xref: /dflybsd-src/sys/dev/netif/ral/rt2560.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*
2  * Copyright (c) 2005, 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2560.c,v 1.3 2006/10/25 20:55:58 dillon Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2560 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/sysctl.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/module.h>
35 #include <sys/bus.h>
36 #include <sys/rman.h>
37 #include <sys/endian.h>
38 #include <sys/serialize.h>
39 
40 #include <machine/clock.h>
41 
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_arp.h>
45 #include <net/ethernet.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ifq_var.h>
50 
51 #include <netproto/802_11/ieee80211_var.h>
52 #include <netproto/802_11/ieee80211_radiotap.h>
53 
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/ip.h>
58 #include <netinet/if_ether.h>
59 
60 #include <dev/netif/ral/if_ralrate.h>
61 #include <dev/netif/ral/rt2560reg.h>
62 #include <dev/netif/ral/rt2560var.h>
63 
64 #ifdef RAL_DEBUG
65 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
66 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
67 extern int ral_debug;
68 #else
69 #define DPRINTF(x)
70 #define DPRINTFN(n, x)
71 #endif
72 
73 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
74 			    int);
75 static void		rt2560_dma_map_mbuf(void *, bus_dma_segment_t *, int,
76 					    bus_size_t, int);
77 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
78 			    struct rt2560_tx_ring *, int);
79 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
80 			    struct rt2560_tx_ring *);
81 static void		rt2560_free_tx_ring(struct rt2560_softc *,
82 			    struct rt2560_tx_ring *);
83 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
84 			    struct rt2560_rx_ring *, int);
85 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
86 			    struct rt2560_rx_ring *);
87 static void		rt2560_free_rx_ring(struct rt2560_softc *,
88 			    struct rt2560_rx_ring *);
89 static struct		ieee80211_node *rt2560_node_alloc(
90 			    struct ieee80211_node_table *);
91 static int		rt2560_media_change(struct ifnet *);
92 static void		rt2560_next_scan(void *);
93 static void		rt2560_iter_func(void *, struct ieee80211_node *);
94 static void		rt2560_update_rssadapt(void *);
95 static int		rt2560_newstate(struct ieee80211com *,
96 			    enum ieee80211_state, int);
97 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
98 static void		rt2560_encryption_intr(struct rt2560_softc *);
99 static void		rt2560_tx_intr(struct rt2560_softc *);
100 static void		rt2560_prio_intr(struct rt2560_softc *);
101 static void		rt2560_decryption_intr(struct rt2560_softc *);
102 static void		rt2560_rx_intr(struct rt2560_softc *);
103 static void		rt2560_beacon_expire(struct rt2560_softc *);
104 static void		rt2560_wakeup_expire(struct rt2560_softc *);
105 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
106 static int		rt2560_ack_rate(struct ieee80211com *, int);
107 static uint16_t		rt2560_txtime(int, int, uint32_t);
108 static uint8_t		rt2560_plcp_signal(int);
109 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
110 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
111 			    bus_addr_t);
112 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
113 			    struct ieee80211_node *);
114 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
115 			    struct ieee80211_node *);
116 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
117 			    struct ieee80211_frame *, uint16_t);
118 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
119 			    struct ieee80211_node *);
120 static void		rt2560_start(struct ifnet *);
121 static void		rt2560_watchdog(struct ifnet *);
122 static int		rt2560_reset(struct ifnet *);
123 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t,
124 				     struct ucred *);
125 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
126 			    uint8_t);
127 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
128 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
129 			    uint32_t);
130 static void		rt2560_set_chan(struct rt2560_softc *,
131 			    struct ieee80211_channel *);
132 #if 0
133 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
134 #endif
135 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
136 static void		rt2560_update_plcp(struct rt2560_softc *);
137 static void		rt2560_update_slot(struct ifnet *);
138 static void		rt2560_set_basicrates(struct rt2560_softc *);
139 static void		rt2560_update_led(struct rt2560_softc *, int, int);
140 static void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
141 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
142 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
143 static void		rt2560_update_promisc(struct rt2560_softc *);
144 static const char	*rt2560_get_rf(int);
145 static void		rt2560_read_eeprom(struct rt2560_softc *);
146 static int		rt2560_bbp_init(struct rt2560_softc *);
147 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
148 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
149 static void		rt2560_init(void *);
150 static void		rt2560_stop(void *);
151 static void		rt2560_intr(void *);
152 
153 /*
154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155  */
156 static const struct ieee80211_rateset rt2560_rateset_11a =
157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158 
159 static const struct ieee80211_rateset rt2560_rateset_11b =
160 	{ 4, { 2, 4, 11, 22 } };
161 
162 static const struct ieee80211_rateset rt2560_rateset_11g =
163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164 
165 static const struct {
166 	uint32_t	reg;
167 	uint32_t	val;
168 } rt2560_def_mac[] = {
169 	RT2560_DEF_MAC
170 };
171 
172 static const struct {
173 	uint8_t	reg;
174 	uint8_t	val;
175 } rt2560_def_bbp[] = {
176 	RT2560_DEF_BBP
177 };
178 
179 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
180 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
181 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
182 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
183 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
184 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
185 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
186 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
187 
188 static const struct {
189 	uint8_t		chan;
190 	uint32_t	r1, r2, r4;
191 } rt2560_rf5222[] = {
192 	RT2560_RF5222
193 };
194 
195 int
196 rt2560_attach(device_t dev, int id)
197 {
198 	struct rt2560_softc *sc = device_get_softc(dev);
199 	struct ieee80211com *ic = &sc->sc_ic;
200 	struct ifnet *ifp = &ic->ic_if;
201 	int error, i;
202 
203 	callout_init(&sc->scan_ch);
204 	callout_init(&sc->rssadapt_ch);
205 
206 	sc->sc_irq_rid = 0;
207 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
208 					    RF_ACTIVE | RF_SHAREABLE);
209 	if (sc->sc_irq == NULL) {
210 		device_printf(dev, "could not allocate interrupt resource\n");
211 		return ENXIO;
212 	}
213 
214 	/* retrieve RT2560 rev. no */
215 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
216 
217 	/* retrieve MAC address */
218 	rt2560_get_macaddr(sc, ic->ic_myaddr);
219 
220 	/* retrieve RF rev. no and various other things from EEPROM */
221 	rt2560_read_eeprom(sc);
222 
223 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
224 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
225 
226 	/*
227 	 * Allocate Tx and Rx rings.
228 	 */
229 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
230 	if (error != 0) {
231 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
232 		goto fail;
233 	}
234 
235 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
236 	if (error != 0) {
237 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
238 		goto fail;
239 	}
240 
241 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
242 	if (error != 0) {
243 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
244 		goto fail;
245 	}
246 
247 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
248 	if (error != 0) {
249 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
250 		goto fail;
251 	}
252 
253 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
254 	if (error != 0) {
255 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
256 		goto fail;
257 	}
258 
259 	sysctl_ctx_init(&sc->sysctl_ctx);
260 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
261 					  SYSCTL_STATIC_CHILDREN(_hw),
262 					  OID_AUTO,
263 					  device_get_nameunit(dev),
264 					  CTLFLAG_RD, 0, "");
265 	if (sc->sysctl_tree == NULL) {
266 		device_printf(dev, "could not add sysctl node\n");
267 		error = ENXIO;
268 		goto fail;
269 	}
270 
271 	ifp->if_softc = sc;
272 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
273 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
274 	ifp->if_init = rt2560_init;
275 	ifp->if_ioctl = rt2560_ioctl;
276 	ifp->if_start = rt2560_start;
277 	ifp->if_watchdog = rt2560_watchdog;
278 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
279 	ifq_set_ready(&ifp->if_snd);
280 
281 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
282 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
283 	ic->ic_state = IEEE80211_S_INIT;
284 
285 	/* set device capabilities */
286 	ic->ic_caps =
287 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
288 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
289 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
290 	    IEEE80211_C_TXPMGT |	/* tx power management */
291 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
292 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
293 	    IEEE80211_C_WEP |		/* WEP */
294 	    IEEE80211_C_WPA;		/* 802.11i */
295 
296 	if (sc->rf_rev == RT2560_RF_5222) {
297 		/* set supported .11a rates */
298 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
299 
300 		/* set supported .11a channels */
301 		for (i = 36; i <= 64; i += 4) {
302 			ic->ic_channels[i].ic_freq =
303 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
304 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
305 		}
306 		for (i = 100; i <= 140; i += 4) {
307 			ic->ic_channels[i].ic_freq =
308 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
309 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
310 		}
311 		for (i = 149; i <= 161; i += 4) {
312 			ic->ic_channels[i].ic_freq =
313 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
314 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
315 		}
316 	}
317 
318 	/* set supported .11b and .11g rates */
319 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
320 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
321 
322 	/* set supported .11b and .11g channels (1 through 14) */
323 	for (i = 1; i <= 14; i++) {
324 		ic->ic_channels[i].ic_freq =
325 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
326 		ic->ic_channels[i].ic_flags =
327 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
328 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
329 	}
330 
331 	ieee80211_ifattach(ic);
332 	ic->ic_node_alloc = rt2560_node_alloc;
333 	ic->ic_updateslot = rt2560_update_slot;
334 	ic->ic_reset = rt2560_reset;
335 	/* enable s/w bmiss handling in sta mode */
336 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
337 
338 	/* override state transition machine */
339 	sc->sc_newstate = ic->ic_newstate;
340 	ic->ic_newstate = rt2560_newstate;
341 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
342 
343 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
344 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
345 
346 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
347 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
348 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
349 
350 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
351 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
352 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
353 
354 	/*
355 	 * Add a few sysctl knobs.
