xref: /dflybsd-src/sys/dev/netif/msk/if_msk.c (revision 6938d9ab5938f24b49d1757b7426edfe267ce063)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/endian.h>
105 #include <sys/kernel.h>
106 #include <sys/bus.h>
107 #include <sys/in_cksum.h>
108 #include <sys/interrupt.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 
129 #include <dev/netif/mii_layer/miivar.h>
130 
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
133 
134 #include "if_mskreg.h"
135 
136 /* "device miibus" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Devices supported by this driver.
143  */
144 static const struct msk_product {
145 	uint16_t	msk_vendorid;
146 	uint16_t	msk_deviceid;
147 	const char	*msk_name;
148 } msk_products[] = {
149 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
150 	    "SK-9Sxx Gigabit Ethernet" },
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 	    "SK-9Exx Gigabit Ethernet"},
153 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 	    "Marvell Yukon 88E8035 Fast Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 	    "Marvell Yukon 88E8036 Fast Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 	    "Marvell Yukon 88E8038 Fast Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 	    "Marvell Yukon 88E8039 Fast Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
178 	    "Marvell Yukon 88E8040 Fast Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
180 	    "Marvell Yukon 88E8040T Fast Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
182 	    "Marvell Yukon 88E8042 Fast Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
184 	    "Marvell Yukon 88E8048 Fast Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
186 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
188 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
190 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
192 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
194 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
196 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
198 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
200 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
202 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
204 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
206 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
208 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
210 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
211 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
212 	    "D-Link 550SX Gigabit Ethernet" },
213 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
214 	    "D-Link 560T Gigabit Ethernet" },
215 	{ 0, 0, NULL }
216 };
217 
218 static const char *model_name[] = {
219 	"Yukon XL",
220 	"Yukon EC Ultra",
221 	"Yukon EX",
222 	"Yukon EC",
223 	"Yukon FE",
224 	"Yukon FE+",
225 	"Yukon Supreme",
226 	"Yukon Ultra 2",
227 	"Yukon Unknown",
228 	"Yukon Optima"
229 };
230 
231 static int	mskc_probe(device_t);
232 static int	mskc_attach(device_t);
233 static int	mskc_detach(device_t);
234 static int	mskc_shutdown(device_t);
235 static int	mskc_suspend(device_t);
236 static int	mskc_resume(device_t);
237 static void	mskc_intr(void *);
238 
239 static void	mskc_reset(struct msk_softc *);
240 static void	mskc_set_imtimer(struct msk_softc *);
241 static void	mskc_intr_hwerr(struct msk_softc *);
242 static int	mskc_handle_events(struct msk_softc *);
243 static void	mskc_phy_power(struct msk_softc *, int);
244 static int	mskc_setup_rambuffer(struct msk_softc *);
245 static int	mskc_status_dma_alloc(struct msk_softc *);
246 static void	mskc_status_dma_free(struct msk_softc *);
247 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
248 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
249 
250 static int	msk_probe(device_t);
251 static int	msk_attach(device_t);
252 static int	msk_detach(device_t);
253 static int	msk_miibus_readreg(device_t, int, int);
254 static int	msk_miibus_writereg(device_t, int, int, int);
255 static void	msk_miibus_statchg(device_t);
256 
257 static void	msk_init(void *);
258 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	msk_start(struct ifnet *);
260 static void	msk_watchdog(struct ifnet *);
261 static int	msk_mediachange(struct ifnet *);
262 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
263 
264 static void	msk_tick(void *);
265 static void	msk_intr_phy(struct msk_if_softc *);
266 static void	msk_intr_gmac(struct msk_if_softc *);
267 static __inline void
268 		msk_rxput(struct msk_if_softc *);
269 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
270 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int);
271 static void	msk_txeof(struct msk_if_softc *, int);
272 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
273 static void	msk_set_rambuffer(struct msk_if_softc *);
274 static void	msk_stop(struct msk_if_softc *);
275 
276 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
277 static void	msk_txrx_dma_free(struct msk_if_softc *);
278 static int	msk_init_rx_ring(struct msk_if_softc *);
279 static void	msk_init_tx_ring(struct msk_if_softc *);
280 static __inline void
281 		msk_discard_rxbuf(struct msk_if_softc *, int);
282 static int	msk_newbuf(struct msk_if_softc *, int, int);
283 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
284 
285 #ifdef MSK_JUMBO
286 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
287 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
288 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
289 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
290 static void *msk_jalloc(struct msk_if_softc *);
291 static void msk_jfree(void *, void *);
292 #endif
293 
294 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
295 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
296 
297 static void	msk_rxfilter(struct msk_if_softc *);
298 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
299 static void	msk_set_tx_stfwd(struct msk_if_softc *);
300 
301 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
302 				  void **, bus_addr_t *, bus_dmamap_t *);
303 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
304 
305 static device_method_t mskc_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		mskc_probe),
308 	DEVMETHOD(device_attach,	mskc_attach),
309 	DEVMETHOD(device_detach,	mskc_detach),
310 	DEVMETHOD(device_suspend,	mskc_suspend),
311 	DEVMETHOD(device_resume,	mskc_resume),
312 	DEVMETHOD(device_shutdown,	mskc_shutdown),
313 
314 	/* bus interface */
315 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
316 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
317 
318 	{ NULL, NULL }
319 };
320 
321 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
322 static devclass_t mskc_devclass;
323 
324 static device_method_t msk_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		msk_probe),
327 	DEVMETHOD(device_attach,	msk_attach),
328 	DEVMETHOD(device_detach,	msk_detach),
329 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
330 
331 	/* bus interface */
332 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
333 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
334 
335 	/* MII interface */
336 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
337 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
338 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
339 
340 	{ NULL, NULL }
341 };
342 
343 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
344 static devclass_t msk_devclass;
345 
346 DECLARE_DUMMY_MODULE(if_msk);
347 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, NULL, NULL);
348 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, NULL, NULL);
349 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
350 
351 static int	mskc_intr_rate = 0;
352 static int	mskc_process_limit = MSK_PROC_DEFAULT;
353 
354 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
355 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
356 
357 static int
358 msk_miibus_readreg(device_t dev, int phy, int reg)
359 {
360 	struct msk_if_softc *sc_if;
361 
362 	if (phy != PHY_ADDR_MARV)
363 		return (0);
364 
365 	sc_if = device_get_softc(dev);
366 
367 	return (msk_phy_readreg(sc_if, phy, reg));
368 }
369 
370 static int
371 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
372 {
373 	struct msk_softc *sc;
374 	int i, val;
375 
376 	sc = sc_if->msk_softc;
377 
378         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
379 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
380 
381 	for (i = 0; i < MSK_TIMEOUT; i++) {
382 		DELAY(1);
383 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
384 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
385 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
386 			break;
387 		}
388 	}
389 
390 	if (i == MSK_TIMEOUT) {
391 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
392 		val = 0;
393 	}
394 
395 	return (val);
396 }
397 
398 static int
399 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
400 {
401 	struct msk_if_softc *sc_if;
402 
403 	if (phy != PHY_ADDR_MARV)
404 		return (0);
405 
406 	sc_if = device_get_softc(dev);
407 
408 	return (msk_phy_writereg(sc_if, phy, reg, val));
409 }
410 
411 static int
412 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
413 {
414 	struct msk_softc *sc;
415 	int i;
416 
417 	sc = sc_if->msk_softc;
418 
419 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
420         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
421 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
422 	for (i = 0; i < MSK_TIMEOUT; i++) {
423 		DELAY(1);
424 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
425 		    GM_SMI_CT_BUSY) == 0)
426 			break;
427 	}
428 	if (i == MSK_TIMEOUT)
429 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
430 
431 	return (0);
432 }
433 
434 static void
435 msk_miibus_statchg(device_t dev)
436 {
437 	struct msk_if_softc *sc_if;
438 	struct msk_softc *sc;
439 	struct mii_data *mii;
440 	struct ifnet *ifp;
441 	uint32_t gmac;
442 
443 	sc_if = device_get_softc(dev);
444 	sc = sc_if->msk_softc;
445 
446 	mii = device_get_softc(sc_if->msk_miibus);
447 	ifp = sc_if->msk_ifp;
448 
449 	sc_if->msk_link = 0;
450 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
451 	    (IFM_AVALID | IFM_ACTIVE)) {
452 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
453 		case IFM_10_T:
454 		case IFM_100_TX:
455 			sc_if->msk_link = 1;
456 			break;
457 		case IFM_1000_T:
458 		case IFM_1000_SX:
459 		case IFM_1000_LX:
460 		case IFM_1000_CX:
461 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
462 				sc_if->msk_link = 1;
463 			break;
464 		}
465 	}
466 
467 	if (sc_if->msk_link != 0) {
468 		/* Enable Tx FIFO Underrun. */
469 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
470 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
471 		/*
472 		 * Because mii(4) notify msk(4) that it detected link status
473 		 * change, there is no need to enable automatic
474 		 * speed/flow-control/duplex updates.
475 		 */
476 		gmac = GM_GPCR_AU_ALL_DIS;
477 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
478 		case IFM_1000_SX:
479 		case IFM_1000_T:
480 			gmac |= GM_GPCR_SPEED_1000;
481 			break;
482 		case IFM_100_TX:
483 			gmac |= GM_GPCR_SPEED_100;
484 			break;
485 		case IFM_10_T:
486 			break;
487 		}
488 
489 		if ((mii->mii_media_active & IFM_GMASK) & IFM_FDX)
490 			gmac |= GM_GPCR_DUP_FULL;
491 		else
492 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
493 		/* Disable Rx flow control. */
494 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
495 			gmac |= GM_GPCR_FC_RX_DIS;
496 		/* Disable Tx flow control. */
497 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
498 			gmac |= GM_GPCR_FC_TX_DIS;
499 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
500 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
501 		/* Read again to ensure writing. */
502 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
503 
504 		gmac = GMC_PAUSE_OFF;
505 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) &&
506 		    ((mii->mii_media_active & IFM_GMASK) & IFM_FDX))
507 			gmac = GMC_PAUSE_ON;
508 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
509 
510 		/* Enable PHY interrupt for FIFO underrun/overflow. */
511 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
512 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
513 	} else {
514 		/*
515 		 * Link state changed to down.
516 		 * Disable PHY interrupts.
