xref: /dflybsd-src/sys/dev/netif/ral/rt2560.c (revision 744c01d0dc2aa1481a40e5b0988d15691602f5c9)
1 /*
2  * Copyright (c) 2005, 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2560.c,v 1.8 2007/01/02 23:28:49 swildner Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2560 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/module.h>
33 #include <sys/rman.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
36 #include <sys/sysctl.h>
37 #include <sys/serialize.h>
38 
39 #include <net/bpf.h>
40 #include <net/if.h>
41 #include <net/if_arp.h>
42 #include <net/ethernet.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 #include <net/ifq_var.h>
46 
47 #include <netproto/802_11/ieee80211_var.h>
48 #include <netproto/802_11/ieee80211_radiotap.h>
49 
50 #include <dev/netif/ral/if_ralrate.h>
51 #include <dev/netif/ral/rt2560reg.h>
52 #include <dev/netif/ral/rt2560var.h>
53 
54 #ifdef RAL_DEBUG
55 #define DPRINTF(x)	do { if (ral_debug > 0) kprintf x; } while (0)
56 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) kprintf x; } while (0)
57 extern int ral_debug;
58 #else
59 #define DPRINTF(x)
60 #define DPRINTFN(n, x)
61 #endif
62 
63 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
64 			    int);
65 static void		rt2560_dma_map_mbuf(void *, bus_dma_segment_t *, int,
66 					    bus_size_t, int);
67 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
68 			    struct rt2560_tx_ring *, int);
69 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
70 			    struct rt2560_tx_ring *);
71 static void		rt2560_free_tx_ring(struct rt2560_softc *,
72 			    struct rt2560_tx_ring *);
73 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
74 			    struct rt2560_rx_ring *, int);
75 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
76 			    struct rt2560_rx_ring *);
77 static void		rt2560_free_rx_ring(struct rt2560_softc *,
78 			    struct rt2560_rx_ring *);
79 static struct		ieee80211_node *rt2560_node_alloc(
80 			    struct ieee80211_node_table *);
81 static int		rt2560_media_change(struct ifnet *);
82 static void		rt2560_next_scan(void *);
83 static void		rt2560_iter_func(void *, struct ieee80211_node *);
84 static void		rt2560_update_rssadapt(void *);
85 static int		rt2560_newstate(struct ieee80211com *,
86 			    enum ieee80211_state, int);
87 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
88 static void		rt2560_encryption_intr(struct rt2560_softc *);
89 static void		rt2560_tx_intr(struct rt2560_softc *);
90 static void		rt2560_prio_intr(struct rt2560_softc *);
91 static void		rt2560_decryption_intr(struct rt2560_softc *);
92 static void		rt2560_rx_intr(struct rt2560_softc *);
93 static void		rt2560_beacon_expire(struct rt2560_softc *);
94 static void		rt2560_wakeup_expire(struct rt2560_softc *);
95 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
96 static int		rt2560_ack_rate(struct ieee80211com *, int);
97 static uint16_t		rt2560_txtime(int, int, uint32_t);
98 static uint8_t		rt2560_plcp_signal(int);
99 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
100 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
101 			    bus_addr_t);
102 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
103 			    struct ieee80211_node *);
104 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
105 			    struct ieee80211_node *);
106 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
107 			    struct ieee80211_frame *, uint16_t);
108 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
109 			    struct ieee80211_node *);
110 static void		rt2560_start(struct ifnet *);
111 static void		rt2560_watchdog(struct ifnet *);
112 static int		rt2560_reset(struct ifnet *);
113 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t,
114 				     struct ucred *);
115 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
116 			    uint8_t);
117 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
118 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
119 			    uint32_t);
120 static void		rt2560_set_chan(struct rt2560_softc *,
121 			    struct ieee80211_channel *);
122 #if 0
123 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
124 #endif
125 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
126 static void		rt2560_update_plcp(struct rt2560_softc *);
127 static void		rt2560_update_slot(struct ifnet *);
128 static void		rt2560_set_basicrates(struct rt2560_softc *);
129 static void		rt2560_update_led(struct rt2560_softc *, int, int);
130 static void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
131 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
132 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
133 static void		rt2560_update_promisc(struct rt2560_softc *);
134 static const char	*rt2560_get_rf(int);
135 static void		rt2560_read_eeprom(struct rt2560_softc *);
136 static int		rt2560_bbp_init(struct rt2560_softc *);
137 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
138 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
139 static void		rt2560_init(void *);
140 static void		rt2560_stop(void *);
141 static void		rt2560_intr(void *);
142 
143 /*
144  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
145  */
146 static const struct ieee80211_rateset rt2560_rateset_11a =
147 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
148 
149 static const struct ieee80211_rateset rt2560_rateset_11b =
150 	{ 4, { 2, 4, 11, 22 } };
151 
152 static const struct ieee80211_rateset rt2560_rateset_11g =
153 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
154 
155 static const struct {
156 	uint32_t	reg;
157 	uint32_t	val;
158 } rt2560_def_mac[] = {
159 	RT2560_DEF_MAC
160 };
161 
162 static const struct {
163 	uint8_t	reg;
164 	uint8_t	val;
165 } rt2560_def_bbp[] = {
166 	RT2560_DEF_BBP
167 };
168 
169 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
170 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
171 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
172 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
173 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
174 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
175 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
176 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
177 
178 static const struct {
179 	uint8_t		chan;
180 	uint32_t	r1, r2, r4;
181 } rt2560_rf5222[] = {
182 	RT2560_RF5222
183 };
184 
185 int
186 rt2560_attach(device_t dev, int id)
187 {
188 	struct rt2560_softc *sc = device_get_softc(dev);
189 	struct ieee80211com *ic = &sc->sc_ic;
190 	struct ifnet *ifp = &ic->ic_if;
191 	int error, i;
192 
193 	callout_init(&sc->scan_ch);
194 	callout_init(&sc->rssadapt_ch);
195 
196 	sc->sc_irq_rid = 0;
197 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
198 					    RF_ACTIVE | RF_SHAREABLE);
199 	if (sc->sc_irq == NULL) {
200 		device_printf(dev, "could not allocate interrupt resource\n");
201 		return ENXIO;
202 	}
203 
204 	/* retrieve RT2560 rev. no */
205 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
206 
207 	/* retrieve MAC address */
208 	rt2560_get_macaddr(sc, ic->ic_myaddr);
209 
210 	/* retrieve RF rev. no and various other things from EEPROM */
211 	rt2560_read_eeprom(sc);
212 
213 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
214 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
215 
216 	/*
217 	 * Allocate Tx and Rx rings.
218 	 */
219 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
220 	if (error != 0) {
221 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
222 		goto fail;
223 	}
224 
225 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
226 	if (error != 0) {
227 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
228 		goto fail;
229 	}
230 
231 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
232 	if (error != 0) {
233 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
234 		goto fail;
235 	}
236 
237 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
238 	if (error != 0) {
239 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
240 		goto fail;
241 	}
242 
243 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
244 	if (error != 0) {
245 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
246 		goto fail;
247 	}
248 
249 	sysctl_ctx_init(&sc->sysctl_ctx);
250 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
251 					  SYSCTL_STATIC_CHILDREN(_hw),
252 					  OID_AUTO,
253 					  device_get_nameunit(dev),
254 					  CTLFLAG_RD, 0, "");
255 	if (sc->sysctl_tree == NULL) {
256 		device_printf(dev, "could not add sysctl node\n");
257 		error = ENXIO;
258 		goto fail;
259 	}
260 
261 	ifp->if_softc = sc;
262 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
263 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
264 	ifp->if_init = rt2560_init;
265 	ifp->if_ioctl = rt2560_ioctl;
266 	ifp->if_start = rt2560_start;
267 	ifp->if_watchdog = rt2560_watchdog;
268 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
269 	ifq_set_ready(&ifp->if_snd);
270 
271 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
272 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
273 	ic->ic_state = IEEE80211_S_INIT;
274 
275 	/* set device capabilities */
276 	ic->ic_caps =
277 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
278 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
279 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
280 	    IEEE80211_C_TXPMGT |	/* tx power management */
281 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
282 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
283 	    IEEE80211_C_WEP |		/* WEP */
284 	    IEEE80211_C_WPA;		/* 802.11i */
285 
286 	if (sc->rf_rev == RT2560_RF_5222) {
287 		/* set supported .11a rates */
288 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
289 
290 		/* set supported .11a channels */
291 		for (i = 36; i <= 64; i += 4) {
292 			ic->ic_channels[i].ic_freq =
293 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
294 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
295 		}
296 		for (i = 100; i <= 140; i += 4) {
297 			ic->ic_channels[i].ic_freq =
298 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
299 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
300 		}
301 		for (i = 149; i <= 161; i += 4) {
302 			ic->ic_channels[i].ic_freq =
303 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
304 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
305 		}
306 	}
307 
308 	/* set supported .11b and .11g rates */
309 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
310 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
311 
312 	/* set supported .11b and .11g channels (1 through 14) */
313 	for (i = 1; i <= 14; i++) {
314 		ic->ic_channels[i].ic_freq =
315 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
316 		ic->ic_channels[i].ic_flags =
317 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
318 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
319 	}
320 
321 	ieee80211_ifattach(ic);
322 	ic->ic_node_alloc = rt2560_node_alloc;
323 	ic->ic_updateslot = rt2560_update_slot;
324 	ic->ic_reset = rt2560_reset;
325 	/* enable s/w bmiss handling in sta mode */
326 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
327 
328 	/* override state transition machine */
329 	sc->sc_newstate = ic->ic_newstate;
330 	ic->ic_newstate = rt2560_newstate;
331 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
332 
333 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
334 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
335 
336 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
337 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
338 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
339 
340 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
341 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
342 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
343 
344 	/*
345 	 * Add a few sysctl knobs.