356 	 */
357 	sc->dwelltime = 200;
358 
359 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
360 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
361 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
362 
363 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
364 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
365 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
366 
367 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
368 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
369 	    CTLFLAG_RW, &sc->dwelltime, 0,
370 	    "channel dwell time (ms) for AP/station scanning");
371 
372 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2560_intr,
373 			       sc, &sc->sc_ih, ifp->if_serializer);
374 	if (error != 0) {
375 		device_printf(dev, "could not set up interrupt\n");
376 		bpfdetach(ifp);
377 		ieee80211_ifdetach(ic);
378 		goto fail;
379 	}
380 
381 	if (bootverbose)
382 		ieee80211_announce(ic);
383 	return 0;
384 fail:
385 	rt2560_detach(sc);
386 	return error;
387 }
388 
389 int
390 rt2560_detach(void *xsc)
391 {
392 	struct rt2560_softc *sc = xsc;
393 	struct ieee80211com *ic = &sc->sc_ic;
394 	struct ifnet *ifp = ic->ic_ifp;
395 
396 	if (device_is_attached(sc->sc_dev)) {
397 		lwkt_serialize_enter(ifp->if_serializer);
398 
399 		callout_stop(&sc->scan_ch);
400 		callout_stop(&sc->rssadapt_ch);
401 
402 		rt2560_stop(sc);
403 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
404 
405 		lwkt_serialize_exit(ifp->if_serializer);
406 
407 		bpfdetach(ifp);
408 		ieee80211_ifdetach(ic);
409 	}
410 
411 	rt2560_free_tx_ring(sc, &sc->txq);
412 	rt2560_free_tx_ring(sc, &sc->atimq);
413 	rt2560_free_tx_ring(sc, &sc->prioq);
414 	rt2560_free_tx_ring(sc, &sc->bcnq);
415 	rt2560_free_rx_ring(sc, &sc->rxq);
416 
417 	if (sc->sc_irq != NULL) {
418 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
419 				     sc->sc_irq);
420 	}
421 
422 	if (sc->sysctl_tree != NULL)
423 		sysctl_ctx_free(&sc->sysctl_ctx);
424 
425 	return 0;
426 }
427 
428 void
429 rt2560_shutdown(void *xsc)
430 {
431 	struct rt2560_softc *sc = xsc;
432 	struct ifnet *ifp = &sc->sc_ic.ic_if;
433 
434 	lwkt_serialize_enter(ifp->if_serializer);
435 	rt2560_stop(sc);
436 	lwkt_serialize_exit(ifp->if_serializer);
437 }
438 
439 void
440 rt2560_suspend(void *xsc)
441 {
442 	struct rt2560_softc *sc = xsc;
443 	struct ifnet *ifp = &sc->sc_ic.ic_if;
444 
445 	lwkt_serialize_enter(ifp->if_serializer);
446 	rt2560_stop(sc);
447 	lwkt_serialize_exit(ifp->if_serializer);
448 }
449 
450 void
451 rt2560_resume(void *xsc)
452 {
453 	struct rt2560_softc *sc = xsc;
454 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
455 
456 	lwkt_serialize_enter(ifp->if_serializer);
457 	if (ifp->if_flags & IFF_UP) {
458 		ifp->if_init(ifp->if_softc);
459 		if (ifp->if_flags & IFF_RUNNING)
460 			ifp->if_start(ifp);
461 	}
462 	lwkt_serialize_exit(ifp->if_serializer);
463 }
464 
465 static void
466 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
467 {
468 	if (error != 0)
469 		return;
470 
471 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
472 
473 	*(bus_addr_t *)arg = segs[0].ds_addr;
474 }
475 
476 static int
477 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
478     int count)
479 {
480 	int i, error;
481 
482 	ring->count = count;
483 	ring->queued = 0;
484 	ring->cur = ring->next = 0;
485 	ring->cur_encrypt = ring->next_encrypt = 0;
486 
487 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
488 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
489 	    count * RT2560_TX_DESC_SIZE, 0, &ring->desc_dmat);
490 	if (error != 0) {
491 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
492 		goto fail;
493 	}
494 
495 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
496 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
497 	if (error != 0) {
498 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
499 		goto fail;
500 	}
501 
502 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
503 	    			count * RT2560_TX_DESC_SIZE,
504 				rt2560_dma_map_addr, &ring->physaddr, 0);
505 	if (error != 0) {
506 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
507 
508 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
509 		ring->desc = NULL;
510 		goto fail;
511 	}
512 
513 	ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
514 	    M_WAITOK | M_ZERO);
515 
516 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
517 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
518 	    MCLBYTES, 0, &ring->data_dmat);
519 	if (error != 0) {
520 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
521 		goto fail;
522 	}
523 
524 	for (i = 0; i < count; i++) {
525 		error = bus_dmamap_create(ring->data_dmat, 0,
526 		    &ring->data[i].map);
527 		if (error != 0) {
528 			device_printf(sc->sc_dev, "could not create DMA map\n");
529 			goto fail;
530 		}
531 	}
532 	return 0;
533 
534 fail:	rt2560_free_tx_ring(sc, ring);
535 	return error;
536 }
537 
538 static void
539 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
540 {
541 	struct rt2560_tx_desc *desc;
542 	struct rt2560_tx_data *data;
543 	int i;
544 
545 	for (i = 0; i < ring->count; i++) {
546 		desc = &ring->desc[i];
547 		data = &ring->data[i];
548 
549 		if (data->m != NULL) {
550 			bus_dmamap_sync(ring->data_dmat, data->map,
551 			    BUS_DMASYNC_POSTWRITE);
552 			bus_dmamap_unload(ring->data_dmat, data->map);
553 			m_freem(data->m);
554 			data->m = NULL;
555 		}
556 
557 		if (data->ni != NULL) {
558 			ieee80211_free_node(data->ni);
559 			data->ni = NULL;
560 		}
561 
562 		desc->flags = 0;
563 	}
564 
565 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
566 
567 	ring->queued = 0;
568 	ring->cur = ring->next = 0;
569 	ring->cur_encrypt = ring->next_encrypt = 0;
570 }
571 
572 static void
573 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
574 {
575 	struct rt2560_tx_data *data;
576 	int i;
577 
578 	if (ring->desc != NULL) {
579 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
580 		    BUS_DMASYNC_POSTWRITE);
581 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
582 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
583 		ring->desc = NULL;
584 	}
585 
586 	if (ring->desc_dmat != NULL) {
587 		bus_dma_tag_destroy(ring->desc_dmat);
588 		ring->desc_dmat = NULL;
589 	}
590 
591 	if (ring->data != NULL) {
592 		for (i = 0; i < ring->count; i++) {
593 			data = &ring->data[i];
594 
595 			if (data->m != NULL) {
596 				bus_dmamap_sync(ring->data_dmat, data->map,
597 				    BUS_DMASYNC_POSTWRITE);
598 				bus_dmamap_unload(ring->data_dmat, data->map);
599 				m_freem(data->m);
600 				data->m = NULL;
601 			}
602 
603 			if (data->ni != NULL) {
604 				ieee80211_free_node(data->ni);
605 				data->ni = NULL;
606 			}
607 
608 			if (data->map != NULL) {
609 				bus_dmamap_destroy(ring->data_dmat, data->map);
610 				data->map = NULL;
611 			}
612 		}
613 
614 		kfree(ring->data, M_DEVBUF);
615 		ring->data = NULL;
616 	}
617 
618 	if (ring->data_dmat != NULL) {
619 		bus_dma_tag_destroy(ring->data_dmat);
620 		ring->data_dmat = NULL;
621 	}
622 }
623 
624 static int
625 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
626     int count)
627 {
628 	struct rt2560_rx_desc *desc;
629 	struct rt2560_rx_data *data;
630 	bus_addr_t physaddr;
631 	int i, error;
632 
633 	ring->count = count;
634 	ring->cur = ring->next = 0;
635 	ring->cur_decrypt = 0;
636 
637 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
638 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
639 	    count * RT2560_RX_DESC_SIZE, 0, &ring->desc_dmat);
640 	if (error != 0) {
641 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
642 		goto fail;
643 	}
644 
645 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
646 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
647 	if (error != 0) {
648 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
649 		goto fail;
650 	}
651 
652 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
653 				count * RT2560_RX_DESC_SIZE,
654 				rt2560_dma_map_addr, &ring->physaddr, 0);
655 	if (error != 0) {
656 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
657 
658 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
659 		ring->desc = NULL;
660 		goto fail;
661 	}
662 
663 	ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
664 	    M_WAITOK | M_ZERO);
665 
666 	/*
667 	 * Pre-allocate Rx buffers and populate Rx ring.
