xref: /dflybsd-src/sys/dev/netif/ral/rt2661.c (revision 21d8bc42f570abe46007647277c2c8d68cf8b55a)
1 /*
2  * Copyright (c) 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2661.c,v 1.4 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2661.c,v 1.28 2008/01/17 13:33:11 sephe Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/module.h>
33 #include <sys/queue.h>
34 #include <sys/rman.h>
35 #include <sys/socket.h>
36 #include <sys/sockio.h>
37 #include <sys/sysctl.h>
38 #include <sys/serialize.h>
39 
40 #include <net/bpf.h>
41 #include <net/if.h>
42 #include <net/if_arp.h>
43 #include <net/ethernet.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 #include <net/ifq_var.h>
47 
48 #include <netproto/802_11/ieee80211_var.h>
49 #include <netproto/802_11/ieee80211_radiotap.h>
50 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
51 #include <netproto/802_11/wlan_ratectl/sample/ieee80211_sample_param.h>
52 
53 #include <dev/netif/ral/rt2661reg.h>
54 #include <dev/netif/ral/rt2661var.h>
55 #include <dev/netif/ral/rt2661_ucode.h>
56 
57 #ifdef RAL_DEBUG
58 #define DPRINTF(x)	do { if (ral_debug > 0) kprintf x; } while (0)
59 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) kprintf x; } while (0)
60 int ral_debug = 1;
61 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
62 #else
63 #define DPRINTF(x)
64 #define DPRINTFN(n, x)
65 #endif
66 
67 MALLOC_DEFINE(M_RT2661, "rt2661_ratectl", "rt2661 rate control data");
68 
69 static void		rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
70 			    int);
71 static void		rt2661_dma_map_mbuf(void *, bus_dma_segment_t *, int,
72 					    bus_size_t, int);
73 static int		rt2661_alloc_tx_ring(struct rt2661_softc *,
74 			    struct rt2661_tx_ring *, int);
75 static void		rt2661_reset_tx_ring(struct rt2661_softc *,
76 			    struct rt2661_tx_ring *);
77 static void		rt2661_free_tx_ring(struct rt2661_softc *,
78 			    struct rt2661_tx_ring *);
79 static int		rt2661_alloc_rx_ring(struct rt2661_softc *,
80 			    struct rt2661_rx_ring *, int);
81 static void		rt2661_reset_rx_ring(struct rt2661_softc *,
82 			    struct rt2661_rx_ring *);
83 static void		rt2661_free_rx_ring(struct rt2661_softc *,
84 			    struct rt2661_rx_ring *);
85 static int		rt2661_media_change(struct ifnet *);
86 static void		rt2661_next_scan(void *);
87 static int		rt2661_newstate(struct ieee80211com *,
88 			    enum ieee80211_state, int);
89 static uint16_t		rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
90 static void		rt2661_rx_intr(struct rt2661_softc *);
91 static void		rt2661_tx_intr(struct rt2661_softc *);
92 static void		rt2661_tx_dma_intr(struct rt2661_softc *,
93 			    struct rt2661_tx_ring *);
94 static void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
95 static void		rt2661_mcu_wakeup(struct rt2661_softc *);
96 static void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
97 static uint8_t		rt2661_rxrate(struct rt2661_rx_desc *);
98 static uint8_t		rt2661_plcp_signal(int);
99 static void		rt2661_setup_tx_desc(struct rt2661_softc *,
100 			    struct rt2661_tx_desc *, uint32_t, uint16_t, int,
101 			    int, const bus_dma_segment_t *, int, int, int,
102 			    const struct ieee80211_key *, void *,
103 			    const struct ieee80211_crypto_iv *);
104 static struct mbuf *	rt2661_get_rts(struct rt2661_softc *,
105 			    struct ieee80211_frame *, uint16_t);
106 static int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
107 			    struct ieee80211_node *, int);
108 static int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
109 			    struct ieee80211_node *);
110 static void		rt2661_start(struct ifnet *);
111 static void		rt2661_watchdog(struct ifnet *);
112 static int		rt2661_reset(struct ifnet *);
113 static int		rt2661_ioctl(struct ifnet *, u_long, caddr_t,
114 				     struct ucred *);
115 static void		rt2661_bbp_write(struct rt2661_softc *, uint8_t,
116 			    uint8_t);
117 static uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
118 static void		rt2661_rf_write(struct rt2661_softc *, uint8_t,
119 			    uint32_t);
120 static int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
121 			    uint16_t);
122 static void		rt2661_select_antenna(struct rt2661_softc *);
123 static void		rt2661_enable_mrr(struct rt2661_softc *);
124 static void		rt2661_set_txpreamble(struct rt2661_softc *);
125 static void		rt2661_set_ackrates(struct rt2661_softc *,
126 			    const struct ieee80211_rateset *);
127 static void		rt2661_select_band(struct rt2661_softc *,
128 			    struct ieee80211_channel *);
129 static void		rt2661_set_chan(struct rt2661_softc *,
130 			    struct ieee80211_channel *);
131 static void		rt2661_set_bssid(struct rt2661_softc *,
132 			    const uint8_t *);
133 static void		rt2661_set_macaddr(struct rt2661_softc *,
134 			   const uint8_t *);
135 static void		rt2661_update_promisc(struct rt2661_softc *);
136 static int		rt2661_wme_update(struct ieee80211com *) __unused;
137 static void		rt2661_update_slot(struct ifnet *);
138 static const char	*rt2661_get_rf(int);
139 static void		rt2661_read_config(struct rt2661_softc *);
140 static void		rt2661_read_txpower_config(struct rt2661_softc *,
141 						   uint8_t, int, int *);
142 static int		rt2661_bbp_init(struct rt2661_softc *);
143 static void		rt2661_init(void *);
144 static void		rt2661_stop(void *);
145 static void		rt2661_intr(void *);
146 static int		rt2661_load_microcode(struct rt2661_softc *,
147 			    const uint8_t *, int);
148 static int		rt2661_prepare_beacon(struct rt2661_softc *);
149 static void		rt2661_enable_tsf_sync(struct rt2661_softc *);
150 static int		rt2661_get_rssi(struct rt2661_softc *, uint8_t, int);
151 static void		rt2661_led_newstate(struct rt2661_softc *,
152 					    enum ieee80211_state);
153 static int		rt2661_key_alloc(struct ieee80211com *,
154 					 const struct ieee80211_key *,
155 					 ieee80211_keyix *, ieee80211_keyix *);
156 static int		rt2661_key_delete(struct ieee80211com *,
157 					  const struct ieee80211_key *);
158 static int		rt2661_key_set(struct ieee80211com *,
159 				       const struct ieee80211_key *,
160 				       const uint8_t mac[IEEE80211_ADDR_LEN]);
161 static void		*rt2661_ratectl_attach(struct ieee80211com *, u_int);
162 static void		rt2661_set_txpower(struct rt2661_softc *, int8_t);
163 static void		rt2661_calibrate(void *);
164 static void		rt2661_calib_txpower(struct rt2661_softc *);
165 static void		rt2661_calib_rxsensibility(struct rt2661_softc *,
166 						   uint32_t);
167 
168 /*
169  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
170  */
171 static const struct ieee80211_rateset rt2661_rateset_11a =
172 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
173 
174 static const struct ieee80211_rateset rt2661_rateset_11b =
175 	{ 4, { 2, 4, 11, 22 } };
176 
177 static const struct ieee80211_rateset rt2661_rateset_11g =
178 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
179 
180 static const struct {
181 	uint32_t	reg;
182 	uint32_t	val;
183 } rt2661_def_mac[] = {
184 	RT2661_DEF_MAC
185 };
186 
187 static const struct {
188 	uint8_t	reg;
189 	uint8_t	val;
190 } rt2661_def_bbp[] = {
191 	RT2661_DEF_BBP
192 };
193 
194 static const struct rt2661_rfprog rt2661_rf5225_1[] = { RT2661_RF5225_1 };
195 static const struct rt2661_rfprog rt2661_rf5225_2[] = { RT2661_RF5225_2 };
196 
197 #define LED_EE2MCU(bit)	{ \
198 	.ee_bit		= RT2661_EE_LED_##bit, \
199 	.mcu_bit	= RT2661_MCU_LED_##bit \
200 }
201 static const struct {
202 	uint16_t	ee_bit;
203 	uint16_t	mcu_bit;
204 } led_ee2mcu[] = {
205 	LED_EE2MCU(RDYG),
206 	LED_EE2MCU(RDYA),
207 	LED_EE2MCU(ACT),
208 	LED_EE2MCU(GPIO0),
209 	LED_EE2MCU(GPIO1),
210 	LED_EE2MCU(GPIO2),
211 	LED_EE2MCU(GPIO3),
212 	LED_EE2MCU(GPIO4)
213 };
214 #undef LED_EE2MCU
215 
216 struct rt2661_dmamap {
217 	bus_dma_segment_t	segs[RT2661_MAX_SCATTER];
218 	int			nseg;
219 };
220 
221 static __inline int
222 rt2661_cipher(const struct ieee80211_key *k)
223 {
224 	switch (k->wk_cipher->ic_cipher) {
225 	case IEEE80211_CIPHER_WEP:
226 		if (k->wk_keylen == (40 / NBBY))
227 			return RT2661_CIPHER_WEP40;
228 		else
229 			return RT2661_CIPHER_WEP104;
230 	case IEEE80211_CIPHER_TKIP:
231 		return RT2661_CIPHER_TKIP;
232 	case IEEE80211_CIPHER_AES_CCM:
233 		return RT2661_CIPHER_AES;
234 	default:
235 		return RT2661_CIPHER_NONE;
236 	}
237 }
238 
239 static __inline int8_t
240 rt2661_txpower(const struct rt2661_softc *sc, int8_t power)
241 {
242 	if (sc->sc_txpwr_corr > 0) {
243 		if (power > sc->sc_txpwr_corr)
244 			power -= sc->sc_txpwr_corr;
245 		else
246 			power = 0;
247 	}
248 	return power;
249 }
250 
251 static __inline int
252 rt2661_avgrssi(const struct rt2661_softc *sc)
253 {
254 	int rssi_dbm;
255 
256 	rssi_dbm = sc->avg_rssi[0] + RT2661_NOISE_FLOOR;
257 	if (sc->rf_rev == RT2661_RF_2529) {
258 		if (sc->avg_rssi[1] > sc->avg_rssi[0])
259 			rssi_dbm = sc->avg_rssi[0] + RT2661_NOISE_FLOOR;
260 	}
261 	return rssi_dbm;
262 }
263 
264 int
265 rt2661_attach(device_t dev, int id)
266 {
267 	struct rt2661_softc *sc = device_get_softc(dev);
268 	struct ieee80211com *ic = &sc->sc_ic;
269 	struct ifnet *ifp = &ic->ic_if;
270 	uint32_t val, bbp_type;
271 	const uint8_t *ucode = NULL;
272 	int error, i, ac, ntries, size = 0;
273 
274 	callout_init(&sc->scan_ch);
275 	callout_init(&sc->calib_ch);
276 
277 	sc->sc_irq_rid = 0;
278 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
279 					    RF_ACTIVE | RF_SHAREABLE);
280 	if (sc->sc_irq == NULL) {
281 		device_printf(dev, "could not allocate interrupt resource\n");
282 		return ENXIO;
283 	}
284 
285 	/* wait for NIC to initialize */
286 	for (ntries = 0; ntries < 1000; ntries++) {
287 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
288 			break;
289 		DELAY(1000);
290 	}
291 	if (ntries == 1000) {
292 		device_printf(sc->sc_dev,
293 		    "timeout waiting for NIC to initialize\n");
294 		error = EIO;
295 		goto fail;
296 	}
297 	bbp_type = val;
298 
299 	/* retrieve RF rev. no and various other things from EEPROM */
300 	rt2661_read_config(sc);
301 
302 	device_printf(dev, "MAC/BBP RT%X, RF %s\n", bbp_type,
303 	    rt2661_get_rf(sc->rf_rev));
304 
305 	/*
306 	 * Load 8051 microcode into NIC.
307 	 */
308 	switch (id) {
309 	case 0x0301:
310 		ucode = rt2561s_ucode;
311 		size = sizeof rt2561s_ucode;
312 		break;
313 	case 0x0302:
314 		ucode = rt2561_ucode;
315 		size = sizeof rt2561_ucode;
316 		break;
317 	case 0x0401:
318 		ucode = rt2661_ucode;
319 		size = sizeof rt2661_ucode;
320 		break;
321 	}
322 
323 	error = rt2661_load_microcode(sc, ucode, size);
324 	if (error != 0) {
325 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
326 		goto fail;
327 	}
328 
329 	/*
330 	 * Allocate Tx and Rx rings.
