xref: /dflybsd-src/sys/dev/netif/nfe/if_nfe.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*	$OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $	*/
2 /*	$DragonFly: src/sys/dev/netif/nfe/if_nfe.c,v 1.4 2006/10/25 20:55:58 dillon Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Sepherosa Ziehau <sepherosa@gmail.com> and
9  * Matthew Dillon <dillon@apollo.backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
41  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55 
56 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
57 
58 #include "opt_polling.h"
59 
60 #include <sys/param.h>
61 #include <sys/endian.h>
62 #include <sys/kernel.h>
63 #include <sys/bus.h>
64 #include <sys/proc.h>
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70 
71 #include <net/ethernet.h>
72 #include <net/if.h>
73 #include <net/bpf.h>
74 #include <net/if_arp.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/ifq_var.h>
78 #include <net/if_types.h>
79 #include <net/if_var.h>
80 #include <net/vlan/if_vlan_var.h>
81 
82 #include <bus/pci/pcireg.h>
83 #include <bus/pci/pcivar.h>
84 #include <bus/pci/pcidevs.h>
85 
86 #include <dev/netif/mii_layer/mii.h>
87 #include <dev/netif/mii_layer/miivar.h>
88 
89 #include "miibus_if.h"
90 
91 #include "if_nfereg.h"
92 #include "if_nfevar.h"
93 
94 static int	nfe_probe(device_t);
95 static int	nfe_attach(device_t);
96 static int	nfe_detach(device_t);
97 static void	nfe_shutdown(device_t);
98 static int	nfe_resume(device_t);
99 static int	nfe_suspend(device_t);
100 
101 static int	nfe_miibus_readreg(device_t, int, int);
102 static void	nfe_miibus_writereg(device_t, int, int, int);
103 static void	nfe_miibus_statchg(device_t);
104 
105 #ifdef DEVICE_POLLING
106 static void	nfe_poll(struct ifnet *, enum poll_cmd, int);
107 #endif
108 static void	nfe_intr(void *);
109 static int	nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
110 static void	nfe_rxeof(struct nfe_softc *);
111 static void	nfe_txeof(struct nfe_softc *);
112 static int	nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
113 			  struct mbuf *);
114 static void	nfe_start(struct ifnet *);
115 static void	nfe_watchdog(struct ifnet *);
116 static void	nfe_init(void *);
117 static void	nfe_stop(struct nfe_softc *);
118 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
119 static void	nfe_jfree(void *);
120 static void	nfe_jref(void *);
121 static int	nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
122 static void	nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
123 static int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
124 static void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
125 static int	nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
126 static void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
127 static int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
128 static void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
129 static int	nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
130 static void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
131 static int	nfe_ifmedia_upd(struct ifnet *);
132 static void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133 static void	nfe_setmulti(struct nfe_softc *);
134 static void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
135 static void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
136 static void	nfe_tick(void *);
137 static void	nfe_ring_dma_addr(void *, bus_dma_segment_t *, int, int);
138 static void	nfe_buf_dma_addr(void *, bus_dma_segment_t *, int, bus_size_t,
139 				 int);
140 static void	nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
141 				     int, bus_addr_t);
142 static void	nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
143 				     int);
144 static int	nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
145 			       int);
146 static int	nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
147 				 int);
148 
149 #define NFE_DEBUG
150 #ifdef NFE_DEBUG
151 
152 static int	nfe_debug = 0;
153 
154 SYSCTL_NODE(_hw, OID_AUTO, nfe, CTLFLAG_RD, 0, "nVidia GigE parameters");
155 SYSCTL_INT(_hw_nfe, OID_AUTO, debug, CTLFLAG_RW, &nfe_debug, 0,
156 	   "control debugging printfs");
157 
158 #define DPRINTF(sc, fmt, ...) do {		\
159 	if (nfe_debug) {			\
160 		if_printf(&(sc)->arpcom.ac_if,	\
161 			  fmt, __VA_ARGS__);	\
162 	}					\
163 } while (0)
164 
165 #define DPRINTFN(sc, lv, fmt, ...) do {		\
166 	if (nfe_debug >= (lv)) {		\
167 		if_printf(&(sc)->arpcom.ac_if,	\
168 			  fmt, __VA_ARGS__);	\
169 	}					\
170 } while (0)
171 
172 #else	/* !NFE_DEBUG */
173 
174 #define DPRINTF(sc, fmt, ...)
175 #define DPRINTFN(sc, lv, fmt, ...)
176 
177 #endif	/* NFE_DEBUG */
178 
179 struct nfe_dma_ctx {
180 	int			nsegs;
181 	bus_dma_segment_t	*segs;
182 };
183 
184 static const struct nfe_dev {
185 	uint16_t	vid;
186 	uint16_t	did;
187 	const char	*desc;
188 } nfe_devices[] = {
189 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
190 	  "NVIDIA nForce Gigabit Ethernet" },
191 
192 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
193 	  "NVIDIA nForce2 Gigabit Ethernet" },
194 
195 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
196 	  "NVIDIA nForce3 Gigabit Ethernet" },
197 
198 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
199 	  "NVIDIA nForce3 Gigabit Ethernet" },
200 
201 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
202 	  "NVIDIA nForce3 Gigabit Ethernet" },
203 
204 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
205 	  "NVIDIA nForce3 Gigabit Ethernet" },
206 
207 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
208 	  "NVIDIA nForce3 Gigabit Ethernet" },
209 
210 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
211 	  "NVIDIA CK804 Gigabit Ethernet" },
212 
213 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
214 	  "NVIDIA CK804 Gigabit Ethernet" },
215 
216 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
217 	  "NVIDIA MCP04 Gigabit Ethernet" },
218 
219 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
220 	  "NVIDIA MCP04 Gigabit Ethernet" },
221 
222 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
223 	  "NVIDIA MCP51 Gigabit Ethernet" },
224 
225 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
226 	  "NVIDIA MCP51 Gigabit Ethernet" },
227 
228 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
229 	  "NVIDIA MCP55 Gigabit Ethernet" },
230 
231 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
232 	  "NVIDIA MCP55 Gigabit Ethernet" },
233 
234 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
235 	  "NVIDIA MCP61 Gigabit Ethernet" },
236 
237 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
238 	  "NVIDIA MCP61 Gigabit Ethernet" },
239 
240 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
241 	  "NVIDIA MCP61 Gigabit Ethernet" },
242 
243 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
244 	  "NVIDIA MCP61 Gigabit Ethernet" },
245 
246 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
247 	  "NVIDIA MCP65 Gigabit Ethernet" },
248 
249 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
250 	  "NVIDIA MCP65 Gigabit Ethernet" },
251 
252 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
253 	  "NVIDIA MCP65 Gigabit Ethernet" },
254 
255 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
256 	  "NVIDIA MCP65 Gigabit Ethernet" }
