xref: /dflybsd-src/sys/dev/netif/re/if_re.c (revision 211d4362597aee676ecea315377d5cb13da26bb5)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159 
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164 	uint16_t	re_vid;
165 	uint16_t	re_did;
166 	const char	*re_name;
167 } re_devs[] = {
168 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 
171 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172 	  "RealTek 8139C+ 10/100BaseTX" },
173 
174 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175 	  "RealTek 810x PCIe 10/100baseTX" },
176 
177 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179 
180 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181 	  "RealTek 8110/8169 Gigabit Ethernet" },
182 
183 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185 
186 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
188 
189 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190 	  "Linksys EG1032 Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193 	  "US Robotics 997902 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196 	  "TTTech MC322 Gigabit Ethernet" },
197 
198 	{ 0, 0, NULL }
199 };
200 
201 static const struct re_hwrev re_hwrevs[] = {
202 	{ RE_HWREV_8139CPLUS,	RE_MACVER_UNKN,		ETHERMTU,
203 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204 
205 	{ RE_HWREV_8169,	RE_MACVER_UNKN,		ETHERMTU,
206 	  RE_C_HWCSUM | RE_C_8169 },
207 
208 	{ RE_HWREV_8110S,	RE_MACVER_03,		RE_MTU_6K,
209 	  RE_C_HWCSUM | RE_C_8169 },
210 
211 	{ RE_HWREV_8169S,	RE_MACVER_03,		RE_MTU_6K,
212 	  RE_C_HWCSUM | RE_C_8169 },
213 
214 	{ RE_HWREV_8169SB,	RE_MACVER_04,		RE_MTU_6K,
215 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216 
217 	{ RE_HWREV_8169SC1,	RE_MACVER_05,		RE_MTU_6K,
218 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219 
220 	{ RE_HWREV_8169SC2,	RE_MACVER_06,		RE_MTU_6K,
221 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222 
223 	{ RE_HWREV_8168B1,	RE_MACVER_21,		RE_MTU_6K,
224 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225 
226 	{ RE_HWREV_8168B2,	RE_MACVER_23,		RE_MTU_6K,
227 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228 
229 	{ RE_HWREV_8168B3,	RE_MACVER_23,		RE_MTU_6K,
230 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231 
232 	{ RE_HWREV_8168C,	RE_MACVER_29,		RE_MTU_6K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235 
236 	{ RE_HWREV_8168CP,	RE_MACVER_2B,		RE_MTU_6K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168D,	RE_MACVER_2A,		RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243 
244 	{ RE_HWREV_8168DP,	RE_MACVER_2D,		RE_MTU_9K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8168E,	RE_MACVER_UNKN,		RE_MTU_9K,
249 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
251 
252 	{ RE_HWREV_8168F,	RE_MACVER_UNKN,		RE_MTU_9K,
253 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
255 
256 	{ RE_HWREV_8111F,	RE_MACVER_UNKN,		RE_MTU_9K,
257 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
258 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
259 
260 	{ RE_HWREV_8100E,	RE_MACVER_UNKN,		ETHERMTU,
261 	  RE_C_HWCSUM | RE_C_FASTE },
262 
263 	{ RE_HWREV_8101E1,	RE_MACVER_16,		ETHERMTU,
264 	  RE_C_HWCSUM | RE_C_FASTE },
265 
266 	{ RE_HWREV_8101E2,	RE_MACVER_16,		ETHERMTU,
267 	  RE_C_HWCSUM | RE_C_FASTE },
268 
269 	{ RE_HWREV_8102E,	RE_MACVER_15,		ETHERMTU,
270 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
271 	  RE_C_FASTE },
272 
273 	{ RE_HWREV_8102EL,	RE_MACVER_15,		ETHERMTU,
274 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
275 	  RE_C_FASTE },
276 
277 	{ RE_HWREV_8105E,	RE_MACVER_UNKN,		ETHERMTU,
278 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
279 	  RE_C_STOP_RXTX | RE_C_FASTE },
280 
281 	{ RE_HWREV_NULL, 0, 0, 0 }
282 };
283 
284 static int	re_probe(device_t);
285 static int	re_attach(device_t);
286 static int	re_detach(device_t);
287 static int	re_suspend(device_t);
288 static int	re_resume(device_t);
289 static void	re_shutdown(device_t);
290 
291 static int	re_allocmem(device_t);
292 static void	re_freemem(device_t);
293 static void	re_freebufmem(struct re_softc *, int, int);
294 static int	re_encap(struct re_softc *, struct mbuf **, int *);
295 static int	re_newbuf_std(struct re_softc *, int, int);
296 static int	re_newbuf_jumbo(struct re_softc *, int, int);
297 static void	re_setup_rxdesc(struct re_softc *, int);
298 static int	re_rx_list_init(struct re_softc *);
299 static int	re_tx_list_init(struct re_softc *);
300 static int	re_rxeof(struct re_softc *);
301 static int	re_txeof(struct re_softc *);
302 static int	re_tx_collect(struct re_softc *);
303 static void	re_intr(void *);
304 static void	re_tick(void *);
305 static void	re_tick_serialized(void *);
306 
307 static void	re_start(struct ifnet *);
308 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
309 static void	re_init(void *);
310 static void	re_stop(struct re_softc *);
311 static void	re_watchdog(struct ifnet *);
312 static int	re_ifmedia_upd(struct ifnet *);
313 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
314 
315 static void	re_eeprom_putbyte(struct re_softc *, int);
316 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
317 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
318 static void	re_get_eewidth(struct re_softc *);
319 
320 static int	re_gmii_readreg(device_t, int, int);
321 static int	re_gmii_writereg(device_t, int, int, int);
322 
323 static int	re_miibus_readreg(device_t, int, int);
324 static int	re_miibus_writereg(device_t, int, int, int);
325 static void	re_miibus_statchg(device_t);
326 
327 static void	re_setmulti(struct re_softc *);
328 static void	re_reset(struct re_softc *, int);
329 static void	re_get_eaddr(struct re_softc *, uint8_t *);
330 
331 static void	re_setup_hw_im(struct re_softc *);
332 static void	re_setup_sim_im(struct re_softc *);
333 static void	re_disable_hw_im(struct re_softc *);
334 static void	re_disable_sim_im(struct re_softc *);
335 static void	re_config_imtype(struct re_softc *, int);
336 static void	re_setup_intr(struct re_softc *, int, int);
337 
338 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
339 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
340 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
341 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
342 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
343 
344 static int	re_jpool_alloc(struct re_softc *);
345 static void	re_jpool_free(struct re_softc *);
346 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
347 static void	re_jbuf_free(void *);
348 static void	re_jbuf_ref(void *);
349 
350 #ifdef RE_DIAG
351 static int	re_diag(struct re_softc *);
352 #endif
353 
354 #ifdef IFPOLL_ENABLE
355 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
356 static void	re_npoll_compat(struct ifnet *, void *, int);
357 #endif
358 
359 static device_method_t re_methods[] = {
360 	/* Device interface */
361 	DEVMETHOD(device_probe,		re_probe),
362 	DEVMETHOD(device_attach,	re_attach),
363 	DEVMETHOD(device_detach,	re_detach),
364 	DEVMETHOD(device_suspend,	re_suspend),
365 	DEVMETHOD(device_resume,	re_resume),
366 	DEVMETHOD(device_shutdown,	re_shutdown),
367 
368 	/* bus interface */
369 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
370 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
371 
372 	/* MII interface */
373 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
374 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
375 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
376 
377 	{ 0, 0 }
378 };
379 
380 static driver_t re_driver = {
381 	"re",
382 	re_methods,
383 	sizeof(struct re_softc)
384 };
385 
386 static devclass_t re_devclass;
387 
388 DECLARE_DUMMY_MODULE(if_re);
389 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
390 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
391 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
392 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
393 
394 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
395 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
396 static int	re_msi_enable = 0;
397 
398 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
399 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
400 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
401 
402 #define EE_SET(x)	\
403 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
404 
405 #define EE_CLR(x)	\
406 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
407 
408 static __inline void
409 re_free_rxchain(struct re_softc *sc)
410 {
411 	if (sc->re_head != NULL) {
412 		m_freem(sc->re_head);
413 		sc->re_head = sc->re_tail = NULL;
414 	}
415 }
416 
417 /*
418  * Send a read command and address to the EEPROM, check for ACK.
419  */
420 static void
421 re_eeprom_putbyte(struct re_softc *sc, int addr)
422 {
423 	int d, i;
424 
425 	d = addr | (RE_9346_READ << sc->re_eewidth);
426 
427 	/*
428 	 * Feed in each bit and strobe the clock.
429 	 */
430 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
431 		if (d & i)
432 			EE_SET(RE_EE_DATAIN);
433 		else
434 			EE_CLR(RE_EE_DATAIN);
435 		DELAY(100);
436 		EE_SET(RE_EE_CLK);
437 		DELAY(150);
438 		EE_CLR(RE_EE_CLK);
439 		DELAY(100);
440 	}
441 }
442 
443 /*
444  * Read a word of data stored in the EEPROM at address 'addr.'
445  */
446 static void
447 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
448 {
449 	int i;
450 	uint16_t word = 0;
451 
452 	/*
453 	 * Send address of word we want to read.
454 	 */
455 	re_eeprom_putbyte(sc, addr);
456 
457 	/*
458 	 * Start reading bits from EEPROM.
459 	 */
460 	for (i = 0x8000; i != 0; i >>= 1) {
461 		EE_SET(RE_EE_CLK);
462 		DELAY(100);
463 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
464 			word |= i;
465 		EE_CLR(RE_EE_CLK);
466 		DELAY(100);
467 	}
468 
469 	*dest = word;
470 }
471 
472 /*
473  * Read a sequence of words from the EEPROM.
474  */
475 static void
476 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
477 {
478 	int i;
479 	uint16_t word = 0, *ptr;
480 
481 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
482 	DELAY(100);
483 
484 	for (i = 0; i < cnt; i++) {
485 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
486 		re_eeprom_getword(sc, off + i, &word);
487 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
488 		ptr = (uint16_t *)(dest + (i * 2));
489 		*ptr = word;
490 	}
491 
492 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
493 }
494 
495 static void
496 re_get_eewidth(struct re_softc *sc)
497 {
498 	uint16_t re_did = 0;
499 
500 	sc->re_eewidth = 6;
501 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
502 	if (re_did != 0x8129)
503 		sc->re_eewidth = 8;
504 }
505 
506 static int
507 re_gmii_readreg(device_t dev, int phy, int reg)
508 {
509 	struct re_softc *sc = device_get_softc(dev);
510 	u_int32_t rval;
511 	int i;
512 
513 	if (phy != 1)
514 		return(0);
515 
516 	/* Let the rgephy driver read the GMEDIASTAT register */
517 
518 	if (reg == RE_GMEDIASTAT)
519 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
520 
521 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
522 	DELAY(1000);
523 
524 	for (i = 0; i < RE_TIMEOUT; i++) {
525 		rval = CSR_READ_4(sc, RE_PHYAR);
526 		if (rval & RE_PHYAR_BUSY)
527 			break;
528 		DELAY(100);
529 	}
530 
531 	if (i == RE_TIMEOUT) {
532 		device_printf(dev, "PHY read failed\n");
533 		return(0);
534 	}
535 
536 	return(rval & RE_PHYAR_PHYDATA);
537 }
538 
539 static int
540 re_gmii_writereg(device_t dev, int phy, int reg, int data)
541 {
542 	struct re_softc *sc = device_get_softc(dev);
543 	uint32_t rval;
544 	int i;
545 
546 	CSR_WRITE_4(sc, RE_PHYAR,
547 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
548 	DELAY(1000);
549 
550 	for (i = 0; i < RE_TIMEOUT; i++) {
551 		rval = CSR_READ_4(sc, RE_PHYAR);
552 		if ((rval & RE_PHYAR_BUSY) == 0)
553 			break;
554 		DELAY(100);
555 	}
556 
557 	if (i == RE_TIMEOUT)
558 		device_printf(dev, "PHY write failed\n");
559 
560 	return(0);
561 }
562 
563 static int
564 re_miibus_readreg(device_t dev, int phy, int reg)
565 {
566 	struct re_softc	*sc = device_get_softc(dev);
567 	uint16_t rval = 0;
568 	uint16_t re8139_reg = 0;
569 
570 	if (!RE_IS_8139CP(sc)) {
571 		rval = re_gmii_readreg(dev, phy, reg);
572 		return(rval);
573 	}
574 
575 	/* Pretend the internal PHY is only at address 0 */
576 	if (phy)
577 		return(0);
578 
579 	switch(reg) {
580 	case MII_BMCR:
581 		re8139_reg = RE_BMCR;
582 		break;
583 	case MII_BMSR:
584 		re8139_reg = RE_BMSR;
585 		break;
586 	case MII_ANAR:
587 		re8139_reg = RE_ANAR;
588 		break;
589 	case MII_ANER:
590 		re8139_reg = RE_ANER;
591 		break;
592 	case MII_ANLPAR:
593 		re8139_reg = RE_LPAR;
594 		break;
595 	case MII_PHYIDR1:
596 	case MII_PHYIDR2:
597 		return(0);
598 	/*
599 	 * Allow the rlphy driver to read the media status
600 	 * register. If we have a link partner which does not
601 	 * support NWAY, this is the register which will tell
602 	 * us the results of parallel detection.
