xref: /dflybsd-src/sys/dev/netif/ral/rt2560.c (revision efda3bd00c039d6845508b47bb18d1687c72154e)
1 /*
2  * Copyright (c) 2005, 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2560.c,v 1.2 2006/09/05 00:55:40 dillon Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2560 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/sysctl.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/module.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/serialize.h>
38 
39 #include <machine/bus.h>
40 #include <machine/resource.h>
41 #include <machine/clock.h>
42 #include <sys/rman.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ifq_var.h>
52 
53 #include <netproto/802_11/ieee80211_var.h>
54 #include <netproto/802_11/ieee80211_radiotap.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 #include <netinet/if_ether.h>
61 
62 #include <dev/netif/ral/if_ralrate.h>
63 #include <dev/netif/ral/rt2560reg.h>
64 #include <dev/netif/ral/rt2560var.h>
65 
66 #ifdef RAL_DEBUG
67 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
68 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
69 extern int ral_debug;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n, x)
73 #endif
74 
75 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
76 			    int);
77 static void		rt2560_dma_map_mbuf(void *, bus_dma_segment_t *, int,
78 					    bus_size_t, int);
79 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
80 			    struct rt2560_tx_ring *, int);
81 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
82 			    struct rt2560_tx_ring *);
83 static void		rt2560_free_tx_ring(struct rt2560_softc *,
84 			    struct rt2560_tx_ring *);
85 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
86 			    struct rt2560_rx_ring *, int);
87 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
88 			    struct rt2560_rx_ring *);
89 static void		rt2560_free_rx_ring(struct rt2560_softc *,
90 			    struct rt2560_rx_ring *);
91 static struct		ieee80211_node *rt2560_node_alloc(
92 			    struct ieee80211_node_table *);
93 static int		rt2560_media_change(struct ifnet *);
94 static void		rt2560_next_scan(void *);
95 static void		rt2560_iter_func(void *, struct ieee80211_node *);
96 static void		rt2560_update_rssadapt(void *);
97 static int		rt2560_newstate(struct ieee80211com *,
98 			    enum ieee80211_state, int);
99 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
100 static void		rt2560_encryption_intr(struct rt2560_softc *);
101 static void		rt2560_tx_intr(struct rt2560_softc *);
102 static void		rt2560_prio_intr(struct rt2560_softc *);
103 static void		rt2560_decryption_intr(struct rt2560_softc *);
104 static void		rt2560_rx_intr(struct rt2560_softc *);
105 static void		rt2560_beacon_expire(struct rt2560_softc *);
106 static void		rt2560_wakeup_expire(struct rt2560_softc *);
107 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
108 static int		rt2560_ack_rate(struct ieee80211com *, int);
109 static uint16_t		rt2560_txtime(int, int, uint32_t);
110 static uint8_t		rt2560_plcp_signal(int);
111 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
112 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
113 			    bus_addr_t);
114 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
115 			    struct ieee80211_node *);
116 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
117 			    struct ieee80211_node *);
118 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
119 			    struct ieee80211_frame *, uint16_t);
120 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
121 			    struct ieee80211_node *);
122 static void		rt2560_start(struct ifnet *);
123 static void		rt2560_watchdog(struct ifnet *);
124 static int		rt2560_reset(struct ifnet *);
125 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t,
126 				     struct ucred *);
127 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
128 			    uint8_t);
129 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
130 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
131 			    uint32_t);
132 static void		rt2560_set_chan(struct rt2560_softc *,
133 			    struct ieee80211_channel *);
134 #if 0
135 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
136 #endif
137 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
138 static void		rt2560_update_plcp(struct rt2560_softc *);
139 static void		rt2560_update_slot(struct ifnet *);
140 static void		rt2560_set_basicrates(struct rt2560_softc *);
141 static void		rt2560_update_led(struct rt2560_softc *, int, int);
142 static void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
143 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
144 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
145 static void		rt2560_update_promisc(struct rt2560_softc *);
146 static const char	*rt2560_get_rf(int);
147 static void		rt2560_read_eeprom(struct rt2560_softc *);
148 static int		rt2560_bbp_init(struct rt2560_softc *);
149 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
150 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
151 static void		rt2560_init(void *);
152 static void		rt2560_stop(void *);
153 static void		rt2560_intr(void *);
154 
155 /*
156  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
157  */
158 static const struct ieee80211_rateset rt2560_rateset_11a =
159 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
160 
161 static const struct ieee80211_rateset rt2560_rateset_11b =
162 	{ 4, { 2, 4, 11, 22 } };
163 
164 static const struct ieee80211_rateset rt2560_rateset_11g =
165 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
166 
167 static const struct {
168 	uint32_t	reg;
169 	uint32_t	val;
170 } rt2560_def_mac[] = {
171 	RT2560_DEF_MAC
172 };
173 
174 static const struct {
175 	uint8_t	reg;
176 	uint8_t	val;
177 } rt2560_def_bbp[] = {
178 	RT2560_DEF_BBP
179 };
180 
181 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
182 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
183 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
184 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
185 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
186 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
187 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
188 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
189 
190 static const struct {
191 	uint8_t		chan;
192 	uint32_t	r1, r2, r4;
193 } rt2560_rf5222[] = {
194 	RT2560_RF5222
195 };
196 
197 int
198 rt2560_attach(device_t dev, int id)
199 {
200 	struct rt2560_softc *sc = device_get_softc(dev);
201 	struct ieee80211com *ic = &sc->sc_ic;
202 	struct ifnet *ifp = &ic->ic_if;
203 	int error, i;
204 
205 	callout_init(&sc->scan_ch);
206 	callout_init(&sc->rssadapt_ch);
207 
208 	sc->sc_irq_rid = 0;
209 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
210 					    RF_ACTIVE | RF_SHAREABLE);
211 	if (sc->sc_irq == NULL) {
212 		device_printf(dev, "could not allocate interrupt resource\n");
213 		return ENXIO;
214 	}
215 
216 	/* retrieve RT2560 rev. no */
217 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
218 
219 	/* retrieve MAC address */
220 	rt2560_get_macaddr(sc, ic->ic_myaddr);
221 
222 	/* retrieve RF rev. no and various other things from EEPROM */
223 	rt2560_read_eeprom(sc);
224 
225 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
226 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
227 
228 	/*
229 	 * Allocate Tx and Rx rings.
230 	 */
231 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
232 	if (error != 0) {
233 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
234 		goto fail;
235 	}
236 
237 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
238 	if (error != 0) {
239 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
240 		goto fail;
241 	}
242 
243 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
244 	if (error != 0) {
245 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
246 		goto fail;
247 	}
248 
249 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
250 	if (error != 0) {
251 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
252 		goto fail;
253 	}
254 
255 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
256 	if (error != 0) {
257 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
258 		goto fail;
259 	}
260 
261 	sysctl_ctx_init(&sc->sysctl_ctx);
262 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
263 					  SYSCTL_STATIC_CHILDREN(_hw),
264 					  OID_AUTO,
265 					  device_get_nameunit(dev),
266 					  CTLFLAG_RD, 0, "");
267 	if (sc->sysctl_tree == NULL) {
268 		device_printf(dev, "could not add sysctl node\n");
269 		error = ENXIO;
270 		goto fail;
271 	}
272 
273 	ifp->if_softc = sc;
274 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
275 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
276 	ifp->if_init = rt2560_init;
277 	ifp->if_ioctl = rt2560_ioctl;
278 	ifp->if_start = rt2560_start;
279 	ifp->if_watchdog = rt2560_watchdog;
280 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
281 	ifq_set_ready(&ifp->if_snd);
282 
283 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
284 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
285 	ic->ic_state = IEEE80211_S_INIT;
286 
287 	/* set device capabilities */
288 	ic->ic_caps =
289 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
290 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
291 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
292 	    IEEE80211_C_TXPMGT |	/* tx power management */
293 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
294 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
295 	    IEEE80211_C_WEP |		/* WEP */
296 	    IEEE80211_C_WPA;		/* 802.11i */
297 
298 	if (sc->rf_rev == RT2560_RF_5222) {
299 		/* set supported .11a rates */
300 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
301 
302 		/* set supported .11a channels */
303 		for (i = 36; i <= 64; i += 4) {
304 			ic->ic_channels[i].ic_freq =
305 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 		}
308 		for (i = 100; i <= 140; i += 4) {
309 			ic->ic_channels[i].ic_freq =
310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 		}
313 		for (i = 149; i <= 161; i += 4) {
314 			ic->ic_channels[i].ic_freq =
315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 		}
318 	}
319 
320 	/* set supported .11b and .11g rates */
321 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
322 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
323 
324 	/* set supported .11b and .11g channels (1 through 14) */
325 	for (i = 1; i <= 14; i++) {
326 		ic->ic_channels[i].ic_freq =
327 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 		ic->ic_channels[i].ic_flags =
329 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 	}
332 
333 	ieee80211_ifattach(ic);
334 	ic->ic_node_alloc = rt2560_node_alloc;
335 	ic->ic_updateslot = rt2560_update_slot;
336 	ic->ic_reset = rt2560_reset;
337 	/* enable s/w bmiss handling in sta mode */
338 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
339 
340 	/* override state transition machine */
341 	sc->sc_newstate = ic->ic_newstate;
342 	ic->ic_newstate = rt2560_newstate;
343 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
344 
345 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
346 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
347 
348 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
349 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
350 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
351 
352 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
353 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
354 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
355 
356 	/*
357 	 * Add a few sysctl knobs.