257 };
258 
259 static device_method_t nfe_methods[] = {
260 	/* Device interface */
261 	DEVMETHOD(device_probe,		nfe_probe),
262 	DEVMETHOD(device_attach,	nfe_attach),
263 	DEVMETHOD(device_detach,	nfe_detach),
264 	DEVMETHOD(device_suspend,	nfe_suspend),
265 	DEVMETHOD(device_resume,	nfe_resume),
266 	DEVMETHOD(device_shutdown,	nfe_shutdown),
267 
268 	/* Bus interface */
269 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
270 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
271 
272 	/* MII interface */
273 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
274 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
275 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
276 
277 	{ 0, 0 }
278 };
279 
280 static driver_t nfe_driver = {
281 	"nfe",
282 	nfe_methods,
283 	sizeof(struct nfe_softc)
284 };
285 
286 static devclass_t	nfe_devclass;
287 
288 DECLARE_DUMMY_MODULE(if_nfe);
289 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
290 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, 0, 0);
291 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
292 
293 static int
294 nfe_probe(device_t dev)
295 {
296 	const struct nfe_dev *n;
297 	uint16_t vid, did;
298 
299 	vid = pci_get_vendor(dev);
300 	did = pci_get_device(dev);
301 	for (n = nfe_devices; n->desc != NULL; ++n) {
302 		if (vid == n->vid && did == n->did) {
303 			struct nfe_softc *sc = device_get_softc(dev);
304 
305 			switch (did) {
306 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
307 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
308 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
309 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
310 				sc->sc_flags = NFE_JUMBO_SUP |
311 					       NFE_HW_CSUM;
312 				break;
313 			case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
314 			case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
315 			case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
316 			case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
317 			case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
318 			case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
319 				sc->sc_flags = NFE_40BIT_ADDR;
320 				break;
321 			case PCI_PRODUCT_NVIDIA_CK804_LAN1:
322 			case PCI_PRODUCT_NVIDIA_CK804_LAN2:
323 			case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
324 			case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
325 			case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
326 			case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
327 			case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
328 			case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
329 				sc->sc_flags = NFE_JUMBO_SUP |
330 					       NFE_40BIT_ADDR |
331 					       NFE_HW_CSUM;
332 				break;
333 			case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
334 			case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
335 				sc->sc_flags = NFE_JUMBO_SUP |
336 					       NFE_40BIT_ADDR |
337 					       NFE_HW_CSUM |
338 					       NFE_HW_VLAN;
339 				break;
340 			}
341 
342 			/* Enable jumbo frames for adapters that support it */
343 			if (sc->sc_flags & NFE_JUMBO_SUP)
344 				sc->sc_flags |= NFE_USE_JUMBO;
345 
346 			device_set_desc(dev, n->desc);
347 			return 0;
348 		}
349 	}
350 	return ENXIO;
351 }
352 
353 static int
354 nfe_attach(device_t dev)
355 {
356 	struct nfe_softc *sc = device_get_softc(dev);
357 	struct ifnet *ifp = &sc->arpcom.ac_if;
358 	uint8_t eaddr[ETHER_ADDR_LEN];
359 	int error;
360 
361 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
362 	lwkt_serialize_init(&sc->sc_jbuf_serializer);
363 
364 	sc->sc_mem_rid = PCIR_BAR(0);
365 
366 #ifndef BURN_BRIDGES
367 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
368 		uint32_t mem, irq;
369 
370 		mem = pci_read_config(dev, sc->sc_mem_rid, 4);
371 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
372 
373 		device_printf(dev, "chip is in D%d power mode "
374 		    "-- setting to D0\n", pci_get_powerstate(dev));
375 
376 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
377 
378 		pci_write_config(dev, sc->sc_mem_rid, mem, 4);
379 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
380 	}
381 #endif	/* !BURN_BRIDGE */
382 
383 	/* Enable bus mastering */
384 	pci_enable_busmaster(dev);
385 
386 	/* Allocate IO memory */
387 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
388 						&sc->sc_mem_rid, RF_ACTIVE);
389 	if (sc->sc_mem_res == NULL) {
390 		device_printf(dev, "cound not allocate io memory\n");
391 		return ENXIO;
392 	}
393 	sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
394 	sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
395 
396 	/* Allocate IRQ */
397 	sc->sc_irq_rid = 0;
398 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
399 						&sc->sc_irq_rid,
400 						RF_SHAREABLE | RF_ACTIVE);
401 	if (sc->sc_irq_res == NULL) {
402 		device_printf(dev, "could not allocate irq\n");
403 		error = ENXIO;
404 		goto fail;
405 	}
406 
407 	nfe_get_macaddr(sc, eaddr);
408 
409 	/*
410 	 * Allocate Tx and Rx rings.
411 	 */
412 	error = nfe_alloc_tx_ring(sc, &sc->txq);
413 	if (error) {
414 		device_printf(dev, "could not allocate Tx ring\n");
415 		goto fail;
416 	}
417 
418 	error = nfe_alloc_rx_ring(sc, &sc->rxq);
419 	if (error) {
420 		device_printf(dev, "could not allocate Rx ring\n");
421 		goto fail;
422 	}
423 
424 	error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
425 			      nfe_ifmedia_sts);
426 	if (error) {
427 		device_printf(dev, "MII without any phy\n");
428 		goto fail;
429 	}
430 
431 	ifp->if_softc = sc;
432 	ifp->if_mtu = ETHERMTU;
433 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
434 	ifp->if_ioctl = nfe_ioctl;
435 	ifp->if_start = nfe_start;
436 #ifdef DEVICE_POLLING
437 	ifp->if_poll = nfe_poll;
438 #endif
439 	ifp->if_watchdog = nfe_watchdog;
440 	ifp->if_init = nfe_init;
441 	ifq_set_maxlen(&ifp->if_snd, NFE_IFQ_MAXLEN);
442 	ifq_set_ready(&ifp->if_snd);
443 
444 	ifp->if_capabilities = IFCAP_VLAN_MTU;
445 
446 #if 0
447 	if (sc->sc_flags & NFE_USE_JUMBO)
448 		ifp->if_hardmtu = NFE_JUMBO_MTU;
449 #endif
450 
451 	if (sc->sc_flags & NFE_HW_VLAN)
452 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
453 
454 #ifdef NFE_CSUM
455 	if (sc->sc_flags & NFE_HW_CSUM) {
456 #if 0
457 		ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
458 		    IFCAP_CSUM_UDPv4;
459 #else
460 		ifp->if_capabilities = IFCAP_HWCSUM;
461 		ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
462 #endif
463 	}
464 #endif
465 	ifp->if_capenable = ifp->if_capabilities;
466 
467 	callout_init(&sc->sc_tick_ch);
468 
469 	ether_ifattach(ifp, eaddr, NULL);
470 
471 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
472 			       &sc->sc_ih, ifp->if_serializer);
473 	if (error) {
474 		device_printf(dev, "could not setup intr\n");
475 		ether_ifdetach(ifp);
476 		goto fail;
477 	}
478 
479 	return 0;
480 fail:
481 	nfe_detach(dev);
482 	return error;
483 }
484 
485 static int
486 nfe_detach(device_t dev)
487 {
488 	struct nfe_softc *sc = device_get_softc(dev);
489 
490 	if (device_is_attached(dev)) {
491 		struct ifnet *ifp = &sc->arpcom.ac_if;
492 
493 		lwkt_serialize_enter(ifp->if_serializer);
494 		nfe_stop(sc);
495 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
496 		lwkt_serialize_exit(ifp->if_serializer);