603 	 */
604 	case RE_MEDIASTAT:
605 		return(CSR_READ_1(sc, RE_MEDIASTAT));
606 	default:
607 		device_printf(dev, "bad phy register\n");
608 		return(0);
609 	}
610 	rval = CSR_READ_2(sc, re8139_reg);
611 	if (re8139_reg == RE_BMCR) {
612 		/* 8139C+ has different bit layout. */
613 		rval &= ~(BMCR_LOOP | BMCR_ISO);
614 	}
615 	return(rval);
616 }
617 
618 static int
619 re_miibus_writereg(device_t dev, int phy, int reg, int data)
620 {
621 	struct re_softc *sc= device_get_softc(dev);
622 	u_int16_t re8139_reg = 0;
623 
624 	if (!RE_IS_8139CP(sc))
625 		return(re_gmii_writereg(dev, phy, reg, data));
626 
627 	/* Pretend the internal PHY is only at address 0 */
628 	if (phy)
629 		return(0);
630 
631 	switch(reg) {
632 	case MII_BMCR:
633 		re8139_reg = RE_BMCR;
634 		/* 8139C+ has different bit layout. */
635 		data &= ~(BMCR_LOOP | BMCR_ISO);
636 		break;
637 	case MII_BMSR:
638 		re8139_reg = RE_BMSR;
639 		break;
640 	case MII_ANAR:
641 		re8139_reg = RE_ANAR;
642 		break;
643 	case MII_ANER:
644 		re8139_reg = RE_ANER;
645 		break;
646 	case MII_ANLPAR:
647 		re8139_reg = RE_LPAR;
648 		break;
649 	case MII_PHYIDR1:
650 	case MII_PHYIDR2:
651 		return(0);
652 	default:
653 		device_printf(dev, "bad phy register\n");
654 		return(0);
655 	}
656 	CSR_WRITE_2(sc, re8139_reg, data);
657 	return(0);
658 }
659 
660 static void
661 re_miibus_statchg(device_t dev)
662 {
663 }
664 
665 /*
666  * Program the 64-bit multicast hash filter.
667  */
668 static void
669 re_setmulti(struct re_softc *sc)
670 {
671 	struct ifnet *ifp = &sc->arpcom.ac_if;
672 	int h = 0;
673 	uint32_t hashes[2] = { 0, 0 };
674 	struct ifmultiaddr *ifma;
675 	uint32_t rxfilt;
676 	int mcnt = 0;
677 
678 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
679 
680 	/* Set the individual bit to receive frames for this host only. */
681 	rxfilt |= RE_RXCFG_RX_INDIV;
682 	/* Set capture broadcast bit to capture broadcast frames. */
683 	rxfilt |= RE_RXCFG_RX_BROAD;
684 
685 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
686 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
687 		rxfilt |= RE_RXCFG_RX_MULTI;
688 
689 		/* If we want promiscuous mode, set the allframes bit. */
690 		if (ifp->if_flags & IFF_PROMISC)
691 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
692 
693 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
694 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
695 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
696 		return;
697 	}
698 
699 	/* first, zot all the existing hash bits */
700 	CSR_WRITE_4(sc, RE_MAR0, 0);
701 	CSR_WRITE_4(sc, RE_MAR4, 0);
702 
703 	/* now program new ones */
704 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
705 		if (ifma->ifma_addr->sa_family != AF_LINK)
706 			continue;
707 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
708 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
709 		if (h < 32)
710 			hashes[0] |= (1 << h);
711 		else
712 			hashes[1] |= (1 << (h - 32));
713 		mcnt++;
714 	}
715 
716 	if (mcnt)
717 		rxfilt |= RE_RXCFG_RX_MULTI;
718 	else
719 		rxfilt &= ~RE_RXCFG_RX_MULTI;
720 
721 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
722 
723 	/*
724 	 * For some unfathomable reason, RealTek decided to reverse
725 	 * the order of the multicast hash registers in the PCI Express
726 	 * parts. This means we have to write the hash pattern in reverse
727 	 * order for those devices.
728 	 */
729 	if (sc->re_caps & RE_C_PCIE) {
730 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
731 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
732 	} else {
733 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
734 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
735 	}
736 }
737 
738 static void
739 re_reset(struct re_softc *sc, int running)
740 {
741 	int i;
742 
743 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
744 		CSR_WRITE_1(sc, RE_COMMAND,
745 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
746 		DELAY(100);
747 	}
748 
749 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
750 
751 	for (i = 0; i < RE_TIMEOUT; i++) {
752 		DELAY(10);
753 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
754 			break;
755 	}
756 	if (i == RE_TIMEOUT)
757 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
758 }
759 
760 #ifdef RE_DIAG
761 /*
762  * The following routine is designed to test for a defect on some
763  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
764  * lines connected to the bus, however for a 32-bit only card, they
765  * should be pulled high. The result of this defect is that the
766  * NIC will not work right if you plug it into a 64-bit slot: DMA
767  * operations will be done with 64-bit transfers, which will fail
768  * because the 64-bit data lines aren't connected.
769  *
770  * There's no way to work around this (short of talking a soldering
771  * iron to the board), however we can detect it. The method we use
772  * here is to put the NIC into digital loopback mode, set the receiver
773  * to promiscuous mode, and then try to send a frame. We then compare
774  * the frame data we sent to what was received. If the data matches,
775  * then the NIC is working correctly, otherwise we know the user has
776  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
777  * slot. In the latter case, there's no way the NIC can work correctly,
778  * so we print out a message on the console and abort the device attach.
779  */
780 
781 static int
782 re_diag(struct re_softc *sc)
783 {
784 	struct ifnet *ifp = &sc->arpcom.ac_if;
785 	struct mbuf *m0;
786 	struct ether_header *eh;
787 	struct re_desc *cur_rx;
788 	uint16_t status;
789 	int total_len, i, error = 0, phyaddr;
790 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
791 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
792 
793 	/* Allocate a single mbuf */
794 
795 	MGETHDR(m0, MB_DONTWAIT, MT_DATA);
796 	if (m0 == NULL)
797 		return(ENOBUFS);
798 
799 	/*
800 	 * Initialize the NIC in test mode. This sets the chip up
801 	 * so that it can send and receive frames, but performs the
802 	 * following special functions:
803 	 * - Puts receiver in promiscuous mode
804 	 * - Enables digital loopback mode
805 	 * - Leaves interrupts turned off
806 	 */
807 
808 	ifp->if_flags |= IFF_PROMISC;
809 	sc->re_flags |= RE_F_TESTMODE;
810 	re_init(sc);
811 	sc->re_flags |= RE_F_LINKED;
812 	if (!RE_IS_8139CP(sc))
813 		phyaddr = 1;
814 	else
815 		phyaddr = 0;
816 
817 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
818 	for (i = 0; i < RE_TIMEOUT; i++) {
819 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
820 		if (!(status & BMCR_RESET))
821 			break;
822 	}
823 
824 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
825 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
826 
827 	DELAY(100000);
828 
829 	/* Put some data in the mbuf */
830 
831 	eh = mtod(m0, struct ether_header *);
832 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
833 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
834 	eh->ether_type = htons(ETHERTYPE_IP);
835 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
836 
837 	/*
838 	 * Queue the packet, start transmission.
839 	 * Note: ifq_handoff() ultimately calls re_start() for us.
840 	 */
841 
842 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
843 	error = ifq_handoff(ifp, m0, NULL);
844 	if (error) {
845 		m0 = NULL;
846 		goto done;
847 	}
848 	m0 = NULL;
849 
850 	/* Wait for it to propagate through the chip */
851 
852 	DELAY(100000);
853 	for (i = 0; i < RE_TIMEOUT; i++) {
854 		status = CSR_READ_2(sc, RE_ISR);
855 		CSR_WRITE_2(sc, RE_ISR, status);
856 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
857 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
858 			break;
859 		DELAY(10);
860 	}
861 
862 	if (i == RE_TIMEOUT) {
863 		if_printf(ifp, "diagnostic failed to receive packet "
864 			  "in loopback mode\n");
865 		error = EIO;
866 		goto done;
867 	}
868 
869 	/*
870 	 * The packet should have been dumped into the first
871 	 * entry in the RX DMA ring. Grab it from there.
872 	 */
873 
874 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
875 			BUS_DMASYNC_POSTREAD);
876 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
877 			  sc->re_ldata.re_rx_dmamap[0]);
878 
879 	m0 = sc->re_ldata.re_rx_mbuf[0];
880 	sc->re_ldata.re_rx_mbuf[0] = NULL;
881 	eh = mtod(m0, struct ether_header *);
882 
883 	cur_rx = &sc->re_ldata.re_rx_list[0];
884 	total_len = RE_RXBYTES(cur_rx);
885 
886 	if (total_len != ETHER_MIN_LEN) {
887 		if_printf(ifp, "diagnostic failed, received short packet\n");
888 		error = EIO;
889 		goto done;
890 	}
891 
892 	/* Test that the received packet data matches what we sent. */
893 
894 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
895 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
896 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
897 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
898 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
899 		    dst, ":", src, ":", ETHERTYPE_IP);
900 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
901 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
902 		    ntohs(eh->ether_type));
903 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
904 		    "into a 64-bit PCI slot.\n");
905 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
906 		    "for proper operation.\n");
907 		if_printf(ifp, "Read the re(4) man page for more details.\n");
908 		error = EIO;
909 	}
910 
911 done:
912 	/* Turn interface off, release resources */
913 
914 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
915 	ifp->if_flags &= ~IFF_PROMISC;
916 	re_stop(sc);
917 	if (m0 != NULL)
918 		m_freem(m0);
919 
920 	return (error);
921 }
922 #endif	/* RE_DIAG */
923 
924 /*
925  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
926  * IDs against our list and return a device name if we find a match.
927  */
928 static int
929 re_probe(device_t dev)
930 {
931 	const struct re_type *t;
932 	const struct re_hwrev *hw_rev;
933 	struct re_softc *sc;
934 	int rid;
935 	uint32_t hwrev, macmode, txcfg;
936 	uint16_t vendor, product;
937 
938 	vendor = pci_get_vendor(dev);
939 	product = pci_get_device(dev);
940 
941 	/*
942 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
943 	 * Rev.2 is supported by sk(4).
944 	 */
945 	if (vendor == PCI_VENDOR_LINKSYS &&
946 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
947 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
948 		return ENXIO;
949 
950 	if (vendor == PCI_VENDOR_REALTEK &&
951 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
952 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
953 		/* Poor 8139 */
954 		return ENXIO;
955 	}
956 
957 	for (t = re_devs; t->re_name != NULL; t++) {
958 		if (product == t->re_did && vendor == t->re_vid)
959 			break;
960 	}
961 
962 	/*
963 	 * Check if we found a RealTek device.
964 	 */
965 	if (t->re_name == NULL)
966 		return ENXIO;
967 
968 	/*
969 	 * Temporarily map the I/O space so we can read the chip ID register.
970 	 */
971 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
972 	rid = RE_PCI_LOIO;
973 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
974 					    RF_ACTIVE);
975 	if (sc->re_res == NULL) {
976 		device_printf(dev, "couldn't map ports/memory\n");
977 		kfree(sc, M_TEMP);
978 		return ENXIO;
979 	}
980 
981 	sc->re_btag = rman_get_bustag(sc->re_res);
982 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
983 
984 	txcfg = CSR_READ_4(sc, RE_TXCFG);
985 	hwrev = txcfg & RE_TXCFG_HWREV;
986 	macmode = txcfg & RE_TXCFG_MACMODE;
987 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
988 	kfree(sc, M_TEMP);
989 
990 	/*
991 	 * and continue matching for the specific chip...