358 	 */
359 	sc->dwelltime = 200;
360 
361 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
362 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
363 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
364 
365 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
366 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
367 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
368 
369 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
370 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
371 	    CTLFLAG_RW, &sc->dwelltime, 0,
372 	    "channel dwell time (ms) for AP/station scanning");
373 
374 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2560_intr,
375 			       sc, &sc->sc_ih, ifp->if_serializer);
376 	if (error != 0) {
377 		device_printf(dev, "could not set up interrupt\n");
378 		bpfdetach(ifp);
379 		ieee80211_ifdetach(ic);
380 		goto fail;
381 	}
382 
383 	if (bootverbose)
384 		ieee80211_announce(ic);
385 	return 0;
386 fail:
387 	rt2560_detach(sc);
388 	return error;
389 }
390 
391 int
392 rt2560_detach(void *xsc)
393 {
394 	struct rt2560_softc *sc = xsc;
395 	struct ieee80211com *ic = &sc->sc_ic;
396 	struct ifnet *ifp = ic->ic_ifp;
397 
398 	if (device_is_attached(sc->sc_dev)) {
399 		lwkt_serialize_enter(ifp->if_serializer);
400 
401 		callout_stop(&sc->scan_ch);
402 		callout_stop(&sc->rssadapt_ch);
403 
404 		rt2560_stop(sc);
405 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
406 
407 		lwkt_serialize_exit(ifp->if_serializer);
408 
409 		bpfdetach(ifp);
410 		ieee80211_ifdetach(ic);
411 	}
412 
413 	rt2560_free_tx_ring(sc, &sc->txq);
414 	rt2560_free_tx_ring(sc, &sc->atimq);
415 	rt2560_free_tx_ring(sc, &sc->prioq);
416 	rt2560_free_tx_ring(sc, &sc->bcnq);
417 	rt2560_free_rx_ring(sc, &sc->rxq);
418 
419 	if (sc->sc_irq != NULL) {
420 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
421 				     sc->sc_irq);
422 	}
423 
424 	if (sc->sysctl_tree != NULL)
425 		sysctl_ctx_free(&sc->sysctl_ctx);
426 
427 	return 0;
428 }
429 
430 void
431 rt2560_shutdown(void *xsc)
432 {
433 	struct rt2560_softc *sc = xsc;
434 	struct ifnet *ifp = &sc->sc_ic.ic_if;
435 
436 	lwkt_serialize_enter(ifp->if_serializer);
437 	rt2560_stop(sc);
438 	lwkt_serialize_exit(ifp->if_serializer);
439 }
440 
441 void
442 rt2560_suspend(void *xsc)
443 {
444 	struct rt2560_softc *sc = xsc;
445 	struct ifnet *ifp = &sc->sc_ic.ic_if;
446 
447 	lwkt_serialize_enter(ifp->if_serializer);
448 	rt2560_stop(sc);
449 	lwkt_serialize_exit(ifp->if_serializer);
450 }
451 
452 void
453 rt2560_resume(void *xsc)
454 {
455 	struct rt2560_softc *sc = xsc;
456 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
457 
458 	lwkt_serialize_enter(ifp->if_serializer);
459 	if (ifp->if_flags & IFF_UP) {
460 		ifp->if_init(ifp->if_softc);
461 		if (ifp->if_flags & IFF_RUNNING)
462 			ifp->if_start(ifp);
463 	}
464 	lwkt_serialize_exit(ifp->if_serializer);
465 }
466 
467 static void
468 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
469 {
470 	if (error != 0)
471 		return;
472 
473 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
474 
475 	*(bus_addr_t *)arg = segs[0].ds_addr;
476 }
477 
478 static int
479 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
480     int count)
481 {
482 	int i, error;
483 
484 	ring->count = count;
485 	ring->queued = 0;
486 	ring->cur = ring->next = 0;
487 	ring->cur_encrypt = ring->next_encrypt = 0;
488 
489 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
490 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
491 	    count * RT2560_TX_DESC_SIZE, 0, &ring->desc_dmat);
492 	if (error != 0) {
493 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
494 		goto fail;
495 	}
496 
497 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
498 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
499 	if (error != 0) {
500 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
501 		goto fail;
502 	}
503 
504 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
505 	    			count * RT2560_TX_DESC_SIZE,
506 				rt2560_dma_map_addr, &ring->physaddr, 0);
507 	if (error != 0) {
508 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
509 
510 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
511 		ring->desc = NULL;
512 		goto fail;
513 	}
514 
515 	ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
516 	    M_WAITOK | M_ZERO);
517 
518 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
519 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
520 	    MCLBYTES, 0, &ring->data_dmat);
521 	if (error != 0) {
522 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
523 		goto fail;
524 	}
525 
526 	for (i = 0; i < count; i++) {
527 		error = bus_dmamap_create(ring->data_dmat, 0,
528 		    &ring->data[i].map);
529 		if (error != 0) {
530 			device_printf(sc->sc_dev, "could not create DMA map\n");
531 			goto fail;
532 		}
533 	}
534 	return 0;
535 
536 fail:	rt2560_free_tx_ring(sc, ring);
537 	return error;
538 }
539 
540 static void
541 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
542 {
543 	struct rt2560_tx_desc *desc;
544 	struct rt2560_tx_data *data;
545 	int i;
546 
547 	for (i = 0; i < ring->count; i++) {
548 		desc = &ring->desc[i];
549 		data = &ring->data[i];
550 
551 		if (data->m != NULL) {
552 			bus_dmamap_sync(ring->data_dmat, data->map,
553 			    BUS_DMASYNC_POSTWRITE);
554 			bus_dmamap_unload(ring->data_dmat, data->map);
555 			m_freem(data->m);
556 			data->m = NULL;
557 		}
558 
559 		if (data->ni != NULL) {
560 			ieee80211_free_node(data->ni);
561 			data->ni = NULL;
562 		}
563 
564 		desc->flags = 0;
565 	}
566 
567 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
568 
569 	ring->queued = 0;
570 	ring->cur = ring->next = 0;
571 	ring->cur_encrypt = ring->next_encrypt = 0;
572 }
573 
574 static void
575 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
576 {
577 	struct rt2560_tx_data *data;
578 	int i;
579 
580 	if (ring->desc != NULL) {
581 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
582 		    BUS_DMASYNC_POSTWRITE);
583 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
584 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
585 		ring->desc = NULL;
586 	}
587 
588 	if (ring->desc_dmat != NULL) {
589 		bus_dma_tag_destroy(ring->desc_dmat);
590 		ring->desc_dmat = NULL;
591 	}
592 
593 	if (ring->data != NULL) {
594 		for (i = 0; i < ring->count; i++) {
595 			data = &ring->data[i];
596 
597 			if (data->m != NULL) {
598 				bus_dmamap_sync(ring->data_dmat, data->map,
599 				    BUS_DMASYNC_POSTWRITE);
600 				bus_dmamap_unload(ring->data_dmat, data->map);
601 				m_freem(data->m);
602 				data->m = NULL;
603 			}
604 
605 			if (data->ni != NULL) {
606 				ieee80211_free_node(data->ni);
607 				data->ni = NULL;
608 			}
609 
610 			if (data->map != NULL) {
611 				bus_dmamap_destroy(ring->data_dmat, data->map);
612 				data->map = NULL;
613 			}
614 		}
615 
616 		kfree(ring->data, M_DEVBUF);
617 		ring->data = NULL;
618 	}
619 
620 	if (ring->data_dmat != NULL) {
621 		bus_dma_tag_destroy(ring->data_dmat);
622 		ring->data_dmat = NULL;
623 	}
624 }
625 
626 static int
627 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
628     int count)
629 {
630 	struct rt2560_rx_desc *desc;
631 	struct rt2560_rx_data *data;
632 	bus_addr_t physaddr;
633 	int i, error;
634 
635 	ring->count = count;
636 	ring->cur = ring->next = 0;
637 	ring->cur_decrypt = 0;
638 
639 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
640 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
641 	    count * RT2560_RX_DESC_SIZE, 0, &ring->desc_dmat);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
644 		goto fail;
645 	}
646 
647 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
648 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
651 		goto fail;
652 	}
653 
654 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
655 				count * RT2560_RX_DESC_SIZE,
656 				rt2560_dma_map_addr, &ring->physaddr, 0);
657 	if (error != 0) {
658 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
659 
660 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
661 		ring->desc = NULL;
662 		goto fail;
663 	}
664 
665 	ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
666 	    M_WAITOK | M_ZERO);
667 
668 	/*
669 	 * Pre-allocate Rx buffers and populate Rx ring.