346 	 */
347 	sc->dwelltime = 200;
348 
349 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
350 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
351 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
352 
353 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
354 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
355 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
356 
357 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
358 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
359 	    CTLFLAG_RW, &sc->dwelltime, 0,
360 	    "channel dwell time (ms) for AP/station scanning");
361 
362 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2560_intr,
363 			       sc, &sc->sc_ih, ifp->if_serializer);
364 	if (error != 0) {
365 		device_printf(dev, "could not set up interrupt\n");
366 		bpfdetach(ifp);
367 		ieee80211_ifdetach(ic);
368 		goto fail;
369 	}
370 
371 	if (bootverbose)
372 		ieee80211_announce(ic);
373 	return 0;
374 fail:
375 	rt2560_detach(sc);
376 	return error;
377 }
378 
379 int
380 rt2560_detach(void *xsc)
381 {
382 	struct rt2560_softc *sc = xsc;
383 	struct ieee80211com *ic = &sc->sc_ic;
384 	struct ifnet *ifp = ic->ic_ifp;
385 
386 	if (device_is_attached(sc->sc_dev)) {
387 		lwkt_serialize_enter(ifp->if_serializer);
388 
389 		callout_stop(&sc->scan_ch);
390 		callout_stop(&sc->rssadapt_ch);
391 
392 		rt2560_stop(sc);
393 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
394 
395 		lwkt_serialize_exit(ifp->if_serializer);
396 
397 		bpfdetach(ifp);
398 		ieee80211_ifdetach(ic);
399 	}
400 
401 	rt2560_free_tx_ring(sc, &sc->txq);
402 	rt2560_free_tx_ring(sc, &sc->atimq);
403 	rt2560_free_tx_ring(sc, &sc->prioq);
404 	rt2560_free_tx_ring(sc, &sc->bcnq);
405 	rt2560_free_rx_ring(sc, &sc->rxq);
406 
407 	if (sc->sc_irq != NULL) {
408 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
409 				     sc->sc_irq);
410 	}
411 
412 	if (sc->sysctl_tree != NULL)
413 		sysctl_ctx_free(&sc->sysctl_ctx);
414 
415 	return 0;
416 }
417 
418 void
419 rt2560_shutdown(void *xsc)
420 {
421 	struct rt2560_softc *sc = xsc;
422 	struct ifnet *ifp = &sc->sc_ic.ic_if;
423 
424 	lwkt_serialize_enter(ifp->if_serializer);
425 	rt2560_stop(sc);
426 	lwkt_serialize_exit(ifp->if_serializer);
427 }
428 
429 void
430 rt2560_suspend(void *xsc)
431 {
432 	struct rt2560_softc *sc = xsc;
433 	struct ifnet *ifp = &sc->sc_ic.ic_if;
434 
435 	lwkt_serialize_enter(ifp->if_serializer);
436 	rt2560_stop(sc);
437 	lwkt_serialize_exit(ifp->if_serializer);
438 }
439 
440 void
441 rt2560_resume(void *xsc)
442 {
443 	struct rt2560_softc *sc = xsc;
444 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
445 
446 	lwkt_serialize_enter(ifp->if_serializer);
447 	if (ifp->if_flags & IFF_UP) {
448 		ifp->if_init(ifp->if_softc);
449 		if (ifp->if_flags & IFF_RUNNING)
450 			ifp->if_start(ifp);
451 	}
452 	lwkt_serialize_exit(ifp->if_serializer);
453 }
454 
455 static void
456 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
457 {
458 	if (error != 0)
459 		return;
460 
461 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
462 
463 	*(bus_addr_t *)arg = segs[0].ds_addr;
464 }
465 
466 static int
467 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
468     int count)
469 {
470 	int i, error;
471 
472 	ring->count = count;
473 	ring->queued = 0;
474 	ring->cur = ring->next = 0;
475 	ring->cur_encrypt = ring->next_encrypt = 0;
476 
477 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
478 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
479 	    count * RT2560_TX_DESC_SIZE, 0, &ring->desc_dmat);
480 	if (error != 0) {
481 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
482 		goto fail;
483 	}
484 
485 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
486 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
487 	if (error != 0) {
488 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
489 		goto fail;
490 	}
491 
492 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
493 	    			count * RT2560_TX_DESC_SIZE,
494 				rt2560_dma_map_addr, &ring->physaddr, 0);
495 	if (error != 0) {
496 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
497 
498 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
499 		ring->desc = NULL;
500 		goto fail;
501 	}
502 
503 	ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
504 	    M_WAITOK | M_ZERO);
505 
506 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
507 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
508 	    MCLBYTES, 0, &ring->data_dmat);
509 	if (error != 0) {
510 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
511 		goto fail;
512 	}
513 
514 	for (i = 0; i < count; i++) {
515 		error = bus_dmamap_create(ring->data_dmat, 0,
516 		    &ring->data[i].map);
517 		if (error != 0) {
518 			device_printf(sc->sc_dev, "could not create DMA map\n");
519 			goto fail;
520 		}
521 	}
522 	return 0;
523 
524 fail:	rt2560_free_tx_ring(sc, ring);
525 	return error;
526 }
527 
528 static void
529 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
530 {
531 	struct rt2560_tx_desc *desc;
532 	struct rt2560_tx_data *data;
533 	int i;
534 
535 	for (i = 0; i < ring->count; i++) {
536 		desc = &ring->desc[i];
537 		data = &ring->data[i];
538 
539 		if (data->m != NULL) {
540 			bus_dmamap_sync(ring->data_dmat, data->map,
541 			    BUS_DMASYNC_POSTWRITE);
542 			bus_dmamap_unload(ring->data_dmat, data->map);
543 			m_freem(data->m);
544 			data->m = NULL;
545 		}
546 
547 		if (data->ni != NULL) {
548 			ieee80211_free_node(data->ni);
549 			data->ni = NULL;
550 		}
551 
552 		desc->flags = 0;
553 	}
554 
555 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
556 
557 	ring->queued = 0;
558 	ring->cur = ring->next = 0;
559 	ring->cur_encrypt = ring->next_encrypt = 0;
560 }
561 
562 static void
563 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
564 {
565 	struct rt2560_tx_data *data;
566 	int i;
567 
568 	if (ring->desc != NULL) {
569 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
570 		    BUS_DMASYNC_POSTWRITE);
571 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
572 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
573 		ring->desc = NULL;
574 	}
575 
576 	if (ring->desc_dmat != NULL) {
577 		bus_dma_tag_destroy(ring->desc_dmat);
578 		ring->desc_dmat = NULL;
579 	}
580 
581 	if (ring->data != NULL) {
582 		for (i = 0; i < ring->count; i++) {
583 			data = &ring->data[i];
584 
585 			if (data->m != NULL) {
586 				bus_dmamap_sync(ring->data_dmat, data->map,
587 				    BUS_DMASYNC_POSTWRITE);
588 				bus_dmamap_unload(ring->data_dmat, data->map);
589 				m_freem(data->m);
590 				data->m = NULL;
591 			}
592 
593 			if (data->ni != NULL) {
594 				ieee80211_free_node(data->ni);
595 				data->ni = NULL;
596 			}
597 
598 			if (data->map != NULL) {
599 				bus_dmamap_destroy(ring->data_dmat, data->map);
600 				data->map = NULL;
601 			}
602 		}
603 
604 		kfree(ring->data, M_DEVBUF);
605 		ring->data = NULL;
606 	}
607 
608 	if (ring->data_dmat != NULL) {
609 		bus_dma_tag_destroy(ring->data_dmat);
610 		ring->data_dmat = NULL;
611 	}
612 }
613 
614 static int
615 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
616     int count)
617 {
618 	struct rt2560_rx_desc *desc;
619 	struct rt2560_rx_data *data;
620 	bus_addr_t physaddr;
621 	int i, error;
622 
623 	ring->count = count;
624 	ring->cur = ring->next = 0;
625 	ring->cur_decrypt = 0;
626 
627 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
628 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
629 	    count * RT2560_RX_DESC_SIZE, 0, &ring->desc_dmat);
630 	if (error != 0) {
631 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
632 		goto fail;
633 	}
634 
635 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
636 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
637 	if (error != 0) {
638 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
639 		goto fail;
640 	}
641 
642 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
643 				count * RT2560_RX_DESC_SIZE,
644 				rt2560_dma_map_addr, &ring->physaddr, 0);
645 	if (error != 0) {
646 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
647 
648 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
649 		ring->desc = NULL;
650 		goto fail;
651 	}
652 
653 	ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
654 	    M_WAITOK | M_ZERO);
655 
656 	/*
657 	 * Pre-allocate Rx buffers and populate Rx ring.
