
2595 	/*
2596 	 * Set the initial TX and RX configuration.
2597 	 */
2598 	if (sc->re_flags & RE_F_TESTMODE) {
2599 		if (!RE_IS_8139CP(sc))
2600 			CSR_WRITE_4(sc, RE_TXCFG,
2601 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2602 		else
2603 			CSR_WRITE_4(sc, RE_TXCFG,
2604 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2605 	} else
2606 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2607 
2608 	framelen = RE_FRAMELEN(ifp->if_mtu);
2609 	if (framelen < MCLBYTES)
2610 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2611 	else
2612 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2613 
2614 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2615 
2616 	/*
2617 	 * Program the multicast filter, if necessary.
2618 	 */
2619 	re_setmulti(sc);
2620 
2621 #ifdef DEVICE_POLLING
2622 	/*
2623 	 * Disable interrupts if we are polling.
2624 	 */
2625 	if (ifp->if_flags & IFF_POLLING)
2626 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2627 	else	/* otherwise ... */
2628 #endif /* DEVICE_POLLING */
2629 	/*
2630 	 * Enable interrupts.
2631 	 */
2632 	if (sc->re_flags & RE_F_TESTMODE)
2633 		CSR_WRITE_2(sc, RE_IMR, 0);
2634 	else
2635 		re_setup_intr(sc, 1, sc->re_imtype);
2636 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2637 
2638 	/* Start RX/TX process. */
2639 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2640 
2641 #ifdef notdef
2642 	/* Enable receiver and transmitter. */
2643 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2644 #endif
2645 
2646 	/*
2647 	 * For 8169 gigE NICs, set the max allowed RX packet
2648 	 * size so we can receive jumbo frames.
2649 	 */
2650 	if (!RE_IS_8139CP(sc)) {
2651 		if (sc->re_caps & RE_C_CONTIGRX)
2652 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2653 		else
2654 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2655 	}
2656 
2657 	if (sc->re_flags & RE_F_TESTMODE)
2658 		return;
2659 
2660 	mii_mediachg(mii);
2661 
2662 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2663 
2664 	ifp->if_flags |= IFF_RUNNING;
2665 	ifp->if_flags &= ~IFF_OACTIVE;
2666 
2667 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2668 }
2669 
2670 /*
2671  * Set media options.
2672  */
2673 static int
2674 re_ifmedia_upd(struct ifnet *ifp)
2675 {
2676 	struct re_softc *sc = ifp->if_softc;
2677 	struct mii_data *mii;
2678 
2679 	ASSERT_SERIALIZED(ifp->if_serializer);
2680 
2681 	mii = device_get_softc(sc->re_miibus);
2682 	mii_mediachg(mii);
2683 
2684 	return(0);
2685 }
2686 
2687 /*
2688  * Report current media status.
2689  */
2690 static void
2691 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2692 {
2693 	struct re_softc *sc = ifp->if_softc;
2694 	struct mii_data *mii;
2695 
2696 	ASSERT_SERIALIZED(ifp->if_serializer);
2697 
2698 	mii = device_get_softc(sc->re_miibus);
2699 
2700 	mii_pollstat(mii);
2701 	ifmr->ifm_active = mii->mii_media_active;
2702 	ifmr->ifm_status = mii->mii_media_status;
2703 }
2704 
2705 static int
2706 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2707 {
2708 	struct re_softc *sc = ifp->if_softc;
2709 	struct ifreq *ifr = (struct ifreq *) data;
2710 	struct mii_data *mii;
2711 	int error = 0, mask;
2712 
2713 	ASSERT_SERIALIZED(ifp->if_serializer);
2714 
2715 	switch(command) {
2716 	case SIOCSIFMTU:
2717 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2718 			error = EINVAL;
2719 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2720 			ifp->if_mtu = ifr->ifr_mtu;
2721 			if (ifp->if_flags & IFF_RUNNING)