517 		 */
518 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
519 		/* Disable Rx/Tx MAC. */
520 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
521 		if (gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) {
522 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
523 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
524 			/* Read again to ensure writing. */
525 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
526 		}
527 	}
528 }
529 
530 static void
531 msk_rxfilter(struct msk_if_softc *sc_if)
532 {
533 	struct msk_softc *sc;
534 	struct ifnet *ifp;
535 	struct ifmultiaddr *ifma;
536 	uint32_t mchash[2];
537 	uint32_t crc;
538 	uint16_t mode;
539 
540 	sc = sc_if->msk_softc;
541 	ifp = sc_if->msk_ifp;
542 
543 	bzero(mchash, sizeof(mchash));
544 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
545 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
546 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
547 	} else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
548 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
549 		mchash[0] = 0xffff;
550 		mchash[1] = 0xffff;
551 	} else {
552 		mode |= GM_RXCR_UCF_ENA;
553 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
554 			if (ifma->ifma_addr->sa_family != AF_LINK)
555 				continue;
556 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
557 			    ifma->ifma_addr), ETHER_ADDR_LEN);
558 			/* Just want the 6 least significant bits. */
559 			crc &= 0x3f;
560 			/* Set the corresponding bit in the hash table. */
561 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
562 		}
563 		if (mchash[0] != 0 || mchash[1] != 0)
564 			mode |= GM_RXCR_MCF_ENA;
565 	}
566 
567 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
568 	    mchash[0] & 0xffff);
569 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
570 	    (mchash[0] >> 16) & 0xffff);
571 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
572 	    mchash[1] & 0xffff);
573 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
574 	    (mchash[1] >> 16) & 0xffff);
575 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
576 }
577 
578 static void
579 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
580 {
581 	struct msk_softc *sc;
582 
583 	sc = sc_if->msk_softc;
584 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
585 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
586 		    RX_VLAN_STRIP_ON);
587 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
588 		    TX_VLAN_TAG_ON);
589 	} else {
590 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
591 		    RX_VLAN_STRIP_OFF);
592 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
593 		    TX_VLAN_TAG_OFF);
594 	}
595 }
596 
597 static int
598 msk_init_rx_ring(struct msk_if_softc *sc_if)
599 {
600 	struct msk_ring_data *rd;
601 	struct msk_rxdesc *rxd;
602 	int i, prod;
603 
604 	sc_if->msk_cdata.msk_rx_cons = 0;
605 	sc_if->msk_cdata.msk_rx_prod = 0;
606 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
607 
608 	rd = &sc_if->msk_rdata;
609 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
610 	prod = sc_if->msk_cdata.msk_rx_prod;
611 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
612 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
613 		rxd->rx_m = NULL;
614 		rxd->rx_le = &rd->msk_rx_ring[prod];
615 		if (msk_newbuf(sc_if, prod, 1) != 0)
616 			return (ENOBUFS);
617 		MSK_INC(prod, MSK_RX_RING_CNT);
618 	}
619 
620 	/* Update prefetch unit. */
621 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
622 	CSR_WRITE_2(sc_if->msk_softc,
623 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
624 	    sc_if->msk_cdata.msk_rx_prod);
625 
626 	return (0);
627 }
628 
629 #ifdef MSK_JUMBO
630 static int
631 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
632 {
633 	struct msk_ring_data *rd;
634 	struct msk_rxdesc *rxd;
635 	int i, prod;
636 
637 	MSK_IF_LOCK_ASSERT(sc_if);
638 
639 	sc_if->msk_cdata.msk_rx_cons = 0;
640 	sc_if->msk_cdata.msk_rx_prod = 0;
641 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
642 
643 	rd = &sc_if->msk_rdata;
644 	bzero(rd->msk_jumbo_rx_ring,
645 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
646 	prod = sc_if->msk_cdata.msk_rx_prod;
647 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
648 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
649 		rxd->rx_m = NULL;
650 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
651 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
652 			return (ENOBUFS);
653 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
654 	}
655 
656 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
657 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
659 
660 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
661 	CSR_WRITE_2(sc_if->msk_softc,
662 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
663 	    sc_if->msk_cdata.msk_rx_prod);
664 
665 	return (0);
666 }
667 #endif
668 
669 static void
670 msk_init_tx_ring(struct msk_if_softc *sc_if)
671 {
672 	struct msk_ring_data *rd;
673 	struct msk_txdesc *txd;
674 	int i;
675 
676 	sc_if->msk_cdata.msk_tx_prod = 0;
677 	sc_if->msk_cdata.msk_tx_cons = 0;
678 	sc_if->msk_cdata.msk_tx_cnt = 0;
679 
680 	rd = &sc_if->msk_rdata;
681 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
682 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
683 		txd = &sc_if->msk_cdata.msk_txdesc[i];
684 		txd->tx_m = NULL;
685 		txd->tx_le = &rd->msk_tx_ring[i];
686 	}
687 }
688 
689 static __inline void
690 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
691 {
692 	struct msk_rx_desc *rx_le;
693 	struct msk_rxdesc *rxd;
694 	struct mbuf *m;
695 
696 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
697 	m = rxd->rx_m;
698 	rx_le = rxd->rx_le;
699 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
700 }
701 
702 #ifdef MSK_JUMBO
703 static __inline void
704 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
705 {
706 	struct msk_rx_desc *rx_le;
707 	struct msk_rxdesc *rxd;
708 	struct mbuf *m;
709 
710 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
711 	m = rxd->rx_m;
712 	rx_le = rxd->rx_le;
713 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
714 }
715 #endif
716 
717 static int
718 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
719 {
720 	struct msk_rx_desc *rx_le;
721 	struct msk_rxdesc *rxd;
722 	struct mbuf *m;
723 	bus_dma_segment_t seg;
724 	bus_dmamap_t map;
725 	int error, nseg;
726 
727 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
728 	if (m == NULL)
729 		return (ENOBUFS);
730 
731 	m->m_len = m->m_pkthdr.len = MCLBYTES;
732 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
733 		m_adj(m, ETHER_ALIGN);
734 
735 	error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
736 			sc_if->msk_cdata.msk_rx_sparemap,
737 			m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
738 	if (error) {
739 		m_freem(m);
740 		if (init)
741 			if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
742 		return (error);
743 	}
744 
745 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
746 	if (rxd->rx_m != NULL) {
747 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
748 		    BUS_DMASYNC_POSTREAD);
749 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
750 	}
751 
752 	map = rxd->rx_dmamap;
753 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
754 	sc_if->msk_cdata.msk_rx_sparemap = map;
755 
756 	rxd->rx_m = m;
757 	rx_le = rxd->rx_le;
758 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
759 	rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
760 
761 	return (0);
762 }
763 
764 #ifdef MSK_JUMBO
765 static int
766 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
767 {
768 	struct msk_rx_desc *rx_le;
769 	struct msk_rxdesc *rxd;
770 	struct mbuf *m;
771 	bus_dma_segment_t segs[1];
772 	bus_dmamap_t map;
773 	int nsegs;
774 	void *buf;
775 
776 	MGETHDR(m, M_DONTWAIT, MT_DATA);
777 	if (m == NULL)
778 		return (ENOBUFS);
779 	buf = msk_jalloc(sc_if);
780 	if (buf == NULL) {
781 		m_freem(m);
782 		return (ENOBUFS);
783 	}
784 	/* Attach the buffer to the mbuf. */
785 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
786 	    EXT_NET_DRV);
787 	if ((m->m_flags & M_EXT) == 0) {
788 		m_freem(m);
789 		return (ENOBUFS);
790 	}
791 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
792 	m_adj(m, ETHER_ALIGN);
793 
794 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
795 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
796 	    BUS_DMA_NOWAIT) != 0) {
797 		m_freem(m);
798 		return (ENOBUFS);
799 	}
800 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
801 
802 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
803 	if (rxd->rx_m != NULL) {
804 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
805 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
806 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
807 		    rxd->rx_dmamap);
808 	}
809 	map = rxd->rx_dmamap;
810 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
811 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
812 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
813 	    BUS_DMASYNC_PREREAD);
814 	rxd->rx_m = m;
815 	rx_le = rxd->rx_le;
816 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
817 	rx_le->msk_control =
818 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
819 
820 	return (0);
821 }
822 #endif
823 
824 /*
825  * Set media options.
826  */
827 static int
828 msk_mediachange(struct ifnet *ifp)
829 {
830 	struct msk_if_softc *sc_if = ifp->if_softc;
831 	struct mii_data	*mii;
832 	int error;
833 
834 	mii = device_get_softc(sc_if->msk_miibus);
835 	error = mii_mediachg(mii);
836 
837 	return (error);
838 }
839 
840 /*
841  * Report current media status.
842  */
843 static void
844 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
845 {
846 	struct msk_if_softc *sc_if = ifp->if_softc;
847 	struct mii_data	*mii;
848 
849 	mii = device_get_softc(sc_if->msk_miibus);
850 	mii_pollstat(mii);
851 
852 	ifmr->ifm_active = mii->mii_media_active;
853 	ifmr->ifm_status = mii->mii_media_status;
854 }
855 
856 static int
857 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
858 {
859 	struct msk_if_softc *sc_if;
860 	struct ifreq *ifr;
861 	struct mii_data	*mii;
862 	int error, mask;
863 
864 	sc_if = ifp->if_softc;
865 	ifr = (struct ifreq *)data;
866 	error = 0;
867 
868 	switch(command) {
869 	case SIOCSIFMTU:
870 #ifdef MSK_JUMBO
871 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
872 			error = EINVAL;
873 			break;
874 		}
875 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
876 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
877 			error = EINVAL;
878 			break;
879 		}
880 		ifp->if_mtu = ifr->ifr_mtu;
881 		if ((ifp->if_flags & IFF_RUNNING) != 0)
882 			msk_init(sc_if);
883 #else
884 		error = EOPNOTSUPP;
885 #endif
886 		break;
887 
888 	case SIOCSIFFLAGS:
889 		if (ifp->if_flags & IFF_UP) {
890 			if (ifp->if_flags & IFF_RUNNING) {
891 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
892 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
893 					msk_rxfilter(sc_if);
894 			} else {
895 				if (sc_if->msk_detach == 0)
896 					msk_init(sc_if);
897 			}
898 		} else {
899 			if (ifp->if_flags & IFF_RUNNING)
900 				msk_stop(sc_if);
901 		}
902 		sc_if->msk_if_flags = ifp->if_flags;
903 		break;
904 
905 	case SIOCADDMULTI:
906 	case SIOCDELMULTI:
907 		if (ifp->if_flags & IFF_RUNNING)
908 			msk_rxfilter(sc_if);
909 		break;
910 
911 	case SIOCGIFMEDIA:
912 	case SIOCSIFMEDIA:
913 		mii = device_get_softc(sc_if->msk_miibus);
914 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
915 		break;
916 
917 	case SIOCSIFCAP:
918 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
919 		if ((mask & IFCAP_TXCSUM) != 0) {
920 			ifp->if_capenable ^= IFCAP_TXCSUM;
921 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
922 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
923 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
924 			else
925 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
926 		}
927 #ifdef notyet
928 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
929 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
930 			msk_setvlan(sc_if, ifp);
931 		}
932 #endif
933 
934 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
935 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
936 			/*
937 			 * In Yukon EC Ultra, TSO & checksum offload is not
938 			 * supported for jumbo frame.
939 			 */
940 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
941 			ifp->if_capenable &= ~IFCAP_TXCSUM;
942 		}
943 		break;
944 
945 	default:
946 		error = ether_ioctl(ifp, command, data);
947 		break;
948 	}
949 
950 	return (error);
951 }
952 
953 static int
954 mskc_probe(device_t dev)
955 {
956 	const struct msk_product *mp;
957 	uint16_t vendor, devid;
958 
959 	vendor = pci_get_vendor(dev);
960 	devid = pci_get_device(dev);
961 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
962 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
963 			device_set_desc(dev, mp->msk_name);
964 			return (0);
965 		}
966 	}
967 	return (ENXIO);
968 }
969 
970 static int
971 mskc_setup_rambuffer(struct msk_softc *sc)
972 {
973 	int next;
974 	int i;
975 
976 	/* Get adapter SRAM size. */
977 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
978 	if (bootverbose) {
979 		device_printf(sc->msk_dev,
980 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
981 	}
982 	if (sc->msk_ramsize == 0)
983 		return (0);
984 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
985 
986 	/*
987 	 * Give receiver 2/3 of memory and round down to the multiple
988 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
989 	 * of 1024.
990 	 */
991 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
992 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
993 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
994 		sc->msk_rxqstart[i] = next;
995 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
996 		next = sc->msk_rxqend[i] + 1;
997 		sc->msk_txqstart[i] = next;
998 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
999 		next = sc->msk_txqend[i] + 1;
1000 		if (bootverbose) {
1001 			device_printf(sc->msk_dev,
1002 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1003 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1004 			    sc->msk_rxqend[i]);
1005 			device_printf(sc->msk_dev,
1006 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1007 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1008 			    sc->msk_txqend[i]);
1009 		}
1010 	}
1011 
1012 	return (0);
1013 }
1014 
1015 static void
1016 mskc_phy_power(struct msk_softc *sc, int mode)
1017 {
1018 	uint32_t our, val;
1019 	int i;
1020 
1021 	switch (mode) {
1022 	case MSK_PHY_POWERUP:
1023 		/* Switch power to VCC (WA for VAUX problem). */
1024 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1025 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1026 		/* Disable Core Clock Division, set Clock Select to 0. */
1027 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1028 
1029 		val = 0;
1030 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1031 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1032 			/* Enable bits are inverted. */
1033 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1034 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1035 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1036 		}
1037 		/*
1038 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1039 		 */
1040 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1041 
1042 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1043 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1044 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1045 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1046 				/* Deassert Low Power for 1st PHY. */
1047 				our |= PCI_Y2_PHY1_COMA;
1048 				if (sc->msk_num_port > 1)
1049 					our |= PCI_Y2_PHY2_COMA;
1050 			}
1051 		}
1052 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1053 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1054 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1055 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1056 			val &= (PCI_FORCE_ASPM_REQUEST |
1057 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1058 			    PCI_ASPM_CLKRUN_REQUEST);
1059 			/* Set all bits to 0 except bits 15..12. */
1060 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1061 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1062 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1063 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1064 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1065 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1066 			/*
1067 			 * Disable status race, workaround for
1068 			 * Yukon EC Ultra & Yukon EX.
1069 			 */
1070 			val = CSR_READ_4(sc, B2_GP_IO);
1071 			val |= GLB_GPIO_STAT_RACE_DIS;
1072 			CSR_WRITE_4(sc, B2_GP_IO, val);
1073 			CSR_READ_4(sc, B2_GP_IO);
1074 		}
1075 		/* Release PHY from PowerDown/COMA mode. */
1076 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1077 
1078 		for (i = 0; i < sc->msk_num_port; i++) {
1079 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1080 			    GMLC_RST_SET);
1081 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1082 			    GMLC_RST_CLR);
1083 		}
1084 		break;
1085 	case MSK_PHY_POWERDOWN:
1086 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1087 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1088 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1089 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1090 			val &= ~PCI_Y2_PHY1_COMA;
1091 			if (sc->msk_num_port > 1)
1092 				val &= ~PCI_Y2_PHY2_COMA;
1093 		}
1094 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1095 
1096 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1097 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1098 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1099 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1100 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1101 			/* Enable bits are inverted. */
1102 			val = 0;
1103 		}
1104 		/*
1105 		 * Disable PCI & Core Clock, disable clock gating for
1106 		 * both Links.
1107 		 */
1108 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1109 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1110 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1111 		break;
1112 	default:
1113 		break;
1114 	}
1115 }
1116 
1117 static void
1118 mskc_reset(struct msk_softc *sc)
1119 {
1120 	bus_addr_t addr;
1121 	uint16_t status;
1122 	uint32_t val;
1123 	int i;
1124 
1125 	/* Disable ASF. */
1126 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1127 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1128 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1129 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1130 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1131 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1132 			/* Clear AHB bridge & microcontroller reset. */
1133 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1134 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1135 			/* Clear ASF microcontroller state. */
1136 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1137 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1138 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1139 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1140 		} else {
1141 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1142 		}
1143 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1144 		/*
1145 		 * Since we disabled ASF, S/W reset is required for
1146 		 * Power Management.