668 	 */
669 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
670 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
671 	    &ring->data_dmat);
672 	if (error != 0) {
673 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
674 		goto fail;
675 	}
676 
677 	for (i = 0; i < count; i++) {
678 		desc = &sc->rxq.desc[i];
679 		data = &sc->rxq.data[i];
680 
681 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
682 		if (error != 0) {
683 			device_printf(sc->sc_dev, "could not create DMA map\n");
684 			goto fail;
685 		}
686 
687 		data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
688 		if (data->m == NULL) {
689 			device_printf(sc->sc_dev,
690 			    "could not allocate rx mbuf\n");
691 			error = ENOMEM;
692 			goto fail;
693 		}
694 
695 		error = bus_dmamap_load(ring->data_dmat, data->map,
696 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
697 		    &physaddr, 0);
698 		if (error != 0) {
699 			device_printf(sc->sc_dev,
700 			    "could not load rx buf DMA map");
701 
702 			m_freem(data->m);
703 			data->m = NULL;
704 			goto fail;
705 		}
706 
707 		desc->flags = htole32(RT2560_RX_BUSY);
708 		desc->physaddr = htole32(physaddr);
709 	}
710 
711 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
712 
713 	return 0;
714 
715 fail:	rt2560_free_rx_ring(sc, ring);
716 	return error;
717 }
718 
719 static void
720 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
721 {
722 	int i;
723 
724 	for (i = 0; i < ring->count; i++) {
725 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
726 		ring->data[i].drop = 0;
727 	}
728 
729 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
730 
731 	ring->cur = ring->next = 0;
732 	ring->cur_decrypt = 0;
733 }
734 
735 static void
736 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
737 {
738 	struct rt2560_rx_data *data;
739 
740 	if (ring->desc != NULL) {
741 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
742 		    BUS_DMASYNC_POSTWRITE);
743 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
744 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
745 		ring->desc = NULL;
746 	}
747 
748 	if (ring->desc_dmat != NULL) {
749 		bus_dma_tag_destroy(ring->desc_dmat);
750 		ring->desc_dmat = NULL;
751 	}
752 
753 	if (ring->data != NULL) {
754 		int i;
755 
756 		for (i = 0; i < ring->count; i++) {
757 			data = &ring->data[i];
758 
759 			if (data->m != NULL) {
760 				bus_dmamap_sync(ring->data_dmat, data->map,
761 				    BUS_DMASYNC_POSTREAD);
762 				bus_dmamap_unload(ring->data_dmat, data->map);
763 				m_freem(data->m);
764 				data->m = NULL;
765 			}
766 
767 			if (data->map != NULL) {
768 				bus_dmamap_destroy(ring->data_dmat, data->map);
769 				data->map = NULL;
770 			}
771 		}
772 
773 		kfree(ring->data, M_DEVBUF);
774 		ring->data = NULL;
775 	}
776 
777 	if (ring->data_dmat != NULL) {
778 		bus_dma_tag_destroy(ring->data_dmat);
779 		ring->data_dmat = NULL;
780 	}
781 }
782 
783 static struct ieee80211_node *
784 rt2560_node_alloc(struct ieee80211_node_table *nt)
785 {
786 	struct rt2560_node *rn;
787 
788 	rn = kmalloc(sizeof(struct rt2560_node), M_80211_NODE,
789 	    M_NOWAIT | M_ZERO);
790 
791 	return (rn != NULL) ? &rn->ni : NULL;
792 }
793 
794 static int
795 rt2560_media_change(struct ifnet *ifp)
796 {
797 	struct rt2560_softc *sc = ifp->if_softc;
798 	int error;
799 
800 	error = ieee80211_media_change(ifp);
801 	if (error != ENETRESET)
802 		return error;
803 
804 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
805 		rt2560_init(sc);
806 	return 0;
807 }
808 
809 /*
810  * This function is called periodically (every 200ms) during scanning to
811  * switch from one channel to another.
812  */
813 static void
814 rt2560_next_scan(void *arg)
815 {
816 	struct rt2560_softc *sc = arg;
817 	struct ieee80211com *ic = &sc->sc_ic;
818 	struct ifnet *ifp = ic->ic_ifp;
819 
820 	lwkt_serialize_enter(ifp->if_serializer);
821 	if (ic->ic_state == IEEE80211_S_SCAN)
822 		ieee80211_next_scan(ic);
823 	lwkt_serialize_exit(ifp->if_serializer);
824 }
825 
826 /*
827  * This function is called for each node present in the node station table.
828  */
829 static void
830 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
831 {
832 	struct rt2560_node *rn = (struct rt2560_node *)ni;
833 
834 	ral_rssadapt_updatestats(&rn->rssadapt);
835 }
836 
837 /*
838  * This function is called periodically (every 100ms) in RUN state to update
839  * the rate adaptation statistics.
840  */
841 static void
842 rt2560_update_rssadapt(void *arg)
843 {
844 	struct rt2560_softc *sc = arg;
845 	struct ieee80211com *ic = &sc->sc_ic;
846 	struct ifnet *ifp = ic->ic_ifp;
847 
848 	lwkt_serialize_enter(ifp->if_serializer);
849 
850 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
851 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
852 
853 	lwkt_serialize_exit(ifp->if_serializer);
854 }
855 
856 static int
857 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
858 {
859 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
860 	enum ieee80211_state ostate;
861 	struct ieee80211_node *ni;
862 	struct mbuf *m;
863 	int error = 0;
864 
865 	ostate = ic->ic_state;
866 	callout_stop(&sc->scan_ch);
867 
868 	switch (nstate) {
869 	case IEEE80211_S_INIT:
870 		callout_stop(&sc->rssadapt_ch);
871 
872 		if (ostate == IEEE80211_S_RUN) {
873 			/* abort TSF synchronization */
874 			RAL_WRITE(sc, RT2560_CSR14, 0);
875 
876 			/* turn association led off */
877 			rt2560_update_led(sc, 0, 0);
878 		}
879 		break;
880 
881 	case IEEE80211_S_SCAN:
882 		rt2560_set_chan(sc, ic->ic_curchan);
883 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
884 		    rt2560_next_scan, sc);
885 		break;
886 
887 	case IEEE80211_S_AUTH:
888 		rt2560_set_chan(sc, ic->ic_curchan);
889 		break;
890 
891 	case IEEE80211_S_ASSOC:
892 		rt2560_set_chan(sc, ic->ic_curchan);
893 		break;
894 
895 	case IEEE80211_S_RUN:
896 		rt2560_set_chan(sc, ic->ic_curchan);
897 
898 		ni = ic->ic_bss;
899 
900 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
901 			rt2560_update_plcp(sc);
902 			rt2560_set_basicrates(sc);
903 			rt2560_set_bssid(sc, ni->ni_bssid);
904 		}
905 
906 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
907 		    ic->ic_opmode == IEEE80211_M_IBSS) {
908 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
909 			if (m == NULL) {
910 				device_printf(sc->sc_dev,
911 				    "could not allocate beacon\n");
912 				error = ENOBUFS;
913 				break;
914 			}
915 
916 			ieee80211_ref_node(ni);
917 			error = rt2560_tx_bcn(sc, m, ni);
918 			if (error != 0)
919 				break;
920 		}
921 
922 		/* turn assocation led on */
923 		rt2560_update_led(sc, 1, 0);
924 
925 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
926 			callout_reset(&sc->rssadapt_ch, hz / 10,
927 			    rt2560_update_rssadapt, sc);
928 
929 			rt2560_enable_tsf_sync(sc);
930 		}
931 		break;
932 	}
933 
934 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
935 }
936 
937 /*
938  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
939  * 93C66).
940  */
941 static uint16_t
942 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
943 {
944 	uint32_t tmp;
945 	uint16_t val;
946 	int n;
947 
948 	/* clock C once before the first command */
949 	RT2560_EEPROM_CTL(sc, 0);
950 
951 	RT2560_EEPROM_CTL(sc, RT2560_S);
952 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
953 	RT2560_EEPROM_CTL(sc, RT2560_S);
954 
955 	/* write start bit (1) */
956 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
957 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
958 
959 	/* write READ opcode (10) */
960 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
961 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
962 	RT2560_EEPROM_CTL(sc, RT2560_S);
963 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
964 
965 	/* write address (A5-A0 or A7-A0) */
966 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
967 	for (; n >= 0; n--) {
968 		RT2560_EEPROM_CTL(sc, RT2560_S |
969 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
970 		RT2560_EEPROM_CTL(sc, RT2560_S |
971 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
972 	}
973 
974 	RT2560_EEPROM_CTL(sc, RT2560_S);
975 
976 	/* read data Q15-Q0 */
977 	val = 0;
978 	for (n = 15; n >= 0; n--) {
979 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
980 		tmp = RAL_READ(sc, RT2560_CSR21);
981 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
982 		RT2560_EEPROM_CTL(sc, RT2560_S);
983 	}
984 
985 	RT2560_EEPROM_CTL(sc, 0);
986 
987 	/* clear Chip Select and clock C */
988 	RT2560_EEPROM_CTL(sc, RT2560_S);
989 	RT2560_EEPROM_CTL(sc, 0);
990 	RT2560_EEPROM_CTL(sc, RT2560_C);
991 
992 	return val;
993 }
994 
995 /*
996  * Some frames were processed by the hardware cipher engine and are ready for
997  * transmission.