2722 				ifp->if_init(sc);
2723 		}
2724 		break;
2725 
2726 	case SIOCSIFFLAGS:
2727 		if (ifp->if_flags & IFF_UP) {
2728 			if (ifp->if_flags & IFF_RUNNING) {
2729 				if ((ifp->if_flags ^ sc->re_if_flags) &
2730 				    (IFF_PROMISC | IFF_ALLMULTI))
2731 					re_setmulti(sc);
2732 			} else {
2733 				re_init(sc);
2734 			}
2735 		} else if (ifp->if_flags & IFF_RUNNING) {
2736 			re_stop(sc);
2737 		}
2738 		sc->re_if_flags = ifp->if_flags;
2739 		break;
2740 
2741 	case SIOCADDMULTI:
2742 	case SIOCDELMULTI:
2743 		re_setmulti(sc);
2744 		break;
2745 
2746 	case SIOCGIFMEDIA:
2747 	case SIOCSIFMEDIA:
2748 		mii = device_get_softc(sc->re_miibus);
2749 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2750 		break;
2751 
2752 	case SIOCSIFCAP:
2753 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2754 		       ifp->if_capabilities;
2755 		ifp->if_capenable ^= mask;
2756 
2757 		if (mask & IFCAP_HWCSUM) {
2758 			if (ifp->if_capenable & IFCAP_TXCSUM)
2759 				ifp->if_hwassist = RE_CSUM_FEATURES;
2760 			else
2761 				ifp->if_hwassist = 0;
2762 		}
2763 		if (mask && (ifp->if_flags & IFF_RUNNING))
2764 			re_init(sc);
2765 		break;
2766 
2767 	default:
2768 		error = ether_ioctl(ifp, command, data);
2769 		break;
2770 	}
2771 	return(error);
2772 }
2773 
2774 static void
2775 re_watchdog(struct ifnet *ifp)
2776 {
2777 	struct re_softc *sc = ifp->if_softc;
2778 
2779 	ASSERT_SERIALIZED(ifp->if_serializer);
2780 
2781 	if_printf(ifp, "watchdog timeout\n");
2782 
2783 	ifp->if_oerrors++;
2784 
2785 	re_txeof(sc);
2786 	re_rxeof(sc);
2787 
2788 	re_init(sc);
2789 
2790 	if (!ifq_is_empty(&ifp->if_snd))
2791 		if_devstart(ifp);
2792 }
2793 
2794 /*
2795  * Stop the adapter and free any mbufs allocated to the
2796  * RX and TX lists.
2797  */
2798 static void
2799 re_stop(struct re_softc *sc)
2800 {
2801 	struct ifnet *ifp = &sc->arpcom.ac_if;
2802 	int i;
2803 
2804 	ASSERT_SERIALIZED(ifp->if_serializer);
2805 
2806 	/* Reset the adapter. */
2807 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2808 
2809 	ifp->if_timer = 0;
2810 	callout_stop(&sc->re_timer);
2811 
2812 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2813 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2814 
2815 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2816 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2817 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2818 
2819 	re_free_rxchain(sc);
2820 
2821 	/* Free the TX list buffers. */
2822 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2823 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2824 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2825 					  sc->re_ldata.re_tx_dmamap[i]);
2826 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2827 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2828 		}
2829 	}
2830 
2831 	/* Free the RX list buffers. */
2832 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2833 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2834 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2835 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2836 						  sc->re_ldata.re_rx_dmamap[i]);
2837 			}
2838 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2839 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2840 		}
2841 	}
2842 }
2843 
2844 /*
2845  * Device suspend routine.  Stop the interface and save some PCI
2846  * settings in case the BIOS doesn't restore them properly on
2847  * resume.