1147 		 */
1148 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1149 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1150 	}
1151 
1152 	/* Clear all error bits in the PCI status register. */
1153 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1154 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1155 
1156 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1157 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1158 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1159 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1160 
1161 	switch (sc->msk_bustype) {
1162 	case MSK_PEX_BUS:
1163 		/* Clear all PEX errors. */
1164 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1165 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1166 		if ((val & PEX_RX_OV) != 0) {
1167 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1168 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1169 		}
1170 		break;
1171 	case MSK_PCI_BUS:
1172 	case MSK_PCIX_BUS:
1173 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1174 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1175 		if (val == 0)
1176 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1177 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1178 			/* Set Cache Line Size opt. */
1179 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1180 			val |= PCI_CLS_OPT;
1181 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1182 		}
1183 		break;
1184 	}
1185 	/* Set PHY power state. */
1186 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1187 
1188 	/* Reset GPHY/GMAC Control */
1189 	for (i = 0; i < sc->msk_num_port; i++) {
1190 		/* GPHY Control reset. */
1191 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1192 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1193 		/* GMAC Control reset. */
1194 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1195 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1196 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1197 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1198 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1199 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1200 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1201 			    GMC_BYP_RETR_ON);
1202 		}
1203 	}
1204 
1205 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1206 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1207 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1208 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1209 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1210 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1211 	}
1212 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1213 
1214 	/* LED On. */
1215 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1216 
1217 	/* Clear TWSI IRQ. */
1218 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1219 
1220 	/* Turn off hardware timer. */
1221 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1222 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1223 
1224 	/* Turn off descriptor polling. */
1225 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1226 
1227 	/* Turn off time stamps. */
1228 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1229 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1230 
1231 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1232 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1233 	    sc->msk_hw_id == CHIP_ID_YUKON_FE) {
1234 		/* Configure timeout values. */
1235 		for (i = 0; i < sc->msk_num_port; i++) {
1236 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1237 			    RI_RST_SET);
1238 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1239 			    RI_RST_CLR);
1240 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1241 			    MSK_RI_TO_53);
1242 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1243 			    MSK_RI_TO_53);
1244 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1245 			    MSK_RI_TO_53);
1246 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1247 			    MSK_RI_TO_53);
1248 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1249 			    MSK_RI_TO_53);
1250 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1251 			    MSK_RI_TO_53);
1252 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1253 			    MSK_RI_TO_53);
1254 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1255 			    MSK_RI_TO_53);
1256 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1257 			    MSK_RI_TO_53);
1258 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1259 			    MSK_RI_TO_53);
1260 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1261 			    MSK_RI_TO_53);
1262 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1263 			    MSK_RI_TO_53);
1264 		}
1265 	}
1266 
1267 	/* Disable all interrupts. */
1268 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1269 	CSR_READ_4(sc, B0_HWE_IMSK);
1270 	CSR_WRITE_4(sc, B0_IMSK, 0);
1271 	CSR_READ_4(sc, B0_IMSK);
1272 
1273         /*
1274          * On dual port PCI-X card, there is an problem where status
1275          * can be received out of order due to split transactions.
1276          */
1277 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1278 		uint16_t pcix_cmd;
1279 
1280 		pcix_cmd = pci_read_config(sc->msk_dev,
1281 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1282 		/* Clear Max Outstanding Split Transactions. */
1283 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1284 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1285 		pci_write_config(sc->msk_dev,
1286 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1287 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1288 	}
1289 	if (sc->msk_pciecap != 0) {
1290 		/* Change Max. Read Request Size to 2048 bytes. */
1291 		if (pcie_get_max_readrq(sc->msk_dev) ==
1292 		    PCIEM_DEVCTL_MAX_READRQ_512) {
1293 			pcie_set_max_readrq(sc->msk_dev,
1294 			    PCIEM_DEVCTL_MAX_READRQ_2048);
1295 		}
1296 	}
1297 
1298 	/* Clear status list. */
1299 	bzero(sc->msk_stat_ring,
1300 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1301 	sc->msk_stat_cons = 0;
1302 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1303 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1304 	/* Set the status list base address. */
1305 	addr = sc->msk_stat_ring_paddr;
1306 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1307 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1308 	/* Set the status list last index. */
1309 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1310 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1311 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1312 		/* WA for dev. #4.3 */
1313 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1314 		/* WA for dev. #4.18 */
1315 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1316 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1317 	} else {
1318 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1319 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1320 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1321 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1322 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1323 		else
1324 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1325 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1326 	}
1327 	/*
1328 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1329 	 */
1330 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1331 
1332 	/* Enable status unit. */
1333 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1334 
1335 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1336 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1337 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1338 }
1339 
1340 static int
1341 msk_probe(device_t dev)
1342 {
1343 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1344 	char desc[100];
1345 
1346 	/*
1347 	 * Not much to do here. We always know there will be
1348 	 * at least one GMAC present, and if there are two,
1349 	 * mskc_attach() will create a second device instance
1350 	 * for us.
1351 	 */
1352 	ksnprintf(desc, sizeof(desc),
1353 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1354 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1355 	    sc->msk_hw_rev);
1356 	device_set_desc_copy(dev, desc);
1357 
1358 	return (0);
1359 }
1360 
1361 static int
1362 msk_attach(device_t dev)
1363 {
1364 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1365 	struct msk_if_softc *sc_if = device_get_softc(dev);
1366 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1367 	int i, port, error;
1368 	uint8_t eaddr[ETHER_ADDR_LEN];
1369 
1370 	port = *(int *)device_get_ivars(dev);
1371 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1372 
1373 	kfree(device_get_ivars(dev), M_DEVBUF);
1374 	device_set_ivars(dev, NULL);
1375 
1376 	callout_init(&sc_if->msk_tick_ch);
1377 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1378 
1379 	sc_if->msk_if_dev = dev;
1380 	sc_if->msk_port = port;
1381 	sc_if->msk_softc = sc;
1382 	sc_if->msk_ifp = ifp;
1383 	sc_if->msk_flags = sc->msk_pflags;
1384 	sc->msk_if[port] = sc_if;
1385 
1386 	/* Setup Tx/Rx queue register offsets. */
1387 	if (port == MSK_PORT_A) {
1388 		sc_if->msk_txq = Q_XA1;
1389 		sc_if->msk_txsq = Q_XS1;
1390 		sc_if->msk_rxq = Q_R1;
1391 	} else {
1392 		sc_if->msk_txq = Q_XA2;
1393 		sc_if->msk_txsq = Q_XS2;
1394 		sc_if->msk_rxq = Q_R2;
1395 	}
1396 
1397 	error = msk_txrx_dma_alloc(sc_if);
1398 	if (error)
1399 		goto fail;
1400 
1401 	ifp->if_softc = sc_if;
1402 	ifp->if_mtu = ETHERMTU;
1403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 	ifp->if_init = msk_init;
1405 	ifp->if_ioctl = msk_ioctl;
1406 	ifp->if_start = msk_start;
1407 	ifp->if_watchdog = msk_watchdog;
1408 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1409 	ifq_set_ready(&ifp->if_snd);
1410 
1411 #ifdef notyet
1412 	/*
1413 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1414 	 * has serious bug in Rx checksum offload for all Yukon II family
1415 	 * hardware. It seems there is a workaround to make it work somtimes.
1416 	 * However, the workaround also have to check OP code sequences to
1417 	 * verify whether the OP code is correct. Sometimes it should compute
1418 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1419 	 * checksum computed by hardware. If you have to compute checksum
1420 	 * with software to verify the hardware's checksum why have hardware
1421 	 * compute the checksum? I think there is no reason to spend time to
1422 	 * make Rx checksum offload work on Yukon II hardware.
1423 	 */
1424 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1425 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1426 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1427 	ifp->if_capenable = ifp->if_capabilities;
1428 #endif
1429 
1430 	/*
1431 	 * Get station address for this interface. Note that
1432 	 * dual port cards actually come with three station
1433 	 * addresses: one for each port, plus an extra. The
1434 	 * extra one is used by the SysKonnect driver software
1435 	 * as a 'virtual' station address for when both ports
1436 	 * are operating in failover mode. Currently we don't
1437 	 * use this extra address.
1438 	 */
1439 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1440 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1441 
1442 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1443 
1444 	/*
1445 	 * Do miibus setup.
1446 	 */
1447 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1448 			      msk_mediachange, msk_mediastatus);
1449 	if (error) {
1450 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1451 		goto fail;
1452 	}
1453 
1454 	/*
1455 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1456 	 */
1457 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1458 #if 0
1459 	/*
1460 	 * Tell the upper layer(s) we support long frames.
1461 	 * Must appear after the call to ether_ifattach() because
1462 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1463 	 */
1464         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1465 #endif
1466 
1467 	return 0;
1468 fail:
1469 	msk_detach(dev);
1470 	sc->msk_if[port] = NULL;
1471 	return (error);
1472 }
1473 
1474 /*
1475  * Attach the interface. Allocate softc structures, do ifmedia
1476  * setup and ethernet/BPF attach.
1477  */
1478 static int
1479 mskc_attach(device_t dev)
1480 {
1481 	struct msk_softc *sc;
1482 	int error, *port, cpuid;
1483 
1484 	sc = device_get_softc(dev);
1485 	sc->msk_dev = dev;
1486 	lwkt_serialize_init(&sc->msk_serializer);
1487 
1488 	/*
1489 	 * Initailize sysctl variables
1490 	 */
1491 	sc->msk_process_limit = mskc_process_limit;
1492 	sc->msk_intr_rate = mskc_intr_rate;
1493 
1494 #ifndef BURN_BRIDGES
1495 	/*
1496 	 * Handle power management nonsense.
1497 	 */
1498 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1499 		uint32_t irq, bar0, bar1;
1500 
1501 		/* Save important PCI config data. */
1502 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1503 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1504 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1505 
1506 		/* Reset the power state. */
1507 		device_printf(dev, "chip is in D%d power mode "
1508 			      "-- setting to D0\n", pci_get_powerstate(dev));
1509 
1510 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1511 
1512 		/* Restore PCI config data. */
1513 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1514 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1515 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1516 	}
1517 #endif	/* BURN_BRIDGES */
1518 
1519 	/*
1520 	 * Map control/status registers.
1521 	 */
1522 	pci_enable_busmaster(dev);
1523 
1524 	/*
1525 	 * Allocate I/O resource
1526 	 */
1527 #ifdef MSK_USEIOSPACE
1528 	sc->msk_res_type = SYS_RES_IOPORT;
1529 	sc->msk_res_rid = PCIR_BAR(1);
1530 #else
1531 	sc->msk_res_type = SYS_RES_MEMORY;
1532 	sc->msk_res_rid = PCIR_BAR(0);
1533 #endif
1534 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1535 					     &sc->msk_res_rid, RF_ACTIVE);
1536 	if (sc->msk_res == NULL) {
1537 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1538 			sc->msk_res_type = SYS_RES_IOPORT;
1539 			sc->msk_res_rid = PCIR_BAR(1);
1540 		} else {
1541 			sc->msk_res_type = SYS_RES_MEMORY;
1542 			sc->msk_res_rid = PCIR_BAR(0);
1543 		}
1544 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1545 						     &sc->msk_res_rid,
1546 						     RF_ACTIVE);
1547 		if (sc->msk_res == NULL) {
1548 			device_printf(dev, "couldn't allocate %s resources\n",
1549 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1550 			return (ENXIO);
1551 		}
1552 	}
1553 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1554 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1555 
1556 	/*
1557 	 * Allocate IRQ
1558 	 */
1559 	sc->msk_irq_rid = 0;
1560 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1561 					     &sc->msk_irq_rid,
1562 					     RF_SHAREABLE | RF_ACTIVE);
1563 	if (sc->msk_irq == NULL) {
1564 		device_printf(dev, "couldn't allocate IRQ resources\n");
1565 		error = ENXIO;
1566 		goto fail;
1567 	}
1568 
1569 	/* Enable all clocks before accessing any registers. */
1570 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1571 
1572 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1573 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1574 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1575 	/* Bail out if chip is not recognized. */
1576 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1577 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1578 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1579 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1580 		    sc->msk_hw_id, sc->msk_hw_rev);
1581 		error = ENXIO;
1582 		goto fail;
1583 	}
1584 
1585 	/*
1586 	 * Create sysctl tree
1587 	 */
1588 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1589 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1590 					      SYSCTL_STATIC_CHILDREN(_hw),
1591 					      OID_AUTO,
1592 					      device_get_nameunit(dev),
1593 					      CTLFLAG_RD, 0, "");
1594 	if (sc->msk_sysctl_tree == NULL) {
1595 		device_printf(dev, "can't add sysctl node\n");
1596 		error = ENXIO;
1597 		goto fail;
1598 	}
1599 
1600 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1601 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1602 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1603 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1604 			"I", "max number of Rx events to process");
1605 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1606 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1607 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1608 			sc, 0, mskc_sysctl_intr_rate,
1609 			"I", "max number of interrupt per second");
1610 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1611 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1612 		       "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1613 		       0, "# of avoided m_defrag on TX path");
1614 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1615 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1616 		       "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1617 		       0, "# of leading copies on TX path");
1618 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1619 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1620 		       "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1621 		       0, "# of trailing copies on TX path");
1622 
1623 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1624 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1625 		sc->msk_coppertype = 0;
1626 	else
1627 		sc->msk_coppertype = 1;
1628 	/* Check number of MACs. */
1629 	sc->msk_num_port = 1;
1630 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1631 	    CFG_DUAL_MAC_MSK) {
1632 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1633 			sc->msk_num_port++;
1634 	}
1635 
1636 	/* Check bus type. */
1637 	if (pci_is_pcie(sc->msk_dev) == 0) {
1638 		sc->msk_bustype = MSK_PEX_BUS;
1639 		sc->msk_pciecap = pci_get_pciecap_ptr(sc->msk_dev);
1640 	} else if (pci_is_pcix(sc->msk_dev) == 0) {
1641 		sc->msk_bustype = MSK_PCIX_BUS;
1642 		sc->msk_pcixcap = pci_get_pcixcap_ptr(sc->msk_dev);
1643 	} else {
1644 		sc->msk_bustype = MSK_PCI_BUS;
1645 	}
1646 
1647 	switch (sc->msk_hw_id) {
1648 	case CHIP_ID_YUKON_EC:
1649 	case CHIP_ID_YUKON_EC_U:
1650 		sc->msk_clock = 125;	/* 125 Mhz */
1651 		break;
1652 	case CHIP_ID_YUKON_EX:
1653 		sc->msk_clock = 125;	/* 125 Mhz */
1654 		break;
1655 	case CHIP_ID_YUKON_FE:
1656 		sc->msk_clock = 100;	/* 100 Mhz */
1657 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1658 		break;
1659 	case CHIP_ID_YUKON_FE_P:
1660 		sc->msk_clock = 50;	/* 50 Mhz */
1661 		/* DESCV2 */
1662 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1663 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1664 			/*
1665 			 * XXX
1666 			 * FE+ A0 has status LE writeback bug so msk(4)
1667 			 * does not rely on status word of received frame
1668 			 * in msk_rxeof() which in turn disables all
1669 			 * hardware assistance bits reported by the status
1670 			 * word as well as validity of the recevied frame.
