1 /* 2 * Copyright (c) 2005, 2006 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * 5 * Permission to use, copy, modify, and distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 * 17 * $FreeBSD: src/sys/dev/ral/rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $ 18 * $DragonFly: src/sys/dev/netif/ral/rt2560.c,v 1.3 2006/10/25 20:55:58 dillon Exp $ 19 */ 20 21 /* 22 * Ralink Technology RT2560 chipset driver 23 * http://www.ralinktech.com/ 24 */ 25 26 #include <sys/param.h> 27 #include <sys/sysctl.h> 28 #include <sys/sockio.h> 29 #include <sys/mbuf.h> 30 #include <sys/kernel.h> 31 #include <sys/socket.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/module.h> 35 #include <sys/bus.h> 36 #include <sys/rman.h> 37 #include <sys/endian.h> 38 #include <sys/serialize.h> 39 40 #include <machine/clock.h> 41 42 #include <net/bpf.h> 43 #include <net/if.h> 44 #include <net/if_arp.h> 45 #include <net/ethernet.h> 46 #include <net/if_dl.h> 47 #include <net/if_media.h> 48 #include <net/if_types.h> 49 #include <net/ifq_var.h> 50 51 #include <netproto/802_11/ieee80211_var.h> 52 #include <netproto/802_11/ieee80211_radiotap.h> 53 54 #include <netinet/in.h> 55 #include <netinet/in_systm.h> 56 #include <netinet/in_var.h> 57 #include <netinet/ip.h> 58 #include <netinet/if_ether.h> 59 60 #include <dev/netif/ral/if_ralrate.h> 61 #include <dev/netif/ral/rt2560reg.h> 62 #include <dev/netif/ral/rt2560var.h> 63 64 #ifdef RAL_DEBUG 65 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 66 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 67 extern int ral_debug; 68 #else 69 #define DPRINTF(x) 70 #define DPRINTFN(n, x) 71 #endif 72 73 static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, 74 int); 75 static void rt2560_dma_map_mbuf(void *, bus_dma_segment_t *, int, 76 bus_size_t, int); 77 static int rt2560_alloc_tx_ring(struct rt2560_softc *, 78 struct rt2560_tx_ring *, int); 79 static void rt2560_reset_tx_ring(struct rt2560_softc *, 80 struct rt2560_tx_ring *); 81 static void rt2560_free_tx_ring(struct rt2560_softc *, 82 struct rt2560_tx_ring *); 83 static int rt2560_alloc_rx_ring(struct rt2560_softc *, 84 struct rt2560_rx_ring *, int); 85 static void rt2560_reset_rx_ring(struct rt2560_softc *, 86 struct rt2560_rx_ring *); 87 static void rt2560_free_rx_ring(struct rt2560_softc *, 88 struct rt2560_rx_ring *); 89 static struct ieee80211_node *rt2560_node_alloc( 90 struct ieee80211_node_table *); 91 static int rt2560_media_change(struct ifnet *); 92 static void rt2560_next_scan(void *); 93 static void rt2560_iter_func(void *, struct ieee80211_node *); 94 static void rt2560_update_rssadapt(void *); 95 static int rt2560_newstate(struct ieee80211com *, 96 enum ieee80211_state, int); 97 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); 98 static void rt2560_encryption_intr(struct rt2560_softc *); 99 static void rt2560_tx_intr(struct rt2560_softc *); 100 static void rt2560_prio_intr(struct rt2560_softc *); 101 static void rt2560_decryption_intr(struct rt2560_softc *); 102 static void rt2560_rx_intr(struct rt2560_softc *); 103 static void rt2560_beacon_expire(struct rt2560_softc *); 104 static void rt2560_wakeup_expire(struct rt2560_softc *); 105 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *); 106 static int rt2560_ack_rate(struct ieee80211com *, int); 107 static uint16_t rt2560_txtime(int, int, uint32_t); 108 static uint8_t rt2560_plcp_signal(int); 109 static void rt2560_setup_tx_desc(struct rt2560_softc *, 110 struct rt2560_tx_desc *, uint32_t, int, int, int, 111 bus_addr_t); 112 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, 113 struct ieee80211_node *); 114 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, 115 struct ieee80211_node *); 116 static struct mbuf *rt2560_get_rts(struct rt2560_softc *, 117 struct ieee80211_frame *, uint16_t); 118 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, 119 struct ieee80211_node *); 120 static void rt2560_start(struct ifnet *); 121 static void rt2560_watchdog(struct ifnet *); 122 static int rt2560_reset(struct ifnet *); 123 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t, 124 struct ucred *); 125 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, 126 uint8_t); 127 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); 128 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, 129 uint32_t); 130 static void rt2560_set_chan(struct rt2560_softc *, 131 struct ieee80211_channel *); 132 #if 0 133 static void rt2560_disable_rf_tune(struct rt2560_softc *); 134 #endif 135 static void rt2560_enable_tsf_sync(struct rt2560_softc *); 136 static void rt2560_update_plcp(struct rt2560_softc *); 137 static void rt2560_update_slot(struct ifnet *); 138 static void rt2560_set_basicrates(struct rt2560_softc *); 139 static void rt2560_update_led(struct rt2560_softc *, int, int); 140 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *); 141 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); 142 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); 143 static void rt2560_update_promisc(struct rt2560_softc *); 144 static const char *rt2560_get_rf(int); 145 static void rt2560_read_eeprom(struct rt2560_softc *); 146 static int rt2560_bbp_init(struct rt2560_softc *); 147 static void rt2560_set_txantenna(struct rt2560_softc *, int); 148 static void rt2560_set_rxantenna(struct rt2560_softc *, int); 149 static void rt2560_init(void *); 150 static void rt2560_stop(void *); 151 static void rt2560_intr(void *); 152 153 /* 154 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 155 */ 156 static const struct ieee80211_rateset rt2560_rateset_11a = 157 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 158 159 static const struct ieee80211_rateset rt2560_rateset_11b = 160 { 4, { 2, 4, 11, 22 } }; 161 162 static const struct ieee80211_rateset rt2560_rateset_11g = 163 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 164 165 static const struct { 166 uint32_t reg; 167 uint32_t val; 168 } rt2560_def_mac[] = { 169 RT2560_DEF_MAC 170 }; 171 172 static const struct { 173 uint8_t reg; 174 uint8_t val; 175 } rt2560_def_bbp[] = { 176 RT2560_DEF_BBP 177 }; 178 179 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; 180 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; 181 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; 182 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; 183 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; 184 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; 185 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; 186 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; 187 188 static const struct { 189 uint8_t chan; 190 uint32_t r1, r2, r4; 191 } rt2560_rf5222[] = { 192 RT2560_RF5222 193 }; 194 195 int 196 rt2560_attach(device_t dev, int id) 197 { 198 struct rt2560_softc *sc = device_get_softc(dev); 199 struct ieee80211com *ic = &sc->sc_ic; 200 struct ifnet *ifp = &ic->ic_if; 201 int error, i; 202 203 callout_init(&sc->scan_ch); 204 callout_init(&sc->rssadapt_ch); 205 206 sc->sc_irq_rid = 0; 207 sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid, 208 RF_ACTIVE | RF_SHAREABLE); 209 if (sc->sc_irq == NULL) { 210 device_printf(dev, "could not allocate interrupt resource\n"); 211 return ENXIO; 212 } 213 214 /* retrieve RT2560 rev. no */ 215 sc->asic_rev = RAL_READ(sc, RT2560_CSR0); 216 217 /* retrieve MAC address */ 218 rt2560_get_macaddr(sc, ic->ic_myaddr); 219 220 /* retrieve RF rev. no and various other things from EEPROM */ 221 rt2560_read_eeprom(sc); 222 223 device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", 224 sc->asic_rev, rt2560_get_rf(sc->rf_rev)); 225 226 /* 227 * Allocate Tx and Rx rings. 228 */ 229 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); 230 if (error != 0) { 231 device_printf(sc->sc_dev, "could not allocate Tx ring\n"); 232 goto fail; 233 } 234 235 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); 236 if (error != 0) { 237 device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); 238 goto fail; 239 } 240 241 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); 242 if (error != 0) { 243 device_printf(sc->sc_dev, "could not allocate Prio ring\n"); 244 goto fail; 245 } 246 247 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); 248 if (error != 0) { 249 device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); 250 goto fail; 251 } 252 253 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); 254 if (error != 0) { 255 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 256 goto fail; 257 } 258 259 sysctl_ctx_init(&sc->sysctl_ctx); 260 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, 261 SYSCTL_STATIC_CHILDREN(_hw), 262 OID_AUTO, 263 device_get_nameunit(dev), 264 CTLFLAG_RD, 0, ""); 265 if (sc->sysctl_tree == NULL) { 266 device_printf(dev, "could not add sysctl node\n"); 267 error = ENXIO; 268 goto fail; 269 } 270 271 ifp->if_softc = sc; 272 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 273 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 274 ifp->if_init = rt2560_init; 275 ifp->if_ioctl = rt2560_ioctl; 276 ifp->if_start = rt2560_start; 277 ifp->if_watchdog = rt2560_watchdog; 278 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 279 ifq_set_ready(&ifp->if_snd); 280 281 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 282 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 283 ic->ic_state = IEEE80211_S_INIT; 284 285 /* set device capabilities */ 286 ic->ic_caps = 287 IEEE80211_C_IBSS | /* IBSS mode supported */ 288 IEEE80211_C_MONITOR | /* monitor mode supported */ 289 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 290 IEEE80211_C_TXPMGT | /* tx power management */ 291 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 292 IEEE80211_C_SHSLOT | /* short slot time supported */ 293 IEEE80211_C_WEP | /* WEP */ 294 IEEE80211_C_WPA; /* 802.11i */ 295 296 if (sc->rf_rev == RT2560_RF_5222) { 297 /* set supported .11a rates */ 298 