998  */
999 static void
1000 rt2560_encryption_intr(struct rt2560_softc *sc)
1001 {
1002 	struct rt2560_tx_desc *desc;
1003 	int hw;
1004 
1005 	/* retrieve last descriptor index processed by cipher engine */
1006 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
1007 	hw /= RT2560_TX_DESC_SIZE;
1008 
1009 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1010 	    BUS_DMASYNC_POSTREAD);
1011 
1012 	for (; sc->txq.next_encrypt != hw;) {
1013 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1014 
1015 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1016 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
1017 			break;
1018 
1019 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1020 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1021 		    RT2560_TX_CIPHER_TKIP)
1022 			desc->eiv = bswap32(desc->eiv);
1023 
1024 		/* mark the frame ready for transmission */
1025 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1026 
1027 		DPRINTFN(15, ("encryption done idx=%u\n",
1028 		    sc->txq.next_encrypt));
1029 
1030 		sc->txq.next_encrypt =
1031 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1032 	}
1033 
1034 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1035 	    BUS_DMASYNC_PREWRITE);
1036 
1037 	/* kick Tx */
1038 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1039 }
1040 
1041 static void
1042 rt2560_tx_intr(struct rt2560_softc *sc)
1043 {
1044 	struct ieee80211com *ic = &sc->sc_ic;
1045 	struct ifnet *ifp = ic->ic_ifp;
1046 	struct rt2560_tx_desc *desc;
1047 	struct rt2560_tx_data *data;
1048 	struct rt2560_node *rn;
1049 
1050 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1051 	    BUS_DMASYNC_POSTREAD);
1052 
1053 	for (;;) {
1054 		desc = &sc->txq.desc[sc->txq.next];
1055 		data = &sc->txq.data[sc->txq.next];
1056 
1057 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1058 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1059 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1060 			break;
1061 
1062 		rn = (struct rt2560_node *)data->ni;
1063 
1064 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1065 		case RT2560_TX_SUCCESS:
1066 			DPRINTFN(10, ("data frame sent successfully\n"));
1067 			if (data->id.id_node != NULL) {
1068 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
1069 				    &data->id);
1070 			}
1071 			ifp->if_opackets++;
1072 			break;
1073 
1074 		case RT2560_TX_SUCCESS_RETRY:
1075 			DPRINTFN(9, ("data frame sent after %u retries\n",
1076 			    (le32toh(desc->flags) >> 5) & 0x7));
1077 			ifp->if_opackets++;
1078 			break;
1079 
1080 		case RT2560_TX_FAIL_RETRY:
1081 			DPRINTFN(9, ("sending data frame failed (too much "
1082 			    "retries)\n"));
1083 			if (data->id.id_node != NULL) {
1084 				ral_rssadapt_lower_rate(ic, data->ni,
1085 				    &rn->rssadapt, &data->id);
1086 			}
1087 			ifp->if_oerrors++;
1088 			break;
1089 
1090 		case RT2560_TX_FAIL_INVALID:
1091 		case RT2560_TX_FAIL_OTHER:
1092 		default:
1093 			device_printf(sc->sc_dev, "sending data frame failed "
1094 			    "0x%08x\n", le32toh(desc->flags));
1095 			ifp->if_oerrors++;
1096 		}
1097 
1098 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1099 		    BUS_DMASYNC_POSTWRITE);
1100 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
1101 		m_freem(data->m);
1102 		data->m = NULL;
1103 		ieee80211_free_node(data->ni);
1104 		data->ni = NULL;
1105 
1106 		/* descriptor is no longer valid */
1107 		desc->flags &= ~htole32(RT2560_TX_VALID);
1108 
1109 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1110 
1111 		sc->txq.queued--;
1112 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1113 	}
1114 
1115 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1116 	    BUS_DMASYNC_PREWRITE);
1117 
1118 	sc->sc_tx_timer = 0;
1119 	ifp->if_flags &= ~IFF_OACTIVE;
1120 	rt2560_start(ifp);
1121 }
1122 
1123 static void
1124 rt2560_prio_intr(struct rt2560_softc *sc)
1125 {
1126 	struct ieee80211com *ic = &sc->sc_ic;
1127 	struct ifnet *ifp = ic->ic_ifp;
1128 	struct rt2560_tx_desc *desc;
1129 	struct rt2560_tx_data *data;
1130 
1131 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1132 	    BUS_DMASYNC_POSTREAD);
1133 
1134 	for (;;) {
1135 		desc = &sc->prioq.desc[sc->prioq.next];
1136 		data = &sc->prioq.data[sc->prioq.next];
1137 
1138 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1139 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1140 			break;
1141 
1142 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1143 		case RT2560_TX_SUCCESS:
1144 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1145 			break;
1146 
1147 		case RT2560_TX_SUCCESS_RETRY:
1148 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1149 			    (le32toh(desc->flags) >> 5) & 0x7));
1150 			break;
1151 
1152 		case RT2560_TX_FAIL_RETRY:
1153 			DPRINTFN(9, ("sending mgt frame failed (too much "
1154 			    "retries)\n"));
1155 			break;
1156 
1157 		case RT2560_TX_FAIL_INVALID:
1158 		case RT2560_TX_FAIL_OTHER:
1159 		default:
1160 			device_printf(sc->sc_dev, "sending mgt frame failed "
1161 			    "0x%08x\n", le32toh(desc->flags));
1162 		}
1163 
1164 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1165 		    BUS_DMASYNC_POSTWRITE);
1166 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1167 		m_freem(data->m);
1168 		data->m = NULL;
1169 		ieee80211_free_node(data->ni);
1170 		data->ni = NULL;
1171 
1172 		/* descriptor is no longer valid */
1173 		desc->flags &= ~htole32(RT2560_TX_VALID);
1174 
1175 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1176 
1177 		sc->prioq.queued--;
1178 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1179 	}
1180 
1181 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1182 	    BUS_DMASYNC_PREWRITE);
1183 
1184 	sc->sc_tx_timer = 0;
1185 	ifp->if_flags &= ~IFF_OACTIVE;
1186 	rt2560_start(ifp);
1187 }
1188 
1189 /*
1190  * Some frames were processed by the hardware cipher engine and are ready for
1191  * transmission to the IEEE802.11 layer.
1192  */
1193 static void
1194 rt2560_decryption_intr(struct rt2560_softc *sc)
1195 {
1196 	struct ieee80211com *ic = &sc->sc_ic;
1197 	struct ifnet *ifp = ic->ic_ifp;
1198 	struct rt2560_rx_desc *desc;
1199 	struct rt2560_rx_data *data;
1200 	bus_addr_t physaddr;
1201 	struct ieee80211_frame *wh;
1202 	struct ieee80211_node *ni;
1203 	struct rt2560_node *rn;
1204 	struct mbuf *mnew, *m;
1205 	int hw, error;
1206 
1207 	/* retrieve last decriptor index processed by cipher engine */
1208 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1209 	hw /= RT2560_RX_DESC_SIZE;
1210 
1211 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1212 	    BUS_DMASYNC_POSTREAD);
1213 
1214 	for (; sc->rxq.cur_decrypt != hw;) {
1215 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1216 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1217 
1218 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1219 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1220 			break;
1221 
1222 		if (data->drop) {
1223 			ifp->if_ierrors++;
1224 			goto skip;
1225 		}
1226 
1227 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1228 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1229 			ifp->if_ierrors++;
1230 			goto skip;
1231 		}
1232 
1233 		/*
1234 		 * Try to allocate a new mbuf for this ring element and load it
1235 		 * before processing the current mbuf. If the ring element
1236 		 * cannot be loaded, drop the received packet and reuse the old
1237 		 * mbuf. In the unlikely case that the old mbuf can't be
1238 		 * reloaded either, explicitly panic.
1239 		 */
1240 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1241 		if (mnew == NULL) {
1242 			ifp->if_ierrors++;
1243 			goto skip;
1244 		}
1245 
1246 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1247 		    BUS_DMASYNC_POSTREAD);
1248 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1249 
1250 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1251 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1252 		    &physaddr, 0);
1253 		if (error != 0) {
1254 			m_freem(mnew);
1255 
1256 			/* try to reload the old mbuf */
1257 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1258 			    mtod(data->m, void *), MCLBYTES,
1259 			    rt2560_dma_map_addr, &physaddr, 0);
1260 			if (error != 0) {
1261 				/* very unlikely that it will fail... */
1262 				panic("%s: could not load old rx mbuf",
1263 				    device_get_name(sc->sc_dev));
1264 			}
1265 			ifp->if_ierrors++;
1266 			goto skip;
1267 		}
1268 
1269 		/*
1270 	 	 * New mbuf successfully loaded, update Rx ring and continue
1271 		 * processing.
1272 		 */
1273 		m = data->m;
1274 		data->m = mnew;
1275 		desc->physaddr = htole32(physaddr);
1276 
1277 		/* finalize mbuf */
1278 		m->m_pkthdr.rcvif = ifp;
1279 		m->m_pkthdr.len = m->m_len =
1280 		    (le32toh(desc->flags) >> 16) & 0xfff;
1281 
1282 		if (sc->sc_drvbpf != NULL) {
1283 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1284 			uint32_t tsf_lo, tsf_hi;
1285 
1286 			/* get timestamp (low and high 32 bits) */
1287 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1288 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1289 
1290 			tap->wr_tsf =
1291 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1292 			tap->wr_flags = 0;
1293 			tap->wr_rate = rt2560_rxrate(desc);
1294 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1295 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1296 			tap->wr_antenna = sc->rx_ant;
1297 			tap->wr_antsignal = desc->rssi;
1298 
1299 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1300 		}
1301 
1302 		wh = mtod(m, struct ieee80211_frame *);
1303 		ni = ieee80211_find_rxnode(ic,
1304 		    (struct ieee80211_frame_min *)wh);
1305 
1306 		/* send the frame to the 802.11 layer */
1307 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1308 
1309 		/* give rssi to the rate adatation algorithm */
1310 		rn = (struct rt2560_node *)ni;
1311 		ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1312 
1313 		/* node is no longer needed */
1314 		ieee80211_free_node(ni);
1315 
1316 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1317 
1318 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1319 
1320 		sc->rxq.cur_decrypt =
1321 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1322 	}
1323 
1324 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1325 	    BUS_DMASYNC_PREWRITE);
1326 }
1327 
1328 /*
1329  * Some frames were received. Pass them to the hardware cipher engine before
1330  * sending them to the 802.11 layer.
1331  */
1332 static void
1333 rt2560_rx_intr(struct rt2560_softc *sc)
1334 {
1335 	struct rt2560_rx_desc *desc;
1336 	struct rt2560_rx_data *data;
1337 
1338 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1339 	    BUS_DMASYNC_POSTREAD);
1340 
1341 	for (;;) {
1342 		desc = &sc->rxq.desc[sc->rxq.cur];
1343 		data = &sc->rxq.data[sc->rxq.cur];
1344 
1345 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1346 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1347 			break;
1348 
1349 		data->drop = 0;
1350 
1351 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1352 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1353 			/*
1354 			 * This should not happen since we did not request
1355 			 * to receive those frames when we filled RXCSR0.
1356 			 */
1357 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1358 			    le32toh(desc->flags)));
1359 			data->drop = 1;
1360 		}
1361 
1362 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1363 			DPRINTFN(5, ("bad length\n"));
1364 			data->drop = 1;
1365 		}
1366 
1367 		/* mark the frame for decryption */
1368 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1369 
1370 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1371 
1372 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1373 	}
1374 
1375 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1376 	    BUS_DMASYNC_PREWRITE);
1377 
1378 	/* kick decrypt */
1379 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1380 }
1381 
1382 /*
1383  * This function is called periodically in IBSS mode when a new beacon must be
1384  * sent out.