658 	 */
659 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
660 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
661 	    &ring->data_dmat);
662 	if (error != 0) {
663 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
664 		goto fail;
665 	}
666 
667 	for (i = 0; i < count; i++) {
668 		desc = &sc->rxq.desc[i];
669 		data = &sc->rxq.data[i];
670 
671 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
672 		if (error != 0) {
673 			device_printf(sc->sc_dev, "could not create DMA map\n");
674 			goto fail;
675 		}
676 
677 		data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
678 		if (data->m == NULL) {
679 			device_printf(sc->sc_dev,
680 			    "could not allocate rx mbuf\n");
681 			error = ENOMEM;
682 			goto fail;
683 		}
684 
685 		error = bus_dmamap_load(ring->data_dmat, data->map,
686 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
687 		    &physaddr, 0);
688 		if (error != 0) {
689 			device_printf(sc->sc_dev,
690 			    "could not load rx buf DMA map");
691 
692 			m_freem(data->m);
693 			data->m = NULL;
694 			goto fail;
695 		}
696 
697 		desc->flags = htole32(RT2560_RX_BUSY);
698 		desc->physaddr = htole32(physaddr);
699 	}
700 
701 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
702 
703 	return 0;
704 
705 fail:	rt2560_free_rx_ring(sc, ring);
706 	return error;
707 }
708 
709 static void
710 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
711 {
712 	int i;
713 
714 	for (i = 0; i < ring->count; i++) {
715 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
716 		ring->data[i].drop = 0;
717 	}
718 
719 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
720 
721 	ring->cur = ring->next = 0;
722 	ring->cur_decrypt = 0;
723 }
724 
725 static void
726 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
727 {
728 	struct rt2560_rx_data *data;
729 
730 	if (ring->desc != NULL) {
731 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
732 		    BUS_DMASYNC_POSTWRITE);
733 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
734 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
735 		ring->desc = NULL;
736 	}
737 
738 	if (ring->desc_dmat != NULL) {
739 		bus_dma_tag_destroy(ring->desc_dmat);
740 		ring->desc_dmat = NULL;
741 	}
742 
743 	if (ring->data != NULL) {
744 		int i;
745 
746 		for (i = 0; i < ring->count; i++) {
747 			data = &ring->data[i];
748 
749 			if (data->m != NULL) {
750 				bus_dmamap_sync(ring->data_dmat, data->map,
751 				    BUS_DMASYNC_POSTREAD);
752 				bus_dmamap_unload(ring->data_dmat, data->map);
753 				m_freem(data->m);
754 				data->m = NULL;
755 			}
756 
757 			if (data->map != NULL) {
758 				bus_dmamap_destroy(ring->data_dmat, data->map);
759 				data->map = NULL;
760 			}
761 		}
762 
763 		kfree(ring->data, M_DEVBUF);
764 		ring->data = NULL;
765 	}
766 
767 	if (ring->data_dmat != NULL) {
768 		bus_dma_tag_destroy(ring->data_dmat);
769 		ring->data_dmat = NULL;
770 	}
771 }
772 
773 static struct ieee80211_node *
774 rt2560_node_alloc(struct ieee80211_node_table *nt)
775 {
776 	struct rt2560_node *rn;
777 
778 	rn = kmalloc(sizeof(struct rt2560_node), M_80211_NODE,
779 	    M_NOWAIT | M_ZERO);
780 
781 	return (rn != NULL) ? &rn->ni : NULL;
782 }
783 
784 static int
785 rt2560_media_change(struct ifnet *ifp)
786 {
787 	struct rt2560_softc *sc = ifp->if_softc;
788 	int error;
789 
790 	error = ieee80211_media_change(ifp);
791 	if (error != ENETRESET)
792 		return error;
793 
794 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
795 		rt2560_init(sc);
796 	return 0;
797 }
798 
799 /*
800  * This function is called periodically (every 200ms) during scanning to
801  * switch from one channel to another.
802  */
803 static void
804 rt2560_next_scan(void *arg)
805 {
806 	struct rt2560_softc *sc = arg;
807 	struct ieee80211com *ic = &sc->sc_ic;
808 	struct ifnet *ifp = ic->ic_ifp;
809 
810 	lwkt_serialize_enter(ifp->if_serializer);
811 	if (ic->ic_state == IEEE80211_S_SCAN)
812 		ieee80211_next_scan(ic);
813 	lwkt_serialize_exit(ifp->if_serializer);
814 }
815 
816 /*
817  * This function is called for each node present in the node station table.
818  */
819 static void
820 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
821 {
822 	struct rt2560_node *rn = (struct rt2560_node *)ni;
823 
824 	ral_rssadapt_updatestats(&rn->rssadapt);
825 }
826 
827 /*
828  * This function is called periodically (every 100ms) in RUN state to update
829  * the rate adaptation statistics.
830  */
831 static void
832 rt2560_update_rssadapt(void *arg)
833 {
834 	struct rt2560_softc *sc = arg;
835 	struct ieee80211com *ic = &sc->sc_ic;
836 	struct ifnet *ifp = ic->ic_ifp;
837 
838 	lwkt_serialize_enter(ifp->if_serializer);
839 
840 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
841 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
842 
843 	lwkt_serialize_exit(ifp->if_serializer);
844 }
845 
846 static int
847 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
848 {
849 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
850 	enum ieee80211_state ostate;
851 	struct ieee80211_node *ni;
852 	struct mbuf *m;
853 	int error = 0;
854 
855 	ostate = ic->ic_state;
856 	callout_stop(&sc->scan_ch);
857 
858 	switch (nstate) {
859 	case IEEE80211_S_INIT:
860 		callout_stop(&sc->rssadapt_ch);
861 
862 		if (ostate == IEEE80211_S_RUN) {
863 			/* abort TSF synchronization */
864 			RAL_WRITE(sc, RT2560_CSR14, 0);
865 
866 			/* turn association led off */
867 			rt2560_update_led(sc, 0, 0);
868 		}
869 		break;
870 
871 	case IEEE80211_S_SCAN:
872 		rt2560_set_chan(sc, ic->ic_curchan);
873 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
874 		    rt2560_next_scan, sc);
875 		break;
876 
877 	case IEEE80211_S_AUTH:
878 		rt2560_set_chan(sc, ic->ic_curchan);
879 		break;
880 
881 	case IEEE80211_S_ASSOC:
882 		rt2560_set_chan(sc, ic->ic_curchan);
883 		break;
884 
885 	case IEEE80211_S_RUN:
886 		rt2560_set_chan(sc, ic->ic_curchan);
887 
888 		ni = ic->ic_bss;
889 
890 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
891 			rt2560_update_plcp(sc);
892 			rt2560_set_basicrates(sc);
893 			rt2560_set_bssid(sc, ni->ni_bssid);
894 		}
895 
896 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
897 		    ic->ic_opmode == IEEE80211_M_IBSS) {
898 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
899 			if (m == NULL) {
900 				device_printf(sc->sc_dev,
901 				    "could not allocate beacon\n");
902 				error = ENOBUFS;
903 				break;
904 			}
905 
906 			ieee80211_ref_node(ni);
907 			error = rt2560_tx_bcn(sc, m, ni);
908 			if (error != 0)
909 				break;
910 		}
911 
912 		/* turn assocation led on */
913 		rt2560_update_led(sc, 1, 0);
914 
915 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
916 			callout_reset(&sc->rssadapt_ch, hz / 10,
917 			    rt2560_update_rssadapt, sc);
918 
919 			rt2560_enable_tsf_sync(sc);
920 		}
921 		break;
922 	}
923 
924 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
925 }
926 
927 /*
928  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
929  * 93C66).
930  */
931 static uint16_t
932 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
933 {
934 	uint32_t tmp;
935 	uint16_t val;
936 	int n;
937 
938 	/* clock C once before the first command */
939 	RT2560_EEPROM_CTL(sc, 0);
940 
941 	RT2560_EEPROM_CTL(sc, RT2560_S);
942 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
943 	RT2560_EEPROM_CTL(sc, RT2560_S);
944 
945 	/* write start bit (1) */
946 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
947 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
948 
949 	/* write READ opcode (10) */
950 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
951 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
952 	RT2560_EEPROM_CTL(sc, RT2560_S);
953 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
954 
955 	/* write address (A5-A0 or A7-A0) */
956 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
957 	for (; n >= 0; n--) {
958 		RT2560_EEPROM_CTL(sc, RT2560_S |
959 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
960 		RT2560_EEPROM_CTL(sc, RT2560_S |
961 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
962 	}
963 
964 	RT2560_EEPROM_CTL(sc, RT2560_S);
965 
966 	/* read data Q15-Q0 */
967 	val = 0;
968 	for (n = 15; n >= 0; n--) {
969 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
970 		tmp = RAL_READ(sc, RT2560_CSR21);
971 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
972 		RT2560_EEPROM_CTL(sc, RT2560_S);
973 	}
974 
975 	RT2560_EEPROM_CTL(sc, 0);
976 
977 	/* clear Chip Select and clock C */
978 	RT2560_EEPROM_CTL(sc, RT2560_S);
979 	RT2560_EEPROM_CTL(sc, 0);
980 	RT2560_EEPROM_CTL(sc, RT2560_C);
981 
982 	return val;
983 }
984 
985 /*
986  * Some frames were processed by the hardware cipher engine and are ready for
987  * transmission.