497 
498 		ether_ifdetach(ifp);
499 	}
500 
501 	if (sc->sc_miibus != NULL)
502 		device_delete_child(dev, sc->sc_miibus);
503 	bus_generic_detach(dev);
504 
505 	if (sc->sc_irq_res != NULL) {
506 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
507 				     sc->sc_irq_res);
508 	}
509 
510 	if (sc->sc_mem_res != NULL) {
511 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
512 				     sc->sc_mem_res);
513 	}
514 
515 	nfe_free_tx_ring(sc, &sc->txq);
516 	nfe_free_rx_ring(sc, &sc->rxq);
517 
518 	return 0;
519 }
520 
521 static void
522 nfe_shutdown(device_t dev)
523 {
524 	struct nfe_softc *sc = device_get_softc(dev);
525 	struct ifnet *ifp = &sc->arpcom.ac_if;
526 
527 	lwkt_serialize_enter(ifp->if_serializer);
528 	nfe_stop(sc);
529 	lwkt_serialize_exit(ifp->if_serializer);
530 }
531 
532 static int
533 nfe_suspend(device_t dev)
534 {
535 	struct nfe_softc *sc = device_get_softc(dev);
536 	struct ifnet *ifp = &sc->arpcom.ac_if;
537 
538 	lwkt_serialize_enter(ifp->if_serializer);
539 	nfe_stop(sc);
540 	lwkt_serialize_exit(ifp->if_serializer);
541 
542 	return 0;
543 }
544 
545 static int
546 nfe_resume(device_t dev)
547 {
548 	struct nfe_softc *sc = device_get_softc(dev);
549 	struct ifnet *ifp = &sc->arpcom.ac_if;
550 
551 	lwkt_serialize_enter(ifp->if_serializer);
552 	if (ifp->if_flags & IFF_UP) {
553 		nfe_init(ifp);
554 		if (ifp->if_flags & IFF_RUNNING)
555 			ifp->if_start(ifp);
556 	}
557 	lwkt_serialize_exit(ifp->if_serializer);
558 
559 	return 0;
560 }
561 
562 static void
563 nfe_miibus_statchg(device_t dev)
564 {
565 	struct nfe_softc *sc = device_get_softc(dev);
566 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
567 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
568 
569 	phy = NFE_READ(sc, NFE_PHY_IFACE);
570 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
571 
572 	seed = NFE_READ(sc, NFE_RNDSEED);
573 	seed &= ~NFE_SEED_MASK;
574 
575 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
576 		phy  |= NFE_PHY_HDX;	/* half-duplex */
577 		misc |= NFE_MISC1_HDX;
578 	}
579 
580 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
581 	case IFM_1000_T:	/* full-duplex only */
582 		link |= NFE_MEDIA_1000T;
583 		seed |= NFE_SEED_1000T;
584 		phy  |= NFE_PHY_1000T;
585 		break;
586 	case IFM_100_TX:
587 		link |= NFE_MEDIA_100TX;
588 		seed |= NFE_SEED_100TX;
589 		phy  |= NFE_PHY_100TX;
590 		break;
591 	case IFM_10_T:
592 		link |= NFE_MEDIA_10T;
593 		seed |= NFE_SEED_10T;
594 		break;
595 	}
596 
597 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
598 
599 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
600 	NFE_WRITE(sc, NFE_MISC1, misc);
601 	NFE_WRITE(sc, NFE_LINKSPEED, link);
602 }
603 
604 static int
605 nfe_miibus_readreg(device_t dev, int phy, int reg)
606 {
607 	struct nfe_softc *sc = device_get_softc(dev);
608 	uint32_t val;
609 	int ntries;
610 
611 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
612 
613 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
614 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
615 		DELAY(100);
616 	}
617 
618 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
619 
620 	for (ntries = 0; ntries < 1000; ntries++) {
621 		DELAY(100);
622 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
623 			break;
624 	}
625 	if (ntries == 1000) {
626 		DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
627 		return 0;
628 	}
629 
630 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
631 		DPRINTFN(sc, 2, "could not read PHY %s\n", "");
632 		return 0;
633 	}
634 
635 	val = NFE_READ(sc, NFE_PHY_DATA);
636 	if (val != 0xffffffff && val != 0)
637 		sc->mii_phyaddr = phy;
638 
639 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
640 
641 	return val;
642 }
643 
644 static void
645 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
646 {
647 	struct nfe_softc *sc = device_get_softc(dev);
648 	uint32_t ctl;
649 	int ntries;
650 
651 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
652 
653 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
654 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
655 		DELAY(100);
656 	}
657 
658 	NFE_WRITE(sc, NFE_PHY_DATA, val);
659 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
660 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
661 
662 	for (ntries = 0; ntries < 1000; ntries++) {
663 		DELAY(100);
664 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
665 			break;
666 	}
667 
668 #ifdef NFE_DEBUG
669 	if (ntries == 1000)
670 		DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
671 #endif
672 }
673 
674 #ifdef DEVICE_POLLING
675 
676 static void
677 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
678 {
679 	struct nfe_softc *sc = ifp->if_softc;
680 
681 	switch(cmd) {
682 	case POLL_REGISTER:
683 		/* Disable interrupts */
684 		NFE_WRITE(sc, NFE_IRQ_MASK, 0);
685 		break;
686 	case POLL_DEREGISTER:
687 		/* enable interrupts */
688 		NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
689 		break;
690 	case POLL_AND_CHECK_STATUS:
691 		/* fall through */
692 	case POLL_ONLY:
693 		if (ifp->if_flags & IFF_RUNNING) {
694 			nfe_rxeof(sc);
695 			nfe_txeof(sc);
696 		}
697 		break;
698 	}
699 }
700 
701 #endif
702 
703 static void
704 nfe_intr(void *arg)
705 {
706 	struct nfe_softc *sc = arg;
707 	struct ifnet *ifp = &sc->arpcom.ac_if;
708 	uint32_t r;
709 
710 	r = NFE_READ(sc, NFE_IRQ_STATUS);
711 	if (r == 0)
712 		return;	/* not for us */
713 	NFE_WRITE(sc, NFE_IRQ_STATUS, r);
714 
715 	DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
716 
717 	if (r & NFE_IRQ_LINK) {
718 		NFE_READ(sc, NFE_PHY_STATUS);
719 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
720 		DPRINTF(sc, "link state changed %s\n", "");
721 	}
722 
723 	if (ifp->if_flags & IFF_RUNNING) {
724 		/* check Rx ring */
725 		nfe_rxeof(sc);
726 
727 		/* check Tx ring */
728 		nfe_txeof(sc);
729 	}
730 }
731 
732 static int
733 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
734 {
735 	struct nfe_softc *sc = ifp->if_softc;
736 	struct ifreq *ifr = (struct ifreq *)data;
737 	struct mii_data *mii;
738 	int error = 0, mask;
739 
740 	switch (cmd) {
741 	case SIOCSIFMTU:
742 		/* XXX NFE_USE_JUMBO should be set here */
743 		break;
744 	case SIOCSIFFLAGS:
745 		if (ifp->if_flags & IFF_UP) {
746 			/*
747 			 * If only the PROMISC or ALLMULTI flag changes, then
748 			 * don't do a full re-init of the chip, just update
749 			 * the Rx filter.
750 			 */
751 			if ((ifp->if_flags & IFF_RUNNING) &&
752 			    ((ifp->if_flags ^ sc->sc_if_flags) &
753 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
754 				nfe_setmulti(sc);
755 			} else {
756 				if (!(ifp->if_flags & IFF_RUNNING))
757 					nfe_init(sc);
758 			}
759 		} else {
760 			if (ifp->if_flags & IFF_RUNNING)
761 				nfe_stop(sc);
762 		}
763 		sc->sc_if_flags = ifp->if_flags;
764 		break;
765 	case SIOCADDMULTI:
766 	case SIOCDELMULTI:
767 		if (ifp->if_flags & IFF_RUNNING)
768 			nfe_setmulti(sc);
769 		break;
770 	case SIOCSIFMEDIA:
771 	case SIOCGIFMEDIA:
772 		mii = device_get_softc(sc->sc_miibus);
773 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
774 		break;
775         case SIOCSIFCAP:
776 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
777 		if (mask & IFCAP_HWCSUM) {
778 			if (IFCAP_HWCSUM & ifp->if_capenable)
779 				ifp->if_capenable &= ~IFCAP_HWCSUM;