670 	 */
671 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
672 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
673 	    &ring->data_dmat);
674 	if (error != 0) {
675 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
676 		goto fail;
677 	}
678 
679 	for (i = 0; i < count; i++) {
680 		desc = &sc->rxq.desc[i];
681 		data = &sc->rxq.data[i];
682 
683 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
684 		if (error != 0) {
685 			device_printf(sc->sc_dev, "could not create DMA map\n");
686 			goto fail;
687 		}
688 
689 		data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
690 		if (data->m == NULL) {
691 			device_printf(sc->sc_dev,
692 			    "could not allocate rx mbuf\n");
693 			error = ENOMEM;
694 			goto fail;
695 		}
696 
697 		error = bus_dmamap_load(ring->data_dmat, data->map,
698 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
699 		    &physaddr, 0);
700 		if (error != 0) {
701 			device_printf(sc->sc_dev,
702 			    "could not load rx buf DMA map");
703 
704 			m_freem(data->m);
705 			data->m = NULL;
706 			goto fail;
707 		}
708 
709 		desc->flags = htole32(RT2560_RX_BUSY);
710 		desc->physaddr = htole32(physaddr);
711 	}
712 
713 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
714 
715 	return 0;
716 
717 fail:	rt2560_free_rx_ring(sc, ring);
718 	return error;
719 }
720 
721 static void
722 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
723 {
724 	int i;
725 
726 	for (i = 0; i < ring->count; i++) {
727 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
728 		ring->data[i].drop = 0;
729 	}
730 
731 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
732 
733 	ring->cur = ring->next = 0;
734 	ring->cur_decrypt = 0;
735 }
736 
737 static void
738 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
739 {
740 	struct rt2560_rx_data *data;
741 
742 	if (ring->desc != NULL) {
743 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
744 		    BUS_DMASYNC_POSTWRITE);
745 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
746 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
747 		ring->desc = NULL;
748 	}
749 
750 	if (ring->desc_dmat != NULL) {
751 		bus_dma_tag_destroy(ring->desc_dmat);
752 		ring->desc_dmat = NULL;
753 	}
754 
755 	if (ring->data != NULL) {
756 		int i;
757 
758 		for (i = 0; i < ring->count; i++) {
759 			data = &ring->data[i];
760 
761 			if (data->m != NULL) {
762 				bus_dmamap_sync(ring->data_dmat, data->map,
763 				    BUS_DMASYNC_POSTREAD);
764 				bus_dmamap_unload(ring->data_dmat, data->map);
765 				m_freem(data->m);
766 				data->m = NULL;
767 			}
768 
769 			if (data->map != NULL) {
770 				bus_dmamap_destroy(ring->data_dmat, data->map);
771 				data->map = NULL;
772 			}
773 		}
774 
775 		kfree(ring->data, M_DEVBUF);
776 		ring->data = NULL;
777 	}
778 
779 	if (ring->data_dmat != NULL) {
780 		bus_dma_tag_destroy(ring->data_dmat);
781 		ring->data_dmat = NULL;
782 	}
783 }
784 
785 static struct ieee80211_node *
786 rt2560_node_alloc(struct ieee80211_node_table *nt)
787 {
788 	struct rt2560_node *rn;
789 
790 	rn = kmalloc(sizeof(struct rt2560_node), M_80211_NODE,
791 	    M_NOWAIT | M_ZERO);
792 
793 	return (rn != NULL) ? &rn->ni : NULL;
794 }
795 
796 static int
797 rt2560_media_change(struct ifnet *ifp)
798 {
799 	struct rt2560_softc *sc = ifp->if_softc;
800 	int error;
801 
802 	error = ieee80211_media_change(ifp);
803 	if (error != ENETRESET)
804 		return error;
805 
806 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
807 		rt2560_init(sc);
808 	return 0;
809 }
810 
811 /*
812  * This function is called periodically (every 200ms) during scanning to
813  * switch from one channel to another.
814  */
815 static void
816 rt2560_next_scan(void *arg)
817 {
818 	struct rt2560_softc *sc = arg;
819 	struct ieee80211com *ic = &sc->sc_ic;
820 	struct ifnet *ifp = ic->ic_ifp;
821 
822 	lwkt_serialize_enter(ifp->if_serializer);
823 	if (ic->ic_state == IEEE80211_S_SCAN)
824 		ieee80211_next_scan(ic);
825 	lwkt_serialize_exit(ifp->if_serializer);
826 }
827 
828 /*
829  * This function is called for each node present in the node station table.
830  */
831 static void
832 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
833 {
834 	struct rt2560_node *rn = (struct rt2560_node *)ni;
835 
836 	ral_rssadapt_updatestats(&rn->rssadapt);
837 }
838 
839 /*
840  * This function is called periodically (every 100ms) in RUN state to update
841  * the rate adaptation statistics.
842  */
843 static void
844 rt2560_update_rssadapt(void *arg)
845 {
846 	struct rt2560_softc *sc = arg;
847 	struct ieee80211com *ic = &sc->sc_ic;
848 	struct ifnet *ifp = ic->ic_ifp;
849 
850 	lwkt_serialize_enter(ifp->if_serializer);
851 
852 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
853 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
854 
855 	lwkt_serialize_exit(ifp->if_serializer);
856 }
857 
858 static int
859 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
860 {
861 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
862 	enum ieee80211_state ostate;
863 	struct ieee80211_node *ni;
864 	struct mbuf *m;
865 	int error = 0;
866 
867 	ostate = ic->ic_state;
868 	callout_stop(&sc->scan_ch);
869 
870 	switch (nstate) {
871 	case IEEE80211_S_INIT:
872 		callout_stop(&sc->rssadapt_ch);
873 
874 		if (ostate == IEEE80211_S_RUN) {
875 			/* abort TSF synchronization */
876 			RAL_WRITE(sc, RT2560_CSR14, 0);
877 
878 			/* turn association led off */
879 			rt2560_update_led(sc, 0, 0);
880 		}
881 		break;
882 
883 	case IEEE80211_S_SCAN:
884 		rt2560_set_chan(sc, ic->ic_curchan);
885 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
886 		    rt2560_next_scan, sc);
887 		break;
888 
889 	case IEEE80211_S_AUTH:
890 		rt2560_set_chan(sc, ic->ic_curchan);
891 		break;
892 
893 	case IEEE80211_S_ASSOC:
894 		rt2560_set_chan(sc, ic->ic_curchan);
895 		break;
896 
897 	case IEEE80211_S_RUN:
898 		rt2560_set_chan(sc, ic->ic_curchan);
899 
900 		ni = ic->ic_bss;
901 
902 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
903 			rt2560_update_plcp(sc);
904 			rt2560_set_basicrates(sc);
905 			rt2560_set_bssid(sc, ni->ni_bssid);
906 		}
907 
908 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
909 		    ic->ic_opmode == IEEE80211_M_IBSS) {
910 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
911 			if (m == NULL) {
912 				device_printf(sc->sc_dev,
913 				    "could not allocate beacon\n");
914 				error = ENOBUFS;
915 				break;
916 			}
917 
918 			ieee80211_ref_node(ni);
919 			error = rt2560_tx_bcn(sc, m, ni);
920 			if (error != 0)
921 				break;
922 		}
923 
924 		/* turn assocation led on */
925 		rt2560_update_led(sc, 1, 0);
926 
927 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
928 			callout_reset(&sc->rssadapt_ch, hz / 10,
929 			    rt2560_update_rssadapt, sc);
930 
931 			rt2560_enable_tsf_sync(sc);
932 		}
933 		break;
934 	}
935 
936 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
937 }
938 
939 /*
940  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
941  * 93C66).
942  */
943 static uint16_t
944 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
945 {
946 	uint32_t tmp;
947 	uint16_t val;
948 	int n;
949 
950 	/* clock C once before the first command */
951 	RT2560_EEPROM_CTL(sc, 0);
952 
953 	RT2560_EEPROM_CTL(sc, RT2560_S);
954 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
955 	RT2560_EEPROM_CTL(sc, RT2560_S);
956 
957 	/* write start bit (1) */
958 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
959 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
960 
961 	/* write READ opcode (10) */
962 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
963 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
964 	RT2560_EEPROM_CTL(sc, RT2560_S);
965 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
966 
967 	/* write address (A5-A0 or A7-A0) */
968 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
969 	for (; n >= 0; n--) {
970 		RT2560_EEPROM_CTL(sc, RT2560_S |
971 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
972 		RT2560_EEPROM_CTL(sc, RT2560_S |
973 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
974 	}
975 
976 	RT2560_EEPROM_CTL(sc, RT2560_S);
977 
978 	/* read data Q15-Q0 */
979 	val = 0;
980 	for (n = 15; n >= 0; n--) {
981 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
982 		tmp = RAL_READ(sc, RT2560_CSR21);
983 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
984 		RT2560_EEPROM_CTL(sc, RT2560_S);
985 	}
986 
987 	RT2560_EEPROM_CTL(sc, 0);
988 
989 	/* clear Chip Select and clock C */
990 	RT2560_EEPROM_CTL(sc, RT2560_S);
991 	RT2560_EEPROM_CTL(sc, 0);
992 	RT2560_EEPROM_CTL(sc, RT2560_C);
993 
994 	return val;
995 }
996 
997 /*
998  * Some frames were processed by the hardware cipher engine and are ready for
999  * transmission.