988  */
989 static void
990 rt2560_encryption_intr(struct rt2560_softc *sc)
991 {
992 	struct rt2560_tx_desc *desc;
993 	int hw;
994 
995 	/* retrieve last descriptor index processed by cipher engine */
996 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
997 	hw /= RT2560_TX_DESC_SIZE;
998 
999 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1000 	    BUS_DMASYNC_POSTREAD);
1001 
1002 	for (; sc->txq.next_encrypt != hw;) {
1003 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1004 
1005 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1006 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
1007 			break;
1008 
1009 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1010 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1011 		    RT2560_TX_CIPHER_TKIP)
1012 			desc->eiv = bswap32(desc->eiv);
1013 
1014 		/* mark the frame ready for transmission */
1015 		desc->flags |= htole32(RT2560_TX_VALID);
1016 		desc->flags |= htole32(RT2560_TX_BUSY);
1017 
1018 		DPRINTFN(15, ("encryption done idx=%u\n",
1019 		    sc->txq.next_encrypt));
1020 
1021 		sc->txq.next_encrypt =
1022 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1023 	}
1024 
1025 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1026 	    BUS_DMASYNC_PREWRITE);
1027 
1028 	/* kick Tx */
1029 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1030 }
1031 
1032 static void
1033 rt2560_tx_intr(struct rt2560_softc *sc)
1034 {
1035 	struct ieee80211com *ic = &sc->sc_ic;
1036 	struct ifnet *ifp = ic->ic_ifp;
1037 	struct rt2560_tx_desc *desc;
1038 	struct rt2560_tx_data *data;
1039 	struct rt2560_node *rn;
1040 
1041 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1042 	    BUS_DMASYNC_POSTREAD);
1043 
1044 	for (;;) {
1045 		desc = &sc->txq.desc[sc->txq.next];
1046 		data = &sc->txq.data[sc->txq.next];
1047 
1048 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1049 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1050 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1051 			break;
1052 
1053 		rn = (struct rt2560_node *)data->ni;
1054 
1055 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1056 		case RT2560_TX_SUCCESS:
1057 			DPRINTFN(10, ("data frame sent successfully\n"));
1058 			if (data->id.id_node != NULL) {
1059 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
1060 				    &data->id);
1061 			}
1062 			ifp->if_opackets++;
1063 			break;
1064 
1065 		case RT2560_TX_SUCCESS_RETRY:
1066 			DPRINTFN(9, ("data frame sent after %u retries\n",
1067 			    (le32toh(desc->flags) >> 5) & 0x7));
1068 			ifp->if_opackets++;
1069 			break;
1070 
1071 		case RT2560_TX_FAIL_RETRY:
1072 			DPRINTFN(9, ("sending data frame failed (too much "
1073 			    "retries)\n"));
1074 			if (data->id.id_node != NULL) {
1075 				ral_rssadapt_lower_rate(ic, data->ni,
1076 				    &rn->rssadapt, &data->id);
1077 			}
1078 			ifp->if_oerrors++;
1079 			break;
1080 
1081 		case RT2560_TX_FAIL_INVALID:
1082 		case RT2560_TX_FAIL_OTHER:
1083 		default:
1084 			device_printf(sc->sc_dev, "sending data frame failed "
1085 			    "0x%08x\n", le32toh(desc->flags));
1086 			ifp->if_oerrors++;
1087 		}
1088 
1089 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1090 		    BUS_DMASYNC_POSTWRITE);
1091 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
1092 		m_freem(data->m);
1093 		data->m = NULL;
1094 		ieee80211_free_node(data->ni);
1095 		data->ni = NULL;
1096 
1097 		/* descriptor is no longer valid */
1098 		desc->flags &= ~htole32(RT2560_TX_VALID);
1099 
1100 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1101 
1102 		sc->txq.queued--;
1103 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1104 	}
1105 
1106 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1107 	    BUS_DMASYNC_PREWRITE);
1108 
1109 	sc->sc_tx_timer = 0;
1110 	ifp->if_flags &= ~IFF_OACTIVE;
1111 	rt2560_start(ifp);
1112 }
1113 
1114 static void
1115 rt2560_prio_intr(struct rt2560_softc *sc)
1116 {
1117 	struct ieee80211com *ic = &sc->sc_ic;
1118 	struct ifnet *ifp = ic->ic_ifp;
1119 	struct rt2560_tx_desc *desc;
1120 	struct rt2560_tx_data *data;
1121 
1122 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1123 	    BUS_DMASYNC_POSTREAD);
1124 
1125 	for (;;) {
1126 		desc = &sc->prioq.desc[sc->prioq.next];
1127 		data = &sc->prioq.data[sc->prioq.next];
1128 
1129 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1130 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1131 			break;
1132 
1133 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1134 		case RT2560_TX_SUCCESS:
1135 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1136 			break;
1137 
1138 		case RT2560_TX_SUCCESS_RETRY:
1139 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1140 			    (le32toh(desc->flags) >> 5) & 0x7));
1141 			break;
1142 
1143 		case RT2560_TX_FAIL_RETRY:
1144 			DPRINTFN(9, ("sending mgt frame failed (too much "
1145 			    "retries)\n"));
1146 			break;
1147 
1148 		case RT2560_TX_FAIL_INVALID:
1149 		case RT2560_TX_FAIL_OTHER:
1150 		default:
1151 			device_printf(sc->sc_dev, "sending mgt frame failed "
1152 			    "0x%08x\n", le32toh(desc->flags));
1153 		}
1154 
1155 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1156 		    BUS_DMASYNC_POSTWRITE);
1157 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1158 		m_freem(data->m);
1159 		data->m = NULL;
1160 		ieee80211_free_node(data->ni);
1161 		data->ni = NULL;
1162 
1163 		/* descriptor is no longer valid */
1164 		desc->flags &= ~htole32(RT2560_TX_VALID);
1165 
1166 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1167 
1168 		sc->prioq.queued--;
1169 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1170 	}
1171 
1172 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1173 	    BUS_DMASYNC_PREWRITE);
1174 
1175 	sc->sc_tx_timer = 0;
1176 	ifp->if_flags &= ~IFF_OACTIVE;
1177 	rt2560_start(ifp);
1178 }
1179 
1180 /*
1181  * Some frames were processed by the hardware cipher engine and are ready for
1182  * transmission to the IEEE802.11 layer.
1183  */
1184 static void
1185 rt2560_decryption_intr(struct rt2560_softc *sc)
1186 {
1187 	struct ieee80211com *ic = &sc->sc_ic;
1188 	struct ifnet *ifp = ic->ic_ifp;
1189 	struct rt2560_rx_desc *desc;
1190 	struct rt2560_rx_data *data;
1191 	bus_addr_t physaddr;
1192 	struct ieee80211_frame *wh;
1193 	struct ieee80211_node *ni;
1194 	struct rt2560_node *rn;
1195 	struct mbuf *mnew, *m;
1196 	int hw, error;
1197 
1198 	/* retrieve last decriptor index processed by cipher engine */
1199 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1200 	hw /= RT2560_RX_DESC_SIZE;
1201 
1202 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1203 	    BUS_DMASYNC_POSTREAD);
1204 
1205 	for (; sc->rxq.cur_decrypt != hw;) {
1206 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1207 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1208 
1209 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1210 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1211 			break;
1212 
1213 		if (data->drop) {
1214 			ifp->if_ierrors++;
1215 			goto skip;
1216 		}
1217 
1218 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1219 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1220 			ifp->if_ierrors++;
1221 			goto skip;
1222 		}
1223 
1224 		/*
1225 		 * Try to allocate a new mbuf for this ring element and load it
1226 		 * before processing the current mbuf. If the ring element
1227 		 * cannot be loaded, drop the received packet and reuse the old
1228 		 * mbuf. In the unlikely case that the old mbuf can't be
1229 		 * reloaded either, explicitly panic.
1230 		 */
1231 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1232 		if (mnew == NULL) {
1233 			ifp->if_ierrors++;
1234 			goto skip;
1235 		}
1236 
1237 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1238 		    BUS_DMASYNC_POSTREAD);
1239 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1240 
1241 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1242 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1243 		    &physaddr, 0);
1244 		if (error != 0) {
1245 			m_freem(mnew);
1246 
1247 			/* try to reload the old mbuf */
1248 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1249 			    mtod(data->m, void *), MCLBYTES,
1250 			    rt2560_dma_map_addr, &physaddr, 0);
1251 			if (error != 0) {
1252 				/* very unlikely that it will fail... */
1253 				panic("%s: could not load old rx mbuf",
1254 				    device_get_name(sc->sc_dev));
1255 			}
1256 			ifp->if_ierrors++;
1257 			goto skip;
1258 		}
1259 
1260 		/*
1261 	 	 * New mbuf successfully loaded, update Rx ring and continue
1262 		 * processing.
1263 		 */
1264 		m = data->m;
1265 		data->m = mnew;
1266 		desc->physaddr = htole32(physaddr);
1267 
1268 		/* finalize mbuf */
1269 		m->m_pkthdr.rcvif = ifp;
1270 		m->m_pkthdr.len = m->m_len =
1271 		    (le32toh(desc->flags) >> 16) & 0xfff;
1272 
1273 		if (sc->sc_drvbpf != NULL) {
1274 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1275 			uint32_t tsf_lo, tsf_hi;
1276 
1277 			/* get timestamp (low and high 32 bits) */
1278 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1279 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1280 
1281 			tap->wr_tsf =
1282 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1283 			tap->wr_flags = 0;
1284 			tap->wr_rate = rt2560_rxrate(desc);
1285 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1286 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1287 			tap->wr_antenna = sc->rx_ant;
1288 			tap->wr_antsignal = desc->rssi;
1289 
1290 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1291 		}
1292 
1293 		wh = mtod(m, struct ieee80211_frame *);
1294 		ni = ieee80211_find_rxnode(ic,
1295 		    (struct ieee80211_frame_min *)wh);
1296 
1297 		/* send the frame to the 802.11 layer */
1298 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1299 
1300 		/* give rssi to the rate adatation algorithm */
1301 		rn = (struct rt2560_node *)ni;
1302 		ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1303 
1304 		/* node is no longer needed */
1305 		ieee80211_free_node(ni);
1306 
1307 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1308 
1309 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1310 
1311 		sc->rxq.cur_decrypt =
1312 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1313 	}
1314 
1315 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1316 	    BUS_DMASYNC_PREWRITE);
1317 }
1318 
1319 /*
1320  * Some frames were received. Pass them to the hardware cipher engine before
1321  * sending them to the 802.11 layer.
1322  */
1323 static void
1324 rt2560_rx_intr(struct rt2560_softc *sc)
1325 {
1326 	struct rt2560_rx_desc *desc;
1327 	struct rt2560_rx_data *data;
1328 
1329 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1330 	    BUS_DMASYNC_POSTREAD);
1331 
1332 	for (;;) {
1333 		desc = &sc->rxq.desc[sc->rxq.cur];
1334 		data = &sc->rxq.data[sc->rxq.cur];
1335 
1336 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1337 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1338 			break;
1339 
1340 		data->drop = 0;
1341 
1342 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1343 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1344 			/*
1345 			 * This should not happen since we did not request
1346 			 * to receive those frames when we filled RXCSR0.
1347 			 */
1348 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1349 			    le32toh(desc->flags)));
1350 			data->drop = 1;
1351 		}
1352 
1353 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1354 			DPRINTFN(5, ("bad length\n"));
1355 			data->drop = 1;
1356 		}
1357 
1358 		/* mark the frame for decryption */
1359 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1360 
1361 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1362 
1363 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1364 	}
1365 
1366 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1367 	    BUS_DMASYNC_PREWRITE);
1368 
1369 	/* kick decrypt */
1370 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1371 }
1372 
1373 /*
1374  * This function is called periodically in IBSS mode when a new beacon must be
1375  * sent out.