780 			else
781 				ifp->if_capenable |= IFCAP_HWCSUM;
782 		}
783 		break;
784 	default:
785 		error = ether_ioctl(ifp, cmd, data);
786 		break;
787 	}
788 	return error;
789 }
790 
791 static void
792 nfe_rxeof(struct nfe_softc *sc)
793 {
794 	struct ifnet *ifp = &sc->arpcom.ac_if;
795 	struct nfe_rx_ring *ring = &sc->rxq;
796 	int reap;
797 
798 	reap = 0;
799 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_POSTREAD);
800 
801 	for (;;) {
802 		struct nfe_rx_data *data = &ring->data[ring->cur];
803 		struct mbuf *m;
804 		uint16_t flags;
805 		int len, error;
806 
807 		if (sc->sc_flags & NFE_40BIT_ADDR) {
808 			struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
809 
810 			flags = le16toh(desc64->flags);
811 			len = le16toh(desc64->length) & 0x3fff;
812 		} else {
813 			struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
814 
815 			flags = le16toh(desc32->flags);
816 			len = le16toh(desc32->length) & 0x3fff;
817 		}
818 
819 		if (flags & NFE_RX_READY)
820 			break;
821 
822 		reap = 1;
823 
824 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
825 			if (!(flags & NFE_RX_VALID_V1))
826 				goto skip;
827 
828 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
829 				flags &= ~NFE_RX_ERROR;
830 				len--;	/* fix buffer length */
831 			}
832 		} else {
833 			if (!(flags & NFE_RX_VALID_V2))
834 				goto skip;
835 
836 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
837 				flags &= ~NFE_RX_ERROR;
838 				len--;	/* fix buffer length */
839 			}
840 		}
841 
842 		if (flags & NFE_RX_ERROR) {
843 			ifp->if_ierrors++;
844 			goto skip;
845 		}
846 
847 		m = data->m;
848 
849 		if (sc->sc_flags & NFE_USE_JUMBO)
850 			error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
851 		else
852 			error = nfe_newbuf_std(sc, ring, ring->cur, 0);
853 		if (error) {
854 			ifp->if_ierrors++;
855 			goto skip;
856 		}
857 
858 		/* finalize mbuf */
859 		m->m_pkthdr.len = m->m_len = len;
860 		m->m_pkthdr.rcvif = ifp;
861 
862 #ifdef notyet
863 		if (sc->sc_flags & NFE_HW_CSUM) {
864 			if (flags & NFE_RX_IP_CSUMOK)
865 				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
866 			if (flags & NFE_RX_UDP_CSUMOK)
867 				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
868 			if (flags & NFE_RX_TCP_CSUMOK)
869 				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
870 		}
871 #elif defined(NFE_CSUM)
872 		if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
873 			m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
874 #endif
875 
876 		ifp->if_ipackets++;
877 		ifp->if_input(ifp, m);
878 skip:
879 		nfe_set_ready_rxdesc(sc, ring, ring->cur);
880 		sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
881 	}
882 
883 	if (reap)
884 		bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
885 }
886 
887 static void
888 nfe_txeof(struct nfe_softc *sc)
889 {
890 	struct ifnet *ifp = &sc->arpcom.ac_if;
891 	struct nfe_tx_ring *ring = &sc->txq;
892 	struct nfe_tx_data *data = NULL;
893 
894 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_POSTREAD);
895 	while (ring->next != ring->cur) {
896 		uint16_t flags;
897 
898 		if (sc->sc_flags & NFE_40BIT_ADDR)
899 			flags = le16toh(ring->desc64[ring->next].flags);
900 		else
901 			flags = le16toh(ring->desc32[ring->next].flags);
902 
903 		if (flags & NFE_TX_VALID)
904 			break;
905 
906 		data = &ring->data[ring->next];
907 
908 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
909 			if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
910 				goto skip;
911 
912 			if ((flags & NFE_TX_ERROR_V1) != 0) {
913 				if_printf(ifp, "tx v1 error 0x%4b\n", flags,
914 					  NFE_V1_TXERR);
915 				ifp->if_oerrors++;
916 			} else {
917 				ifp->if_opackets++;
918 			}
919 		} else {
920 			if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
921 				goto skip;
922 
923 			if ((flags & NFE_TX_ERROR_V2) != 0) {
924 				if_printf(ifp, "tx v2 error 0x%4b\n", flags,
925 					  NFE_V2_TXERR);
926 				ifp->if_oerrors++;
927 			} else {
928 				ifp->if_opackets++;
929 			}
930 		}
931 
932 		if (data->m == NULL) {	/* should not get there */
933 			if_printf(ifp,
934 				  "last fragment bit w/o associated mbuf!\n");
935 			goto skip;
936 		}
937 
938 		/* last fragment of the mbuf chain transmitted */
939 		bus_dmamap_sync(ring->data_tag, data->map,
940 				BUS_DMASYNC_POSTWRITE);
941 		bus_dmamap_unload(ring->data_tag, data->map);
942 		m_freem(data->m);
943 		data->m = NULL;
944 
945 		ifp->if_timer = 0;
946 skip:
947 		ring->queued--;
948 		KKASSERT(ring->queued >= 0);
949 		ring->next = (ring->next + 1) % NFE_TX_RING_COUNT;
950 	}
951 
952 	if (data != NULL) {	/* at least one slot freed */
953 		ifp->if_flags &= ~IFF_OACTIVE;
954 		ifp->if_start(ifp);
955 	}
956 }
957 
958 static int
959 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
960 {
961 	struct nfe_dma_ctx ctx;
962 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
963 	struct nfe_tx_data *data, *data_map;
964 	bus_dmamap_t map;
965 	struct nfe_desc64 *desc64 = NULL;
966 	struct nfe_desc32 *desc32 = NULL;
967 	uint16_t flags = 0;
968 	uint32_t vtag = 0;
969 	int error, i, j;
970 
971 	data = &ring->data[ring->cur];
972 	map = data->map;
973 	data_map = data;	/* Remember who owns the DMA map */
974 
975 	ctx.nsegs = NFE_MAX_SCATTER;
976 	ctx.segs = segs;
977 	error = bus_dmamap_load_mbuf(ring->data_tag, map, m0,
978 				     nfe_buf_dma_addr, &ctx, BUS_DMA_NOWAIT);
979 	if (error && error != EFBIG) {
980 		if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
981 		goto back;
982 	}
983 
984 	if (error) {	/* error == EFBIG */
985 		struct mbuf *m_new;
986 
987 		m_new = m_defrag(m0, MB_DONTWAIT);
988 		if (m_new == NULL) {
989 			if_printf(&sc->arpcom.ac_if,
990 				  "could not defrag TX mbuf\n");
991 			error = ENOBUFS;
992 			goto back;
993 		} else {
994 			m0 = m_new;
995 		}
996 
997 		ctx.nsegs = NFE_MAX_SCATTER;
998 		ctx.segs = segs;
999 		error = bus_dmamap_load_mbuf(ring->data_tag, map, m0,
1000 					     nfe_buf_dma_addr, &ctx,
1001 					     BUS_DMA_NOWAIT);
1002 		if (error) {
1003 			if_printf(&sc->arpcom.ac_if,
1004 				  "could not map defraged TX mbuf\n");
1005 			goto back;
1006 		}
1007 	}
1008 
1009 	error = 0;
1010 
1011 	if (ring->queued + ctx.nsegs >= NFE_TX_RING_COUNT - 1) {
1012 		bus_dmamap_unload(ring->data_tag, map);
1013 		error = ENOBUFS;
1014 		goto back;
1015 	}
1016 
1017 	/* setup h/w VLAN tagging */
1018 	if ((m0->m_flags & (M_PROTO1 | M_PKTHDR)) == (M_PROTO1 | M_PKTHDR) &&
1019 	    m0->m_pkthdr.rcvif != NULL &&
1020 	    m0->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1021 		struct ifvlan *ifv = m0->m_pkthdr.rcvif->if_softc;
1022 
1023 		if (ifv != NULL)
1024 			vtag = NFE_TX_VTAG | htons(ifv->ifv_tag);
1025 	}
1026 
1027 #ifdef NFE_CSUM
1028 	if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
1029 		flags |= NFE_TX_IP_CSUM;
1030 	if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
1031 		flags |= NFE_TX_TCP_CSUM;
1032 #endif
1033 
1034 	/*
1035 	 * XXX urm. somebody is unaware of how hardware works.  You
1036 	 * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
1037 	 * the ring until the entire chain is actually *VALID*.  Otherwise
1038 	 * the hardware may encounter a partially initialized chain that
1039 	 * is marked as being ready to go when it in fact is not ready to
1040 	 * go.