331 	 */
332 	for (ac = 0; ac < 4; ac++) {
333 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
334 		    RT2661_TX_RING_COUNT);
335 		if (error != 0) {
336 			device_printf(sc->sc_dev,
337 			    "could not allocate Tx ring %d\n", ac);
338 			goto fail;
339 		}
340 	}
341 
342 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
343 	if (error != 0) {
344 		device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
345 		goto fail;
346 	}
347 
348 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
349 	if (error != 0) {
350 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
351 		goto fail;
352 	}
353 
354 	STAILQ_INIT(&sc->tx_ratectl);
355 
356 	sysctl_ctx_init(&sc->sysctl_ctx);
357 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
358 					  SYSCTL_STATIC_CHILDREN(_hw),
359 					  OID_AUTO,
360 					  device_get_nameunit(dev),
361 					  CTLFLAG_RD, 0, "");
362 	if (sc->sysctl_tree == NULL) {
363 		device_printf(dev, "could not add sysctl node\n");
364 		error = ENXIO;
365 		goto fail;
366 	}
367 
368 	ifp->if_softc = sc;
369 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
370 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
371 	ifp->if_init = rt2661_init;
372 	ifp->if_ioctl = rt2661_ioctl;
373 	ifp->if_start = rt2661_start;
374 	ifp->if_watchdog = rt2661_watchdog;
375 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
376 	ifq_set_ready(&ifp->if_snd);
377 
378 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
379 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
380 	ic->ic_state = IEEE80211_S_INIT;
381 	rt2661_led_newstate(sc, IEEE80211_S_INIT);
382 
383 	IEEE80211_ONOE_PARAM_SETUP(&sc->sc_onoe_param);
384 	ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
385 	if (bbp_type == RT2661_BBP_2661D) {
386 		ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
387 	} else {
388 		IEEE80211_SAMPLE_PARAM_SETUP(&sc->sc_sample_param);
389 		ic->ic_ratectl.rc_st_ratectl_cap |=
390 			IEEE80211_RATECTL_CAP_SAMPLE;
391 		ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_SAMPLE;
392 	}
393 	ic->ic_ratectl.rc_st_attach = rt2661_ratectl_attach;
394 
395 	/* set device capabilities */
396 	ic->ic_caps =
397 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
398 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
399 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
400 	    IEEE80211_C_TXPMGT |	/* tx power management */
401 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
402 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
403 #ifdef notyet
404 	    IEEE80211_C_WME |		/* 802.11e */
405 #endif
406 	    IEEE80211_C_WPA;		/* 802.11i */
407 
408 	/* Set hardware crypto capabilities. */
409 	ic->ic_caps |= IEEE80211_C_WEP |
410 		       IEEE80211_C_TKIP |
411 		       IEEE80211_C_TKIPMIC |
412 		       IEEE80211_C_AES_CCM;
413 
414 	ic->ic_caps_ext = IEEE80211_CEXT_CRYPTO_HDR |
415 			  IEEE80211_CEXT_STRIP_MIC;
416 
417 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
418 		/* set supported .11a rates */
419 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
420 
421 		/* set supported .11a channels */
422 		for (i = 36; i <= 64; i += 4) {
423 			ic->ic_channels[i].ic_freq =
424 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
425 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
426 		}
427 		for (i = 100; i <= 140; i += 4) {
428 			ic->ic_channels[i].ic_freq =
429 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
430 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
431 		}
432 		for (i = 149; i <= 165; i += 4) {
433 			ic->ic_channels[i].ic_freq =
434 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
435 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
436 		}
437 	}
438 
439 	/* set supported .11b and .11g rates */
440 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
441 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
442 
443 	/* set supported .11b and .11g channels (1 through 14) */
444 	for (i = 1; i <= 14; i++) {
445 		ic->ic_channels[i].ic_freq =
446 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
447 		ic->ic_channels[i].ic_flags =
448 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
449 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
450 	}
451 
452 	sc->sc_sifs = IEEE80211_DUR_SIFS;	/* Default SIFS */
453 
454 	ieee80211_ifattach(ic);
455 /*	ic->ic_wme.wme_update = rt2661_wme_update;*/
456 	ic->ic_updateslot = rt2661_update_slot;
457 	ic->ic_reset = rt2661_reset;
458 	/* enable s/w bmiss handling in sta mode */
459 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
460 
461 	sc->sc_key_alloc = ic->ic_crypto.cs_key_alloc;
462 	sc->sc_key_delete = ic->ic_crypto.cs_key_delete;
463 	sc->sc_key_set = ic->ic_crypto.cs_key_set;
464 
465 	ic->ic_crypto.cs_max_keyix = RT2661_KEY_MAX;
466 	ic->ic_crypto.cs_key_alloc = rt2661_key_alloc;
467 	ic->ic_crypto.cs_key_delete = rt2661_key_delete;
468 	ic->ic_crypto.cs_key_set = rt2661_key_set;
469 
470 	/* override state transition machine */
471 	sc->sc_newstate = ic->ic_newstate;
472 	ic->ic_newstate = rt2661_newstate;
473 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
474 
475 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
476 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
477 
478 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
479 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
480 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
481 
482 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
483 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
484 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
485 
486 	/*
487 	 * Add a few sysctl knobs.
488 	 */
489 	sc->sc_dwelltime = 200;	/* milliseconds */
490 	sc->sc_txpwr_corr = -1;	/* Disable */
491 	sc->sc_calib_txpwr = 0;	/* Disable */
492 	sc->sc_calib_rxsns = 0;	/* Disable */
493 
494 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
495 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
496 	    CTLFLAG_RW, &sc->sc_dwelltime, 0,
497 	    "Channel dwell time (ms) for AP/station scanning");
498 
499 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
500 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "txpwr_corr",
501 	    CTLFLAG_RW, &sc->sc_txpwr_corr, 0,
502 	    "TX power correction value (<0 no correction)");
503 
504 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
505 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "calib_txpwr",
506 	    CTLFLAG_RW, &sc->sc_calib_txpwr, 0,
507 	    "Enable TX power calibration (sta mode)");
508 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
509 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "calib_rxsns",
510 	    CTLFLAG_RW, &sc->sc_calib_rxsns, 0,
511 	    "Enable RX sensibility calibration (sta mode)");
512 
513 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2661_intr,
514 			       sc, &sc->sc_ih, ifp->if_serializer);
515 	if (error != 0) {
516 		device_printf(dev, "could not set up interrupt\n");
517 		bpfdetach(ifp);
518 		ieee80211_ifdetach(ic);
519 		goto fail;
520 	}
521 
522 	if (bootverbose)
523 		ieee80211_announce(ic);
524 	return 0;
525 fail:
526 	rt2661_detach(sc);
527 	return error;
528 }
529 
530 int
531 rt2661_detach(void *xsc)
532 {
533 	struct rt2661_softc *sc = xsc;
534 	struct ieee80211com *ic = &sc->sc_ic;
535 	struct ifnet *ifp = &ic->ic_if;
536 
537 	if (device_is_attached(sc->sc_dev)) {
538 		lwkt_serialize_enter(ifp->if_serializer);
539 
540 		callout_stop(&sc->scan_ch);
541 		rt2661_stop(sc);
542 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
543 
544 		lwkt_serialize_exit(ifp->if_serializer);
545 
546 		bpfdetach(ifp);
547 		ieee80211_ifdetach(ic);
548 	}
549 
550 	rt2661_free_tx_ring(sc, &sc->txq[0]);
551 	rt2661_free_tx_ring(sc, &sc->txq[1]);
552 	rt2661_free_tx_ring(sc, &sc->txq[2]);
553 	rt2661_free_tx_ring(sc, &sc->txq[3]);
554 	rt2661_free_tx_ring(sc, &sc->mgtq);
555 	rt2661_free_rx_ring(sc, &sc->rxq);
556 
557 	if (sc->sc_irq != NULL) {
558 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
559 				     sc->sc_irq);
560 	}
561 
562 	if (sc->sysctl_tree != NULL)
563 		sysctl_ctx_free(&sc->sysctl_ctx);
564 
565 	return 0;
566 }
567 
568 void
569 rt2661_shutdown(void *xsc)
570 {
571 	struct rt2661_softc *sc = xsc;
572 	struct ifnet *ifp = &sc->sc_ic.ic_if;
573 
574 	lwkt_serialize_enter(ifp->if_serializer);
575 	rt2661_stop(sc);
576 	lwkt_serialize_exit(ifp->if_serializer);
577 }
578 
579 void
580 rt2661_suspend(void *xsc)
581 {
582 	struct rt2661_softc *sc = xsc;
583 	struct ifnet *ifp = &sc->sc_ic.ic_if;
584 
585 	lwkt_serialize_enter(ifp->if_serializer);
586 	rt2661_stop(sc);
587 	lwkt_serialize_exit(ifp->if_serializer);
588 }
589 
590 void
591 rt2661_resume(void *xsc)
592 {
593 	struct rt2661_softc *sc = xsc;
594 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
595 
596 	lwkt_serialize_enter(ifp->if_serializer);
597 	if (ifp->if_flags & IFF_UP) {
598 		ifp->if_init(ifp->if_softc);
599 		if (ifp->if_flags & IFF_RUNNING)
600 			ifp->if_start(ifp);
601 	}
602 	lwkt_serialize_exit(ifp->if_serializer);
603 }
604 
605 static void
606 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
607 {
608 	if (error != 0)
609 		return;
610 
611 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
612 
613 	*(bus_addr_t *)arg = segs[0].ds_addr;
614 }
615 
616 static int
617 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
618     int count)
619 {
620 	int i, error;
621 
622 	ring->count = count;
623 	ring->queued = 0;
624 	ring->cur = ring->next = 0;
625 
626 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
627 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
628 	    count * RT2661_TX_DESC_SIZE, 0, &ring->desc_dmat);
629 	if (error != 0) {
630 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
631 		goto fail;
632 	}
633 
634 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
635 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
636 	if (error != 0) {
637 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
638 		goto fail;
639 	}
640 
641 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
642 	    count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
643 	    0);
644 	if (error != 0) {
645 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
646 
647 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
648 		ring->desc = NULL;
649 		goto fail;
650 	}
651 
652 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
653 	    M_WAITOK | M_ZERO);
654 
655 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
656 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * RT2661_MAX_SCATTER,
657 	    RT2661_MAX_SCATTER, MCLBYTES, 0, &ring->data_dmat);
658 	if (error != 0) {
659 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
660 		goto fail;
661 	}
662 
663 	for (i = 0; i < count; i++) {
664 		error = bus_dmamap_create(ring->data_dmat, 0,
665 		    &ring->data[i].map);
666 		if (error != 0) {
667 			device_printf(sc->sc_dev, "could not create DMA map\n");
668 			goto fail;
669 		}
670 	}
671 	return 0;
672 
673 fail:	rt2661_free_tx_ring(sc, ring);
674 	return error;
675 }
676 
677 static void
678 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
679 {
680 	struct rt2661_tx_desc *desc;
681 	struct rt2661_data *data;
682 	int i;
683 
684 	for (i = 0; i < ring->count; i++) {
685 		desc = &ring->desc[i];
686 		data = &ring->data[i];
687 
688 		if (data->m != NULL) {
689 			bus_dmamap_sync(ring->data_dmat, data->map,
690 			    BUS_DMASYNC_POSTWRITE);
691 			bus_dmamap_unload(ring->data_dmat, data->map);
692 			m_freem(data->m);
693 			data->m = NULL;
694 		}
695 
696 		desc->flags = 0;
697 	}
698 
699 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
700 
701 	ring->queued = 0;
702 	ring->cur = ring->next = 0;
703 }
704 
705 static void
706 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
707 {
708 	struct rt2661_data *data;
709 	int i;
710 
711 	if (ring->desc != NULL) {
712 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
713 		    BUS_DMASYNC_POSTWRITE);
714 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
715 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
716 		ring->desc = NULL;
717 	}
718 
719 	if (ring->desc_dmat != NULL) {
720 		bus_dma_tag_destroy(ring->desc_dmat);
721 		ring->desc_dmat = NULL;
722 	}
723 
724 	if (ring->data != NULL) {
725 		for (i = 0; i < ring->count; i++) {
726 			data = &ring->data[i];
727 
728 			if (data->m != NULL) {
729 				bus_dmamap_sync(ring->data_dmat, data->map,
730 				    BUS_DMASYNC_POSTWRITE);
731 				bus_dmamap_unload(ring->data_dmat, data->map);
732 				m_freem(data->m);
733 				data->m = NULL;
734 			}
735 
736 			if (data->map != NULL) {
737 				bus_dmamap_destroy(ring->data_dmat, data->map);
738 				data->map = NULL;
739 			}
740 		}
741 
742 		kfree(ring->data, M_DEVBUF);
743 		ring->data = NULL;
744 	}
745 
746 	if (ring->data_dmat != NULL) {
747 		bus_dma_tag_destroy(ring->data_dmat);
748 		ring->data_dmat = NULL;
749 	}
750 }
751 
752 static int
753 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
754     int count)
755 {
756 	struct rt2661_rx_desc *desc;
757 	struct rt2661_data *data;
758 	bus_addr_t physaddr;
759 	int i, error;
760 
761 	ring->count = count;
762 	ring->cur = ring->next = 0;
763 
764 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
765 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
766 	    count * RT2661_RX_DESC_SIZE, 0, &ring->desc_dmat);
767 	if (error != 0) {
768 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
769 		goto fail;
770 	}
771 
772 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
773 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
774 	if (error != 0) {
775 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
776 		goto fail;
777 	}
778 
779 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
780 	    count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
781 	    0);
782 	if (error != 0) {
783 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
784 
785 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
786 		ring->desc = NULL;
787 		goto fail;
788 	}
789 
790 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
791 	    M_WAITOK | M_ZERO);
792 
793 	/*
794 	 * Pre-allocate Rx buffers and populate Rx ring.