1000  */
1001 static void
1002 rt2560_encryption_intr(struct rt2560_softc *sc)
1003 {
1004 	struct rt2560_tx_desc *desc;
1005 	int hw;
1006 
1007 	/* retrieve last descriptor index processed by cipher engine */
1008 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
1009 	hw /= RT2560_TX_DESC_SIZE;
1010 
1011 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1012 	    BUS_DMASYNC_POSTREAD);
1013 
1014 	for (; sc->txq.next_encrypt != hw;) {
1015 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1016 
1017 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1018 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
1019 			break;
1020 
1021 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1022 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1023 		    RT2560_TX_CIPHER_TKIP)
1024 			desc->eiv = bswap32(desc->eiv);
1025 
1026 		/* mark the frame ready for transmission */
1027 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1028 
1029 		DPRINTFN(15, ("encryption done idx=%u\n",
1030 		    sc->txq.next_encrypt));
1031 
1032 		sc->txq.next_encrypt =
1033 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1034 	}
1035 
1036 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1037 	    BUS_DMASYNC_PREWRITE);
1038 
1039 	/* kick Tx */
1040 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1041 }
1042 
1043 static void
1044 rt2560_tx_intr(struct rt2560_softc *sc)
1045 {
1046 	struct ieee80211com *ic = &sc->sc_ic;
1047 	struct ifnet *ifp = ic->ic_ifp;
1048 	struct rt2560_tx_desc *desc;
1049 	struct rt2560_tx_data *data;
1050 	struct rt2560_node *rn;
1051 
1052 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1053 	    BUS_DMASYNC_POSTREAD);
1054 
1055 	for (;;) {
1056 		desc = &sc->txq.desc[sc->txq.next];
1057 		data = &sc->txq.data[sc->txq.next];
1058 
1059 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1060 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1061 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1062 			break;
1063 
1064 		rn = (struct rt2560_node *)data->ni;
1065 
1066 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1067 		case RT2560_TX_SUCCESS:
1068 			DPRINTFN(10, ("data frame sent successfully\n"));
1069 			if (data->id.id_node != NULL) {
1070 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
1071 				    &data->id);
1072 			}
1073 			ifp->if_opackets++;
1074 			break;
1075 
1076 		case RT2560_TX_SUCCESS_RETRY:
1077 			DPRINTFN(9, ("data frame sent after %u retries\n",
1078 			    (le32toh(desc->flags) >> 5) & 0x7));
1079 			ifp->if_opackets++;
1080 			break;
1081 
1082 		case RT2560_TX_FAIL_RETRY:
1083 			DPRINTFN(9, ("sending data frame failed (too much "
1084 			    "retries)\n"));
1085 			if (data->id.id_node != NULL) {
1086 				ral_rssadapt_lower_rate(ic, data->ni,
1087 				    &rn->rssadapt, &data->id);
1088 			}
1089 			ifp->if_oerrors++;
1090 			break;
1091 
1092 		case RT2560_TX_FAIL_INVALID:
1093 		case RT2560_TX_FAIL_OTHER:
1094 		default:
1095 			device_printf(sc->sc_dev, "sending data frame failed "
1096 			    "0x%08x\n", le32toh(desc->flags));
1097 			ifp->if_oerrors++;
1098 		}
1099 
1100 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1101 		    BUS_DMASYNC_POSTWRITE);
1102 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
1103 		m_freem(data->m);
1104 		data->m = NULL;
1105 		ieee80211_free_node(data->ni);
1106 		data->ni = NULL;
1107 
1108 		/* descriptor is no longer valid */
1109 		desc->flags &= ~htole32(RT2560_TX_VALID);
1110 
1111 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1112 
1113 		sc->txq.queued--;
1114 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1115 	}
1116 
1117 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1118 	    BUS_DMASYNC_PREWRITE);
1119 
1120 	sc->sc_tx_timer = 0;
1121 	ifp->if_flags &= ~IFF_OACTIVE;
1122 	rt2560_start(ifp);
1123 }
1124 
1125 static void
1126 rt2560_prio_intr(struct rt2560_softc *sc)
1127 {
1128 	struct ieee80211com *ic = &sc->sc_ic;
1129 	struct ifnet *ifp = ic->ic_ifp;
1130 	struct rt2560_tx_desc *desc;
1131 	struct rt2560_tx_data *data;
1132 
1133 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1134 	    BUS_DMASYNC_POSTREAD);
1135 
1136 	for (;;) {
1137 		desc = &sc->prioq.desc[sc->prioq.next];
1138 		data = &sc->prioq.data[sc->prioq.next];
1139 
1140 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1141 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1142 			break;
1143 
1144 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1145 		case RT2560_TX_SUCCESS:
1146 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1147 			break;
1148 
1149 		case RT2560_TX_SUCCESS_RETRY:
1150 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1151 			    (le32toh(desc->flags) >> 5) & 0x7));
1152 			break;
1153 
1154 		case RT2560_TX_FAIL_RETRY:
1155 			DPRINTFN(9, ("sending mgt frame failed (too much "
1156 			    "retries)\n"));
1157 			break;
1158 
1159 		case RT2560_TX_FAIL_INVALID:
1160 		case RT2560_TX_FAIL_OTHER:
1161 		default:
1162 			device_printf(sc->sc_dev, "sending mgt frame failed "
1163 			    "0x%08x\n", le32toh(desc->flags));
1164 		}
1165 
1166 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1167 		    BUS_DMASYNC_POSTWRITE);
1168 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1169 		m_freem(data->m);
1170 		data->m = NULL;
1171 		ieee80211_free_node(data->ni);
1172 		data->ni = NULL;
1173 
1174 		/* descriptor is no longer valid */
1175 		desc->flags &= ~htole32(RT2560_TX_VALID);
1176 
1177 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1178 
1179 		sc->prioq.queued--;
1180 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1181 	}
1182 
1183 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1184 	    BUS_DMASYNC_PREWRITE);
1185 
1186 	sc->sc_tx_timer = 0;
1187 	ifp->if_flags &= ~IFF_OACTIVE;
1188 	rt2560_start(ifp);
1189 }
1190 
1191 /*
1192  * Some frames were processed by the hardware cipher engine and are ready for
1193  * transmission to the IEEE802.11 layer.
1194  */
1195 static void
1196 rt2560_decryption_intr(struct rt2560_softc *sc)
1197 {
1198 	struct ieee80211com *ic = &sc->sc_ic;
1199 	struct ifnet *ifp = ic->ic_ifp;
1200 	struct rt2560_rx_desc *desc;
1201 	struct rt2560_rx_data *data;
1202 	bus_addr_t physaddr;
1203 	struct ieee80211_frame *wh;
1204 	struct ieee80211_node *ni;
1205 	struct rt2560_node *rn;
1206 	struct mbuf *mnew, *m;
1207 	int hw, error;
1208 
1209 	/* retrieve last decriptor index processed by cipher engine */
1210 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1211 	hw /= RT2560_RX_DESC_SIZE;
1212 
1213 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1214 	    BUS_DMASYNC_POSTREAD);
1215 
1216 	for (; sc->rxq.cur_decrypt != hw;) {
1217 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1218 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1219 
1220 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1221 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1222 			break;
1223 
1224 		if (data->drop) {
1225 			ifp->if_ierrors++;
1226 			goto skip;
1227 		}
1228 
1229 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1230 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1231 			ifp->if_ierrors++;
1232 			goto skip;
1233 		}
1234 
1235 		/*
1236 		 * Try to allocate a new mbuf for this ring element and load it
1237 		 * before processing the current mbuf. If the ring element
1238 		 * cannot be loaded, drop the received packet and reuse the old
1239 		 * mbuf. In the unlikely case that the old mbuf can't be
1240 		 * reloaded either, explicitly panic.
1241 		 */
1242 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1243 		if (mnew == NULL) {
1244 			ifp->if_ierrors++;
1245 			goto skip;
1246 		}
1247 
1248 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1249 		    BUS_DMASYNC_POSTREAD);
1250 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1251 
1252 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1253 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1254 		    &physaddr, 0);
1255 		if (error != 0) {
1256 			m_freem(mnew);
1257 
1258 			/* try to reload the old mbuf */
1259 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1260 			    mtod(data->m, void *), MCLBYTES,
1261 			    rt2560_dma_map_addr, &physaddr, 0);
1262 			if (error != 0) {
1263 				/* very unlikely that it will fail... */
1264 				panic("%s: could not load old rx mbuf",
1265 				    device_get_name(sc->sc_dev));
1266 			}
1267 			ifp->if_ierrors++;
1268 			goto skip;
1269 		}
1270 
1271 		/*
1272 	 	 * New mbuf successfully loaded, update Rx ring and continue
1273 		 * processing.
1274 		 */
1275 		m = data->m;
1276 		data->m = mnew;
1277 		desc->physaddr = htole32(physaddr);
1278 
1279 		/* finalize mbuf */
1280 		m->m_pkthdr.rcvif = ifp;
1281 		m->m_pkthdr.len = m->m_len =
1282 		    (le32toh(desc->flags) >> 16) & 0xfff;
1283 
1284 		if (sc->sc_drvbpf != NULL) {
1285 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1286 			uint32_t tsf_lo, tsf_hi;
1287 
1288 			/* get timestamp (low and high 32 bits) */
1289 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1290 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1291 
1292 			tap->wr_tsf =
1293 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1294 			tap->wr_flags = 0;
1295 			tap->wr_rate = rt2560_rxrate(desc);
1296 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1297 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1298 			tap->wr_antenna = sc->rx_ant;
1299 			tap->wr_antsignal = desc->rssi;
1300 
1301 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1302 		}
1303 
1304 		wh = mtod(m, struct ieee80211_frame *);
1305 		ni = ieee80211_find_rxnode(ic,
1306 		    (struct ieee80211_frame_min *)wh);
1307 
1308 		/* send the frame to the 802.11 layer */
1309 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1310 
1311 		/* give rssi to the rate adatation algorithm */
1312 		rn = (struct rt2560_node *)ni;
1313 		ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1314 
1315 		/* node is no longer needed */
1316 		ieee80211_free_node(ni);
1317 
1318 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1319 
1320 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1321 
1322 		sc->rxq.cur_decrypt =
1323 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1324 	}
1325 
1326 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1327 	    BUS_DMASYNC_PREWRITE);
1328 }
1329 
1330 /*
1331  * Some frames were received. Pass them to the hardware cipher engine before
1332  * sending them to the 802.11 layer.
1333  */
1334 static void
1335 rt2560_rx_intr(struct rt2560_softc *sc)
1336 {
1337 	struct rt2560_rx_desc *desc;
1338 	struct rt2560_rx_data *data;
1339 
1340 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1341 	    BUS_DMASYNC_POSTREAD);
1342 
1343 	for (;;) {
1344 		desc = &sc->rxq.desc[sc->rxq.cur];
1345 		data = &sc->rxq.data[sc->rxq.cur];
1346 
1347 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1348 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1349 			break;
1350 
1351 		data->drop = 0;
1352 
1353 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1354 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1355 			/*
1356 			 * This should not happen since we did not request
1357 			 * to receive those frames when we filled RXCSR0.
1358 			 */
1359 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1360 			    le32toh(desc->flags)));
1361 			data->drop = 1;
1362 		}
1363 
1364 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1365 			DPRINTFN(5, ("bad length\n"));
1366 			data->drop = 1;
1367 		}
1368 
1369 		/* mark the frame for decryption */
1370 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1371 
1372 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1373 
1374 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1375 	}
1376 
1377 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1378 	    BUS_DMASYNC_PREWRITE);
1379 
1380 	/* kick decrypt */
1381 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1382 }
1383 
1384 /*
1385  * This function is called periodically in IBSS mode when a new beacon must be
1386  * sent out.