2848  */
2849 static int
2850 re_suspend(device_t dev)
2851 {
2852 #ifndef BURN_BRIDGES
2853 	int i;
2854 #endif
2855 	struct re_softc *sc = device_get_softc(dev);
2856 	struct ifnet *ifp = &sc->arpcom.ac_if;
2857 
2858 	lwkt_serialize_enter(ifp->if_serializer);
2859 
2860 	re_stop(sc);
2861 
2862 #ifndef BURN_BRIDGES
2863 	for (i = 0; i < 5; i++)
2864 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2865 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2866 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2867 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2868 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2869 #endif
2870 
2871 	sc->re_flags |= RE_F_SUSPENDED;
2872 
2873 	lwkt_serialize_exit(ifp->if_serializer);
2874 
2875 	return (0);
2876 }
2877 
2878 /*
2879  * Device resume routine.  Restore some PCI settings in case the BIOS
2880  * doesn't, re-enable busmastering, and restart the interface if
2881  * appropriate.
2882  */
2883 static int
2884 re_resume(device_t dev)
2885 {
2886 	struct re_softc *sc = device_get_softc(dev);
2887 	struct ifnet *ifp = &sc->arpcom.ac_if;
2888 #ifndef BURN_BRIDGES
2889 	int i;
2890 #endif
2891 
2892 	lwkt_serialize_enter(ifp->if_serializer);
2893 
2894 #ifndef BURN_BRIDGES
2895 	/* better way to do this? */
2896 	for (i = 0; i < 5; i++)
2897 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2898 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2899 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2900 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2901 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2902 
2903 	/* reenable busmastering */
2904 	pci_enable_busmaster(dev);
2905 	pci_enable_io(dev, SYS_RES_IOPORT);
2906 #endif
2907 
2908 	/* reinitialize interface if necessary */
2909 	if (ifp->if_flags & IFF_UP)
2910 		re_init(sc);
2911 
2912 	sc->re_flags &= ~RE_F_SUSPENDED;
2913 
2914 	lwkt_serialize_exit(ifp->if_serializer);
2915 
2916 	return (0);
2917 }
2918 
2919 /*
2920  * Stop all chip I/O so that the kernel's probe routines don't
2921  * get confused by errant DMAs when rebooting.
2922  */
2923 static void
2924 re_shutdown(device_t dev)
2925 {
2926 	struct re_softc *sc = device_get_softc(dev);
2927 	struct ifnet *ifp = &sc->arpcom.ac_if;
2928 
2929 	lwkt_serialize_enter(ifp->if_serializer);
2930 	re_stop(sc);
2931 	lwkt_serialize_exit(ifp->if_serializer);
2932 }
2933 
2934 static int
2935 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2936 {
2937 	struct re_softc *sc = arg1;
2938 
2939 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2940 }
2941 
2942 static int
2943 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2944 {
2945 	struct re_softc *sc = arg1;
2946 
2947 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2948 }
2949 
2950 static int
2951 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2952 {
2953 	struct re_softc *sc = arg1;
2954 	struct ifnet *ifp = &sc->arpcom.ac_if;
2955 	int error, v;
2956 
2957 	lwkt_serialize_enter(ifp->if_serializer);
2958 
2959 	v = *hwtime;
2960 	error = sysctl_handle_int(oidp, &v, 0, req);
2961 	if (error || req->newptr == NULL)
2962 		goto back;
2963 
2964 	if (v <= 0) {
2965 		error = EINVAL;
2966 		goto back;
2967 	}
2968 
2969 	if (v != *hwtime) {
2970 		*hwtime = v;
2971 
2972 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2973 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2974 			re_setup_hw_im(sc);
2975 	}
2976 back:
2977 	lwkt_serialize_exit(ifp->if_serializer);
2978 	return error;
2979 }
2980 
2981 static int
2982 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2983 {
2984 	struct re_softc *sc = arg1;
2985 	struct ifnet *ifp = &sc->arpcom.ac_if;
2986 	int error, v;
2987 
2988 	lwkt_serialize_enter(ifp->if_serializer);
2989 
2990 	v = sc->re_sim_time;
2991 	error = sysctl_handle_int(oidp, &v, 0, req);
2992 	if (error || req->newptr == NULL)
2993 		goto back;
2994 
2995 	if (v <= 0) {
2996 		error = EINVAL;
2997 		goto back;
2998 	}
2999 
3000 	if (v != sc->re_sim_time) {
3001 		sc->re_sim_time = v;
3002 
3003 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3004 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3005 #ifdef foo
3006 			int reg;
3007 
3008 			/*
3009 			 * Following code causes various strange
3010 			 * performance problems.  Hmm ...