795 	 */
796 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
797 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
798 	    &ring->data_dmat);
799 	if (error != 0) {
800 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
801 		goto fail;
802 	}
803 
804 	for (i = 0; i < count; i++) {
805 		desc = &sc->rxq.desc[i];
806 		data = &sc->rxq.data[i];
807 
808 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
809 		if (error != 0) {
810 			device_printf(sc->sc_dev, "could not create DMA map\n");
811 			goto fail;
812 		}
813 
814 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
815 		if (data->m == NULL) {
816 			device_printf(sc->sc_dev,
817 			    "could not allocate rx mbuf\n");
818 			error = ENOMEM;
819 			goto fail;
820 		}
821 
822 		error = bus_dmamap_load(ring->data_dmat, data->map,
823 		    mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
824 		    &physaddr, 0);
825 		if (error != 0) {
826 			device_printf(sc->sc_dev,
827 			    "could not load rx buf DMA map");
828 
829 			m_freem(data->m);
830 			data->m = NULL;
831 			goto fail;
832 		}
833 
834 		desc->flags = htole32(RT2661_RX_BUSY);
835 		desc->physaddr = htole32(physaddr);
836 	}
837 
838 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
839 
840 	return 0;
841 
842 fail:	rt2661_free_rx_ring(sc, ring);
843 	return error;
844 }
845 
846 static void
847 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
848 {
849 	int i;
850 
851 	for (i = 0; i < ring->count; i++)
852 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
853 
854 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
855 
856 	ring->cur = ring->next = 0;
857 }
858 
859 static void
860 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
861 {
862 	struct rt2661_data *data;
863 	int i;
864 
865 	if (ring->desc != NULL) {
866 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
867 		    BUS_DMASYNC_POSTWRITE);
868 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
869 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
870 		ring->desc = NULL;
871 	}
872 
873 	if (ring->desc_dmat != NULL) {
874 		bus_dma_tag_destroy(ring->desc_dmat);
875 		ring->desc_dmat = NULL;
876 	}
877 
878 	if (ring->data != NULL) {
879 		for (i = 0; i < ring->count; i++) {
880 			data = &ring->data[i];
881 
882 			if (data->m != NULL) {
883 				bus_dmamap_sync(ring->data_dmat, data->map,
884 				    BUS_DMASYNC_POSTREAD);
885 				bus_dmamap_unload(ring->data_dmat, data->map);
886 				m_freem(data->m);
887 				data->m = NULL;
888 			}
889 
890 			if (data->map != NULL) {
891 				bus_dmamap_destroy(ring->data_dmat, data->map);
892 				data->map = NULL;
893 			}
894 		}
895 
896 		kfree(ring->data, M_DEVBUF);
897 		ring->data = NULL;
898 	}
899 
900 	if (ring->data_dmat != NULL) {
901 		bus_dma_tag_destroy(ring->data_dmat);
902 		ring->data_dmat = NULL;
903 	}
904 }
905 
906 static int
907 rt2661_media_change(struct ifnet *ifp)
908 {
909 	struct rt2661_softc *sc = ifp->if_softc;
910 	int error;
911 
912 	error = ieee80211_media_change(ifp);
913 	if (error != ENETRESET)
914 		return error;
915 
916 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
917 		rt2661_init(sc);
918 	return 0;
919 }
920 
921 /*
922  * This function is called periodically (every 200ms) during scanning to
923  * switch from one channel to another.
924  */
925 static void
926 rt2661_next_scan(void *arg)
927 {
928 	struct rt2661_softc *sc = arg;
929 	struct ieee80211com *ic = &sc->sc_ic;
930 	struct ifnet *ifp = &ic->ic_if;
931 
932 	lwkt_serialize_enter(ifp->if_serializer);
933 	if (ic->ic_state == IEEE80211_S_SCAN)
934 		ieee80211_next_scan(ic);
935 	lwkt_serialize_exit(ifp->if_serializer);
936 }
937 
938 static int
939 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
940 {
941 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
942 	enum ieee80211_state ostate;
943 	struct ieee80211_node *ni;
944 	uint32_t tmp;
945 	int error = 0;
946 
947 	ostate = ic->ic_state;
948 	callout_stop(&sc->scan_ch);
949 	callout_stop(&sc->calib_ch);
950 
951 	if (ostate != nstate)
952 		rt2661_led_newstate(sc, nstate);
953 
954 	ieee80211_ratectl_newstate(ic, nstate);
955 
956 	switch (nstate) {
957 	case IEEE80211_S_INIT:
958 		if (ostate == IEEE80211_S_RUN) {
959 			/* abort TSF synchronization */
960 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
961 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
962 		}
963 		break;
964 
965 	case IEEE80211_S_SCAN:
966 		rt2661_set_chan(sc, ic->ic_curchan);
967 		callout_reset(&sc->scan_ch, (sc->sc_dwelltime * hz) / 1000,
968 		    rt2661_next_scan, sc);
969 		break;
970 
971 	case IEEE80211_S_AUTH:
972 	case IEEE80211_S_ASSOC:
973 		rt2661_set_chan(sc, ic->ic_curchan);
974 		break;
975 
976 	case IEEE80211_S_RUN:
977 		RT2661_RESET_AVG_RSSI(sc);
978 
979 		rt2661_set_chan(sc, ic->ic_curchan);
980 
981 		ni = ic->ic_bss;
982 
983 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
984 			rt2661_enable_mrr(sc);
985 			rt2661_set_txpreamble(sc);
986 			rt2661_set_ackrates(sc, &ni->ni_rates);
987 			rt2661_set_bssid(sc, ni->ni_bssid);
988 		}
989 
990 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
991 		    ic->ic_opmode == IEEE80211_M_IBSS) {
992 			if ((error = rt2661_prepare_beacon(sc)) != 0)
993 				break;
994 		}
995 
996 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
997 			rt2661_enable_tsf_sync(sc);
998 
999 		if (ic->ic_opmode == IEEE80211_M_STA) {
1000 			uint32_t sta[4];
1001 
1002 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
1003 			/* clear STA registers */
1004 			RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
1005 #undef N
1006 			sc->sc_txpwr_cnt = 0;
1007 			callout_reset(&sc->calib_ch, hz, rt2661_calibrate, sc);
1008 		}
1009 		break;
1010 	}
1011 
1012 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
1013 }
1014 
1015 /*
1016  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
1017  * 93C66).
1018  */
1019 static uint16_t
1020 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
1021 {
1022 	uint32_t tmp;
1023 	uint16_t val;
1024 	int n;
1025 
1026 	/* clock C once before the first command */
1027 	RT2661_EEPROM_CTL(sc, 0);
1028 
1029 	RT2661_EEPROM_CTL(sc, RT2661_S);
1030 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1031 	RT2661_EEPROM_CTL(sc, RT2661_S);
1032 
1033 	/* write start bit (1) */
1034 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1035 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1036 
1037 	/* write READ opcode (10) */
1038 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1039 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1040 	RT2661_EEPROM_CTL(sc, RT2661_S);
1041 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1042 
1043 	/* write address (A5-A0 or A7-A0) */
1044 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1045 	for (; n >= 0; n--) {
1046 		RT2661_EEPROM_CTL(sc, RT2661_S |
1047 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
1048 		RT2661_EEPROM_CTL(sc, RT2661_S |
1049 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1050 	}
1051 
1052 	RT2661_EEPROM_CTL(sc, RT2661_S);
1053 
1054 	/* read data Q15-Q0 */
1055 	val = 0;
1056 	for (n = 15; n >= 0; n--) {
1057 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1058 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1059 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1060 		RT2661_EEPROM_CTL(sc, RT2661_S);
1061 	}
1062 
1063 	RT2661_EEPROM_CTL(sc, 0);
1064 
1065 	/* clear Chip Select and clock C */
1066 	RT2661_EEPROM_CTL(sc, RT2661_S);
1067 	RT2661_EEPROM_CTL(sc, 0);
1068 	RT2661_EEPROM_CTL(sc, RT2661_C);
1069 
1070 	return val;
1071 }
1072 
1073 static void
1074 rt2661_tx_intr(struct rt2661_softc *sc)
1075 {
1076 	struct ieee80211com *ic = &sc->sc_ic;
1077 	struct ifnet *ifp = ic->ic_ifp;
1078 	struct rt2661_tx_ratectl *rctl;
1079 	uint32_t val, result;
1080 	int retrycnt;
1081 
1082 	for (;;) {
1083 		struct ieee80211_ratectl_res res;
1084 
1085 		val = RAL_READ(sc, RT2661_STA_CSR4);
1086 		if (!(val & RT2661_TX_STAT_VALID))
1087 			break;
1088 
1089 		/* Gather statistics */
1090 		result = RT2661_TX_RESULT(val);
1091 		if (result == RT2661_TX_SUCCESS)
1092 			ifp->if_opackets++;
1093 		else
1094 			ifp->if_oerrors++;
1095 
1096 		/* No rate control */
1097 		if (RT2661_TX_QID(val) == 0)
1098 			continue;
1099 
1100 		/* retrieve rate control algorithm context */
1101 		rctl = STAILQ_FIRST(&sc->tx_ratectl);
1102 		if (rctl == NULL) {
1103 			/*
1104 			 * XXX
1105 			 * This really should not happen.  Maybe we should
1106 			 * use assertion here?  But why should we rely on
1107 			 * hardware to do the correct things?  Even the
1108 			 * reference driver (RT61?) provided by Ralink does
1109 			 * not provide enough clue that this kind of interrupt
1110 			 * is promised to be generated for each packet.  So
1111 			 * just print a message and keep going ...
1112 			 */
1113 			if_printf(ifp, "WARNING: no rate control information\n");
1114 			continue;
1115 		}
1116 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
1117 
1118 		retrycnt = 7;
1119 		switch (result) {
1120 		case RT2661_TX_SUCCESS:
1121 			retrycnt = RT2661_TX_RETRYCNT(val);
1122 			DPRINTFN(10, ("data frame sent successfully after "
1123 			    "%d retries\n", retrycnt));
1124 			break;
1125 
1126 		case RT2661_TX_RETRY_FAIL:
1127 			DPRINTFN(9, ("sending data frame failed (too much "
1128 			    "retries)\n"));
1129 			break;
1130 
1131 		default:
1132 			/* other failure */
1133 			device_printf(sc->sc_dev,
1134 			    "sending data frame failed 0x%08x\n", val);
1135 			break;
1136 		}
1137 
1138 		res.rc_res_rateidx = rctl->rateidx;
1139 		res.rc_res_tries = retrycnt + 1;
1140 		ieee80211_ratectl_tx_complete(rctl->ni, rctl->len, &res, 1,
1141 			retrycnt, 0, result != RT2661_TX_SUCCESS);
1142 
1143 		ieee80211_free_node(rctl->ni);
1144 		rctl->ni = NULL;
1145 		kfree(rctl, M_RT2661);
1146 	}
1147 }
1148 
1149 static void
1150 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1151 {
1152 	struct rt2661_tx_desc *desc;
1153 	struct rt2661_data *data;
1154 
1155 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
1156 
1157 	for (;;) {
1158 		desc = &txq->desc[txq->next];
1159 		data = &txq->data[txq->next];
1160 
1161 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1162 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1163 			break;
1164 
1165 		bus_dmamap_sync(txq->data_dmat, data->map,
1166 		    BUS_DMASYNC_POSTWRITE);
1167 		bus_dmamap_unload(txq->data_dmat, data->map);
1168 		m_freem(data->m);
1169 		data->m = NULL;
1170 
1171 		/* descriptor is no longer valid */
1172 		desc->flags &= ~htole32(RT2661_TX_VALID);
1173 
1174 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1175 
1176 		txq->queued--;
1177 		if (++txq->next >= txq->count)	/* faster than % count */
1178 			txq->next = 0;
1179 	}
1180 
1181 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1182 
1183 	if (txq->queued < txq->count) {
1184 		struct ifnet *ifp = &sc->sc_ic.ic_if;
1185 
1186 		sc->sc_tx_timer = 0;
1187 		ifp->if_flags &= ~IFF_OACTIVE;
1188 		rt2661_start(ifp);
1189 	}
1190 }
1191 
1192 static void
1193 rt2661_rx_intr(struct rt2661_softc *sc)
1194 {
1195 	struct ieee80211com *ic = &sc->sc_ic;
1196 	struct ifnet *ifp = ic->ic_ifp;
1197 	struct rt2661_rx_desc *desc;
1198 	struct rt2661_data *data;
1199 	bus_addr_t physaddr;
1200 	struct ieee80211_frame_min *wh;
1201 	struct ieee80211_node *ni;
1202 	struct mbuf *mnew, *m;
1203 	int error;
1204 
1205 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1206 	    BUS_DMASYNC_POSTREAD);
1207 
1208 	for (;;) {
1209 		uint32_t flags;
1210 		int rssi;
1211 
1212 		desc = &sc->rxq.desc[sc->rxq.cur];
1213 		data = &sc->rxq.data[sc->rxq.cur];
1214 		flags = le32toh(desc->flags);
1215 
1216 		if (flags & RT2661_RX_BUSY)
1217 			break;
1218 
1219 		if (flags & RT2661_RX_CRC_ERROR) {
1220 			/*
1221 			 * This should not happen since we did not request
1222 			 * to receive those frames when we filled TXRX_CSR0.
1223 			 */
1224 			DPRINTFN(5, ("CRC error flags 0x%08x\n", flags));
1225 			ifp->if_ierrors++;
1226 			goto skip;
1227 		}
1228 
1229 		if (flags & RT2661_RX_CIPHER_MASK) {
1230 			DPRINTFN(5, ("cipher error 0x%08x\n", flags));
1231 			ifp->if_ierrors++;
1232 			goto skip;
1233 		}
1234 
1235 		/*
1236 		 * Try to allocate a new mbuf for this ring element and load it
1237 		 * before processing the current mbuf. If the ring element
1238 		 * cannot be loaded, drop the received packet and reuse the old
1239 		 * mbuf. In the unlikely case that the old mbuf can't be
1240 		 * reloaded either, explicitly panic.
1241 		 */
1242 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1243 		if (mnew == NULL) {
1244 			ifp->if_ierrors++;
1245 			goto skip;
1246 		}
1247 
1248 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1249 		    BUS_DMASYNC_POSTREAD);
1250 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1251 
1252 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1253 		    mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
1254 		    &physaddr, 0);
1255 		if (error != 0) {
1256 			m_freem(mnew);
1257 
1258 			/* try to reload the old mbuf */
1259 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1260 			    mtod(data->m, void *), MCLBYTES,
1261 			    rt2661_dma_map_addr, &physaddr, 0);
1262 			if (error != 0) {
1263 				/* very unlikely that it will fail... */
1264 				panic("%s: could not load old rx mbuf",
1265 				    device_get_name(sc->sc_dev));
1266 			}
1267 			ifp->if_ierrors++;
1268 			goto skip;
1269 		}
1270 
1271 		/*
1272 	 	 * New mbuf successfully loaded, update Rx ring and continue
1273 		 * processing.