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a; 299 300 /* set supported .11a channels */ 301 for (i = 36; i <= 64; i += 4) { 302 ic->ic_channels[i].ic_freq = 303 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 304 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 305 } 306 for (i = 100; i <= 140; i += 4) { 307 ic->ic_channels[i].ic_freq = 308 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 309 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 310 } 311 for (i = 149; i <= 161; i += 4) { 312 ic->ic_channels[i].ic_freq = 313 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 314 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 315 } 316 } 317 318 /* set supported .11b and .11g rates */ 319 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b; 320 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g; 321 322 /* set supported .11b and .11g channels (1 through 14) */ 323 for (i = 1; i <= 14; i++) { 324 ic->ic_channels[i].ic_freq = 325 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 326 ic->ic_channels[i].ic_flags = 327 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 328 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 329 } 330 331 ieee80211_ifattach(ic); 332 ic->ic_node_alloc = rt2560_node_alloc; 333 ic->ic_updateslot = rt2560_update_slot; 334 ic->ic_reset = rt2560_reset; 335 /* enable s/w bmiss handling in sta mode */ 336 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 337 338 /* override state transition machine */ 339 sc->sc_newstate = ic->ic_newstate; 340 ic->ic_newstate = rt2560_newstate; 341 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status); 342 343 bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO, 344 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 345 346 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 347 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 348 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); 349 350 sc->sc_txtap_len = sizeof sc->sc_txtapu; 351 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 352 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); 353 354 /* 355 * Add a few sysctl knobs. 356 */ 357 sc->dwelltime = 200; 358 359 SYSCTL_ADD_INT(&sc->sysctl_ctx, 360 SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, 361 "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); 362 363 SYSCTL_ADD_INT(&sc->sysctl_ctx, 364 SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, 365 "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); 366 367 SYSCTL_ADD_INT(&sc->sysctl_ctx, 368 SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell", 369 CTLFLAG_RW, &sc->dwelltime, 0, 370 "channel dwell time (ms) for AP/station scanning"); 371 372 error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2560_intr, 373 sc, &sc->sc_ih, ifp->if_serializer); 374 if (error != 0) { 375 device_printf(dev, "could not set up interrupt\n"); 376 bpfdetach(ifp); 377 ieee80211_ifdetach(ic); 378 goto fail; 379 } 380 381 if (bootverbose) 382 ieee80211_announce(ic); 383 return 0; 384 fail: 385 rt2560_detach(sc); 386 return error; 387 } 388 389 int 390 rt2560_detach(void *xsc) 391 { 392 struct rt2560_softc *sc = xsc; 393 struct ieee80211com *ic = &sc->sc_ic; 394 struct ifnet *ifp = ic->ic_ifp; 395 396 if (device_is_attached(sc->sc_dev)) { 397 lwkt_serialize_enter(ifp->if_serializer); 398 399 callout_stop(&sc->scan_ch); 400 callout_stop(&sc->rssadapt_ch); 401 402 rt2560_stop(sc); 403 bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih); 404 405 lwkt_serialize_exit(ifp->if_serializer); 406 407 bpfdetach(ifp); 408 ieee80211_ifdetach(ic); 409 } 410 411 rt2560_free_tx_ring(sc, &sc->txq); 412 rt2560_free_tx_ring(sc, &sc->atimq); 413 rt2560_free_tx_ring(sc, &sc->prioq); 414 rt2560_free_tx_ring(sc, &sc->bcnq); 415 rt2560_free_rx_ring(sc, &sc->rxq); 416 417 if (sc->sc_irq != NULL) { 418 bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid, 419 sc->sc_irq); 420 } 421 422 if (sc->sysctl_tree != NULL) 423 sysctl_ctx_free(&sc->sysctl_ctx); 424 425 return 0; 426 } 427 428 void 429 rt2560_shutdown(void *xsc) 430 { 431 struct rt2560_softc *sc = xsc; 432 struct ifnet *ifp = &sc->sc_ic.ic_if; 433 434 lwkt_serialize_enter(ifp->if_serializer); 435 rt2560_stop(sc); 436 lwkt_serialize_exit(ifp->if_serializer); 437 } 438 439 void 440 rt2560_suspend(void *xsc) 441 { 442 struct rt2560_softc *sc = xsc; 443 struct ifnet *ifp = &sc->sc_ic.ic_if; 444 445 lwkt_serialize_enter(ifp->if_serializer); 446 rt2560_stop(sc); 447 lwkt_serialize_exit(ifp->if_serializer); 448 } 449 450 void 451 rt2560_resume(void *xsc) 452 { 453 struct rt2560_softc *sc = xsc; 454 struct ifnet *ifp = sc->sc_ic.ic_ifp; 455 456 lwkt_serialize_enter(ifp->if_serializer); 457 if (ifp->if_flags & IFF_UP) { 458 ifp->if_init(ifp->if_softc); 459 if (ifp->if_flags & IFF_RUNNING) 460 ifp->if_start(ifp); 461 } 462 lwkt_serialize_exit(ifp->if_serializer); 463 } 464 465 static void 466 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 467 { 468 if (error != 0) 469 return; 470 471 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 472 473 *(bus_addr_t *)arg = segs[0].ds_addr; 474 } 475 476 static int 477 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, 478 int count) 479 { 480 int i, error; 481 482 ring->count = count; 483 ring->queued = 0; 484 ring->cur = ring->next = 0; 485 ring->cur_encrypt = ring->next_encrypt = 0; 486 487 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 488 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1, 489 count * RT2560_TX_DESC_SIZE, 0, &ring->desc_dmat); 490 if (error != 0) { 491 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 492 goto fail; 493 } 494 495 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 496 BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map); 497 if (error != 0) { 498 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 499 goto fail; 500 } 501 502 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 503 count * RT2560_TX_DESC_SIZE, 504 rt2560_dma_map_addr, &ring->physaddr, 0); 505 if (error != 0) { 506 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 507 508 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 509 ring->desc = NULL; 510 goto fail; 511 } 512 513 ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, 514 M_WAITOK | M_ZERO); 515 516 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 517 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER, 518 MCLBYTES, 0, &ring->data_dmat); 519 if (error != 0) { 520 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 521 goto fail; 522 } 523 524 for (i = 0; i < count; i++) { 525 error = bus_dmamap_create(ring->data_dmat, 0, 526 &ring->data[i].map); 527 if (error != 0) { 528 device_printf(sc->sc_dev, "could not create DMA map\n"); 529 goto fail; 530 } 531 } 532 return 0; 533 534 fail: rt2560_free_tx_ring(sc, ring); 535 return error; 536 } 537 538 static void 539 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 540 { 541 struct rt2560_tx_desc *desc; 542 struct rt2560_tx_data *data; 543 int i; 544 545 for (i = 0; i < ring->count; i++) { 546 desc = &ring->desc[i]; 547 data = &ring->data[i]; 548 549 if (data->m != NULL) { 550 bus_dmamap_sync(ring->data_dmat, data->map, 551 BUS_DMASYNC_POSTWRITE); 552 bus_dmamap_unload(ring->data_dmat, data->map); 553 m_freem(data->m); 554 data->m = NULL; 555 } 556 557 if (data->ni != NULL) { 558 ieee80211_free_node(data->ni); 559 data->ni = NULL; 560 } 561 562 desc->flags = 0; 563 } 564 565 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 566 567 ring->queued = 0; 568 ring->cur = ring->next = 0; 569 ring->cur_encrypt = ring->next_encrypt = 0; 570 } 571 572 static void 573 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 574 { 575 struct rt2560_tx_data *data; 576 int i; 577 578 if (ring->desc != NULL) { 579 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 580 BUS_DMASYNC_POSTWRITE); 581 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 582 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 583 ring->desc = NULL; 584 } 585 586 if (ring->desc_dmat != NULL) { 587 bus_dma_tag_destroy(ring->desc_dmat); 588 ring->desc_dmat = NULL; 589 } 590 591 if (ring->data != NULL) { 592 for (i = 0; i < ring->count; i++) { 593 data = &ring->data[i]; 594 595 if (data->m != NULL) { 596 bus_dmamap_sync(ring->data_dmat, data->map, 597 BUS_DMASYNC_POSTWRITE); 598 bus_dmamap_unload(ring->data_dmat, data->map); 599 m_freem(data->m); 600 data->m = NULL; 601 } 602 603 if (data->ni != NULL) { 604 ieee80211_free_node(data->ni); 605 data->ni = NULL; 606 } 607 608 if (data->map != NULL) { 609 bus_dmamap_destroy(ring->data_dmat, data->map); 610 data->map = NULL; 611 } 612 } 613 614 kfree(ring->data, M_DEVBUF); 615 ring->data = NULL; 616 } 617 618 if (ring->data_dmat != NULL) { 619 bus_dma_tag_destroy(ring->data_dmat); 620 ring->data_dmat = NULL; 621 } 622 } 623 624 static int 625 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, 626 int count) 627 { 628 struct rt2560_rx_desc *desc; 629 struct rt2560_rx_data *data; 630 bus_addr_t physaddr; 631 int i, error; 632 633 ring->count = count; 634 ring->cur = ring->next = 0; 635 ring->cur_decrypt = 0; 636 637 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 638 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1, 639 count * RT2560_RX_DESC_SIZE, 0, &ring->desc_dmat); 640 if (error != 0) { 641 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 642 goto fail; 643 } 644 645 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 646 BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map); 647 if (error != 0) { 648 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 649 goto fail; 650 } 651 652 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 653 count * RT2560_RX_DESC_SIZE, 654 rt2560_dma_map_addr, &ring->physaddr, 0); 655 if (error != 0) { 656 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 657 658 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 659 ring->desc = NULL; 660 goto fail; 