xref: /dflybsd-src/sys/dev/netif/nge/if_nge.c (revision 6bc31f17c9c90db02ddbd88208e06c29ed0f1534)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.27 2005/05/31 14:11:42 joerg Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 
99 #include <net/if.h>
100 #include <net/ifq_var.h>
101 #include <net/if_arp.h>
102 #include <net/ethernet.h>
103 #include <net/if_dl.h>
104 #include <net/if_media.h>
105 #include <net/if_types.h>
106 #include <net/vlan/if_vlan_var.h>
107 
108 #include <net/bpf.h>
109 
110 #include <vm/vm.h>              /* for vtophys */
111 #include <vm/pmap.h>            /* for vtophys */
112 #include <machine/bus.h>
113 #include <machine/resource.h>
114 #include <sys/bus.h>
115 #include <sys/rman.h>
116 
117 #include <dev/netif/mii_layer/mii.h>
118 #include <dev/netif/mii_layer/miivar.h>
119 
120 #include <bus/pci/pcireg.h>
121 #include <bus/pci/pcivar.h>
122 
123 #define NGE_USEIOSPACE
124 
125 #include "if_ngereg.h"
126 
127 
128 /* "controller miibus0" required.  See GENERIC if you get errors here. */
129 #include "miibus_if.h"
130 
131 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
132 
133 /*
134  * Various supported device vendors/types and their names.
135  */
136 static struct nge_type nge_devs[] = {
137 	{ NGE_VENDORID, NGE_DEVICEID,
138 	    "National Semiconductor Gigabit Ethernet" },
139 	{ 0, 0, NULL }
140 };
141 
142 static int	nge_probe(device_t);
143 static int	nge_attach(device_t);
144 static int	nge_detach(device_t);
145 
146 static int	nge_alloc_jumbo_mem(struct nge_softc *);
147 static void	nge_free_jumbo_mem(struct nge_softc *);
148 static struct nge_jslot
149 		*nge_jalloc(struct nge_softc *);
150 static void	nge_jfree(void *);
151 static void	nge_jref(void *);
152 
153 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
154 			   struct mbuf *);
155 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
156 static void	nge_rxeof(struct nge_softc *);
157 static void	nge_txeof(struct nge_softc *);
158 static void	nge_intr(void *);
159 static void	nge_tick(void *);
160 static void	nge_start(struct ifnet *);
161 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
162 static void	nge_init(void *);
163 static void	nge_stop(struct nge_softc *);
164 static void	nge_watchdog(struct ifnet *);
165 static void	nge_shutdown(device_t);
166 static int	nge_ifmedia_upd(struct ifnet *);
167 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
168 
169 static void	nge_delay(struct nge_softc *);
170 static void	nge_eeprom_idle(struct nge_softc *);
171 static void	nge_eeprom_putbyte(struct nge_softc *, int);
172 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
173 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
174 
175 static void	nge_mii_sync(struct nge_softc *);
176 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
177 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
178 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
179 
180 static int	nge_miibus_readreg(device_t, int, int);
181 static int	nge_miibus_writereg(device_t, int, int, int);
182 static void	nge_miibus_statchg(device_t);
183 
184 static void	nge_setmulti(struct nge_softc *);
185 static void	nge_reset(struct nge_softc *);
186 static int	nge_list_rx_init(struct nge_softc *);
187 static int	nge_list_tx_init(struct nge_softc *);
188 #ifdef DEVICE_POLLING
189 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
190 #endif
191 
192 #ifdef NGE_USEIOSPACE
193 #define NGE_RES			SYS_RES_IOPORT
194 #define NGE_RID			NGE_PCI_LOIO
195 #else
196 #define NGE_RES			SYS_RES_MEMORY
197 #define NGE_RID			NGE_PCI_LOMEM
198 #endif
199 
200 static device_method_t nge_methods[] = {
201 	/* Device interface */
202 	DEVMETHOD(device_probe,		nge_probe),
203 	DEVMETHOD(device_attach,	nge_attach),
204 	DEVMETHOD(device_detach,	nge_detach),
205 	DEVMETHOD(device_shutdown,	nge_shutdown),
206 
207 	/* bus interface */
208 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
209 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
210 
211 	/* MII interface */
212 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
213 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
214 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
215 
216 	{ 0, 0 }
217 };
218 
219 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
220 static devclass_t nge_devclass;
221 
222 DECLARE_DUMMY_MODULE(if_nge);
223 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
224 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
225 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
226 
227 #define NGE_SETBIT(sc, reg, x)				\
228 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
229 
230 #define NGE_CLRBIT(sc, reg, x)				\
231 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
232 
233 #define SIO_SET(x)					\
234 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
235 
236 #define SIO_CLR(x)					\
237 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
238 
239 static void
240 nge_delay(struct nge_softc *sc)
241 {
242 	int idx;
243 
244 	for (idx = (300 / 33) + 1; idx > 0; idx--)
245 		CSR_READ_4(sc, NGE_CSR);
246 }
247 
248 static void
249 nge_eeprom_idle(struct nge_softc *sc)
250 {
251 	int i;
252 
253 	SIO_SET(NGE_MEAR_EE_CSEL);
254 	nge_delay(sc);
255 	SIO_SET(NGE_MEAR_EE_CLK);
256 	nge_delay(sc);
257 
258 	for (i = 0; i < 25; i++) {
259 		SIO_CLR(NGE_MEAR_EE_CLK);
260 		nge_delay(sc);
261 		SIO_SET(NGE_MEAR_EE_CLK);
262 		nge_delay(sc);
263 	}
264 
265 	SIO_CLR(NGE_MEAR_EE_CLK);
266 	nge_delay(sc);
267 	SIO_CLR(NGE_MEAR_EE_CSEL);
268 	nge_delay(sc);
269 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
270 }
271 
272 /*
273  * Send a read command and address to the EEPROM, check for ACK.
274  */
275 static void
276 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
277 {
278 	int d, i;
279 
280 	d = addr | NGE_EECMD_READ;
281 
282 	/*
283 	 * Feed in each bit and stobe the clock.
284 	 */
285 	for (i = 0x400; i; i >>= 1) {
286 		if (d & i)
287 			SIO_SET(NGE_MEAR_EE_DIN);
288 		else
289 			SIO_CLR(NGE_MEAR_EE_DIN);
290 		nge_delay(sc);
291 		SIO_SET(NGE_MEAR_EE_CLK);
292 		nge_delay(sc);
293 		SIO_CLR(NGE_MEAR_EE_CLK);
294 		nge_delay(sc);
295 	}
296 }
297 
298 /*
299  * Read a word of data stored in the EEPROM at address 'addr.'
300  */
301 static void
302 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
303 {
304 	int i;
305 	uint16_t word = 0;
306 
307 	/* Force EEPROM to idle state. */
308 	nge_eeprom_idle(sc);
309 
310 	/* Enter EEPROM access mode. */
311 	nge_delay(sc);
312 	SIO_CLR(NGE_MEAR_EE_CLK);
313 	nge_delay(sc);
314 	SIO_SET(NGE_MEAR_EE_CSEL);
315 	nge_delay(sc);
316 
317 	/*
318 	 * Send address of word we want to read.
319 	 */
320 	nge_eeprom_putbyte(sc, addr);
321 
322 	/*
323 	 * Start reading bits from EEPROM.
324 	 */
325 	for (i = 0x8000; i; i >>= 1) {
326 		SIO_SET(NGE_MEAR_EE_CLK);
327 		nge_delay(sc);
328 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
329 			word |= i;
330 		nge_delay(sc);
331 		SIO_CLR(NGE_MEAR_EE_CLK);
332 		nge_delay(sc);
333 	}
334 
335 	/* Turn off EEPROM access mode. */
336 	nge_eeprom_idle(sc);
337 
338 	*dest = word;
339 }
340 
341 /*
342  * Read a sequence of words from the EEPROM.