1274 		 */
1275 		m = data->m;
1276 		data->m = mnew;
1277 		desc->physaddr = htole32(physaddr);
1278 
1279 		/* finalize mbuf */
1280 		m->m_pkthdr.rcvif = ifp;
1281 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1282 
1283 		rssi = rt2661_get_rssi(sc, desc->rssi, 0);
1284 		if (sc->rf_rev == RT2661_RF_2529)
1285 			rt2661_get_rssi(sc, desc->rssi, 1);
1286 
1287 		wh = mtod(m, struct ieee80211_frame_min *);
1288 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1289 			DPRINTFN(5, ("keyix %d\n", RT2661_RX_KEYIX(flags)));
1290 
1291 		ni = ieee80211_find_rxnode(ic, wh);
1292 
1293 		/* Error happened during RSSI conversion. */
1294 		if (rssi < 0)
1295 			rssi = ni->ni_rssi;
1296 
1297 		if (sc->sc_drvbpf != NULL) {
1298 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1299 			uint32_t tsf_lo, tsf_hi;
1300 
1301 			/* get timestamp (low and high 32 bits) */
1302 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1303 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1304 
1305 			tap->wr_tsf =
1306 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1307 			tap->wr_flags = 0;
1308 			tap->wr_rate = rt2661_rxrate(desc);
1309 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1310 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1311 			tap->wr_antsignal = rssi;
1312 
1313 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1314 		}
1315 
1316 		/* send the frame to the 802.11 layer */
1317 		if (RT2661_RX_CIPHER(flags) != RT2661_CIPHER_NONE) {
1318 			struct ieee80211_crypto_iv iv;
1319 
1320 			memcpy(iv.ic_iv, desc->iv, sizeof(iv.ic_iv));
1321 			memcpy(iv.ic_eiv, desc->eiv, sizeof(iv.ic_eiv));
1322 			ieee80211_input_withiv(ic, m, ni, rssi, 0, &iv);
1323 		} else {
1324 			ieee80211_input(ic, m, ni, rssi, 0);
1325 		}
1326 
1327 		/* node is no longer needed */
1328 		ieee80211_free_node(ni);
1329 
1330 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1331 
1332 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1333 
1334 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1335 	}
1336 
1337 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1338 	    BUS_DMASYNC_PREWRITE);
1339 }
1340 
1341 /* ARGSUSED */
1342 static void
1343 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1344 {
1345 	/* do nothing */
1346 }
1347 
1348 static void
1349 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1350 {
1351 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1352 
1353 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1354 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1355 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1356 
1357 	/* send wakeup command to MCU */
1358 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1359 }
1360 
1361 static void
1362 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1363 {
1364 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1365 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1366 }
1367 
1368 static void
1369 rt2661_intr(void *arg)
1370 {
1371 	struct rt2661_softc *sc = arg;
1372 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1373 	uint32_t r1, r2;
1374 
1375 	/* disable MAC and MCU interrupts */
1376 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1377 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1378 
1379 	/* don't re-enable interrupts if we're shutting down */
1380 	if (!(ifp->if_flags & IFF_RUNNING))
1381 		return;
1382 
1383 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1384 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1385 
1386 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1387 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1388 
1389 	if (r1 & RT2661_MGT_DONE)
1390 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1391 
1392 	if (r1 & RT2661_RX_DONE)
1393 		rt2661_rx_intr(sc);
1394 
1395 	if (r1 & RT2661_TX0_DMA_DONE)
1396 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1397 
1398 	if (r1 & RT2661_TX1_DMA_DONE)
1399 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1400 
1401 	if (r1 & RT2661_TX2_DMA_DONE)
1402 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1403 
1404 	if (r1 & RT2661_TX3_DMA_DONE)
1405 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1406 
1407 	if (r1 & RT2661_TX_DONE)
1408 		rt2661_tx_intr(sc);
1409 
1410 	if (r2 & RT2661_MCU_CMD_DONE)
1411 		rt2661_mcu_cmd_intr(sc);
1412 
1413 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1414 		rt2661_mcu_beacon_expire(sc);
1415 
1416 	if (r2 & RT2661_MCU_WAKEUP)
1417 		rt2661_mcu_wakeup(sc);
1418 
1419 	/* re-enable MAC and MCU interrupts */
1420 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1421 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1422 }
1423 
1424 /* quickly determine if a given rate is CCK or OFDM */
1425 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1426 
1427 #define RAL_ACK_SIZE	(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
1428 #define RAL_CTS_SIZE	(sizeof(struct ieee80211_frame_cts) + IEEE80211_CRC_LEN)
1429 
1430 /*
1431  * This function is only used by the Rx radiotap code. It returns the rate at
1432  * which a given frame was received.
1433  */
1434 static uint8_t
1435 rt2661_rxrate(struct rt2661_rx_desc *desc)
1436 {
1437 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1438 		/* reverse function of rt2661_plcp_signal */
1439 		switch (desc->rate & 0xf) {
1440 		case 0xb:	return 12;
1441 		case 0xf:	return 18;
1442 		case 0xa:	return 24;
1443 		case 0xe:	return 36;
1444 		case 0x9:	return 48;
1445 		case 0xd:	return 72;
1446 		case 0x8:	return 96;
1447 		case 0xc:	return 108;
1448 		}
1449 	} else {
1450 		if (desc->rate == 10)
1451 			return 2;
1452 		if (desc->rate == 20)
1453 			return 4;
1454 		if (desc->rate == 55)
1455 			return 11;
1456 		if (desc->rate == 110)
1457 			return 22;
1458 	}
1459 	return 2;	/* should not get there */
1460 }
1461 
1462 static uint8_t
1463 rt2661_plcp_signal(int rate)
1464 {
1465 	switch (rate) {
1466 	/* CCK rates (returned values are device-dependent) */
1467 	case 2:		return 0x0;
1468 	case 4:		return 0x1;
1469 	case 11:	return 0x2;
1470 	case 22:	return 0x3;
1471 
1472 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1473 	case 12:	return 0xb;
1474 	case 18:	return 0xf;
1475 	case 24:	return 0xa;
1476 	case 36:	return 0xe;
1477 	case 48:	return 0x9;
1478 	case 72:	return 0xd;
1479 	case 96:	return 0x8;
1480 	case 108:	return 0xc;
1481 
1482 	/* unsupported rates (should not get there) */
1483 	default:	return 0xff;
1484 	}
1485 }
1486 
1487 static void
1488 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1489     uint32_t flags, uint16_t xflags, int len, int rate,
1490     const bus_dma_segment_t *segs, int nsegs, int ac, int ratectl,
1491     const struct ieee80211_key *key, void *buf,
1492     const struct ieee80211_crypto_iv *iv)
1493 {
1494 	const struct ieee80211_cipher *cip = NULL;
1495 	struct ieee80211com *ic = &sc->sc_ic;
1496 	uint16_t plcp_length;
1497 	int i, remainder;
1498 
1499 	if (key != NULL)
1500 		cip = key->wk_cipher;
1501 
1502 	desc->flags = htole32(flags);
1503 	desc->flags |= htole32(len << 16);
1504 	desc->flags |= htole32(RT2661_TX_VALID);
1505 	if (key != NULL) {
1506 		int cipher = rt2661_cipher(key);
1507 
1508 		desc->flags |= htole32(cipher << 29);
1509 		desc->flags |= htole32(key->wk_keyix << 10);
1510 		if (key->wk_keyix >= IEEE80211_WEP_NKID)
1511 			desc->flags |= htole32(RT2661_TX_PAIRWISE_KEY);
1512 
1513 		/* XXX fragmentation */
1514 		desc->flags |= htole32(RT2661_TX_HWMIC);
1515 	}
1516 
1517 	desc->xflags = htole16(xflags);
1518 	desc->xflags |= htole16(nsegs << 13);
1519 	if (key != NULL) {
1520 		int hdrsize;
1521 
1522 		hdrsize = ieee80211_hdrspace(ic, buf);
1523 		desc->xflags |= htole16(hdrsize);
1524 	}
1525 
1526 	desc->wme = htole16(
1527 	    RT2661_QID(ac) |
1528 	    RT2661_AIFSN(2) |
1529 	    RT2661_LOGCWMIN(4) |
1530 	    RT2661_LOGCWMAX(10));
1531 
1532 	if (key != NULL && iv != NULL) {
1533 		memcpy(desc->iv, iv->ic_iv, sizeof(desc->iv));
1534 		memcpy(desc->eiv, iv->ic_eiv, sizeof(desc->eiv));
1535 	}
1536 
1537 	/*
1538 	 * Remember whether TX rate control information should be gathered.
1539 	 * This field is driver private data only.  It will be made available
1540 	 * by the NIC in STA_CSR4 on Tx done interrupts.
1541 	 */
1542 	desc->qid = ratectl;
1543 
1544 	/* setup PLCP fields */
1545 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1546 	desc->plcp_service = 4;
1547 
1548 	len += IEEE80211_CRC_LEN;
1549 	if (cip != NULL) {
1550 		len += cip->ic_header + cip->ic_trailer;
1551 
1552 		/* XXX fragmentation */
1553 		len += cip->ic_miclen;
1554 	}
1555 
1556 	if (RAL_RATE_IS_OFDM(rate)) {
1557 		desc->flags |= htole32(RT2661_TX_OFDM);
1558 
1559 		plcp_length = len & 0xfff;
1560 		desc->plcp_length_hi = plcp_length >> 6;
1561 		desc->plcp_length_lo = plcp_length & 0x3f;
1562 	} else {
1563 		plcp_length = (16 * len + rate - 1) / rate;
1564 		if (rate == 22) {
1565 			remainder = (16 * len) % 22;
1566 			if (remainder != 0 && remainder < 7)
1567 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1568 		}
1569 		desc->plcp_length_hi = plcp_length >> 8;
1570 		desc->plcp_length_lo = plcp_length & 0xff;
1571 
1572 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1573 			desc->plcp_signal |= 0x08;
1574 	}
1575 
1576 	/* RT2x61 supports scatter with up to 5 segments */
1577 	for (i = 0; i < nsegs; i++) {
1578 		desc->addr[i] = htole32(segs[i].ds_addr);
1579 		desc->len [i] = htole16(segs[i].ds_len);
1580 	}
1581 
1582 	desc->flags |= htole32(RT2661_TX_BUSY);
1583 }
1584 
1585 static int
1586 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1587     struct ieee80211_node *ni)
1588 {
1589 	struct ieee80211com *ic = &sc->sc_ic;
1590 	struct rt2661_tx_desc *desc;
1591 	struct rt2661_data *data;
1592 	struct ieee80211_frame *wh;
1593 	struct rt2661_dmamap map;
1594 	uint16_t dur;
1595 	uint32_t flags = 0;	/* XXX HWSEQ */
1596 	int rate, error;
1597 
1598 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1599 	data = &sc->mgtq.data[sc->mgtq.cur];
1600 
1601 	/* send mgt frames at the lowest available rate */
1602 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1603 
1604 	error = bus_dmamap_load_mbuf(sc->mgtq.data_dmat, data->map, m0,
1605 				     rt2661_dma_map_mbuf, &map, 0);
1606 	if (error != 0) {
1607 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1608 		    error);
1609 		ieee80211_free_node(ni);
1610 		m_freem(m0);
1611 		return error;
1612 	}
1613 
1614 	if (sc->sc_drvbpf != NULL) {
1615 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1616 
1617 		tap->wt_flags = 0;
1618 		tap->wt_rate = rate;
1619 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1620 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1621 
1622 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1623 	}
1624 
1625 	data->m = m0;
1626 
1627 	wh = mtod(m0, struct ieee80211_frame *);
1628 
1629 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1630 		flags |= RT2661_TX_NEED_ACK;
1631 
1632 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, rate, ic->ic_flags) +
1633 		      sc->sc_sifs;
1634 		*(uint16_t *)wh->i_dur = htole16(dur);
1635 
1636 		/* tell hardware to add timestamp in probe responses */
1637 		if ((wh->i_fc[0] &
1638 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1639 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1640 			flags |= RT2661_TX_TIMESTAMP;
1641 	}
1642 
1643 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1644 	    m0->m_pkthdr.len, rate, map.segs, map.nseg, RT2661_QID_MGT, 0, NULL, NULL, NULL);
1645 
1646 	bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1647 	bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
1648 	    BUS_DMASYNC_PREWRITE);
1649 
1650 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1651 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1652 
1653 	/* kick mgt */
1654 	sc->mgtq.queued++;
1655 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1656 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1657 
1658 	ieee80211_free_node(ni);
1659 
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Build a RTS control frame.
1665  */
1666 static struct mbuf *
1667 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1668     uint16_t dur)
1669 {
1670 	struct ieee80211_frame_rts *rts;
1671 	struct mbuf *m;
1672 
1673 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1674 	if (m == NULL) {
1675 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1676 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1677 		return NULL;
1678 	}
1679 
1680 	rts = mtod(m, struct ieee80211_frame_rts *);
1681 
1682 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1683 	    IEEE80211_FC0_SUBTYPE_RTS;
1684 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1685 	*(uint16_t *)rts->i_dur = htole16(dur);
1686 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1687 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1688 
1689 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1690 
1691 	return m;
1692 }
1693 
1694 static int
1695 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1696     struct ieee80211_node *ni, int ac)
1697 {
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1700 	struct rt2661_tx_desc *desc;
1701 	struct rt2661_data *data;
1702 	struct rt2661_tx_ratectl *rctl;
1703 	struct ieee80211_frame *wh;
1704 	struct ieee80211_key *k = NULL;
1705 	const struct chanAccParams *cap;
1706 	struct mbuf *mnew;
1707 	struct rt2661_dmamap map;
1708 	uint16_t dur;
1709 	uint32_t flags = 0;
1710 	int error, rate, ackrate, noack = 0, rateidx;
1711 	struct ieee80211_crypto_iv iv, *ivp = NULL;
1712 
1713 	wh = mtod(m0, struct ieee80211_frame *);
1714 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1715 		cap = &ic->ic_wme.wme_chanParams;
1716 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1717 	}
1718 
1719 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1720 		k = ieee80211_crypto_findkey(ic, ni, m0);
1721 		if (k == NULL) {
1722 			m_freem(m0);
1723 			return ENOBUFS;
1724 		}
1725 
1726 		if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1727 			k = ieee80211_crypto_encap_withkey(ic, m0, k);
1728 		} else {
1729 			k = ieee80211_crypto_getiv(ic, &iv, k);
1730 			ivp = &iv;
1731 		}
1732 		if (k == NULL) {
1733 			m_freem(m0);
1734 			return ENOBUFS;
1735 		}
1736 
1737 		if (ivp == NULL)
1738 			k = NULL;
1739 
1740 		/* packet header may have moved, reset our local pointer */
1741 		wh = mtod(m0, struct ieee80211_frame *);
1742 	}
1743 
1744 	ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1745 	rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1746 
1747 	ackrate = ieee80211_ack_rate(ni, rate);
1748 
1749 	/*
1750 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1751 	 * for directed frames only when the length of the MPDU is greater
1752 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1753 	 */
1754 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1755 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1756 		struct mbuf *m;
1757 		uint16_t dur;
1758 		int rtsrate;
1759 
1760 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1761 
1762 		/* XXX: noack (QoS)? */
1763 		dur = ieee80211_txtime(ni, m0->m_pkthdr.len + IEEE80211_CRC_LEN,
1764 				       rate, ic->ic_flags) +
1765 		      ieee80211_txtime(ni, RAL_CTS_SIZE, rtsrate, ic->ic_flags)+
1766 		      ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1767 		      3 * sc->sc_sifs;
1768 
1769 		m = rt2661_get_rts(sc, wh, dur);
1770 
1771 		desc = &txq->desc[txq->cur];
1772 		data = &txq->data[txq->cur];
1773 
1774 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m,
1775 					     rt2661_dma_map_mbuf, &map, 0);
1776 		if (error != 0) {
1777 			device_printf(sc->sc_dev,
1778 			    "could not map mbuf (error %d)\n", error);
1779 			m_freem(m);
1780 			m_freem(m0);
1781 			return error;
1782 		}
1783 
1784 		data->m = m;
1785 
1786 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1787 				     RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len,
1788 				     rtsrate, map.segs, map.nseg, ac, 0, NULL, NULL, NULL);
1789 
1790 		bus_dmamap_sync(txq->data_dmat, data->map,
1791 		    BUS_DMASYNC_PREWRITE);
1792 
1793 		txq->queued++;
1794 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1795 
1796 		/*
1797 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1798 		 * asynchronous data frame shall be transmitted after the CTS
1799 		 * frame and a SIFS period.