661 } 662 663 ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, 664 M_WAITOK | M_ZERO); 665 666 /* 667 * Pre-allocate Rx buffers and populate Rx ring. 668 */ 669 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 670 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, 671 &ring->data_dmat); 672 if (error != 0) { 673 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 674 goto fail; 675 } 676 677 for (i = 0; i < count; i++) { 678 desc = &sc->rxq.desc[i]; 679 data = &sc->rxq.data[i]; 680 681 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 682 if (error != 0) { 683 device_printf(sc->sc_dev, "could not create DMA map\n"); 684 goto fail; 685 } 686 687 data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR); 688 if (data->m == NULL) { 689 device_printf(sc->sc_dev, 690 "could not allocate rx mbuf\n"); 691 error = ENOMEM; 692 goto fail; 693 } 694 695 error = bus_dmamap_load(ring->data_dmat, data->map, 696 mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, 697 &physaddr, 0); 698 if (error != 0) { 699 device_printf(sc->sc_dev, 700 "could not load rx buf DMA map"); 701 702 m_freem(data->m); 703 data->m = NULL; 704 goto fail; 705 } 706 707 desc->flags = htole32(RT2560_RX_BUSY); 708 desc->physaddr = htole32(physaddr); 709 } 710 711 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 712 713 return 0; 714 715 fail: rt2560_free_rx_ring(sc, ring); 716 return error; 717 } 718 719 static void 720 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 721 { 722 int i; 723 724 for (i = 0; i < ring->count; i++) { 725 ring->desc[i].flags = htole32(RT2560_RX_BUSY); 726 ring->data[i].drop = 0; 727 } 728 729 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 730 731 ring->cur = ring->next = 0; 732 ring->cur_decrypt = 0; 733 } 734 735 static void 736 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 737 { 738 struct rt2560_rx_data *data; 739 740 if (ring->desc != NULL) { 741 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 742 BUS_DMASYNC_POSTWRITE); 743 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 744 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 745 ring->desc = NULL; 746 } 747 748 if (ring->desc_dmat != NULL) { 749 bus_dma_tag_destroy(ring->desc_dmat); 750 ring->desc_dmat = NULL; 751 } 752 753 if (ring->data != NULL) { 754 int i; 755 756 for (i = 0; i < ring->count; i++) { 757 data = &ring->data[i]; 758 759 if (data->m != NULL) { 760 bus_dmamap_sync(ring->data_dmat, data->map, 761 BUS_DMASYNC_POSTREAD); 762 bus_dmamap_unload(ring->data_dmat, data->map); 763 m_freem(data->m); 764 data->m = NULL; 765 } 766 767 if (data->map != NULL) { 768 bus_dmamap_destroy(ring->data_dmat, data->map); 769 data->map = NULL; 770 } 771 } 772 773 kfree(ring->data, M_DEVBUF); 774 ring->data = NULL; 775 } 776 777 if (ring->data_dmat != NULL) { 778 bus_dma_tag_destroy(ring->data_dmat); 779 ring->data_dmat = NULL; 780 } 781 } 782 783 static struct ieee80211_node * 784 rt2560_node_alloc(struct ieee80211_node_table *nt) 785 { 786 struct rt2560_node *rn; 787 788 rn = kmalloc(sizeof(struct rt2560_node), M_80211_NODE, 789 M_NOWAIT | M_ZERO); 790 791 return (rn != NULL) ? &rn->ni : NULL; 792 } 793 794 static int 795 rt2560_media_change(struct ifnet *ifp) 796 { 797 struct rt2560_softc *sc = ifp->if_softc; 798 int error; 799 800 error = ieee80211_media_change(ifp); 801 if (error != ENETRESET) 802 return error; 803 804 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 805 rt2560_init(sc); 806 return 0; 807 } 808 809 /* 810 * This function is called periodically (every 200ms) during scanning to 811 * switch from one channel to another. 812 */ 813 static void 814 rt2560_next_scan(void *arg) 815 { 816 struct rt2560_softc *sc = arg; 817 struct ieee80211com *ic = &sc->sc_ic; 818 struct ifnet *ifp = ic->ic_ifp; 819 820 lwkt_serialize_enter(ifp->if_serializer); 821 if (ic->ic_state == IEEE80211_S_SCAN) 822 ieee80211_next_scan(ic); 823 lwkt_serialize_exit(ifp->if_serializer); 824 } 825 826 /* 827 * This function is called for each node present in the node station table. 828 */ 829 static void 830 rt2560_iter_func(void *arg, struct ieee80211_node *ni) 831 { 832 struct rt2560_node *rn = (struct rt2560_node *)ni; 833 834 ral_rssadapt_updatestats(&rn->rssadapt); 835 } 836 837 /* 838 * This function is called periodically (every 100ms) in RUN state to update 839 * the rate adaptation statistics. 840 */ 841 static void 842 rt2560_update_rssadapt(void *arg) 843 { 844 struct rt2560_softc *sc = arg; 845 struct ieee80211com *ic = &sc->sc_ic; 846 struct ifnet *ifp = ic->ic_ifp; 847 848 lwkt_serialize_enter(ifp->if_serializer); 849 850 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg); 851 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc); 852 853 lwkt_serialize_exit(ifp->if_serializer); 854 } 855 856 static int 857 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 858 { 859 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 860 enum ieee80211_state ostate; 861 struct ieee80211_node *ni; 862 struct mbuf *m; 863 int error = 0; 864 865 ostate = ic->ic_state; 866 callout_stop(&sc->scan_ch); 867 868 switch (nstate) { 869 case IEEE80211_S_INIT: 870 callout_stop(&sc->rssadapt_ch); 871 872 if (ostate == IEEE80211_S_RUN) { 873 /* abort TSF synchronization */ 874 RAL_WRITE(sc, RT2560_CSR14, 0); 875 876 /* turn association led off */ 877 rt2560_update_led(sc, 0, 0); 878 } 879 break; 880 881 case IEEE80211_S_SCAN: 882 rt2560_set_chan(sc, ic->ic_curchan); 883 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000, 884 rt2560_next_scan, sc); 885 break; 886 887 case IEEE80211_S_AUTH: 888 rt2560_set_chan(sc, ic->ic_curchan); 889 break; 890 891 case IEEE80211_S_ASSOC: 892 rt2560_set_chan(sc, ic->ic_curchan); 893 break; 894 895 case IEEE80211_S_RUN: 896 rt2560_set_chan(sc, ic->ic_curchan); 897 898 ni = ic->ic_bss; 899 900 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 901 rt2560_update_plcp(sc); 902 rt2560_set_basicrates(sc); 903 rt2560_set_bssid(sc, ni->ni_bssid); 904 } 905 906 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 907 ic->ic_opmode == IEEE80211_M_IBSS) { 908 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 909 if (m == NULL) { 910 device_printf(sc->sc_dev, 911 "could not allocate beacon\n"); 912 error = ENOBUFS; 913 break; 914 } 915 916 ieee80211_ref_node(ni); 917 error = rt2560_tx_bcn(sc, m, ni); 918 if (error != 0) 919 break; 920 } 921 922 /* turn assocation led on */ 923 rt2560_update_led(sc, 1, 0); 924 925 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 926 callout_reset(&sc->rssadapt_ch, hz / 10, 927 rt2560_update_rssadapt, sc); 928 929 rt2560_enable_tsf_sync(sc); 930 } 931 break; 932 } 933 934 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 935 } 936 937 /* 938 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 939 * 93C66). 940 */ 941 static uint16_t 942 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) 943 { 944 uint32_t tmp; 945 uint16_t val; 946 int n; 947 948 /* clock C once before the first command */ 949 RT2560_EEPROM_CTL(sc, 0); 950 951 RT2560_EEPROM_CTL(sc, RT2560_S); 952 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 953 RT2560_EEPROM_CTL(sc, RT2560_S); 954 955 /* write start bit (1) */ 956 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 957 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 958 959 /* write READ opcode (10) */ 960 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 961 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 962 RT2560_EEPROM_CTL(sc, RT2560_S); 963 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 964 965 /* write address (A5-A0 or A7-A0) */ 966 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; 967 for (; n >= 0; n--) { 968 RT2560_EEPROM_CTL(sc, RT2560_S | 969 (((addr >> n) & 1) << RT2560_SHIFT_D)); 970 RT2560_EEPROM_CTL(sc, RT2560_S | 971 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); 972 } 973 974 RT2560_EEPROM_CTL(sc, RT2560_S); 975 976 /* read data Q15-Q0 */ 977 val = 0; 978 for (n = 15; n >= 0; n--) { 979 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 980 tmp = RAL_READ(sc, RT2560_CSR21); 981 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; 982 RT2560_EEPROM_CTL(sc, RT2560_S); 983 } 984 985 RT2560_EEPROM_CTL(sc, 0); 986 987 /* clear Chip Select and clock C */ 988 RT2560_EEPROM_CTL(sc, RT2560_S); 989 RT2560_EEPROM_CTL(sc, 0); 990 RT2560_EEPROM_CTL(sc, RT2560_C); 991 992 return val; 993 } 994 995 /* 996 * Some frames were processed by the hardware cipher engine and are ready for 997 * transmission. 998 */ 999 static void 1000 rt2560_encryption_intr(struct rt2560_softc *sc) 1001 { 1002 struct rt2560_tx_desc *desc; 1003 int hw; 1004 1005 /* retrieve last descriptor index processed by cipher engine */ 1006 hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; 1007 hw /= RT2560_TX_DESC_SIZE; 1008 1009 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1010 BUS_DMASYNC_POSTREAD); 1011 1012 for (; sc->txq.next_encrypt != hw;) { 1013 desc = &sc->txq.desc[sc->txq.next_encrypt]; 1014 1015 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 1016 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) 1017 break; 1018 1019 /* for TKIP, swap eiv field to fix a bug in ASIC */ 1020 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == 1021 RT2560_TX_CIPHER_TKIP) 1022 desc->eiv = bswap32(desc->eiv); 1023 1024 /* mark the frame ready for transmission */ 1025 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 1026 1027 DPRINTFN(15, ("encryption done idx=%u\n", 1028 sc->txq.next_encrypt)); 1029 1030 sc->txq.next_encrypt = 1031 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; 1032 } 1033 1034 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1035 BUS_DMASYNC_PREWRITE); 1036 1037 /* kick Tx */ 1038 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); 1039 } 1040 1041 static void 1042 rt2560_tx_intr(struct rt2560_softc *sc) 1043 { 1044 struct ieee80211com *ic = &sc->sc_ic; 1045 struct ifnet *ifp = ic->ic_ifp; 1046 struct rt2560_tx_desc *desc; 1047 struct rt2560_tx_data *data; 1048 struct rt2560_node *rn; 1049 1050 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1051 BUS_DMASYNC_POSTREAD); 1052 1053 for (;;) { 1054 desc = &sc->txq.desc[sc->txq.next]; 1055 data = &sc->txq.data[sc->txq.next]; 1056 1057 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 1058 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) || 1059 !