992 	 */
993 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
994 		if (hw_rev->re_hwrev == hwrev) {
995 			sc = device_get_softc(dev);
996 
997 			sc->re_hwrev = hw_rev->re_hwrev;
998 			sc->re_macver = hw_rev->re_macver;
999 			sc->re_caps = hw_rev->re_caps;
1000 			sc->re_maxmtu = hw_rev->re_maxmtu;
1001 
1002 			/*
1003 			 * Apply chip property fixup
1004 			 */
1005 			switch (sc->re_hwrev) {
1006 			case RE_HWREV_8101E1:
1007 			case RE_HWREV_8101E2:
1008 				if (macmode == 0)
1009 					sc->re_macver = RE_MACVER_11;
1010 				else if (macmode == 0x200000)
1011 					sc->re_macver = RE_MACVER_12;
1012 				break;
1013 			case RE_HWREV_8102E:
1014 			case RE_HWREV_8102EL:
1015 				if (macmode == 0)
1016 					sc->re_macver = RE_MACVER_13;
1017 				else if (macmode == 0x100000)
1018 					sc->re_macver = RE_MACVER_14;
1019 				break;
1020 			case RE_HWREV_8168B2:
1021 			case RE_HWREV_8168B3:
1022 				if (macmode == 0)
1023 					sc->re_macver = RE_MACVER_22;
1024 				break;
1025 			case RE_HWREV_8168C:
1026 				if (macmode == 0)
1027 					sc->re_macver = RE_MACVER_24;
1028 				else if (macmode == 0x200000)
1029 					sc->re_macver = RE_MACVER_25;
1030 				else if (macmode == 0x300000)
1031 					sc->re_macver = RE_MACVER_27;
1032 				break;
1033 			case RE_HWREV_8168CP:
1034 				if (macmode == 0)
1035 					sc->re_macver = RE_MACVER_26;
1036 				else if (macmode == 0x100000)
1037 					sc->re_macver = RE_MACVER_28;
1038 				break;
1039 			case RE_HWREV_8168DP:
1040 				if (macmode == 0)
1041 					sc->re_macver = RE_MACVER_2B;
1042 				else if (macmode == 0x200000)
1043 					sc->re_macver = RE_MACVER_2C;
1044 				break;
1045 			case RE_HWREV_8168E:
1046 				if (macmode == 0x100000)
1047 					sc->re_macver = RE_MACVER_2E;
1048 				else if (macmode == 0x200000)
1049 					sc->re_macver = RE_MACVER_2F;
1050 				break;
1051 			case RE_HWREV_8168F:
1052 			case RE_HWREV_8111F:
1053 				if (macmode == 0x000000)
1054 					sc->re_macver = RE_MACVER_30;
1055 				else if (macmode == 0x100000)
1056 					sc->re_macver = RE_MACVER_31;
1057 				break;
1058 			}
1059 			if (pci_is_pcie(dev))
1060 				sc->re_caps |= RE_C_PCIE;
1061 
1062 			device_set_desc(dev, t->re_name);
1063 			return 0;
1064 		}
1065 	}
1066 
1067 	if (bootverbose) {
1068 		device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1069 			      hwrev, macmode);
1070 	}
1071 	return ENXIO;
1072 }
1073 
1074 static int
1075 re_allocmem(device_t dev)
1076 {
1077 	struct re_softc *sc = device_get_softc(dev);
1078 	bus_dmamem_t dmem;
1079 	int error, i;
1080 
1081 	/*
1082 	 * Allocate list data
1083 	 */
1084 	sc->re_ldata.re_tx_mbuf =
1085 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1086 		M_DEVBUF, M_ZERO | M_WAITOK);
1087 
1088 	sc->re_ldata.re_rx_mbuf =
1089 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1090 		M_DEVBUF, M_ZERO | M_WAITOK);
1091 
1092 	sc->re_ldata.re_rx_paddr =
1093 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1094 		M_DEVBUF, M_ZERO | M_WAITOK);
1095 
1096 	sc->re_ldata.re_tx_dmamap =
1097 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1098 		M_DEVBUF, M_ZERO | M_WAITOK);
1099 
1100 	sc->re_ldata.re_rx_dmamap =
1101 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1102 		M_DEVBUF, M_ZERO | M_WAITOK);
1103 
1104 	/*
1105 	 * Allocate the parent bus DMA tag appropriate for PCI.
1106 	 */
1107 	error = bus_dma_tag_create(NULL,	/* parent */
1108 			1, 0,			/* alignment, boundary */
1109 			BUS_SPACE_MAXADDR,	/* lowaddr */
1110 			BUS_SPACE_MAXADDR,	/* highaddr */
1111 			NULL, NULL,		/* filter, filterarg */
1112 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1113 			0,			/* nsegments */
1114 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1115 			0,			/* flags */
1116 			&sc->re_parent_tag);
1117 	if (error) {
1118 		device_printf(dev, "could not allocate parent dma tag\n");
1119 		return error;
1120 	}
1121 
1122 	/* Allocate TX descriptor list. */
1123 	error = bus_dmamem_coherent(sc->re_parent_tag,
1124 			RE_RING_ALIGN, 0,
1125 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1126 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1127 			&dmem);
1128 	if (error) {
1129 		device_printf(dev, "could not allocate TX ring\n");
1130 		return error;
1131 	}
1132 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1133 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1134 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1135 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1136 
1137 	/* Allocate RX descriptor list. */
1138 	error = bus_dmamem_coherent(sc->re_parent_tag,
1139 			RE_RING_ALIGN, 0,
1140 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1141 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1142 			&dmem);
1143 	if (error) {
1144 		device_printf(dev, "could not allocate RX ring\n");
1145 		return error;
1146 	}
1147 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1148 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1149 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1150 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1151 
1152 	/* Allocate maps for TX mbufs. */
1153 	error = bus_dma_tag_create(sc->re_parent_tag,
1154 			1, 0,
1155 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1156 			NULL, NULL,
1157 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1158 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1159 			&sc->re_ldata.re_tx_mtag);
1160 	if (error) {
1161 		device_printf(dev, "could not allocate TX buf dma tag\n");
1162 		return(error);
1163 	}
1164 
1165 	/* Create DMA maps for TX buffers */
1166 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1167 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1168 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1169 				&sc->re_ldata.re_tx_dmamap[i]);
1170 		if (error) {
1171 			device_printf(dev, "can't create DMA map for TX buf\n");
1172 			re_freebufmem(sc, i, 0);
1173 			return(error);
1174 		}
1175 	}
1176 
1177 	/* Allocate maps for RX mbufs. */
1178 	error = bus_dma_tag_create(sc->re_parent_tag,
1179 			RE_RXBUF_ALIGN, 0,
1180 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1181 			NULL, NULL,
1182 			MCLBYTES, 1, MCLBYTES,
1183 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1184 			&sc->re_ldata.re_rx_mtag);
1185 	if (error) {
1186 		device_printf(dev, "could not allocate RX buf dma tag\n");
1187 		return(error);
1188 	}
1189 
1190 	/* Create spare DMA map for RX */
1191 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1192 			&sc->re_ldata.re_rx_spare);
1193 	if (error) {
1194 		device_printf(dev, "can't create spare DMA map for RX\n");
1195 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1196 		sc->re_ldata.re_rx_mtag = NULL;
1197 		return error;
1198 	}
1199 
1200 	/* Create DMA maps for RX buffers */
1201 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1202 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1203 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1204 		if (error) {
1205 			device_printf(dev, "can't create DMA map for RX buf\n");
1206 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1207 			return(error);
1208 		}
1209 	}
1210 
1211 	/* Create jumbo buffer pool for RX if required */
1212 	if (sc->re_caps & RE_C_CONTIGRX) {
1213 		error = re_jpool_alloc(sc);
1214 		if (error) {
1215 			re_jpool_free(sc);
1216 			/* Disable jumbo frame support */
1217 			sc->re_maxmtu = ETHERMTU;
1218 		}
1219 	}
1220 	return(0);
1221 }
1222 
1223 static void
1224 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1225 {
1226 	int i;
1227 
1228 	/* Destroy all the RX and TX buffer maps */
1229 	if (sc->re_ldata.re_tx_mtag) {
1230 		for (i = 0; i < tx_cnt; i++) {
1231 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1232 					   sc->re_ldata.re_tx_dmamap[i]);
1233 		}
1234 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1235 		sc->re_ldata.re_tx_mtag = NULL;
1236 	}
1237 
1238 	if (sc->re_ldata.re_rx_mtag) {
1239 		for (i = 0; i < rx_cnt; i++) {
1240 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1241 					   sc->re_ldata.re_rx_dmamap[i]);
1242 		}
1243 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1244 				   sc->re_ldata.re_rx_spare);
1245 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1246 		sc->re_ldata.re_rx_mtag = NULL;
1247 	}
1248 }
1249 
1250 static void
1251 re_freemem(device_t dev)
1252 {
1253 	struct re_softc *sc = device_get_softc(dev);
1254 
1255 	/* Unload and free the RX DMA ring memory and map */
1256 	if (sc->re_ldata.re_rx_list_tag) {
1257 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1258 				  sc->re_ldata.re_rx_list_map);
1259 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1260 				sc->re_ldata.re_rx_list,
1261 				sc->re_ldata.re_rx_list_map);
1262 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1263 	}
1264 
1265 	/* Unload and free the TX DMA ring memory and map */
1266 	if (sc->re_ldata.re_tx_list_tag) {
1267 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1268 				  sc->re_ldata.re_tx_list_map);
1269 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1270 				sc->re_ldata.re_tx_list,
1271 				sc->re_ldata.re_tx_list_map);
1272 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1273 	}
1274 
1275 	/* Free RX/TX buf DMA stuffs */
1276 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1277 
1278 	/* Unload and free the stats buffer and map */
1279 	if (sc->re_ldata.re_stag) {
1280 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1281 		bus_dmamem_free(sc->re_ldata.re_stag,
1282 				sc->re_ldata.re_stats,
1283 				sc->re_ldata.re_smap);
1284 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1285 	}
1286 
1287 	if (sc->re_caps & RE_C_CONTIGRX)
1288 		re_jpool_free(sc);
1289 
1290 	if (sc->re_parent_tag)
1291 		bus_dma_tag_destroy(sc->re_parent_tag);
1292 
1293 	if (sc->re_ldata.re_tx_mbuf != NULL)
1294 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1295 	if (sc->re_ldata.re_rx_mbuf != NULL)
1296 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1297 	if (sc->re_ldata.re_rx_paddr != NULL)
1298 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1299 	if (sc->re_ldata.re_tx_dmamap != NULL)
1300 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1301 	if (sc->re_ldata.re_rx_dmamap != NULL)
1302 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1303 }
1304 
1305 /*
1306  * Attach the interface. Allocate softc structures, do ifmedia
1307  * setup and ethernet/BPF attach.
1308  */
1309 static int
1310 re_attach(device_t dev)
1311 {
1312 	struct re_softc	*sc = device_get_softc(dev);
1313 	struct ifnet *ifp;
1314 	uint8_t eaddr[ETHER_ADDR_LEN];
1315 	int error = 0, rid, qlen;
1316 	u_int irq_flags;
1317 
1318 	callout_init(&sc->re_timer);
1319 	sc->re_dev = dev;
1320 
1321 	if (RE_IS_8139CP(sc)) {
1322 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1323 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1324 	} else {
1325 		sc->re_rx_desc_cnt = re_rx_desc_count;
1326 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1327 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1328 
1329 		sc->re_tx_desc_cnt = re_tx_desc_count;
1330 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1331 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1332 	}
1333 
1334 	qlen = RE_IFQ_MAXLEN;
1335 	if (sc->re_tx_desc_cnt > qlen)
1336 		qlen = sc->re_tx_desc_cnt;
1337 
1338 	sc->re_rxbuf_size = MCLBYTES;
1339 	sc->re_newbuf = re_newbuf_std;
1340 
1341 	sc->re_tx_time = 5;		/* 125us */
1342 	sc->re_rx_time = 2;		/* 50us */
1343 	if (sc->re_caps & RE_C_PCIE)
1344 		sc->re_sim_time = 75;	/* 75us */
1345 	else
1346 		sc->re_sim_time = 125;	/* 125us */
1347 	if (!RE_IS_8139CP(sc)) {
1348 		/* simulated interrupt moderation */
1349 		sc->re_imtype = RE_IMTYPE_SIM;
1350 	} else {
1351 		sc->re_imtype = RE_IMTYPE_NONE;
1352 	}
1353 	re_config_imtype(sc, sc->re_imtype);
1354 
1355 	sysctl_ctx_init(&sc->re_sysctl_ctx);
1356 	sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1357 					     SYSCTL_STATIC_CHILDREN(_hw),
1358 					     OID_AUTO,
1359 					     device_get_nameunit(dev),
1360 					     CTLFLAG_RD, 0, "");
1361 	if (sc->re_sysctl_tree == NULL) {
1362 		device_printf(dev, "can't add sysctl node\n");
1363 		error = ENXIO;
1364 		goto fail;
1365 	}
1366 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1367 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1368 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1369 		       0, "RX desc count");
1370 	SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1371 		       SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1372 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1373 		       0, "TX desc count");
1374 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1375 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1376 			OID_AUTO, "sim_time",
1377 			CTLTYPE_INT | CTLFLAG_RW,
1378 			sc, 0, re_sysctl_simtime, "I",
1379 			"Simulated interrupt moderation time (usec).");
1380 	SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1381 			SYSCTL_CHILDREN(sc->re_sysctl_tree),
1382 			OID_AUTO, "imtype",
1383 			CTLTYPE_INT | CTLFLAG_RW,
1384 			sc, 0, re_sysctl_imtype, "I",
1385 			"Interrupt moderation type -- "
1386 			"0:disable, 1:simulated, "
1387 			"2:hardware(if supported)");
1388 	if (sc->re_caps & RE_C_HWIM) {
1389 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1390 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1391 				OID_AUTO, "hw_rxtime",
1392 				CTLTYPE_INT | CTLFLAG_RW,
1393 				sc, 0, re_sysctl_rxtime, "I",
1394 				"Hardware interrupt moderation time "
1395 				"(unit: 25usec).");
1396 		SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1397 				SYSCTL_CHILDREN(sc->re_sysctl_tree),
1398 				OID_AUTO, "hw_txtime",
1399 				CTLTYPE_INT | CTLFLAG_RW,
1400 				sc, 0, re_sysctl_txtime, "I",
1401 				"Hardware interrupt moderation time "
1402 				"(unit: 25usec).");
1403 	}
1404 
1405 #ifndef BURN_BRIDGES
1406 	/*
1407 	 * Handle power management nonsense.