1376  */
1377 static void
1378 rt2560_beacon_expire(struct rt2560_softc *sc)
1379 {
1380 	struct ieee80211com *ic = &sc->sc_ic;
1381 	struct rt2560_tx_data *data;
1382 
1383 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1384 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1385 		return;
1386 
1387 	data = &sc->bcnq.data[sc->bcnq.next];
1388 
1389 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1390 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1391 
1392 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1393 
1394 	if (ic->ic_rawbpf != NULL)
1395 		bpf_mtap(ic->ic_rawbpf, data->m);
1396 
1397 	rt2560_tx_bcn(sc, data->m, data->ni);
1398 
1399 	DPRINTFN(15, ("beacon expired\n"));
1400 
1401 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1402 }
1403 
1404 /* ARGSUSED */
1405 static void
1406 rt2560_wakeup_expire(struct rt2560_softc *sc)
1407 {
1408 	DPRINTFN(2, ("wakeup expired\n"));
1409 }
1410 
1411 static void
1412 rt2560_intr(void *arg)
1413 {
1414 	struct rt2560_softc *sc = arg;
1415 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1416 	uint32_t r;
1417 
1418 	/* disable interrupts */
1419 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1420 
1421 	/* don't re-enable interrupts if we're shutting down */
1422 	if (!(ifp->if_flags & IFF_RUNNING))
1423 		return;
1424 
1425 	r = RAL_READ(sc, RT2560_CSR7);
1426 	RAL_WRITE(sc, RT2560_CSR7, r);
1427 
1428 	if (r & RT2560_BEACON_EXPIRE)
1429 		rt2560_beacon_expire(sc);
1430 
1431 	if (r & RT2560_WAKEUP_EXPIRE)
1432 		rt2560_wakeup_expire(sc);
1433 
1434 	if (r & RT2560_PRIO_DONE)
1435 		rt2560_prio_intr(sc);
1436 
1437 	if (r & (RT2560_TX_DONE | RT2560_ENCRYPTION_DONE)) {
1438 		int i;
1439 
1440 		for (i = 0; i < 2; ++i) {
1441 			rt2560_tx_intr(sc);
1442 			rt2560_encryption_intr(sc);
1443 		}
1444 	}
1445 
1446 	if (r & (RT2560_DECRYPTION_DONE | RT2560_RX_DONE)) {
1447 		int i;
1448 
1449 		for (i = 0; i < 2; ++i) {
1450 			rt2560_decryption_intr(sc);
1451 			rt2560_rx_intr(sc);
1452 		}
1453 	}
1454 
1455 	/* re-enable interrupts */
1456 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1457 }
1458 
1459 /* quickly determine if a given rate is CCK or OFDM */
1460 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1461 
1462 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1463 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1464 
1465 #define RAL_SIFS		10	/* us */
1466 
1467 #define RT2560_TXRX_TURNAROUND	10	/* us */
1468 
1469 /*
1470  * This function is only used by the Rx radiotap code.
1471  */
1472 static uint8_t
1473 rt2560_rxrate(struct rt2560_rx_desc *desc)
1474 {
1475 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1476 		/* reverse function of rt2560_plcp_signal */
1477 		switch (desc->rate) {
1478 		case 0xb:	return 12;
1479 		case 0xf:	return 18;
1480 		case 0xa:	return 24;
1481 		case 0xe:	return 36;
1482 		case 0x9:	return 48;
1483 		case 0xd:	return 72;
1484 		case 0x8:	return 96;
1485 		case 0xc:	return 108;
1486 		}
1487 	} else {
1488 		if (desc->rate == 10)
1489 			return 2;
1490 		if (desc->rate == 20)
1491 			return 4;
1492 		if (desc->rate == 55)
1493 			return 11;
1494 		if (desc->rate == 110)
1495 			return 22;
1496 	}
1497 	return 2;	/* should not get there */
1498 }
1499 
1500 /*
1501  * Return the expected ack rate for a frame transmitted at rate `rate'.
1502  * XXX: this should depend on the destination node basic rate set.
1503  */
1504 static int
1505 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1506 {
1507 	switch (rate) {
1508 	/* CCK rates */
1509 	case 2:
1510 		return 2;
1511 	case 4:
1512 	case 11:
1513 	case 22:
1514 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1515 
1516 	/* OFDM rates */
1517 	case 12:
1518 	case 18:
1519 		return 12;
1520 	case 24:
1521 	case 36:
1522 		return 24;
1523 	case 48:
1524 	case 72:
1525 	case 96:
1526 	case 108:
1527 		return 48;
1528 	}
1529 
1530 	/* default to 1Mbps */
1531 	return 2;
1532 }
1533 
1534 /*
1535  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1536  * The function automatically determines the operating mode depending on the
1537  * given rate. `flags' indicates whether short preamble is in use or not.
1538  */
1539 static uint16_t
1540 rt2560_txtime(int len, int rate, uint32_t flags)
1541 {
1542 	uint16_t txtime;
1543 
1544 	if (RAL_RATE_IS_OFDM(rate)) {
1545 		/* IEEE Std 802.11a-1999, pp. 37 */
1546 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1547 		txtime = 16 + 4 + 4 * txtime + 6;
1548 	} else {
1549 		/* IEEE Std 802.11b-1999, pp. 28 */
1550 		txtime = (16 * len + rate - 1) / rate;
1551 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1552 			txtime +=  72 + 24;
1553 		else
1554 			txtime += 144 + 48;
1555 	}
1556 
1557 	return txtime;
1558 }
1559 
1560 static uint8_t
1561 rt2560_plcp_signal(int rate)
1562 {
1563 	switch (rate) {
1564 	/* CCK rates (returned values are device-dependent) */
1565 	case 2:		return 0x0;
1566 	case 4:		return 0x1;
1567 	case 11:	return 0x2;
1568 	case 22:	return 0x3;
1569 
1570 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1571 	case 12:	return 0xb;
1572 	case 18:	return 0xf;
1573 	case 24:	return 0xa;
1574 	case 36:	return 0xe;
1575 	case 48:	return 0x9;
1576 	case 72:	return 0xd;
1577 	case 96:	return 0x8;
1578 	case 108:	return 0xc;
1579 
1580 	/* unsupported rates (should not get there) */
1581 	default:	return 0xff;
1582 	}
1583 }
1584 
1585 static void
1586 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1587     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1588 {
1589 	struct ieee80211com *ic = &sc->sc_ic;
1590 	uint16_t plcp_length;
1591 	int remainder;
1592 
1593 	desc->flags = htole32(flags);
1594 	desc->flags |= htole32(len << 16);
1595 	if (!encrypt)
1596 		desc->flags |= htole32(RT2560_TX_VALID);
1597 
1598 	desc->physaddr = htole32(physaddr);
1599 	desc->wme = htole16(
1600 	    RT2560_AIFSN(2) |
1601 	    RT2560_LOGCWMIN(3) |
1602 	    RT2560_LOGCWMAX(8));
1603 
1604 	/* setup PLCP fields */
1605 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1606 	desc->plcp_service = 4;
1607 
1608 	len += IEEE80211_CRC_LEN;
1609 	if (RAL_RATE_IS_OFDM(rate)) {
1610 		desc->flags |= htole32(RT2560_TX_OFDM);
1611 
1612 		plcp_length = len & 0xfff;
1613 		desc->plcp_length_hi = plcp_length >> 6;
1614 		desc->plcp_length_lo = plcp_length & 0x3f;
1615 	} else {
1616 		plcp_length = (16 * len + rate - 1) / rate;
1617 		if (rate == 22) {
1618 			remainder = (16 * len) % 22;
1619 			if (remainder != 0 && remainder < 7)
1620 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1621 		}
1622 		desc->plcp_length_hi = plcp_length >> 8;
1623 		desc->plcp_length_lo = plcp_length & 0xff;
1624 
1625 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1626 			desc->plcp_signal |= 0x08;
1627 	}
1628 
1629 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
1630 			       : htole32(RT2560_TX_BUSY);
1631 }
1632 
1633 static int
1634 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1635     struct ieee80211_node *ni)
1636 {
1637 	struct ieee80211com *ic = &sc->sc_ic;
1638 	struct rt2560_tx_desc *desc;
1639 	struct rt2560_tx_data *data;
1640 	bus_addr_t paddr;
1641 	int rate, error;
1642 
1643 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1644 	data = &sc->bcnq.data[sc->bcnq.cur];
1645 
1646 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1647 
1648 	error = bus_dmamap_load_mbuf(sc->bcnq.data_dmat, data->map, m0,
1649 				     rt2560_dma_map_mbuf, &paddr,
1650 				     BUS_DMA_NOWAIT);
1651 	if (error != 0) {
1652 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1653 		    error);
1654 		m_freem(m0);
1655 		return error;
1656 	}
1657 
1658 	if (sc->sc_drvbpf != NULL) {
1659 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1660 
1661 		tap->wt_flags = 0;
1662 		tap->wt_rate = rate;
1663 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1664 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1665 		tap->wt_antenna = sc->tx_ant;
1666 
1667 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1668 	}
1669 
1670 	data->m = m0;
1671 	data->ni = ni;
1672 
1673 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1674 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, paddr);
1675 
1676 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1677 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1678 
1679 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1680 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1681 	    BUS_DMASYNC_PREWRITE);
1682 
1683 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1684 
1685 	return 0;
1686 }
1687 
1688 static int
1689 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1690     struct ieee80211_node *ni)
1691 {
1692 	struct ieee80211com *ic = &sc->sc_ic;
1693 	struct rt2560_tx_desc *desc;
1694 	struct rt2560_tx_data *data;
1695 	struct ieee80211_frame *wh;
1696 	bus_addr_t paddr;
1697 	uint16_t dur;
1698 	uint32_t flags = 0;
1699 	int rate, error;
1700 
1701 	desc = &sc->prioq.desc[sc->prioq.cur];
1702 	data = &sc->prioq.data[sc->prioq.cur];
1703 
1704 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1705 
1706 	error = bus_dmamap_load_mbuf(sc->prioq.data_dmat, data->map, m0,
1707 				     rt2560_dma_map_mbuf, &paddr, 0);
1708 	if (error != 0) {
1709 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1710 		    error);
1711 		m_freem(m0);
1712 		return error;
1713 	}
1714 
1715 	if (sc->sc_drvbpf != NULL) {
1716 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1717 
1718 		tap->wt_flags = 0;
1719 		tap->wt_rate = rate;
1720 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1721 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1722 		tap->wt_antenna = sc->tx_ant;
1723 
1724 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1725 	}
1726 
1727 	data->m = m0;
1728 	data->ni = ni;
1729 
1730 	wh = mtod(m0, struct ieee80211_frame *);
1731 
1732 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1733 		flags |= RT2560_TX_ACK;
1734 
1735 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1736 		      RAL_SIFS;
1737 		*(uint16_t *)wh->i_dur = htole16(dur);
1738 
1739 		/* tell hardware to add timestamp for probe responses */
1740 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1741 		    IEEE80211_FC0_TYPE_MGT &&
1742 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1743 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1744 			flags |= RT2560_TX_TIMESTAMP;
1745 	}
1746 
1747 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, paddr);
1748 
1749 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1750 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1751 	    BUS_DMASYNC_PREWRITE);
1752 
1753 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1754 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1755 
1756 	/* kick prio */
1757 	sc->prioq.queued++;
1758 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1759 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1760 
1761 	return 0;
1762 }
1763 
1764 /*
1765  * Build a RTS control frame.