(le32toh(desc->flags) & RT2560_TX_VALID)) 1060 break; 1061 1062 rn = (struct rt2560_node *)data->ni; 1063 1064 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 1065 case RT2560_TX_SUCCESS: 1066 DPRINTFN(10, ("data frame sent successfully\n")); 1067 if (data->id.id_node != NULL) { 1068 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 1069 &data->id); 1070 } 1071 ifp->if_opackets++; 1072 break; 1073 1074 case RT2560_TX_SUCCESS_RETRY: 1075 DPRINTFN(9, ("data frame sent after %u retries\n", 1076 (le32toh(desc->flags) >> 5) & 0x7)); 1077 ifp->if_opackets++; 1078 break; 1079 1080 case RT2560_TX_FAIL_RETRY: 1081 DPRINTFN(9, ("sending data frame failed (too much " 1082 "retries)\n")); 1083 if (data->id.id_node != NULL) { 1084 ral_rssadapt_lower_rate(ic, data->ni, 1085 &rn->rssadapt, &data->id); 1086 } 1087 ifp->if_oerrors++; 1088 break; 1089 1090 case RT2560_TX_FAIL_INVALID: 1091 case RT2560_TX_FAIL_OTHER: 1092 default: 1093 device_printf(sc->sc_dev, "sending data frame failed " 1094 "0x%08x\n", le32toh(desc->flags)); 1095 ifp->if_oerrors++; 1096 } 1097 1098 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1099 BUS_DMASYNC_POSTWRITE); 1100 bus_dmamap_unload(sc->txq.data_dmat, data->map); 1101 m_freem(data->m); 1102 data->m = NULL; 1103 ieee80211_free_node(data->ni); 1104 data->ni = NULL; 1105 1106 /* descriptor is no longer valid */ 1107 desc->flags &= ~htole32(RT2560_TX_VALID); 1108 1109 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); 1110 1111 sc->txq.queued--; 1112 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; 1113 } 1114 1115 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1116 BUS_DMASYNC_PREWRITE); 1117 1118 sc->sc_tx_timer = 0; 1119 ifp->if_flags &= ~IFF_OACTIVE; 1120 rt2560_start(ifp); 1121 } 1122 1123 static void 1124 rt2560_prio_intr(struct rt2560_softc *sc) 1125 { 1126 struct ieee80211com *ic = &sc->sc_ic; 1127 struct ifnet *ifp = ic->ic_ifp; 1128 struct rt2560_tx_desc *desc; 1129 struct rt2560_tx_data *data; 1130 1131 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1132 BUS_DMASYNC_POSTREAD); 1133 1134 for (;;) { 1135 desc = &sc->prioq.desc[sc->prioq.next]; 1136 data = &sc->prioq.data[sc->prioq.next]; 1137 1138 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 1139 !(le32toh(desc->flags) & RT2560_TX_VALID)) 1140 break; 1141 1142 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 1143 case RT2560_TX_SUCCESS: 1144 DPRINTFN(10, ("mgt frame sent successfully\n")); 1145 break; 1146 1147 case RT2560_TX_SUCCESS_RETRY: 1148 DPRINTFN(9, ("mgt frame sent after %u retries\n", 1149 (le32toh(desc->flags) >> 5) & 0x7)); 1150 break; 1151 1152 case RT2560_TX_FAIL_RETRY: 1153 DPRINTFN(9, ("sending mgt frame failed (too much " 1154 "retries)\n")); 1155 break; 1156 1157 case RT2560_TX_FAIL_INVALID: 1158 case RT2560_TX_FAIL_OTHER: 1159 default: 1160 device_printf(sc->sc_dev, "sending mgt frame failed " 1161 "0x%08x\n", le32toh(desc->flags)); 1162 } 1163 1164 bus_dmamap_sync(sc->prioq.data_dmat, data->map, 1165 BUS_DMASYNC_POSTWRITE); 1166 bus_dmamap_unload(sc->prioq.data_dmat, data->map); 1167 m_freem(data->m); 1168 data->m = NULL; 1169 ieee80211_free_node(data->ni); 1170 data->ni = NULL; 1171 1172 /* descriptor is no longer valid */ 1173 desc->flags &= ~htole32(RT2560_TX_VALID); 1174 1175 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); 1176 1177 sc->prioq.queued--; 1178 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; 1179 } 1180 1181 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1182 BUS_DMASYNC_PREWRITE); 1183 1184 sc->sc_tx_timer = 0; 1185 ifp->if_flags &= ~IFF_OACTIVE; 1186 rt2560_start(ifp); 1187 } 1188 1189 /* 1190 * Some frames were processed by the hardware cipher engine and are ready for 1191 * transmission to the IEEE802.11 layer. 1192 */ 1193 static void 1194 rt2560_decryption_intr(struct rt2560_softc *sc) 1195 { 1196 struct ieee80211com *ic = &sc->sc_ic; 1197 struct ifnet *ifp = ic->ic_ifp; 1198 struct rt2560_rx_desc *desc; 1199 struct rt2560_rx_data *data; 1200 bus_addr_t physaddr; 1201 struct ieee80211_frame *wh; 1202 struct ieee80211_node *ni; 1203 struct rt2560_node *rn; 1204 struct mbuf *mnew, *m; 1205 int hw, error; 1206 1207 /* retrieve last decriptor index processed by cipher engine */ 1208 hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; 1209 hw /= RT2560_RX_DESC_SIZE; 1210 1211 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1212 BUS_DMASYNC_POSTREAD); 1213 1214 for (; sc->rxq.cur_decrypt != hw;) { 1215 desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; 1216 data = &sc->rxq.data[sc->rxq.cur_decrypt]; 1217 1218 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1219 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1220 break; 1221 1222 if (data->drop) { 1223 ifp->if_ierrors++; 1224 goto skip; 1225 } 1226 1227 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && 1228 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { 1229 ifp->if_ierrors++; 1230 goto skip; 1231 } 1232 1233 /* 1234 * Try to allocate a new mbuf for this ring element and load it 1235 * before processing the current mbuf. If the ring element 1236 * cannot be loaded, drop the received packet and reuse the old 1237 * mbuf. In the unlikely case that the old mbuf can't be 1238 * reloaded either, explicitly panic. 1239 */ 1240 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1241 if (mnew == NULL) { 1242 ifp->if_ierrors++; 1243 goto skip; 1244 } 1245 1246 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1247 BUS_DMASYNC_POSTREAD); 1248 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1249 1250 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1251 mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, 1252 &physaddr, 0); 1253 if (error != 0) { 1254 m_freem(mnew); 1255 1256 /* try to reload the old mbuf */ 1257 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1258 mtod(data->m, void *), MCLBYTES, 1259 rt2560_dma_map_addr, &physaddr, 0); 1260 if (error != 0) { 1261 /* very unlikely that it will fail... */ 1262 panic("%s: could not load old rx mbuf", 1263 device_get_name(sc->sc_dev)); 1264 } 1265 ifp->if_ierrors++; 1266 goto skip; 1267 } 1268 1269 /* 1270 * New mbuf successfully loaded, update Rx ring and continue 1271 * processing. 1272 */ 1273 m = data->m; 1274 data->m = mnew; 1275 desc->physaddr = htole32(physaddr); 1276 1277 /* finalize mbuf */ 1278 m->m_pkthdr.rcvif = ifp; 1279 m->m_pkthdr.len = m->m_len = 1280 (le32toh(desc->flags) >> 16) & 0xfff; 1281 1282 if (sc->sc_drvbpf != NULL) { 1283 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; 1284 uint32_t tsf_lo, tsf_hi; 1285 1286 /* get timestamp (low and high 32 bits) */ 1287 tsf_hi = RAL_READ(sc, RT2560_CSR17); 1288 tsf_lo = RAL_READ(sc, RT2560_CSR16); 1289 1290 tap->wr_tsf = 1291 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1292 tap->wr_flags = 0; 1293 tap->wr_rate = rt2560_rxrate(desc); 1294 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1295 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1296 tap->wr_antenna = sc->rx_ant; 1297 tap->wr_antsignal = desc->rssi; 1298 1299 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len); 1300 } 1301 1302 wh = mtod(m, struct ieee80211_frame *); 1303 ni = ieee80211_find_rxnode(ic, 1304 (struct ieee80211_frame_min *)wh); 1305 1306 /* send the frame to the 802.11 layer */ 1307 ieee80211_input(ic, m, ni, desc->rssi, 0); 1308 1309 /* give rssi to the rate adatation algorithm */ 1310 rn = (struct rt2560_node *)ni; 1311 ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi); 1312 1313 /* node is no longer needed */ 1314 ieee80211_free_node(ni); 1315 1316 skip: desc->flags = htole32(RT2560_RX_BUSY); 1317 1318 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); 1319 1320 sc->rxq.cur_decrypt = 1321 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; 1322 } 1323 1324 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1325 BUS_DMASYNC_PREWRITE); 1326 } 1327 1328 /* 1329 * Some frames were received. Pass them to the hardware cipher engine before 1330 * sending them to the 802.11 layer. 1331 */ 1332 static void 1333 rt2560_rx_intr(struct rt2560_softc *sc) 1334 { 1335 struct rt2560_rx_desc *desc; 1336 struct rt2560_rx_data *data; 1337 1338 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1339 BUS_DMASYNC_POSTREAD); 1340 1341 for (;;) { 1342 desc = &sc->rxq.desc[sc->rxq.cur]; 1343 data = &sc->rxq.data[sc->rxq.cur]; 1344 1345 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1346 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1347 break; 1348 1349 data->drop = 0; 1350 1351 if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || 1352 (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { 1353 /* 1354 * This should not happen since we did not request 1355 * to receive those frames when we filled RXCSR0. 