343  */
344 static void
345 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
346 {
347 	int i;
348 	uint16_t word = 0, *ptr;
349 
350 	for (i = 0; i < cnt; i++) {
351 		nge_eeprom_getword(sc, off + i, &word);
352 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
353 		*ptr = word;
354 	}
355 }
356 
357 /*
358  * Sync the PHYs by setting data bit and strobing the clock 32 times.
359  */
360 static void
361 nge_mii_sync(struct nge_softc *sc)
362 {
363 	int i;
364 
365 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
366 
367 	for (i = 0; i < 32; i++) {
368 		SIO_SET(NGE_MEAR_MII_CLK);
369 		DELAY(1);
370 		SIO_CLR(NGE_MEAR_MII_CLK);
371 		DELAY(1);
372 	}
373 }
374 
375 /*
376  * Clock a series of bits through the MII.
377  */
378 static void
379 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
380 {
381 	int i;
382 
383 	SIO_CLR(NGE_MEAR_MII_CLK);
384 
385 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
386                 if (bits & i)
387 			SIO_SET(NGE_MEAR_MII_DATA);
388                 else
389 			SIO_CLR(NGE_MEAR_MII_DATA);
390 		DELAY(1);
391 		SIO_CLR(NGE_MEAR_MII_CLK);
392 		DELAY(1);
393 		SIO_SET(NGE_MEAR_MII_CLK);
394 	}
395 }
396 
397 /*
398  * Read an PHY register through the MII.
399  */
400 static int
401 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
402 {
403 	int ack, i, s;
404 
405 	s = splimp();
406 
407 	/*
408 	 * Set up frame for RX.
409 	 */
410 	frame->mii_stdelim = NGE_MII_STARTDELIM;
411 	frame->mii_opcode = NGE_MII_READOP;
412 	frame->mii_turnaround = 0;
413 	frame->mii_data = 0;
414 
415 	CSR_WRITE_4(sc, NGE_MEAR, 0);
416 
417 	/*
418  	 * Turn on data xmit.
419 	 */
420 	SIO_SET(NGE_MEAR_MII_DIR);
421 
422 	nge_mii_sync(sc);
423 
424 	/*
425 	 * Send command/address info.
426 	 */
427 	nge_mii_send(sc, frame->mii_stdelim, 2);
428 	nge_mii_send(sc, frame->mii_opcode, 2);
429 	nge_mii_send(sc, frame->mii_phyaddr, 5);
430 	nge_mii_send(sc, frame->mii_regaddr, 5);
431 
432 	/* Idle bit */
433 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
434 	DELAY(1);
435 	SIO_SET(NGE_MEAR_MII_CLK);
436 	DELAY(1);
437 
438 	/* Turn off xmit. */
439 	SIO_CLR(NGE_MEAR_MII_DIR);
440 	/* Check for ack */
441 	SIO_CLR(NGE_MEAR_MII_CLK);
442 	DELAY(1);
443 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
444 	SIO_SET(NGE_MEAR_MII_CLK);
445 	DELAY(1);
446 
447 	/*
448 	 * Now try reading data bits. If the ack failed, we still
449 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
450 	 */
451 	if (ack) {
452 		for(i = 0; i < 16; i++) {
453 			SIO_CLR(NGE_MEAR_MII_CLK);
454 			DELAY(1);
455 			SIO_SET(NGE_MEAR_MII_CLK);
456 			DELAY(1);
457 		}
458 		goto fail;
459 	}
460 
461 	for (i = 0x8000; i; i >>= 1) {
462 		SIO_CLR(NGE_MEAR_MII_CLK);
463 		DELAY(1);
464 		if (!ack) {
465 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
466 				frame->mii_data |= i;
467 			DELAY(1);
468 		}
469 		SIO_SET(NGE_MEAR_MII_CLK);
470 		DELAY(1);
471 	}
472 
473 fail:
474 	SIO_CLR(NGE_MEAR_MII_CLK);
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	splx(s);
480 
481 	if (ack)
482 		return(1);
483 	return(0);
484 }
485 
486 /*
487  * Write to a PHY register through the MII.
488  */
489 static int
490 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
491 {
492 	int s;
493 
494 	s = splimp();
495 	/*
496 	 * Set up frame for TX.
497 	 */
498 
499 	frame->mii_stdelim = NGE_MII_STARTDELIM;
500 	frame->mii_opcode = NGE_MII_WRITEOP;
501 	frame->mii_turnaround = NGE_MII_TURNAROUND;
502 
503 	/*
504  	 * Turn on data output.
505 	 */
506 	SIO_SET(NGE_MEAR_MII_DIR);
507 
508 	nge_mii_sync(sc);
509 
510 	nge_mii_send(sc, frame->mii_stdelim, 2);
511 	nge_mii_send(sc, frame->mii_opcode, 2);
512 	nge_mii_send(sc, frame->mii_phyaddr, 5);
513 	nge_mii_send(sc, frame->mii_regaddr, 5);
514 	nge_mii_send(sc, frame->mii_turnaround, 2);
515 	nge_mii_send(sc, frame->mii_data, 16);
516 
517 	/* Idle bit. */
518 	SIO_SET(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 	SIO_CLR(NGE_MEAR_MII_CLK);
521 	DELAY(1);
522 
523 	/*
524 	 * Turn off xmit.
525 	 */
526 	SIO_CLR(NGE_MEAR_MII_DIR);
527 
528 	splx(s);
529 
530 	return(0);
531 }
532 
533 static int
534 nge_miibus_readreg(device_t dev, int phy, int reg)
535 {
536 	struct nge_softc *sc = device_get_softc(dev);
537 	struct nge_mii_frame frame;
538 
539 	bzero((char *)&frame, sizeof(frame));
540 
541 	frame.mii_phyaddr = phy;
542 	frame.mii_regaddr = reg;
543 	nge_mii_readreg(sc, &frame);
544 
545 	return(frame.mii_data);
546 }
547 
548 static int
549 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
550 {
551 	struct nge_softc *sc = device_get_softc(dev);
552 	struct nge_mii_frame frame;
553 
554 	bzero((char *)&frame, sizeof(frame));
555 
556 	frame.mii_phyaddr = phy;
557 	frame.mii_regaddr = reg;
558 	frame.mii_data = data;
559 	nge_mii_writereg(sc, &frame);
560 
561 	return(0);
562 }
563 
564 static void
565 nge_miibus_statchg(device_t dev)
566 {
567 	struct nge_softc *sc = device_get_softc(dev);
568 	struct mii_data *mii;
569 	int status;
570 
571 	if (sc->nge_tbi) {
572 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
573 		    == IFM_AUTO) {
574 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
575 			if (status == 0 || status & NGE_TBIANAR_FDX) {
576 				NGE_SETBIT(sc, NGE_TX_CFG,
577 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
578 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
579 			} else {
580 				NGE_CLRBIT(sc, NGE_TX_CFG,
581 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
582 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
583 			}
584 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
585 			!= IFM_FDX) {
586 			NGE_CLRBIT(sc, NGE_TX_CFG,
587 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
588 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589 		} else {
590 			NGE_SETBIT(sc, NGE_TX_CFG,
591 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
592 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
593 		}
594 	} else {
595 		mii = device_get_softc(sc->nge_miibus);
596 
597 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
598 		        NGE_SETBIT(sc, NGE_TX_CFG,
599 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
600 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
601 		} else {
602 			NGE_CLRBIT(sc, NGE_TX_CFG,
603 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
604 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
605 		}
606 
607 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
608 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
609 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
610 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
611 		} else {
612 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
613 		}
614 	}
615 }
616 
617 static void
618 nge_setmulti(struct nge_softc *sc)
619 {
620 	struct ifnet *ifp = &sc->arpcom.ac_if;
621 	struct ifmultiaddr *ifma;
622 	uint32_t filtsave, h = 0, i;
623 	int bit, index;
624 
625 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
627 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
628 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
629 		return;
630 	}
631 
632 	/*
633 	 * We have to explicitly enable the multicast hash table
634 	 * on the NatSemi chip if we want to use it, which we do.