1766  */
1767 static struct mbuf *
1768 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1769     uint16_t dur)
1770 {
1771 	struct ieee80211_frame_rts *rts;
1772 	struct mbuf *m;
1773 
1774 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1775 	if (m == NULL) {
1776 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1777 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1778 		return NULL;
1779 	}
1780 
1781 	rts = mtod(m, struct ieee80211_frame_rts *);
1782 
1783 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1784 	    IEEE80211_FC0_SUBTYPE_RTS;
1785 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1786 	*(uint16_t *)rts->i_dur = htole16(dur);
1787 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1788 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1789 
1790 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1791 
1792 	return m;
1793 }
1794 
1795 static int
1796 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1797     struct ieee80211_node *ni)
1798 {
1799 	struct ieee80211com *ic = &sc->sc_ic;
1800 	struct rt2560_tx_desc *desc;
1801 	struct rt2560_tx_data *data;
1802 	struct rt2560_node *rn;
1803 	struct ieee80211_rateset *rs;
1804 	struct ieee80211_frame *wh;
1805 	struct ieee80211_key *k;
1806 	struct mbuf *mnew;
1807 	bus_addr_t paddr;
1808 	uint16_t dur;
1809 	uint32_t flags = 0;
1810 	int rate, error;
1811 
1812 	wh = mtod(m0, struct ieee80211_frame *);
1813 
1814 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1815 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1816 		rate = rs->rs_rates[ic->ic_fixed_rate];
1817 	} else {
1818 		rs = &ni->ni_rates;
1819 		rn = (struct rt2560_node *)ni;
1820 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1821 		    m0->m_pkthdr.len, NULL, 0);
1822 		rate = rs->rs_rates[ni->ni_txrate];
1823 	}
1824 	rate &= IEEE80211_RATE_VAL;
1825 
1826 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1827 		k = ieee80211_crypto_encap(ic, ni, m0);
1828 		if (k == NULL) {
1829 			m_freem(m0);
1830 			return ENOBUFS;
1831 		}
1832 
1833 		/* packet header may have moved, reset our local pointer */
1834 		wh = mtod(m0, struct ieee80211_frame *);
1835 	}
1836 
1837 	/*
1838 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1839 	 * for directed frames only when the length of the MPDU is greater
1840 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1841 	 */
1842 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1843 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1844 		struct mbuf *m;
1845 		uint16_t dur;
1846 		int rtsrate, ackrate;
1847 
1848 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1849 		ackrate = rt2560_ack_rate(ic, rate);
1850 
1851 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1852 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1853 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1854 		      3 * RAL_SIFS;
1855 
1856 		m = rt2560_get_rts(sc, wh, dur);
1857 
1858 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1859 		data = &sc->txq.data[sc->txq.cur_encrypt];
1860 
1861 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1862 					     m, rt2560_dma_map_mbuf, &paddr, 0);
1863 		if (error != 0) {
1864 			device_printf(sc->sc_dev,
1865 			    "could not map mbuf (error %d)\n", error);
1866 			m_freem(m);
1867 			m_freem(m0);
1868 			return error;
1869 		}
1870 
1871 		/* avoid multiple free() of the same node for each fragment */
1872 		ieee80211_ref_node(ni);
1873 
1874 		data->m = m;
1875 		data->ni = ni;
1876 
1877 		/* RTS frames are not taken into account for rssadapt */
1878 		data->id.id_node = NULL;
1879 
1880 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1881 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, paddr);
1882 
1883 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1884 		    BUS_DMASYNC_PREWRITE);
1885 
1886 		sc->txq.queued++;
1887 		sc->txq.cur_encrypt =
1888 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1889 
1890 		/*
1891 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1892 		 * asynchronous data frame shall be transmitted after the CTS
1893 		 * frame and a SIFS period.
1894 		 */
1895 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1896 	}
1897 
1898 	data = &sc->txq.data[sc->txq.cur_encrypt];
1899 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1900 
1901 	error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, m0,
1902 				     rt2560_dma_map_mbuf, &paddr, 0);
1903 	if (error != 0 && error != EFBIG) {
1904 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1905 		    error);
1906 		m_freem(m0);
1907 		return error;
1908 	}
1909 	if (error != 0) {
1910 		mnew = m_defrag(m0, MB_DONTWAIT);
1911 		if (mnew == NULL) {
1912 			device_printf(sc->sc_dev,
1913 			    "could not defragment mbuf\n");
1914 			m_freem(m0);
1915 			return ENOBUFS;
1916 		}
1917 		m0 = mnew;
1918 
1919 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1920 					     m0, rt2560_dma_map_mbuf, &paddr,
1921 					     0);
1922 		if (error != 0) {
1923 			device_printf(sc->sc_dev,
1924 			    "could not map mbuf (error %d)\n", error);
1925 			m_freem(m0);
1926 			return error;
1927 		}
1928 
1929 		/* packet header may have moved, reset our local pointer */
1930 		wh = mtod(m0, struct ieee80211_frame *);
1931 	}
1932 
1933 	if (sc->sc_drvbpf != NULL) {
1934 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1935 
1936 		tap->wt_flags = 0;
1937 		tap->wt_rate = rate;
1938 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1939 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1940 		tap->wt_antenna = sc->tx_ant;
1941 
1942 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1943 	}
1944 
1945 	data->m = m0;
1946 	data->ni = ni;
1947 
1948 	/* remember link conditions for rate adaptation algorithm */
1949 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1950 		data->id.id_len = m0->m_pkthdr.len;
1951 		data->id.id_rateidx = ni->ni_txrate;
1952 		data->id.id_node = ni;
1953 		data->id.id_rssi = ni->ni_rssi;
1954 	} else
1955 		data->id.id_node = NULL;
1956 
1957 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1958 		flags |= RT2560_TX_ACK;
1959 
1960 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1961 		    ic->ic_flags) + RAL_SIFS;
1962 		*(uint16_t *)wh->i_dur = htole16(dur);
1963 	}
1964 
1965 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, paddr);
1966 
1967 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1968 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1969 	    BUS_DMASYNC_PREWRITE);
1970 
1971 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1972 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1973 
1974 	/* kick encrypt */
1975 	sc->txq.queued++;
1976 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1977 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1978 
1979 	return 0;
1980 }
1981 
1982 static void
1983 rt2560_start(struct ifnet *ifp)
1984 {
1985 	struct rt2560_softc *sc = ifp->if_softc;
1986 	struct ieee80211com *ic = &sc->sc_ic;
1987 	struct mbuf *m0;
1988 	struct ether_header *eh;
1989 	struct ieee80211_node *ni;
1990 
1991 	/* prevent management frames from being sent if we're not ready */
1992 	if (!(ifp->if_flags & IFF_RUNNING))
1993 		return;
1994 
1995 	for (;;) {
1996 		IF_POLL(&ic->ic_mgtq, m0);
1997 		if (m0 != NULL) {
1998 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1999 				ifp->if_flags |= IFF_OACTIVE;
2000 				break;
2001 			}
2002 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2003 
2004 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2005 			m0->m_pkthdr.rcvif = NULL;
2006 
2007 			if (ic->ic_rawbpf != NULL)
2008 				bpf_mtap(ic->ic_rawbpf, m0);
2009 
2010 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2011 				break;
2012 
2013 		} else {
2014 			if (ic->ic_state != IEEE80211_S_RUN)
2015 				break;
2016 			m0 = ifq_poll(&ifp->if_snd);
2017 			if (m0 == NULL)
2018 				break;
2019 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2020 				ifp->if_flags |= IFF_OACTIVE;
2021 				break;
2022 			}
2023 			m0 = ifq_dequeue(&ifp->if_snd, m0);
2024 
2025 			if (m0->m_len < sizeof (struct ether_header) &&
2026 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2027 				continue;
2028 
2029 			eh = mtod(m0, struct ether_header *);
2030 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2031 			if (ni == NULL) {
2032 				m_freem(m0);
2033 				continue;
2034 			}
2035 			BPF_MTAP(ifp, m0);
2036 
2037 			m0 = ieee80211_encap(ic, m0, ni);
2038 			if (m0 == NULL) {
2039 				ieee80211_free_node(ni);
2040 				continue;
2041 			}
2042 
2043 			if (ic->ic_rawbpf != NULL)
2044 				bpf_mtap(ic->ic_rawbpf, m0);
2045 
2046 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2047 				ieee80211_free_node(ni);
2048 				ifp->if_oerrors++;
2049 				break;
2050 			}
2051 		}
2052 
2053 		sc->sc_tx_timer = 5;
2054 		ifp->if_timer = 1;
2055 	}
2056 }
2057 
2058 static void
2059 rt2560_watchdog(struct ifnet *ifp)
2060 {
2061 	struct rt2560_softc *sc = ifp->if_softc;
2062 	struct ieee80211com *ic = &sc->sc_ic;
2063 
2064 	ifp->if_timer = 0;
2065 
2066 	if (sc->sc_tx_timer > 0) {
2067 		if (--sc->sc_tx_timer == 0) {
2068 			device_printf(sc->sc_dev, "device timeout\n");
2069 			rt2560_init(sc);
2070 			ifp->if_oerrors++;
2071 			return;
2072 		}
2073 		ifp->if_timer = 1;
2074 	}
2075 
2076 	ieee80211_watchdog(ic);
2077 }
2078 
2079 /*
2080  * This function allows for fast channel switching in monitor mode (used by
2081  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2082  * generate a new beacon frame.