1387  */
1388 static void
1389 rt2560_beacon_expire(struct rt2560_softc *sc)
1390 {
1391 	struct ieee80211com *ic = &sc->sc_ic;
1392 	struct rt2560_tx_data *data;
1393 
1394 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1395 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1396 		return;
1397 
1398 	data = &sc->bcnq.data[sc->bcnq.next];
1399 
1400 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1401 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1402 
1403 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1404 
1405 	if (ic->ic_rawbpf != NULL)
1406 		bpf_mtap(ic->ic_rawbpf, data->m);
1407 
1408 	rt2560_tx_bcn(sc, data->m, data->ni);
1409 
1410 	DPRINTFN(15, ("beacon expired\n"));
1411 
1412 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1413 }
1414 
1415 /* ARGSUSED */
1416 static void
1417 rt2560_wakeup_expire(struct rt2560_softc *sc)
1418 {
1419 	DPRINTFN(2, ("wakeup expired\n"));
1420 }
1421 
1422 static void
1423 rt2560_intr(void *arg)
1424 {
1425 	struct rt2560_softc *sc = arg;
1426 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1427 	uint32_t r;
1428 
1429 	/* disable interrupts */
1430 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1431 
1432 	/* don't re-enable interrupts if we're shutting down */
1433 	if (!(ifp->if_flags & IFF_RUNNING))
1434 		return;
1435 
1436 	r = RAL_READ(sc, RT2560_CSR7);
1437 	RAL_WRITE(sc, RT2560_CSR7, r);
1438 
1439 	if (r & RT2560_BEACON_EXPIRE)
1440 		rt2560_beacon_expire(sc);
1441 
1442 	if (r & RT2560_WAKEUP_EXPIRE)
1443 		rt2560_wakeup_expire(sc);
1444 
1445 	if (r & RT2560_PRIO_DONE)
1446 		rt2560_prio_intr(sc);
1447 
1448 	if (r & (RT2560_TX_DONE | RT2560_ENCRYPTION_DONE)) {
1449 		int i;
1450 
1451 		for (i = 0; i < 2; ++i) {
1452 			rt2560_tx_intr(sc);
1453 			rt2560_encryption_intr(sc);
1454 		}
1455 	}
1456 
1457 	if (r & (RT2560_DECRYPTION_DONE | RT2560_RX_DONE)) {
1458 		int i;
1459 
1460 		for (i = 0; i < 2; ++i) {
1461 			rt2560_decryption_intr(sc);
1462 			rt2560_rx_intr(sc);
1463 		}
1464 	}
1465 
1466 	/* re-enable interrupts */
1467 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1468 }
1469 
1470 /* quickly determine if a given rate is CCK or OFDM */
1471 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1472 
1473 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1474 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1475 
1476 #define RAL_SIFS		10	/* us */
1477 
1478 #define RT2560_TXRX_TURNAROUND	10	/* us */
1479 
1480 /*
1481  * This function is only used by the Rx radiotap code.
1482  */
1483 static uint8_t
1484 rt2560_rxrate(struct rt2560_rx_desc *desc)
1485 {
1486 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1487 		/* reverse function of rt2560_plcp_signal */
1488 		switch (desc->rate) {
1489 		case 0xb:	return 12;
1490 		case 0xf:	return 18;
1491 		case 0xa:	return 24;
1492 		case 0xe:	return 36;
1493 		case 0x9:	return 48;
1494 		case 0xd:	return 72;
1495 		case 0x8:	return 96;
1496 		case 0xc:	return 108;
1497 		}
1498 	} else {
1499 		if (desc->rate == 10)
1500 			return 2;
1501 		if (desc->rate == 20)
1502 			return 4;
1503 		if (desc->rate == 55)
1504 			return 11;
1505 		if (desc->rate == 110)
1506 			return 22;
1507 	}
1508 	return 2;	/* should not get there */
1509 }
1510 
1511 /*
1512  * Return the expected ack rate for a frame transmitted at rate `rate'.
1513  * XXX: this should depend on the destination node basic rate set.
1514  */
1515 static int
1516 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1517 {
1518 	switch (rate) {
1519 	/* CCK rates */
1520 	case 2:
1521 		return 2;
1522 	case 4:
1523 	case 11:
1524 	case 22:
1525 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1526 
1527 	/* OFDM rates */
1528 	case 12:
1529 	case 18:
1530 		return 12;
1531 	case 24:
1532 	case 36:
1533 		return 24;
1534 	case 48:
1535 	case 72:
1536 	case 96:
1537 	case 108:
1538 		return 48;
1539 	}
1540 
1541 	/* default to 1Mbps */
1542 	return 2;
1543 }
1544 
1545 /*
1546  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1547  * The function automatically determines the operating mode depending on the
1548  * given rate. `flags' indicates whether short preamble is in use or not.
1549  */
1550 static uint16_t
1551 rt2560_txtime(int len, int rate, uint32_t flags)
1552 {
1553 	uint16_t txtime;
1554 
1555 	if (RAL_RATE_IS_OFDM(rate)) {
1556 		/* IEEE Std 802.11a-1999, pp. 37 */
1557 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1558 		txtime = 16 + 4 + 4 * txtime + 6;
1559 	} else {
1560 		/* IEEE Std 802.11b-1999, pp. 28 */
1561 		txtime = (16 * len + rate - 1) / rate;
1562 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1563 			txtime +=  72 + 24;
1564 		else
1565 			txtime += 144 + 48;
1566 	}
1567 
1568 	return txtime;
1569 }
1570 
1571 static uint8_t
1572 rt2560_plcp_signal(int rate)
1573 {
1574 	switch (rate) {
1575 	/* CCK rates (returned values are device-dependent) */
1576 	case 2:		return 0x0;
1577 	case 4:		return 0x1;
1578 	case 11:	return 0x2;
1579 	case 22:	return 0x3;
1580 
1581 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1582 	case 12:	return 0xb;
1583 	case 18:	return 0xf;
1584 	case 24:	return 0xa;
1585 	case 36:	return 0xe;
1586 	case 48:	return 0x9;
1587 	case 72:	return 0xd;
1588 	case 96:	return 0x8;
1589 	case 108:	return 0xc;
1590 
1591 	/* unsupported rates (should not get there) */
1592 	default:	return 0xff;
1593 	}
1594 }
1595 
1596 static void
1597 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1598     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1599 {
1600 	struct ieee80211com *ic = &sc->sc_ic;
1601 	uint16_t plcp_length;
1602 	int remainder;
1603 
1604 	desc->flags = htole32(flags);
1605 	desc->flags |= htole32(len << 16);
1606 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1607 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1608 
1609 	desc->physaddr = htole32(physaddr);
1610 	desc->wme = htole16(
1611 	    RT2560_AIFSN(2) |
1612 	    RT2560_LOGCWMIN(3) |
1613 	    RT2560_LOGCWMAX(8));
1614 
1615 	/* setup PLCP fields */
1616 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1617 	desc->plcp_service = 4;
1618 
1619 	len += IEEE80211_CRC_LEN;
1620 	if (RAL_RATE_IS_OFDM(rate)) {
1621 		desc->flags |= htole32(RT2560_TX_OFDM);
1622 
1623 		plcp_length = len & 0xfff;
1624 		desc->plcp_length_hi = plcp_length >> 6;
1625 		desc->plcp_length_lo = plcp_length & 0x3f;
1626 	} else {
1627 		plcp_length = (16 * len + rate - 1) / rate;
1628 		if (rate == 22) {
1629 			remainder = (16 * len) % 22;
1630 			if (remainder != 0 && remainder < 7)
1631 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1632 		}
1633 		desc->plcp_length_hi = plcp_length >> 8;
1634 		desc->plcp_length_lo = plcp_length & 0xff;
1635 
1636 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1637 			desc->plcp_signal |= 0x08;
1638 	}
1639 }
1640 
1641 static int
1642 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1643     struct ieee80211_node *ni)
1644 {
1645 	struct ieee80211com *ic = &sc->sc_ic;
1646 	struct rt2560_tx_desc *desc;
1647 	struct rt2560_tx_data *data;
1648 	bus_addr_t paddr;
1649 	int rate, error;
1650 
1651 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1652 	data = &sc->bcnq.data[sc->bcnq.cur];
1653 
1654 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1655 
1656 	error = bus_dmamap_load_mbuf(sc->bcnq.data_dmat, data->map, m0,
1657 				     rt2560_dma_map_mbuf, &paddr,
1658 				     BUS_DMA_NOWAIT);
1659 	if (error != 0) {
1660 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1661 		    error);
1662 		m_freem(m0);
1663 		return error;
1664 	}
1665 
1666 	if (sc->sc_drvbpf != NULL) {
1667 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1668 
1669 		tap->wt_flags = 0;
1670 		tap->wt_rate = rate;
1671 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1672 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1673 		tap->wt_antenna = sc->tx_ant;
1674 
1675 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1676 	}
1677 
1678 	data->m = m0;
1679 	data->ni = ni;
1680 
1681 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1682 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, paddr);
1683 
1684 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1685 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1686 
1687 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1688 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1689 	    BUS_DMASYNC_PREWRITE);
1690 
1691 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1692 
1693 	return 0;
1694 }
1695 
1696 static int
1697 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1698     struct ieee80211_node *ni)
1699 {
1700 	struct ieee80211com *ic = &sc->sc_ic;
1701 	struct rt2560_tx_desc *desc;
1702 	struct rt2560_tx_data *data;
1703 	struct ieee80211_frame *wh;
1704 	bus_addr_t paddr;
1705 	uint16_t dur;
1706 	uint32_t flags = 0;
1707 	int rate, error;
1708 
1709 	desc = &sc->prioq.desc[sc->prioq.cur];
1710 	data = &sc->prioq.data[sc->prioq.cur];
1711 
1712 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1713 
1714 	error = bus_dmamap_load_mbuf(sc->prioq.data_dmat, data->map, m0,
1715 				     rt2560_dma_map_mbuf, &paddr, 0);
1716 	if (error != 0) {
1717 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1718 		    error);
1719 		m_freem(m0);
1720 		return error;
1721 	}
1722 
1723 	if (sc->sc_drvbpf != NULL) {
1724 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1725 
1726 		tap->wt_flags = 0;
1727 		tap->wt_rate = rate;
1728 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1729 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1730 		tap->wt_antenna = sc->tx_ant;
1731 
1732 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1733 	}
1734 
1735 	data->m = m0;
1736 	data->ni = ni;
1737 
1738 	wh = mtod(m0, struct ieee80211_frame *);
1739 
1740 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1741 		flags |= RT2560_TX_ACK;
1742 
1743 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1744 		      RAL_SIFS;
1745 		*(uint16_t *)wh->i_dur = htole16(dur);
1746 
1747 		/* tell hardware to add timestamp for probe responses */
1748 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1749 		    IEEE80211_FC0_TYPE_MGT &&
1750 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1751 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1752 			flags |= RT2560_TX_TIMESTAMP;
1753 	}
1754 
1755 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, paddr);
1756 
1757 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1758 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1759 	    BUS_DMASYNC_PREWRITE);
1760 
1761 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1762 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1763 
1764 	/* kick prio */
1765 	sc->prioq.queued++;
1766 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1767 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1768 
1769 	return 0;
1770 }
1771 
1772 /*
1773  * Build a RTS control frame.