1671 			 * Just pass received frames to upper stack with
1672 			 * minimal test and let upper stack handle them.
1673 			 */
1674 			sc->msk_pflags |= MSK_FLAG_NORXCHK;
1675 		}
1676 		break;
1677 	case CHIP_ID_YUKON_XL:
1678 		sc->msk_clock = 156;	/* 156 Mhz */
1679 		break;
1680 	case CHIP_ID_YUKON_SUPR:
1681 		sc->msk_clock = 125;	/* 125 MHz */
1682 		break;
1683 	case CHIP_ID_YUKON_UL_2:
1684 		sc->msk_clock = 125;	/* 125 Mhz */
1685 		break;
1686 	case CHIP_ID_YUKON_OPT:
1687 		sc->msk_clock = 125;	/* 125 MHz */
1688 		break;
1689 	default:
1690 		sc->msk_clock = 156;	/* 156 Mhz */
1691 		break;
1692 	}
1693 
1694 	error = mskc_status_dma_alloc(sc);
1695 	if (error)
1696 		goto fail;
1697 
1698 	/* Set base interrupt mask. */
1699 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1700 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1701 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1702 
1703 	/* Reset the adapter. */
1704 	mskc_reset(sc);
1705 
1706 	error = mskc_setup_rambuffer(sc);
1707 	if (error)
1708 		goto fail;
1709 
1710 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1711 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1712 		device_printf(dev, "failed to add child for PORT_A\n");
1713 		error = ENXIO;
1714 		goto fail;
1715 	}
1716 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1717 	*port = MSK_PORT_A;
1718 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1719 
1720 	if (sc->msk_num_port > 1) {
1721 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1722 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1723 			device_printf(dev, "failed to add child for PORT_B\n");
1724 			error = ENXIO;
1725 			goto fail;
1726 		}
1727 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1728 		*port = MSK_PORT_B;
1729 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1730 	}
1731 
1732 	bus_generic_attach(dev);
1733 
1734 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1735 			       mskc_intr, sc, &sc->msk_intrhand,
1736 			       &sc->msk_serializer);
1737 	if (error) {
1738 		device_printf(dev, "couldn't set up interrupt handler\n");
1739 		goto fail;
1740 	}
1741 
1742 	cpuid = rman_get_cpuid(sc->msk_irq);
1743 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1744 
1745 	if (sc->msk_if[0] != NULL)
1746 		sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1747 	if (sc->msk_if[1] != NULL)
1748 		sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1749 	return 0;
1750 fail:
1751 	mskc_detach(dev);
1752 	return (error);
1753 }
1754 
1755 /*
1756  * Shutdown hardware and free up resources. This can be called any
1757  * time after the mutex has been initialized. It is called in both
1758  * the error case in attach and the normal detach case so it needs
1759  * to be careful about only freeing resources that have actually been
1760  * allocated.
1761  */
1762 static int
1763 msk_detach(device_t dev)
1764 {
1765 	struct msk_if_softc *sc_if = device_get_softc(dev);
1766 
1767 	if (device_is_attached(dev)) {
1768 		struct msk_softc *sc = sc_if->msk_softc;
1769 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1770 
1771 		lwkt_serialize_enter(ifp->if_serializer);
1772 
1773 		if (sc->msk_intrhand != NULL) {
1774 			if (sc->msk_if[MSK_PORT_A] != NULL)
1775 				msk_stop(sc->msk_if[MSK_PORT_A]);
1776 			if (sc->msk_if[MSK_PORT_B] != NULL)
1777 				msk_stop(sc->msk_if[MSK_PORT_B]);
1778 
1779 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1780 					  sc->msk_intrhand);
1781 			sc->msk_intrhand = NULL;
1782 		}
1783 
1784 		lwkt_serialize_exit(ifp->if_serializer);
1785 
1786 		ether_ifdetach(ifp);
1787 	}
1788 
1789 	if (sc_if->msk_miibus != NULL)
1790 		device_delete_child(dev, sc_if->msk_miibus);
1791 
1792 	msk_txrx_dma_free(sc_if);
1793 	return (0);
1794 }
1795 
1796 static int
1797 mskc_detach(device_t dev)
1798 {
1799 	struct msk_softc *sc = device_get_softc(dev);
1800 	int *port, i;
1801 
1802 #ifdef INVARIANTS
1803 	if (device_is_attached(dev)) {
1804 		KASSERT(sc->msk_intrhand == NULL,
1805 			("intr is not torn down yet"));
1806 	}
1807 #endif
1808 
1809 	for (i = 0; i < sc->msk_num_port; ++i) {
1810 		if (sc->msk_devs[i] != NULL) {
1811 			port = device_get_ivars(sc->msk_devs[i]);
1812 			if (port != NULL) {
1813 				kfree(port, M_DEVBUF);
1814 				device_set_ivars(sc->msk_devs[i], NULL);
1815 			}
1816 			device_delete_child(dev, sc->msk_devs[i]);
1817 		}
1818 	}
1819 
1820 	/* Disable all interrupts. */
1821 	CSR_WRITE_4(sc, B0_IMSK, 0);
1822 	CSR_READ_4(sc, B0_IMSK);
1823 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1824 	CSR_READ_4(sc, B0_HWE_IMSK);
1825 
1826 	/* LED Off. */
1827 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1828 
1829 	/* Put hardware reset. */
1830 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1831 
1832 	mskc_status_dma_free(sc);
1833 
1834 	if (sc->msk_irq != NULL) {
1835 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1836 				     sc->msk_irq);
1837 	}
1838 	if (sc->msk_res != NULL) {
1839 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1840 				     sc->msk_res);
1841 	}
1842 
1843 	if (sc->msk_sysctl_tree != NULL)
1844 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1845 
1846 	return (0);
1847 }
1848 
1849 /* Create status DMA region. */
1850 static int
1851 mskc_status_dma_alloc(struct msk_softc *sc)
1852 {
1853 	bus_dmamem_t dmem;
1854 	int error;
1855 
1856 	error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1857 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1858 			MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1859 	if (error) {
1860 		device_printf(sc->msk_dev,
1861 		    "failed to create status coherent DMA memory\n");
1862 		return error;
1863 	}
1864 	sc->msk_stat_tag = dmem.dmem_tag;
1865 	sc->msk_stat_map = dmem.dmem_map;
1866 	sc->msk_stat_ring = dmem.dmem_addr;
1867 	sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1868 
1869 	return (0);
1870 }
1871 
1872 static void
1873 mskc_status_dma_free(struct msk_softc *sc)
1874 {
1875 	/* Destroy status block. */
1876 	if (sc->msk_stat_tag) {
1877 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1878 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1879 				sc->msk_stat_map);
1880 		bus_dma_tag_destroy(sc->msk_stat_tag);
1881 		sc->msk_stat_tag = NULL;
1882 	}
1883 }
1884 
1885 static int
1886 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1887 {
1888 	int error, i, j;
1889 #ifdef MSK_JUMBO
1890 	struct msk_rxdesc *jrxd;
1891 	struct msk_jpool_entry *entry;
1892 	uint8_t *ptr;
1893 #endif
1894 	bus_size_t rxalign;
1895 
1896 	/* Create parent DMA tag. */
1897 	/*
1898 	 * XXX
1899 	 * It seems that Yukon II supports full 64bits DMA operations. But
1900 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1901 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1902 	 * would be used in advance for each mbufs, we limits its DMA space
1903 	 * to be in range of 32bits address space. Otherwise, we should check
1904 	 * what DMA address is used and chain another descriptor for the
1905 	 * 64bits DMA operation. This also means descriptor ring size is
1906 	 * variable. Limiting DMA address to be in 32bit address space greatly
1907 	 * simplyfies descriptor handling and possibly would increase
1908 	 * performance a bit due to efficient handling of descriptors.
1909 	 * Apart from harassing checksum offloading mechanisms, it seems
1910 	 * it's really bad idea to use a seperate descriptor for 64bit
1911 	 * DMA operation to save small descriptor memory. Anyway, I've
1912 	 * never seen these exotic scheme on ethernet interface hardware.
1913 	 */
1914 	error = bus_dma_tag_create(
1915 		    NULL,			/* parent */
1916 		    1, 0,			/* alignment, boundary */
1917 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1918 		    BUS_SPACE_MAXADDR,		/* highaddr */
1919 		    NULL, NULL,			/* filter, filterarg */
1920 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1921 		    0,				/* nsegments */
1922 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1923 		    0,				/* flags */
1924 		    &sc_if->msk_cdata.msk_parent_tag);
1925 	if (error) {
1926 		device_printf(sc_if->msk_if_dev,
1927 			      "failed to create parent DMA tag\n");
1928 		return error;
1929 	}
1930 
1931 	/* Create DMA stuffs for Tx ring. */
1932 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1933 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1934 				  (void *)&sc_if->msk_rdata.msk_tx_ring,
1935 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1936 				  &sc_if->msk_cdata.msk_tx_ring_map);
1937 	if (error) {
1938 		device_printf(sc_if->msk_if_dev,
1939 			      "failed to create TX ring DMA stuffs\n");
1940 		return error;
1941 	}
1942 
1943 	/* Create DMA stuffs for Rx ring. */
1944 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1945 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1946 				  (void *)&sc_if->msk_rdata.msk_rx_ring,
1947 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1948 				  &sc_if->msk_cdata.msk_rx_ring_map);
1949 	if (error) {
1950 		device_printf(sc_if->msk_if_dev,
1951 			      "failed to create RX ring DMA stuffs\n");
1952 		return error;
1953 	}
1954 
1955 	/* Create tag for Tx buffers. */
1956 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1957 		    1, 0,			/* alignment, boundary */
1958 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1959 		    BUS_SPACE_MAXADDR,		/* highaddr */
1960 		    NULL, NULL,			/* filter, filterarg */
1961 		    MSK_JUMBO_FRAMELEN,		/* maxsize */
1962 		    MSK_MAXTXSEGS,		/* nsegments */
1963 		    MSK_MAXSGSIZE,		/* maxsegsize */
1964 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1965 		    BUS_DMA_ONEBPAGE,		/* flags */
1966 		    &sc_if->msk_cdata.msk_tx_tag);
1967 	if (error) {
1968 		device_printf(sc_if->msk_if_dev,
1969 			      "failed to create Tx DMA tag\n");
1970 		return error;
1971 	}
1972 
1973 	/* Create DMA maps for Tx buffers. */
1974 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1975 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1976 
1977 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1978 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1979 				&txd->tx_dmamap);
1980 		if (error) {
1981 			device_printf(sc_if->msk_if_dev,
1982 				      "failed to create %dth Tx dmamap\n", i);
1983 
1984 			for (j = 0; j < i; ++j) {
1985 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1986 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1987 						   txd->tx_dmamap);
1988 			}
1989 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1990 			sc_if->msk_cdata.msk_tx_tag = NULL;
1991 
1992 			return error;
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * Workaround hardware hang which seems to happen when Rx buffer
1998 	 * is not aligned on multiple of FIFO word(8 bytes).