1356 */ 1357 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1358 le32toh(desc->flags))); 1359 data->drop = 1; 1360 } 1361 1362 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { 1363 DPRINTFN(5, ("bad length\n")); 1364 data->drop = 1; 1365 } 1366 1367 /* mark the frame for decryption */ 1368 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); 1369 1370 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1371 1372 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; 1373 } 1374 1375 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1376 BUS_DMASYNC_PREWRITE); 1377 1378 /* kick decrypt */ 1379 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); 1380 } 1381 1382 /* 1383 * This function is called periodically in IBSS mode when a new beacon must be 1384 * sent out. 1385 */ 1386 static void 1387 rt2560_beacon_expire(struct rt2560_softc *sc) 1388 { 1389 struct ieee80211com *ic = &sc->sc_ic; 1390 struct rt2560_tx_data *data; 1391 1392 if (ic->ic_opmode != IEEE80211_M_IBSS && 1393 ic->ic_opmode != IEEE80211_M_HOSTAP) 1394 return; 1395 1396 data = &sc->bcnq.data[sc->bcnq.next]; 1397 1398 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 1399 bus_dmamap_unload(sc->bcnq.data_dmat, data->map); 1400 1401 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1); 1402 1403 if (ic->ic_rawbpf != NULL) 1404 bpf_mtap(ic->ic_rawbpf, data->m); 1405 1406 rt2560_tx_bcn(sc, data->m, data->ni); 1407 1408 DPRINTFN(15, ("beacon expired\n")); 1409 1410 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; 1411 } 1412 1413 /* ARGSUSED */ 1414 static void 1415 rt2560_wakeup_expire(struct rt2560_softc *sc) 1416 { 1417 DPRINTFN(2, ("wakeup expired\n")); 1418 } 1419 1420 static void 1421 rt2560_intr(void *arg) 1422 { 1423 struct rt2560_softc *sc = arg; 1424 struct ifnet *ifp = &sc->sc_ic.ic_if; 1425 uint32_t r; 1426 1427 /* disable interrupts */ 1428 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 1429 1430 /* don't re-enable interrupts if we're shutting down */ 1431 if (!(ifp->if_flags & IFF_RUNNING)) 1432 return; 1433 1434 r = RAL_READ(sc, RT2560_CSR7); 1435 RAL_WRITE(sc, RT2560_CSR7, r); 1436 1437 if (r & RT2560_BEACON_EXPIRE) 1438 rt2560_beacon_expire(sc); 1439 1440 if (r & RT2560_WAKEUP_EXPIRE) 1441 rt2560_wakeup_expire(sc); 1442 1443 if (r & RT2560_PRIO_DONE) 1444 rt2560_prio_intr(sc); 1445 1446 if (r & (RT2560_TX_DONE | RT2560_ENCRYPTION_DONE)) { 1447 int i; 1448 1449 for (i = 0; i < 2; ++i) { 1450 rt2560_tx_intr(sc); 1451 rt2560_encryption_intr(sc); 1452 } 1453 } 1454 1455 if (r & (RT2560_DECRYPTION_DONE | RT2560_RX_DONE)) { 1456 int i; 1457 1458 for (i = 0; i < 2; ++i) { 1459 rt2560_decryption_intr(sc); 1460 rt2560_rx_intr(sc); 1461 } 1462 } 1463 1464 /* re-enable interrupts */ 1465 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 1466 } 1467 1468 /* quickly determine if a given rate is CCK or OFDM */ 1469 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1470 1471 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1472 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1473 1474 #define RAL_SIFS 10 /* us */ 1475 1476 #define RT2560_TXRX_TURNAROUND 10 /* us */ 1477 1478 /* 1479 * This function is only used by the Rx radiotap code. 1480 */ 1481 static uint8_t 1482 rt2560_rxrate(struct rt2560_rx_desc *desc) 1483 { 1484 if (le32toh(desc->flags) & RT2560_RX_OFDM) { 1485 /* reverse function of rt2560_plcp_signal */ 1486 switch (desc->rate) { 1487 case 0xb: return 12; 1488 case 0xf: return 18; 1489 case 0xa: return 24; 1490 case 0xe: return 36; 1491 case 0x9: return 48; 1492 case 0xd: return 72; 1493 case 0x8: return 96; 1494 case 0xc: return 108; 1495 } 1496 } else { 1497 if (desc->rate == 10) 1498 return 2; 1499 if (desc->rate == 20) 1500 return 4; 1501 if (desc->rate == 55) 1502 return 11; 1503 if (desc->rate == 110) 1504 return 22; 1505 } 1506 return 2; /* should not get there */ 1507 } 1508 1509 /* 1510 * Return the expected ack rate for a frame transmitted at rate `rate'. 1511 * XXX: this should depend on the destination node basic rate set. 1512 */ 1513 static int 1514 rt2560_ack_rate(struct ieee80211com *ic, int rate) 1515 { 1516 switch (rate) { 1517 /* CCK rates */ 1518 case 2: 1519 return 2; 1520 case 4: 1521 case 11: 1522 case 22: 1523 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1524 1525 /* OFDM rates */ 1526 case 12: 1527 case 18: 1528 return 12; 1529 case 24: 1530 case 36: 1531 return 24; 1532 case 48: 1533 case 72: 1534 case 96: 1535 case 108: 1536 return 48; 1537 } 1538 1539 /* default to 1Mbps */ 1540 return 2; 1541 } 1542 1543 /* 1544 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1545 * The function automatically determines the operating mode depending on the 1546 * given rate. `flags' indicates whether short preamble is in use or not. 1547 */ 1548 static uint16_t 1549 rt2560_txtime(int len, int rate, uint32_t flags) 1550 { 1551 uint16_t txtime; 1552 1553 if (RAL_RATE_IS_OFDM(rate)) { 1554 /* IEEE Std 802.11a-1999, pp. 37 */ 1555 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1556 txtime = 16 + 4 + 4 * txtime + 6; 1557 } else { 1558 /* IEEE Std 802.11b-1999, pp. 28 */ 1559 txtime = (16 * len + rate - 1) / rate; 1560 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1561 txtime += 72 + 24; 1562 else 1563 txtime += 144 + 48; 1564 } 1565 1566 return txtime; 1567 } 1568 1569 static uint8_t 1570 rt2560_plcp_signal(int rate) 1571 { 1572 switch (rate) { 1573 /* CCK rates (returned values are device-dependent) */ 1574 case 2: return 0x0; 1575 case 4: return 0x1; 1576 case 11: return 0x2; 1577 case 22: return 0x3; 1578 1579 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1580 case 12: return 0xb; 1581 case 18: return 0xf; 1582 case 24: return 0xa; 1583 case 36: return 0xe; 1584 case 48: return 0x9; 1585 case 72: return 0xd; 1586 case 96: return 0x8; 1587 case 108: return 0xc; 1588 1589 /* unsupported rates (should not get there) */ 1590 default: return 0xff; 1591 } 1592 } 1593 1594 static void 1595 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, 1596 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) 1597 { 1598 struct ieee80211com *ic = &sc->sc_ic; 1599 uint16_t plcp_length; 1600 int remainder; 1601 1602 desc->flags = htole32(flags); 1603 desc->flags |= htole32(len << 16); 1604 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : 1605 htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 1606 1607 desc->physaddr = htole32(physaddr); 1608 desc->wme = htole16( 1609 RT2560_AIFSN(2) | 1610 RT2560_LOGCWMIN(3) | 1611 RT2560_LOGCWMAX(8)); 1612 1613 /* setup PLCP fields */ 1614 desc->plcp_signal = rt2560_plcp_signal(rate); 1615 desc->plcp_service = 4; 1616 1617 len += IEEE80211_CRC_LEN; 1618 if (RAL_RATE_IS_OFDM(rate)) { 1619 desc->flags |= htole32(RT2560_TX_OFDM); 1620 1621 plcp_length = len & 0xfff; 1622 desc->plcp_length_hi = plcp_length >> 6; 1623 desc->plcp_length_lo = plcp_length & 0x3f; 1624 } else { 1625 plcp_length = (16 * len + rate - 1) / rate; 1626 if (rate == 22) { 1627 remainder = (16 * len) % 22; 1628 if (remainder != 0 && remainder < 7) 1629 desc->plcp_service |= RT2560_PLCP_LENGEXT; 1630 } 1631 desc->plcp_length_hi = plcp_length >> 8; 1632 desc->plcp_length_lo = plcp_length & 0xff; 1633 1634 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1635 desc->plcp_signal |= 0x08; 1636 } 1637 } 1638 1639 static int 1640 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, 1641 struct ieee80211_node *ni) 1642 { 1643 struct ieee80211com *ic = &sc->sc_ic; 1644 struct rt2560_tx_desc *desc; 1645 struct rt2560_tx_data *data; 1646 bus_addr_t paddr; 1647 int rate, error; 1648 1649 desc = &sc->bcnq.desc[sc->bcnq.cur]; 1650 data = &sc->bcnq.data[sc->bcnq.cur]; 1651 1652 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1653 1654 error = bus_dmamap_load_mbuf(sc->bcnq.data_dmat, data->map, m0, 1655 rt2560_dma_map_mbuf, &paddr, 1656 BUS_DMA_NOWAIT); 1657 if (error != 0) { 1658 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1659 error); 1660 m_freem(m0); 1661 return error; 1662 } 1663 1664 if (sc->sc_drvbpf != NULL) { 1665 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1666 1667 tap->wt_flags = 0; 1668 tap->wt_rate = rate; 1669 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1670 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1671 tap->wt_antenna = sc->tx_ant; 1672 1673 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len); 1674 } 1675 1676 data->m = m0; 1677 data->ni = ni; 1678 1679 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | 1680 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, paddr); 1681 1682 DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n", 1683 m0->m_pkthdr.len, sc->bcnq.cur, rate)); 1684 1685 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1686 bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, 1687 BUS_DMASYNC_PREWRITE); 1688 1689 sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; 1690 1691 return 0; 1692 } 1693 1694 static int 1695 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, 1696 struct ieee80211_node *ni) 1697 { 1698 struct ieee80211com *ic = &sc->sc_ic; 1699 struct rt2560_tx_desc *desc; 1700 struct rt2560_tx_data *data; 1701 struct ieee80211_frame *wh; 1702 bus_addr_t paddr; 1703 uint16_t dur; 1704 uint32_t flags = 0; 1705 int rate, error; 1706 1707 desc = &sc->prioq.desc[sc->prioq.cur]; 1708 data = &sc->prioq.data[sc->prioq.cur]; 1709 1710 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1711 1712 error = bus_dmamap_load_mbuf(sc->prioq.data_dmat, data->map, m0, 1713 rt2560_dma_map_mbuf, &paddr, 0); 1714 if (error != 0) { 1715 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1716 error); 1717 m_freem(m0); 1718 return error; 1719 } 1720 1721 if (sc->sc_drvbpf != NULL) { 1722 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1723 1724 tap->wt_flags = 0; 1725 tap->wt_rate = rate; 1726 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1727 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1728 tap->wt_antenna = sc->tx_ant; 1729 1730 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len); 1731 } 1732 1733 data->m = m0; 1734 data->ni = ni; 1735 1736 wh = mtod(m0, struct ieee80211_frame *); 1737 1738 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1739 flags |= RT2560_TX_ACK; 1740 1741 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1742 RAL_SIFS; 1743 *(uint16_t *)wh->i_dur = htole16(dur); 1744 1745 /* tell hardware to add timestamp for probe responses */ 1746 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1747 IEEE80211_FC0_TYPE_MGT && 1748 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1749 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1750 flags |= RT2560_TX_TIMESTAMP; 1751 } 1752 1753 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, paddr); 1754 1755 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1756 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1757 BUS_DMASYNC_PREWRITE); 1758 1759 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1760 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1761 1762 /* kick prio */ 1763 sc->prioq.queued++; 1764 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1765 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1766 1767 return 0; 1768 } 1769 1770 /* 1771 * Build a RTS control frame. 