2083  */
2084 static int
2085 rt2560_reset(struct ifnet *ifp)
2086 {
2087 	struct rt2560_softc *sc = ifp->if_softc;
2088 	struct ieee80211com *ic = &sc->sc_ic;
2089 
2090 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2091 		return ENETRESET;
2092 
2093 	rt2560_set_chan(sc, ic->ic_curchan);
2094 
2095 	return 0;
2096 }
2097 
2098 static int
2099 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2100 {
2101 	struct rt2560_softc *sc = ifp->if_softc;
2102 	struct ieee80211com *ic = &sc->sc_ic;
2103 	int error = 0;
2104 
2105 	switch (cmd) {
2106 	case SIOCSIFFLAGS:
2107 		if (ifp->if_flags & IFF_UP) {
2108 			if (ifp->if_flags & IFF_RUNNING)
2109 				rt2560_update_promisc(sc);
2110 			else
2111 				rt2560_init(sc);
2112 		} else {
2113 			if (ifp->if_flags & IFF_RUNNING)
2114 				rt2560_stop(sc);
2115 		}
2116 		break;
2117 
2118 	default:
2119 		error = ieee80211_ioctl(ic, cmd, data, cr);
2120 	}
2121 
2122 	if (error == ENETRESET) {
2123 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2124 		    (IFF_UP | IFF_RUNNING) &&
2125 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2126 			rt2560_init(sc);
2127 		error = 0;
2128 	}
2129 
2130 	return error;
2131 }
2132 
2133 static void
2134 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2135 {
2136 	uint32_t tmp;
2137 	int ntries;
2138 
2139 	for (ntries = 0; ntries < 100; ntries++) {
2140 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2141 			break;
2142 		DELAY(1);
2143 	}
2144 	if (ntries == 100) {
2145 		device_printf(sc->sc_dev, "could not write to BBP\n");
2146 		return;
2147 	}
2148 
2149 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2150 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2151 
2152 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2153 }
2154 
2155 static uint8_t
2156 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2157 {
2158 	uint32_t val;
2159 	int ntries;
2160 
2161 	val = RT2560_BBP_BUSY | reg << 8;
2162 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2163 
2164 	for (ntries = 0; ntries < 100; ntries++) {
2165 		val = RAL_READ(sc, RT2560_BBPCSR);
2166 		if (!(val & RT2560_BBP_BUSY))
2167 			return val & 0xff;
2168 		DELAY(1);
2169 	}
2170 
2171 	device_printf(sc->sc_dev, "could not read from BBP\n");
2172 	return 0;
2173 }
2174 
2175 static void
2176 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2177 {
2178 	uint32_t tmp;
2179 	int ntries;
2180 
2181 	for (ntries = 0; ntries < 100; ntries++) {
2182 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2183 			break;
2184 		DELAY(1);
2185 	}
2186 	if (ntries == 100) {
2187 		device_printf(sc->sc_dev, "could not write to RF\n");
2188 		return;
2189 	}
2190 
2191 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2192 	    (reg & 0x3);
2193 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2194 
2195 	/* remember last written value in sc */
2196 	sc->rf_regs[reg] = val;
2197 
2198 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2199 }
2200 
2201 static void
2202 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2203 {
2204 	struct ieee80211com *ic = &sc->sc_ic;
2205 	uint8_t power, tmp;
2206 	u_int i, chan;
2207 
2208 	chan = ieee80211_chan2ieee(ic, c);
2209 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2210 		return;
2211 
2212 	if (IEEE80211_IS_CHAN_2GHZ(c))
2213 		power = min(sc->txpow[chan - 1], 31);
2214 	else
2215 		power = 31;
2216 
2217 	/* adjust txpower using ifconfig settings */
2218 	power -= (100 - ic->ic_txpowlimit) / 8;
2219 
2220 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2221 
2222 	switch (sc->rf_rev) {
2223 	case RT2560_RF_2522:
2224 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2225 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2226 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2227 		break;
2228 
2229 	case RT2560_RF_2523:
2230 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2231 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2232 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2233 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2234 		break;
2235 
2236 	case RT2560_RF_2524:
2237 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2238 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2239 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2240 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2241 		break;
2242 
2243 	case RT2560_RF_2525:
2244 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2245 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2246 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2247 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2248 
2249 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2250 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2251 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2252 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2253 		break;
2254 
2255 	case RT2560_RF_2525E:
2256 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2257 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2258 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2259 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2260 		break;
2261 
2262 	case RT2560_RF_2526:
2263 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2264 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2265 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2266 
2267 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2268 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2269 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2270 		break;
2271 
2272 	/* dual-band RF */
2273 	case RT2560_RF_5222:
2274 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2275 
2276 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2277 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2278 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2279 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2280 		break;
2281 	}
2282 
2283 	if (ic->ic_state != IEEE80211_S_SCAN) {
2284 		/* set Japan filter bit for channel 14 */
2285 		tmp = rt2560_bbp_read(sc, 70);
2286 
2287 		tmp &= ~RT2560_JAPAN_FILTER;
2288 		if (chan == 14)
2289 			tmp |= RT2560_JAPAN_FILTER;
2290 
2291 		rt2560_bbp_write(sc, 70, tmp);
2292 
2293 		/* clear CRC errors */
2294 		RAL_READ(sc, RT2560_CNT0);
2295 	}
2296 }
2297 
2298 #if 0
2299 /*
2300  * Disable RF auto-tuning.
2301  */
2302 static void
2303 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2304 {
2305 	uint32_t tmp;
2306 
2307 	if (sc->rf_rev != RT2560_RF_2523) {
2308 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2309 		rt2560_rf_write(sc, RAL_RF1, tmp);
2310 	}
2311 
2312 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2313 	rt2560_rf_write(sc, RAL_RF3, tmp);
2314 
2315 	DPRINTFN(2, ("disabling RF autotune\n"));
2316 }
2317 #endif
2318 
2319 /*
2320  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2321  * synchronization.
2322  */
2323 static void
2324 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2325 {
2326 	struct ieee80211com *ic = &sc->sc_ic;
2327 	uint16_t logcwmin, preload;
2328 	uint32_t tmp;
2329 
2330 	/* first, disable TSF synchronization */
2331 	RAL_WRITE(sc, RT2560_CSR14, 0);
2332 
2333 	tmp = 16 * ic->ic_bss->ni_intval;
2334 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2335 
2336 	RAL_WRITE(sc, RT2560_CSR13, 0);
2337 
2338 	logcwmin = 5;
2339 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2340 	tmp = logcwmin << 16 | preload;
2341 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2342 
2343 	/* finally, enable TSF synchronization */
2344 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2345 	if (ic->ic_opmode == IEEE80211_M_STA)
2346 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2347 	else
2348 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2349 		       RT2560_ENABLE_BEACON_GENERATOR;
2350 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2351 
2352 	DPRINTF(("enabling TSF synchronization\n"));
2353 }
2354 
2355 static void
2356 rt2560_update_plcp(struct rt2560_softc *sc)
2357 {
2358 	struct ieee80211com *ic = &sc->sc_ic;
2359 
2360 	/* no short preamble for 1Mbps */
2361 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2362 
2363 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2364 		/* values taken from the reference driver */
2365 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2366 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2367 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2368 	} else {
2369 		/* same values as above or'ed 0x8 */
2370 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2371 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2372 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2373 	}
2374 
2375 	DPRINTF(("updating PLCP for %s preamble\n",
2376 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2377 }
2378 
2379 /*
2380  * This function can be called by ieee80211_set_shortslottime(). Refer to
2381  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2382  */
2383 static void
2384 rt2560_update_slot(struct ifnet *ifp)
2385 {
2386 	struct rt2560_softc *sc = ifp->if_softc;
2387 	struct ieee80211com *ic = &sc->sc_ic;
2388 	uint8_t slottime;
2389 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2390 	uint32_t tmp;
2391 
2392 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2393 
2394 	/* update the MAC slot boundaries */
2395 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2396 	tx_pifs = tx_sifs + slottime;
2397 	tx_difs = tx_sifs + 2 * slottime;
2398 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2399 
2400 	tmp = RAL_READ(sc, RT2560_CSR11);
2401 	tmp = (tmp & ~0x1f00) | slottime << 8;
2402 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2403 
2404 	tmp = tx_pifs << 16 | tx_sifs;
2405 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2406 
2407 	tmp = eifs << 16 | tx_difs;
2408 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2409 
2410 	DPRINTF(("setting slottime to %uus\n", slottime));
2411 }
2412 
2413 static void
2414 rt2560_set_basicrates(struct rt2560_softc *sc)
2415 {
2416 	struct ieee80211com *ic = &sc->sc_ic;
2417 
2418 	/* update basic rate set */
2419 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2420 		/* 11b basic rates: 1, 2Mbps */
2421 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2422 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2423 		/* 11a basic rates: 6, 12, 24Mbps */
2424 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2425 	} else {
2426 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2427 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2428 	}