3011 			 */
3012 			CSR_WRITE_2(sc, RE_IMR, 0);
3013 			if (!RE_IS_8139CP(sc))
3014 				reg = RE_TIMERINT_8169;
3015 			else
3016 				reg = RE_TIMERINT;
3017 			CSR_WRITE_4(sc, reg, 0);
3018 			CSR_READ_4(sc, reg); /* flush */
3019 
3020 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3021 			re_setup_sim_im(sc);
3022 #else
3023 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3024 			DELAY(10);
3025 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3026 #endif
3027 		}
3028 	}
3029 back:
3030 	lwkt_serialize_exit(ifp->if_serializer);
3031 	return error;
3032 }
3033 
3034 static int
3035 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3036 {
3037 	struct re_softc *sc = arg1;
3038 	struct ifnet *ifp = &sc->arpcom.ac_if;
3039 	int error, v;
3040 
3041 	lwkt_serialize_enter(ifp->if_serializer);
3042 
3043 	v = sc->re_imtype;
3044 	error = sysctl_handle_int(oidp, &v, 0, req);
3045 	if (error || req->newptr == NULL)
3046 		goto back;
3047 
3048 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3049 		error = EINVAL;
3050 		goto back;
3051 	}
3052 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3053 		/* Can't do hardware interrupt moderation */
3054 		error = EOPNOTSUPP;
3055 		goto back;
3056 	}
3057 
3058 	if (v != sc->re_imtype) {
3059 		sc->re_imtype = v;
3060 		if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3061 		    IFF_RUNNING)
3062 			re_setup_intr(sc, 1, sc->re_imtype);
3063 	}
3064 back:
3065 	lwkt_serialize_exit(ifp->if_serializer);
3066 	return error;
3067 }
3068 
3069 static void
3070 re_setup_hw_im(struct re_softc *sc)
3071 {
3072 	KKASSERT(sc->re_caps & RE_C_HWIM);
3073 
3074 	/*
3075 	 * Interrupt moderation
3076 	 *
3077 	 * 0xABCD
3078 	 * A - unknown (maybe TX related)
3079 	 * B - TX timer (unit: 25us)
3080 	 * C - unknown (maybe RX related)
3081 	 * D - RX timer (unit: 25us)
3082 	 *
3083 	 *
3084 	 * re(4)'s interrupt moderation is actually controlled by
3085 	 * two variables, like most other NICs (bge, bce etc.)
3086 	 * o  timer
3087 	 * o  number of packets [P]
3088 	 *
3089 	 * The logic relationship between these two variables is
3090 	 * similar to other NICs too:
3091 	 * if (timer expire || packets > [P])
3092 	 *     Interrupt is delivered
3093 	 *
3094 	 * Currently we only know how to set 'timer', but not
3095 	 * 'number of packets', which should be ~30, as far as I
3096 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3097 	 */
3098 	CSR_WRITE_2(sc, RE_IM,
3099 		    RE_IM_RXTIME(sc->re_rx_time) |
3100 		    RE_IM_TXTIME(sc->re_tx_time) |
3101 		    RE_IM_MAGIC);
3102 }
3103 
3104 static void
3105 re_disable_hw_im(struct re_softc *sc)
3106 {
3107 	if (sc->re_caps & RE_C_HWIM)
3108 		CSR_WRITE_2(sc, RE_IM, 0);
3109 }
3110 
3111 static void
3112 re_setup_sim_im(struct re_softc *sc)
3113 {
3114 	if (!RE_IS_8139CP(sc)) {
3115 		uint32_t ticks;
3116 
3117 		/*
3118 		 * Datasheet says tick decreases at bus speed,
3119 		 * but it seems the clock runs a little bit
3120 		 * faster, so we do some compensation here.