1041 	 */
1042 
1043 	for (i = 0; i < ctx.nsegs; i++) {
1044 		j = (ring->cur + i) % NFE_TX_RING_COUNT;
1045 		data = &ring->data[j];
1046 
1047 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1048 			desc64 = &ring->desc64[j];
1049 #if defined(__LP64__)
1050 			desc64->physaddr[0] =
1051 			    htole32(segs[i].ds_addr >> 32);
1052 #endif
1053 			desc64->physaddr[1] =
1054 			    htole32(segs[i].ds_addr & 0xffffffff);
1055 			desc64->length = htole16(segs[i].ds_len - 1);
1056 			desc64->vtag = htole32(vtag);
1057 			desc64->flags = htole16(flags);
1058 		} else {
1059 			desc32 = &ring->desc32[j];
1060 			desc32->physaddr = htole32(segs[i].ds_addr);
1061 			desc32->length = htole16(segs[i].ds_len - 1);
1062 			desc32->flags = htole16(flags);
1063 		}
1064 
1065 		/* csum flags and vtag belong to the first fragment only */
1066 		flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1067 		vtag = 0;
1068 
1069 		ring->queued++;
1070 		KKASSERT(ring->queued <= NFE_TX_RING_COUNT);
1071 	}
1072 
1073 	/* the whole mbuf chain has been DMA mapped, fix last descriptor */
1074 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1075 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
1076 	} else {
1077 		if (sc->sc_flags & NFE_JUMBO_SUP)
1078 			flags = NFE_TX_LASTFRAG_V2;
1079 		else
1080 			flags = NFE_TX_LASTFRAG_V1;
1081 		desc32->flags |= htole16(flags);
1082 	}
1083 
1084 	/*
1085 	 * Set NFE_TX_VALID backwards so the hardware doesn't see the
1086 	 * whole mess until the first descriptor in the map is flagged.
1087 	 */
1088 	for (i = ctx.nsegs - 1; i >= 0; --i) {
1089 		j = (ring->cur + i) % NFE_TX_RING_COUNT;
1090 		if (sc->sc_flags & NFE_40BIT_ADDR) {
1091 			desc64 = &ring->desc64[j];
1092 			desc64->flags |= htole16(NFE_TX_VALID);
1093 		} else {
1094 			desc32 = &ring->desc32[j];
1095 			desc32->flags |= htole16(NFE_TX_VALID);
1096 		}
1097 	}
1098 	ring->cur = (ring->cur + ctx.nsegs) % NFE_TX_RING_COUNT;
1099 
1100 	/* Exchange DMA map */
1101 	data_map->map = data->map;
1102 	data->map = map;
1103 	data->m = m0;
1104 
1105 	bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
1106 back:
1107 	if (error)
1108 		m_freem(m0);
1109 	return error;
1110 }
1111 
1112 static void
1113 nfe_start(struct ifnet *ifp)
1114 {
1115 	struct nfe_softc *sc = ifp->if_softc;
1116 	struct nfe_tx_ring *ring = &sc->txq;
1117 	int count = 0;
1118 	struct mbuf *m0;
1119 
1120 	if (ifp->if_flags & IFF_OACTIVE)
1121 		return;
1122 
1123 	if (ifq_is_empty(&ifp->if_snd))
1124 		return;
1125 
1126 	for (;;) {
1127 		m0 = ifq_dequeue(&ifp->if_snd, NULL);
1128 		if (m0 == NULL)
1129 			break;
1130 
1131 		BPF_MTAP(ifp, m0);
1132 
1133 		if (nfe_encap(sc, ring, m0) != 0) {
1134 			ifp->if_flags |= IFF_OACTIVE;
1135 			break;
1136 		}
1137 		++count;
1138 
1139 		/*
1140 		 * NOTE:
1141 		 * `m0' may be freed in nfe_encap(), so
1142 		 * it should not be touched any more.
1143 		 */
1144 	}
1145 	if (count == 0)	/* nothing sent */
1146 		return;
1147 
1148 	/* Sync TX descriptor ring */
1149 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1150 
1151 	/* Kick Tx */
1152 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1153 
1154 	/*
1155 	 * Set a timeout in case the chip goes out to lunch.
1156 	 */
1157 	ifp->if_timer = 5;
1158 }
1159 
1160 static void
1161 nfe_watchdog(struct ifnet *ifp)
1162 {
1163 	struct nfe_softc *sc = ifp->if_softc;
1164 
1165 	if (ifp->if_flags & IFF_RUNNING) {
1166 		if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
1167 		nfe_txeof(sc);
1168 		return;
1169 	}
1170 
1171 	if_printf(ifp, "watchdog timeout\n");
1172 
1173 	nfe_init(ifp->if_softc);
1174 
1175 	ifp->if_oerrors++;
1176 
1177 	if (!ifq_is_empty(&ifp->if_snd))
1178 		ifp->if_start(ifp);
1179 }
1180 
1181 static void
1182 nfe_init(void *xsc)
1183 {
1184 	struct nfe_softc *sc = xsc;
1185 	struct ifnet *ifp = &sc->arpcom.ac_if;
1186 	uint32_t tmp;
1187 	int error;
1188 
1189 	nfe_stop(sc);
1190 
1191 	error = nfe_init_tx_ring(sc, &sc->txq);
1192 	if (error) {
1193 		nfe_stop(sc);
1194 		return;
1195 	}
1196 
1197 	error = nfe_init_rx_ring(sc, &sc->rxq);
1198 	if (error) {
1199 		nfe_stop(sc);
1200 		return;
1201 	}
1202 
1203 	NFE_WRITE(sc, NFE_TX_UNK, 0);
1204 	NFE_WRITE(sc, NFE_STATUS, 0);
1205 
1206 	sc->rxtxctl = NFE_RXTX_BIT2;
1207 	if (sc->sc_flags & NFE_40BIT_ADDR)
1208 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1209 	else if (sc->sc_flags & NFE_JUMBO_SUP)
1210 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1211 #ifdef NFE_CSUM
1212 	if (sc->sc_flags & NFE_HW_CSUM)
1213 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1214 #endif
1215 
1216 	/*
1217 	 * Although the adapter is capable of stripping VLAN tags from received
1218 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1219 	 * purpose.  This will be done in software by our network stack.