635 	 * We also have to tell it that we don't want to use the
636 	 * hash table for matching unicast addresses.
637 	 */
638 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
639 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
640 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
641 
642 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
643 
644 	/* first, zot all the existing hash bits */
645 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
646 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
647 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
648 	}
649 
650 	/*
651 	 * From the 11 bits returned by the crc routine, the top 7
652 	 * bits represent the 16-bit word in the mcast hash table
653 	 * that needs to be updated, and the lower 4 bits represent
654 	 * which bit within that byte needs to be set.
655 	 */
656 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
657 		if (ifma->ifma_addr->sa_family != AF_LINK)
658 			continue;
659 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
660 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
661 		index = (h >> 4) & 0x7F;
662 		bit = h & 0xF;
663 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
664 		    NGE_FILTADDR_MCAST_LO + (index * 2));
665 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
666 	}
667 
668 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
669 }
670 
671 static void
672 nge_reset(struct nge_softc *sc)
673 {
674 	int i;
675 
676 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
677 
678 	for (i = 0; i < NGE_TIMEOUT; i++) {
679 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
680 			break;
681 	}
682 
683 	if (i == NGE_TIMEOUT)
684 		printf("nge%d: reset never completed\n", sc->nge_unit);
685 
686 	/* Wait a little while for the chip to get its brains in order. */
687 	DELAY(1000);
688 
689 	/*
690 	 * If this is a NetSemi chip, make sure to clear
691 	 * PME mode.
692 	 */
693 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
694 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
695 }
696 
697 /*
698  * Probe for an NatSemi chip. Check the PCI vendor and device
699  * IDs against our list and return a device name if we find a match.
700  */
701 static int
702 nge_probe(device_t dev)
703 {
704 	struct nge_type	*t;
705 	uint16_t vendor, product;
706 
707 	vendor = pci_get_vendor(dev);
708 	product = pci_get_device(dev);
709 
710 	for (t = nge_devs; t->nge_name != NULL; t++) {
711 		if (vendor == t->nge_vid && product == t->nge_did) {
712 			device_set_desc(dev, t->nge_name);
713 			return(0);
714 		}
715 	}
716 
717 	return(ENXIO);
718 }
719 
720 /*
721  * Attach the interface. Allocate softc structures, do ifmedia
722  * setup and ethernet/BPF attach.
723  */
724 static int
725 nge_attach(device_t dev)
726 {
727 	struct nge_softc *sc;
728 	struct ifnet *ifp;
729 	uint8_t eaddr[ETHER_ADDR_LEN];
730 	uint32_t		command;
731 	int error = 0, rid, s, unit;
732 	const char		*sep = "";
733 
734 	s = splimp();
735 
736 	sc = device_get_softc(dev);
737 	unit = device_get_unit(dev);
738 	callout_init(&sc->nge_stat_timer);
739 
740 	/*
741 	 * Handle power management nonsense.
742 	 */
743 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
744 	if (command == 0x01) {
745 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
746 		if (command & NGE_PSTATE_MASK) {
747 			uint32_t		iobase, membase, irq;
748 
749 			/* Save important PCI config data. */
750 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
751 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
752 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
753 
754 			/* Reset the power state. */
755 			printf("nge%d: chip is in D%d power mode "
756 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
757 			command &= 0xFFFFFFFC;
758 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
759 
760 			/* Restore PCI config data. */
761 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
762 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
763 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
764 		}
765 	}
766 
767 	/*
768 	 * Map control/status registers.
769 	 */
770 	command = pci_read_config(dev, PCIR_COMMAND, 4);
771 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
772 	pci_write_config(dev, PCIR_COMMAND, command, 4);
773 	command = pci_read_config(dev, PCIR_COMMAND, 4);
774 
775 #ifdef NGE_USEIOSPACE
776 	if (!(command & PCIM_CMD_PORTEN)) {
777 		printf("nge%d: failed to enable I/O ports!\n", unit);
778 		error = ENXIO;;
779 		goto fail;
780 	}
781 #else
782 	if (!(command & PCIM_CMD_MEMEN)) {
783 		printf("nge%d: failed to enable memory mapping!\n", unit);
784 		error = ENXIO;;
785 		goto fail;
786 	}
787 #endif
788 
789 	rid = NGE_RID;
790 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
791 
792 	if (sc->nge_res == NULL) {
793 		printf("nge%d: couldn't map ports/memory\n", unit);
794 		error = ENXIO;
795 		goto fail;
796 	}
797 
798 	sc->nge_btag = rman_get_bustag(sc->nge_res);
799 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
800 
801 	/* Allocate interrupt */
802 	rid = 0;
803 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
804 	    RF_SHAREABLE | RF_ACTIVE);
805 
806 	if (sc->nge_irq == NULL) {
807 		printf("nge%d: couldn't map interrupt\n", unit);
808 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
809 		error = ENXIO;
810 		goto fail;
811 	}
812 
813 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
814 			       nge_intr, sc, &sc->nge_intrhand, NULL);
815 
816 	if (error) {
817 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
818 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
819 		printf("nge%d: couldn't set up irq\n", unit);
820 		goto fail;
821 	}
822 
823 	/* Reset the adapter. */
824 	nge_reset(sc);
825 
826 	/*
827 	 * Get station address from the EEPROM.
828 	 */
829 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
830 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
831 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
832 
833 	sc->nge_unit = unit;
834 
835 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
836 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
837 
838 	if (sc->nge_ldata == NULL) {
839 		printf("nge%d: no memory for list buffers!\n", unit);
840 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
841 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
842 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
843 		error = ENXIO;
844 		goto fail;
845 	}
846 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
847 
848 	/* Try to allocate memory for jumbo buffers. */
849 	if (nge_alloc_jumbo_mem(sc)) {
850 		printf("nge%d: jumbo buffer allocation failed\n",
851                     sc->nge_unit);
852 		contigfree(sc->nge_ldata,
853 		    sizeof(struct nge_list_data), M_DEVBUF);
854 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
855 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
856 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
857 		error = ENXIO;
858 		goto fail;
859 	}
860 
861 	ifp = &sc->arpcom.ac_if;
862 	ifp->if_softc = sc;
863 	if_initname(ifp, "nge", unit);
864 	ifp->if_mtu = ETHERMTU;
865 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
866 	ifp->if_ioctl = nge_ioctl;
867 	ifp->if_start = nge_start;
868 #ifdef DEVICE_POLLING
869 	ifp->if_poll = nge_poll;
870 #endif
871 	ifp->if_watchdog = nge_watchdog;
872 	ifp->if_init = nge_init;
873 	ifp->if_baudrate = 1000000000;
874 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
875 	ifq_set_ready(&ifp->if_snd);
876 	ifp->if_hwassist = NGE_CSUM_FEATURES;
877 	ifp->if_capabilities = IFCAP_HWCSUM;
878 	ifp->if_capenable = ifp->if_capabilities;
879 
880 	/*
881 	 * Do MII setup.