1774  */
1775 static struct mbuf *
1776 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1777     uint16_t dur)
1778 {
1779 	struct ieee80211_frame_rts *rts;
1780 	struct mbuf *m;
1781 
1782 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1783 	if (m == NULL) {
1784 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1785 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1786 		return NULL;
1787 	}
1788 
1789 	rts = mtod(m, struct ieee80211_frame_rts *);
1790 
1791 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1792 	    IEEE80211_FC0_SUBTYPE_RTS;
1793 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1794 	*(uint16_t *)rts->i_dur = htole16(dur);
1795 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1796 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1797 
1798 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1799 
1800 	return m;
1801 }
1802 
1803 static int
1804 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1805     struct ieee80211_node *ni)
1806 {
1807 	struct ieee80211com *ic = &sc->sc_ic;
1808 	struct rt2560_tx_desc *desc;
1809 	struct rt2560_tx_data *data;
1810 	struct rt2560_node *rn;
1811 	struct ieee80211_rateset *rs;
1812 	struct ieee80211_frame *wh;
1813 	struct ieee80211_key *k;
1814 	struct mbuf *mnew;
1815 	bus_addr_t paddr;
1816 	uint16_t dur;
1817 	uint32_t flags = 0;
1818 	int rate, error;
1819 
1820 	wh = mtod(m0, struct ieee80211_frame *);
1821 
1822 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1823 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1824 		rate = rs->rs_rates[ic->ic_fixed_rate];
1825 	} else {
1826 		rs = &ni->ni_rates;
1827 		rn = (struct rt2560_node *)ni;
1828 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1829 		    m0->m_pkthdr.len, NULL, 0);
1830 		rate = rs->rs_rates[ni->ni_txrate];
1831 	}
1832 	rate &= IEEE80211_RATE_VAL;
1833 
1834 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1835 		k = ieee80211_crypto_encap(ic, ni, m0);
1836 		if (k == NULL) {
1837 			m_freem(m0);
1838 			return ENOBUFS;
1839 		}
1840 
1841 		/* packet header may have moved, reset our local pointer */
1842 		wh = mtod(m0, struct ieee80211_frame *);
1843 	}
1844 
1845 	/*
1846 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1847 	 * for directed frames only when the length of the MPDU is greater
1848 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1849 	 */
1850 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1851 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1852 		struct mbuf *m;
1853 		uint16_t dur;
1854 		int rtsrate, ackrate;
1855 
1856 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1857 		ackrate = rt2560_ack_rate(ic, rate);
1858 
1859 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1860 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1861 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1862 		      3 * RAL_SIFS;
1863 
1864 		m = rt2560_get_rts(sc, wh, dur);
1865 
1866 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1867 		data = &sc->txq.data[sc->txq.cur_encrypt];
1868 
1869 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1870 					     m, rt2560_dma_map_mbuf, &paddr, 0);
1871 		if (error != 0) {
1872 			device_printf(sc->sc_dev,
1873 			    "could not map mbuf (error %d)\n", error);
1874 			m_freem(m);
1875 			m_freem(m0);
1876 			return error;
1877 		}
1878 
1879 		/* avoid multiple free() of the same node for each fragment */
1880 		ieee80211_ref_node(ni);
1881 
1882 		data->m = m;
1883 		data->ni = ni;
1884 
1885 		/* RTS frames are not taken into account for rssadapt */
1886 		data->id.id_node = NULL;
1887 
1888 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1889 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, paddr);
1890 
1891 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1892 		    BUS_DMASYNC_PREWRITE);
1893 
1894 		sc->txq.queued++;
1895 		sc->txq.cur_encrypt =
1896 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1897 
1898 		/*
1899 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1900 		 * asynchronous data frame shall be transmitted after the CTS
1901 		 * frame and a SIFS period.
1902 		 */
1903 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1904 	}
1905 
1906 	data = &sc->txq.data[sc->txq.cur_encrypt];
1907 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1908 
1909 	error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, m0,
1910 				     rt2560_dma_map_mbuf, &paddr, 0);
1911 	if (error != 0 && error != EFBIG) {
1912 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1913 		    error);
1914 		m_freem(m0);
1915 		return error;
1916 	}
1917 	if (error != 0) {
1918 		mnew = m_defrag(m0, MB_DONTWAIT);
1919 		if (mnew == NULL) {
1920 			device_printf(sc->sc_dev,
1921 			    "could not defragment mbuf\n");
1922 			m_freem(m0);
1923 			return ENOBUFS;
1924 		}
1925 		m0 = mnew;
1926 
1927 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1928 					     m0, rt2560_dma_map_mbuf, &paddr,
1929 					     0);
1930 		if (error != 0) {
1931 			device_printf(sc->sc_dev,
1932 			    "could not map mbuf (error %d)\n", error);
1933 			m_freem(m0);
1934 			return error;
1935 		}
1936 
1937 		/* packet header may have moved, reset our local pointer */
1938 		wh = mtod(m0, struct ieee80211_frame *);
1939 	}
1940 
1941 	if (sc->sc_drvbpf != NULL) {
1942 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1943 
1944 		tap->wt_flags = 0;
1945 		tap->wt_rate = rate;
1946 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1947 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1948 		tap->wt_antenna = sc->tx_ant;
1949 
1950 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1951 	}
1952 
1953 	data->m = m0;
1954 	data->ni = ni;
1955 
1956 	/* remember link conditions for rate adaptation algorithm */
1957 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1958 		data->id.id_len = m0->m_pkthdr.len;
1959 		data->id.id_rateidx = ni->ni_txrate;
1960 		data->id.id_node = ni;
1961 		data->id.id_rssi = ni->ni_rssi;
1962 	} else
1963 		data->id.id_node = NULL;
1964 
1965 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1966 		flags |= RT2560_TX_ACK;
1967 
1968 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1969 		    ic->ic_flags) + RAL_SIFS;
1970 		*(uint16_t *)wh->i_dur = htole16(dur);
1971 	}
1972 
1973 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, paddr);
1974 
1975 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1976 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1977 	    BUS_DMASYNC_PREWRITE);
1978 
1979 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1980 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1981 
1982 	/* kick encrypt */
1983 	sc->txq.queued++;
1984 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1985 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1986 
1987 	return 0;
1988 }
1989 
1990 static void
1991 rt2560_start(struct ifnet *ifp)
1992 {
1993 	struct rt2560_softc *sc = ifp->if_softc;
1994 	struct ieee80211com *ic = &sc->sc_ic;
1995 	struct mbuf *m0;
1996 	struct ether_header *eh;
1997 	struct ieee80211_node *ni;
1998 
1999 	/* prevent management frames from being sent if we're not ready */
2000 	if (!(ifp->if_flags & IFF_RUNNING))
2001 		return;
2002 
2003 	for (;;) {
2004 		IF_POLL(&ic->ic_mgtq, m0);
2005 		if (m0 != NULL) {
2006 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2007 				ifp->if_flags |= IFF_OACTIVE;
2008 				break;
2009 			}
2010 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2011 
2012 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2013 			m0->m_pkthdr.rcvif = NULL;
2014 
2015 			if (ic->ic_rawbpf != NULL)
2016 				bpf_mtap(ic->ic_rawbpf, m0);
2017 
2018 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2019 				break;
2020 
2021 		} else {
2022 			if (ic->ic_state != IEEE80211_S_RUN)
2023 				break;
2024 			m0 = ifq_poll(&ifp->if_snd);
2025 			if (m0 == NULL)
2026 				break;
2027 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2028 				ifp->if_flags |= IFF_OACTIVE;
2029 				break;
2030 			}
2031 			m0 = ifq_dequeue(&ifp->if_snd, m0);
2032 
2033 			if (m0->m_len < sizeof (struct ether_header) &&
2034 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2035 				continue;
2036 
2037 			eh = mtod(m0, struct ether_header *);
2038 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2039 			if (ni == NULL) {
2040 				m_freem(m0);
2041 				continue;
2042 			}
2043 			BPF_MTAP(ifp, m0);
2044 
2045 			m0 = ieee80211_encap(ic, m0, ni);
2046 			if (m0 == NULL) {
2047 				ieee80211_free_node(ni);
2048 				continue;
2049 			}
2050 
2051 			if (ic->ic_rawbpf != NULL)
2052 				bpf_mtap(ic->ic_rawbpf, m0);
2053 
2054 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2055 				ieee80211_free_node(ni);
2056 				ifp->if_oerrors++;
2057 				break;
2058 			}
2059 		}
2060 
2061 		sc->sc_tx_timer = 5;
2062 		ifp->if_timer = 1;
2063 	}
2064 }
2065 
2066 static void
2067 rt2560_watchdog(struct ifnet *ifp)
2068 {
2069 	struct rt2560_softc *sc = ifp->if_softc;
2070 	struct ieee80211com *ic = &sc->sc_ic;
2071 
2072 	ifp->if_timer = 0;
2073 
2074 	if (sc->sc_tx_timer > 0) {
2075 		if (--sc->sc_tx_timer == 0) {
2076 			device_printf(sc->sc_dev, "device timeout\n");
2077 			rt2560_init(sc);
2078 			ifp->if_oerrors++;
2079 			return;
2080 		}
2081 		ifp->if_timer = 1;
2082 	}
2083 
2084 	ieee80211_watchdog(ic);
2085 }
2086 
2087 /*
2088  * This function allows for fast channel switching in monitor mode (used by
2089  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2090  * generate a new beacon frame.