1220 	 */
1221 	if (sc->sc_flags & NFE_HW_VLAN)
1222 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1223 
1224 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1225 	DELAY(10);
1226 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1227 
1228 	if (sc->sc_flags & NFE_HW_VLAN)
1229 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1230 
1231 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1232 
1233 	/* set MAC address */
1234 	nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
1235 
1236 	/* tell MAC where rings are in memory */
1237 #ifdef __LP64__
1238 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1239 #endif
1240 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1241 #ifdef __LP64__
1242 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1243 #endif
1244 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1245 
1246 	NFE_WRITE(sc, NFE_RING_SIZE,
1247 	    (NFE_RX_RING_COUNT - 1) << 16 |
1248 	    (NFE_TX_RING_COUNT - 1));
1249 
1250 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1251 
1252 	/* force MAC to wakeup */
1253 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1254 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1255 	DELAY(10);
1256 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1257 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1258 
1259 #if 1
1260 	/* configure interrupts coalescing/mitigation */
1261 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1262 #else
1263 	/* no interrupt mitigation: one interrupt per packet */
1264 	NFE_WRITE(sc, NFE_IMTIMER, 970);
1265 #endif
1266 
1267 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1268 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1269 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1270 
1271 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1272 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1273 
1274 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1275 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1276 
1277 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1278 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1279 	DELAY(10);
1280 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1281 
1282 	/* set Rx filter */
1283 	nfe_setmulti(sc);
1284 
1285 	nfe_ifmedia_upd(ifp);
1286 
1287 	/* enable Rx */
1288 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1289 
1290 	/* enable Tx */
1291 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1292 
1293 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1294 
1295 #ifdef DEVICE_POLLING
1296 	if ((ifp->if_flags & IFF_POLLING) == 0)
1297 #endif
1298 	/* enable interrupts */
1299 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1300 
1301 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1302 
1303 	ifp->if_flags |= IFF_RUNNING;
1304 	ifp->if_flags &= ~IFF_OACTIVE;
1305 }
1306 
1307 static void
1308 nfe_stop(struct nfe_softc *sc)
1309 {
1310 	struct ifnet *ifp = &sc->arpcom.ac_if;
1311 
1312 	callout_stop(&sc->sc_tick_ch);
1313 
1314 	ifp->if_timer = 0;
1315 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1316 
1317 	/* Abort Tx */
1318 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1319 
1320 	/* Disable Rx */
1321 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1322 
1323 	/* Disable interrupts */
1324 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1325 
1326 	/* Reset Tx and Rx rings */
1327 	nfe_reset_tx_ring(sc, &sc->txq);
1328 	nfe_reset_rx_ring(sc, &sc->rxq);
1329 }
1330 
1331 static int
1332 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1333 {
1334 	int i, j, error, descsize;
1335 	void **desc;
1336 
1337 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1338 		desc = (void **)&ring->desc64;
1339 		descsize = sizeof(struct nfe_desc64);
1340 	} else {
1341 		desc = (void **)&ring->desc32;
1342 		descsize = sizeof(struct nfe_desc32);
1343 	}
1344 
1345 	ring->bufsz = MCLBYTES;
1346 	ring->cur = ring->next = 0;
1347 
1348 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1349 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1350 				   NULL, NULL,
1351 				   NFE_RX_RING_COUNT * descsize, 1,
1352 				   NFE_RX_RING_COUNT * descsize,
1353 				   0, &ring->tag);
1354 	if (error) {
1355 		if_printf(&sc->arpcom.ac_if,
1356 			  "could not create desc RX DMA tag\n");
1357 		return error;
1358 	}
1359 
1360 	error = bus_dmamem_alloc(ring->tag, desc, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1361 				 &ring->map);
1362 	if (error) {
1363 		if_printf(&sc->arpcom.ac_if,
1364 			  "could not allocate RX desc DMA memory\n");
1365 		bus_dma_tag_destroy(ring->tag);
1366 		ring->tag = NULL;
1367 		return error;
1368 	}
1369 
1370 	error = bus_dmamap_load(ring->tag, ring->map, *desc,
1371 				NFE_RX_RING_COUNT * descsize,
1372 				nfe_ring_dma_addr, &ring->physaddr,
1373 				BUS_DMA_WAITOK);
1374 	if (error) {
1375 		if_printf(&sc->arpcom.ac_if,
1376 			  "could not load RX desc DMA map\n");
1377 		bus_dmamem_free(ring->tag, *desc, ring->map);
1378 		bus_dma_tag_destroy(ring->tag);
1379 		ring->tag = NULL;
1380 		return error;
1381 	}
1382 
1383 	if (sc->sc_flags & NFE_USE_JUMBO) {
1384 		ring->bufsz = NFE_JBYTES;
1385 
1386 		error = nfe_jpool_alloc(sc, ring);
1387 		if (error) {
1388 			if_printf(&sc->arpcom.ac_if,
1389 				  "could not allocate jumbo frames\n");
1390 			return error;
1391 		}
1392 	}
1393 
1394 	error = bus_dma_tag_create(NULL, 1, 0,
1395 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1396 				   NULL, NULL,
1397 				   MCLBYTES, 1, MCLBYTES,
1398 				   0, &ring->data_tag);
1399 	if (error) {
1400 		if_printf(&sc->arpcom.ac_if,
1401 			  "could not create RX mbuf DMA tag\n");
1402 		return error;
1403 	}
1404 
1405 	/* Create a spare RX mbuf DMA map */
1406 	error = bus_dmamap_create(ring->data_tag, 0, &ring->data_tmpmap);
1407 	if (error) {
1408 		if_printf(&sc->arpcom.ac_if,
1409 			  "could not create spare RX mbuf DMA map\n");
1410 		bus_dma_tag_destroy(ring->data_tag);
1411 		ring->data_tag = NULL;
1412 		return error;
1413 	}
1414 
1415 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1416 		error = bus_dmamap_create(ring->data_tag, 0,
1417 					  &ring->data[i].map);
1418 		if (error) {
1419 			if_printf(&sc->arpcom.ac_if,
1420 				  "could not create %dth RX mbuf DMA mapn", i);
1421 			goto fail;
1422 		}
1423 	}
1424 	return 0;
1425 fail:
1426 	for (j = 0; j < i; ++j)
1427 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1428 	bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1429 	bus_dma_tag_destroy(ring->data_tag);
1430 	ring->data_tag = NULL;
1431 	return error;
1432 }
1433 
1434 static void
1435 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1436 {
1437 	int i;
1438 
1439 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1440 		struct nfe_rx_data *data = &ring->data[i];
1441 
1442 		if (data->m != NULL) {
1443 			bus_dmamap_unload(ring->data_tag, data->map);
1444 			m_freem(data->m);
1445 			data->m = NULL;
1446 		}
1447 	}
1448 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1449 
1450 	ring->cur = ring->next = 0;
1451 }
1452 
1453 static int
1454 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1455 {
1456 	int i;
1457 
1458 	for (i = 0; i < NFE_RX_RING_COUNT; ++i) {
1459 		int error;
1460 
1461 		/* XXX should use a function pointer */
1462 		if (sc->sc_flags & NFE_USE_JUMBO)
1463 			error = nfe_newbuf_jumbo(sc, ring, i, 1);
1464 		else
1465 			error = nfe_newbuf_std(sc, ring, i, 1);
1466 		if (error) {
1467 			if_printf(&sc->arpcom.ac_if,
1468 				  "could not allocate RX buffer\n");
1469 			return error;
1470 		}
1471 
1472 		nfe_set_ready_rxdesc(sc, ring, i);
1473 	}
1474 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1475 
1476 	return 0;
1477 }
1478 
1479 static void
1480 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1481 {
1482 	if (ring->data_tag != NULL) {
1483 		struct nfe_rx_data *data;
1484 		int i;
1485 
1486 		for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1487 			data = &ring->data[i];
1488 
1489 			if (data->m != NULL) {
1490 				bus_dmamap_unload(ring->data_tag, data->map);
1491 				m_freem(data->m);
1492 			}
1493 			bus_dmamap_destroy(ring->data_tag, data->map);
1494 		}
1495 		bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1496 		bus_dma_tag_destroy(ring->data_tag);
1497 	}
1498 
1499 	nfe_jpool_free(sc, ring);
1500 
1501 	if (ring->tag != NULL) {
1502 		void *desc;
1503 
1504 		if (sc->sc_flags & NFE_40BIT_ADDR)
1505 			desc = ring->desc64;
1506 		else
1507 			desc = ring->desc32;
1508 
1509 		bus_dmamap_unload(ring->tag, ring->map);
1510 		bus_dmamem_free(ring->tag, desc, ring->map);
1511 		bus_dma_tag_destroy(ring->tag);
1512 	}
1513 }
1514 
1515 static struct nfe_jbuf *
1516 nfe_jalloc(struct nfe_softc *sc)
1517 {
1518 	struct ifnet *ifp = &sc->arpcom.ac_if;
1519 	struct nfe_jbuf *jbuf;
1520 
1521 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1522 
1523 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1524 	if (jbuf != NULL) {
1525 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1526 		jbuf->inuse = 1;
1527 	} else {
1528 		if_printf(ifp, "no free jumbo buffer\n");
1529 	}
1530 
1531 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1532 
1533 	return jbuf;
1534 }
1535 
1536 static void
1537 nfe_jfree(void *arg)
1538 {
1539 	struct nfe_jbuf *jbuf = arg;
1540 	struct nfe_softc *sc = jbuf->sc;
1541 	struct nfe_rx_ring *ring = jbuf->ring;
1542 
1543 	if (&ring->jbuf[jbuf->slot] != jbuf)
1544 		panic("%s: free wrong jumbo buffer\n", __func__);
1545 	else if (jbuf->inuse == 0)
1546 		panic("%s: jumbo buffer already freed\n", __func__);
1547 
1548 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1549 	atomic_subtract_int(&jbuf->inuse, 1);
1550 	if (jbuf->inuse == 0)
1551 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1552 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1553 }
1554 
1555 static void
1556 nfe_jref(void *arg)
1557 {
1558 	struct nfe_jbuf *jbuf = arg;
1559 	struct nfe_rx_ring *ring = jbuf->ring;
1560 
1561 	if (&ring->jbuf[jbuf->slot] != jbuf)
1562 		panic("%s: ref wrong jumbo buffer\n", __func__);
1563 	else if (jbuf->inuse == 0)
1564 		panic("%s: jumbo buffer already freed\n", __func__);
1565 
1566 	atomic_add_int(&jbuf->inuse, 1);
1567 }
1568 
1569 static int
1570 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1571 {
1572 	struct nfe_jbuf *jbuf;
1573 	bus_addr_t physaddr;
1574 	caddr_t buf;
1575 	int i, error;
1576 
1577 	/*
1578 	 * Allocate a big chunk of DMA'able memory.