882 	 */
883 	if (mii_phy_probe(dev, &sc->nge_miibus,
884 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
885 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
886 			sc->nge_tbi = 1;
887 			device_printf(dev, "Using TBI\n");
888 
889 			sc->nge_miibus = dev;
890 
891 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
892 				nge_ifmedia_sts);
893 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
894 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
895 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
896 			device_printf(dev, " ");
897 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
898 			PRINT("1000baseSX");
899 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
900 			PRINT("1000baseSX-FDX");
901 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
902 			PRINT("auto");
903 
904 			printf("\n");
905 #undef ADD
906 #undef PRINT
907 			ifmedia_set(&sc->nge_ifmedia,
908 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
909 
910 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
911 				| NGE_GPIO_GP4_OUT
912 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
913 				| NGE_GPIO_GP3_OUTENB
914 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
915 
916 		} else {
917 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
918 			nge_free_jumbo_mem(sc);
919 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
920 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
921 			bus_release_resource(dev, NGE_RES, NGE_RID,
922 					 sc->nge_res);
923 			error = ENXIO;
924 			goto fail;
925 		}
926 	}
927 
928 	/*
929 	 * Call MI attach routine.
930 	 */
931 	ether_ifattach(ifp, eaddr);
932 
933 fail:
934 
935 	splx(s);
936 	return(error);
937 }
938 
939 static int
940 nge_detach(device_t dev)
941 {
942 	struct nge_softc *sc;
943 	struct ifnet *ifp;
944 	int s;
945 
946 	s = splimp();
947 
948 	sc = device_get_softc(dev);
949 	ifp = &sc->arpcom.ac_if;
950 
951 	nge_reset(sc);
952 	nge_stop(sc);
953 	ether_ifdetach(ifp);
954 
955 	bus_generic_detach(dev);
956 	if (!sc->nge_tbi)
957 		device_delete_child(dev, sc->nge_miibus);
958 
959 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
960 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
961 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
962 
963 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
964 	nge_free_jumbo_mem(sc);
965 
966 	splx(s);
967 
968 	return(0);
969 }
970 
971 /*
972  * Initialize the transmit descriptors.
973  */
974 static int
975 nge_list_tx_init(struct nge_softc *sc)
976 {
977 	struct nge_list_data *ld;
978 	struct nge_ring_data *cd;
979 	int i;
980 
981 	cd = &sc->nge_cdata;
982 	ld = sc->nge_ldata;
983 
984 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
985 		if (i == (NGE_TX_LIST_CNT - 1)) {
986 			ld->nge_tx_list[i].nge_nextdesc =
987 			    &ld->nge_tx_list[0];
988 			ld->nge_tx_list[i].nge_next =
989 			    vtophys(&ld->nge_tx_list[0]);
990 		} else {
991 			ld->nge_tx_list[i].nge_nextdesc =
992 			    &ld->nge_tx_list[i + 1];
993 			ld->nge_tx_list[i].nge_next =
994 			    vtophys(&ld->nge_tx_list[i + 1]);
995 		}
996 		ld->nge_tx_list[i].nge_mbuf = NULL;
997 		ld->nge_tx_list[i].nge_ptr = 0;
998 		ld->nge_tx_list[i].nge_ctl = 0;
999 	}
1000 
1001 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1002 
1003 	return(0);
1004 }
1005 
1006 
1007 /*
1008  * Initialize the RX descriptors and allocate mbufs for them. Note that
1009  * we arrange the descriptors in a closed ring, so that the last descriptor
1010  * points back to the first.
1011  */
1012 static int
1013 nge_list_rx_init(struct nge_softc *sc)
1014 {
1015 	struct nge_list_data *ld;
1016 	struct nge_ring_data *cd;
1017 	int i;
1018 
1019 	ld = sc->nge_ldata;
1020 	cd = &sc->nge_cdata;
1021 
1022 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1023 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1024 			return(ENOBUFS);
1025 		if (i == (NGE_RX_LIST_CNT - 1)) {
1026 			ld->nge_rx_list[i].nge_nextdesc =
1027 			    &ld->nge_rx_list[0];
1028 			ld->nge_rx_list[i].nge_next =
1029 			    vtophys(&ld->nge_rx_list[0]);
1030 		} else {
1031 			ld->nge_rx_list[i].nge_nextdesc =
1032 			    &ld->nge_rx_list[i + 1];
1033 			ld->nge_rx_list[i].nge_next =
1034 			    vtophys(&ld->nge_rx_list[i + 1]);
1035 		}
1036 	}
1037 
1038 	cd->nge_rx_prod = 0;
1039 
1040 	return(0);
1041 }
1042 
1043 /*
1044  * Initialize an RX descriptor and attach an MBUF cluster.
1045  */
1046 static int
1047 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1048 {
1049 	struct mbuf *m_new = NULL;
1050 	struct nge_jslot *buf;
1051 
1052 	if (m == NULL) {
1053 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1054 		if (m_new == NULL) {
1055 			printf("nge%d: no memory for rx list "
1056 			    "-- packet dropped!\n", sc->nge_unit);
1057 			return(ENOBUFS);
1058 		}
1059 
1060 		/* Allocate the jumbo buffer */
1061 		buf = nge_jalloc(sc);
1062 		if (buf == NULL) {
1063 #ifdef NGE_VERBOSE
1064 			printf("nge%d: jumbo allocation failed "
1065 			    "-- packet dropped!\n", sc->nge_unit);
1066 #endif
1067 			m_freem(m_new);
1068 			return(ENOBUFS);
1069 		}
1070 		/* Attach the buffer to the mbuf */
1071 		m_new->m_ext.ext_arg = buf;
1072 		m_new->m_ext.ext_buf = buf->nge_buf;
1073 		m_new->m_ext.ext_free = nge_jfree;
1074 		m_new->m_ext.ext_ref = nge_jref;
1075 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1076 
1077 		m_new->m_data = m_new->m_ext.ext_buf;
1078 		m_new->m_flags |= M_EXT;
1079 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1080 	} else {
1081 		m_new = m;
1082 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1083 		m_new->m_data = m_new->m_ext.ext_buf;
1084 	}
1085 
1086 	m_adj(m_new, sizeof(uint64_t));
1087 
1088 	c->nge_mbuf = m_new;
1089 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1090 	c->nge_ctl = m_new->m_len;
1091 	c->nge_extsts = 0;
1092 
1093 	return(0);
1094 }
1095 
1096 static int
1097 nge_alloc_jumbo_mem(struct nge_softc *sc)
1098 {
1099 	caddr_t ptr;
1100 	int i;
1101 	struct nge_jslot *entry;
1102 
1103 	/* Grab a big chunk o' storage. */
1104 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1105 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1106 
1107 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1108 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1109 		return(ENOBUFS);
1110 	}
1111 
1112 	SLIST_INIT(&sc->nge_jfree_listhead);
1113 
1114 	/*
1115 	 * Now divide it up into 9K pieces and save the addresses
1116 	 * in an array.
1117 	 */
1118 	ptr = sc->nge_cdata.nge_jumbo_buf;
1119 	for (i = 0; i < NGE_JSLOTS; i++) {
1120 		entry = &sc->nge_cdata.nge_jslots[i];
1121 		entry->nge_sc = sc;
1122 		entry->nge_buf = ptr;
1123 		entry->nge_inuse = 0;
1124 		entry->nge_slot = i;
1125 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1126 		ptr += NGE_JLEN;
1127 	}
1128 
1129 	return(0);
1130 }
1131 
1132 static void
1133 nge_free_jumbo_mem(struct nge_softc *sc)
1134 {
1135 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1136 }
1137 
1138 /*
1139  * Allocate a jumbo buffer.