1800 		 */
1801 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1802 	}
1803 
1804 	data = &txq->data[txq->cur];
1805 	desc = &txq->desc[txq->cur];
1806 
1807 	error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1808 				     rt2661_dma_map_mbuf, &map, 0);
1809 	if (error != 0 && error != EFBIG) {
1810 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1811 		    error);
1812 		m_freem(m0);
1813 		return error;
1814 	}
1815 	if (error != 0) {
1816 		mnew = m_defrag(m0, MB_DONTWAIT);
1817 		if (mnew == NULL) {
1818 			device_printf(sc->sc_dev,
1819 			    "could not defragment mbuf\n");
1820 			m_freem(m0);
1821 			return ENOBUFS;
1822 		}
1823 		m0 = mnew;
1824 
1825 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1826 					     rt2661_dma_map_mbuf, &map, 0);
1827 		if (error != 0) {
1828 			device_printf(sc->sc_dev,
1829 			    "could not map mbuf (error %d)\n", error);
1830 			m_freem(m0);
1831 			return error;
1832 		}
1833 
1834 		/* packet header have moved, reset our local pointer */
1835 		wh = mtod(m0, struct ieee80211_frame *);
1836 	}
1837 
1838 	if (sc->sc_drvbpf != NULL) {
1839 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1840 
1841 		tap->wt_flags = 0;
1842 		tap->wt_rate = rate;
1843 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1844 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1845 
1846 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1847 	}
1848 
1849 	data->m = m0;
1850 
1851 	rctl = kmalloc(sizeof(*rctl), M_RT2661, M_NOWAIT);
1852 	if (rctl != NULL) {
1853 		rctl->ni = ni;
1854 		rctl->len = m0->m_pkthdr.len;
1855 		rctl->rateidx = rateidx;
1856 		STAILQ_INSERT_TAIL(&sc->tx_ratectl, rctl, link);
1857 	}
1858 
1859 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1860 		flags |= RT2661_TX_NEED_ACK;
1861 
1862 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1863 		      sc->sc_sifs;
1864 		*(uint16_t *)wh->i_dur = htole16(dur);
1865 	}
1866 
1867 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1868 			     map.segs, map.nseg, ac, rctl != NULL, k, wh, ivp);
1869 
1870 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1871 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1872 
1873 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1874 	    m0->m_pkthdr.len, txq->cur, rate));
1875 
1876 	/* kick Tx */
1877 	txq->queued++;
1878 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1879 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
1880 
1881 	if (rctl == NULL)
1882 		ieee80211_free_node(ni);
1883 
1884 	return 0;
1885 }
1886 
1887 static void
1888 rt2661_start(struct ifnet *ifp)
1889 {
1890 	struct rt2661_softc *sc = ifp->if_softc;
1891 	struct ieee80211com *ic = &sc->sc_ic;
1892 	struct mbuf *m0;
1893 	struct ether_header *eh;
1894 	struct ieee80211_node *ni;
1895 	int ac;
1896 
1897 	/* prevent management frames from being sent if we're not ready */
1898 	if (!(ifp->if_flags & IFF_RUNNING))
1899 		return;
1900 
1901 	for (;;) {
1902 		IF_POLL(&ic->ic_mgtq, m0);
1903 		if (m0 != NULL) {
1904 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1905 				ifp->if_flags |= IFF_OACTIVE;
1906 				break;
1907 			}
1908 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1909 
1910 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1911 			m0->m_pkthdr.rcvif = NULL;
1912 
1913 			if (ic->ic_rawbpf != NULL)
1914 				bpf_mtap(ic->ic_rawbpf, m0);
1915 
1916 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1917 				break;
1918 		} else {
1919 			if (ic->ic_state != IEEE80211_S_RUN)
1920 				break;
1921 
1922 			m0 = ifq_dequeue(&ifp->if_snd, NULL);
1923 			if (m0 == NULL)
1924 				break;
1925 
1926 			if (m0->m_len < sizeof (struct ether_header) &&
1927 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1928 				continue;
1929 
1930 			eh = mtod(m0, struct ether_header *);
1931 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1932 			if (ni == NULL) {
1933 				m_freem(m0);
1934 				ifp->if_oerrors++;
1935 				continue;
1936 			}
1937 
1938 			/* classify mbuf so we can find which tx ring to use */
1939 			if (ieee80211_classify(ic, m0, ni) != 0) {
1940 				m_freem(m0);
1941 				ieee80211_free_node(ni);
1942 				ifp->if_oerrors++;
1943 				continue;
1944 			}
1945 
1946 			/* no QoS encapsulation for EAPOL frames */
1947 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1948 			    M_WME_GETAC(m0) : WME_AC_BE;
1949 
1950 			if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
1951 				/* there is no place left in this ring */
1952 				ifp->if_flags |= IFF_OACTIVE;
1953 				m_freem(m0);
1954 				ieee80211_free_node(ni);
1955 				break;
1956 			}
1957 
1958 			BPF_MTAP(ifp, m0);
1959 
1960 			m0 = ieee80211_encap(ic, m0, ni);
1961 			if (m0 == NULL) {
1962 				ieee80211_free_node(ni);
1963 				ifp->if_oerrors++;
1964 				continue;
1965 			}
1966 
1967 			if (ic->ic_rawbpf != NULL)
1968 				bpf_mtap(ic->ic_rawbpf, m0);
1969 
1970 			if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
1971 				ieee80211_free_node(ni);
1972 				ifp->if_oerrors++;
1973 				break;
1974 			}
1975 		}
1976 
1977 		sc->sc_tx_timer = 5;
1978 		ifp->if_timer = 1;
1979 	}
1980 }
1981 
1982 static void
1983 rt2661_watchdog(struct ifnet *ifp)
1984 {
1985 	struct rt2661_softc *sc = ifp->if_softc;
1986 	struct ieee80211com *ic = &sc->sc_ic;
1987 
1988 	ifp->if_timer = 0;
1989 
1990 	if (sc->sc_tx_timer > 0) {
1991 		if (--sc->sc_tx_timer == 0) {
1992 			device_printf(sc->sc_dev, "device timeout\n");
1993 			rt2661_init(sc);
1994 			ifp->if_oerrors++;
1995 			return;
1996 		}
1997 		ifp->if_timer = 1;
1998 	}
1999 
2000 	ieee80211_watchdog(ic);
2001 }
2002 
2003 /*
2004  * This function allows for fast channel switching in monitor mode (used by
2005  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2006  * generate a new beacon frame.
2007  */
2008 static int
2009 rt2661_reset(struct ifnet *ifp)
2010 {
2011 	struct rt2661_softc *sc = ifp->if_softc;
2012 	struct ieee80211com *ic = &sc->sc_ic;
2013 
2014 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2015 		return ENETRESET;
2016 
2017 	rt2661_set_chan(sc, ic->ic_curchan);
2018 
2019 	return 0;
2020 }
2021 
2022 static int
2023 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2024 {
2025 	struct rt2661_softc *sc = ifp->if_softc;
2026 	struct ieee80211com *ic = &sc->sc_ic;
2027 	int error = 0;
2028 
2029 	switch (cmd) {
2030 	case SIOCSIFFLAGS:
2031 		if (ifp->if_flags & IFF_UP) {
2032 			if (ifp->if_flags & IFF_RUNNING)
2033 				rt2661_update_promisc(sc);
2034 			else
2035 				rt2661_init(sc);
2036 		} else {
2037 			if (ifp->if_flags & IFF_RUNNING)
2038 				rt2661_stop(sc);
2039 		}
2040 		break;
2041 
2042 	default:
2043 		error = ieee80211_ioctl(ic, cmd, data, cr);
2044 	}
2045 
2046 	if (error == ENETRESET) {
2047 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2048 		    (IFF_UP | IFF_RUNNING) &&
2049 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2050 			rt2661_init(sc);
2051 		error = 0;
2052 	}
2053 	return error;
2054 }
2055 
2056 static void
2057 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2058 {
2059 	uint32_t tmp;
2060 	int ntries;
2061 
2062 	for (ntries = 0; ntries < 100; ntries++) {
2063 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2064 			break;
2065 		DELAY(1);
2066 	}
2067 	if (ntries == 100) {
2068 		device_printf(sc->sc_dev, "could not write to BBP\n");
2069 		return;
2070 	}
2071 
2072 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2073 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2074 
2075 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2076 
2077 	/* XXX */
2078 	if (reg == 17) {
2079 		DPRINTF(("record bbp17 %#x\n", val));
2080 		sc->bbp17 = val;
2081 	}
2082 }
2083 
2084 static uint8_t
2085 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2086 {
2087 	uint32_t val;
2088 	int ntries;
2089 
2090 	for (ntries = 0; ntries < 100; ntries++) {
2091 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2092 			break;
2093 		DELAY(1);
2094 	}
2095 	if (ntries == 100) {
2096 		device_printf(sc->sc_dev, "could not read from BBP\n");
2097 		return 0;
2098 	}
2099 
2100 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2101 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2102 
2103 	for (ntries = 0; ntries < 100; ntries++) {
2104 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2105 		if (!(val & RT2661_BBP_BUSY))
2106 			return val & 0xff;
2107 		DELAY(1);
2108 	}
2109 
2110 	device_printf(sc->sc_dev, "could not read from BBP\n");
2111 	return 0;
2112 }
2113 
2114 static void
2115 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2116 {
2117 	uint32_t tmp;
2118 	int ntries;
2119 
2120 	for (ntries = 0; ntries < 100; ntries++) {
2121 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2122 			break;
2123 		DELAY(1);
2124 	}
2125 	if (ntries == 100) {
2126 		device_printf(sc->sc_dev, "could not write to RF\n");
2127 		return;
2128 	}
2129 
2130 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2131 	    (reg & 3);
2132 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2133 
2134 	/* remember last written value in sc */
2135 	sc->rf_regs[reg] = val;
2136 
2137 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2138 }
2139 
2140 static int
2141 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2142 {
2143 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2144 		return EIO;	/* there is already a command pending */
2145 
2146 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2147 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2148 
2149 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2150 
2151 	return 0;
2152 }
2153 
2154 static void
2155 rt2661_select_antenna(struct rt2661_softc *sc)
2156 {
2157 	uint8_t bbp4, bbp77;
2158 	uint32_t tmp;
2159 
2160 	bbp4  = rt2661_bbp_read(sc,  4);
2161 	bbp77 = rt2661_bbp_read(sc, 77);
2162 
2163 	/* TBD */
2164 
2165 	/* make sure Rx is disabled before switching antenna */
2166 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2167 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2168 
2169 	rt2661_bbp_write(sc,  4, bbp4);
2170 	rt2661_bbp_write(sc, 77, bbp77);
2171 
2172 	/* restore Rx filter */
2173 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2174 }
2175 
2176 /*
2177  * Enable multi-rate retries for frames sent at OFDM rates.
2178  * In 802.11b/g mode, allow fallback to CCK rates.
2179  */
2180 static void
2181 rt2661_enable_mrr(struct rt2661_softc *sc)
2182 {
2183 	struct ieee80211com *ic = &sc->sc_ic;
2184 	uint32_t tmp;
2185 
2186 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2187 
2188 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2189 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2190 		tmp |= RT2661_MRR_CCK_FALLBACK;
2191 	tmp |= RT2661_MRR_ENABLED;
2192 	tmp |= RT2661_SRETRY_LIMIT(7) | RT2661_LRETRY_LIMIT(4);
2193 
2194 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2195 }
2196 
2197 static void
2198 rt2661_set_txpreamble(struct rt2661_softc *sc)
2199 {
2200 	uint32_t tmp;
2201 
2202 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2203 
2204 	tmp &= ~RT2661_SHORT_PREAMBLE;
2205 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2206 		tmp |= RT2661_SHORT_PREAMBLE;
2207 
2208 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2209 }
2210 
2211 static void
2212 rt2661_set_ackrates(struct rt2661_softc *sc, const struct ieee80211_rateset *rs)
2213 {
2214 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2215 	struct ieee80211com *ic = &sc->sc_ic;
2216 	uint32_t mask = 0;
2217 	uint8_t rate;
2218 	int i, j;
2219 
2220 	for (i = 0; i < rs->rs_nrates; i++) {
2221 		rate = rs->rs_rates[i];
2222 
2223 		if (!(rate & IEEE80211_RATE_BASIC))
2224 			continue;
2225 
2226 		/*
2227 		 * Find h/w rate index.  We know it exists because the rate
2228 		 * set has already been negotiated.