1579 	 */
1580 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1581 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1582 				   NULL, NULL,
1583 				   NFE_JPOOL_SIZE, 1, NFE_JPOOL_SIZE,
1584 				   0, &ring->jtag);
1585 	if (error) {
1586 		if_printf(&sc->arpcom.ac_if,
1587 			  "could not create jumbo DMA tag\n");
1588 		return error;
1589 	}
1590 
1591 	error = bus_dmamem_alloc(ring->jtag, (void **)&ring->jpool,
1592 				 BUS_DMA_WAITOK, &ring->jmap);
1593 	if (error) {
1594 		if_printf(&sc->arpcom.ac_if,
1595 			  "could not allocate jumbo DMA memory\n");
1596 		bus_dma_tag_destroy(ring->jtag);
1597 		ring->jtag = NULL;
1598 		return error;
1599 	}
1600 
1601 	error = bus_dmamap_load(ring->jtag, ring->jmap, ring->jpool,
1602 				NFE_JPOOL_SIZE, nfe_ring_dma_addr, &physaddr,
1603 				BUS_DMA_WAITOK);
1604 	if (error) {
1605 		if_printf(&sc->arpcom.ac_if,
1606 			  "could not load jumbo DMA map\n");
1607 		bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1608 		bus_dma_tag_destroy(ring->jtag);
1609 		ring->jtag = NULL;
1610 		return error;
1611 	}
1612 
1613 	/* ..and split it into 9KB chunks */
1614 	SLIST_INIT(&ring->jfreelist);
1615 
1616 	buf = ring->jpool;
1617 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1618 		jbuf = &ring->jbuf[i];
1619 
1620 		jbuf->sc = sc;
1621 		jbuf->ring = ring;
1622 		jbuf->inuse = 0;
1623 		jbuf->slot = i;
1624 		jbuf->buf = buf;
1625 		jbuf->physaddr = physaddr;
1626 
1627 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1628 
1629 		buf += NFE_JBYTES;
1630 		physaddr += NFE_JBYTES;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static void
1637 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1638 {
1639 	if (ring->jtag != NULL) {
1640 		bus_dmamap_unload(ring->jtag, ring->jmap);
1641 		bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1642 		bus_dma_tag_destroy(ring->jtag);
1643 	}
1644 }
1645 
1646 static int
1647 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1648 {
1649 	int i, j, error, descsize;
1650 	void **desc;
1651 
1652 	if (sc->sc_flags & NFE_40BIT_ADDR) {
1653 		desc = (void **)&ring->desc64;
1654 		descsize = sizeof(struct nfe_desc64);
1655 	} else {
1656 		desc = (void **)&ring->desc32;
1657 		descsize = sizeof(struct nfe_desc32);
1658 	}
1659 
1660 	ring->queued = 0;
1661 	ring->cur = ring->next = 0;
1662 
1663 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1664 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1665 				   NULL, NULL,
1666 				   NFE_TX_RING_COUNT * descsize, 1,
1667 				   NFE_TX_RING_COUNT * descsize,
1668 				   0, &ring->tag);
1669 	if (error) {
1670 		if_printf(&sc->arpcom.ac_if,
1671 			  "could not create TX desc DMA map\n");
1672 		return error;
1673 	}
1674 
1675 	error = bus_dmamem_alloc(ring->tag, desc, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1676 				 &ring->map);
1677 	if (error) {
1678 		if_printf(&sc->arpcom.ac_if,
1679 			  "could not allocate TX desc DMA memory\n");
1680 		bus_dma_tag_destroy(ring->tag);
1681 		ring->tag = NULL;
1682 		return error;
1683 	}
1684 
1685 	error = bus_dmamap_load(ring->tag, ring->map, *desc,
1686 				NFE_TX_RING_COUNT * descsize,
1687 				nfe_ring_dma_addr, &ring->physaddr,
1688 				BUS_DMA_WAITOK);
1689 	if (error) {
1690 		if_printf(&sc->arpcom.ac_if,
1691 			  "could not load TX desc DMA map\n");
1692 		bus_dmamem_free(ring->tag, *desc, ring->map);
1693 		bus_dma_tag_destroy(ring->tag);
1694 		ring->tag = NULL;
1695 		return error;
1696 	}
1697 
1698 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1699 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1700 				   NULL, NULL,
1701 				   NFE_JBYTES * NFE_MAX_SCATTER,
1702 				   NFE_MAX_SCATTER, NFE_JBYTES,
1703 				   0, &ring->data_tag);
1704 	if (error) {
1705 		if_printf(&sc->arpcom.ac_if,
1706 			  "could not create TX buf DMA tag\n");
1707 		return error;
1708 	}
1709 
1710 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1711 		error = bus_dmamap_create(ring->data_tag, 0,
1712 					  &ring->data[i].map);
1713 		if (error) {
1714 			if_printf(&sc->arpcom.ac_if,
1715 				  "could not create %dth TX buf DMA map\n", i);
1716 			goto fail;
1717 		}
1718 	}
1719 
1720 	return 0;
1721 fail:
1722 	for (j = 0; j < i; ++j)
1723 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1724 	bus_dma_tag_destroy(ring->data_tag);
1725 	ring->data_tag = NULL;
1726 	return error;
1727 }
1728 
1729 static void
1730 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1731 {
1732 	int i;
1733 
1734 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1735 		struct nfe_tx_data *data = &ring->data[i];
1736 
1737 		if (sc->sc_flags & NFE_40BIT_ADDR)
1738 			ring->desc64[i].flags = 0;
1739 		else
1740 			ring->desc32[i].flags = 0;
1741 
1742 		if (data->m != NULL) {
1743 			bus_dmamap_sync(ring->data_tag, data->map,
1744 					BUS_DMASYNC_POSTWRITE);
1745 			bus_dmamap_unload(ring->data_tag, data->map);
1746 			m_freem(data->m);
1747 			data->m = NULL;
1748 		}
1749 	}
1750 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1751 
1752 	ring->queued = 0;
1753 	ring->cur = ring->next = 0;
1754 }
1755 
1756 static int
1757 nfe_init_tx_ring(struct nfe_softc *sc __unused,
1758 		 struct nfe_tx_ring *ring __unused)
1759 {
1760 	return 0;
1761 }
1762 
1763 static void
1764 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1765 {
1766 	if (ring->data_tag != NULL) {
1767 		struct nfe_tx_data *data;
1768 		int i;
1769 
1770 		for (i = 0; i < NFE_TX_RING_COUNT; ++i) {
1771 			data = &ring->data[i];
1772 
1773 			if (data->m != NULL) {
1774 				bus_dmamap_unload(ring->data_tag, data->map);
1775 				m_freem(data->m);
1776 			}
1777 			bus_dmamap_destroy(ring->data_tag, data->map);
1778 		}
1779 
1780 		bus_dma_tag_destroy(ring->data_tag);
1781 	}
1782 
1783 	if (ring->tag != NULL) {
1784 		void *desc;
1785 
1786 		if (sc->sc_flags & NFE_40BIT_ADDR)
1787 			desc = ring->desc64;
1788 		else
1789 			desc = ring->desc32;
1790 
1791 		bus_dmamap_unload(ring->tag, ring->map);
1792 		bus_dmamem_free(ring->tag, desc, ring->map);
1793 		bus_dma_tag_destroy(ring->tag);
1794 	}
1795 }
1796 
1797 static int
1798 nfe_ifmedia_upd(struct ifnet *ifp)
1799 {
1800 	struct nfe_softc *sc = ifp->if_softc;
1801 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1802 
1803 	if (mii->mii_instance != 0) {
1804 		struct mii_softc *miisc;
1805 
1806 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1807 			mii_phy_reset(miisc);
1808 	}
1809 	mii_mediachg(mii);
1810 
1811 	return 0;
1812 }
1813 
1814 static void
1815 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1816 {
1817 	struct nfe_softc *sc = ifp->if_softc;
1818 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1819 
1820 	mii_pollstat(mii);
1821 	ifmr->ifm_status = mii->mii_media_status;
1822 	ifmr->ifm_active = mii->mii_media_active;