1140  */
1141 static struct nge_jslot *
1142 nge_jalloc(struct nge_softc *sc)
1143 {
1144 	struct nge_jslot *entry;
1145 
1146 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1147 
1148 	if (entry == NULL) {
1149 #ifdef NGE_VERBOSE
1150 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1151 #endif
1152 		return(NULL);
1153 	}
1154 
1155 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1156 	entry->nge_inuse = 1;
1157 
1158 	return(entry);
1159 }
1160 
1161 /*
1162  * Adjust usage count on a jumbo buffer. In general this doesn't
1163  * get used much because our jumbo buffers don't get passed around
1164  * a lot, but it's implemented for correctness.
1165  */
1166 static void
1167 nge_jref(void *arg)
1168 {
1169 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1170 	struct nge_softc *sc = entry->nge_sc;
1171 
1172 	if (sc == NULL)
1173 		panic("nge_jref: can't find softc pointer!");
1174 
1175 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1176 		panic("nge_jref: asked to reference buffer "
1177 		    "that we don't manage!");
1178 	else if (entry->nge_inuse == 0)
1179 		panic("nge_jref: buffer already free!");
1180 	else
1181 		entry->nge_inuse++;
1182 }
1183 
1184 /*
1185  * Release a jumbo buffer.
1186  */
1187 static void
1188 nge_jfree(void *arg)
1189 {
1190 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1191 	struct nge_softc *sc = entry->nge_sc;
1192 
1193 	if (sc == NULL)
1194 		panic("nge_jref: can't find softc pointer!");
1195 
1196 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1197 		panic("nge_jref: asked to reference buffer "
1198 		    "that we don't manage!");
1199 	else if (entry->nge_inuse == 0)
1200 		panic("nge_jref: buffer already free!");
1201 	else if (--entry->nge_inuse == 0)
1202 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1203 }
1204 /*
1205  * A frame has been uploaded: pass the resulting mbuf chain up to
1206  * the higher level protocols.
1207  */
1208 static void
1209 nge_rxeof(struct nge_softc *sc)
1210 {
1211         struct mbuf *m;
1212         struct ifnet *ifp = &sc->arpcom.ac_if;
1213 	struct nge_desc *cur_rx;
1214 	int i, total_len = 0;
1215 	uint32_t rxstat;
1216 
1217 	i = sc->nge_cdata.nge_rx_prod;
1218 
1219 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1220 		struct mbuf *m0 = NULL;
1221 		uint32_t extsts;
1222 
1223 #ifdef DEVICE_POLLING
1224 		if (ifp->if_flags & IFF_POLLING) {
1225 			if (sc->rxcycles <= 0)
1226 				break;
1227 			sc->rxcycles--;
1228 		}
1229 #endif /* DEVICE_POLLING */
1230 
1231 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1232 		rxstat = cur_rx->nge_rxstat;
1233 		extsts = cur_rx->nge_extsts;
1234 		m = cur_rx->nge_mbuf;
1235 		cur_rx->nge_mbuf = NULL;
1236 		total_len = NGE_RXBYTES(cur_rx);
1237 		NGE_INC(i, NGE_RX_LIST_CNT);
1238 		/*
1239 		 * If an error occurs, update stats, clear the
1240 		 * status word and leave the mbuf cluster in place:
1241 		 * it should simply get re-used next time this descriptor
1242 	 	 * comes up in the ring.
1243 		 */
1244 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1245 			ifp->if_ierrors++;
1246 			nge_newbuf(sc, cur_rx, m);
1247 			continue;
1248 		}
1249 
1250 		/*
1251 		 * Ok. NatSemi really screwed up here. This is the
1252 		 * only gigE chip I know of with alignment constraints
1253 		 * on receive buffers. RX buffers must be 64-bit aligned.
1254 		 */
1255 #ifdef __i386__
1256 		/*
1257 		 * By popular demand, ignore the alignment problems
1258 		 * on the Intel x86 platform. The performance hit
1259 		 * incurred due to unaligned accesses is much smaller
1260 		 * than the hit produced by forcing buffer copies all
1261 		 * the time, especially with jumbo frames. We still
1262 		 * need to fix up the alignment everywhere else though.
1263 		 */
1264 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1265 #endif
1266 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1267 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1268 			nge_newbuf(sc, cur_rx, m);
1269 			if (m0 == NULL) {
1270 				printf("nge%d: no receive buffers "
1271 				    "available -- packet dropped!\n",
1272 				    sc->nge_unit);
1273 				ifp->if_ierrors++;
1274 				continue;
1275 			}
1276 			m_adj(m0, ETHER_ALIGN);
1277 			m = m0;
1278 #ifdef __i386__
1279 		} else {
1280 			m->m_pkthdr.rcvif = ifp;
1281 			m->m_pkthdr.len = m->m_len = total_len;
1282 		}
1283 #endif
1284 
1285 		ifp->if_ipackets++;
1286 
1287 		/* Do IP checksum checking. */
1288 		if (extsts & NGE_RXEXTSTS_IPPKT)
1289 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1290 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1291 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1292 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1293 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1294 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1295 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1296 			m->m_pkthdr.csum_flags |=
1297 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1298 			m->m_pkthdr.csum_data = 0xffff;
1299 		}
1300 
1301 		/*
1302 		 * If we received a packet with a vlan tag, pass it
1303 		 * to vlan_input() instead of ether_input().
1304 		 */
1305 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1306 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1307 		else
1308 			(*ifp->if_input)(ifp, m);
1309 	}
1310 
1311 	sc->nge_cdata.nge_rx_prod = i;
1312 }
1313 
1314 /*
1315  * A frame was downloaded to the chip. It's safe for us to clean up
1316  * the list buffers.
1317  */
1318 static void
1319 nge_txeof(struct nge_softc *sc)
1320 {
1321 	struct ifnet *ifp = &sc->arpcom.ac_if;
1322 	struct nge_desc *cur_tx = NULL;
1323 	uint32_t idx;
1324 
1325 	/* Clear the timeout timer. */
1326 	ifp->if_timer = 0;
1327 
1328 	/*
1329 	 * Go through our tx list and free mbufs for those
1330 	 * frames that have been transmitted.