2091  */
2092 static int
2093 rt2560_reset(struct ifnet *ifp)
2094 {
2095 	struct rt2560_softc *sc = ifp->if_softc;
2096 	struct ieee80211com *ic = &sc->sc_ic;
2097 
2098 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2099 		return ENETRESET;
2100 
2101 	rt2560_set_chan(sc, ic->ic_curchan);
2102 
2103 	return 0;
2104 }
2105 
2106 static int
2107 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2108 {
2109 	struct rt2560_softc *sc = ifp->if_softc;
2110 	struct ieee80211com *ic = &sc->sc_ic;
2111 	int error = 0;
2112 
2113 	switch (cmd) {
2114 	case SIOCSIFFLAGS:
2115 		if (ifp->if_flags & IFF_UP) {
2116 			if (ifp->if_flags & IFF_RUNNING)
2117 				rt2560_update_promisc(sc);
2118 			else
2119 				rt2560_init(sc);
2120 		} else {
2121 			if (ifp->if_flags & IFF_RUNNING)
2122 				rt2560_stop(sc);
2123 		}
2124 		break;
2125 
2126 	default:
2127 		error = ieee80211_ioctl(ic, cmd, data, cr);
2128 	}
2129 
2130 	if (error == ENETRESET) {
2131 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2132 		    (IFF_UP | IFF_RUNNING) &&
2133 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2134 			rt2560_init(sc);
2135 		error = 0;
2136 	}
2137 
2138 	return error;
2139 }
2140 
2141 static void
2142 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2143 {
2144 	uint32_t tmp;
2145 	int ntries;
2146 
2147 	for (ntries = 0; ntries < 100; ntries++) {
2148 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2149 			break;
2150 		DELAY(1);
2151 	}
2152 	if (ntries == 100) {
2153 		device_printf(sc->sc_dev, "could not write to BBP\n");
2154 		return;
2155 	}
2156 
2157 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2158 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2159 
2160 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2161 }
2162 
2163 static uint8_t
2164 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2165 {
2166 	uint32_t val;
2167 	int ntries;
2168 
2169 	val = RT2560_BBP_BUSY | reg << 8;
2170 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2171 
2172 	for (ntries = 0; ntries < 100; ntries++) {
2173 		val = RAL_READ(sc, RT2560_BBPCSR);
2174 		if (!(val & RT2560_BBP_BUSY))
2175 			return val & 0xff;
2176 		DELAY(1);
2177 	}
2178 
2179 	device_printf(sc->sc_dev, "could not read from BBP\n");
2180 	return 0;
2181 }
2182 
2183 static void
2184 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2185 {
2186 	uint32_t tmp;
2187 	int ntries;
2188 
2189 	for (ntries = 0; ntries < 100; ntries++) {
2190 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2191 			break;
2192 		DELAY(1);
2193 	}
2194 	if (ntries == 100) {
2195 		device_printf(sc->sc_dev, "could not write to RF\n");
2196 		return;
2197 	}
2198 
2199 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2200 	    (reg & 0x3);
2201 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2202 
2203 	/* remember last written value in sc */
2204 	sc->rf_regs[reg] = val;
2205 
2206 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2207 }
2208 
2209 static void
2210 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2211 {
2212 	struct ieee80211com *ic = &sc->sc_ic;
2213 	uint8_t power, tmp;
2214 	u_int i, chan;
2215 
2216 	chan = ieee80211_chan2ieee(ic, c);
2217 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2218 		return;
2219 
2220 	if (IEEE80211_IS_CHAN_2GHZ(c))
2221 		power = min(sc->txpow[chan - 1], 31);
2222 	else
2223 		power = 31;
2224 
2225 	/* adjust txpower using ifconfig settings */
2226 	power -= (100 - ic->ic_txpowlimit) / 8;
2227 
2228 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2229 
2230 	switch (sc->rf_rev) {
2231 	case RT2560_RF_2522:
2232 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2233 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2234 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2235 		break;
2236 
2237 	case RT2560_RF_2523:
2238 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2239 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2240 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2241 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2242 		break;
2243 
2244 	case RT2560_RF_2524:
2245 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2246 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2247 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2248 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2249 		break;
2250 
2251 	case RT2560_RF_2525:
2252 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2253 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2254 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2255 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2256 
2257 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2258 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2259 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2260 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2261 		break;
2262 
2263 	case RT2560_RF_2525E:
2264 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2265 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2266 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2267 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2268 		break;
2269 
2270 	case RT2560_RF_2526:
2271 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2272 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2273 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2274 
2275 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2276 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2277 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2278 		break;
2279 
2280 	/* dual-band RF */
2281 	case RT2560_RF_5222:
2282 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2283 
2284 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2285 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2286 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2287 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2288 		break;
2289 	}
2290 
2291 	if (ic->ic_state != IEEE80211_S_SCAN) {
2292 		/* set Japan filter bit for channel 14 */
2293 		tmp = rt2560_bbp_read(sc, 70);
2294 
2295 		tmp &= ~RT2560_JAPAN_FILTER;
2296 		if (chan == 14)
2297 			tmp |= RT2560_JAPAN_FILTER;
2298 
2299 		rt2560_bbp_write(sc, 70, tmp);
2300 
2301 		/* clear CRC errors */
2302 		RAL_READ(sc, RT2560_CNT0);
2303 	}
2304 }
2305 
2306 #if 0
2307 /*
2308  * Disable RF auto-tuning.
2309  */
2310 static void
2311 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2312 {
2313 	uint32_t tmp;
2314 
2315 	if (sc->rf_rev != RT2560_RF_2523) {
2316 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2317 		rt2560_rf_write(sc, RAL_RF1, tmp);
2318 	}
2319 
2320 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2321 	rt2560_rf_write(sc, RAL_RF3, tmp);
2322 
2323 	DPRINTFN(2, ("disabling RF autotune\n"));
2324 }
2325 #endif
2326 
2327 /*
2328  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2329  * synchronization.
2330  */
2331 static void
2332 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2333 {
2334 	struct ieee80211com *ic = &sc->sc_ic;
2335 	uint16_t logcwmin, preload;
2336 	uint32_t tmp;
2337 
2338 	/* first, disable TSF synchronization */
2339 	RAL_WRITE(sc, RT2560_CSR14, 0);
2340 
2341 	tmp = 16 * ic->ic_bss->ni_intval;
2342 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2343 
2344 	RAL_WRITE(sc, RT2560_CSR13, 0);
2345 
2346 	logcwmin = 5;
2347 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2348 	tmp = logcwmin << 16 | preload;
2349 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2350 
2351 	/* finally, enable TSF synchronization */
2352 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2353 	if (ic->ic_opmode == IEEE80211_M_STA)
2354 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2355 	else
2356 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2357 		       RT2560_ENABLE_BEACON_GENERATOR;
2358 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2359 
2360 	DPRINTF(("enabling TSF synchronization\n"));
2361 }
2362 
2363 static void
2364 rt2560_update_plcp(struct rt2560_softc *sc)
2365 {
2366 	struct ieee80211com *ic = &sc->sc_ic;
2367 
2368 	/* no short preamble for 1Mbps */
2369 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2370 
2371 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2372 		/* values taken from the reference driver */
2373 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2374 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2375 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2376 	} else {
2377 		/* same values as above or'ed 0x8 */
2378 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2379 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2380 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2381 	}
2382 
2383 	DPRINTF(("updating PLCP for %s preamble\n",
2384 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2385 }
2386 
2387 /*
2388  * This function can be called by ieee80211_set_shortslottime(). Refer to
2389  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2390  */
2391 static void
2392 rt2560_update_slot(struct ifnet *ifp)
2393 {
2394 	struct rt2560_softc *sc = ifp->if_softc;
2395 	struct ieee80211com *ic = &sc->sc_ic;
2396 	uint8_t slottime;
2397 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2398 	uint32_t tmp;
2399 
2400 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2401 
2402 	/* update the MAC slot boundaries */
2403 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2404 	tx_pifs = tx_sifs + slottime;
2405 	tx_difs = tx_sifs + 2 * slottime;
2406 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2407 
2408 	tmp = RAL_READ(sc, RT2560_CSR11);
2409 	tmp = (tmp & ~0x1f00) | slottime << 8;
2410 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2411 
2412 	tmp = tx_pifs << 16 | tx_sifs;
2413 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2414 
2415 	tmp = eifs << 16 | tx_difs;
2416 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2417 
2418 	DPRINTF(("setting slottime to %uus\n", slottime));
2419 }
2420 
2421 static void
2422 rt2560_set_basicrates(struct rt2560_softc *sc)
2423 {
2424 	struct ieee80211com *ic = &sc->sc_ic;
2425 
2426 	/* update basic rate set */
2427 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2428 		/* 11b basic rates: 1, 2Mbps */
2429 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2430 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2431 		/* 11a basic rates: 6, 12, 24Mbps */
2432 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2433 	} else {
2434 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2435 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2436 	}