1823 }
1824 
1825 static void
1826 nfe_setmulti(struct nfe_softc *sc)
1827 {
1828 	struct ifnet *ifp = &sc->arpcom.ac_if;
1829 	struct ifmultiaddr *ifma;
1830 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1831 	uint32_t filter = NFE_RXFILTER_MAGIC;
1832 	int i;
1833 
1834 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1835 		bzero(addr, ETHER_ADDR_LEN);
1836 		bzero(mask, ETHER_ADDR_LEN);
1837 		goto done;
1838 	}
1839 
1840 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1841 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1842 
1843 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1844 		caddr_t maddr;
1845 
1846 		if (ifma->ifma_addr->sa_family != AF_LINK)
1847 			continue;
1848 
1849 		maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1850 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1851 			addr[i] &= maddr[i];
1852 			mask[i] &= ~maddr[i];
1853 		}
1854 	}
1855 
1856 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1857 		mask[i] |= addr[i];
1858 
1859 done:
1860 	addr[0] |= 0x01;	/* make sure multicast bit is set */
1861 
1862 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1863 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1864 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1865 	    addr[5] <<  8 | addr[4]);
1866 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1867 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1868 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1869 	    mask[5] <<  8 | mask[4]);
1870 
1871 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1872 	NFE_WRITE(sc, NFE_RXFILTER, filter);
1873 }
1874 
1875 static void
1876 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1877 {
1878 	uint32_t tmp;
1879 
1880 	tmp = NFE_READ(sc, NFE_MACADDR_LO);
1881 	addr[0] = (tmp >> 8) & 0xff;
1882 	addr[1] = (tmp & 0xff);
1883 
1884 	tmp = NFE_READ(sc, NFE_MACADDR_HI);
1885 	addr[2] = (tmp >> 24) & 0xff;
1886 	addr[3] = (tmp >> 16) & 0xff;
1887 	addr[4] = (tmp >>  8) & 0xff;
1888 	addr[5] = (tmp & 0xff);
1889 }
1890 
1891 static void
1892 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1893 {
1894 	NFE_WRITE(sc, NFE_MACADDR_LO,
1895 	    addr[5] <<  8 | addr[4]);
1896 	NFE_WRITE(sc, NFE_MACADDR_HI,
1897 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1898 }
1899 
1900 static void
1901 nfe_tick(void *arg)
1902 {
1903 	struct nfe_softc *sc = arg;
1904 	struct ifnet *ifp = &sc->arpcom.ac_if;
1905 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
1906 
1907 	lwkt_serialize_enter(ifp->if_serializer);
1908 
1909 	mii_tick(mii);
1910 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1911 
1912 	lwkt_serialize_exit(ifp->if_serializer);
1913 }
1914 
1915 static void
1916 nfe_ring_dma_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
1917 {
1918 	if (error)
1919 		return;
1920 
1921 	KASSERT(nseg == 1, ("too many segments, should be 1\n"));
1922 
1923 	*((uint32_t *)arg) = seg->ds_addr;
1924 }
1925 
1926 static void
1927 nfe_buf_dma_addr(void *arg, bus_dma_segment_t *segs, int nsegs,
1928 		 bus_size_t mapsz __unused, int error)
1929 {
1930 	struct nfe_dma_ctx *ctx = arg;
1931 	int i;
1932 
1933 	if (error)
1934 		return;
1935 
1936 	KASSERT(nsegs <= ctx->nsegs,
1937 		("too many segments(%d), should be <= %d\n",
1938 		 nsegs, ctx->nsegs));
1939 
1940 	ctx->nsegs = nsegs;
1941 	for (i = 0; i < nsegs; ++i)
1942 		ctx->segs[i] = segs[i];
1943 }
1944 
1945 static int
1946 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
1947 	       int wait)
1948 {
1949 	struct nfe_rx_data *data = &ring->data[idx];
1950 	struct nfe_dma_ctx ctx;
1951 	bus_dma_segment_t seg;
1952 	bus_dmamap_t map;
1953 	struct mbuf *m;
1954 	int error;
1955 
1956 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1957 	if (m == NULL)
1958 		return ENOBUFS;
1959 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1960 
1961 	ctx.nsegs = 1;
1962 	ctx.segs = &seg;
1963 	error = bus_dmamap_load_mbuf(ring->data_tag, ring->data_tmpmap,
1964 				     m, nfe_buf_dma_addr, &ctx,
1965 				     wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
1966 	if (error) {
1967 		m_freem(m);
1968 		if_printf(&sc->arpcom.ac_if, "could map RX mbuf %d\n", error);
1969 		return error;
1970 	}
1971 
1972 	/* Unload originally mapped mbuf */
1973 	bus_dmamap_unload(ring->data_tag, data->map);
1974 
1975 	/* Swap this DMA map with tmp DMA map */
1976 	map = data->map;
1977 	data->map = ring->data_tmpmap;
1978 	ring->data_tmpmap = map;
1979 
1980 	/* Caller is assumed to have collected the old mbuf */
1981 	data->m = m;
1982 
1983 	nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
1984 
1985 	bus_dmamap_sync(ring->data_tag, data->map, BUS_DMASYNC_PREREAD);
1986 	return 0;
1987 }
1988 
1989 static int
1990 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
1991 		 int wait)
1992 {
1993 	struct nfe_rx_data *data = &ring->data[idx];
1994 	struct nfe_jbuf *jbuf;
1995 	struct mbuf *m;
1996 
1997 	MGETHDR(m, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1998 	if (m == NULL)
1999 		return ENOBUFS;
2000 
2001 	jbuf = nfe_jalloc(sc);
2002 	if (jbuf == NULL) {
2003 		m_freem(m);
2004 		if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
2005 		    "-- packet dropped!\n");
2006 		return ENOBUFS;
2007 	}
2008 
2009 	m->m_ext.ext_arg = jbuf;
2010 	m->m_ext.ext_buf = jbuf->buf;
2011 	m->m_ext.ext_free = nfe_jfree;
2012 	m->m_ext.ext_ref = nfe_jref;
2013 	m->m_ext.ext_size = NFE_JBYTES;
2014 
2015 	m->m_data = m->m_ext.ext_buf;
2016 	m->m_flags |= M_EXT;
2017 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2018 
2019 	/* Caller is assumed to have collected the old mbuf */
2020 	data->m = m;
2021 
2022 	nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
2023 
2024 	bus_dmamap_sync(ring->jtag, ring->jmap, BUS_DMASYNC_PREREAD);
2025 	return 0;
2026 }
2027 
2028 static void
2029 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2030 		     bus_addr_t physaddr)
2031 {
2032 	if (sc->sc_flags & NFE_40BIT_ADDR) {
2033 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2034 
2035 #if defined(__LP64__)
2036 		desc64->physaddr[0] = htole32(physaddr >> 32);
2037 #endif
2038 		desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
2039 	} else {
2040 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2041 
2042 		desc32->physaddr = htole32(physaddr);
2043 	}
2044 }
2045 
2046 static void
2047 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
2048 {
2049 	if (sc->sc_flags & NFE_40BIT_ADDR) {
2050 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2051 
2052 		desc64->length = htole16(ring->bufsz);
2053 		desc64->flags = htole16(NFE_RX_READY);
2054 	} else {
2055 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2056 
2057 		desc32->length = htole16(ring->bufsz);
2058 		desc32->flags = htole16(NFE_RX_READY);
2059 	}
2060 }
2061