2229 		 */
2230 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++)
2231 			; /* EMPTY */
2232 
2233 		mask |= 1 << j;
2234 	}
2235 
2236 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) &&
2237 	    ic->ic_curmode != IEEE80211_MODE_11B &&
2238 	    ieee80211_iserp_rateset(ic, rs)) {
2239 		/*
2240 		 * Always set following rates as ACK rates to conform
2241 		 * IEEE Std 802.11g-2003 clause 9.6
2242 		 *
2243 		 * 24Mbits/s	0x100
2244 		 * 12Mbits/s	0x040
2245 		 *  6Mbits/s	0x010
2246 		 */
2247 		mask |= 0x150;
2248 	}
2249 
2250 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2251 
2252 	DPRINTF(("Setting ack rate mask to 0x%x\n", mask));
2253 #undef RV
2254 }
2255 
2256 /*
2257  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2258  * driver.
2259  */
2260 static void
2261 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2262 {
2263 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2264 	uint32_t tmp;
2265 
2266 	/* update all BBP registers that depend on the band */
2267 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2268 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2269 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2270 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2271 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2272 	}
2273 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2274 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2275 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2276 	}
2277 
2278 	rt2661_bbp_write(sc,  17, bbp17);
2279 	rt2661_bbp_write(sc,  96, bbp96);
2280 	rt2661_bbp_write(sc, 104, bbp104);
2281 
2282 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2283 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2284 		rt2661_bbp_write(sc, 75, 0x80);
2285 		rt2661_bbp_write(sc, 86, 0x80);
2286 		rt2661_bbp_write(sc, 88, 0x80);
2287 	}
2288 
2289 	rt2661_bbp_write(sc, 35, bbp35);
2290 	rt2661_bbp_write(sc, 97, bbp97);
2291 	rt2661_bbp_write(sc, 98, bbp98);
2292 
2293 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2294 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2295 	if (IEEE80211_IS_CHAN_2GHZ(c))
2296 		tmp |= RT2661_PA_PE_2GHZ;
2297 	else
2298 		tmp |= RT2661_PA_PE_5GHZ;
2299 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2300 }
2301 
2302 static void
2303 rt2661_set_txpower(struct rt2661_softc *sc, int8_t power)
2304 {
2305 	const struct rt2661_rfprog *rfprog = sc->rfprog;
2306 	int i = sc->sc_curchan_idx;
2307 
2308 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2309 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2310 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2311 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2312 
2313 	DELAY(200);
2314 
2315 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2316 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2317 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2318 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2319 
2320 	DELAY(200);
2321 
2322 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2323 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2324 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2325 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2326 
2327 	sc->sc_txpwr = power;
2328 }
2329 
2330 static void
2331 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2332 {
2333 	struct ieee80211com *ic = &sc->sc_ic;
2334 	const struct rt2661_rfprog *rfprog = sc->rfprog;
2335 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2336 	int8_t power;
2337 	u_int i, chan;
2338 
2339 	chan = ieee80211_chan2ieee(ic, c);
2340 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2341 		return;
2342 
2343 	/* find the settings for this channel (we know it exists) */
2344 	for (i = 0; rfprog[i].chan != chan; i++)
2345 		; /* EMPTY */
2346 	KASSERT(i < RT2661_NCHAN_MAX, ("invalid channel %d\n", chan));
2347 	sc->sc_curchan_idx = i;
2348 
2349 	power = sc->txpow[i];
2350 	if (power < 0) {
2351 		bbp94 += power;
2352 		power = 0;
2353 	} else if (power > 31) {
2354 		bbp94 += power - 31;
2355 		power = 31;
2356 	}
2357 
2358 	power = rt2661_txpower(sc, power);
2359 
2360 	/*
2361 	 * If we are switching from the 2GHz band to the 5GHz band or
2362 	 * vice-versa, BBP registers need to be reprogrammed.
2363 	 */
2364 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2365 		rt2661_select_band(sc, c);
2366 		rt2661_select_antenna(sc);
2367 	}
2368 	sc->sc_curchan = c;
2369 
2370 	rt2661_set_txpower(sc, power);
2371 
2372 	/* enable smart mode for MIMO-capable RFs */
2373 	bbp3 = rt2661_bbp_read(sc, 3);
2374 
2375 	bbp3 &= ~RT2661_SMART_MODE;
2376 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2377 		bbp3 |= RT2661_SMART_MODE;
2378 
2379 	rt2661_bbp_write(sc, 3, bbp3);
2380 
2381 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2382 		rt2661_bbp_write(sc, 94, bbp94);
2383 
2384 	/* 5GHz radio needs a 1ms delay here */
2385 	if (IEEE80211_IS_CHAN_5GHZ(c))
2386 		DELAY(1000);
2387 
2388 	sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
2389 						: IEEE80211_DUR_SIFS;
2390 }
2391 
2392 static void
2393 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2394 {
2395 	uint32_t tmp;
2396 
2397 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2398 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2399 
2400 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2401 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2402 }
2403 
2404 static void
2405 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2406 {
2407 	uint32_t tmp;
2408 
2409 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2410 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2411 
2412 	tmp = addr[4] | addr[5] << 8;
2413 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2414 }
2415 
2416 static void
2417 rt2661_update_promisc(struct rt2661_softc *sc)
2418 {
2419 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2420 	uint32_t tmp;
2421 
2422 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2423 
2424 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2425 	if (!(ifp->if_flags & IFF_PROMISC))
2426 		tmp |= RT2661_DROP_NOT_TO_ME;
2427 
2428 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2429 
2430 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2431 	    "entering" : "leaving"));
2432 }
2433 
2434 /*
2435  * Update QoS (802.11e) settings for each h/w Tx ring.
2436  */
2437 static int
2438 rt2661_wme_update(struct ieee80211com *ic)
2439 {
2440 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2441 	const struct wmeParams *wmep;
2442 
2443 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2444 
2445 	/* XXX: not sure about shifts. */
2446 	/* XXX: the reference driver plays with AC_VI settings too. */
2447 
2448 	/* update TxOp */
2449 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2450 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2451 	    wmep[WME_AC_BK].wmep_txopLimit);
2452 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2453 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2454 	    wmep[WME_AC_VO].wmep_txopLimit);
2455 
2456 	/* update CWmin */
2457 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2458 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2459 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2460 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2461 	    wmep[WME_AC_VO].wmep_logcwmin);
2462 
2463 	/* update CWmax */
2464 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2465 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2466 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2467 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2468 	    wmep[WME_AC_VO].wmep_logcwmax);
2469 
2470 	/* update Aifsn */
2471 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2472 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2473 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2474 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2475 	    wmep[WME_AC_VO].wmep_aifsn);
2476 
2477 	return 0;
2478 }
2479 
2480 static void
2481 rt2661_update_slot(struct ifnet *ifp)
2482 {
2483 	struct rt2661_softc *sc = ifp->if_softc;
2484 	struct ieee80211com *ic = &sc->sc_ic;
2485 	uint8_t slottime;
2486 	uint32_t tmp;
2487 
2488 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2489 
2490 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2491 	tmp = (tmp & ~0xff) | slottime;
2492 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2493 }
2494 
2495 static const char *
2496 rt2661_get_rf(int rev)
2497 {
2498 	switch (rev) {
2499 	case RT2661_RF_5225:	return "RT5225";
2500 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2501 	case RT2661_RF_2527:	return "RT2527";
2502 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2503 	default:		return "unknown";
2504 	}
2505 }
2506 
2507 static void
2508 rt2661_read_config(struct rt2661_softc *sc)
2509 {
2510 	struct ieee80211com *ic = &sc->sc_ic;
2511 	uint16_t val;
2512 	uint8_t rfprog = 0;
2513 	int i, start_chan;
2514 
2515 	/* read MAC address */
2516 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2517 	ic->ic_myaddr[0] = val & 0xff;
2518 	ic->ic_myaddr[1] = val >> 8;
2519 
2520 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2521 	ic->ic_myaddr[2] = val & 0xff;
2522 	ic->ic_myaddr[3] = val >> 8;
2523 
2524 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2525 	ic->ic_myaddr[4] = val & 0xff;
2526 	ic->ic_myaddr[5] = val >> 8;
2527 
2528 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2529 	/* XXX: test if different from 0xffff? */
2530 	sc->rf_rev   = (val >> 11) & 0x1f;
2531 	sc->hw_radio = (val >> 10) & 0x1;
2532 	sc->auto_txagc = (val >> 9) & 0x1;
2533 	sc->rx_ant   = (val >> 4)  & 0x3;
2534 	sc->tx_ant   = (val >> 2)  & 0x3;
2535 	sc->nb_ant   = val & 0x3;
2536 
2537 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2538 	DPRINTF(("Number of ant %d, rxant %d, txant %d\n",
2539 		 sc->nb_ant, sc->rx_ant, sc->tx_ant));
2540 
2541 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2542 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2543 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2544 
2545 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2546 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2547 
2548 	if (sc->ext_2ghz_lna) {
2549 		sc->bbp17_2ghz_min = 0x30;
2550 		sc->bbp17_2ghz_max = 0x50;
2551 	} else {
2552 		sc->bbp17_2ghz_min = 0x20;
2553 		sc->bbp17_2ghz_max = 0x40;
2554 	}
2555 
2556 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2557 	sc->rssi_2ghz_corr[0] = (int8_t)(val & 0xff);	/* signed */
2558 	sc->rssi_2ghz_corr[1] = (int8_t)(val >> 8);	/* signed */
2559 
2560 	/* Only [-10, 10] is valid */
2561 	for (i = 0; i < 2; ++i) {
2562 		if (sc->rssi_2ghz_corr[i] < -10 || sc->rssi_2ghz_corr[i] > 10)
2563 			sc->rssi_2ghz_corr[i] = 0;
2564 	}
2565 
2566 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2567 	if ((val & 0xff) != 0xff)
2568 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2569 
2570 	/* Only [-10, 10] is valid */
2571 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2572 		sc->rssi_5ghz_corr = 0;
2573 
2574 	/* adjust RSSI correction for external low-noise amplifier */
2575 	if (sc->ext_2ghz_lna) {
2576 		sc->rssi_2ghz_corr[0] -= 14;
2577 		sc->rssi_2ghz_corr[1] -= 14;
2578 	}
2579 	if (sc->ext_5ghz_lna)
2580 		sc->rssi_5ghz_corr -= 14;
2581 
2582 	DPRINTF(("RSSI 2GHz corr0=%d corr1=%d\nRSSI 5GHz corr=%d\n",
2583 	    sc->rssi_2ghz_corr[0], sc->rssi_2ghz_corr[1], sc->rssi_5ghz_corr));
2584 
2585 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2586 	if ((val >> 8) != 0xff)
2587 		rfprog = (val >> 8) & 0x3;
2588 	if ((val & 0xff) != 0xff)
2589 		sc->rffreq = val & 0xff;
2590 
2591 	DPRINTF(("RF prog=%d\nRF freq=%d\n", rfprog, sc->rffreq));
2592 
2593 	sc->rfprog = rfprog == 0 ? rt2661_rf5225_1 : rt2661_rf5225_2;
2594 
2595 #define NCHAN_2GHZ	14
2596 #define NCHAN_5GHZ	24
2597 	/*
2598 	 * Read channel TX power
2599 	 */
2600 	start_chan = 0;
2601 	rt2661_read_txpower_config(sc, RT2661_EEPROM_TXPOWER_2GHZ,
2602 				   NCHAN_2GHZ, &start_chan);
2603 	rt2661_read_txpower_config(sc, RT2661_EEPROM_TXPOWER_5GHZ,
2604 				   NCHAN_5GHZ, &start_chan);
2605 #undef NCHAN_2GHZ
2606 #undef NCHAN_5GHZ
2607 
2608 	/* read vendor-specific BBP values */
2609 	for (i = 0; i < 16; i++) {
2610 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2611 		if (val == 0 || val == 0xffff)
2612 			continue;	/* skip invalid entries */
2613 		sc->bbp_prom[i].reg = val >> 8;
2614 		sc->bbp_prom[i].val = val & 0xff;
2615 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2616 		    sc->bbp_prom[i].val));
2617 	}
2618 
2619 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_LED_OFFSET);
2620 	DPRINTF(("LED %02x\n", val));
2621 	if (val == 0xffff) {
2622 		sc->mcu_led = RT2661_MCU_LED_DEFAULT;