1999 	 */
2000 	if (sc_if->msk_flags & MSK_FLAG_RAMBUF)
2001 		rxalign = MSK_RX_BUF_ALIGN;
2002 	else
2003 		rxalign = 1;
2004 
2005 	/* Create tag for Rx buffers. */
2006 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2007 		    rxalign, 0,			/* alignment, boundary */
2008 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2009 		    BUS_SPACE_MAXADDR,		/* highaddr */
2010 		    NULL, NULL,			/* filter, filterarg */
2011 		    MCLBYTES,			/* maxsize */
2012 		    1,				/* nsegments */
2013 		    MCLBYTES,			/* maxsegsize */
2014 		    BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2015 		    BUS_DMA_WAITOK,		/* flags */
2016 		    &sc_if->msk_cdata.msk_rx_tag);
2017 	if (error) {
2018 		device_printf(sc_if->msk_if_dev,
2019 			      "failed to create Rx DMA tag\n");
2020 		return error;
2021 	}
2022 
2023 	/* Create DMA maps for Rx buffers. */
2024 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
2025 				  &sc_if->msk_cdata.msk_rx_sparemap);
2026 	if (error) {
2027 		device_printf(sc_if->msk_if_dev,
2028 			      "failed to create spare Rx dmamap\n");
2029 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2030 		sc_if->msk_cdata.msk_rx_tag = NULL;
2031 		return error;
2032 	}
2033 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2034 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2035 
2036 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
2037 					  BUS_DMA_WAITOK, &rxd->rx_dmamap);
2038 		if (error) {
2039 			device_printf(sc_if->msk_if_dev,
2040 				      "failed to create %dth Rx dmamap\n", i);
2041 
2042 			for (j = 0; j < i; ++j) {
2043 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2044 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2045 						   rxd->rx_dmamap);
2046 			}
2047 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2048 					   sc_if->msk_cdata.msk_rx_sparemap);
2049 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2050 			sc_if->msk_cdata.msk_rx_tag = NULL;
2051 
2052 			return error;
2053 		}
2054 	}
2055 
2056 #ifdef MSK_JUMBO
2057 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2058 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2059 
2060 	/* Create tag for jumbo Rx ring. */
2061 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2062 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2063 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2064 		    BUS_SPACE_MAXADDR,		/* highaddr */
2065 		    NULL, NULL,			/* filter, filterarg */
2066 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2067 		    1,				/* nsegments */
2068 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2069 		    0,				/* flags */
2070 		    NULL, NULL,			/* lockfunc, lockarg */
2071 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2072 	if (error != 0) {
2073 		device_printf(sc_if->msk_if_dev,
2074 		    "failed to create jumbo Rx ring DMA tag\n");
2075 		goto fail;
2076 	}
2077 
2078 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2079 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2080 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2081 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2082 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2083 	if (error != 0) {
2084 		device_printf(sc_if->msk_if_dev,
2085 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2086 		goto fail;
2087 	}
2088 
2089 	ctx.msk_busaddr = 0;
2090 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2091 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2092 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2093 	    msk_dmamap_cb, &ctx, 0);
2094 	if (error != 0) {
2095 		device_printf(sc_if->msk_if_dev,
2096 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2097 		goto fail;
2098 	}
2099 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2100 
2101 	/* Create tag for jumbo buffer blocks. */
2102 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2103 		    PAGE_SIZE, 0,		/* alignment, boundary */
2104 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2105 		    BUS_SPACE_MAXADDR,		/* highaddr */
2106 		    NULL, NULL,			/* filter, filterarg */
2107 		    MSK_JMEM,			/* maxsize */
2108 		    1,				/* nsegments */
2109 		    MSK_JMEM,			/* maxsegsize */
2110 		    0,				/* flags */
2111 		    NULL, NULL,			/* lockfunc, lockarg */
2112 		    &sc_if->msk_cdata.msk_jumbo_tag);
2113 	if (error != 0) {
2114 		device_printf(sc_if->msk_if_dev,
2115 		    "failed to create jumbo Rx buffer block DMA tag\n");
2116 		goto fail;
2117 	}
2118 
2119 	/* Create tag for jumbo Rx buffers. */
2120 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2121 		    PAGE_SIZE, 0,		/* alignment, boundary */
2122 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2123 		    BUS_SPACE_MAXADDR,		/* highaddr */
2124 		    NULL, NULL,			/* filter, filterarg */
2125 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2126 		    MSK_MAXRXSEGS,		/* nsegments */
2127 		    MSK_JLEN,			/* maxsegsize */
2128 		    0,				/* flags */
2129 		    NULL, NULL,			/* lockfunc, lockarg */
2130 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2131 	if (error != 0) {
2132 		device_printf(sc_if->msk_if_dev,
2133 		    "failed to create jumbo Rx DMA tag\n");
2134 		goto fail;
2135 	}
2136 
2137 	/* Create DMA maps for jumbo Rx buffers. */
2138 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2139 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2140 		device_printf(sc_if->msk_if_dev,
2141 		    "failed to create spare jumbo Rx dmamap\n");
2142 		goto fail;
2143 	}
2144 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2145 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2146 		jrxd->rx_m = NULL;
2147 		jrxd->rx_dmamap = NULL;
2148 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2149 		    &jrxd->rx_dmamap);
2150 		if (error != 0) {
2151 			device_printf(sc_if->msk_if_dev,
2152 			    "failed to create jumbo Rx dmamap\n");
2153 			goto fail;
2154 		}
2155 	}
2156 
2157 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2158 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2159 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2160 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2161 	    &sc_if->msk_cdata.msk_jumbo_map);
2162 	if (error != 0) {
2163 		device_printf(sc_if->msk_if_dev,
2164 		    "failed to allocate DMA'able memory for jumbo buf\n");
2165 		goto fail;
2166 	}
2167 
2168 	ctx.msk_busaddr = 0;
2169 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2170 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2171 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2172 	if (error != 0) {
2173 		device_printf(sc_if->msk_if_dev,
2174 		    "failed to load DMA'able memory for jumbobuf\n");
2175 		goto fail;
2176 	}
2177 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2178 
2179 	/*
2180 	 * Now divide it up into 9K pieces and save the addresses
2181 	 * in an array.
2182 	 */
2183 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2184 	for (i = 0; i < MSK_JSLOTS; i++) {
2185 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2186 		ptr += MSK_JLEN;
2187 		entry = malloc(sizeof(struct msk_jpool_entry),
2188 		    M_DEVBUF, M_WAITOK);
2189 		if (entry == NULL) {
2190 			device_printf(sc_if->msk_if_dev,
2191 			    "no memory for jumbo buffers!\n");
2192 			error = ENOMEM;
2193 			goto fail;
2194 		}
2195 		entry->slot = i;
2196 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2197 		    jpool_entries);
2198 	}
2199 #endif
2200 	return 0;
2201 }
2202 
2203 static void
2204 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2205 {
2206 	struct msk_txdesc *txd;
2207 	struct msk_rxdesc *rxd;
2208 #ifdef MSK_JUMBO
2209 	struct msk_rxdesc *jrxd;
2210 	struct msk_jpool_entry *entry;
2211 #endif
2212 	int i;
2213 
2214 #ifdef MSK_JUMBO
2215 	MSK_JLIST_LOCK(sc_if);
2216 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2217 		device_printf(sc_if->msk_if_dev,
2218 		    "asked to free buffer that is in use!\n");
2219 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2220 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2221 		    jpool_entries);
2222 	}
2223 
2224 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2225 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2226 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2227 		free(entry, M_DEVBUF);
2228 	}
2229 	MSK_JLIST_UNLOCK(sc_if);
2230 
2231 	/* Destroy jumbo buffer block. */
2232 	if (sc_if->msk_cdata.msk_jumbo_map)
2233 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2234 		    sc_if->msk_cdata.msk_jumbo_map);
2235 
2236 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2237 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2238 		    sc_if->msk_rdata.msk_jumbo_buf,
2239 		    sc_if->msk_cdata.msk_jumbo_map);
2240 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2241 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2242 	}
2243 
2244 	/* Jumbo Rx ring. */
2245 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2246 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2247 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2248 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2249 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2250 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2251 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2252 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2253 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2254 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2255 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2256 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2257 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2258 	}
2259 
2260 	/* Jumbo Rx buffers. */
2261 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2262 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2263 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2264 			if (jrxd->rx_dmamap) {
2265 				bus_dmamap_destroy(
2266 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2267 				    jrxd->rx_dmamap);
2268 				jrxd->rx_dmamap = NULL;
2269 			}
2270 		}
2271 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2272 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2273 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2274 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2275 		}
2276 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2277 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2278 	}
2279 #endif
2280 
2281 	/* Tx ring. */
2282 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2283 			   sc_if->msk_rdata.msk_tx_ring,
2284 			   sc_if->msk_cdata.msk_tx_ring_map);
2285 
2286 	/* Rx ring. */
2287 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2288 			   sc_if->msk_rdata.msk_rx_ring,
2289 			   sc_if->msk_cdata.msk_rx_ring_map);
2290 
2291 	/* Tx buffers. */
2292 	if (sc_if->msk_cdata.msk_tx_tag) {
2293 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2294 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2295 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2296 					   txd->tx_dmamap);
2297 		}
2298 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2299 		sc_if->msk_cdata.msk_tx_tag = NULL;
2300 	}
2301 
2302 	/* Rx buffers. */
2303 	if (sc_if->msk_cdata.msk_rx_tag) {
2304 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2305 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2306 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2307 					   rxd->rx_dmamap);
2308 		}
2309 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2310 				   sc_if->msk_cdata.msk_rx_sparemap);
2311 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2312 		sc_if->msk_cdata.msk_rx_tag = NULL;
2313 	}
2314 
2315 	if (sc_if->msk_cdata.msk_parent_tag) {
2316 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2317 		sc_if->msk_cdata.msk_parent_tag = NULL;
2318 	}
2319 }
2320 
2321 #ifdef MSK_JUMBO
2322 /*
2323  * Allocate a jumbo buffer.
2324  */
2325 static void *
2326 msk_jalloc(struct msk_if_softc *sc_if)
2327 {
2328 	struct msk_jpool_entry *entry;
2329 
2330 	MSK_JLIST_LOCK(sc_if);
2331 
2332 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2333 
2334 	if (entry == NULL) {
2335 		MSK_JLIST_UNLOCK(sc_if);
2336 		return (NULL);
2337 	}
2338 
2339 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2340 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2341 
2342 	MSK_JLIST_UNLOCK(sc_if);
2343 
2344 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2345 }
2346 
2347 /*
2348  * Release a jumbo buffer.
2349  */
2350 static void
2351 msk_jfree(void *buf, void *args)
2352 {
2353 	struct msk_if_softc *sc_if;
2354 	struct msk_jpool_entry *entry;
2355 	int i;
2356 
2357 	/* Extract the softc struct pointer. */
2358 	sc_if = (struct msk_if_softc *)args;
2359 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2360 
2361 	MSK_JLIST_LOCK(sc_if);
2362 	/* Calculate the slot this buffer belongs to. */
2363 	i = ((vm_offset_t)buf
2364 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2365 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2366 	    ("%s: asked to free buffer that we don't manage!", __func__));
2367 
2368 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2369 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2370 	entry->slot = i;
2371 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2372 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2373 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2374 		wakeup(sc_if);
2375 
2376 	MSK_JLIST_UNLOCK(sc_if);
2377 }
2378 #endif
2379 
2380 static int
2381 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2382 {
2383 	struct msk_txdesc *txd, *txd_last;
2384 	struct msk_tx_desc *tx_le;
2385 	struct mbuf *m;
2386 	bus_dmamap_t map;
2387 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2388 	uint32_t control, prod, si;
2389 	uint16_t offset, tcp_offset;
2390 	int error, i, nsegs, maxsegs, defrag;
2391 
2392 	maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2393 		  MSK_RESERVED_TX_DESC_CNT;
2394 	KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2395 		("not enough spare TX desc"));
2396 	if (maxsegs > MSK_MAXTXSEGS)
2397 		maxsegs = MSK_MAXTXSEGS;
2398 
2399 	/*
2400 	 * Align TX buffer to 64bytes boundary.  This greately improves
2401 	 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2402 	 * Try avoiding m_defrag(), if the mbufs are not chained together
2403 	 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2404 	 */
2405 
2406 #define MSK_TXBUF_ALIGN	64
2407 #define MSK_TXBUF_MASK	(MSK_TXBUF_ALIGN - 1)
2408 
2409 	defrag = 1;
2410 	m = *m_head;
2411 	if (m->m_len == m->m_pkthdr.len) {
2412 		int space;
2413 
2414 		space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2415 		if (space) {
2416 			if (M_WRITABLE(m)) {
2417 				if (M_TRAILINGSPACE(m) >= space) {
2418 					/* e.g. TCP ACKs */
2419 					bcopy(m->m_data, m->m_data + space,
2420 					      m->m_len);
2421 					m->m_data += space;
2422 					defrag = 0;
2423 					sc_if->msk_softc->msk_trailing_copied++;
2424 				} else {
2425 					space = MSK_TXBUF_ALIGN - space;
2426 					if (M_LEADINGSPACE(m) >= space) {
2427 						/* e.g. Small UDP datagrams */
2428 						bcopy(m->m_data,
2429 						      m->m_data - space,
2430 						      m->m_len);
2431 						m->m_data -= space;
2432 						defrag = 0;
2433 						sc_if->msk_softc->
2434 						msk_leading_copied++;
2435 					}
2436 				}
2437 			}
2438 		} else {
2439 			/* e.g. on forwarding path */
2440 			defrag = 0;
2441 		}
2442 	}
2443 	if (defrag) {
2444 		m = m_defrag(*m_head, MB_DONTWAIT);
2445 		if (m == NULL) {
2446 			m_freem(*m_head);
2447 			*m_head = NULL;
2448 			return ENOBUFS;
2449 		}
2450 		*m_head = m;
2451 	} else {
2452 		sc_if->msk_softc->msk_defrag_avoided++;
2453 	}
2454 
2455 #undef MSK_TXBUF_MASK
2456 #undef MSK_TXBUF_ALIGN
2457 
2458 	tcp_offset = offset = 0;
2459 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2460 		/*
2461 		 * Since mbuf has no protocol specific structure information
2462 		 * in it we have to inspect protocol information here to
2463 		 * setup TSO and checksum offload. I don't know why Marvell
2464 		 * made a such decision in chip design because other GigE
2465 		 * hardwares normally takes care of all these chores in
2466 		 * hardware. However, TSO performance of Yukon II is very
2467 		 * good such that it's worth to implement it.
2468 		 */
2469 		struct ether_header *eh;
2470 		struct ip *ip;
2471 
2472 		/* TODO check for M_WRITABLE(m) */
2473 
2474 		offset = sizeof(struct ether_header);
2475 		m = m_pullup(m, offset);
2476 		if (m == NULL) {
2477 			*m_head = NULL;
2478 			return (ENOBUFS);
2479 		}
2480 		eh = mtod(m, struct ether_header *);
2481 		/* Check if hardware VLAN insertion is off. */
2482 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2483 			offset = sizeof(struct ether_vlan_header);
2484 			m = m_pullup(m, offset);
2485 			if (m == NULL) {
2486 				*m_head = NULL;
2487 				return (ENOBUFS);
2488 			}
2489 		}
2490 		m = m_pullup(m, offset + sizeof(struct ip));
2491 		if (m == NULL) {
2492 			*m_head = NULL;
2493 			return (ENOBUFS);
2494 		}
2495 		ip = (struct ip *)(mtod(m, char *) + offset);
2496 		offset += (ip->ip_hl << 2);
2497 		tcp_offset = offset;
2498 		/*
2499 		 * It seems that Yukon II has Tx checksum offload bug for
2500 		 * small TCP packets that's less than 60 bytes in size
2501 		 * (e.g. TCP window probe packet, pure ACK packet).
2502 		 * Common work around like padding with zeros to make the
2503 		 * frame minimum ethernet frame size didn't work at all.
2504 		 * Instead of disabling checksum offload completely we
2505 		 * resort to S/W checksum routine when we encounter short
2506 		 * TCP frames.
2507 		 * Short UDP packets appear to be handled correctly by
2508 		 * Yukon II.