1331 	 */
1332 	idx = sc->nge_cdata.nge_tx_cons;
1333 	while (idx != sc->nge_cdata.nge_tx_prod) {
1334 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1335 
1336 		if (NGE_OWNDESC(cur_tx))
1337 			break;
1338 
1339 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1340 			sc->nge_cdata.nge_tx_cnt--;
1341 			NGE_INC(idx, NGE_TX_LIST_CNT);
1342 			continue;
1343 		}
1344 
1345 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1346 			ifp->if_oerrors++;
1347 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1348 				ifp->if_collisions++;
1349 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1350 				ifp->if_collisions++;
1351 		}
1352 
1353 		ifp->if_collisions +=
1354 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1355 
1356 		ifp->if_opackets++;
1357 		if (cur_tx->nge_mbuf != NULL) {
1358 			m_freem(cur_tx->nge_mbuf);
1359 			cur_tx->nge_mbuf = NULL;
1360 		}
1361 
1362 		sc->nge_cdata.nge_tx_cnt--;
1363 		NGE_INC(idx, NGE_TX_LIST_CNT);
1364 		ifp->if_timer = 0;
1365 	}
1366 
1367 	sc->nge_cdata.nge_tx_cons = idx;
1368 
1369 	if (cur_tx != NULL)
1370 		ifp->if_flags &= ~IFF_OACTIVE;
1371 }
1372 
1373 static void
1374 nge_tick(void *xsc)
1375 {
1376 	struct nge_softc *sc = xsc;
1377 	struct ifnet *ifp = &sc->arpcom.ac_if;
1378 	struct mii_data *mii;
1379 	int s;
1380 
1381 	s = splimp();
1382 
1383 	if (sc->nge_tbi) {
1384 		if (sc->nge_link == 0) {
1385 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1386 			    & NGE_TBIBMSR_ANEG_DONE) {
1387 				printf("nge%d: gigabit link up\n",
1388 				    sc->nge_unit);
1389 				nge_miibus_statchg(sc->nge_miibus);
1390 				sc->nge_link++;
1391 				if (!ifq_is_empty(&ifp->if_snd))
1392 					nge_start(ifp);
1393 			}
1394 		}
1395 	} else {
1396 		mii = device_get_softc(sc->nge_miibus);
1397 		mii_tick(mii);
1398 
1399 		if (sc->nge_link == 0) {
1400 			if (mii->mii_media_status & IFM_ACTIVE &&
1401 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1402 				sc->nge_link++;
1403 				if (IFM_SUBTYPE(mii->mii_media_active)
1404 				    == IFM_1000_T)
1405 					printf("nge%d: gigabit link up\n",
1406 					    sc->nge_unit);
1407 				if (!ifq_is_empty(&ifp->if_snd))
1408 					nge_start(ifp);
1409 			}
1410 		}
1411 	}
1412 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1413 
1414 	splx(s);
1415 }
1416 
1417 #ifdef DEVICE_POLLING
1418 
1419 static void
1420 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1421 {
1422 	struct nge_softc *sc = ifp->if_softc;
1423 
1424 	switch(cmd) {
1425 	case POLL_REGISTER:
1426 		/* disable interrupts */
1427 		CSR_WRITE_4(sc, NGE_IER, 0);
1428 		break;
1429 	case POLL_DEREGISTER:
1430 		/* enable interrupts */
1431 		CSR_WRITE_4(sc, NGE_IER, 1);
1432 		break;
1433 	default:
1434 		/*
1435 		 * On the nge, reading the status register also clears it.
1436 		 * So before returning to intr mode we must make sure that all
1437 		 * possible pending sources of interrupts have been served.
1438 		 * In practice this means run to completion the *eof routines,
1439 		 * and then call the interrupt routine
1440 		 */
1441 		sc->rxcycles = count;
1442 		nge_rxeof(sc);
1443 		nge_txeof(sc);
1444 		if (!ifq_is_empty(&ifp->if_snd))
1445 			nge_start(ifp);
1446 
1447 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1448 			uint32_t status;
1449 
1450 			/* Reading the ISR register clears all interrupts. */
1451 			status = CSR_READ_4(sc, NGE_ISR);
1452 
1453 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1454 				nge_rxeof(sc);
1455 
1456 			if (status & (NGE_ISR_RX_IDLE))
1457 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1458 
1459 			if (status & NGE_ISR_SYSERR) {
1460 				nge_reset(sc);
1461 				nge_init(sc);
1462 			}
1463 		}
1464 		break;
1465 	}
1466 }
1467 
1468 #endif /* DEVICE_POLLING */
1469 
1470 static void
1471 nge_intr(void *arg)
1472 {
1473 	struct nge_softc *sc = arg;
1474 	struct ifnet *ifp = &sc->arpcom.ac_if;
1475 	uint32_t status;
1476 
1477 	/* Supress unwanted interrupts */
1478 	if (!(ifp->if_flags & IFF_UP)) {
1479 		nge_stop(sc);
1480 		return;
1481 	}
1482 
1483 	/* Disable interrupts. */
1484 	CSR_WRITE_4(sc, NGE_IER, 0);
1485 
1486 	/* Data LED on for TBI mode */
1487 	if(sc->nge_tbi)
1488 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1489 			     | NGE_GPIO_GP3_OUT);
1490 
1491 	for (;;) {
1492 		/* Reading the ISR register clears all interrupts. */
1493 		status = CSR_READ_4(sc, NGE_ISR);
1494 
1495 		if ((status & NGE_INTRS) == 0)
1496 			break;
1497 
1498 		if ((status & NGE_ISR_TX_DESC_OK) ||
1499 		    (status & NGE_ISR_TX_ERR) ||
1500 		    (status & NGE_ISR_TX_OK) ||
1501 		    (status & NGE_ISR_TX_IDLE))
1502 			nge_txeof(sc);
1503 
1504 		if ((status & NGE_ISR_RX_DESC_OK) ||
1505 		    (status & NGE_ISR_RX_ERR) ||
1506 		    (status & NGE_ISR_RX_OFLOW) ||
1507 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1508 		    (status & NGE_ISR_RX_IDLE) ||
1509 		    (status & NGE_ISR_RX_OK))
1510 			nge_rxeof(sc);
1511 
1512 		if ((status & NGE_ISR_RX_IDLE))
1513 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1514 
1515 		if (status & NGE_ISR_SYSERR) {
1516 			nge_reset(sc);
1517 			ifp->if_flags &= ~IFF_RUNNING;
1518 			nge_init(sc);
1519 		}
1520 
1521 #ifdef notyet
1522 		/* mii_tick should only be called once per second */
1523 		if (status & NGE_ISR_PHY_INTR) {
1524 			sc->nge_link = 0;
1525 			nge_tick(sc);
1526 		}
1527 #endif
1528 	}
1529 
1530 	/* Re-enable interrupts. */
1531 	CSR_WRITE_4(sc, NGE_IER, 1);
1532 
1533 	if (!ifq_is_empty(&ifp->if_snd))
1534 		nge_start(ifp);
1535 
1536 	/* Data LED off for TBI mode */
1537 
1538 	if(sc->nge_tbi)
1539 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1540 			    & ~NGE_GPIO_GP3_OUT);
1541 }
1542 
1543 /*
1544  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1545  * pointers to the fragment pointers.
1546  */
1547 static int
1548 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1549 {
1550 	struct nge_desc *f = NULL;
1551 	struct mbuf *m;
1552 	int frag, cur, cnt = 0;
1553 	struct ifvlan *ifv = NULL;
1554 
1555 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1556 	    m_head->m_pkthdr.rcvif != NULL &&
1557 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1558 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1559 
1560 	/*
1561  	 * Start packing the mbufs in this chain into
1562 	 * the fragment pointers. Stop when we run out
1563  	 * of fragments or hit the end of the mbuf chain.
1564 	 */
1565 	m = m_head;
1566 	cur = frag = *txidx;
1567 
1568 	for (m = m_head; m != NULL; m = m->m_next) {
1569 		if (m->m_len != 0) {
1570 			if ((NGE_TX_LIST_CNT -
1571 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1572 				return(ENOBUFS);
1573 			f = &sc->nge_ldata->nge_tx_list[frag];
1574 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1575 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1576 			if (cnt != 0)
1577 				f->nge_ctl |= NGE_CMDSTS_OWN;
1578 			cur = frag;
1579 			NGE_INC(frag, NGE_TX_LIST_CNT);
1580 			cnt++;
1581 		}
1582 	}
1583 
1584 	if (m != NULL)
1585 		return(ENOBUFS);
1586 
1587 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1588 	if (m_head->m_pkthdr.csum_flags) {
1589 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1590 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1591 			    NGE_TXEXTSTS_IPCSUM;
1592 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1593 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1594 			    NGE_TXEXTSTS_TCPCSUM;
1595 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1596 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1597 			    NGE_TXEXTSTS_UDPCSUM;
1598 	}
1599 
1600 	if (ifv != NULL) {
1601 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1602 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1603 	}
1604 
1605 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1606 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1607 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1608 	sc->nge_cdata.nge_tx_cnt += cnt;
1609 	*txidx = frag;
1610 
1611 	return(0);
1612 }
1613 
1614 /*
1615  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1616  * to the mbuf data regions directly in the transmit lists. We also save a
1617  * copy of the pointers since the transmit list fragment pointers are
1618  * physical addresses.