2623 	} else {
2624 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
2625 
2626 		for (i = 0; i < N(led_ee2mcu); ++i) {
2627 			if (val & led_ee2mcu[i].ee_bit)
2628 				sc->mcu_led |= led_ee2mcu[i].mcu_bit;
2629 		}
2630 
2631 #undef N
2632 
2633 		sc->mcu_led |= ((val >> RT2661_EE_LED_MODE_SHIFT) &
2634 				RT2661_EE_LED_MODE_MASK);
2635 	}
2636 
2637 	/* TX power down step array */
2638 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI1);
2639 	sc->tssi_2ghz_down[3] = val & 0xff;
2640 	sc->tssi_2ghz_down[2] = val >> 8;
2641 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI2);
2642 	sc->tssi_2ghz_down[1] = val & 0xff;
2643 	sc->tssi_2ghz_down[0] = val >> 8;
2644 	DPRINTF(("2GHZ tssi down 0:%u 1:%u 2:%u 3:%u\n",
2645 		 sc->tssi_2ghz_down[0], sc->tssi_2ghz_down[1],
2646 		 sc->tssi_2ghz_down[2], sc->tssi_2ghz_down[3]));
2647 
2648 	/* TX power up step array */
2649 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI3);
2650 	sc->tssi_2ghz_up[0] = val & 0xff;
2651 	sc->tssi_2ghz_up[1] = val >> 8;
2652 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI4);
2653 	sc->tssi_2ghz_up[2] = val & 0xff;
2654 	sc->tssi_2ghz_up[3] = val >> 8;
2655 	DPRINTF(("2GHZ tssi up 0:%u 1:%u 2:%u 3:%u\n",
2656 		 sc->tssi_2ghz_up[0], sc->tssi_2ghz_up[1],
2657 		 sc->tssi_2ghz_up[2], sc->tssi_2ghz_up[3]));
2658 
2659 	/* TX power adjustment reference value and step */
2660 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_2GHZ_TSSI5);
2661 	sc->tssi_2ghz_ref = val & 0xff;
2662 	sc->tssi_2ghz_step = val >> 8;
2663 	DPRINTF(("2GHZ tssi ref %u, step %d\n",
2664 		 sc->tssi_2ghz_ref, sc->tssi_2ghz_step));
2665 
2666 	if (sc->tssi_2ghz_ref == 0xff)
2667 		sc->auto_txagc = 0;
2668 	DPRINTF(("Auto TX AGC %d\n", sc->auto_txagc));
2669 }
2670 
2671 static int
2672 rt2661_bbp_init(struct rt2661_softc *sc)
2673 {
2674 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2675 	int i, ntries;
2676 	uint8_t val;
2677 
2678 	/* wait for BBP to be ready */
2679 	for (ntries = 0; ntries < 100; ntries++) {
2680 		val = rt2661_bbp_read(sc, 0);
2681 		if (val != 0 && val != 0xff)
2682 			break;
2683 		DELAY(100);
2684 	}
2685 	if (ntries == 100) {
2686 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2687 		return EIO;
2688 	}
2689 
2690 	/* initialize BBP registers to default values */
2691 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2692 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2693 		    rt2661_def_bbp[i].val);
2694 	}
2695 
2696 	/* write vendor-specific BBP values (from EEPROM) */
2697 	for (i = 0; i < 16; i++) {
2698 		if (sc->bbp_prom[i].reg == 0)
2699 			continue;
2700 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2701 	}
2702 
2703 	return 0;
2704 #undef N
2705 }
2706 
2707 static void
2708 rt2661_init(void *priv)
2709 {
2710 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2711 	struct rt2661_softc *sc = priv;
2712 	struct ieee80211com *ic = &sc->sc_ic;
2713 	struct ifnet *ifp = ic->ic_ifp;
2714 	uint32_t tmp, sta[3];
2715 	int i, ntries;
2716 
2717 	rt2661_stop(sc);
2718 
2719 	/* initialize Tx rings */
2720 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2721 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2722 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2723 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2724 
2725 	/* initialize Mgt ring */
2726 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2727 
2728 	/* initialize Rx ring */
2729 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2730 
2731 	/* initialize Tx rings sizes */
2732 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2733 	    RT2661_TX_RING_COUNT << 24 |
2734 	    RT2661_TX_RING_COUNT << 16 |
2735 	    RT2661_TX_RING_COUNT <<  8 |
2736 	    RT2661_TX_RING_COUNT);
2737 
2738 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2739 	    RT2661_TX_DESC_WSIZE << 16 |
2740 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2741 	    RT2661_MGT_RING_COUNT);
2742 
2743 	/* initialize Rx rings */
2744 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2745 	    RT2661_RX_DESC_BACK  << 16 |
2746 	    RT2661_RX_DESC_WSIZE <<  8 |
2747 	    RT2661_RX_RING_COUNT);
2748 
2749 	/* XXX: some magic here */
2750 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2751 
2752 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2753 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2754 
2755 	/* load base address of Rx ring */
2756 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2757 
2758 	/* initialize MAC registers to default values */
2759 	for (i = 0; i < N(rt2661_def_mac); i++)
2760 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2761 
2762 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2763 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2764 
2765 	/* set host ready */
2766 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2767 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2768 
2769 	/* wait for BBP/RF to wakeup */
2770 	for (ntries = 0; ntries < 1000; ntries++) {
2771 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2772 			break;
2773 		DELAY(1000);
2774 	}
2775 	if (ntries == 1000) {
2776 		kprintf("timeout waiting for BBP/RF to wakeup\n");
2777 		rt2661_stop(sc);
2778 		return;
2779 	}
2780 
2781 	if (rt2661_bbp_init(sc) != 0) {
2782 		rt2661_stop(sc);
2783 		return;
2784 	}
2785 
2786 	/* select default channel */
2787 	sc->sc_curchan = ic->ic_curchan;
2788 	rt2661_select_band(sc, sc->sc_curchan);
2789 	rt2661_select_antenna(sc);
2790 	rt2661_set_chan(sc, sc->sc_curchan);
2791 
2792 	/* update Rx filter */
2793 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2794 
2795 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2796 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2797 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2798 		       RT2661_DROP_ACKCTS;
2799 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2800 			tmp |= RT2661_DROP_TODS;
2801 		if (!(ifp->if_flags & IFF_PROMISC))
2802 			tmp |= RT2661_DROP_NOT_TO_ME;
2803 	}
2804 
2805 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2806 
2807 	/* clear STA registers */
2808 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
2809 
2810 	/* initialize ASIC */
2811 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2812 
2813 	/* clear any pending interrupt */
2814 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2815 
2816 	/* enable interrupts */
2817 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2818 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2819 
2820 	/* kick Rx */
2821 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2822 
2823 	ifp->if_flags &= ~IFF_OACTIVE;
2824 	ifp->if_flags |= IFF_RUNNING;
2825 
2826 	for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2827 		uint8_t mac[IEEE80211_ADDR_LEN];
2828 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
2829 
2830 		if (k->wk_keyix != IEEE80211_KEYIX_NONE)
2831 			rt2661_key_set(ic, k, mac);
2832 	}
2833 
2834 	RT2661_RESET_AVG_RSSI(sc);
2835 
2836 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2837 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2838 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2839 	} else {
2840 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2841 	}
2842 #undef N
2843 }
2844 
2845 void
2846 rt2661_stop(void *priv)
2847 {
2848 	struct rt2661_softc *sc = priv;
2849 	struct ieee80211com *ic = &sc->sc_ic;
2850 	struct ifnet *ifp = ic->ic_ifp;
2851 	struct rt2661_tx_ratectl *rctl;
2852 	uint32_t tmp;
2853 
2854 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2855 
2856 	sc->sc_tx_timer = 0;
2857 	ifp->if_timer = 0;
2858 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2859 
2860 	/* abort Tx (for all 5 Tx rings) */
2861 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2862 
2863 	/* disable Rx (value remains after reset!) */
2864 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2865 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2866 
2867 	/* reset ASIC */
2868 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2869 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2870 
2871 	/* disable interrupts */
2872 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
2873 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2874 
2875 	/* clear any pending interrupt */
2876 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2877 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2878 
2879 	while ((rctl = STAILQ_FIRST(&sc->tx_ratectl)) != NULL) {
2880 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
2881 		ieee80211_free_node(rctl->ni);
2882 		rctl->ni = NULL;
2883 		kfree(rctl, M_RT2661);
2884 	}
2885 
2886 	/* reset Tx and Rx rings */
2887 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2888 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2889 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2890 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2891 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2892 	rt2661_reset_rx_ring(sc, &sc->rxq);
2893 
2894 	/* Clear key map. */
2895 	bzero(sc->sc_keymap, sizeof(sc->sc_keymap));
2896 }
2897 
2898 static int
2899 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2900 {
2901 	int ntries;
2902 
2903 	/* reset 8051 */
2904 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2905 
2906 	/* cancel any pending Host to MCU command */
2907 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2908 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2909 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2910 
2911 	/* write 8051's microcode */
2912 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2913 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2914 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2915 
2916 	/* kick 8051's ass */
2917 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2918 
2919 	/* wait for 8051 to initialize */
2920 	for (ntries = 0; ntries < 500; ntries++) {
2921 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2922 			break;
2923 		DELAY(100);
2924 	}
2925 	if (ntries == 500) {
2926 		kprintf("timeout waiting for MCU to initialize\n");
2927 		return EIO;
2928 	}
2929 	return 0;
2930 }
2931 
2932 static int
2933 rt2661_prepare_beacon(struct rt2661_softc *sc)
2934 {
2935 	struct ieee80211com *ic = &sc->sc_ic;
2936 	struct ieee80211_beacon_offsets bo;
2937 	struct rt2661_tx_desc desc;
2938 	struct mbuf *m0;
2939 	int rate;
2940 
2941 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2942 	if (m0 == NULL) {
2943 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2944 		return ENOBUFS;
2945 	}
2946 
2947 	/* send beacons at the lowest available rate */
2948 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2949 
2950 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2951 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT, 0, NULL, NULL, NULL);
2952 
2953 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2954 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2955 
2956 	/* copy beacon header and payload into NIC memory */
2957 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2958 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2959 
2960 	m_freem(m0);
2961 	return 0;
2962 }
2963 
2964 /*
2965  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2966  * and HostAP operating modes.
2967  */
2968 static void
2969 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2970 {
2971 	struct ieee80211com *ic = &sc->sc_ic;
2972 	uint32_t tmp;
2973 
2974 	if (ic->ic_opmode != IEEE80211_M_STA) {
2975 		/*
2976 		 * Change default 16ms TBTT adjustment to 8ms.
2977 		 * Must be done before enabling beacon generation.
2978 		 */
2979 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2980 	}
2981 
2982 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2983 
2984 	/* set beacon interval (in 1/16ms unit) */
2985 	tmp |= ic->ic_bss->ni_intval * 16;
2986 
2987 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2988 	if (ic->ic_opmode == IEEE80211_M_STA)
2989 		tmp |= RT2661_TSF_MODE(1);
2990 	else
2991 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2992 
2993 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2994 }
2995 
2996 /*
2997  * Retrieve the "Received Signal Strength Indicator" from the raw values
2998  * contained in Rx descriptors.  The computation depends on which band the
2999  * frame was received.  Correction values taken from the reference driver.
3000  */
3001 static int
3002 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw, int i)
3003 {
3004 	int lna, agc, rssi;
3005 
3006 	lna = (raw >> 5) & 0x3;
3007 	agc = raw & 0x1f;
3008 
3009 	if (lna == 0) {
3010 		/*
3011 		 * No RSSI mapping
3012 		 *
3013 		 * NB: Since RSSI is relative to noise floor, -1 is
3014 		 *     adequate for caller to know error happened.