2437 }
2438 
2439 static void
2440 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2441 {
2442 	uint32_t tmp;
2443 
2444 	/* set ON period to 70ms and OFF period to 30ms */
2445 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2446 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2447 }
2448 
2449 static void
2450 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2451 {
2452 	uint32_t tmp;
2453 
2454 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2455 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2456 
2457 	tmp = bssid[4] | bssid[5] << 8;
2458 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2459 
2460 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2461 }
2462 
2463 static void
2464 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2465 {
2466 	uint32_t tmp;
2467 
2468 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2469 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2470 
2471 	tmp = addr[4] | addr[5] << 8;
2472 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2473 
2474 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2475 }
2476 
2477 static void
2478 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2479 {
2480 	uint32_t tmp;
2481 
2482 	tmp = RAL_READ(sc, RT2560_CSR3);
2483 	addr[0] = tmp & 0xff;
2484 	addr[1] = (tmp >>  8) & 0xff;
2485 	addr[2] = (tmp >> 16) & 0xff;
2486 	addr[3] = (tmp >> 24);
2487 
2488 	tmp = RAL_READ(sc, RT2560_CSR4);
2489 	addr[4] = tmp & 0xff;
2490 	addr[5] = (tmp >> 8) & 0xff;
2491 }
2492 
2493 static void
2494 rt2560_update_promisc(struct rt2560_softc *sc)
2495 {
2496 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2497 	uint32_t tmp;
2498 
2499 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2500 
2501 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2502 	if (!(ifp->if_flags & IFF_PROMISC))
2503 		tmp |= RT2560_DROP_NOT_TO_ME;
2504 
2505 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2506 
2507 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2508 	    "entering" : "leaving"));
2509 }
2510 
2511 static const char *
2512 rt2560_get_rf(int rev)
2513 {
2514 	switch (rev) {
2515 	case RT2560_RF_2522:	return "RT2522";
2516 	case RT2560_RF_2523:	return "RT2523";
2517 	case RT2560_RF_2524:	return "RT2524";
2518 	case RT2560_RF_2525:	return "RT2525";
2519 	case RT2560_RF_2525E:	return "RT2525e";
2520 	case RT2560_RF_2526:	return "RT2526";
2521 	case RT2560_RF_5222:	return "RT5222";
2522 	default:		return "unknown";
2523 	}
2524 }
2525 
2526 static void
2527 rt2560_read_eeprom(struct rt2560_softc *sc)
2528 {
2529 	uint16_t val;
2530 	int i;
2531 
2532 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2533 	sc->rf_rev =   (val >> 11) & 0x7;
2534 	sc->hw_radio = (val >> 10) & 0x1;
2535 	sc->led_mode = (val >> 6)  & 0x7;
2536 	sc->rx_ant =   (val >> 4)  & 0x3;
2537 	sc->tx_ant =   (val >> 2)  & 0x3;
2538 	sc->nb_ant =   val & 0x3;
2539 
2540 	/* read default values for BBP registers */
2541 	for (i = 0; i < 16; i++) {
2542 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2543 		sc->bbp_prom[i].reg = val >> 8;
2544 		sc->bbp_prom[i].val = val & 0xff;
2545 	}
2546 
2547 	/* read Tx power for all b/g channels */
2548 	for (i = 0; i < 14 / 2; i++) {
2549 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2550 		sc->txpow[i * 2] = val >> 8;
2551 		sc->txpow[i * 2 + 1] = val & 0xff;
2552 	}
2553 }
2554 
2555 static int
2556 rt2560_bbp_init(struct rt2560_softc *sc)
2557 {
2558 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2559 	int i, ntries;
2560 
2561 	/* wait for BBP to be ready */
2562 	for (ntries = 0; ntries < 100; ntries++) {
2563 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2564 			break;
2565 		DELAY(1);
2566 	}
2567 	if (ntries == 100) {
2568 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2569 		return EIO;
2570 	}
2571 
2572 	/* initialize BBP registers to default values */
2573 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2574 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2575 		    rt2560_def_bbp[i].val);
2576 	}
2577 #if 0
2578 	/* initialize BBP registers to values stored in EEPROM */
2579 	for (i = 0; i < 16; i++) {
2580 		if (sc->bbp_prom[i].reg == 0xff)
2581 			continue;
2582 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2583 	}
2584 #endif
2585 
2586 	return 0;
2587 #undef N
2588 }
2589 
2590 static void
2591 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2592 {
2593 	uint32_t tmp;
2594 	uint8_t tx;
2595 
2596 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2597 	if (antenna == 1)
2598 		tx |= RT2560_BBP_ANTA;
2599 	else if (antenna == 2)
2600 		tx |= RT2560_BBP_ANTB;
2601 	else
2602 		tx |= RT2560_BBP_DIVERSITY;
2603 
2604 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2605 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2606 	    sc->rf_rev == RT2560_RF_5222)
2607 		tx |= RT2560_BBP_FLIPIQ;
2608 
2609 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2610 
2611 	/* update values for CCK and OFDM in BBPCSR1 */
2612 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2613 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2614 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2615 }
2616 
2617 static void
2618 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2619 {
2620 	uint8_t rx;
2621 
2622 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2623 	if (antenna == 1)
2624 		rx |= RT2560_BBP_ANTA;
2625 	else if (antenna == 2)
2626 		rx |= RT2560_BBP_ANTB;
2627 	else
2628 		rx |= RT2560_BBP_DIVERSITY;
2629 
2630 	/* need to force no I/Q flip for RF 2525e and 2526 */
2631 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2632 		rx &= ~RT2560_BBP_FLIPIQ;
2633 
2634 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2635 }
2636 
2637 static void
2638 rt2560_init(void *priv)
2639 {
2640 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2641 	struct rt2560_softc *sc = priv;
2642 	struct ieee80211com *ic = &sc->sc_ic;
2643 	struct ifnet *ifp = ic->ic_ifp;
2644 	uint32_t tmp;
2645 	int i;
2646 
2647 	rt2560_stop(sc);
2648 
2649 	/* setup tx rings */
2650 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2651 	      RT2560_ATIM_RING_COUNT << 16 |
2652 	      RT2560_TX_RING_COUNT   <<  8 |
2653 	      RT2560_TX_DESC_SIZE;
2654 
2655 	/* rings must be initialized in this exact order */
2656 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2657 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2658 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2659 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2660 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2661 
2662 	/* setup rx ring */
2663 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2664 
2665 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2666 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2667 
2668 	/* initialize MAC registers to default values */
2669 	for (i = 0; i < N(rt2560_def_mac); i++)
2670 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2671 
2672 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2673 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2674 
2675 	/* set basic rate set (will be updated later) */
2676 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2677 
2678 	rt2560_set_txantenna(sc, sc->tx_ant);
2679 	rt2560_set_rxantenna(sc, sc->rx_ant);
2680 	rt2560_update_slot(ifp);
2681 	rt2560_update_plcp(sc);
2682 	rt2560_update_led(sc, 0, 0);
2683 
2684 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2685 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2686 
2687 	if (rt2560_bbp_init(sc) != 0) {
2688 		rt2560_stop(sc);
2689 		return;
2690 	}
2691 
2692 	/* set default BSS channel */
2693 	rt2560_set_chan(sc, ic->ic_curchan);
2694 
2695 	/* kick Rx */
2696 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2697 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2698 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2699 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2700 			tmp |= RT2560_DROP_TODS;
2701 		if (!(ifp->if_flags & IFF_PROMISC))
2702 			tmp |= RT2560_DROP_NOT_TO_ME;
2703 	}
2704 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2705 
2706 	/* clear old FCS and Rx FIFO errors */
2707 	RAL_READ(sc, RT2560_CNT0);
2708 	RAL_READ(sc, RT2560_CNT4);
2709 
2710 	/* clear any pending interrupts */
2711 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2712 
2713 	/* enable interrupts */
2714 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2715 
2716 	ifp->if_flags &= ~IFF_OACTIVE;
2717 	ifp->if_flags |= IFF_RUNNING;
2718 
2719 	/* XXX */
2720 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2721 		int i;
2722 
2723 		ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
2724 		for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2725 			struct ieee80211_key *wk = &ic->ic_nw_keys[i];
2726 
2727 			if (wk->wk_keylen == 0)
2728 				continue;
2729 			if (wk->wk_flags & IEEE80211_KEY_XMIT)
2730 				wk->wk_flags |= IEEE80211_KEY_SWCRYPT;
2731 		}
2732 	}
2733 
2734 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2735 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2736 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2737 	} else
2738 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2739 #undef N
2740 }
2741 
2742 void
2743 rt2560_stop(void *priv)
2744 {
2745 	struct rt2560_softc *sc = priv;
2746 	struct ieee80211com *ic = &sc->sc_ic;
2747 	struct ifnet *ifp = ic->ic_ifp;
2748 
2749 	sc->sc_tx_timer = 0;
2750 	ifp->if_timer = 0;
2751 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2752 
2753 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2754 
2755 	/* abort Tx */
2756 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2757 
2758 	/* disable Rx */
2759 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2760 
2761 	/* reset ASIC (imply reset BBP) */
2762 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2763 	RAL_WRITE(sc, RT2560_CSR1, 0);
2764 
2765 	/* disable interrupts */
2766 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2767 
2768 	/* reset Tx and Rx rings */
2769 	rt2560_reset_tx_ring(sc, &sc->txq);
2770 	rt2560_reset_tx_ring(sc, &sc->atimq);
2771 	rt2560_reset_tx_ring(sc, &sc->prioq);
2772 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2773 	rt2560_reset_rx_ring(sc, &sc->rxq);
2774 }
2775 
2776 static void
2777 rt2560_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
2778 		    bus_size_t map_size __unused, int error)
2779 {
2780 	if (error)
2781 		return;
2782 
2783 	KASSERT(nseg == 1, ("too many dma segments\n"));
2784 	*((bus_addr_t *)arg) = seg->ds_addr;
2785 }
2786