1619  */
1620 
1621 static void
1622 nge_start(struct ifnet *ifp)
1623 {
1624 	struct nge_softc *sc = ifp->if_softc;
1625 	struct mbuf *m_head = NULL;
1626 	uint32_t idx;
1627 
1628 	if (!sc->nge_link)
1629 		return;
1630 
1631 	idx = sc->nge_cdata.nge_tx_prod;
1632 
1633 	if (ifp->if_flags & IFF_OACTIVE)
1634 		return;
1635 
1636 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1637 		m_head = ifq_poll(&ifp->if_snd);
1638 		if (m_head == NULL)
1639 			break;
1640 
1641 		if (nge_encap(sc, m_head, &idx)) {
1642 			ifp->if_flags |= IFF_OACTIVE;
1643 			break;
1644 		}
1645 		m_head = ifq_dequeue(&ifp->if_snd);
1646 
1647 		BPF_MTAP(ifp, m_head);
1648 	}
1649 
1650 	/* Transmit */
1651 	sc->nge_cdata.nge_tx_prod = idx;
1652 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1653 
1654 	/*
1655 	 * Set a timeout in case the chip goes out to lunch.
1656 	 */
1657 	ifp->if_timer = 5;
1658 }
1659 
1660 static void
1661 nge_init(void *xsc)
1662 {
1663 	struct nge_softc *sc = xsc;
1664 	struct ifnet *ifp = &sc->arpcom.ac_if;
1665 	struct mii_data *mii;
1666 	int s;
1667 
1668 	if (ifp->if_flags & IFF_RUNNING)
1669 		return;
1670 
1671 	s = splimp();
1672 
1673 	/*
1674 	 * Cancel pending I/O and free all RX/TX buffers.
1675 	 */
1676 	nge_stop(sc);
1677 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1678 
1679 	if (sc->nge_tbi)
1680 		mii = NULL;
1681 	else
1682 		mii = device_get_softc(sc->nge_miibus);
1683 
1684 	/* Set MAC address */
1685 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1686 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1687 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1688 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1689 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1690 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1691 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1692 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1693 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1694 
1695 	/* Init circular RX list. */
1696 	if (nge_list_rx_init(sc) == ENOBUFS) {
1697 		printf("nge%d: initialization failed: no "
1698 			"memory for rx buffers\n", sc->nge_unit);
1699 		nge_stop(sc);
1700 		splx(s);
1701 		return;
1702 	}
1703 
1704 	/*
1705 	 * Init tx descriptors.
1706 	 */
1707 	nge_list_tx_init(sc);
1708 
1709 	/*
1710 	 * For the NatSemi chip, we have to explicitly enable the
1711 	 * reception of ARP frames, as well as turn on the 'perfect
1712 	 * match' filter where we store the station address, otherwise
1713 	 * we won't receive unicasts meant for this host.
1714 	 */
1715 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1716 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1717 
1718 	 /* If we want promiscuous mode, set the allframes bit. */
1719 	if (ifp->if_flags & IFF_PROMISC)
1720 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1721 	else
1722 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1723 
1724 	/*
1725 	 * Set the capture broadcast bit to capture broadcast frames.
1726 	 */
1727 	if (ifp->if_flags & IFF_BROADCAST)
1728 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1729 	else
1730 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1731 
1732 	/*
1733 	 * Load the multicast filter.
1734 	 */
1735 	nge_setmulti(sc);
1736 
1737 	/* Turn the receive filter on */
1738 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1739 
1740 	/*
1741 	 * Load the address of the RX and TX lists.
1742 	 */
1743 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1744 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1745 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1746 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1747 
1748 	/* Set RX configuration */
1749 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1750 	/*
1751 	 * Enable hardware checksum validation for all IPv4
1752 	 * packets, do not reject packets with bad checksums.
1753 	 */
1754 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1755 
1756 	/*
1757 	 * Tell the chip to detect and strip VLAN tag info from
1758 	 * received frames. The tag will be provided in the extsts
1759 	 * field in the RX descriptors.
1760 	 */
1761 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1762 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1763 
1764 	/* Set TX configuration */
1765 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1766 
1767 	/*
1768 	 * Enable TX IPv4 checksumming on a per-packet basis.
1769 	 */
1770 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1771 
1772 	/*
1773 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1774 	 * dictated by the code in the frame encapsulation routine.
1775 	 */
1776 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1777 
1778 	/* Set full/half duplex mode. */
1779 	if (sc->nge_tbi) {
1780 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1781 		    == IFM_FDX) {
1782 			NGE_SETBIT(sc, NGE_TX_CFG,
1783 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1784 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1785 		} else {
1786 			NGE_CLRBIT(sc, NGE_TX_CFG,
1787 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1788 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1789 		}
1790 	} else {
1791 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1792 			NGE_SETBIT(sc, NGE_TX_CFG,
1793 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1794 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1795 		} else {
1796 			NGE_CLRBIT(sc, NGE_TX_CFG,
1797 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1798 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * Enable the delivery of PHY interrupts based on
1804 	 * link/speed/duplex status changes. Also enable the
1805 	 * extsts field in the DMA descriptors (needed for
1806 	 * TCP/IP checksum offload on transmit).
1807 	 */
1808 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1809 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1810 
1811 	/*
1812 	 * Configure interrupt holdoff (moderation). We can
1813 	 * have the chip delay interrupt delivery for a certain
1814 	 * period. Units are in 100us, and the max setting
1815 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1816 	 */
1817 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1818 
1819 	/*
1820 	 * Enable interrupts.
1821 	 */
1822 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1823 #ifdef DEVICE_POLLING
1824 	/*
1825 	 * ... only enable interrupts if we are not polling, make sure
1826 	 * they are off otherwise.
1827 	 */
1828 	if (ifp->if_flags & IFF_POLLING)
1829 		CSR_WRITE_4(sc, NGE_IER, 0);
1830 	else
1831 #endif /* DEVICE_POLLING */
1832 	CSR_WRITE_4(sc, NGE_IER, 1);
1833 
1834 	/* Enable receiver and transmitter. */
1835 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1836 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1837 
1838 	nge_ifmedia_upd(ifp);
1839 
1840 	ifp->if_flags |= IFF_RUNNING;
1841 	ifp->if_flags &= ~IFF_OACTIVE;
1842 
1843 	splx(s);
1844 }
1845 
1846 /*
1847  * Set media options.
1848  */
1849 static int
1850 nge_ifmedia_upd(struct ifnet *ifp)
1851 {
1852 	struct nge_softc *sc = ifp->if_softc;
1853 	struct mii_data *mii;
1854 
1855 	if (sc->nge_tbi) {
1856 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1857 		     == IFM_AUTO) {
1858 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1859 				CSR_READ_4(sc, NGE_TBI_ANAR)
1860 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1861 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1862 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1863 				| NGE_TBIBMCR_RESTART_ANEG);
1864 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1865 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1866 			    & IFM_GMASK) == IFM_FDX) {
1867 			NGE_SETBIT(sc, NGE_TX_CFG,
1868 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1869 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1870 
1871 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1872 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1873 		} else {
1874 			NGE_CLRBIT(sc, NGE_TX_CFG,
1875 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1876 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1877 
1878 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1879 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1880 		}
1881 
1882 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1883 			    & ~NGE_GPIO_GP3_OUT);
1884 	} else {
1885 		mii = device_get_softc(sc->nge_miibus);
1886 		sc->nge_link = 0;
1887 		if (mii->mii_instance) {
1888 			struct mii_softc	*miisc;
1889 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1890 			    miisc = LIST_NEXT(miisc, mii_list))
1891 				mii_phy_reset(miisc);
1892 		}
1893 		mii_mediachg(mii);
1894 	}
1895 
1896 	return(0);
1897 }
1898 
1899 /*
1900  * Report current media status.