1772 */ 1773 static struct mbuf * 1774 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh, 1775 uint16_t dur) 1776 { 1777 struct ieee80211_frame_rts *rts; 1778 struct mbuf *m; 1779 1780 MGETHDR(m, MB_DONTWAIT, MT_DATA); 1781 if (m == NULL) { 1782 sc->sc_ic.ic_stats.is_tx_nobuf++; 1783 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1784 return NULL; 1785 } 1786 1787 rts = mtod(m, struct ieee80211_frame_rts *); 1788 1789 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1790 IEEE80211_FC0_SUBTYPE_RTS; 1791 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1792 *(uint16_t *)rts->i_dur = htole16(dur); 1793 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1794 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1795 1796 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 1797 1798 return m; 1799 } 1800 1801 static int 1802 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, 1803 struct ieee80211_node *ni) 1804 { 1805 struct ieee80211com *ic = &sc->sc_ic; 1806 struct rt2560_tx_desc *desc; 1807 struct rt2560_tx_data *data; 1808 struct rt2560_node *rn; 1809 struct ieee80211_rateset *rs; 1810 struct ieee80211_frame *wh; 1811 struct ieee80211_key *k; 1812 struct mbuf *mnew; 1813 bus_addr_t paddr; 1814 uint16_t dur; 1815 uint32_t flags = 0; 1816 int rate, error; 1817 1818 wh = mtod(m0, struct ieee80211_frame *); 1819 1820 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1821 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1822 rate = rs->rs_rates[ic->ic_fixed_rate]; 1823 } else { 1824 rs = &ni->ni_rates; 1825 rn = (struct rt2560_node *)ni; 1826 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, 1827 m0->m_pkthdr.len, NULL, 0); 1828 rate = rs->rs_rates[ni->ni_txrate]; 1829 } 1830 rate &= IEEE80211_RATE_VAL; 1831 1832 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1833 k = ieee80211_crypto_encap(ic, ni, m0); 1834 if (k == NULL) { 1835 m_freem(m0); 1836 return ENOBUFS; 1837 } 1838 1839 /* packet header may have moved, reset our local pointer */ 1840 wh = mtod(m0, struct ieee80211_frame *); 1841 } 1842 1843 /* 1844 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1845 * for directed frames only when the length of the MPDU is greater 1846 * than the length threshold indicated by [...]" ic_rtsthreshold. 1847 */ 1848 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1849 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1850 struct mbuf *m; 1851 uint16_t dur; 1852 int rtsrate, ackrate; 1853 1854 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1855 ackrate = rt2560_ack_rate(ic, rate); 1856 1857 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1858 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1859 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1860 3 * RAL_SIFS; 1861 1862 m = rt2560_get_rts(sc, wh, dur); 1863 1864 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1865 data = &sc->txq.data[sc->txq.cur_encrypt]; 1866 1867 error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, 1868 m, rt2560_dma_map_mbuf, &paddr, 0); 1869 if (error != 0) { 1870 device_printf(sc->sc_dev, 1871 "could not map mbuf (error %d)\n", error); 1872 m_freem(m); 1873 m_freem(m0); 1874 return error; 1875 } 1876 1877 /* avoid multiple free() of the same node for each fragment */ 1878 ieee80211_ref_node(ni); 1879 1880 data->m = m; 1881 data->ni = ni; 1882 1883 /* RTS frames are not taken into account for rssadapt */ 1884 data->id.id_node = NULL; 1885 1886 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK | 1887 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, paddr); 1888 1889 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1890 BUS_DMASYNC_PREWRITE); 1891 1892 sc->txq.queued++; 1893 sc->txq.cur_encrypt = 1894 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1895 1896 /* 1897 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1898 * asynchronous data frame shall be transmitted after the CTS 1899 * frame and a SIFS period. 1900 */ 1901 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; 1902 } 1903 1904 data = &sc->txq.data[sc->txq.cur_encrypt]; 1905 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1906 1907 error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, m0, 1908 rt2560_dma_map_mbuf, &paddr, 0); 1909 if (error != 0 && error != EFBIG) { 1910 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1911 error); 1912 m_freem(m0); 1913 return error; 1914 } 1915 if (error != 0) { 1916 mnew = m_defrag(m0, MB_DONTWAIT); 1917 if (mnew == NULL) { 1918 device_printf(sc->sc_dev, 1919 "could not defragment mbuf\n"); 1920 m_freem(m0); 1921 return ENOBUFS; 1922 } 1923 m0 = mnew; 1924 1925 error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, 1926 m0, rt2560_dma_map_mbuf, &paddr, 1927 0); 1928 if (error != 0) { 1929 device_printf(sc->sc_dev, 1930 "could not map mbuf (error %d)\n", error); 1931 m_freem(m0); 1932 return error; 1933 } 1934 1935 /* packet header may have moved, reset our local pointer */ 1936 wh = mtod(m0, struct ieee80211_frame *); 1937 } 1938 1939 if (sc->sc_drvbpf != NULL) { 1940 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1941 1942 tap->wt_flags = 0; 1943 tap->wt_rate = rate; 1944 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1945 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1946 tap->wt_antenna = sc->tx_ant; 1947 1948 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len); 1949 } 1950 1951 data->m = m0; 1952 data->ni = ni; 1953 1954 /* remember link conditions for rate adaptation algorithm */ 1955 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1956 data->id.id_len = m0->m_pkthdr.len; 1957 data->id.id_rateidx = ni->ni_txrate; 1958 data->id.id_node = ni; 1959 data->id.id_rssi = ni->ni_rssi; 1960 } else 1961 data->id.id_node = NULL; 1962 1963 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1964 flags |= RT2560_TX_ACK; 1965 1966 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), 1967 ic->ic_flags) + RAL_SIFS; 1968 *(uint16_t *)wh->i_dur = htole16(dur); 1969 } 1970 1971 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, paddr); 1972 1973 bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1974 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1975 BUS_DMASYNC_PREWRITE); 1976 1977 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1978 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate)); 1979 1980 /* kick encrypt */ 1981 sc->txq.queued++; 1982 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1983 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); 1984 1985 return 0; 1986 } 1987 1988 static void 1989 rt2560_start(struct ifnet *ifp) 1990 { 1991 struct rt2560_softc *sc = ifp->if_softc; 1992 struct ieee80211com *ic = &sc->sc_ic; 1993 struct mbuf *m0; 1994 struct ether_header *eh; 1995 struct ieee80211_node *ni; 1996 1997 /* prevent management frames from being sent if we're not ready */ 1998 if (!(ifp->if_flags & IFF_RUNNING)) 1999 return; 2000 2001 for (;;) { 2002 IF_POLL(&ic->ic_mgtq, m0); 2003 if (m0 != NULL) { 2004 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2005 ifp->if_flags |= IFF_OACTIVE; 2006 break; 2007 } 2008 IF_DEQUEUE(&ic->ic_mgtq, m0); 2009 2010 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2011 m0->m_pkthdr.rcvif = NULL; 2012 2013 if (ic->ic_rawbpf != NULL) 2014 bpf_mtap(ic->ic_rawbpf, m0); 2015 2016 if (rt2560_tx_mgt(sc, m0, ni) != 0) 2017 break; 2018 2019 } else { 2020 if (ic->ic_state != IEEE80211_S_RUN) 2021 break; 2022 m0 = ifq_poll(&ifp->if_snd); 2023 if (m0 == NULL) 2024 break; 2025 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { 2026 ifp->if_flags |= IFF_OACTIVE; 2027 break; 2028 } 2029 m0 = ifq_dequeue(&ifp->if_snd, m0); 2030 2031 if (m0->m_len < sizeof (struct ether_header) && 2032 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 2033 continue; 2034 2035 eh = mtod(m0, struct ether_header *); 2036 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2037 if (ni == NULL) { 2038 m_freem(m0); 2039 continue; 2040 } 2041 BPF_MTAP(ifp, m0); 2042 2043 m0 = ieee80211_encap(ic, m0, ni); 2044 if (m0 == NULL) { 2045 ieee80211_free_node(ni); 2046 continue; 2047 } 2048 2049 if (ic->ic_rawbpf != NULL) 2050 bpf_mtap(ic->ic_rawbpf, m0); 2051 2052 if (rt2560_tx_data(sc, m0, ni) != 0) { 2053 ieee80211_free_node(ni); 2054 ifp->if_oerrors++; 2055 break; 2056 } 2057 } 2058 2059 sc->sc_tx_timer = 5; 2060 ifp->if_timer = 1; 2061 } 2062 } 2063 2064 static void 2065 rt2560_watchdog(struct ifnet *ifp) 2066 { 2067 struct rt2560_softc *sc = ifp->if_softc; 2068 struct ieee80211com *ic = &sc->sc_ic; 2069 2070 ifp->if_timer = 0; 2071 2072 if (sc->sc_tx_timer > 0) { 2073 if (--sc->sc_tx_timer == 0) { 2074 device_printf(sc->sc_dev, "device timeout\n"); 2075 rt2560_init(sc); 2076 ifp->if_oerrors++; 2077 return; 2078 } 2079 ifp->if_timer = 1; 2080 } 2081 2082 ieee80211_watchdog(ic); 2083 } 2084 2085 /* 2086 * This function allows for fast channel switching in monitor mode (used by 2087 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 2088 * generate a new beacon frame. 