1408 	 */
1409 
1410 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1411 		uint32_t membase, irq;
1412 
1413 		/* Save important PCI config data. */
1414 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1415 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1416 
1417 		/* Reset the power state. */
1418 		device_printf(dev, "chip is in D%d power mode "
1419 		    "-- setting to D0\n", pci_get_powerstate(dev));
1420 
1421 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1422 
1423 		/* Restore PCI config data. */
1424 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1425 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1426 	}
1427 #endif
1428 	/*
1429 	 * Map control/status registers.
1430 	 */
1431 	pci_enable_busmaster(dev);
1432 
1433 	rid = RE_PCI_LOIO;
1434 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1435 					    RF_ACTIVE);
1436 
1437 	if (sc->re_res == NULL) {
1438 		device_printf(dev, "couldn't map ports\n");
1439 		error = ENXIO;
1440 		goto fail;
1441 	}
1442 
1443 	sc->re_btag = rman_get_bustag(sc->re_res);
1444 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1445 
1446 	/* Allocate interrupt */
1447 	sc->re_irq_type = pci_alloc_1intr(dev, re_msi_enable,
1448 					   &sc->re_irq_rid, &irq_flags);
1449 
1450 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1451 					    irq_flags);
1452 	if (sc->re_irq == NULL) {
1453 		device_printf(dev, "couldn't map interrupt\n");
1454 		error = ENXIO;
1455 		goto fail;
1456 	}
1457 
1458 	/* Reset the adapter. */
1459 	re_reset(sc, 0);
1460 
1461 	if (RE_IS_8139CP(sc)) {
1462 		sc->re_bus_speed = 33; /* XXX */
1463 	} else if (sc->re_caps & RE_C_PCIE) {
1464 		sc->re_bus_speed = 125;
1465 	} else {
1466 		uint8_t cfg2;
1467 
1468 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1469 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1470 		case RE_CFG2_PCICLK_33MHZ:
1471 			sc->re_bus_speed = 33;
1472 			break;
1473 		case RE_CFG2_PCICLK_66MHZ:
1474 			sc->re_bus_speed = 66;
1475 			break;
1476 		default:
1477 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1478 			sc->re_bus_speed = 33;
1479 			break;
1480 		}
1481 		if (cfg2 & RE_CFG2_PCI64)
1482 			sc->re_caps |= RE_C_PCI64;
1483 	}
1484 	device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1485 		      "PCI%s %dMHz\n",
1486 		      sc->re_hwrev, sc->re_macver,
1487 		      (sc->re_caps & RE_C_PCIE) ?
1488 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1489 		      sc->re_bus_speed);
1490 
1491 	/*
1492 	 * NOTE:
1493 	 * DO NOT try to adjust config1 and config5 which was spotted in
1494 	 * Realtek's Linux drivers.  It will _permanently_ damage certain
1495 	 * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1496 	 */
1497 
1498 	re_get_eaddr(sc, eaddr);
1499 
1500 	if (!RE_IS_8139CP(sc)) {
1501 		/* Set RX length mask */
1502 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1503 		sc->re_txstart = RE_GTXSTART;
1504 	} else {
1505 		/* Set RX length mask */
1506 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1507 		sc->re_txstart = RE_TXSTART;
1508 	}
1509 
1510 	/* Allocate DMA stuffs */
1511 	error = re_allocmem(dev);
1512 	if (error)
1513 		goto fail;
1514 
1515 	/*
1516 	 * Apply some magic PCI settings from Realtek ...
1517 	 */
1518 	if (RE_IS_8169(sc)) {
1519 		CSR_WRITE_1(sc, 0x82, 1);
1520 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1521 	}
1522 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1523 
1524 	if (sc->re_caps & RE_C_MAC2) {
1525 		/*
1526 		 * Following part is extracted from Realtek BSD driver v176.
1527 		 * However, this does _not_ make much/any sense:
1528 		 * 8168C's PCI Express device control is located at 0x78,
1529 		 * so the reading from 0x79 (higher part of 0x78) and setting
1530 		 * the 4~6bits intend to enlarge the "max read request size"
1531 		 * (we will do it).  The content of the rest part of this
1532 		 * register is not meaningful to other PCI registers, so
1533 		 * writing the value to 0x54 could be completely wrong.
1534 		 * 0x80 is the lower part of PCI Express device status, non-
1535 		 * reserved bits are RW1C, writing 0 to them will not have
1536 		 * any effect at all.
1537 		 */
1538 #ifdef foo
1539 		uint8_t val;
1540 
1541 		val = pci_read_config(dev, 0x79, 1);
1542 		val = (val & ~0x70) | 0x50;
1543 		pci_write_config(dev, 0x54, val, 1);
1544 		pci_write_config(dev, 0x80, 0, 1);
1545 #endif
1546 	}
1547 
1548 	/*
1549 	 * Apply some PHY fixup from Realtek ...
1550 	 */
1551 	if (sc->re_hwrev == RE_HWREV_8110S) {
1552 		CSR_WRITE_1(sc, 0x82, 1);
1553 		re_miibus_writereg(dev, 1, 0xb, 0);
1554 	}
1555 	if (sc->re_caps & RE_C_PHYPMGT) {
1556 		/* Power up PHY */
1557 		re_miibus_writereg(dev, 1, 0x1f, 0);
1558 		re_miibus_writereg(dev, 1, 0xe, 0);
1559 	}
1560 
1561 	/* Do MII setup */
1562 	if (mii_phy_probe(dev, &sc->re_miibus,
1563 	    re_ifmedia_upd, re_ifmedia_sts)) {
1564 		device_printf(dev, "MII without any phy!\n");
1565 		error = ENXIO;
1566 		goto fail;
1567 	}
1568 
1569 	ifp = &sc->arpcom.ac_if;
1570 	ifp->if_softc = sc;
1571 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1572 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1573 	ifp->if_ioctl = re_ioctl;
1574 	ifp->if_start = re_start;
1575 #ifdef IFPOLL_ENABLE
1576 	ifp->if_npoll = re_npoll;
1577 #endif
1578 	ifp->if_watchdog = re_watchdog;
1579 	ifp->if_init = re_init;
1580 	if (!RE_IS_8139CP(sc)) /* XXX */
1581 		ifp->if_baudrate = 1000000000;
1582 	else
1583 		ifp->if_baudrate = 100000000;
1584 	ifq_set_maxlen(&ifp->if_snd, qlen);
1585 	ifq_set_ready(&ifp->if_snd);
1586 
1587 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1588 	if (sc->re_caps & RE_C_HWCSUM)
1589 		ifp->if_capabilities |= IFCAP_HWCSUM;
1590 
1591 	ifp->if_capenable = ifp->if_capabilities;
1592 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1593 		ifp->if_hwassist = RE_CSUM_FEATURES;
1594 	else
1595 		ifp->if_hwassist = 0;
1596 
1597 	/*
1598 	 * Call MI attach routine.
1599 	 */
1600 	ether_ifattach(ifp, eaddr, NULL);
1601 
1602 #ifdef IFPOLL_ENABLE
1603 	ifpoll_compat_setup(&sc->re_npoll,
1604 	    &sc->re_sysctl_ctx, sc->re_sysctl_tree, device_get_unit(dev),
1605 	    ifp->if_serializer);
1606 #endif
1607 
1608 #ifdef RE_DIAG
1609 	/*
1610 	 * Perform hardware diagnostic on the original RTL8169.
1611 	 * Some 32-bit cards were incorrectly wired and would
1612 	 * malfunction if plugged into a 64-bit slot.
1613 	 */
1614 	if (sc->re_hwrev == RE_HWREV_8169) {
1615 		lwkt_serialize_enter(ifp->if_serializer);
1616 		error = re_diag(sc);
1617 		lwkt_serialize_exit(ifp->if_serializer);
1618 
1619 		if (error) {
1620 			device_printf(dev, "hardware diagnostic failure\n");
1621 			ether_ifdetach(ifp);
1622 			goto fail;
1623 		}
1624 	}
1625 #endif	/* RE_DIAG */
1626 
1627 	/* Hook interrupt last to avoid having to lock softc */
1628 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1629 			       &sc->re_intrhand, ifp->if_serializer);
1630 
1631 	if (error) {
1632 		device_printf(dev, "couldn't set up irq\n");
1633 		ether_ifdetach(ifp);
1634 		goto fail;
1635 	}
1636 
1637 	ifp->if_cpuid = rman_get_cpuid(sc->re_irq);
1638 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1639 
1640 fail:
1641 	if (error)
1642 		re_detach(dev);
1643 
1644 	return (error);
1645 }
1646 
1647 /*
1648  * Shutdown hardware and free up resources. This can be called any
1649  * time after the mutex has been initialized. It is called in both
1650  * the error case in attach and the normal detach case so it needs
1651  * to be careful about only freeing resources that have actually been
1652  * allocated.