1385  */
1386 static void
1387 rt2560_beacon_expire(struct rt2560_softc *sc)
1388 {
1389 	struct ieee80211com *ic = &sc->sc_ic;
1390 	struct rt2560_tx_data *data;
1391 
1392 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1393 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1394 		return;
1395 
1396 	data = &sc->bcnq.data[sc->bcnq.next];
1397 
1398 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1399 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1400 
1401 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1402 
1403 	if (ic->ic_rawbpf != NULL)
1404 		bpf_mtap(ic->ic_rawbpf, data->m);
1405 
1406 	rt2560_tx_bcn(sc, data->m, data->ni);
1407 
1408 	DPRINTFN(15, ("beacon expired\n"));
1409 
1410 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1411 }
1412 
1413 /* ARGSUSED */
1414 static void
1415 rt2560_wakeup_expire(struct rt2560_softc *sc)
1416 {
1417 	DPRINTFN(2, ("wakeup expired\n"));
1418 }
1419 
1420 static void
1421 rt2560_intr(void *arg)
1422 {
1423 	struct rt2560_softc *sc = arg;
1424 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1425 	uint32_t r;
1426 
1427 	/* disable interrupts */
1428 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1429 
1430 	/* don't re-enable interrupts if we're shutting down */
1431 	if (!(ifp->if_flags & IFF_RUNNING))
1432 		return;
1433 
1434 	r = RAL_READ(sc, RT2560_CSR7);
1435 	RAL_WRITE(sc, RT2560_CSR7, r);
1436 
1437 	if (r & RT2560_BEACON_EXPIRE)
1438 		rt2560_beacon_expire(sc);
1439 
1440 	if (r & RT2560_WAKEUP_EXPIRE)
1441 		rt2560_wakeup_expire(sc);
1442 
1443 	if (r & RT2560_PRIO_DONE)
1444 		rt2560_prio_intr(sc);
1445 
1446 	if (r & (RT2560_TX_DONE | RT2560_ENCRYPTION_DONE)) {
1447 		int i;
1448 
1449 		for (i = 0; i < 2; ++i) {
1450 			rt2560_tx_intr(sc);
1451 			rt2560_encryption_intr(sc);
1452 		}
1453 	}
1454 
1455 	if (r & (RT2560_DECRYPTION_DONE | RT2560_RX_DONE)) {
1456 		int i;
1457 
1458 		for (i = 0; i < 2; ++i) {
1459 			rt2560_decryption_intr(sc);
1460 			rt2560_rx_intr(sc);
1461 		}
1462 	}
1463 
1464 	/* re-enable interrupts */
1465 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1466 }
1467 
1468 /* quickly determine if a given rate is CCK or OFDM */
1469 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1470 
1471 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1472 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1473 
1474 #define RAL_SIFS		10	/* us */
1475 
1476 #define RT2560_TXRX_TURNAROUND	10	/* us */
1477 
1478 /*
1479  * This function is only used by the Rx radiotap code.
1480  */
1481 static uint8_t
1482 rt2560_rxrate(struct rt2560_rx_desc *desc)
1483 {
1484 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1485 		/* reverse function of rt2560_plcp_signal */
1486 		switch (desc->rate) {
1487 		case 0xb:	return 12;
1488 		case 0xf:	return 18;
1489 		case 0xa:	return 24;
1490 		case 0xe:	return 36;
1491 		case 0x9:	return 48;
1492 		case 0xd:	return 72;
1493 		case 0x8:	return 96;
1494 		case 0xc:	return 108;
1495 		}
1496 	} else {
1497 		if (desc->rate == 10)
1498 			return 2;
1499 		if (desc->rate == 20)
1500 			return 4;
1501 		if (desc->rate == 55)
1502 			return 11;
1503 		if (desc->rate == 110)
1504 			return 22;
1505 	}
1506 	return 2;	/* should not get there */
1507 }
1508 
1509 /*
1510  * Return the expected ack rate for a frame transmitted at rate `rate'.
1511  * XXX: this should depend on the destination node basic rate set.
1512  */
1513 static int
1514 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1515 {
1516 	switch (rate) {
1517 	/* CCK rates */
1518 	case 2:
1519 		return 2;
1520 	case 4:
1521 	case 11:
1522 	case 22:
1523 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1524 
1525 	/* OFDM rates */
1526 	case 12:
1527 	case 18:
1528 		return 12;
1529 	case 24:
1530 	case 36:
1531 		return 24;
1532 	case 48:
1533 	case 72:
1534 	case 96:
1535 	case 108:
1536 		return 48;
1537 	}
1538 
1539 	/* default to 1Mbps */
1540 	return 2;
1541 }
1542 
1543 /*
1544  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1545  * The function automatically determines the operating mode depending on the
1546  * given rate. `flags' indicates whether short preamble is in use or not.
1547  */
1548 static uint16_t
1549 rt2560_txtime(int len, int rate, uint32_t flags)
1550 {
1551 	uint16_t txtime;
1552 
1553 	if (RAL_RATE_IS_OFDM(rate)) {
1554 		/* IEEE Std 802.11a-1999, pp. 37 */
1555 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1556 		txtime = 16 + 4 + 4 * txtime + 6;
1557 	} else {
1558 		/* IEEE Std 802.11b-1999, pp. 28 */
1559 		txtime = (16 * len + rate - 1) / rate;
1560 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1561 			txtime +=  72 + 24;
1562 		else
1563 			txtime += 144 + 48;
1564 	}
1565 
1566 	return txtime;
1567 }
1568 
1569 static uint8_t
1570 rt2560_plcp_signal(int rate)
1571 {
1572 	switch (rate) {
1573 	/* CCK rates (returned values are device-dependent) */
1574 	case 2:		return 0x0;
1575 	case 4:		return 0x1;
1576 	case 11:	return 0x2;
1577 	case 22:	return 0x3;
1578 
1579 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1580 	case 12:	return 0xb;
1581 	case 18:	return 0xf;
1582 	case 24:	return 0xa;
1583 	case 36:	return 0xe;
1584 	case 48:	return 0x9;
1585 	case 72:	return 0xd;
1586 	case 96:	return 0x8;
1587 	case 108:	return 0xc;
1588 
1589 	/* unsupported rates (should not get there) */
1590 	default:	return 0xff;
1591 	}
1592 }
1593 
1594 static void
1595 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1596     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1597 {
1598 	struct ieee80211com *ic = &sc->sc_ic;
1599 	uint16_t plcp_length;
1600 	int remainder;
1601 
1602 	desc->flags = htole32(flags);
1603 	desc->flags |= htole32(len << 16);
1604 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1605 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1606 
1607 	desc->physaddr = htole32(physaddr);
1608 	desc->wme = htole16(
1609 	    RT2560_AIFSN(2) |
1610 	    RT2560_LOGCWMIN(3) |
1611 	    RT2560_LOGCWMAX(8));
1612 
1613 	/* setup PLCP fields */
1614 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1615 	desc->plcp_service = 4;
1616 
1617 	len += IEEE80211_CRC_LEN;
1618 	if (RAL_RATE_IS_OFDM(rate)) {
1619 		desc->flags |= htole32(RT2560_TX_OFDM);
1620 
1621 		plcp_length = len & 0xfff;
1622 		desc->plcp_length_hi = plcp_length >> 6;
1623 		desc->plcp_length_lo = plcp_length & 0x3f;
1624 	} else {
1625 		plcp_length = (16 * len + rate - 1) / rate;
1626 		if (rate == 22) {
1627 			remainder = (16 * len) % 22;
1628 			if (remainder != 0 && remainder < 7)
1629 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1630 		}
1631 		desc->plcp_length_hi = plcp_length >> 8;
1632 		desc->plcp_length_lo = plcp_length & 0xff;
1633 
1634 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1635 			desc->plcp_signal |= 0x08;
1636 	}
1637 }
1638 
1639 static int
1640 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1641     struct ieee80211_node *ni)
1642 {
1643 	struct ieee80211com *ic = &sc->sc_ic;
1644 	struct rt2560_tx_desc *desc;
1645 	struct rt2560_tx_data *data;
1646 	bus_addr_t paddr;
1647 	int rate, error;
1648 
1649 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1650 	data = &sc->bcnq.data[sc->bcnq.cur];
1651 
1652 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1653 
1654 	error = bus_dmamap_load_mbuf(sc->bcnq.data_dmat, data->map, m0,
1655 				     rt2560_dma_map_mbuf, &paddr,
1656 				     BUS_DMA_NOWAIT);
1657 	if (error != 0) {
1658 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1659 		    error);
1660 		m_freem(m0);
1661 		return error;
1662 	}
1663 
1664 	if (sc->sc_drvbpf != NULL) {
1665 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1666 
1667 		tap->wt_flags = 0;
1668 		tap->wt_rate = rate;
1669 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1670 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1671 		tap->wt_antenna = sc->tx_ant;
1672 
1673 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1674 	}
1675 
1676 	data->m = m0;
1677 	data->ni = ni;
1678 
1679 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1680 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, paddr);
1681 
1682 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1683 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1684 
1685 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1686 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1687 	    BUS_DMASYNC_PREWRITE);
1688 
1689 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1690 
1691 	return 0;
1692 }
1693 
1694 static int
1695 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1696     struct ieee80211_node *ni)
1697 {
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 	struct rt2560_tx_desc *desc;
1700 	struct rt2560_tx_data *data;
1701 	struct ieee80211_frame *wh;
1702 	bus_addr_t paddr;
1703 	uint16_t dur;
1704 	uint32_t flags = 0;
1705 	int rate, error;
1706 
1707 	desc = &sc->prioq.desc[sc->prioq.cur];
1708 	data = &sc->prioq.data[sc->prioq.cur];
1709 
1710 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1711 
1712 	error = bus_dmamap_load_mbuf(sc->prioq.data_dmat, data->map, m0,
1713 				     rt2560_dma_map_mbuf, &paddr, 0);
1714 	if (error != 0) {
1715 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1716 		    error);
1717 		m_freem(m0);
1718 		return error;
1719 	}
1720 
1721 	if (sc->sc_drvbpf != NULL) {
1722 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1723 
1724 		tap->wt_flags = 0;
1725 		tap->wt_rate = rate;
1726 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1727 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1728 		tap->wt_antenna = sc->tx_ant;
1729 
1730 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1731 	}
1732 
1733 	data->m = m0;
1734 	data->ni = ni;
1735 
1736 	wh = mtod(m0, struct ieee80211_frame *);
1737 
1738 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1739 		flags |= RT2560_TX_ACK;
1740 
1741 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1742 		      RAL_SIFS;
1743 		*(uint16_t *)wh->i_dur = htole16(dur);
1744 
1745 		/* tell hardware to add timestamp for probe responses */
1746 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1747 		    IEEE80211_FC0_TYPE_MGT &&
1748 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1749 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1750 			flags |= RT2560_TX_TIMESTAMP;
1751 	}
1752 
1753 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, paddr);
1754 
1755 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1756 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1757 	    BUS_DMASYNC_PREWRITE);
1758 
1759 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1760 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1761 
1762 	/* kick prio */
1763 	sc->prioq.queued++;
1764 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1765 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Build a RTS control frame.