2089 */ 2090 static int 2091 rt2560_reset(struct ifnet *ifp) 2092 { 2093 struct rt2560_softc *sc = ifp->if_softc; 2094 struct ieee80211com *ic = &sc->sc_ic; 2095 2096 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2097 return ENETRESET; 2098 2099 rt2560_set_chan(sc, ic->ic_curchan); 2100 2101 return 0; 2102 } 2103 2104 static int 2105 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr) 2106 { 2107 struct rt2560_softc *sc = ifp->if_softc; 2108 struct ieee80211com *ic = &sc->sc_ic; 2109 int error = 0; 2110 2111 switch (cmd) { 2112 case SIOCSIFFLAGS: 2113 if (ifp->if_flags & IFF_UP) { 2114 if (ifp->if_flags & IFF_RUNNING) 2115 rt2560_update_promisc(sc); 2116 else 2117 rt2560_init(sc); 2118 } else { 2119 if (ifp->if_flags & IFF_RUNNING) 2120 rt2560_stop(sc); 2121 } 2122 break; 2123 2124 default: 2125 error = ieee80211_ioctl(ic, cmd, data, cr); 2126 } 2127 2128 if (error == ENETRESET) { 2129 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == 2130 (IFF_UP | IFF_RUNNING) && 2131 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2132 rt2560_init(sc); 2133 error = 0; 2134 } 2135 2136 return error; 2137 } 2138 2139 static void 2140 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) 2141 { 2142 uint32_t tmp; 2143 int ntries; 2144 2145 for (ntries = 0; ntries < 100; ntries++) { 2146 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2147 break; 2148 DELAY(1); 2149 } 2150 if (ntries == 100) { 2151 device_printf(sc->sc_dev, "could not write to BBP\n"); 2152 return; 2153 } 2154 2155 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; 2156 RAL_WRITE(sc, RT2560_BBPCSR, tmp); 2157 2158 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2159 } 2160 2161 static uint8_t 2162 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) 2163 { 2164 uint32_t val; 2165 int ntries; 2166 2167 val = RT2560_BBP_BUSY | reg << 8; 2168 RAL_WRITE(sc, RT2560_BBPCSR, val); 2169 2170 for (ntries = 0; ntries < 100; ntries++) { 2171 val = RAL_READ(sc, RT2560_BBPCSR); 2172 if (!(val & RT2560_BBP_BUSY)) 2173 return val & 0xff; 2174 DELAY(1); 2175 } 2176 2177 device_printf(sc->sc_dev, "could not read from BBP\n"); 2178 return 0; 2179 } 2180 2181 static void 2182 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) 2183 { 2184 uint32_t tmp; 2185 int ntries; 2186 2187 for (ntries = 0; ntries < 100; ntries++) { 2188 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) 2189 break; 2190 DELAY(1); 2191 } 2192 if (ntries == 100) { 2193 device_printf(sc->sc_dev, "could not write to RF\n"); 2194 return; 2195 } 2196 2197 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | 2198 (reg & 0x3); 2199 RAL_WRITE(sc, RT2560_RFCSR, tmp); 2200 2201 /* remember last written value in sc */ 2202 sc->rf_regs[reg] = val; 2203 2204 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 2205 } 2206 2207 static void 2208 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) 2209 { 2210 struct ieee80211com *ic = &sc->sc_ic; 2211 uint8_t power, tmp; 2212 u_int i, chan; 2213 2214 chan = ieee80211_chan2ieee(ic, c); 2215 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2216 return; 2217 2218 if (IEEE80211_IS_CHAN_2GHZ(c)) 2219 power = min(sc->txpow[chan - 1], 31); 2220 else 2221 power = 31; 2222 2223 /* adjust txpower using ifconfig settings */ 2224 power -= (100 - ic->ic_txpowlimit) / 8; 2225 2226 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 2227 2228 switch (sc->rf_rev) { 2229 case RT2560_RF_2522: 2230 rt2560_rf_write(sc, RAL_RF1, 0x00814); 2231 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); 2232 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2233 break; 2234 2235 case RT2560_RF_2523: 2236 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2237 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); 2238 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 2239 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2240 break; 2241 2242 case RT2560_RF_2524: 2243 rt2560_rf_write(sc, RAL_RF1, 0x0c808); 2244 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); 2245 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2246 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2247 break; 2248 2249 case RT2560_RF_2525: 2250 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2251 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); 2252 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2253 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2254 2255 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2256 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); 2257 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2258 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2259 break; 2260 2261 case RT2560_RF_2525E: 2262 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2263 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); 2264 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2265 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 2266 break; 2267 2268 case RT2560_RF_2526: 2269 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); 2270 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2271 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2272 2273 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); 2274 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2275 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2276 break; 2277 2278 /* dual-band RF */ 2279 case RT2560_RF_5222: 2280 for (i = 0; rt2560_rf5222[i].chan != chan; i++); 2281 2282 rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); 2283 rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); 2284 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2285 rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); 2286 break; 2287 } 2288 2289 if (ic->ic_state != IEEE80211_S_SCAN) { 2290 /* set Japan filter bit for channel 14 */ 2291 tmp = rt2560_bbp_read(sc, 70); 2292 2293 tmp &= ~RT2560_JAPAN_FILTER; 2294 if (chan == 14) 2295 tmp |= RT2560_JAPAN_FILTER; 2296 2297 rt2560_bbp_write(sc, 70, tmp); 2298 2299 /* clear CRC errors */ 2300 RAL_READ(sc, RT2560_CNT0); 2301 } 2302 } 2303 2304 #if 0 2305 /* 2306 * Disable RF auto-tuning. 2307 */ 2308 static void 2309 rt2560_disable_rf_tune(struct rt2560_softc *sc) 2310 { 2311 uint32_t tmp; 2312 2313 if (sc->rf_rev != RT2560_RF_2523) { 2314 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 2315 rt2560_rf_write(sc, RAL_RF1, tmp); 2316 } 2317 2318 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 2319 rt2560_rf_write(sc, RAL_RF3, tmp); 2320 2321 DPRINTFN(2, ("disabling RF autotune\n")); 2322 } 2323 #endif 2324 2325 /* 2326 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 2327 * synchronization. 2328 */ 2329 static void 2330 rt2560_enable_tsf_sync(struct rt2560_softc *sc) 2331 { 2332 struct ieee80211com *ic = &sc->sc_ic; 2333 uint16_t logcwmin, preload; 2334 uint32_t tmp; 2335 2336 /* first, disable TSF synchronization */ 2337 RAL_WRITE(sc, RT2560_CSR14, 0); 2338 2339 tmp = 16 * ic->ic_bss->ni_intval; 2340 RAL_WRITE(sc, RT2560_CSR12, tmp); 2341 2342 RAL_WRITE(sc, RT2560_CSR13, 0); 2343 2344 logcwmin = 5; 2345 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; 2346 tmp = logcwmin << 16 | preload; 2347 RAL_WRITE(sc, RT2560_BCNOCSR, tmp); 2348 2349 /* finally, enable TSF synchronization */ 2350 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; 2351 if (ic->ic_opmode == IEEE80211_M_STA) 2352 tmp |= RT2560_ENABLE_TSF_SYNC(1); 2353 else 2354 tmp |= RT2560_ENABLE_TSF_SYNC(2) | 2355 RT2560_ENABLE_BEACON_GENERATOR; 2356 RAL_WRITE(sc, RT2560_CSR14, tmp); 2357 2358 DPRINTF(("enabling TSF synchronization\n")); 2359 } 2360 2361 static void 2362 rt2560_update_plcp(struct rt2560_softc *sc) 2363 { 2364 struct ieee80211com *ic = &sc->sc_ic; 2365 2366 /* no short preamble for 1Mbps */ 2367 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); 2368 2369 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { 2370 /* values taken from the reference driver */ 2371 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); 2372 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); 2373 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); 2374 } else { 2375 /* same values as above or'ed 0x8 */ 2376 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); 2377 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); 2378 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); 2379 } 2380 2381 DPRINTF(("updating PLCP for %s preamble\n", 2382 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); 2383 } 2384 2385 /* 2386 * This function can be called by ieee80211_set_shortslottime(). Refer to 2387 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. 2388 */ 2389 static void 2390 rt2560_update_slot(struct ifnet *ifp) 2391 { 2392 struct rt2560_softc *sc = ifp->if_softc; 2393 struct ieee80211com *ic = &sc->sc_ic; 2394 uint8_t slottime; 2395 uint16_t tx_sifs, tx_pifs, tx_difs, eifs; 2396 uint32_t tmp; 2397 2398 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2399 2400 /* update the MAC slot boundaries */ 2401 tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; 2402 tx_pifs = tx_sifs + slottime; 2403 tx_difs = tx_sifs + 2 * slottime; 2404 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; 2405 2406 tmp = RAL_READ(sc, RT2560_CSR11); 2407 tmp = (tmp & ~0x1f00) | slottime << 8; 2408 RAL_WRITE(sc, RT2560_CSR11, tmp); 2409 2410 tmp = tx_pifs << 16 | tx_sifs; 2411 RAL_WRITE(sc, RT2560_CSR18, tmp); 2412 2413 tmp = eifs << 16 | tx_difs; 2414 RAL_WRITE(sc, RT2560_CSR19, tmp); 2415 2416 DPRINTF(("setting slottime to %uus\n", slottime)); 2417 } 2418 2419 static void 2420 rt2560_set_basicrates(struct rt2560_softc *sc) 2421 { 2422 struct ieee80211com *ic = &sc->sc_ic; 2423 2424 /* update basic rate set */ 2425 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2426 /* 11b basic rates: 1, 2Mbps */ 2427 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); 2428 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 2429 /* 11a basic rates: 6, 12, 24Mbps */ 2430 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150); 2431 } else { 2432 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 2433 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f); 2434 } 2435 } 2436 2437 static void 2438 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) 2439 { 2440 