3121 		 */
3122 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3123 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3124 	} else {
3125 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3126 	}
3127 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3128 	sc->re_flags |= RE_F_TIMER_INTR;
3129 }
3130 
3131 static void
3132 re_disable_sim_im(struct re_softc *sc)
3133 {
3134 	if (!RE_IS_8139CP(sc))
3135 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3136 	else
3137 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3138 	sc->re_flags &= ~RE_F_TIMER_INTR;
3139 }
3140 
3141 static void
3142 re_config_imtype(struct re_softc *sc, int imtype)
3143 {
3144 	switch (imtype) {
3145 	case RE_IMTYPE_HW:
3146 		KKASSERT(sc->re_caps & RE_C_HWIM);
3147 		/* FALL THROUGH */
3148 	case RE_IMTYPE_NONE:
3149 		sc->re_intrs = RE_INTRS;
3150 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3151 				RE_ISR_RX_OVERRUN;
3152 		sc->re_tx_ack = RE_ISR_TX_OK;
3153 		break;
3154 
3155 	case RE_IMTYPE_SIM:
3156 		sc->re_intrs = RE_INTRS_TIMER;
3157 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3158 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3159 		break;
3160 
3161 	default:
3162 		panic("%s: unknown imtype %d\n",
3163 		      sc->arpcom.ac_if.if_xname, imtype);
3164 	}
3165 }
3166 
3167 static void
3168 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3169 {
3170 	re_config_imtype(sc, imtype);
3171 
3172 	if (enable_intrs)
3173 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3174 	else
3175 		CSR_WRITE_2(sc, RE_IMR, 0);
3176 
3177 	switch (imtype) {
3178 	case RE_IMTYPE_NONE:
3179 		re_disable_sim_im(sc);
3180 		re_disable_hw_im(sc);
3181 		break;
3182 
3183 	case RE_IMTYPE_HW:
3184 		KKASSERT(sc->re_caps & RE_C_HWIM);
3185 		re_disable_sim_im(sc);
3186 		re_setup_hw_im(sc);
3187 		break;
3188 
3189 	case RE_IMTYPE_SIM:
3190 		re_disable_hw_im(sc);
3191 		re_setup_sim_im(sc);
3192 		break;
3193 
3194 	default:
3195 		panic("%s: unknown imtype %d\n",
3196 		      sc->arpcom.ac_if.if_xname, imtype);
3197 	}
3198 }
3199 
3200 static void
3201 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3202 {
3203 	int i;
3204 
3205 	if (sc->re_macver == RE_MACVER_11 ||
3206 	    sc->re_macver == RE_MACVER_12 ||
3207 	    sc->re_macver == RE_MACVER_30 ||
3208 	    sc->re_macver == RE_MACVER_31) {
3209 		uint16_t re_did;
3210 
3211 		re_get_eewidth(sc);
3212 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3213 		if (re_did == 0x8128) {
3214 			uint16_t as[ETHER_ADDR_LEN / 2];
3215 			int eaddr_off;
3216 
3217 			if (sc->re_macver == RE_MACVER_30 ||
3218 			    sc->re_macver == RE_MACVER_31)
3219 				eaddr_off = RE_EE_EADDR1;
3220 			else
3221 				eaddr_off = RE_EE_EADDR0;
3222 
3223 			/*
3224 			 * Get station address from the EEPROM.
3225 			 */
3226 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3227 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3228 				as[i] = le16toh(as[i]);
3229 			bcopy(as, eaddr, sizeof(eaddr));
3230 			return;
3231 		}
3232 	}
3233 
3234 	/*
3235 	 * Get station address from IDRx.