1772  */
1773 static struct mbuf *
1774 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1775     uint16_t dur)
1776 {
1777 	struct ieee80211_frame_rts *rts;
1778 	struct mbuf *m;
1779 
1780 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1781 	if (m == NULL) {
1782 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1783 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1784 		return NULL;
1785 	}
1786 
1787 	rts = mtod(m, struct ieee80211_frame_rts *);
1788 
1789 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1790 	    IEEE80211_FC0_SUBTYPE_RTS;
1791 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1792 	*(uint16_t *)rts->i_dur = htole16(dur);
1793 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1794 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1795 
1796 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1797 
1798 	return m;
1799 }
1800 
1801 static int
1802 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1803     struct ieee80211_node *ni)
1804 {
1805 	struct ieee80211com *ic = &sc->sc_ic;
1806 	struct rt2560_tx_desc *desc;
1807 	struct rt2560_tx_data *data;
1808 	struct rt2560_node *rn;
1809 	struct ieee80211_rateset *rs;
1810 	struct ieee80211_frame *wh;
1811 	struct ieee80211_key *k;
1812 	struct mbuf *mnew;
1813 	bus_addr_t paddr;
1814 	uint16_t dur;
1815 	uint32_t flags = 0;
1816 	int rate, error;
1817 
1818 	wh = mtod(m0, struct ieee80211_frame *);
1819 
1820 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1821 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1822 		rate = rs->rs_rates[ic->ic_fixed_rate];
1823 	} else {
1824 		rs = &ni->ni_rates;
1825 		rn = (struct rt2560_node *)ni;
1826 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1827 		    m0->m_pkthdr.len, NULL, 0);
1828 		rate = rs->rs_rates[ni->ni_txrate];
1829 	}
1830 	rate &= IEEE80211_RATE_VAL;
1831 
1832 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1833 		k = ieee80211_crypto_encap(ic, ni, m0);
1834 		if (k == NULL) {
1835 			m_freem(m0);
1836 			return ENOBUFS;
1837 		}
1838 
1839 		/* packet header may have moved, reset our local pointer */
1840 		wh = mtod(m0, struct ieee80211_frame *);
1841 	}
1842 
1843 	/*
1844 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1845 	 * for directed frames only when the length of the MPDU is greater
1846 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1847 	 */
1848 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1849 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1850 		struct mbuf *m;
1851 		uint16_t dur;
1852 		int rtsrate, ackrate;
1853 
1854 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1855 		ackrate = rt2560_ack_rate(ic, rate);
1856 
1857 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1858 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1859 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1860 		      3 * RAL_SIFS;
1861 
1862 		m = rt2560_get_rts(sc, wh, dur);
1863 
1864 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1865 		data = &sc->txq.data[sc->txq.cur_encrypt];
1866 
1867 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1868 					     m, rt2560_dma_map_mbuf, &paddr, 0);
1869 		if (error != 0) {
1870 			device_printf(sc->sc_dev,
1871 			    "could not map mbuf (error %d)\n", error);
1872 			m_freem(m);
1873 			m_freem(m0);
1874 			return error;
1875 		}
1876 
1877 		/* avoid multiple free() of the same node for each fragment */
1878 		ieee80211_ref_node(ni);
1879 
1880 		data->m = m;
1881 		data->ni = ni;
1882 
1883 		/* RTS frames are not taken into account for rssadapt */
1884 		data->id.id_node = NULL;
1885 
1886 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1887 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, paddr);
1888 
1889 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1890 		    BUS_DMASYNC_PREWRITE);
1891 
1892 		sc->txq.queued++;
1893 		sc->txq.cur_encrypt =
1894 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1895 
1896 		/*
1897 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1898 		 * asynchronous data frame shall be transmitted after the CTS
1899 		 * frame and a SIFS period.
1900 		 */
1901 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1902 	}
1903 
1904 	data = &sc->txq.data[sc->txq.cur_encrypt];
1905 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1906 
1907 	error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, m0,
1908 				     rt2560_dma_map_mbuf, &paddr, 0);
1909 	if (error != 0 && error != EFBIG) {
1910 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1911 		    error);
1912 		m_freem(m0);
1913 		return error;
1914 	}
1915 	if (error != 0) {
1916 		mnew = m_defrag(m0, MB_DONTWAIT);
1917 		if (mnew == NULL) {
1918 			device_printf(sc->sc_dev,
1919 			    "could not defragment mbuf\n");
1920 			m_freem(m0);
1921 			return ENOBUFS;
1922 		}
1923 		m0 = mnew;
1924 
1925 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1926 					     m0, rt2560_dma_map_mbuf, &paddr,
1927 					     0);
1928 		if (error != 0) {
1929 			device_printf(sc->sc_dev,
1930 			    "could not map mbuf (error %d)\n", error);
1931 			m_freem(m0);
1932 			return error;
1933 		}
1934 
1935 		/* packet header may have moved, reset our local pointer */
1936 		wh = mtod(m0, struct ieee80211_frame *);
1937 	}
1938 
1939 	if (sc->sc_drvbpf != NULL) {
1940 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1941 
1942 		tap->wt_flags = 0;
1943 		tap->wt_rate = rate;
1944 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1945 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1946 		tap->wt_antenna = sc->tx_ant;
1947 
1948 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1949 	}
1950 
1951 	data->m = m0;
1952 	data->ni = ni;
1953 
1954 	/* remember link conditions for rate adaptation algorithm */
1955 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1956 		data->id.id_len = m0->m_pkthdr.len;
1957 		data->id.id_rateidx = ni->ni_txrate;
1958 		data->id.id_node = ni;
1959 		data->id.id_rssi = ni->ni_rssi;
1960 	} else
1961 		data->id.id_node = NULL;
1962 
1963 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1964 		flags |= RT2560_TX_ACK;
1965 
1966 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1967 		    ic->ic_flags) + RAL_SIFS;
1968 		*(uint16_t *)wh->i_dur = htole16(dur);
1969 	}
1970 
1971 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, paddr);
1972 
1973 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1974 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1975 	    BUS_DMASYNC_PREWRITE);
1976 
1977 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1978 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1979 
1980 	/* kick encrypt */
1981 	sc->txq.queued++;
1982 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1983 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1984 
1985 	return 0;
1986 }
1987 
1988 static void
1989 rt2560_start(struct ifnet *ifp)
1990 {
1991 	struct rt2560_softc *sc = ifp->if_softc;
1992 	struct ieee80211com *ic = &sc->sc_ic;
1993 	struct mbuf *m0;
1994 	struct ether_header *eh;
1995 	struct ieee80211_node *ni;
1996 
1997 	/* prevent management frames from being sent if we're not ready */
1998 	if (!(ifp->if_flags & IFF_RUNNING))
1999 		return;
2000 
2001 	for (;;) {
2002 		IF_POLL(&ic->ic_mgtq, m0);
2003 		if (m0 != NULL) {
2004 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2005 				ifp->if_flags |= IFF_OACTIVE;
2006 				break;
2007 			}
2008 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2009 
2010 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2011 			m0->m_pkthdr.rcvif = NULL;
2012 
2013 			if (ic->ic_rawbpf != NULL)
2014 				bpf_mtap(ic->ic_rawbpf, m0);
2015 
2016 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2017 				break;
2018 
2019 		} else {
2020 			if (ic->ic_state != IEEE80211_S_RUN)
2021 				break;
2022 			m0 = ifq_poll(&ifp->if_snd);
2023 			if (m0 == NULL)
2024 				break;
2025 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2026 				ifp->if_flags |= IFF_OACTIVE;
2027 				break;
2028 			}
2029 			m0 = ifq_dequeue(&ifp->if_snd, m0);
2030 
2031 			if (m0->m_len < sizeof (struct ether_header) &&
2032 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2033 				continue;
2034 
2035 			eh = mtod(m0, struct ether_header *);
2036 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2037 			if (ni == NULL) {
2038 				m_freem(m0);
2039 				continue;
2040 			}
2041 			BPF_MTAP(ifp, m0);
2042 
2043 			m0 = ieee80211_encap(ic, m0, ni);
2044 			if (m0 == NULL) {
2045 				ieee80211_free_node(ni);
2046 				continue;
2047 			}
2048 
2049 			if (ic->ic_rawbpf != NULL)
2050 				bpf_mtap(ic->ic_rawbpf, m0);
2051 
2052 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2053 				ieee80211_free_node(ni);
2054 				ifp->if_oerrors++;
2055 				break;
2056 			}
2057 		}
2058 
2059 		sc->sc_tx_timer = 5;
2060 		ifp->if_timer = 1;
2061 	}
2062 }
2063 
2064 static void
2065 rt2560_watchdog(struct ifnet *ifp)
2066 {
2067 	struct rt2560_softc *sc = ifp->if_softc;
2068 	struct ieee80211com *ic = &sc->sc_ic;
2069 
2070 	ifp->if_timer = 0;
2071 
2072 	if (sc->sc_tx_timer > 0) {
2073 		if (--sc->sc_tx_timer == 0) {
2074 			device_printf(sc->sc_dev, "device timeout\n");
2075 			rt2560_init(sc);
2076 			ifp->if_oerrors++;
2077 			return;
2078 		}
2079 		ifp->if_timer = 1;
2080 	}
2081 
2082 	ieee80211_watchdog(ic);
2083 }
2084 
2085 /*
2086  * This function allows for fast channel switching in monitor mode (used by
2087  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2088  * generate a new beacon frame.