uint32_t tmp; 2441 2442 /* set ON period to 70ms and OFF period to 30ms */ 2443 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; 2444 RAL_WRITE(sc, RT2560_LEDCSR, tmp); 2445 } 2446 2447 static void 2448 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid) 2449 { 2450 uint32_t tmp; 2451 2452 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2453 RAL_WRITE(sc, RT2560_CSR5, tmp); 2454 2455 tmp = bssid[4] | bssid[5] << 8; 2456 RAL_WRITE(sc, RT2560_CSR6, tmp); 2457 2458 DPRINTF(("setting BSSID to %6D\n", bssid, ":")); 2459 } 2460 2461 static void 2462 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2463 { 2464 uint32_t tmp; 2465 2466 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2467 RAL_WRITE(sc, RT2560_CSR3, tmp); 2468 2469 tmp = addr[4] | addr[5] << 8; 2470 RAL_WRITE(sc, RT2560_CSR4, tmp); 2471 2472 DPRINTF(("setting MAC address to %6D\n", addr, ":")); 2473 } 2474 2475 static void 2476 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2477 { 2478 uint32_t tmp; 2479 2480 tmp = RAL_READ(sc, RT2560_CSR3); 2481 addr[0] = tmp & 0xff; 2482 addr[1] = (tmp >> 8) & 0xff; 2483 addr[2] = (tmp >> 16) & 0xff; 2484 addr[3] = (tmp >> 24); 2485 2486 tmp = RAL_READ(sc, RT2560_CSR4); 2487 addr[4] = tmp & 0xff; 2488 addr[5] = (tmp >> 8) & 0xff; 2489 } 2490 2491 static void 2492 rt2560_update_promisc(struct rt2560_softc *sc) 2493 { 2494 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2495 uint32_t tmp; 2496 2497 tmp = RAL_READ(sc, RT2560_RXCSR0); 2498 2499 tmp &= ~RT2560_DROP_NOT_TO_ME; 2500 if (!(ifp->if_flags & IFF_PROMISC)) 2501 tmp |= RT2560_DROP_NOT_TO_ME; 2502 2503 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2504 2505 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2506 "entering" : "leaving")); 2507 } 2508 2509 static const char * 2510 rt2560_get_rf(int rev) 2511 { 2512 switch (rev) { 2513 case RT2560_RF_2522: return "RT2522"; 2514 case RT2560_RF_2523: return "RT2523"; 2515 case RT2560_RF_2524: return "RT2524"; 2516 case RT2560_RF_2525: return "RT2525"; 2517 case RT2560_RF_2525E: return "RT2525e"; 2518 case RT2560_RF_2526: return "RT2526"; 2519 case RT2560_RF_5222: return "RT5222"; 2520 default: return "unknown"; 2521 } 2522 } 2523 2524 static void 2525 rt2560_read_eeprom(struct rt2560_softc *sc) 2526 { 2527 uint16_t val; 2528 int i; 2529 2530 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); 2531 sc->rf_rev = (val >> 11) & 0x7; 2532 sc->hw_radio = (val >> 10) & 0x1; 2533 sc->led_mode = (val >> 6) & 0x7; 2534 sc->rx_ant = (val >> 4) & 0x3; 2535 sc->tx_ant = (val >> 2) & 0x3; 2536 sc->nb_ant = val & 0x3; 2537 2538 /* read default values for BBP registers */ 2539 for (i = 0; i < 16; i++) { 2540 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); 2541 sc->bbp_prom[i].reg = val >> 8; 2542 sc->bbp_prom[i].val = val & 0xff; 2543 } 2544 2545 /* read Tx power for all b/g channels */ 2546 for (i = 0; i < 14 / 2; i++) { 2547 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); 2548 sc->txpow[i * 2] = val >> 8; 2549 sc->txpow[i * 2 + 1] = val & 0xff; 2550 } 2551 } 2552 2553 static int 2554 rt2560_bbp_init(struct rt2560_softc *sc) 2555 { 2556 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2557 int i, ntries; 2558 2559 /* wait for BBP to be ready */ 2560 for (ntries = 0; ntries < 100; ntries++) { 2561 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) 2562 break; 2563 DELAY(1); 2564 } 2565 if (ntries == 100) { 2566 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2567 return EIO; 2568 } 2569 2570 /* initialize BBP registers to default values */ 2571 for (i = 0; i < N(rt2560_def_bbp); i++) { 2572 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, 2573 rt2560_def_bbp[i].val); 2574 } 2575 #if 0 2576 /* initialize BBP registers to values stored in EEPROM */ 2577 for (i = 0; i < 16; i++) { 2578 if (sc->bbp_prom[i].reg == 0xff) 2579 continue; 2580 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2581 } 2582 #endif 2583 2584 return 0; 2585 #undef N 2586 } 2587 2588 static void 2589 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) 2590 { 2591 uint32_t tmp; 2592 uint8_t tx; 2593 2594 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; 2595 if (antenna == 1) 2596 tx |= RT2560_BBP_ANTA; 2597 else if (antenna == 2) 2598 tx |= RT2560_BBP_ANTB; 2599 else 2600 tx |= RT2560_BBP_DIVERSITY; 2601 2602 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2603 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || 2604 sc->rf_rev == RT2560_RF_5222) 2605 tx |= RT2560_BBP_FLIPIQ; 2606 2607 rt2560_bbp_write(sc, RT2560_BBP_TX, tx); 2608 2609 /* update values for CCK and OFDM in BBPCSR1 */ 2610 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; 2611 tmp |= (tx & 0x7) << 16 | (tx & 0x7); 2612 RAL_WRITE(sc, RT2560_BBPCSR1, tmp); 2613 } 2614 2615 static void 2616 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) 2617 { 2618 uint8_t rx; 2619 2620 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; 2621 if (antenna == 1) 2622 rx |= RT2560_BBP_ANTA; 2623 else if (antenna == 2) 2624 rx |= RT2560_BBP_ANTB; 2625 else 2626 rx |= RT2560_BBP_DIVERSITY; 2627 2628 /* need to force no I/Q flip for RF 2525e and 2526 */ 2629 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) 2630 rx &= ~RT2560_BBP_FLIPIQ; 2631 2632 rt2560_bbp_write(sc, RT2560_BBP_RX, rx); 2633 } 2634 2635 static void 2636 rt2560_init(void *priv) 2637 { 2638 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2639 struct rt2560_softc *sc = priv; 2640 struct ieee80211com *ic = &sc->sc_ic; 2641 struct ifnet *ifp = ic->ic_ifp; 2642 uint32_t tmp; 2643 int i; 2644 2645 rt2560_stop(sc); 2646 2647 /* setup tx rings */ 2648 tmp = RT2560_PRIO_RING_COUNT << 24 | 2649 RT2560_ATIM_RING_COUNT << 16 | 2650 RT2560_TX_RING_COUNT << 8 | 2651 RT2560_TX_DESC_SIZE; 2652 2653 /* rings must be initialized in this exact order */ 2654 RAL_WRITE(sc, RT2560_TXCSR2, tmp); 2655 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); 2656 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); 2657 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); 2658 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); 2659 2660 /* setup rx ring */ 2661 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; 2662 2663 RAL_WRITE(sc, RT2560_RXCSR1, tmp); 2664 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); 2665 2666 /* initialize MAC registers to default values */ 2667 for (i = 0; i < N(rt2560_def_mac); i++) 2668 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); 2669 2670 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2671 rt2560_set_macaddr(sc, ic->ic_myaddr); 2672 2673 /* set basic rate set (will be updated later) */ 2674 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); 2675 2676 rt2560_set_txantenna(sc, sc->tx_ant); 2677 rt2560_set_rxantenna(sc, sc->rx_ant); 2678 rt2560_update_slot(ifp); 2679 rt2560_update_plcp(sc); 2680 rt2560_update_led(sc, 0, 0); 2681 2682 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2683 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); 2684 2685 if (rt2560_bbp_init(sc) != 0) { 2686 rt2560_stop(sc); 2687 return; 2688 } 2689 2690 /* set default BSS channel */ 2691 rt2560_set_chan(sc, ic->ic_curchan); 2692 2693 /* kick Rx */ 2694 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; 2695 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2696 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; 2697 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2698 tmp |= RT2560_DROP_TODS; 2699 if (!(ifp->if_flags & IFF_PROMISC)) 2700 tmp |= RT2560_DROP_NOT_TO_ME; 2701 } 2702 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2703 2704 /* clear old FCS and Rx FIFO errors */ 2705 RAL_READ(sc, RT2560_CNT0); 2706 RAL_READ(sc, RT2560_CNT4); 2707 2708 /* clear any pending interrupts */ 2709 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2710 2711 /* enable interrupts */ 2712 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 2713 2714 ifp->if_flags &= ~IFF_OACTIVE; 2715 ifp->if_flags |= IFF_RUNNING; 2716 2717 /* XXX */ 2718 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2719 int i; 2720 2721 ic->ic_flags &= ~IEEE80211_F_DROPUNENC; 2722 for (i = 0; i < IEEE80211_WEP_NKID; ++i) { 2723 struct ieee80211_key *wk = &ic->ic_nw_keys[i]; 2724 2725 if (wk->wk_keylen == 0) 2726 continue; 2727 if (wk->wk_flags & IEEE80211_KEY_XMIT) 2728 wk->wk_flags |= IEEE80211_KEY_SWCRYPT; 2729 } 2730 } 2731 2732 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2733 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2734 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2735 } else 2736 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2737 #undef N 2738 } 2739 2740 void 2741 rt2560_stop(void *priv) 2742 { 2743 struct rt2560_softc *sc = priv; 2744 struct ieee80211com *ic = &sc->sc_ic; 2745 struct ifnet *ifp = ic->ic_ifp; 2746 2747 sc->sc_tx_timer = 0; 2748 ifp->if_timer = 0; 2749 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2750 2751 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2752 2753 /* abort Tx */ 2754 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); 2755 2756 /* disable Rx */ 2757 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); 2758 2759 /* reset ASIC (imply reset BBP) */ 2760 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2761 RAL_WRITE(sc, RT2560_CSR1, 0); 2762 2763 /* disable interrupts */ 2764 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 2765 2766 /* reset Tx and Rx rings */ 2767 rt2560_reset_tx_ring(sc, &sc->txq); 2768 rt2560_reset_tx_ring(sc, &sc->atimq); 2769 rt2560_reset_tx_ring(sc, &sc->prioq); 2770 rt2560_reset_tx_ring(sc, &sc->bcnq); 2771 rt2560_reset_rx_ring(sc, &sc->rxq); 2772 } 2773 2774 static void 2775 rt2560_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg, 2776 bus_size_t map_size __unused, int error) 2777 { 2778 if (error) 2779 return; 2780 2781 KASSERT(nseg == 1, ("too many dma segments\n")); 2782 *((bus_addr_t *)arg) = seg->ds_addr; 2783 } 2784