2509 		 */
2510 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2511 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2512 			uint16_t csum;
2513 
2514 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2515 			    (ip->ip_hl << 2), offset);
2516 			*(uint16_t *)(m->m_data + offset +
2517 			    m->m_pkthdr.csum_data) = csum;
2518 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2519 		}
2520 		*m_head = m;
2521 	}
2522 
2523 	prod = sc_if->msk_cdata.msk_tx_prod;
2524 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2525 	txd_last = txd;
2526 	map = txd->tx_dmamap;
2527 
2528 	error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2529 			m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2530 	if (error) {
2531 		m_freem(*m_head);
2532 		*m_head = NULL;
2533 		return error;
2534 	}
2535 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2536 
2537 	m = *m_head;
2538 	control = 0;
2539 	tx_le = NULL;
2540 
2541 #ifdef notyet
2542 	/* Check if we have a VLAN tag to insert. */
2543 	if ((m->m_flags & M_VLANTAG) != 0) {
2544 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2545 		tx_le->msk_addr = htole32(0);
2546 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2547 		    htons(m->m_pkthdr.ether_vtag));
2548 		sc_if->msk_cdata.msk_tx_cnt++;
2549 		MSK_INC(prod, MSK_TX_RING_CNT);
2550 		control |= INS_VLAN;
2551 	}
2552 #endif
2553 	/* Check if we have to handle checksum offload. */
2554 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2555 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2556 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2557 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2558 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2559 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2560 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2561 			control |= UDPTCP;
2562 		sc_if->msk_cdata.msk_tx_cnt++;
2563 		MSK_INC(prod, MSK_TX_RING_CNT);
2564 	}
2565 
2566 	si = prod;
2567 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2568 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2569 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2570 	    OP_PACKET);
2571 	sc_if->msk_cdata.msk_tx_cnt++;
2572 	MSK_INC(prod, MSK_TX_RING_CNT);
2573 
2574 	for (i = 1; i < nsegs; i++) {
2575 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2576 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2577 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2578 		    OP_BUFFER | HW_OWNER);
2579 		sc_if->msk_cdata.msk_tx_cnt++;
2580 		MSK_INC(prod, MSK_TX_RING_CNT);
2581 	}
2582 	/* Update producer index. */
2583 	sc_if->msk_cdata.msk_tx_prod = prod;
2584 
2585 	/* Set EOP on the last desciptor. */
2586 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2587 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2588 	tx_le->msk_control |= htole32(EOP);
2589 
2590 	/* Turn the first descriptor ownership to hardware. */
2591 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2592 	tx_le->msk_control |= htole32(HW_OWNER);
2593 
2594 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2595 	map = txd_last->tx_dmamap;
2596 	txd_last->tx_dmamap = txd->tx_dmamap;
2597 	txd->tx_dmamap = map;
2598 	txd->tx_m = m;
2599 
2600 	return (0);
2601 }
2602 
2603 static void
2604 msk_start(struct ifnet *ifp)
2605 {
2606         struct msk_if_softc *sc_if;
2607         struct mbuf *m_head;
2608 	int enq;
2609 
2610 	sc_if = ifp->if_softc;
2611 
2612 	ASSERT_SERIALIZED(ifp->if_serializer);
2613 
2614 	if (!sc_if->msk_link) {
2615 		ifq_purge(&ifp->if_snd);
2616 		return;
2617 	}
2618 
2619 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2620 		return;
2621 
2622 	enq = 0;
2623 	while (!ifq_is_empty(&ifp->if_snd)) {
2624 		if (MSK_IS_OACTIVE(sc_if)) {
2625 			ifp->if_flags |= IFF_OACTIVE;
2626 			break;
2627 		}
2628 
2629 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2630 		if (m_head == NULL)
2631 			break;
2632 
2633 		/*
2634 		 * Pack the data into the transmit ring. If we
2635 		 * don't have room, set the OACTIVE flag and wait
2636 		 * for the NIC to drain the ring.
2637 		 */
2638 		if (msk_encap(sc_if, &m_head) != 0) {
2639 			ifp->if_oerrors++;
2640 			if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2641 				continue;
2642 			} else {
2643 				ifp->if_flags |= IFF_OACTIVE;
2644 				break;
2645 			}
2646 		}
2647 		enq = 1;
2648 
2649 		/*
2650 		 * If there's a BPF listener, bounce a copy of this frame
2651 		 * to him.
2652 		 */
2653 		BPF_MTAP(ifp, m_head);
2654 	}
2655 
2656 	if (enq) {
2657 		/* Transmit */
2658 		CSR_WRITE_2(sc_if->msk_softc,
2659 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2660 		    sc_if->msk_cdata.msk_tx_prod);
2661 
2662 		/* Set a timeout in case the chip goes out to lunch. */
2663 		ifp->if_timer = MSK_TX_TIMEOUT;
2664 	}
2665 }
2666 
2667 static void
2668 msk_watchdog(struct ifnet *ifp)
2669 {
2670 	struct msk_if_softc *sc_if = ifp->if_softc;
2671 	uint32_t ridx;
2672 	int idx;
2673 
2674 	ASSERT_SERIALIZED(ifp->if_serializer);
2675 
2676 	if (sc_if->msk_link == 0) {
2677 		if (bootverbose)
2678 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2679 			   "(missed link)\n");
2680 		ifp->if_oerrors++;
2681 		msk_init(sc_if);
2682 		return;
2683 	}
2684 
2685 	/*
2686 	 * Reclaim first as there is a possibility of losing Tx completion
2687 	 * interrupts.
2688 	 */
2689 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2690 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2691 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2692 		msk_txeof(sc_if, idx);
2693 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2694 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2695 			    "-- recovering\n");
2696 			if (!ifq_is_empty(&ifp->if_snd))
2697 				if_devstart(ifp);
2698 			return;
2699 		}
2700 	}
2701 
2702 	if_printf(ifp, "watchdog timeout\n");
2703 	ifp->if_oerrors++;
2704 	msk_init(sc_if);
2705 	if (!ifq_is_empty(&ifp->if_snd))
2706 		if_devstart(ifp);
2707 }
2708 
2709 static int
2710 mskc_shutdown(device_t dev)
2711 {
2712 	struct msk_softc *sc = device_get_softc(dev);
2713 	int i;
2714 
2715 	lwkt_serialize_enter(&sc->msk_serializer);
2716 
2717 	for (i = 0; i < sc->msk_num_port; i++) {
2718 		if (sc->msk_if[i] != NULL)
2719 			msk_stop(sc->msk_if[i]);
2720 	}
2721 
2722 	/* Put hardware reset. */
2723 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2724 
2725 	lwkt_serialize_exit(&sc->msk_serializer);
2726 	return (0);
2727 }
2728 
2729 static int
2730 mskc_suspend(device_t dev)
2731 {
2732 	struct msk_softc *sc = device_get_softc(dev);
2733 	int i;
2734 
2735 	lwkt_serialize_enter(&sc->msk_serializer);
2736 
2737 	for (i = 0; i < sc->msk_num_port; i++) {
2738 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2739 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2740 			msk_stop(sc->msk_if[i]);
2741 	}
2742 
2743 	/* Disable all interrupts. */
2744 	CSR_WRITE_4(sc, B0_IMSK, 0);
2745 	CSR_READ_4(sc, B0_IMSK);
2746 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2747 	CSR_READ_4(sc, B0_HWE_IMSK);
2748 
2749 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2750 
2751 	/* Put hardware reset. */
2752 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2753 	sc->msk_suspended = 1;
2754 
2755 	lwkt_serialize_exit(&sc->msk_serializer);
2756 
2757 	return (0);
2758 }
2759 
2760 static int
2761 mskc_resume(device_t dev)
2762 {
2763 	struct msk_softc *sc = device_get_softc(dev);
2764 	int i;
2765 
2766 	lwkt_serialize_enter(&sc->msk_serializer);
2767 
2768 	/* Enable all clocks before accessing any registers. */
2769 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
2770 	mskc_reset(sc);
2771 	for (i = 0; i < sc->msk_num_port; i++) {
2772 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2773 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2774 			msk_init(sc->msk_if[i]);
2775 	}
2776 	sc->msk_suspended = 0;
2777 
2778 	lwkt_serialize_exit(&sc->msk_serializer);
2779 
2780 	return (0);
2781 }
2782 
2783 static void
2784 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2785 {
2786 	struct mbuf *m;
2787 	struct ifnet *ifp;
2788 	struct msk_rxdesc *rxd;
2789 	int cons, rxlen;
2790 
2791 	ifp = sc_if->msk_ifp;
2792 
2793 	cons = sc_if->msk_cdata.msk_rx_cons;
2794 	do {
2795 		rxlen = status >> 16;
2796 		if ((status & GMR_FS_VLAN) != 0 &&
2797 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2798 			rxlen -= EVL_ENCAPLEN;
2799 		if (sc_if->msk_flags & MSK_FLAG_NORXCHK) {
2800 			/*
2801 			 * For controllers that returns bogus status code
2802 			 * just do minimal check and let upper stack
2803 			 * handle this frame.
2804 			 */
2805 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2806 				ifp->if_ierrors++;
2807 				msk_discard_rxbuf(sc_if, cons);
2808 				break;
2809 			}
2810 		} else if (len > sc_if->msk_framesize ||
2811 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2812 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2813 			/* Don't count flow-control packet as errors. */
2814 			if ((status & GMR_FS_GOOD_FC) == 0)
2815 				ifp->if_ierrors++;
2816 			msk_discard_rxbuf(sc_if, cons);
2817 			break;
2818 		}
2819 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2820 		m = rxd->rx_m;
2821 		if (msk_newbuf(sc_if, cons, 0) != 0) {
2822 			ifp->if_iqdrops++;
2823 			/* Reuse old buffer. */
2824 			msk_discard_rxbuf(sc_if, cons);
2825 			break;
2826 		}
2827 		m->m_pkthdr.rcvif = ifp;
2828 		m->m_pkthdr.len = m->m_len = len;
2829 		ifp->if_ipackets++;
2830 #ifdef notyet
2831 		/* Check for VLAN tagged packets. */
2832 		if ((status & GMR_FS_VLAN) != 0 &&
2833 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2834 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2835 			m->m_flags |= M_VLANTAG;
2836 		}
2837 #endif
2838 
2839 		ifp->if_input(ifp, m);
2840 	} while (0);
2841 
2842 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2843 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2844 }
2845 
2846 #ifdef MSK_JUMBO
2847 static void
2848 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2849 {
2850 	struct mbuf *m;
2851 	struct ifnet *ifp;
2852 	struct msk_rxdesc *jrxd;
2853 	int cons, rxlen;
2854 
2855 	ifp = sc_if->msk_ifp;
2856 
2857 	MSK_IF_LOCK_ASSERT(sc_if);
2858 
2859 	cons = sc_if->msk_cdata.msk_rx_cons;
2860 	do {
2861 		rxlen = status >> 16;
2862 		if ((status & GMR_FS_VLAN) != 0 &&
2863 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2864 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2865 		if (len > sc_if->msk_framesize ||
2866 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2867 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2868 			/* Don't count flow-control packet as errors. */
2869 			if ((status & GMR_FS_GOOD_FC) == 0)
2870 				ifp->if_ierrors++;
2871 			msk_discard_jumbo_rxbuf(sc_if, cons);
2872 			break;
2873 		}
2874 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2875 		m = jrxd->rx_m;
2876 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2877 			ifp->if_iqdrops++;
2878 			/* Reuse old buffer. */
2879 			msk_discard_jumbo_rxbuf(sc_if, cons);
2880 			break;
2881 		}
2882 		m->m_pkthdr.rcvif = ifp;
2883 		m->m_pkthdr.len = m->m_len = len;
2884 		ifp->if_ipackets++;
2885 		/* Check for VLAN tagged packets. */
2886 		if ((status & GMR_FS_VLAN) != 0 &&
2887 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2888 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2889 			m->m_flags |= M_VLANTAG;
2890 		}
2891 		MSK_IF_UNLOCK(sc_if);
2892 		(*ifp->if_input)(ifp, m);
2893 		MSK_IF_LOCK(sc_if);
2894 	} while (0);
2895 
2896 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2897 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2898 }
2899 #endif
2900 
2901 static void
2902 msk_txeof(struct msk_if_softc *sc_if, int idx)
2903 {
2904 	struct msk_txdesc *txd;
2905 	struct msk_tx_desc *cur_tx;
2906 	struct ifnet *ifp;
2907 	uint32_t control;
2908 	int cons, prog;
2909 
2910 	ifp = sc_if->msk_ifp;
2911 
2912 	/*
2913 	 * Go through our tx ring and free mbufs for those
2914 	 * frames that have been sent.
2915 	 */
2916 	cons = sc_if->msk_cdata.msk_tx_cons;
2917 	prog = 0;
2918 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2919 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2920 			break;
2921 		prog++;
2922 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2923 		control = le32toh(cur_tx->msk_control);
2924 		sc_if->msk_cdata.msk_tx_cnt--;
2925 		if ((control & EOP) == 0)
2926 			continue;
2927 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2928 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2929 
2930 		ifp->if_opackets++;
2931 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2932 		    __func__));
2933 		m_freem(txd->tx_m);
2934 		txd->tx_m = NULL;
2935 	}
2936 
2937 	if (prog > 0) {
2938 		sc_if->msk_cdata.msk_tx_cons = cons;
2939 		if (!MSK_IS_OACTIVE(sc_if))
2940 			ifp->if_flags &= ~IFF_OACTIVE;
2941 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2942 			ifp->if_timer = 0;
2943 		/* No need to sync LEs as we didn't update LEs. */
2944 	}
2945 }
2946 
2947 static void
2948 msk_tick(void *xsc_if)
2949 {
2950 	struct msk_if_softc *sc_if = xsc_if;
2951 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2952 	struct mii_data *mii;
2953 
2954 	lwkt_serialize_enter(ifp->if_serializer);
2955 
2956 	mii = device_get_softc(sc_if->msk_miibus);
2957 
2958 	mii_tick(mii);
2959 	if (!sc_if->msk_link)
2960 		msk_miibus_statchg(sc_if->msk_if_dev);
2961 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2962 
2963 	lwkt_serialize_exit(ifp->if_serializer);
2964 }
2965 
2966 static void
2967 msk_intr_phy(struct msk_if_softc *sc_if)
2968 {
2969 	uint16_t status;
2970 
2971 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2972 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2973 	/* Handle FIFO Underrun/Overflow? */
2974 	if (status & PHY_M_IS_FIFO_ERROR) {
2975 		device_printf(sc_if->msk_if_dev,
2976 		    "PHY FIFO underrun/overflow.\n");
2977 	}
2978 }
2979 
2980 static void
2981 msk_intr_gmac(struct msk_if_softc *sc_if)
2982 {
2983 	struct msk_softc *sc;
2984 	uint8_t status;
2985 
2986 	sc = sc_if->msk_softc;
2987 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2988 
2989 	/* GMAC Rx FIFO overrun. */
2990 	if ((status & GM_IS_RX_FF_OR) != 0) {
2991 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2992 		    GMF_CLI_RX_FO);
2993 	}
2994 	/* GMAC Tx FIFO underrun. */
2995 	if ((status & GM_IS_TX_FF_UR) != 0) {
2996 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2997 		    GMF_CLI_TX_FU);
2998 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
2999 		/*
3000 		 * XXX
3001 		 * In case of Tx underrun, we may need to flush/reset
3002 		 * Tx MAC but that would also require resynchronization
3003 		 * with status LEs. Reintializing status LEs would
3004 		 * affect other port in dual MAC configuration so it
3005 		 * should be avoided as possible as we can.