2089  */
2090 static int
2091 rt2560_reset(struct ifnet *ifp)
2092 {
2093 	struct rt2560_softc *sc = ifp->if_softc;
2094 	struct ieee80211com *ic = &sc->sc_ic;
2095 
2096 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2097 		return ENETRESET;
2098 
2099 	rt2560_set_chan(sc, ic->ic_curchan);
2100 
2101 	return 0;
2102 }
2103 
2104 static int
2105 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2106 {
2107 	struct rt2560_softc *sc = ifp->if_softc;
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 	int error = 0;
2110 
2111 	switch (cmd) {
2112 	case SIOCSIFFLAGS:
2113 		if (ifp->if_flags & IFF_UP) {
2114 			if (ifp->if_flags & IFF_RUNNING)
2115 				rt2560_update_promisc(sc);
2116 			else
2117 				rt2560_init(sc);
2118 		} else {
2119 			if (ifp->if_flags & IFF_RUNNING)
2120 				rt2560_stop(sc);
2121 		}
2122 		break;
2123 
2124 	default:
2125 		error = ieee80211_ioctl(ic, cmd, data, cr);
2126 	}
2127 
2128 	if (error == ENETRESET) {
2129 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2130 		    (IFF_UP | IFF_RUNNING) &&
2131 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2132 			rt2560_init(sc);
2133 		error = 0;
2134 	}
2135 
2136 	return error;
2137 }
2138 
2139 static void
2140 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2141 {
2142 	uint32_t tmp;
2143 	int ntries;
2144 
2145 	for (ntries = 0; ntries < 100; ntries++) {
2146 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2147 			break;
2148 		DELAY(1);
2149 	}
2150 	if (ntries == 100) {
2151 		device_printf(sc->sc_dev, "could not write to BBP\n");
2152 		return;
2153 	}
2154 
2155 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2156 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2157 
2158 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2159 }
2160 
2161 static uint8_t
2162 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2163 {
2164 	uint32_t val;
2165 	int ntries;
2166 
2167 	val = RT2560_BBP_BUSY | reg << 8;
2168 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2169 
2170 	for (ntries = 0; ntries < 100; ntries++) {
2171 		val = RAL_READ(sc, RT2560_BBPCSR);
2172 		if (!(val & RT2560_BBP_BUSY))
2173 			return val & 0xff;
2174 		DELAY(1);
2175 	}
2176 
2177 	device_printf(sc->sc_dev, "could not read from BBP\n");
2178 	return 0;
2179 }
2180 
2181 static void
2182 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2183 {
2184 	uint32_t tmp;
2185 	int ntries;
2186 
2187 	for (ntries = 0; ntries < 100; ntries++) {
2188 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2189 			break;
2190 		DELAY(1);
2191 	}
2192 	if (ntries == 100) {
2193 		device_printf(sc->sc_dev, "could not write to RF\n");
2194 		return;
2195 	}
2196 
2197 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2198 	    (reg & 0x3);
2199 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2200 
2201 	/* remember last written value in sc */
2202 	sc->rf_regs[reg] = val;
2203 
2204 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2205 }
2206 
2207 static void
2208 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2209 {
2210 	struct ieee80211com *ic = &sc->sc_ic;
2211 	uint8_t power, tmp;
2212 	u_int i, chan;
2213 
2214 	chan = ieee80211_chan2ieee(ic, c);
2215 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2216 		return;
2217 
2218 	if (IEEE80211_IS_CHAN_2GHZ(c))
2219 		power = min(sc->txpow[chan - 1], 31);
2220 	else
2221 		power = 31;
2222 
2223 	/* adjust txpower using ifconfig settings */
2224 	power -= (100 - ic->ic_txpowlimit) / 8;
2225 
2226 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2227 
2228 	switch (sc->rf_rev) {
2229 	case RT2560_RF_2522:
2230 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2231 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2232 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2233 		break;
2234 
2235 	case RT2560_RF_2523:
2236 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2237 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2238 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2239 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2240 		break;
2241 
2242 	case RT2560_RF_2524:
2243 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2244 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2245 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2246 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2247 		break;
2248 
2249 	case RT2560_RF_2525:
2250 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2251 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2252 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2253 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2254 
2255 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2256 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2257 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2258 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2259 		break;
2260 
2261 	case RT2560_RF_2525E:
2262 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2263 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2264 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2265 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2266 		break;
2267 
2268 	case RT2560_RF_2526:
2269 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2270 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2271 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2272 
2273 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2274 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2275 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2276 		break;
2277 
2278 	/* dual-band RF */
2279 	case RT2560_RF_5222:
2280 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2281 
2282 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2283 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2284 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2285 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2286 		break;
2287 	}
2288 
2289 	if (ic->ic_state != IEEE80211_S_SCAN) {
2290 		/* set Japan filter bit for channel 14 */
2291 		tmp = rt2560_bbp_read(sc, 70);
2292 
2293 		tmp &= ~RT2560_JAPAN_FILTER;
2294 		if (chan == 14)
2295 			tmp |= RT2560_JAPAN_FILTER;
2296 
2297 		rt2560_bbp_write(sc, 70, tmp);
2298 
2299 		/* clear CRC errors */
2300 		RAL_READ(sc, RT2560_CNT0);
2301 	}
2302 }
2303 
2304 #if 0
2305 /*
2306  * Disable RF auto-tuning.
2307  */
2308 static void
2309 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2310 {
2311 	uint32_t tmp;
2312 
2313 	if (sc->rf_rev != RT2560_RF_2523) {
2314 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2315 		rt2560_rf_write(sc, RAL_RF1, tmp);
2316 	}
2317 
2318 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2319 	rt2560_rf_write(sc, RAL_RF3, tmp);
2320 
2321 	DPRINTFN(2, ("disabling RF autotune\n"));
2322 }
2323 #endif
2324 
2325 /*
2326  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2327  * synchronization.
2328  */
2329 static void
2330 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2331 {
2332 	struct ieee80211com *ic = &sc->sc_ic;
2333 	uint16_t logcwmin, preload;
2334 	uint32_t tmp;
2335 
2336 	/* first, disable TSF synchronization */
2337 	RAL_WRITE(sc, RT2560_CSR14, 0);
2338 
2339 	tmp = 16 * ic->ic_bss->ni_intval;
2340 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2341 
2342 	RAL_WRITE(sc, RT2560_CSR13, 0);
2343 
2344 	logcwmin = 5;
2345 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2346 	tmp = logcwmin << 16 | preload;
2347 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2348 
2349 	/* finally, enable TSF synchronization */
2350 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2351 	if (ic->ic_opmode == IEEE80211_M_STA)
2352 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2353 	else
2354 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2355 		       RT2560_ENABLE_BEACON_GENERATOR;
2356 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2357 
2358 	DPRINTF(("enabling TSF synchronization\n"));
2359 }
2360 
2361 static void
2362 rt2560_update_plcp(struct rt2560_softc *sc)
2363 {
2364 	struct ieee80211com *ic = &sc->sc_ic;
2365 
2366 	/* no short preamble for 1Mbps */
2367 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2368 
2369 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2370 		/* values taken from the reference driver */
2371 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2372 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2373 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2374 	} else {
2375 		/* same values as above or'ed 0x8 */
2376 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2377 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2378 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2379 	}
2380 
2381 	DPRINTF(("updating PLCP for %s preamble\n",
2382 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2383 }
2384 
2385 /*
2386  * This function can be called by ieee80211_set_shortslottime(). Refer to
2387  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2388  */
2389 static void
2390 rt2560_update_slot(struct ifnet *ifp)
2391 {
2392 	struct rt2560_softc *sc = ifp->if_softc;
2393 	struct ieee80211com *ic = &sc->sc_ic;
2394 	uint8_t slottime;
2395 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2396 	uint32_t tmp;
2397 
2398 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2399 
2400 	/* update the MAC slot boundaries */
2401 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2402 	tx_pifs = tx_sifs + slottime;
2403 	tx_difs = tx_sifs + 2 * slottime;
2404 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2405 
2406 	tmp = RAL_READ(sc, RT2560_CSR11);
2407 	tmp = (tmp & ~0x1f00) | slottime << 8;
2408 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2409 
2410 	tmp = tx_pifs << 16 | tx_sifs;
2411 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2412 
2413 	tmp = eifs << 16 | tx_difs;
2414 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2415 
2416 	DPRINTF(("setting slottime to %uus\n", slottime));
2417 }
2418 
2419 static void
2420 rt2560_set_basicrates(struct rt2560_softc *sc)
2421 {
2422 	struct ieee80211com *ic = &sc->sc_ic;
2423 
2424 	/* update basic rate set */
2425 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2426 		/* 11b basic rates: 1, 2Mbps */
2427 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2428 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2429 		/* 11a basic rates: 6, 12, 24Mbps */
2430 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2431 	} else {
2432 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2433 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2434 	}