1901  */
1902 static void
1903 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1904 {
1905 	struct nge_softc *sc = ifp->if_softc;
1906 	struct mii_data *mii;
1907 
1908 	if (sc->nge_tbi) {
1909 		ifmr->ifm_status = IFM_AVALID;
1910 		ifmr->ifm_active = IFM_ETHER;
1911 
1912 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1913 			ifmr->ifm_status |= IFM_ACTIVE;
1914 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1915 			ifmr->ifm_active |= IFM_LOOP;
1916 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1917 			ifmr->ifm_active |= IFM_NONE;
1918 			ifmr->ifm_status = 0;
1919 			return;
1920 		}
1921 		ifmr->ifm_active |= IFM_1000_SX;
1922 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1923 		    == IFM_AUTO) {
1924 			ifmr->ifm_active |= IFM_AUTO;
1925 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1926 			    & NGE_TBIANAR_FDX) {
1927 				ifmr->ifm_active |= IFM_FDX;
1928 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1929 				  & NGE_TBIANAR_HDX) {
1930 				ifmr->ifm_active |= IFM_HDX;
1931 			}
1932 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1933 			== IFM_FDX)
1934 			ifmr->ifm_active |= IFM_FDX;
1935 		else
1936 			ifmr->ifm_active |= IFM_HDX;
1937 
1938 	} else {
1939 		mii = device_get_softc(sc->nge_miibus);
1940 		mii_pollstat(mii);
1941 		ifmr->ifm_active = mii->mii_media_active;
1942 		ifmr->ifm_status = mii->mii_media_status;
1943 	}
1944 }
1945 
1946 static int
1947 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1948 {
1949 	struct nge_softc *sc = ifp->if_softc;
1950 	struct ifreq *ifr = (struct ifreq *) data;
1951 	struct mii_data *mii;
1952 	int error = 0, s;
1953 
1954 	s = splimp();
1955 
1956 	switch(command) {
1957 	case SIOCSIFMTU:
1958 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1959 			error = EINVAL;
1960 		} else {
1961 			ifp->if_mtu = ifr->ifr_mtu;
1962 			/*
1963 			 * Workaround: if the MTU is larger than
1964 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1965 			 * TX checksum offloading.
1966 			 */
1967 			if (ifr->ifr_mtu >= 8152)
1968 				ifp->if_hwassist = 0;
1969 			else
1970 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1971 		}
1972 		break;
1973 	case SIOCSIFFLAGS:
1974 		if (ifp->if_flags & IFF_UP) {
1975 			if (ifp->if_flags & IFF_RUNNING &&
1976 			    ifp->if_flags & IFF_PROMISC &&
1977 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1978 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1979 				    NGE_RXFILTCTL_ALLPHYS|
1980 				    NGE_RXFILTCTL_ALLMULTI);
1981 			} else if (ifp->if_flags & IFF_RUNNING &&
1982 			    !(ifp->if_flags & IFF_PROMISC) &&
1983 			    sc->nge_if_flags & IFF_PROMISC) {
1984 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1985 				    NGE_RXFILTCTL_ALLPHYS);
1986 				if (!(ifp->if_flags & IFF_ALLMULTI))
1987 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1988 					    NGE_RXFILTCTL_ALLMULTI);
1989 			} else {
1990 				ifp->if_flags &= ~IFF_RUNNING;
1991 				nge_init(sc);
1992 			}
1993 		} else {
1994 			if (ifp->if_flags & IFF_RUNNING)
1995 				nge_stop(sc);
1996 		}
1997 		sc->nge_if_flags = ifp->if_flags;
1998 		error = 0;
1999 		break;
2000 	case SIOCADDMULTI:
2001 	case SIOCDELMULTI:
2002 		nge_setmulti(sc);
2003 		error = 0;
2004 		break;
2005 	case SIOCGIFMEDIA:
2006 	case SIOCSIFMEDIA:
2007 		if (sc->nge_tbi) {
2008 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2009 					      command);
2010 		} else {
2011 			mii = device_get_softc(sc->nge_miibus);
2012 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2013 					      command);
2014 		}
2015 		break;
2016 	default:
2017 		error = ether_ioctl(ifp, command, data);
2018 		break;
2019 	}
2020 
2021 	splx(s);
2022 
2023 	return(error);
2024 }
2025 
2026 static void
2027 nge_watchdog(struct ifnet *ifp)
2028 {
2029 	struct nge_softc *sc = ifp->if_softc;
2030 
2031 	ifp->if_oerrors++;
2032 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2033 
2034 	nge_stop(sc);
2035 	nge_reset(sc);
2036 	ifp->if_flags &= ~IFF_RUNNING;
2037 	nge_init(sc);
2038 
2039 	if (!ifq_is_empty(&ifp->if_snd))
2040 		nge_start(ifp);
2041 }
2042 
2043 /*
2044  * Stop the adapter and free any mbufs allocated to the
2045  * RX and TX lists.
2046  */
2047 static void
2048 nge_stop(struct nge_softc *sc)
2049 {
2050 	struct ifnet *ifp = &sc->arpcom.ac_if;
2051 	struct ifmedia_entry *ifm;
2052 	struct mii_data *mii;
2053 	int i, itmp, mtmp;
2054 
2055 	ifp->if_timer = 0;
2056 	if (sc->nge_tbi)
2057 		mii = NULL;
2058 	else
2059 		mii = device_get_softc(sc->nge_miibus);
2060 
2061 	callout_stop(&sc->nge_stat_timer);
2062 	CSR_WRITE_4(sc, NGE_IER, 0);
2063 	CSR_WRITE_4(sc, NGE_IMR, 0);
2064 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2065 	DELAY(1000);
2066 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2067 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2068 
2069 	/*
2070 	 * Isolate/power down the PHY, but leave the media selection
2071 	 * unchanged so that things will be put back to normal when
2072 	 * we bring the interface back up.
2073 	 */
2074 	itmp = ifp->if_flags;
2075 	ifp->if_flags |= IFF_UP;
2076 
2077 	if (sc->nge_tbi)
2078 		ifm = sc->nge_ifmedia.ifm_cur;
2079 	else
2080 		ifm = mii->mii_media.ifm_cur;
2081 
2082 	mtmp = ifm->ifm_media;
2083 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2084 
2085 	if (!sc->nge_tbi)
2086 		mii_mediachg(mii);
2087 	ifm->ifm_media = mtmp;
2088 	ifp->if_flags = itmp;
2089 
2090 	sc->nge_link = 0;
2091 
2092 	/*
2093 	 * Free data in the RX lists.
2094 	 */
2095 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2096 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2097 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2098 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2099 		}
2100 	}
2101 	bzero(&sc->nge_ldata->nge_rx_list,
2102 		sizeof(sc->nge_ldata->nge_rx_list));
2103 
2104 	/*
2105 	 * Free the TX list buffers.
2106 	 */
2107 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2108 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2109 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2110 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2111 		}
2112 	}
2113 
2114 	bzero(&sc->nge_ldata->nge_tx_list,
2115 		sizeof(sc->nge_ldata->nge_tx_list));
2116 
2117 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2118 }
2119 
2120 /*
2121  * Stop all chip I/O so that the kernel's probe routines don't
2122  * get confused by errant DMAs when rebooting.
2123  */
2124 static void
2125 nge_shutdown(device_t dev)
2126 {
2127 	struct nge_softc *sc = device_get_softc(dev);
2128 
2129 	nge_reset(sc);
2130 	nge_stop(sc);
2131 }
2132