3006 		 * Due to lack of documentation it's all vague guess but
3007 		 * it needs more investigation.
3008 		 */
3009 	}
3010 }
3011 
3012 static void
3013 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3014 {
3015 	struct msk_softc *sc;
3016 
3017 	sc = sc_if->msk_softc;
3018 	if ((status & Y2_IS_PAR_RD1) != 0) {
3019 		device_printf(sc_if->msk_if_dev,
3020 		    "RAM buffer read parity error\n");
3021 		/* Clear IRQ. */
3022 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3023 		    RI_CLR_RD_PERR);
3024 	}
3025 	if ((status & Y2_IS_PAR_WR1) != 0) {
3026 		device_printf(sc_if->msk_if_dev,
3027 		    "RAM buffer write parity error\n");
3028 		/* Clear IRQ. */
3029 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3030 		    RI_CLR_WR_PERR);
3031 	}
3032 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3033 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3034 		/* Clear IRQ. */
3035 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3036 		    GMF_CLI_TX_PE);
3037 	}
3038 	if ((status & Y2_IS_PAR_RX1) != 0) {
3039 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3040 		/* Clear IRQ. */
3041 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3042 	}
3043 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3044 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3045 		/* Clear IRQ. */
3046 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3047 	}
3048 }
3049 
3050 static void
3051 mskc_intr_hwerr(struct msk_softc *sc)
3052 {
3053 	uint32_t status;
3054 	uint32_t tlphead[4];
3055 
3056 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3057 	/* Time Stamp timer overflow. */
3058 	if ((status & Y2_IS_TIST_OV) != 0)
3059 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3060 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3061 		/*
3062 		 * PCI Express Error occured which is not described in PEX
3063 		 * spec.
3064 		 * This error is also mapped either to Master Abort(
3065 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3066 		 * can only be cleared there.
3067                  */
3068 		device_printf(sc->msk_dev,
3069 		    "PCI Express protocol violation error\n");
3070 	}
3071 
3072 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3073 		uint16_t v16;
3074 
3075 		if ((status & Y2_IS_MST_ERR) != 0)
3076 			device_printf(sc->msk_dev,
3077 			    "unexpected IRQ Status error\n");
3078 		else
3079 			device_printf(sc->msk_dev,
3080 			    "unexpected IRQ Master error\n");
3081 		/* Reset all bits in the PCI status register. */
3082 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3083 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3084 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3085 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3086 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3087 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3088 	}
3089 
3090 	/* Check for PCI Express Uncorrectable Error. */
3091 	if ((status & Y2_IS_PCI_EXP) != 0) {
3092 		uint32_t v32;
3093 
3094 		/*
3095 		 * On PCI Express bus bridges are called root complexes (RC).
3096 		 * PCI Express errors are recognized by the root complex too,
3097 		 * which requests the system to handle the problem. After
3098 		 * error occurence it may be that no access to the adapter
3099 		 * may be performed any longer.
3100 		 */
3101 
3102 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3103 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3104 			/* Ignore unsupported request error. */
3105 			if (bootverbose) {
3106 				device_printf(sc->msk_dev,
3107 				    "Uncorrectable PCI Express error\n");
3108 			}
3109 		}
3110 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3111 			int i;
3112 
3113 			/* Get TLP header form Log Registers. */
3114 			for (i = 0; i < 4; i++)
3115 				tlphead[i] = CSR_PCI_READ_4(sc,
3116 				    PEX_HEADER_LOG + i * 4);
3117 			/* Check for vendor defined broadcast message. */
3118 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3119 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3120 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3121 				    sc->msk_intrhwemask);
3122 				CSR_READ_4(sc, B0_HWE_IMSK);
3123 			}
3124 		}
3125 		/* Clear the interrupt. */
3126 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3127 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3128 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3129 	}
3130 
3131 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3132 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3133 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3134 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3135 }
3136 
3137 static __inline void
3138 msk_rxput(struct msk_if_softc *sc_if)
3139 {
3140 	struct msk_softc *sc;
3141 
3142 	sc = sc_if->msk_softc;
3143 #ifdef MSK_JUMBO
3144 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3145 		bus_dmamap_sync(
3146 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3147 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3148 		    BUS_DMASYNC_PREWRITE);
3149 	}
3150 #endif
3151 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3152 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3153 }
3154 
3155 static int
3156 mskc_handle_events(struct msk_softc *sc)
3157 {
3158 	struct msk_if_softc *sc_if;
3159 	int rxput[2];
3160 	struct msk_stat_desc *sd;
3161 	uint32_t control, status;
3162 	int cons, idx, len, port, rxprog;
3163 
3164 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3165 	if (idx == sc->msk_stat_cons)
3166 		return (0);
3167 
3168 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3169 
3170 	rxprog = 0;
3171 	for (cons = sc->msk_stat_cons; cons != idx;) {
3172 		sd = &sc->msk_stat_ring[cons];
3173 		control = le32toh(sd->msk_control);
3174 		if ((control & HW_OWNER) == 0)
3175 			break;
3176 		/*
3177 		 * Marvell's FreeBSD driver updates status LE after clearing
3178 		 * HW_OWNER. However we don't have a way to sync single LE
3179 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3180 		 * an entire DMA map. So don't sync LE until we have a better
3181 		 * way to sync LEs.
3182 		 */
3183 		control &= ~HW_OWNER;
3184 		sd->msk_control = htole32(control);
3185 		status = le32toh(sd->msk_status);
3186 		len = control & STLE_LEN_MASK;
3187 		port = (control >> 16) & 0x01;
3188 		sc_if = sc->msk_if[port];
3189 		if (sc_if == NULL) {
3190 			device_printf(sc->msk_dev, "invalid port opcode "
3191 			    "0x%08x\n", control & STLE_OP_MASK);
3192 			continue;
3193 		}
3194 
3195 		switch (control & STLE_OP_MASK) {
3196 		case OP_RXVLAN:
3197 			sc_if->msk_vtag = ntohs(len);
3198 			break;
3199 		case OP_RXCHKSVLAN:
3200 			sc_if->msk_vtag = ntohs(len);
3201 			break;
3202 		case OP_RXSTAT:
3203 			if ((sc_if->msk_ifp->if_flags & IFF_RUNNING) == 0)
3204 				break;
3205 #ifdef MSK_JUMBO
3206 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3207 				msk_jumbo_rxeof(sc_if, status, len);
3208 			else
3209 #endif
3210 				msk_rxeof(sc_if, status, len);
3211 			rxprog++;
3212 			/*
3213 			 * Because there is no way to sync single Rx LE
3214 			 * put the DMA sync operation off until the end of
3215 			 * event processing.
3216 			 */
3217 			rxput[port]++;
3218 			/* Update prefetch unit if we've passed water mark. */
3219 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3220 				msk_rxput(sc_if);
3221 				rxput[port] = 0;
3222 			}
3223 			break;
3224 		case OP_TXINDEXLE:
3225 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3226 				msk_txeof(sc->msk_if[MSK_PORT_A],
3227 				    status & STLE_TXA1_MSKL);
3228 			}
3229 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3230 				msk_txeof(sc->msk_if[MSK_PORT_B],
3231 				    ((status & STLE_TXA2_MSKL) >>
3232 				    STLE_TXA2_SHIFTL) |
3233 				    ((len & STLE_TXA2_MSKH) <<
3234 				    STLE_TXA2_SHIFTH));
3235 			}
3236 			break;
3237 		default:
3238 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3239 			    control & STLE_OP_MASK);
3240 			break;
3241 		}
3242 		MSK_INC(cons, MSK_STAT_RING_CNT);
3243 		if (rxprog > sc->msk_process_limit)
3244 			break;
3245 	}
3246 
3247 	sc->msk_stat_cons = cons;
3248 	/* XXX We should sync status LEs here. See above notes. */
3249 
3250 	if (rxput[MSK_PORT_A] > 0)
3251 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3252 	if (rxput[MSK_PORT_B] > 0)
3253 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3254 
3255 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3256 }
3257 
3258 /* Legacy interrupt handler for shared interrupt. */
3259 static void
3260 mskc_intr(void *xsc)
3261 {
3262 	struct msk_softc *sc;
3263 	struct msk_if_softc *sc_if0, *sc_if1;
3264 	struct ifnet *ifp0, *ifp1;
3265 	uint32_t status;
3266 
3267 	sc = xsc;
3268 	ASSERT_SERIALIZED(&sc->msk_serializer);
3269 
3270 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3271 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3272 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3273 	    (status & sc->msk_intrmask) == 0) {
3274 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3275 		return;
3276 	}
3277 
3278 	sc_if0 = sc->msk_if[MSK_PORT_A];
3279 	sc_if1 = sc->msk_if[MSK_PORT_B];
3280 	ifp0 = ifp1 = NULL;
3281 	if (sc_if0 != NULL)
3282 		ifp0 = sc_if0->msk_ifp;
3283 	if (sc_if1 != NULL)
3284 		ifp1 = sc_if1->msk_ifp;
3285 
3286 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3287 		msk_intr_phy(sc_if0);
3288 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3289 		msk_intr_phy(sc_if1);
3290 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3291 		msk_intr_gmac(sc_if0);
3292 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3293 		msk_intr_gmac(sc_if1);
3294 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3295 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3296 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3297 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3298 		CSR_READ_4(sc, B0_IMSK);
3299 	}
3300         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3301 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3302 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3303 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3304 		CSR_READ_4(sc, B0_IMSK);
3305 	}
3306 	if ((status & Y2_IS_HW_ERR) != 0)
3307 		mskc_intr_hwerr(sc);
3308 
3309 	while (mskc_handle_events(sc) != 0)
3310 		;
3311 	if ((status & Y2_IS_STAT_BMU) != 0)
3312 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3313 
3314 	/* Reenable interrupts. */
3315 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3316 
3317 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3318 	    !ifq_is_empty(&ifp0->if_snd))
3319 		if_devstart(ifp0);
3320 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3321 	    !ifq_is_empty(&ifp1->if_snd))
3322 		if_devstart(ifp1);
3323 }
3324 
3325 static void
3326 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3327 {
3328 	struct msk_softc *sc = sc_if->msk_softc;
3329 	struct ifnet *ifp = sc_if->msk_ifp;
3330 
3331 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3332 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3333 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3334 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3335 		    TX_STFW_ENA);
3336 	} else {
3337 		if (ifp->if_mtu > ETHERMTU) {
3338 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3339 			CSR_WRITE_4(sc,
3340 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3341 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3342 			/* Disable Store & Forward mode for Tx. */
3343 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3344 			    TX_STFW_DIS);
3345 		} else {
3346 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3347 			    TX_STFW_ENA);
3348 		}
3349 	}
3350 }
3351 
3352 static void
3353 msk_init(void *xsc)
3354 {
3355 	struct msk_if_softc *sc_if = xsc;
3356 	struct msk_softc *sc = sc_if->msk_softc;
3357 	struct ifnet *ifp = sc_if->msk_ifp;
3358 	struct mii_data	 *mii;
3359 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3360 	uint16_t gmac;
3361 	uint32_t reg;
3362 	int error, i;
3363 
3364 	ASSERT_SERIALIZED(ifp->if_serializer);
3365 
3366 	mii = device_get_softc(sc_if->msk_miibus);
3367 
3368 	error = 0;
3369 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3370 	msk_stop(sc_if);
3371 
3372 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3373 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3374 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3375 		/*
3376 		 * In Yukon EC Ultra, TSO & checksum offload is not
3377 		 * supported for jumbo frame.
3378 		 */
3379 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3380 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3381 	}
3382 
3383 	/* GMAC Control reset. */
3384 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3385 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3386 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3387 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3388 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3389 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3390 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3391 		    GMC_BYP_RETR_ON);
3392 	}
3393 
3394 	/*
3395 	 * Initialize GMAC first such that speed/duplex/flow-control
3396 	 * parameters are renegotiated when interface is brought up.