3236 	 */
3237 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3238 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3239 }
3240 
3241 static int
3242 re_jpool_alloc(struct re_softc *sc)
3243 {
3244 	struct re_list_data *ldata = &sc->re_ldata;
3245 	struct re_jbuf *jbuf;
3246 	bus_addr_t paddr;
3247 	bus_size_t jpool_size;
3248 	bus_dmamem_t dmem;
3249 	caddr_t buf;
3250 	int i, error;
3251 
3252 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3253 
3254 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3255 				 M_DEVBUF, M_WAITOK | M_ZERO);
3256 
3257 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3258 
3259 	error = bus_dmamem_coherent(sc->re_parent_tag,
3260 			RE_RXBUF_ALIGN, 0,
3261 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3262 			jpool_size, BUS_DMA_WAITOK, &dmem);
3263 	if (error) {
3264 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3265 		return error;
3266 	}
3267 	ldata->re_jpool_tag = dmem.dmem_tag;
3268 	ldata->re_jpool_map = dmem.dmem_map;
3269 	ldata->re_jpool = dmem.dmem_addr;
3270 	paddr = dmem.dmem_busaddr;
3271 
3272 	/* ..and split it into 9KB chunks */
3273 	SLIST_INIT(&ldata->re_jbuf_free);
3274 
3275 	buf = ldata->re_jpool;
3276 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3277 		jbuf = &ldata->re_jbuf[i];
3278 
3279 		jbuf->re_sc = sc;
3280 		jbuf->re_inuse = 0;
3281 		jbuf->re_slot = i;
3282 		jbuf->re_buf = buf;
3283 		jbuf->re_paddr = paddr;
3284 
3285 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3286 
3287 		buf += RE_JBUF_SIZE;
3288 		paddr += RE_JBUF_SIZE;
3289 	}
3290 	return 0;
3291 }
3292 
3293 static void
3294 re_jpool_free(struct re_softc *sc)
3295 {
3296 	struct re_list_data *ldata = &sc->re_ldata;
3297 
3298 	if (ldata->re_jpool_tag != NULL) {
3299 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3300 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3301 				ldata->re_jpool_map);
3302 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3303 		ldata->re_jpool_tag = NULL;
3304 	}
3305 
3306 	if (ldata->re_jbuf != NULL) {
3307 		kfree(ldata->re_jbuf, M_DEVBUF);
3308 		ldata->re_jbuf = NULL;
3309 	}
3310 }
3311 
3312 static struct re_jbuf *
3313 re_jbuf_alloc(struct re_softc *sc)
3314 {
3315 	struct re_list_data *ldata = &sc->re_ldata;
3316 	struct re_jbuf *jbuf;
3317 
3318 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3319 
3320 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3321 	if (jbuf != NULL) {
3322 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3323 		jbuf->re_inuse = 1;
3324 	}
3325 
3326 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3327 
3328 	return jbuf;
3329 }
3330 
3331 static void
3332 re_jbuf_free(void *arg)
3333 {
3334 	struct re_jbuf *jbuf = arg;
3335 	struct re_softc *sc = jbuf->re_sc;
3336 	struct re_list_data *ldata = &sc->re_ldata;
3337 
3338 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3339 		panic("%s: free wrong jumbo buffer\n",
3340 		      sc->arpcom.ac_if.if_xname);
3341 	} else if (jbuf->re_inuse == 0) {
3342 		panic("%s: jumbo buffer already freed\n",
3343 		      sc->arpcom.ac_if.if_xname);
3344 	}
3345 
3346 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3347 	atomic_subtract_int(&jbuf->re_inuse, 1);
3348 	if (jbuf->re_inuse == 0)
3349 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3350 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3351 }
3352 
3353 static void
3354 re_jbuf_ref(void *arg)
3355 {
3356 	struct re_jbuf *jbuf = arg;
3357 	struct re_softc *sc = jbuf->re_sc;
3358 	struct re_list_data *ldata = &sc->re_ldata;
3359 
3360 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3361 		panic("%s: ref wrong jumbo buffer\n",
3362 		      sc->arpcom.ac_if.if_xname);
3363 	} else if (jbuf->re_inuse == 0) {
3364 		panic("%s: jumbo buffer already freed\n",
3365 		      sc->arpcom.ac_if.if_xname);
3366 	}
3367 	atomic_add_int(&jbuf->re_inuse, 1);
3368 }
3369