1653  */
1654 static int
1655 re_detach(device_t dev)
1656 {
1657 	struct re_softc *sc = device_get_softc(dev);
1658 	struct ifnet *ifp = &sc->arpcom.ac_if;
1659 
1660 	/* These should only be active if attach succeeded */
1661 	if (device_is_attached(dev)) {
1662 		lwkt_serialize_enter(ifp->if_serializer);
1663 		re_stop(sc);
1664 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1665 		lwkt_serialize_exit(ifp->if_serializer);
1666 
1667 		ether_ifdetach(ifp);
1668 	}
1669 	if (sc->re_miibus)
1670 		device_delete_child(dev, sc->re_miibus);
1671 	bus_generic_detach(dev);
1672 
1673 	if (sc->re_sysctl_tree != NULL)
1674 		sysctl_ctx_free(&sc->re_sysctl_ctx);
1675 
1676 	if (sc->re_irq)
1677 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1678 				     sc->re_irq);
1679 
1680 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1681 		pci_release_msi(dev);
1682 
1683 	if (sc->re_res) {
1684 		bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1685 				     sc->re_res);
1686 	}
1687 
1688 	/* Free DMA stuffs */
1689 	re_freemem(dev);
1690 
1691 	return(0);
1692 }
1693 
1694 static void
1695 re_setup_rxdesc(struct re_softc *sc, int idx)
1696 {
1697 	bus_addr_t paddr;
1698 	uint32_t cmdstat;
1699 	struct re_desc *d;
1700 
1701 	paddr = sc->re_ldata.re_rx_paddr[idx];
1702 	d = &sc->re_ldata.re_rx_list[idx];
1703 
1704 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1705 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1706 
1707 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1708 	if (idx == (sc->re_rx_desc_cnt - 1))
1709 		cmdstat |= RE_RDESC_CMD_EOR;
1710 	d->re_cmdstat = htole32(cmdstat);
1711 }
1712 
1713 static int
1714 re_newbuf_std(struct re_softc *sc, int idx, int init)
1715 {
1716 	bus_dma_segment_t seg;
1717 	bus_dmamap_t map;
1718 	struct mbuf *m;
1719 	int error, nsegs;
1720 
1721 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1722 	if (m == NULL) {
1723 		error = ENOBUFS;
1724 
1725 		if (init) {
1726 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1727 			return error;
1728 		} else {
1729 			goto back;
1730 		}
1731 	}
1732 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1733 
1734 	/*
1735 	 * NOTE:
1736 	 * re(4) chips need address of the receive buffer to be 8-byte
1737 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1738 	 */
1739 
1740 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1741 			sc->re_ldata.re_rx_spare, m,
1742 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1743 	if (error) {
1744 		m_freem(m);
1745 		if (init) {
1746 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1747 			return error;
1748 		} else {
1749 			goto back;
1750 		}
1751 	}
1752 
1753 	if (!init) {
1754 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1755 				sc->re_ldata.re_rx_dmamap[idx],
1756 				BUS_DMASYNC_POSTREAD);
1757 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1758 				  sc->re_ldata.re_rx_dmamap[idx]);
1759 	}
1760 	sc->re_ldata.re_rx_mbuf[idx] = m;
1761 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1762 
1763 	map = sc->re_ldata.re_rx_dmamap[idx];
1764 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1765 	sc->re_ldata.re_rx_spare = map;
1766 back:
1767 	re_setup_rxdesc(sc, idx);
1768 	return error;
1769 }
1770 
1771 static int
1772 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1773 {
1774 	struct mbuf *m;
1775 	struct re_jbuf *jbuf;
1776 	int error = 0;
1777 
1778 	MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1779 	if (m == NULL) {
1780 		error = ENOBUFS;
1781 		if (init) {
1782 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1783 			return error;
1784 		} else {
1785 			goto back;
1786 		}
1787 	}
1788 
1789 	jbuf = re_jbuf_alloc(sc);
1790 	if (jbuf == NULL) {
1791 		m_freem(m);
1792 
1793 		error = ENOBUFS;
1794 		if (init) {
1795 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1796 			return error;
1797 		} else {
1798 			goto back;
1799 		}
1800 	}
1801 
1802 	m->m_ext.ext_arg = jbuf;
1803 	m->m_ext.ext_buf = jbuf->re_buf;
1804 	m->m_ext.ext_free = re_jbuf_free;
1805 	m->m_ext.ext_ref = re_jbuf_ref;
1806 	m->m_ext.ext_size = sc->re_rxbuf_size;
1807 
1808 	m->m_data = m->m_ext.ext_buf;
1809 	m->m_flags |= M_EXT;
1810 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1811 
1812 	/*
1813 	 * NOTE:
1814 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1815 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1816 	 */
1817 
1818 	sc->re_ldata.re_rx_mbuf[idx] = m;
1819 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1820 back:
1821 	re_setup_rxdesc(sc, idx);
1822 	return error;
1823 }
1824 
1825 static int
1826 re_tx_list_init(struct re_softc *sc)
1827 {
1828 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1829 
1830 	sc->re_ldata.re_tx_prodidx = 0;
1831 	sc->re_ldata.re_tx_considx = 0;
1832 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1833 
1834 	return(0);
1835 }
1836 
1837 static int
1838 re_rx_list_init(struct re_softc *sc)
1839 {
1840 	int i, error;
1841 
1842 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1843 
1844 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1845 		error = sc->re_newbuf(sc, i, 1);
1846 		if (error)
1847 			return(error);
1848 	}
1849 
1850 	sc->re_ldata.re_rx_prodidx = 0;
1851 	sc->re_head = sc->re_tail = NULL;
1852 
1853 	return(0);
1854 }
1855 
1856 #define RE_IP4_PACKET	0x1
1857 #define RE_TCP_PACKET	0x2
1858 #define RE_UDP_PACKET	0x4
1859 
1860 static __inline uint8_t
1861 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1862 {
1863 	uint8_t packet_type = 0;
1864 
1865 	if (sc->re_caps & RE_C_MAC2) {
1866 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1867 			packet_type |= RE_IP4_PACKET;
1868 	} else {
1869 		if (rxstat & RE_RDESC_STAT_PROTOID)
1870 			packet_type |= RE_IP4_PACKET;
1871 	}
1872 	if (RE_TCPPKT(rxstat))
1873 		packet_type |= RE_TCP_PACKET;
1874 	else if (RE_UDPPKT(rxstat))
1875 		packet_type |= RE_UDP_PACKET;
1876 	return packet_type;
1877 }
1878 
1879 /*
1880  * RX handler for C+ and 8169. For the gigE chips, we support
1881  * the reception of jumbo frames that have been fragmented
1882  * across multiple 2K mbuf cluster buffers.
1883  */
1884 static int
1885 re_rxeof(struct re_softc *sc)
1886 {
1887 	struct ifnet *ifp = &sc->arpcom.ac_if;
1888 	struct mbuf *m;
1889 	struct re_desc 	*cur_rx;
1890 	uint32_t rxstat, rxctrl;
1891 	int i, total_len, rx = 0;
1892 
1893 	for (i = sc->re_ldata.re_rx_prodidx;
1894 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1895 		cur_rx = &sc->re_ldata.re_rx_list[i];
1896 		m = sc->re_ldata.re_rx_mbuf[i];
1897 		total_len = RE_RXBYTES(cur_rx);
1898 		rxstat = le32toh(cur_rx->re_cmdstat);
1899 		rxctrl = le32toh(cur_rx->re_control);
1900 
1901 		rx = 1;
1902 
1903 #ifdef INVARIANTS
1904 		if (sc->re_flags & RE_F_USE_JPOOL)
1905 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1906 #endif
1907 
1908 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1909 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1910 				re_setup_rxdesc(sc, i);
1911 				continue;
1912 			}
1913 
1914 			if (sc->re_newbuf(sc, i, 0)) {
1915 				/* Drop upcoming fragments */
1916 				sc->re_flags |= RE_F_DROP_RXFRAG;
1917 				continue;
1918 			}
1919 
1920 			m->m_len = MCLBYTES;
1921 			if (sc->re_head == NULL) {
1922 				sc->re_head = sc->re_tail = m;
1923 			} else {
1924 				sc->re_tail->m_next = m;
1925 				sc->re_tail = m;
1926 			}
1927 			continue;
1928 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1929 			/*
1930 			 * Last fragment of a multi-fragment packet.
1931 			 *
1932 			 * Since error already happened, this fragment
1933 			 * must be dropped as well as the fragment chain.
1934 			 */
1935 			re_setup_rxdesc(sc, i);
1936 			re_free_rxchain(sc);
1937 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1938 			continue;
1939 		}
1940 
1941 		/*
1942 		 * NOTE: for the 8139C+, the frame length field
1943 		 * is always 12 bits in size, but for the gigE chips,
1944 		 * it is 13 bits (since the max RX frame length is 16K).
1945 		 * Unfortunately, all 32 bits in the status word
1946 		 * were already used, so to make room for the extra
1947 		 * length bit, RealTek took out the 'frame alignment
1948 		 * error' bit and shifted the other status bits
1949 		 * over one slot. The OWN, EOR, FS and LS bits are
1950 		 * still in the same places. We have already extracted
1951 		 * the frame length and checked the OWN bit, so rather
1952 		 * than using an alternate bit mapping, we shift the
1953 		 * status bits one space to the right so we can evaluate
1954 		 * them using the 8169 status as though it was in the
1955 		 * same format as that of the 8139C+.
1956 		 */
1957 		if (!RE_IS_8139CP(sc))
1958 			rxstat >>= 1;
1959 
1960 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1961 			ifp->if_ierrors++;
1962 			/*
1963 			 * If this is part of a multi-fragment packet,
1964 			 * discard all the pieces.
1965 			 */
1966 			re_free_rxchain(sc);
1967 			re_setup_rxdesc(sc, i);
1968 			continue;
1969 		}
1970 
1971 		/*
1972 		 * If allocating a replacement mbuf fails,
1973 		 * reload the current one.
1974 		 */
1975 
1976 		if (sc->re_newbuf(sc, i, 0)) {
1977 			ifp->if_ierrors++;
1978 			continue;
1979 		}
1980 
1981 		if (sc->re_head != NULL) {
1982 			m->m_len = total_len % MCLBYTES;
1983 			/*
1984 			 * Special case: if there's 4 bytes or less
1985 			 * in this buffer, the mbuf can be discarded:
1986 			 * the last 4 bytes is the CRC, which we don't
1987 			 * care about anyway.
1988 			 */
1989 			if (m->m_len <= ETHER_CRC_LEN) {
1990 				sc->re_tail->m_len -=
1991 				    (ETHER_CRC_LEN - m->m_len);
1992 				m_freem(m);
1993 			} else {
1994 				m->m_len -= ETHER_CRC_LEN;
1995 				sc->re_tail->m_next = m;
1996 			}
1997 			m = sc->re_head;
1998 			sc->re_head = sc->re_tail = NULL;
1999 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2000 		} else {
2001 			m->m_pkthdr.len = m->m_len =
2002 			    (total_len - ETHER_CRC_LEN);
2003 		}
2004 
2005 		ifp->if_ipackets++;
2006 		m->m_pkthdr.rcvif = ifp;
2007 
2008 		/* Do RX checksumming if enabled */
2009 
2010 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2011 			uint8_t packet_type;
2012 
2013 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2014 
2015 			/* Check IP header checksum */
2016 			if (packet_type & RE_IP4_PACKET) {
2017 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2018 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2019 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2020 			}
2021 
2022 			/* Check TCP/UDP checksum */
2023 			if (((packet_type & RE_TCP_PACKET) &&
2024 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2025 			    ((packet_type & RE_UDP_PACKET) &&
2026 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2027 				m->m_pkthdr.csum_flags |=
2028 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2029 				    CSUM_FRAG_NOT_CHECKED;
2030 				m->m_pkthdr.csum_data = 0xffff;
2031 			}
2032 		}
2033 
2034 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2035 			m->m_flags |= M_VLANTAG;
2036 			m->m_pkthdr.ether_vlantag =
2037 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2038 		}
2039 		ifp->if_input(ifp, m);
2040 	}
2041 
2042 	sc->re_ldata.re_rx_prodidx = i;
2043 
2044 	return rx;
2045 }
2046 
2047 #undef RE_IP4_PACKET
2048 #undef RE_TCP_PACKET
2049 #undef RE_UDP_PACKET
2050 
2051 static int
2052 re_tx_collect(struct re_softc *sc)
2053 {
2054 	struct ifnet *ifp = &sc->arpcom.ac_if;
2055 	uint32_t txstat;
2056 	int idx, tx = 0;
2057 
2058 	for (idx = sc->re_ldata.re_tx_considx;
2059 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2060 	     RE_TXDESC_INC(sc, idx)) {
2061 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2062 		if (txstat & RE_TDESC_CMD_OWN)
2063 			break;
2064 
2065 		tx = 1;
2066 
2067 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2068 
2069 		/*
2070 		 * We only stash mbufs in the last descriptor
2071 		 * in a fragment chain, which also happens to
2072 		 * be the only place where the TX status bits
2073 		 * are valid.
2074 		 */
2075 		if (txstat & RE_TDESC_CMD_EOF) {
2076 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2077 			    sc->re_ldata.re_tx_dmamap[idx]);
2078 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2079 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2080 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2081 			    RE_TDESC_STAT_COLCNT))
2082 				ifp->if_collisions++;
2083 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2084 				ifp->if_oerrors++;
2085 			else
2086 				ifp->if_opackets++;
2087 		}
2088 		sc->re_ldata.re_tx_free++;
2089 	}
2090 	sc->re_ldata.re_tx_considx = idx;
2091 
2092 	return tx;
2093 }
2094 
2095 static int
2096 re_txeof(struct re_softc *sc)
2097 {
2098 	struct ifnet *ifp = &sc->arpcom.ac_if;
2099 	int tx;
2100 
2101 	tx = re_tx_collect(sc);
2102 
2103 	/* There is enough free TX descs */
2104 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2105 		ifq_clr_oactive(&ifp->if_snd);
2106 
2107 	/*
2108 	 * Some chips will ignore a second TX request issued while an
2109 	 * existing transmission is in progress. If the transmitter goes
2110 	 * idle but there are still packets waiting to be sent, we need
2111 	 * to restart the channel here to flush them out. This only seems
2112 	 * to be required with the PCIe devices.
2113 	 */
2114 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2115 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2116 	else
2117 		ifp->if_timer = 0;
2118 
2119 	return tx;
2120 }
2121 
2122 static void
2123 re_tick(void *xsc)
2124 {
2125 	struct re_softc *sc = xsc;
2126 
2127 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2128 	re_tick_serialized(xsc);
2129 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2130 }
2131 
2132 static void
2133 re_tick_serialized(void *xsc)
2134 {
2135 	struct re_softc *sc = xsc;
2136 	struct ifnet *ifp = &sc->arpcom.ac_if;
2137 	struct mii_data *mii;
2138 
2139 	ASSERT_SERIALIZED(ifp->if_serializer);
2140 
2141 	mii = device_get_softc(sc->re_miibus);
2142 	mii_tick(mii);
2143 	if (sc->re_flags & RE_F_LINKED) {
2144 		if (!(mii->mii_media_status & IFM_ACTIVE))
2145 			sc->re_flags &= ~RE_F_LINKED;
2146 	} else {
2147 		if (mii->mii_media_status & IFM_ACTIVE &&
2148 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2149 			sc->re_flags |= RE_F_LINKED;
2150 			if (!ifq_is_empty(&ifp->if_snd))
2151 				if_devstart(ifp);
2152 		}
2153 	}
2154 
2155 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2156 }
2157 
2158 #ifdef IFPOLL_ENABLE
2159 
2160 static void
2161 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2162 {
2163 	struct re_softc *sc = ifp->if_softc;
2164 
2165 	ASSERT_SERIALIZED(ifp->if_serializer);
2166 
2167 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2168 		uint16_t       status;
2169 
2170 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2171 
2172 		status = CSR_READ_2(sc, RE_ISR);
2173 		if (status == 0xffff)
2174 			return;
2175 		if (status)
2176 			CSR_WRITE_2(sc, RE_ISR, status);
2177 
2178 		/*
2179 		 * XXX check behaviour on receiver stalls.