3397 	 */
3398 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3399 
3400 	/* Dummy read the Interrupt Source Register. */
3401 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3402 
3403 	/* Set MIB Clear Counter Mode. */
3404 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3405 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3406 	/* Read all MIB Counters with Clear Mode set. */
3407 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3408 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3409 	/* Clear MIB Clear Counter Mode. */
3410 	gmac &= ~GM_PAR_MIB_CLR;
3411 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3412 
3413 	/* Disable FCS. */
3414 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3415 
3416 	/* Setup Transmit Control Register. */
3417 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3418 
3419 	/* Setup Transmit Flow Control Register. */
3420 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3421 
3422 	/* Setup Transmit Parameter Register. */
3423 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3424 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3425 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3426 
3427 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3428 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3429 
3430 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3431 		gmac |= GM_SMOD_JUMBO_ENA;
3432 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3433 
3434 	/* Set station address. */
3435         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3436         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3437 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3438 		    eaddr[i]);
3439         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3440 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3441 		    eaddr[i]);
3442 
3443 	/* Disable interrupts for counter overflows. */
3444 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3445 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3446 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3447 
3448 	/* Configure Rx MAC FIFO. */
3449 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3450 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3451 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3452 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3453 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3454 		reg |= GMF_RX_OVER_ON;
3455 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3456 
3457 	/* Set receive filter. */
3458 	msk_rxfilter(sc_if);
3459 
3460 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3461 		/* Clear flush mask - HW bug. */
3462 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3463 	} else {
3464 		/* Flush Rx MAC FIFO on any flow control or error. */
3465 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3466 		    GMR_FS_ANY_ERR);
3467 	}
3468 
3469 	/*
3470 	 * Set Rx FIFO flush threshold to 64 bytes 1 FIFO word
3471 	 * due to hardware hang on receipt of pause frames.
3472 	 */
3473 	reg = RX_GMF_FL_THR_DEF + 1;
3474 	/* Another magic for Yukon FE+ - From Linux. */
3475 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3476 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3477 		reg = 0x178;
3478 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3479 
3480 
3481 	/* Configure Tx MAC FIFO. */
3482 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3483 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3484 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3485 
3486 	/* Configure hardware VLAN tag insertion/stripping. */
3487 	msk_setvlan(sc_if, ifp);
3488 
3489 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3490 		/* Set Rx Pause threshould. */
3491 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3492 		    MSK_ECU_LLPP);
3493 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3494 		    MSK_ECU_ULPP);
3495 		/* Configure store-and-forward for Tx. */
3496 		msk_set_tx_stfwd(sc_if);
3497 	}
3498 
3499 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3500 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3501 		/* Disable dynamic watermark - from Linux. */
3502 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3503 		reg &= ~0x03;
3504 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3505 	}
3506 
3507 	/*
3508 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3509 	 * arbiter as we don't use Sync Tx queue.
3510 	 */
3511 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3512 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3513 	/* Enable the RAM Interface Arbiter. */
3514 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3515 
3516 	/* Setup RAM buffer. */
3517 	msk_set_rambuffer(sc_if);
3518 
3519 	/* Disable Tx sync Queue. */
3520 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3521 
3522 	/* Setup Tx Queue Bus Memory Interface. */
3523 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3524 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3525 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3526 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3527 	switch (sc->msk_hw_id) {
3528 	case CHIP_ID_YUKON_EC_U:
3529 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3530 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3531 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3532 			    MSK_ECU_TXFF_LEV);
3533 		}
3534 		break;
3535 	case CHIP_ID_YUKON_EX:
3536 		/*
3537 		 * Yukon Extreme seems to have silicon bug for
3538 		 * automatic Tx checksum calculation capability.
3539 		 */
3540 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) {
3541 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3542 			    F_TX_CHK_AUTO_OFF);
3543 		}
3544 		break;
3545  	}
3546 
3547 	/* Setup Rx Queue Bus Memory Interface. */
3548 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3549 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3550 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3551 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3552         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3553 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3554 		/* MAC Rx RAM Read is controlled by hardware. */
3555                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3556 	}
3557 
3558 	msk_set_prefetch(sc, sc_if->msk_txq,
3559 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3560 	msk_init_tx_ring(sc_if);
3561 
3562 	/* Disable Rx checksum offload and RSS hash. */
3563 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3564 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3565 #ifdef MSK_JUMBO
3566 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3567 		msk_set_prefetch(sc, sc_if->msk_rxq,
3568 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3569 		    MSK_JUMBO_RX_RING_CNT - 1);
3570 		error = msk_init_jumbo_rx_ring(sc_if);
3571 	} else
3572 #endif
3573 	{
3574 		msk_set_prefetch(sc, sc_if->msk_rxq,
3575 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3576 		    MSK_RX_RING_CNT - 1);
3577 		error = msk_init_rx_ring(sc_if);
3578 	}
3579 	if (error != 0) {
3580 		device_printf(sc_if->msk_if_dev,
3581 		    "initialization failed: no memory for Rx buffers\n");
3582 		msk_stop(sc_if);
3583 		return;
3584 	}
3585 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3586 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3587 		/* Disable flushing of non-ASF packets. */
3588 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3589 		    GMF_RX_MACSEC_FLUSH_OFF);
3590 	}
3591 
3592 	/* Configure interrupt handling. */
3593 	if (sc_if->msk_port == MSK_PORT_A) {
3594 		sc->msk_intrmask |= Y2_IS_PORT_A;
3595 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3596 	} else {
3597 		sc->msk_intrmask |= Y2_IS_PORT_B;
3598 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3599 	}
3600 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3601 	CSR_READ_4(sc, B0_HWE_IMSK);
3602 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3603 	CSR_READ_4(sc, B0_IMSK);
3604 
3605 	sc_if->msk_link = 0;
3606 	mii_mediachg(mii);
3607 
3608 	mskc_set_imtimer(sc);
3609 
3610 	ifp->if_flags |= IFF_RUNNING;
3611 	ifp->if_flags &= ~IFF_OACTIVE;
3612 
3613 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3614 }
3615 
3616 static void
3617 msk_set_rambuffer(struct msk_if_softc *sc_if)
3618 {
3619 	struct msk_softc *sc;
3620 	int ltpp, utpp;
3621 
3622 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3623 		return;
3624 
3625 	sc = sc_if->msk_softc;
3626 
3627 	/* Setup Rx Queue. */
3628 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3629 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3630 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3631 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3632 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3633 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3634 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3635 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3636 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3637 
3638 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3639 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3640 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3641 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3642 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3643 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3644 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3645 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3646 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3647 
3648 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3649 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3650 
3651 	/* Setup Tx Queue. */
3652 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3653 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3654 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3655 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3656 	    sc->msk_txqend[sc_if->msk_port] / 8);
3657 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3658 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3659 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3660 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3661 	/* Enable Store & Forward for Tx side. */
3662 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3663 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3664 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3665 }
3666 
3667 static void
3668 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3669     uint32_t count)
3670 {
3671 
3672 	/* Reset the prefetch unit. */
3673 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3674 	    PREF_UNIT_RST_SET);
3675 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3676 	    PREF_UNIT_RST_CLR);
3677 	/* Set LE base address. */
3678 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3679 	    MSK_ADDR_LO(addr));
3680 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3681 	    MSK_ADDR_HI(addr));
3682 	/* Set the list last index. */
3683 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3684 	    count);
3685 	/* Turn on prefetch unit. */
3686 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3687 	    PREF_UNIT_OP_ON);
3688 	/* Dummy read to ensure write. */
3689 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3690 }
3691 
3692 static void
3693 msk_stop(struct msk_if_softc *sc_if)
3694 {
3695 	struct msk_softc *sc = sc_if->msk_softc;
3696 	struct ifnet *ifp = sc_if->msk_ifp;
3697 	struct msk_txdesc *txd;
3698 	struct msk_rxdesc *rxd;
3699 #ifdef MSK_JUMBO
3700 	struct msk_rxdesc *jrxd;
3701 #endif
3702 	uint32_t val;
3703 	int i;
3704 
3705 	ASSERT_SERIALIZED(ifp->if_serializer);
3706 
3707 	callout_stop(&sc_if->msk_tick_ch);
3708 	ifp->if_timer = 0;
3709 
3710 	/* Disable interrupts. */
3711 	if (sc_if->msk_port == MSK_PORT_A) {
3712 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3713 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3714 	} else {
3715 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3716 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3717 	}
3718 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3719 	CSR_READ_4(sc, B0_HWE_IMSK);
3720 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3721 	CSR_READ_4(sc, B0_IMSK);
3722 
3723 	/* Disable Tx/Rx MAC. */
3724 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3725 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3726 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3727 	/* Read again to ensure writing. */
3728 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3729 
3730 	/* Stop Tx BMU. */
3731 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3732 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3733 	for (i = 0; i < MSK_TIMEOUT; i++) {
3734 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3735 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3736 			    BMU_STOP);
3737 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3738 		} else
3739 			break;
3740 		DELAY(1);
3741 	}
3742 	if (i == MSK_TIMEOUT)
3743 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3744 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3745 	    RB_RST_SET | RB_DIS_OP_MD);
3746 
3747 	/* Disable all GMAC interrupt. */
3748 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3749 	/* Disable PHY interrupt. */
3750 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3751 
3752 	/* Disable the RAM Interface Arbiter. */
3753 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3754 
3755 	/* Reset the PCI FIFO of the async Tx queue */
3756 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3757 	    BMU_RST_SET | BMU_FIFO_RST);
3758 
3759 	/* Reset the Tx prefetch units. */
3760 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3761 	    PREF_UNIT_RST_SET);
3762 
3763 	/* Reset the RAM Buffer async Tx queue. */
3764 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3765 
3766 	/* Reset Tx MAC FIFO. */
3767 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3768 	/* Set Pause Off. */
3769 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3770 
3771 	/*
3772 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3773 	 * reach the end of packet and since we can't make sure that we have
3774 	 * incoming data, we must reset the BMU while it is not during a DMA
3775 	 * transfer. Since it is possible that the Rx path is still active,
3776 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3777 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3778 	 * BMU is polled until any DMA in progress is ended and only then it
3779 	 * will be reset.
3780 	 */
3781 
3782 	/* Disable the RAM Buffer receive queue. */
3783 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3784 	for (i = 0; i < MSK_TIMEOUT; i++) {
3785 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3786 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3787 			break;
3788 		DELAY(1);
3789 	}
3790 	if (i == MSK_TIMEOUT)
3791 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3792 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3793 	    BMU_RST_SET | BMU_FIFO_RST);
3794 	/* Reset the Rx prefetch unit. */
3795 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3796 	    PREF_UNIT_RST_SET);
3797 	/* Reset the RAM Buffer receive queue. */
3798 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3799 	/* Reset Rx MAC FIFO. */
3800 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3801 
3802 	/* Free Rx and Tx mbufs still in the queues. */
3803 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3804 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3805 		if (rxd->rx_m != NULL) {
3806 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3807 			    rxd->rx_dmamap);
3808 			m_freem(rxd->rx_m);
3809 			rxd->rx_m = NULL;
3810 		}
3811 	}
3812 #ifdef MSK_JUMBO
3813 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3814 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3815 		if (jrxd->rx_m != NULL) {
3816 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3817 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3818 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3819 			    jrxd->rx_dmamap);
3820 			m_freem(jrxd->rx_m);
3821 			jrxd->rx_m = NULL;
3822 		}
3823 	}
3824 #endif
3825 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3826 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3827 		if (txd->tx_m != NULL) {
3828 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3829 			    txd->tx_dmamap);
3830 			m_freem(txd->tx_m);
3831 			txd->tx_m = NULL;
3832 		}
3833 	}
3834 
3835 	/*
3836 	 * Mark the interface down.
3837 	 */
3838 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3839 	sc_if->msk_link = 0;
3840 }
3841 
3842 static int
3843 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3844 {
3845 	return sysctl_int_range(oidp, arg1, arg2, req,
3846 				MSK_PROC_MIN, MSK_PROC_MAX);
3847 }
3848 
3849 static int
3850 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3851 {
3852 	struct msk_softc *sc = arg1;
3853 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3854 	int error = 0, v;
3855 
3856 	lwkt_serialize_enter(serializer);
3857 
3858 	v = sc->msk_intr_rate;
3859 	error = sysctl_handle_int(oidp, &v, 0, req);
3860 	if (error || req->newptr == NULL)
3861 		goto back;
3862 	if (v < 0) {
3863 		error = EINVAL;
3864 		goto back;
3865 	}
3866 
3867 	if (sc->msk_intr_rate != v) {
3868 		int flag = 0, i;
3869 
3870 		sc->msk_intr_rate = v;
3871 		for (i = 0; i < 2; ++i) {
3872 			if (sc->msk_if[i] != NULL) {
3873 				flag |= sc->msk_if[i]->
3874 					arpcom.ac_if.if_flags & IFF_RUNNING;
3875 			}
3876 		}
3877 		if (flag)
3878 			mskc_set_imtimer(sc);
3879 	}
3880 back:
3881 	lwkt_serialize_exit(serializer);
3882 	return error;
3883 }
3884 
3885 static int
3886 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3887 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3888 {
3889 	struct msk_if_softc *sc_if = device_get_softc(dev);
3890 	bus_dmamem_t dmem;
3891 	int error;
3892 
3893 	error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3894 			MSK_RING_ALIGN, 0,
3895 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3896 			size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3897 	if (error) {
3898 		device_printf(dev, "can't create coherent DMA memory\n");
3899 		return error;
3900 	}
3901 
3902 	*dtag = dmem.dmem_tag;
3903 	*dmap = dmem.dmem_map;
3904 	*addr = dmem.dmem_addr;
3905 	*paddr = dmem.dmem_busaddr;
3906 
3907 	return 0;
3908 }
3909 
3910 static void
3911 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3912 {
3913 	if (dtag != NULL) {
3914 		bus_dmamap_unload(dtag, dmap);
3915 		bus_dmamem_free(dtag, addr, dmap);
3916 		bus_dma_tag_destroy(dtag);
3917 	}
3918 }
3919 
3920 static void
3921 mskc_set_imtimer(struct msk_softc *sc)
3922 {
3923 	if (sc->msk_intr_rate > 0) {
3924 		/*
3925 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3926 		 *     and 78.125MHz for rest of chip types
3927 		 */
3928 		CSR_WRITE_4(sc, B2_IRQM_INI,
3929 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3930 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3931 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3932 	} else {
3933 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3934 	}
3935 }
3936