2435 }
2436 
2437 static void
2438 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2439 {
2440 	uint32_t tmp;
2441 
2442 	/* set ON period to 70ms and OFF period to 30ms */
2443 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2444 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2445 }
2446 
2447 static void
2448 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2449 {
2450 	uint32_t tmp;
2451 
2452 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2453 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2454 
2455 	tmp = bssid[4] | bssid[5] << 8;
2456 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2457 
2458 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2459 }
2460 
2461 static void
2462 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2463 {
2464 	uint32_t tmp;
2465 
2466 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2467 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2468 
2469 	tmp = addr[4] | addr[5] << 8;
2470 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2471 
2472 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2473 }
2474 
2475 static void
2476 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2477 {
2478 	uint32_t tmp;
2479 
2480 	tmp = RAL_READ(sc, RT2560_CSR3);
2481 	addr[0] = tmp & 0xff;
2482 	addr[1] = (tmp >>  8) & 0xff;
2483 	addr[2] = (tmp >> 16) & 0xff;
2484 	addr[3] = (tmp >> 24);
2485 
2486 	tmp = RAL_READ(sc, RT2560_CSR4);
2487 	addr[4] = tmp & 0xff;
2488 	addr[5] = (tmp >> 8) & 0xff;
2489 }
2490 
2491 static void
2492 rt2560_update_promisc(struct rt2560_softc *sc)
2493 {
2494 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2495 	uint32_t tmp;
2496 
2497 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2498 
2499 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2500 	if (!(ifp->if_flags & IFF_PROMISC))
2501 		tmp |= RT2560_DROP_NOT_TO_ME;
2502 
2503 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2504 
2505 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2506 	    "entering" : "leaving"));
2507 }
2508 
2509 static const char *
2510 rt2560_get_rf(int rev)
2511 {
2512 	switch (rev) {
2513 	case RT2560_RF_2522:	return "RT2522";
2514 	case RT2560_RF_2523:	return "RT2523";
2515 	case RT2560_RF_2524:	return "RT2524";
2516 	case RT2560_RF_2525:	return "RT2525";
2517 	case RT2560_RF_2525E:	return "RT2525e";
2518 	case RT2560_RF_2526:	return "RT2526";
2519 	case RT2560_RF_5222:	return "RT5222";
2520 	default:		return "unknown";
2521 	}
2522 }
2523 
2524 static void
2525 rt2560_read_eeprom(struct rt2560_softc *sc)
2526 {
2527 	uint16_t val;
2528 	int i;
2529 
2530 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2531 	sc->rf_rev =   (val >> 11) & 0x7;
2532 	sc->hw_radio = (val >> 10) & 0x1;
2533 	sc->led_mode = (val >> 6)  & 0x7;
2534 	sc->rx_ant =   (val >> 4)  & 0x3;
2535 	sc->tx_ant =   (val >> 2)  & 0x3;
2536 	sc->nb_ant =   val & 0x3;
2537 
2538 	/* read default values for BBP registers */
2539 	for (i = 0; i < 16; i++) {
2540 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2541 		sc->bbp_prom[i].reg = val >> 8;
2542 		sc->bbp_prom[i].val = val & 0xff;
2543 	}
2544 
2545 	/* read Tx power for all b/g channels */
2546 	for (i = 0; i < 14 / 2; i++) {
2547 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2548 		sc->txpow[i * 2] = val >> 8;
2549 		sc->txpow[i * 2 + 1] = val & 0xff;
2550 	}
2551 }
2552 
2553 static int
2554 rt2560_bbp_init(struct rt2560_softc *sc)
2555 {
2556 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2557 	int i, ntries;
2558 
2559 	/* wait for BBP to be ready */
2560 	for (ntries = 0; ntries < 100; ntries++) {
2561 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2562 			break;
2563 		DELAY(1);
2564 	}
2565 	if (ntries == 100) {
2566 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2567 		return EIO;
2568 	}
2569 
2570 	/* initialize BBP registers to default values */
2571 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2572 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2573 		    rt2560_def_bbp[i].val);
2574 	}
2575 #if 0
2576 	/* initialize BBP registers to values stored in EEPROM */
2577 	for (i = 0; i < 16; i++) {
2578 		if (sc->bbp_prom[i].reg == 0xff)
2579 			continue;
2580 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2581 	}
2582 #endif
2583 
2584 	return 0;
2585 #undef N
2586 }
2587 
2588 static void
2589 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2590 {
2591 	uint32_t tmp;
2592 	uint8_t tx;
2593 
2594 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2595 	if (antenna == 1)
2596 		tx |= RT2560_BBP_ANTA;
2597 	else if (antenna == 2)
2598 		tx |= RT2560_BBP_ANTB;
2599 	else
2600 		tx |= RT2560_BBP_DIVERSITY;
2601 
2602 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2603 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2604 	    sc->rf_rev == RT2560_RF_5222)
2605 		tx |= RT2560_BBP_FLIPIQ;
2606 
2607 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2608 
2609 	/* update values for CCK and OFDM in BBPCSR1 */
2610 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2611 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2612 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2613 }
2614 
2615 static void
2616 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2617 {
2618 	uint8_t rx;
2619 
2620 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2621 	if (antenna == 1)
2622 		rx |= RT2560_BBP_ANTA;
2623 	else if (antenna == 2)
2624 		rx |= RT2560_BBP_ANTB;
2625 	else
2626 		rx |= RT2560_BBP_DIVERSITY;
2627 
2628 	/* need to force no I/Q flip for RF 2525e and 2526 */
2629 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2630 		rx &= ~RT2560_BBP_FLIPIQ;
2631 
2632 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2633 }
2634 
2635 static void
2636 rt2560_init(void *priv)
2637 {
2638 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2639 	struct rt2560_softc *sc = priv;
2640 	struct ieee80211com *ic = &sc->sc_ic;
2641 	struct ifnet *ifp = ic->ic_ifp;
2642 	uint32_t tmp;
2643 	int i;
2644 
2645 	rt2560_stop(sc);
2646 
2647 	/* setup tx rings */
2648 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2649 	      RT2560_ATIM_RING_COUNT << 16 |
2650 	      RT2560_TX_RING_COUNT   <<  8 |
2651 	      RT2560_TX_DESC_SIZE;
2652 
2653 	/* rings must be initialized in this exact order */
2654 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2655 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2656 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2657 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2658 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2659 
2660 	/* setup rx ring */
2661 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2662 
2663 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2664 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2665 
2666 	/* initialize MAC registers to default values */
2667 	for (i = 0; i < N(rt2560_def_mac); i++)
2668 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2669 
2670 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2671 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2672 
2673 	/* set basic rate set (will be updated later) */
2674 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2675 
2676 	rt2560_set_txantenna(sc, sc->tx_ant);
2677 	rt2560_set_rxantenna(sc, sc->rx_ant);
2678 	rt2560_update_slot(ifp);
2679 	rt2560_update_plcp(sc);
2680 	rt2560_update_led(sc, 0, 0);
2681 
2682 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2683 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2684 
2685 	if (rt2560_bbp_init(sc) != 0) {
2686 		rt2560_stop(sc);
2687 		return;
2688 	}
2689 
2690 	/* set default BSS channel */
2691 	rt2560_set_chan(sc, ic->ic_curchan);
2692 
2693 	/* kick Rx */
2694 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2695 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2696 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2697 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2698 			tmp |= RT2560_DROP_TODS;
2699 		if (!(ifp->if_flags & IFF_PROMISC))
2700 			tmp |= RT2560_DROP_NOT_TO_ME;
2701 	}
2702 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2703 
2704 	/* clear old FCS and Rx FIFO errors */
2705 	RAL_READ(sc, RT2560_CNT0);
2706 	RAL_READ(sc, RT2560_CNT4);
2707 
2708 	/* clear any pending interrupts */
2709 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2710 
2711 	/* enable interrupts */
2712 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2713 
2714 	ifp->if_flags &= ~IFF_OACTIVE;
2715 	ifp->if_flags |= IFF_RUNNING;
2716 
2717 	/* XXX */
2718 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2719 		int i;
2720 
2721 		ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
2722 		for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2723 			struct ieee80211_key *wk = &ic->ic_nw_keys[i];
2724 
2725 			if (wk->wk_keylen == 0)
2726 				continue;
2727 			if (wk->wk_flags & IEEE80211_KEY_XMIT)
2728 				wk->wk_flags |= IEEE80211_KEY_SWCRYPT;
2729 		}
2730 	}
2731 
2732 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2733 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2734 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2735 	} else
2736 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2737 #undef N
2738 }
2739 
2740 void
2741 rt2560_stop(void *priv)
2742 {
2743 	struct rt2560_softc *sc = priv;
2744 	struct ieee80211com *ic = &sc->sc_ic;
2745 	struct ifnet *ifp = ic->ic_ifp;
2746 
2747 	sc->sc_tx_timer = 0;
2748 	ifp->if_timer = 0;
2749 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2750 
2751 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2752 
2753 	/* abort Tx */
2754 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2755 
2756 	/* disable Rx */
2757 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2758 
2759 	/* reset ASIC (imply reset BBP) */
2760 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2761 	RAL_WRITE(sc, RT2560_CSR1, 0);
2762 
2763 	/* disable interrupts */
2764 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2765 
2766 	/* reset Tx and Rx rings */
2767 	rt2560_reset_tx_ring(sc, &sc->txq);
2768 	rt2560_reset_tx_ring(sc, &sc->atimq);
2769 	rt2560_reset_tx_ring(sc, &sc->prioq);
2770 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2771 	rt2560_reset_rx_ring(sc, &sc->rxq);
2772 }
2773 
2774 static void
2775 rt2560_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
2776 		    bus_size_t map_size __unused, int error)
2777 {
2778 	if (error)
2779 		return;
2780 
2781 	KASSERT(nseg == 1, ("too many dma segments\n"));
2782 	*((bus_addr_t *)arg) = seg->ds_addr;
2783 }
2784