2180 		 */
2181 
2182 		if (status & RE_ISR_SYSTEM_ERR)
2183 			re_init(sc);
2184 	}
2185 
2186 	sc->rxcycles = count;
2187 	re_rxeof(sc);
2188 	re_txeof(sc);
2189 
2190 	if (!ifq_is_empty(&ifp->if_snd))
2191 		if_devstart(ifp);
2192 }
2193 
2194 static void
2195 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2196 {
2197 	struct re_softc *sc = ifp->if_softc;
2198 
2199 	ASSERT_SERIALIZED(ifp->if_serializer);
2200 
2201 	if (info != NULL) {
2202 		int cpuid = sc->re_npoll.ifpc_cpuid;
2203 
2204 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2205 		info->ifpi_rx[cpuid].arg = NULL;
2206 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2207 
2208 		if (ifp->if_flags & IFF_RUNNING)
2209 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2210 		ifp->if_npoll_cpuid = cpuid;
2211 	} else {
2212 		if (ifp->if_flags & IFF_RUNNING)
2213 			re_setup_intr(sc, 1, sc->re_imtype);
2214 		ifp->if_npoll_cpuid = -1;
2215 	}
2216 }
2217 #endif /* IFPOLL_ENABLE */
2218 
2219 static void
2220 re_intr(void *arg)
2221 {
2222 	struct re_softc	*sc = arg;
2223 	struct ifnet *ifp = &sc->arpcom.ac_if;
2224 	uint16_t status;
2225 	int rx, tx;
2226 
2227 	ASSERT_SERIALIZED(ifp->if_serializer);
2228 
2229 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2230 	    (ifp->if_flags & IFF_RUNNING) == 0)
2231 		return;
2232 
2233 	rx = tx = 0;
2234 	for (;;) {
2235 		status = CSR_READ_2(sc, RE_ISR);
2236 		/* If the card has gone away the read returns 0xffff. */
2237 		if (status == 0xffff)
2238 			break;
2239 		if (status)
2240 			CSR_WRITE_2(sc, RE_ISR, status);
2241 
2242 		if ((status & sc->re_intrs) == 0)
2243 			break;
2244 
2245 		if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2246 			rx |= re_rxeof(sc);
2247 
2248 		if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2249 			tx |= re_txeof(sc);
2250 
2251 		if (status & RE_ISR_SYSTEM_ERR)
2252 			re_init(sc);
2253 
2254 		if (status & RE_ISR_LINKCHG) {
2255 			callout_stop(&sc->re_timer);
2256 			re_tick_serialized(sc);
2257 		}
2258 	}
2259 
2260 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2261 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2262 			if ((tx | rx) == 0) {
2263 				/*
2264 				 * Nothing needs to be processed, fallback
2265 				 * to use TX/RX interrupts.
2266 				 */
2267 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2268 
2269 				/*
2270 				 * Recollect, mainly to avoid the possible
2271 				 * race introduced by changing interrupt
2272 				 * masks.
2273 				 */
2274 				re_rxeof(sc);
2275 				tx = re_txeof(sc);
2276 			} else {
2277 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2278 			}
2279 		} else if (tx | rx) {
2280 			/*
2281 			 * Assume that using simulated interrupt moderation
2282 			 * (hardware timer based) could reduce the interript
2283 			 * rate.
2284 			 */
2285 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2286 		}
2287 	}
2288 
2289 	if (tx && !ifq_is_empty(&ifp->if_snd))
2290 		if_devstart(ifp);
2291 }
2292 
2293 static int
2294 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2295 {
2296 	struct mbuf *m = *m_head;
2297 	bus_dma_segment_t segs[RE_MAXSEGS];
2298 	bus_dmamap_t map;
2299 	int error, maxsegs, idx, i, nsegs;
2300 	struct re_desc *d, *tx_ring;
2301 	uint32_t cmd_csum, ctl_csum, vlantag;
2302 
2303 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2304 		("not enough free TX desc"));
2305 
2306 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2307 
2308 	/*
2309 	 * Set up checksum offload. Note: checksum offload bits must
2310 	 * appear in all descriptors of a multi-descriptor transmit
2311 	 * attempt. (This is according to testing done with an 8169
2312 	 * chip. I'm not sure if this is a requirement or a bug.)
2313 	 */
2314 	cmd_csum = ctl_csum = 0;
2315 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2316 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2317 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2318 	}
2319 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2320 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2321 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2322 	}
2323 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2324 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2325 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2326 	}
2327 
2328 	/* For MAC2 chips, csum flags are set on re_control */
2329 	if (sc->re_caps & RE_C_MAC2)
2330 		cmd_csum = 0;
2331 	else
2332 		ctl_csum = 0;
2333 
2334 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2335 		/*
2336 		 * With some of the RealTek chips, using the checksum offload
2337 		 * support in conjunction with the autopadding feature results
2338 		 * in the transmission of corrupt frames. For example, if we
2339 		 * need to send a really small IP fragment that's less than 60
2340 		 * bytes in size, and IP header checksumming is enabled, the
2341 		 * resulting ethernet frame that appears on the wire will
2342 		 * have garbled payload. To work around this, if TX checksum
2343 		 * offload is enabled, we always manually pad short frames out
2344 		 * to the minimum ethernet frame size.
2345 		 *
2346 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2347 		 * with PCIe adapters seems to result in bad checksums.
2348 		 */
2349 		if ((m->m_pkthdr.csum_flags &
2350 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2351 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2352 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2353 			error = m_devpad(m, RE_MIN_FRAMELEN);
2354 			if (error)
2355 				goto back;
2356 		}
2357 	}
2358 
2359 	vlantag = 0;
2360 	if (m->m_flags & M_VLANTAG) {
2361 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2362 			  RE_TDESC_CTL_INSTAG;
2363 	}
2364 
2365 	maxsegs = sc->re_ldata.re_tx_free;
2366 	if (maxsegs > RE_MAXSEGS)
2367 		maxsegs = RE_MAXSEGS;
2368 
2369 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2370 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2371 	if (error)
2372 		goto back;
2373 
2374 	m = *m_head;
2375 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2376 
2377 	/*
2378 	 * Map the segment array into descriptors.  We also keep track
2379 	 * of the end of the ring and set the end-of-ring bits as needed,
2380 	 * and we set the ownership bits in all except the very first
2381 	 * descriptor, whose ownership bits will be turned on later.
2382 	 */
2383 	tx_ring = sc->re_ldata.re_tx_list;
2384 	idx = *idx0;
2385 	i = 0;
2386 	for (;;) {
2387 		uint32_t cmdstat;
2388 
2389 		d = &tx_ring[idx];
2390 
2391 		cmdstat = segs[i].ds_len;
2392 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2393 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2394 		if (i == 0)
2395 			cmdstat |= RE_TDESC_CMD_SOF;
2396 		else
2397 			cmdstat |= RE_TDESC_CMD_OWN;
2398 		if (idx == (sc->re_tx_desc_cnt - 1))
2399 			cmdstat |= RE_TDESC_CMD_EOR;
2400 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2401 		d->re_control = htole32(ctl_csum | vlantag);
2402 
2403 		i++;
2404 		if (i == nsegs)
2405 			break;
2406 		RE_TXDESC_INC(sc, idx);
2407 	}
2408 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2409 
2410 	/* Transfer ownership of packet to the chip. */
2411 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2412 	if (*idx0 != idx)
2413 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2414 
2415 	/*
2416 	 * Insure that the map for this transmission
2417 	 * is placed at the array index of the last descriptor
2418 	 * in this chain.
2419 	 */
2420 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2421 	sc->re_ldata.re_tx_dmamap[idx] = map;
2422 
2423 	sc->re_ldata.re_tx_mbuf[idx] = m;
2424 	sc->re_ldata.re_tx_free -= nsegs;
2425 
2426 	RE_TXDESC_INC(sc, idx);
2427 	*idx0 = idx;
2428 back:
2429 	if (error) {
2430 		m_freem(*m_head);
2431 		*m_head = NULL;
2432 	}
2433 	return error;
2434 }
2435 
2436 /*
2437  * Main transmit routine for C+ and gigE NICs.
2438  */
2439 
2440 static void
2441 re_start(struct ifnet *ifp)
2442 {
2443 	struct re_softc	*sc = ifp->if_softc;
2444 	struct mbuf *m_head;
2445 	int idx, need_trans, oactive, error;
2446 
2447 	ASSERT_SERIALIZED(ifp->if_serializer);
2448 
2449 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2450 		ifq_purge(&ifp->if_snd);
2451 		return;
2452 	}
2453 
2454 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2455 		return;
2456 
2457 	idx = sc->re_ldata.re_tx_prodidx;
2458 
2459 	need_trans = 0;
2460 	oactive = 0;
2461 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2462 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2463 			if (!oactive) {
2464 				if (re_tx_collect(sc)) {
2465 					oactive = 1;
2466 					continue;
2467 				}
2468 			}
2469 			ifq_set_oactive(&ifp->if_snd);
2470 			break;
2471 		}
2472 
2473 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2474 		if (m_head == NULL)
2475 			break;
2476 
2477 		error = re_encap(sc, &m_head, &idx);
2478 		if (error) {
2479 			/* m_head is freed by re_encap(), if we reach here */
2480 			ifp->if_oerrors++;
2481 
2482 			if (error == EFBIG && !oactive) {
2483 				if (re_tx_collect(sc)) {
2484 					oactive = 1;
2485 					continue;
2486 				}
2487 			}
2488 			ifq_set_oactive(&ifp->if_snd);
2489 			break;
2490 		}
2491 
2492 		oactive = 0;
2493 		need_trans = 1;
2494 
2495 		/*
2496 		 * If there's a BPF listener, bounce a copy of this frame
2497 		 * to him.
2498 		 */
2499 		ETHER_BPF_MTAP(ifp, m_head);
2500 	}
2501 
2502 	/*
2503 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2504 	 * for OACTIVE to not be properly set when we also do not
2505 	 * have sufficient free tx descriptors, leaving packet in
2506 	 * ifp->if_snd.  This can cause if_start_dispatch() to loop
2507 	 * infinitely so make sure OACTIVE is set properly.
2508 	 */
2509 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2510 		if (!ifq_is_oactive(&ifp->if_snd)) {
2511 			if_printf(ifp, "Debug: OACTIVE was not set when "
2512 			    "re_tx_free was below minimum!\n");
2513 			ifq_set_oactive(&ifp->if_snd);
2514 		}
2515 	}
2516 	if (!need_trans)
2517 		return;
2518 
2519 	sc->re_ldata.re_tx_prodidx = idx;
2520 
2521 	/*
2522 	 * RealTek put the TX poll request register in a different
2523 	 * location on the 8169 gigE chip. I don't know why.
2524 	 */
2525 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2526 
2527 	/*
2528 	 * Set a timeout in case the chip goes out to lunch.
2529 	 */
2530 	ifp->if_timer = 5;
2531 }
2532 
2533 static void
2534 re_init(void *xsc)
2535 {
2536 	struct re_softc *sc = xsc;
2537 	struct ifnet *ifp = &sc->arpcom.ac_if;
2538 	struct mii_data *mii;
2539 	int error, framelen;
2540 
2541 	ASSERT_SERIALIZED(ifp->if_serializer);
2542 
2543 	mii = device_get_softc(sc->re_miibus);
2544 
2545 	/*
2546 	 * Cancel pending I/O and free all RX/TX buffers.
2547 	 */
2548 	re_stop(sc);
2549 
2550 	if (sc->re_caps & RE_C_CONTIGRX) {
2551 		if (ifp->if_mtu > ETHERMTU) {
2552 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2553 			sc->re_flags |= RE_F_USE_JPOOL;
2554 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2555 			sc->re_newbuf = re_newbuf_jumbo;
2556 		} else {
2557 			sc->re_flags &= ~RE_F_USE_JPOOL;
2558 			sc->re_rxbuf_size = MCLBYTES;
2559 			sc->re_newbuf = re_newbuf_std;
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * Adjust max read request size according to MTU; mainly to
2565 	 * improve TX performance for common case (ETHERMTU) on GigE
2566 	 * NICs.  However, this could _not_ be done on 10/100 only
2567 	 * NICs; their DMA engines will malfunction using non-default
2568 	 * max read request size.