2429 }
2430 
2431 static void
2432 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2433 {
2434 	uint32_t tmp;
2435 
2436 	/* set ON period to 70ms and OFF period to 30ms */
2437 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2438 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2439 }
2440 
2441 static void
2442 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2443 {
2444 	uint32_t tmp;
2445 
2446 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2447 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2448 
2449 	tmp = bssid[4] | bssid[5] << 8;
2450 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2451 
2452 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2453 }
2454 
2455 static void
2456 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2457 {
2458 	uint32_t tmp;
2459 
2460 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2461 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2462 
2463 	tmp = addr[4] | addr[5] << 8;
2464 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2465 
2466 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2467 }
2468 
2469 static void
2470 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2471 {
2472 	uint32_t tmp;
2473 
2474 	tmp = RAL_READ(sc, RT2560_CSR3);
2475 	addr[0] = tmp & 0xff;
2476 	addr[1] = (tmp >>  8) & 0xff;
2477 	addr[2] = (tmp >> 16) & 0xff;
2478 	addr[3] = (tmp >> 24);
2479 
2480 	tmp = RAL_READ(sc, RT2560_CSR4);
2481 	addr[4] = tmp & 0xff;
2482 	addr[5] = (tmp >> 8) & 0xff;
2483 }
2484 
2485 static void
2486 rt2560_update_promisc(struct rt2560_softc *sc)
2487 {
2488 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2489 	uint32_t tmp;
2490 
2491 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2492 
2493 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2494 	if (!(ifp->if_flags & IFF_PROMISC))
2495 		tmp |= RT2560_DROP_NOT_TO_ME;
2496 
2497 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2498 
2499 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2500 	    "entering" : "leaving"));
2501 }
2502 
2503 static const char *
2504 rt2560_get_rf(int rev)
2505 {
2506 	switch (rev) {
2507 	case RT2560_RF_2522:	return "RT2522";
2508 	case RT2560_RF_2523:	return "RT2523";
2509 	case RT2560_RF_2524:	return "RT2524";
2510 	case RT2560_RF_2525:	return "RT2525";
2511 	case RT2560_RF_2525E:	return "RT2525e";
2512 	case RT2560_RF_2526:	return "RT2526";
2513 	case RT2560_RF_5222:	return "RT5222";
2514 	default:		return "unknown";
2515 	}
2516 }
2517 
2518 static void
2519 rt2560_read_eeprom(struct rt2560_softc *sc)
2520 {
2521 	uint16_t val;
2522 	int i;
2523 
2524 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2525 	sc->rf_rev =   (val >> 11) & 0x7;
2526 	sc->hw_radio = (val >> 10) & 0x1;
2527 	sc->led_mode = (val >> 6)  & 0x7;
2528 	sc->rx_ant =   (val >> 4)  & 0x3;
2529 	sc->tx_ant =   (val >> 2)  & 0x3;
2530 	sc->nb_ant =   val & 0x3;
2531 
2532 	/* read default values for BBP registers */
2533 	for (i = 0; i < 16; i++) {
2534 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2535 		sc->bbp_prom[i].reg = val >> 8;
2536 		sc->bbp_prom[i].val = val & 0xff;
2537 	}
2538 
2539 	/* read Tx power for all b/g channels */
2540 	for (i = 0; i < 14 / 2; i++) {
2541 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2542 		sc->txpow[i * 2] = val >> 8;
2543 		sc->txpow[i * 2 + 1] = val & 0xff;
2544 	}
2545 }
2546 
2547 static int
2548 rt2560_bbp_init(struct rt2560_softc *sc)
2549 {
2550 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2551 	int i, ntries;
2552 
2553 	/* wait for BBP to be ready */
2554 	for (ntries = 0; ntries < 100; ntries++) {
2555 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2556 			break;
2557 		DELAY(1);
2558 	}
2559 	if (ntries == 100) {
2560 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2561 		return EIO;
2562 	}
2563 
2564 	rt2560_set_txantenna(sc, sc->tx_ant);
2565 	rt2560_set_rxantenna(sc, sc->rx_ant);
2566 
2567 	/* initialize BBP registers to default values */
2568 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2569 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2570 		    rt2560_def_bbp[i].val);
2571 	}
2572 #if 0
2573 	/* initialize BBP registers to values stored in EEPROM */
2574 	for (i = 0; i < 16; i++) {
2575 		if (sc->bbp_prom[i].reg == 0xff)
2576 			continue;
2577 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2578 	}
2579 #endif
2580 
2581 	return 0;
2582 #undef N
2583 }
2584 
2585 static void
2586 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2587 {
2588 	uint32_t tmp;
2589 	uint8_t tx;
2590 
2591 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2592 	if (antenna == 1)
2593 		tx |= RT2560_BBP_ANTA;
2594 	else if (antenna == 2)
2595 		tx |= RT2560_BBP_ANTB;
2596 	else
2597 		tx |= RT2560_BBP_DIVERSITY;
2598 
2599 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2600 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2601 	    sc->rf_rev == RT2560_RF_5222)
2602 		tx |= RT2560_BBP_FLIPIQ;
2603 
2604 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2605 
2606 	/* update values for CCK and OFDM in BBPCSR1 */
2607 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2608 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2609 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2610 }
2611 
2612 static void
2613 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2614 {
2615 	uint8_t rx;
2616 
2617 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2618 	if (antenna == 1)
2619 		rx |= RT2560_BBP_ANTA;
2620 	else if (antenna == 2)
2621 		rx |= RT2560_BBP_ANTB;
2622 	else
2623 		rx |= RT2560_BBP_DIVERSITY;
2624 
2625 	/* need to force no I/Q flip for RF 2525e and 2526 */
2626 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2627 		rx &= ~RT2560_BBP_FLIPIQ;
2628 
2629 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2630 }
2631 
2632 static void
2633 rt2560_init(void *priv)
2634 {
2635 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2636 	struct rt2560_softc *sc = priv;
2637 	struct ieee80211com *ic = &sc->sc_ic;
2638 	struct ifnet *ifp = ic->ic_ifp;
2639 	uint32_t tmp;
2640 	int i;
2641 
2642 	rt2560_stop(sc);
2643 
2644 	/* setup tx rings */
2645 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2646 	      RT2560_ATIM_RING_COUNT << 16 |
2647 	      RT2560_TX_RING_COUNT   <<  8 |
2648 	      RT2560_TX_DESC_SIZE;
2649 
2650 	/* rings must be initialized in this exact order */
2651 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2652 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2653 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2654 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2655 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2656 
2657 	/* setup rx ring */
2658 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2659 
2660 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2661 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2662 
2663 	/* initialize MAC registers to default values */
2664 	for (i = 0; i < N(rt2560_def_mac); i++)
2665 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2666 
2667 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2668 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2669 
2670 	/* set basic rate set (will be updated later) */
2671 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2672 
2673 	rt2560_update_slot(ifp);
2674 	rt2560_update_plcp(sc);
2675 	rt2560_update_led(sc, 0, 0);
2676 
2677 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2678 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2679 
2680 	if (rt2560_bbp_init(sc) != 0) {
2681 		rt2560_stop(sc);
2682 		return;
2683 	}
2684 
2685 	/* set default BSS channel */
2686 	rt2560_set_chan(sc, ic->ic_curchan);
2687 
2688 	/* kick Rx */
2689 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2690 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2691 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2692 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2693 			tmp |= RT2560_DROP_TODS;
2694 		if (!(ifp->if_flags & IFF_PROMISC))
2695 			tmp |= RT2560_DROP_NOT_TO_ME;
2696 	}
2697 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2698 
2699 	/* clear old FCS and Rx FIFO errors */
2700 	RAL_READ(sc, RT2560_CNT0);
2701 	RAL_READ(sc, RT2560_CNT4);
2702 
2703 	/* clear any pending interrupts */
2704 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2705 
2706 	/* enable interrupts */
2707 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2708 
2709 	ifp->if_flags &= ~IFF_OACTIVE;
2710 	ifp->if_flags |= IFF_RUNNING;
2711 
2712 	/* XXX */
2713 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2714 		int i;
2715 
2716 		ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
2717 		for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2718 			struct ieee80211_key *wk = &ic->ic_nw_keys[i];
2719 
2720 			if (wk->wk_keylen == 0)
2721 				continue;
2722 			if (wk->wk_flags & IEEE80211_KEY_XMIT)
2723 				wk->wk_flags |= IEEE80211_KEY_SWCRYPT;
2724 		}
2725 	}
2726 
2727 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2728 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2729 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2730 	} else
2731 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2732 #undef N
2733 }
2734 
2735 void
2736 rt2560_stop(void *priv)
2737 {
2738 	struct rt2560_softc *sc = priv;
2739 	struct ieee80211com *ic = &sc->sc_ic;
2740 	struct ifnet *ifp = ic->ic_ifp;
2741 
2742 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2743 
2744 	sc->sc_tx_timer = 0;
2745 	ifp->if_timer = 0;
2746 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2747 
2748 	/* abort Tx */
2749 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2750 
2751 	/* disable Rx */
2752 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2753 
2754 	/* reset ASIC (imply reset BBP) */
2755 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2756 	RAL_WRITE(sc, RT2560_CSR1, 0);
2757 
2758 	/* disable interrupts */
2759 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2760 
2761 	/* reset Tx and Rx rings */
2762 	rt2560_reset_tx_ring(sc, &sc->txq);
2763 	rt2560_reset_tx_ring(sc, &sc->atimq);
2764 	rt2560_reset_tx_ring(sc, &sc->prioq);
2765 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2766 	rt2560_reset_rx_ring(sc, &sc->rxq);
2767 }
2768 
2769 static void
2770 rt2560_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
2771 		    bus_size_t map_size __unused, int error)
2772 {
2773 	if (error)
2774 		return;
2775 
2776 	KASSERT(nseg == 1, ("too many dma segments\n"));
2777 	*((bus_addr_t *)arg) = seg->ds_addr;
2778 }
2779