3015 		 */
3016 		return -1;
3017 	}
3018 
3019 	rssi = (2 * agc) - RT2661_NOISE_FLOOR;
3020 
3021 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3022 		rssi += sc->rssi_2ghz_corr[i];
3023 
3024 		if (lna == 1)
3025 			rssi -= 64;
3026 		else if (lna == 2)
3027 			rssi -= 74;
3028 		else if (lna == 3)
3029 			rssi -= 90;
3030 	} else {
3031 		rssi += sc->rssi_5ghz_corr;
3032 
3033 		if (lna == 1)
3034 			rssi -= 64;
3035 		else if (lna == 2)
3036 			rssi -= 86;
3037 		else if (lna == 3)
3038 			rssi -= 100;
3039 	}
3040 
3041 	if (sc->avg_rssi[i] < 0) {
3042 		sc->avg_rssi[i] = rssi;
3043 	} else {
3044 		sc->avg_rssi[i] =
3045 		((sc->avg_rssi[i] << 3) - sc->avg_rssi[i] + rssi) >> 3;
3046 	}
3047 	return rssi;
3048 }
3049 
3050 static void
3051 rt2661_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
3052 		    bus_size_t map_size __unused, int error)
3053 {
3054 	struct rt2661_dmamap *map = arg;
3055 
3056 	if (error)
3057 		return;
3058 
3059 	KASSERT(nseg <= RT2661_MAX_SCATTER, ("too many DMA segments"));
3060 
3061 	bcopy(seg, map->segs, nseg * sizeof(bus_dma_segment_t));
3062 	map->nseg = nseg;
3063 }
3064 
3065 static void
3066 rt2661_led_newstate(struct rt2661_softc *sc, enum ieee80211_state nstate)
3067 {
3068 	struct ieee80211com *ic = &sc->sc_ic;
3069 	uint32_t off, on;
3070 	uint32_t mail = sc->mcu_led;
3071 
3072 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) {
3073 		DPRINTF(("%s failed\n", __func__));
3074 		return;
3075 	}
3076 
3077 	switch (nstate) {
3078 	case IEEE80211_S_INIT:
3079 		mail &= ~(RT2661_MCU_LED_LINKA | RT2661_MCU_LED_LINKG |
3080 			  RT2661_MCU_LED_RF);
3081 		break;
3082 	default:
3083 		if (ic->ic_curchan == NULL)
3084 			return;
3085 
3086 		on = RT2661_MCU_LED_LINKG;
3087 		off = RT2661_MCU_LED_LINKA;
3088 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
3089 			on = RT2661_MCU_LED_LINKA;
3090 			off = RT2661_MCU_LED_LINKG;
3091 		}
3092 
3093 		mail |= RT2661_MCU_LED_RF | on;
3094 		mail &= ~off;
3095 		break;
3096 	}
3097 
3098 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
3099 		  RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | mail);
3100 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | RT2661_MCU_SET_LED);
3101 }
3102 
3103 static void
3104 rt2661_read_txpower_config(struct rt2661_softc *sc, uint8_t txpwr_ofs,
3105 			   int nchan, int *start_chan0)
3106 {
3107 	int i, loop_max;
3108 	int start_chan = *start_chan0;
3109 
3110 	KASSERT(nchan % 2 == 0, ("number of channels %d is not even\n", nchan));
3111 	KASSERT(start_chan + nchan <= RT2661_NCHAN_MAX, ("too many channels"));
3112 
3113 	loop_max = nchan / 2;
3114 
3115 	for (i = 0; i < loop_max; i++) {
3116 		int chan_idx, j;
3117 		uint16_t val;
3118 
3119 		val = rt2661_eeprom_read(sc, txpwr_ofs + i);
3120 		chan_idx = i * 2 + start_chan;
3121 
3122 		for (j = 0; j < 2; ++j) {
3123 			int8_t tx_power;	/* signed */
3124 
3125 			tx_power = (int8_t)((val >> (8 * j)) & 0xff);
3126 			if (tx_power > RT2661_TXPOWER_MAX)
3127 				tx_power = RT2661_TXPOWER_DEFAULT;
3128 
3129 			sc->txpow[chan_idx] = tx_power;
3130 			DPRINTF(("Channel=%d Tx power=%d\n",
3131 			    rt2661_rf5225_1[chan_idx].chan, sc->txpow[chan_idx]));
3132 
3133 			++chan_idx;
3134 		}
3135 	}
3136 	*start_chan0 += nchan;
3137 }
3138 
3139 static int
3140 rt2661_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *key,
3141 		 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3142 {
3143 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3144 
3145 	DPRINTF(("%s: ", __func__));
3146 
3147 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3148 		DPRINTF(("alloc sw key\n"));
3149 		return sc->sc_key_alloc(ic, key, keyix, rxkeyix);
3150 	}
3151 
3152 	if (key->wk_flags & IEEE80211_KEY_GROUP) {	/* Global key */
3153 		DPRINTF(("alloc group key\n"));
3154 
3155 		KASSERT(key >= &ic->ic_nw_keys[0] &&
3156 			key < &ic->ic_nw_keys[IEEE80211_WEP_NKID],
3157 			("bogus group key\n"));
3158 
3159 		*keyix = *rxkeyix = key - ic->ic_nw_keys;
3160 		return 1;
3161 	} else {					/* Pairwise key */
3162 		int i;
3163 
3164 		DPRINTF(("alloc pairwise key\n"));
3165 
3166 		for (i = IEEE80211_WEP_NKID; i < RT2661_KEY_MAX; ++i) {
3167 			if (!RT2661_KEY_ISSET(sc, i))
3168 				break;
3169 		}
3170 #ifndef MIXED_KEY_TEST
3171 		if (i == RT2661_KEY_MAX)
3172 			return 0;
3173 #else
3174 		if (i != IEEE80211_WEP_NKID)
3175 			return 0;
3176 #endif
3177 
3178 		RT2661_KEY_SET(sc, i);
3179 		*keyix = *rxkeyix = i;
3180 		return 1;
3181 	}
3182 }
3183 
3184 static int
3185 rt2661_key_delete(struct ieee80211com *ic, const struct ieee80211_key *key)
3186 {
3187 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3188 	uint32_t val;
3189 
3190 	DPRINTF(("%s: keyix %d, rxkeyix %d, ", __func__,
3191 		 key->wk_keyix, key->wk_rxkeyix));
3192 
3193 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3194 		DPRINTF(("delete sw key\n"));
3195 		return sc->sc_key_delete(ic, key);
3196 	}
3197 
3198 	if (key->wk_keyix < IEEE80211_WEP_NKID) {	/* Global key */
3199 		DPRINTF(("delete global key\n"));
3200 		val = RAL_READ(sc, RT2661_SEC_CSR0);
3201 		val &= ~(1 << key->wk_keyix);
3202 		RAL_WRITE(sc, RT2661_SEC_CSR0, val);
3203 	} else {					/* Pairwise key */
3204 		DPRINTF(("delete pairwise key\n"));
3205 
3206 		RT2661_KEY_CLR(sc, key->wk_keyix);
3207 		if (key->wk_keyix < 32) {
3208 			val = RAL_READ(sc, RT2661_SEC_CSR2);
3209 			val &= ~(1 << key->wk_keyix);
3210 			RAL_WRITE(sc, RT2661_SEC_CSR2, val);
3211 		} else {
3212 			val = RAL_READ(sc, RT2661_SEC_CSR3);
3213 			val &= ~(1 << (key->wk_keyix - 32));
3214 			RAL_WRITE(sc, RT2661_SEC_CSR3, val);
3215 		}
3216 	}
3217 	return 1;
3218 }
3219 
3220 static int
3221 rt2661_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
3222 	       const uint8_t mac[IEEE80211_ADDR_LEN])
3223 {
3224 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3225 	uint32_t addr, val;
3226 
3227 	DPRINTF(("%s: keyix %d, rxkeyix %d, flags 0x%04x, ", __func__,
3228 		 key->wk_keyix, key->wk_rxkeyix, key->wk_flags));
3229 
3230 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3231 		DPRINTF(("set sw key\n"));
3232 		return sc->sc_key_set(ic, key, mac);
3233 	}
3234 
3235 	if (key->wk_keyix < IEEE80211_WEP_NKID) {	/* Global Key */
3236 		int cipher, keyix_shift;
3237 
3238 		DPRINTF(("set global key\n"));
3239 
3240 		/*
3241 		 * Install key content.
3242 		 */
3243 		addr = RT2661_GLOBAL_KEY_BASE +
3244 		       (key->wk_keyix * sizeof(key->wk_key));
3245 		RAL_WRITE_REGION_1(sc, addr, key->wk_key, sizeof(key->wk_key));
3246 
3247 		/*
3248 		 * Set key cipher.
3249 		 */
3250 		cipher = rt2661_cipher(key);
3251 		keyix_shift = key->wk_keyix * 4;
3252 
3253 		val = RAL_READ(sc, RT2661_SEC_CSR1);
3254 		val &= ~(0xf << keyix_shift);
3255 		val |= cipher << keyix_shift;
3256 		RAL_WRITE(sc, RT2661_SEC_CSR1, val);
3257 
3258 		/*
3259 		 * Enable key slot.
3260 		 */
3261 		val = RAL_READ(sc, RT2661_SEC_CSR0);
3262 		val |= 1 << key->wk_keyix;
3263 		RAL_WRITE(sc, RT2661_SEC_CSR0, val);
3264 	} else {					/* Pairwise key */
3265 		uint8_t mac_cipher[IEEE80211_ADDR_LEN + 1];
3266 
3267 		DPRINTF(("set pairwise key\n"));
3268 
3269 		/*
3270 		 * Install key content.
3271 		 */
3272 		addr = RT2661_PAIRWISE_KEY_BASE +
3273 		       (key->wk_keyix * sizeof(key->wk_key));
3274 		RAL_WRITE_REGION_1(sc, addr, key->wk_key, sizeof(key->wk_key));
3275 
3276 		/*
3277 		 * Set target address and key cipher.
3278 		 */
3279 		memcpy(mac_cipher, mac, IEEE80211_ADDR_LEN);
3280 		mac_cipher[IEEE80211_ADDR_LEN] = rt2661_cipher(key);
3281 
3282 		/* XXX Actually slot size is 1 byte bigger than mac_cipher */
3283 		addr = RT2661_TARGET_ADDR_BASE +
3284 		       (key->wk_keyix * (IEEE80211_ADDR_LEN + 2));
3285 		RAL_WRITE_REGION_1(sc, addr, mac_cipher, sizeof(mac_cipher));
3286 
3287 		/*
3288 		 * Enable key slot.
3289 		 */
3290 		if (key->wk_keyix < 32) {
3291 			val = RAL_READ(sc, RT2661_SEC_CSR2);
3292 			val |= 1 << key->wk_keyix;
3293 			RAL_WRITE(sc, RT2661_SEC_CSR2, val);
3294 		} else {
3295 			val = RAL_READ(sc, RT2661_SEC_CSR3);
3296 			val |= 1 << (key->wk_keyix - 32);
3297 			RAL_WRITE(sc, RT2661_SEC_CSR3, val);
3298 		}
3299 
3300 		/*
3301 		 * Enable pairwise key looking up when RX.
3302 		 */
3303 		RAL_WRITE(sc, RT2661_SEC_CSR4, 1);
3304 	}
3305 	return 1;
3306 }
3307 
3308 static void *
3309 rt2661_ratectl_attach(struct ieee80211com *ic, u_int rc)
3310 {
3311 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3312 
3313 	switch (rc) {
3314 	case IEEE80211_RATECTL_ONOE:
3315 		return &sc->sc_onoe_param;
3316 
3317 	case IEEE80211_RATECTL_SAMPLE:
3318 		if ((ic->ic_ratectl.rc_st_ratectl_cap &
3319 		     IEEE80211_RATECTL_CAP_SAMPLE) == 0)
3320 			panic("sample rate control algo is not supported\n");
3321 		return &sc->sc_sample_param;
3322 
3323 	case IEEE80211_RATECTL_NONE:
3324 		/* This could only happen during detaching */
3325 		return NULL;
3326 
3327 	default:
3328 		panic("unknown rate control algo %u\n", rc);
3329 		return NULL;
3330 	}
3331 }
3332 
3333 static void
3334 rt2661_calib_txpower(struct rt2661_softc *sc)
3335 {
3336 	int8_t txpower;
3337 	int rssi_dbm;
3338 
3339 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
3340 		return;
3341 
3342 	txpower = sc->txpow[sc->sc_curchan_idx];
3343 	if (txpower < 0)
3344 		txpower = 0;
3345 	else if (txpower > 31)
3346 		txpower = 31;
3347 	txpower = rt2661_txpower(sc, txpower);
3348 
3349 	if (sc->auto_txagc) {
3350 		/*
3351 		 * Compensate TX power according to temperature change
3352 		 */
3353 		if (sc->sc_txpwr_cnt++ % 4 == 0) {
3354 			uint8_t bbp1;
3355 			int i;
3356 
3357 			/*
3358 			 * Adjust compensation very 4 seconds
3359 			 */
3360 			bbp1 = rt2661_bbp_read(sc, 1);
3361 			if (bbp1 > sc->tssi_2ghz_ref) {
3362 				for (i = 0; i < RT2661_TSSI_LIMSZ; ++i) {
3363 					if (bbp1 <= sc->tssi_2ghz_down[i])
3364 						break;
3365 				}
3366 				if (txpower > (sc->tssi_2ghz_step * i)) {
3367 					sc->tssi_2ghz_comp =
3368 					-(sc->tssi_2ghz_step * i);
3369 				} else {
3370 					sc->tssi_2ghz_comp = -txpower;
3371 				}
3372 			} else if (bbp1 < sc->tssi_2ghz_ref) {
3373 				for (i = 0; i < RT2661_TSSI_LIMSZ; ++i) {
3374 					if (bbp1 >= sc->tssi_2ghz_up[i])
3375 						break;
3376 				}
3377 				sc->tssi_2ghz_comp = sc->tssi_2ghz_step * i;
3378 			}
3379 		}
3380 		txpower += sc->tssi_2ghz_comp;
3381 	}
3382 
3383 	/*
3384 	 * Adjust TX power according to RSSI
3385 	 */
3386 	rssi_dbm = rt2661_avgrssi(sc);
3387 	DPRINTF(("dbm %d, txpower %d\n", rssi_dbm, txpower));
3388 
3389 	if (rssi_dbm > -30) {
3390 		if (txpower > 16)
3391 			txpower -= 16;
3392 		else
3393 			txpower = 0;
3394 	} else if (rssi_dbm > -45) {
3395 		if (txpower > 6)
3396 			txpower -= 6;
3397 		else
3398 			txpower = 0;
3399 	}
3400 
3401 	if (txpower != sc->sc_txpwr)
3402 		rt2661_set_txpower(sc, txpower);
3403 }
3404 
3405 static void
3406 rt2661_calib_rxsensibility(struct rt2661_softc *sc, uint32_t false_cca)
3407 {
3408 #define MIDRANGE_RSSI	-74
3409 
3410 	uint8_t bbp17;
3411 	int rssi_dbm;
3412 
3413 	if (sc->sc_ic.ic_state != IEEE80211_S_RUN)
3414 		return;
3415 
3416 	rssi_dbm = rt2661_avgrssi(sc);
3417 
3418 	if (rssi_dbm >= MIDRANGE_RSSI) {
3419 		if (rssi_dbm >= -35)
3420 			bbp17 = 0x60;
3421 		else if (rssi_dbm >= -58)
3422 			bbp17 = sc->bbp17_2ghz_max;
3423 		else if (rssi_dbm >= -66)
3424 			bbp17 = sc->bbp17_2ghz_min + 0x10;
3425 		else
3426 			bbp17 = sc->bbp17_2ghz_min + 0x8;
3427 
3428 		if (sc->bbp17 != bbp17)
3429 			rt2661_bbp_write(sc, 17, bbp17);
3430 		return;
3431 	}
3432 
3433 	bbp17 = sc->bbp17_2ghz_max - (2 * (MIDRANGE_RSSI - rssi_dbm));
3434 	if (bbp17 < sc->bbp17_2ghz_min)
3435 		bbp17 = sc->bbp17_2ghz_min;
3436 
3437 	if (sc->bbp17 > bbp17) {
3438 		rt2661_bbp_write(sc, 17, bbp17);
3439 		return;
3440 	}
3441 
3442 	DPRINTF(("calibrate according to false CCA\n"));
3443 
3444 	if (false_cca > 512 && sc->bbp17 > sc->bbp17_2ghz_min)
3445 		rt2661_bbp_write(sc, 17, sc->bbp17 - 1);
3446 	else if (false_cca < 100 && sc->bbp17 < bbp17)
3447 		rt2661_bbp_write(sc, 17, sc->bbp17 + 1);
3448 
3449 #undef MIDRANGE_RSSI
3450 }
3451 
3452 static void
3453 rt2661_calibrate(void *xsc)
3454 {
3455 	struct rt2661_softc *sc = xsc;
3456 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3457 	uint32_t false_cca;
3458 
3459 	lwkt_serialize_enter(ifp->if_serializer);
3460 
3461 	false_cca = (RAL_READ(sc, RT2661_STA_CSR1) >> 16);
3462 	DPRINTF(("false cca %u\n", false_cca));
3463 
3464 	if (sc->sc_calib_rxsns)
3465 		rt2661_calib_rxsensibility(sc, false_cca);
3466 
3467 	if (sc->sc_calib_txpwr)
3468 		rt2661_calib_txpower(sc);
3469 
3470 	callout_reset(&sc->calib_ch, hz, rt2661_calibrate, sc);
3471 
3472 	lwkt_serialize_exit(ifp->if_serializer);
3473 }
3474