2569 	 */
2570 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2571 		if (ifp->if_mtu > ETHERMTU) {
2572 			/*
2573 			 * 512 seems to be the only value that works
2574 			 * reliably with jumbo frame
2575 			 */
2576 			pcie_set_max_readrq(sc->re_dev,
2577 				PCIEM_DEVCTL_MAX_READRQ_512);
2578 		} else {
2579 			pcie_set_max_readrq(sc->re_dev,
2580 				PCIEM_DEVCTL_MAX_READRQ_4096);
2581 		}
2582 	}
2583 
2584 	/*
2585 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2586 	 * RX checksum offload. We must configure the C+ register
2587 	 * before all others.
2588 	 */
2589 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2590 		    RE_CPLUSCMD_PCI_MRW |
2591 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2592 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2593 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2594 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2595 
2596 	/*
2597 	 * Init our MAC address.  Even though the chipset
2598 	 * documentation doesn't mention it, we need to enter "Config
2599 	 * register write enable" mode to modify the ID registers.
2600 	 */
2601 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2602 	CSR_WRITE_4(sc, RE_IDR0,
2603 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2604 	CSR_WRITE_2(sc, RE_IDR4,
2605 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2606 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2607 
2608 	/*
2609 	 * For C+ mode, initialize the RX descriptors and mbufs.
2610 	 */
2611 	error = re_rx_list_init(sc);
2612 	if (error) {
2613 		re_stop(sc);
2614 		return;
2615 	}
2616 	error = re_tx_list_init(sc);
2617 	if (error) {
2618 		re_stop(sc);
2619 		return;
2620 	}
2621 
2622 	/*
2623 	 * Load the addresses of the RX and TX lists into the chip.
2624 	 */
2625 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2626 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2627 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2628 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2629 
2630 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2631 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2632 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2633 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2634 
2635 	/*
2636 	 * Enable transmit and receive.
2637 	 */
2638 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2639 
2640 	/*
2641 	 * Set the initial TX and RX configuration.
2642 	 */
2643 	if (sc->re_flags & RE_F_TESTMODE) {
2644 		if (!RE_IS_8139CP(sc))
2645 			CSR_WRITE_4(sc, RE_TXCFG,
2646 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2647 		else
2648 			CSR_WRITE_4(sc, RE_TXCFG,
2649 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2650 	} else
2651 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2652 
2653 	framelen = RE_FRAMELEN(ifp->if_mtu);
2654 	if (framelen < MCLBYTES)
2655 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2656 	else
2657 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2658 
2659 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2660 
2661 	/*
2662 	 * Program the multicast filter, if necessary.
2663 	 */
2664 	re_setmulti(sc);
2665 
2666 #ifdef IFPOLL_ENABLE
2667 	/*
2668 	 * Disable interrupts if we are polling.
2669 	 */
2670 	if (ifp->if_flags & IFF_NPOLLING)
2671 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2672 	else	/* otherwise ... */
2673 #endif /* IFPOLL_ENABLE */
2674 	/*
2675 	 * Enable interrupts.
2676 	 */
2677 	if (sc->re_flags & RE_F_TESTMODE)
2678 		CSR_WRITE_2(sc, RE_IMR, 0);
2679 	else
2680 		re_setup_intr(sc, 1, sc->re_imtype);
2681 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2682 
2683 	/* Start RX/TX process. */
2684 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2685 
2686 #ifdef notdef
2687 	/* Enable receiver and transmitter. */
2688 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2689 #endif
2690 
2691 	/*
2692 	 * For 8169 gigE NICs, set the max allowed RX packet
2693 	 * size so we can receive jumbo frames.
2694 	 */
2695 	if (!RE_IS_8139CP(sc)) {
2696 		if (sc->re_caps & RE_C_CONTIGRX)
2697 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2698 		else
2699 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2700 	}
2701 
2702 	if (sc->re_flags & RE_F_TESTMODE)
2703 		return;
2704 
2705 	mii_mediachg(mii);
2706 
2707 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2708 
2709 	ifp->if_flags |= IFF_RUNNING;
2710 	ifq_clr_oactive(&ifp->if_snd);
2711 
2712 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2713 }
2714 
2715 /*
2716  * Set media options.
2717  */
2718 static int
2719 re_ifmedia_upd(struct ifnet *ifp)
2720 {
2721 	struct re_softc *sc = ifp->if_softc;
2722 	struct mii_data *mii;
2723 
2724 	ASSERT_SERIALIZED(ifp->if_serializer);
2725 
2726 	mii = device_get_softc(sc->re_miibus);
2727 	mii_mediachg(mii);
2728 
2729 	return(0);
2730 }
2731 
2732 /*
2733  * Report current media status.
2734  */
2735 static void
2736 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2737 {
2738 	struct re_softc *sc = ifp->if_softc;
2739 	struct mii_data *mii;
2740 
2741 	ASSERT_SERIALIZED(ifp->if_serializer);
2742 
2743 	mii = device_get_softc(sc->re_miibus);
2744 
2745 	mii_pollstat(mii);
2746 	ifmr->ifm_active = mii->mii_media_active;
2747 	ifmr->ifm_status = mii->mii_media_status;
2748 }
2749 
2750 static int
2751 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2752 {
2753 	struct re_softc *sc = ifp->if_softc;
2754 	struct ifreq *ifr = (struct ifreq *) data;
2755 	struct mii_data *mii;
2756 	int error = 0, mask;
2757 
2758 	ASSERT_SERIALIZED(ifp->if_serializer);
2759 
2760 	switch(command) {
2761 	case SIOCSIFMTU:
2762 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2763 			error = EINVAL;
2764 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2765 			ifp->if_mtu = ifr->ifr_mtu;
2766 			if (ifp->if_flags & IFF_RUNNING)
2767 				ifp->if_init(sc);
2768 		}
2769 		break;
2770 
2771 	case SIOCSIFFLAGS:
2772 		if (ifp->if_flags & IFF_UP) {
2773 			if (ifp->if_flags & IFF_RUNNING) {
2774 				if ((ifp->if_flags ^ sc->re_if_flags) &
2775 				    (IFF_PROMISC | IFF_ALLMULTI))
2776 					re_setmulti(sc);
2777 			} else {
2778 				re_init(sc);
2779 			}
2780 		} else if (ifp->if_flags & IFF_RUNNING) {
2781 			re_stop(sc);
2782 		}
2783 		sc->re_if_flags = ifp->if_flags;
2784 		break;
2785 
2786 	case SIOCADDMULTI:
2787 	case SIOCDELMULTI:
2788 		re_setmulti(sc);
2789 		break;
2790 
2791 	case SIOCGIFMEDIA:
2792 	case SIOCSIFMEDIA:
2793 		mii = device_get_softc(sc->re_miibus);
2794 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2795 		break;
2796 
2797 	case SIOCSIFCAP:
2798 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2799 		       ifp->if_capabilities;
2800 		ifp->if_capenable ^= mask;
2801 
2802 		if (mask & IFCAP_HWCSUM) {
2803 			if (ifp->if_capenable & IFCAP_TXCSUM)
2804 				ifp->if_hwassist = RE_CSUM_FEATURES;
2805 			else
2806 				ifp->if_hwassist = 0;
2807 		}
2808 		if (mask && (ifp->if_flags & IFF_RUNNING))
2809 			re_init(sc);
2810 		break;
2811 
2812 	default:
2813 		error = ether_ioctl(ifp, command, data);
2814 		break;
2815 	}
2816 	return(error);
2817 }
2818 
2819 static void
2820 re_watchdog(struct ifnet *ifp)
2821 {
2822 	struct re_softc *sc = ifp->if_softc;
2823 
2824 	ASSERT_SERIALIZED(ifp->if_serializer);
2825 
2826 	if_printf(ifp, "watchdog timeout\n");
2827 
2828 	ifp->if_oerrors++;
2829 
2830 	re_txeof(sc);
2831 	re_rxeof(sc);
2832 
2833 	re_init(sc);
2834 
2835 	if (!ifq_is_empty(&ifp->if_snd))
2836 		if_devstart(ifp);
2837 }
2838 
2839 /*
2840  * Stop the adapter and free any mbufs allocated to the
2841  * RX and TX lists.
2842  */
2843 static void
2844 re_stop(struct re_softc *sc)
2845 {
2846 	struct ifnet *ifp = &sc->arpcom.ac_if;
2847 	int i;
2848 
2849 	ASSERT_SERIALIZED(ifp->if_serializer);
2850 
2851 	/* Reset the adapter. */
2852 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2853 
2854 	ifp->if_timer = 0;
2855 	callout_stop(&sc->re_timer);
2856 
2857 	ifp->if_flags &= ~IFF_RUNNING;
2858 	ifq_clr_oactive(&ifp->if_snd);
2859 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2860 
2861 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2862 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2863 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2864 
2865 	re_free_rxchain(sc);
2866 
2867 	/* Free the TX list buffers. */
2868 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2869 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2870 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2871 					  sc->re_ldata.re_tx_dmamap[i]);
2872 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2873 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2874 		}
2875 	}
2876 
2877 	/* Free the RX list buffers. */
2878 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2879 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2880 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2881 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2882 						  sc->re_ldata.re_rx_dmamap[i]);
2883 			}
2884 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2885 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2886 		}
2887 	}
2888 }
2889 
2890 /*
2891  * Device suspend routine.  Stop the interface and save some PCI
2892  * settings in case the BIOS doesn't restore them properly on
2893  * resume.
2894  */
2895 static int
2896 re_suspend(device_t dev)
2897 {
2898 #ifndef BURN_BRIDGES
2899 	int i;
2900 #endif
2901 	struct re_softc *sc = device_get_softc(dev);
2902 	struct ifnet *ifp = &sc->arpcom.ac_if;
2903 
2904 	lwkt_serialize_enter(ifp->if_serializer);
2905 
2906 	re_stop(sc);
2907 
2908 #ifndef BURN_BRIDGES
2909 	for (i = 0; i < 5; i++)
2910 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2911 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2912 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2913 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2914 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2915 #endif
2916 
2917 	sc->re_flags |= RE_F_SUSPENDED;
2918 
2919 	lwkt_serialize_exit(ifp->if_serializer);
2920 
2921 	return (0);
2922 }
2923 
2924 /*
2925  * Device resume routine.  Restore some PCI settings in case the BIOS
2926  * doesn't, re-enable busmastering, and restart the interface if
2927  * appropriate.
2928  */
2929 static int
2930 re_resume(device_t dev)
2931 {
2932 	struct re_softc *sc = device_get_softc(dev);
2933 	struct ifnet *ifp = &sc->arpcom.ac_if;
2934 #ifndef BURN_BRIDGES
2935 	int i;
2936 #endif
2937 
2938 	lwkt_serialize_enter(ifp->if_serializer);
2939 
2940 #ifndef BURN_BRIDGES
2941 	/* better way to do this? */
2942 	for (i = 0; i < 5; i++)
2943 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2944 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2945 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2946 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2947 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2948 
2949 	/* reenable busmastering */
2950 	pci_enable_busmaster(dev);
2951 	pci_enable_io(dev, SYS_RES_IOPORT);
2952 #endif
2953 
2954 	/* reinitialize interface if necessary */
2955 	if (ifp->if_flags & IFF_UP)
2956 		re_init(sc);
2957 
2958 	sc->re_flags &= ~RE_F_SUSPENDED;
2959 
2960 	lwkt_serialize_exit(ifp->if_serializer);
2961 
2962 	return (0);
2963 }
2964 
2965 /*
2966  * Stop all chip I/O so that the kernel's probe routines don't
2967  * get confused by errant DMAs when rebooting.
2968  */
2969 static void
2970 re_shutdown(device_t dev)
2971 {
2972 	struct re_softc *sc = device_get_softc(dev);
2973 	struct ifnet *ifp = &sc->arpcom.ac_if;
2974 
2975 	lwkt_serialize_enter(ifp->if_serializer);
2976 	re_stop(sc);
2977 	lwkt_serialize_exit(ifp->if_serializer);
2978 }
2979 
2980 static int
2981 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2982 {
2983 	struct re_softc *sc = arg1;
2984 
2985 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2986 }
2987 
2988 static int
2989 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2990 {
2991 	struct re_softc *sc = arg1;
2992 
2993 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2994 }
2995 
2996 static int
2997 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2998 {
2999 	struct re_softc *sc = arg1;
3000 	struct ifnet *ifp = &sc->arpcom.ac_if;
3001 	int error, v;
3002 
3003 	lwkt_serialize_enter(ifp->if_serializer);
3004 
3005 	v = *hwtime;
3006 	error = sysctl_handle_int(oidp, &v, 0, req);
3007 	if (error || req->newptr == NULL)
3008 		goto back;
3009 
3010 	if (v <= 0) {
3011 		error = EINVAL;
3012 		goto back;
3013 	}
3014 
3015 	if (v != *hwtime) {
3016 		*hwtime = v;
3017 
3018 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3019 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3020 			re_setup_hw_im(sc);
3021 	}
3022 back:
3023 	lwkt_serialize_exit(ifp->if_serializer);
3024 	return error;
3025 }
3026 
3027 static int
3028 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3029 {
3030 	struct re_softc *sc = arg1;
3031 	struct ifnet *ifp = &sc->arpcom.ac_if;
3032 	int error, v;
3033 
3034 	lwkt_serialize_enter(ifp->if_serializer);
3035 
3036 	v = sc->re_sim_time;
3037 	error = sysctl_handle_int(oidp, &v, 0, req);
3038 	if (error || req->newptr == NULL)
3039 		goto back;
3040 
3041 	if (v <= 0) {
3042 		error = EINVAL;
3043 		goto back;
3044 	}
3045 
3046 	if (v != sc->re_sim_time) {
3047 		sc->re_sim_time = v;
3048 
3049 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3050 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3051 #ifdef foo
3052 			int reg;
3053 
3054 			/*
3055 			 * Following code causes various strange
3056 			 * performance problems.  Hmm ...
3057 			 */
3058 			CSR_WRITE_2(sc, RE_IMR, 0);
3059 			if (!RE_IS_8139CP(sc))
3060 				reg = RE_TIMERINT_8169;
3061 			else
3062 				reg = RE_TIMERINT;
3063 			CSR_WRITE_4(sc, reg, 0);
3064 			CSR_READ_4(sc, reg); /* flush */
3065 
3066 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3067 			re_setup_sim_im(sc);
3068 #else
3069 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3070 			DELAY(10);
3071 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3072 #endif
3073 		}
3074 	}
3075 back:
3076 	lwkt_serialize_exit(ifp->if_serializer);
3077 	return error;
3078 }
3079 
3080 static int
3081 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3082 {
3083 	struct re_softc *sc = arg1;
3084 	struct ifnet *ifp = &sc->arpcom.ac_if;
3085 	int error, v;
3086 
3087 	lwkt_serialize_enter(ifp->if_serializer);
3088 
3089 	v = sc->re_imtype;
3090 	error = sysctl_handle_int(oidp, &v, 0, req);
3091 	if (error || req->newptr == NULL)
3092 		goto back;
3093 
3094 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3095 		error = EINVAL;
3096 		goto back;
3097 	}
3098 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3099 		/* Can't do hardware interrupt moderation */
3100 		error = EOPNOTSUPP;
3101 		goto back;
3102 	}
3103 
3104 	if (v != sc->re_imtype) {
3105 		sc->re_imtype = v;
3106 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3107 		    IFF_RUNNING)
3108 			re_setup_intr(sc, 1, sc->re_imtype);
3109 	}
3110 back:
3111 	lwkt_serialize_exit(ifp->if_serializer);
3112 	return error;
3113 }
3114 
3115 static void
3116 re_setup_hw_im(struct re_softc *sc)
3117 {
3118 	KKASSERT(sc->re_caps & RE_C_HWIM);
3119 
3120 	/*
3121 	 * Interrupt moderation
3122 	 *
3123 	 * 0xABCD
3124 	 * A - unknown (maybe TX related)
3125 	 * B - TX timer (unit: 25us)
3126 	 * C - unknown (maybe RX related)
3127 	 * D - RX timer (unit: 25us)
3128 	 *
3129 	 *
3130 	 * re(4)'s interrupt moderation is actually controlled by
3131 	 * two variables, like most other NICs (bge, bce etc.)
3132 	 * o  timer
3133 	 * o  number of packets [P]
3134 	 *
3135 	 * The logic relationship between these two variables is
3136 	 * similar to other NICs too:
3137 	 * if (timer expire || packets > [P])
3138 	 *     Interrupt is delivered
3139 	 *
3140 	 * Currently we only know how to set 'timer', but not
3141 	 * 'number of packets', which should be ~30, as far as I
3142 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3143 	 */
3144 	CSR_WRITE_2(sc, RE_IM,
3145 		    RE_IM_RXTIME(sc->re_rx_time) |
3146 		    RE_IM_TXTIME(sc->re_tx_time) |
3147 		    RE_IM_MAGIC);
3148 }
3149 
3150 static void
3151 re_disable_hw_im(struct re_softc *sc)
3152 {
3153 	if (sc->re_caps & RE_C_HWIM)
3154 		CSR_WRITE_2(sc, RE_IM, 0);
3155 }
3156 
3157 static void
3158 re_setup_sim_im(struct re_softc *sc)
3159 {
3160 	if (!RE_IS_8139CP(sc)) {
3161 		uint32_t ticks;
3162 
3163 		/*
3164 		 * Datasheet says tick decreases at bus speed,
3165 		 * but it seems the clock runs a little bit
3166 		 * faster, so we do some compensation here.
3167 		 */
3168 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3169 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3170 	} else {
3171 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3172 	}
3173 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3174 	sc->re_flags |= RE_F_TIMER_INTR;
3175 }
3176 
3177 static void
3178 re_disable_sim_im(struct re_softc *sc)
3179 {
3180 	if (!RE_IS_8139CP(sc))
3181 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3182 	else
3183 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3184 	sc->re_flags &= ~RE_F_TIMER_INTR;
3185 }
3186 
3187 static void
3188 re_config_imtype(struct re_softc *sc, int imtype)
3189 {
3190 	switch (imtype) {
3191 	case RE_IMTYPE_HW:
3192 		KKASSERT(sc->re_caps & RE_C_HWIM);
3193 		/* FALL THROUGH */
3194 	case RE_IMTYPE_NONE:
3195 		sc->re_intrs = RE_INTRS;
3196 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3197 				RE_ISR_RX_OVERRUN;
3198 		sc->re_tx_ack = RE_ISR_TX_OK;
3199 		break;
3200 
3201 	case RE_IMTYPE_SIM:
3202 		sc->re_intrs = RE_INTRS_TIMER;
3203 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3204 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3205 		break;
3206 
3207 	default:
3208 		panic("%s: unknown imtype %d",
3209 		      sc->arpcom.ac_if.if_xname, imtype);
3210 	}
3211 }
3212 
3213 static void
3214 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3215 {
3216 	re_config_imtype(sc, imtype);
3217 
3218 	if (enable_intrs)
3219 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3220 	else
3221 		CSR_WRITE_2(sc, RE_IMR, 0);
3222 
3223 	sc->re_npoll.ifpc_stcount = 0;
3224 
3225 	switch (imtype) {
3226 	case RE_IMTYPE_NONE:
3227 		re_disable_sim_im(sc);
3228 		re_disable_hw_im(sc);
3229 		break;
3230 
3231 	case RE_IMTYPE_HW:
3232 		KKASSERT(sc->re_caps & RE_C_HWIM);
3233 		re_disable_sim_im(sc);
3234 		re_setup_hw_im(sc);
3235 		break;
3236 
3237 	case RE_IMTYPE_SIM:
3238 		re_disable_hw_im(sc);
3239 		re_setup_sim_im(sc);
3240 		break;
3241 
3242 	default:
3243 		panic("%s: unknown imtype %d",
3244 		      sc->arpcom.ac_if.if_xname, imtype);
3245 	}
3246 }
3247 
3248 static void
3249 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3250 {
3251 	int i;
3252 
3253 	if (sc->re_macver == RE_MACVER_11 ||
3254 	    sc->re_macver == RE_MACVER_12 ||
3255 	    sc->re_macver == RE_MACVER_30 ||
3256 	    sc->re_macver == RE_MACVER_31) {
3257 		uint16_t re_did;
3258 
3259 		re_get_eewidth(sc);
3260 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3261 		if (re_did == 0x8128) {
3262 			uint16_t as[ETHER_ADDR_LEN / 2];
3263 			int eaddr_off;
3264 
3265 			if (sc->re_macver == RE_MACVER_30 ||
3266 			    sc->re_macver == RE_MACVER_31)
3267 				eaddr_off = RE_EE_EADDR1;
3268 			else
3269 				eaddr_off = RE_EE_EADDR0;
3270 
3271 			/*
3272 			 * Get station address from the EEPROM.
3273 			 */
3274 			re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3275 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3276 				as[i] = le16toh(as[i]);
3277 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3278 			return;
3279 		}
3280 	}
3281 
3282 	/*
3283 	 * Get station address from IDRx.
3284 	 */
3285 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3286 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3287 }
3288 
3289 static int
3290 re_jpool_alloc(struct re_softc *sc)
3291 {
3292 	struct re_list_data *ldata = &sc->re_ldata;
3293 	struct re_jbuf *jbuf;
3294 	bus_addr_t paddr;
3295 	bus_size_t jpool_size;
3296 	bus_dmamem_t dmem;
3297 	caddr_t buf;
3298 	int i, error;
3299 
3300 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3301 
3302 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3303 				 M_DEVBUF, M_WAITOK | M_ZERO);
3304 
3305 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3306 
3307 	error = bus_dmamem_coherent(sc->re_parent_tag,
3308 			RE_RXBUF_ALIGN, 0,
3309 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3310 			jpool_size, BUS_DMA_WAITOK, &dmem);
3311 	if (error) {
3312 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3313 		return error;
3314 	}
3315 	ldata->re_jpool_tag = dmem.dmem_tag;
3316 	ldata->re_jpool_map = dmem.dmem_map;
3317 	ldata->re_jpool = dmem.dmem_addr;
3318 	paddr = dmem.dmem_busaddr;
3319 
3320 	/* ..and split it into 9KB chunks */
3321 	SLIST_INIT(&ldata->re_jbuf_free);
3322 
3323 	buf = ldata->re_jpool;
3324 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3325 		jbuf = &ldata->re_jbuf[i];
3326 
3327 		jbuf->re_sc = sc;
3328 		jbuf->re_inuse = 0;
3329 		jbuf->re_slot = i;
3330 		jbuf->re_buf = buf;
3331 		jbuf->re_paddr = paddr;
3332 
3333 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3334 
3335 		buf += RE_JBUF_SIZE;
3336 		paddr += RE_JBUF_SIZE;
3337 	}
3338 	return 0;
3339 }
3340 
3341 static void
3342 re_jpool_free(struct re_softc *sc)
3343 {
3344 	struct re_list_data *ldata = &sc->re_ldata;
3345 
3346 	if (ldata->re_jpool_tag != NULL) {
3347 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3348 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3349 				ldata->re_jpool_map);
3350 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3351 		ldata->re_jpool_tag = NULL;
3352 	}
3353 
3354 	if (ldata->re_jbuf != NULL) {
3355 		kfree(ldata->re_jbuf, M_DEVBUF);
3356 		ldata->re_jbuf = NULL;
3357 	}
3358 }
3359 
3360 static struct re_jbuf *
3361 re_jbuf_alloc(struct re_softc *sc)
3362 {
3363 	struct re_list_data *ldata = &sc->re_ldata;
3364 	struct re_jbuf *jbuf;
3365 
3366 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3367 
3368 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3369 	if (jbuf != NULL) {
3370 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3371 		jbuf->re_inuse = 1;
3372 	}
3373 
3374 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3375 
3376 	return jbuf;
3377 }
3378 
3379 static void
3380 re_jbuf_free(void *arg)
3381 {
3382 	struct re_jbuf *jbuf = arg;
3383 	struct re_softc *sc = jbuf->re_sc;
3384 	struct re_list_data *ldata = &sc->re_ldata;
3385 
3386 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3387 		panic("%s: free wrong jumbo buffer",
3388 		      sc->arpcom.ac_if.if_xname);
3389 	} else if (jbuf->re_inuse == 0) {
3390 		panic("%s: jumbo buffer already freed",
3391 		      sc->arpcom.ac_if.if_xname);
3392 	}
3393 
3394 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3395 	atomic_subtract_int(&jbuf->re_inuse, 1);
3396 	if (jbuf->re_inuse == 0)
3397 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3398 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3399 }
3400 
3401 static void
3402 re_jbuf_ref(void *arg)
3403 {
3404 	struct re_jbuf *jbuf = arg;
3405 	struct re_softc *sc = jbuf->re_sc;
3406 	struct re_list_data *ldata = &sc->re_ldata;
3407 
3408 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3409 		panic("%s: ref wrong jumbo buffer",
3410 		      sc->arpcom.ac_if.if_xname);
3411 	} else if (jbuf->re_inuse == 0) {
3412 		panic("%s: jumbo buffer already freed",
3413 		      sc->arpcom.ac_if.if_xname);
3414 	}
3415 	atomic_add_int(&jbuf->re_inuse, 1);
3416 }
3417