xref: /dflybsd-src/sys/dev/netif/lge/if_lge.c (revision b5b0912b1891e95ccc48cad83f09239ccb7ffc16)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.27 2005/05/31 14:11:42 joerg Exp $
35  */
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * Written by Bill Paul <william.paul@windriver.com>
42  * Wind River Systems
43  */
44 
45 /*
46  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49  * are three supported methods for data transfer between host and
50  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51  * Propulsion Technology (tm) DMA. The latter mechanism is a form
52  * of double buffer DMA where the packet data is copied to a
53  * pre-allocated DMA buffer who's physical address has been loaded
54  * into a table at device initialization time. The rationale is that
55  * the virtual to physical address translation needed for normal
56  * scatter/gather DMA is more expensive than the data copy needed
57  * for double buffering. This may be true in Windows NT and the like,
58  * but it isn't true for us, at least on the x86 arch. This driver
59  * uses the scatter/gather I/O method for both TX and RX.
60  *
61  * The LXT1001 only supports TCP/IP checksum offload on receive.
62  * Also, the VLAN tagging is done using a 16-entry table which allows
63  * the chip to perform hardware filtering based on VLAN tags. Sadly,
64  * our vlan support doesn't currently play well with this kind of
65  * hardware support.
66  *
67  * Special thanks to:
68  * - Jeff James at Intel, for arranging to have the LXT1001 manual
69  *   released (at long last)
70  * - Beny Chen at D-Link, for actually sending it to me
71  * - Brad Short and Keith Alexis at SMC, for sending me sample
72  *   SMC9462SX and SMC9462TX adapters for testing
73  * - Paul Saab at Y!, for not killing me (though it remains to be seen
74  *   if in fact he did me much of a favor)
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 
85 #include <net/if.h>
86 #include <net/ifq_var.h>
87 #include <net/if_arp.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 
92 #include <net/bpf.h>
93 
94 #include <vm/vm.h>              /* for vtophys */
95 #include <vm/pmap.h>            /* for vtophys */
96 #include <machine/bus.h>
97 #include <machine/resource.h>
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 
104 #include <bus/pci/pcireg.h>
105 #include <bus/pci/pcivar.h>
106 
107 #define LGE_USEIOSPACE
108 
109 #include "if_lgereg.h"
110 
111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113 
114 /*
115  * Various supported device vendors/types and their names.
116  */
117 static struct lge_type lge_devs[] = {
118 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
119 	{ 0, 0, NULL }
120 };
121 
122 static int	lge_probe(device_t);
123 static int	lge_attach(device_t);
124 static int	lge_detach(device_t);
125 
126 static int	lge_alloc_jumbo_mem(struct lge_softc *);
127 static void	lge_free_jumbo_mem(struct lge_softc *);
128 static struct lge_jslot
129 		*lge_jalloc(struct lge_softc *);
130 static void	lge_jfree(void *);
131 static void	lge_jref(void *);
132 
133 static int	lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
134 			   struct mbuf *);
135 static int	lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
136 static void	lge_rxeof(struct lge_softc *, int);
137 static void	lge_rxeoc(struct lge_softc *);
138 static void	lge_txeof(struct lge_softc *);
139 static void	lge_intr(void *);
140 static void	lge_tick(void *);
141 static void	lge_start(struct ifnet *);
142 static int	lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
143 static void	lge_init(void *);
144 static void	lge_stop(struct lge_softc *);
145 static void	lge_watchdog(struct ifnet *);
146 static void	lge_shutdown(device_t);
147 static int	lge_ifmedia_upd(struct ifnet *);
148 static void	lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149 
150 static void	lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
151 static void	lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
152 
153 static int	lge_miibus_readreg(device_t, int, int);
154 static int	lge_miibus_writereg(device_t, int, int, int);
155 static void	lge_miibus_statchg(device_t);
156 
157 static void	lge_setmulti(struct lge_softc *);
158 static void	lge_reset(struct lge_softc *);
159 static int	lge_list_rx_init(struct lge_softc *);
160 static int	lge_list_tx_init(struct lge_softc *);
161 
162 #ifdef LGE_USEIOSPACE
163 #define LGE_RES			SYS_RES_IOPORT
164 #define LGE_RID			LGE_PCI_LOIO
165 #else
166 #define LGE_RES			SYS_RES_MEMORY
167 #define LGE_RID			LGE_PCI_LOMEM
168 #endif
169 
170 static device_method_t lge_methods[] = {
171 	/* Device interface */
172 	DEVMETHOD(device_probe,		lge_probe),
173 	DEVMETHOD(device_attach,	lge_attach),
174 	DEVMETHOD(device_detach,	lge_detach),
175 	DEVMETHOD(device_shutdown,	lge_shutdown),
176 
177 	/* bus interface */
178 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
179 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
180 
181 	/* MII interface */
182 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
183 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
184 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
185 
186 	{ 0, 0 }
187 };
188 
189 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
190 static devclass_t lge_devclass;
191 
192 DECLARE_DUMMY_MODULE(if_lge);
193 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
194 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
195 
196 #define LGE_SETBIT(sc, reg, x)				\
197 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
198 
199 #define LGE_CLRBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
201 
202 #define SIO_SET(x)					\
203 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
204 
205 #define SIO_CLR(x)					\
206 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
207 
208 /*
209  * Read a word of data stored in the EEPROM at address 'addr.'
210  */
211 static void
212 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
213 {
214 	int i;
215 	uint32_t val;
216 
217 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
218 	    LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
219 
220 	for (i = 0; i < LGE_TIMEOUT; i++) {
221 		if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
222 			break;
223 	}
224 
225 	if (i == LGE_TIMEOUT) {
226 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
227 		return;
228 	}
229 
230 	val = CSR_READ_4(sc, LGE_EEDATA);
231 
232 	if (addr & 1)
233 		*dest = (val >> 16) & 0xFFFF;
234 	else
235 		*dest = val & 0xFFFF;
236 }
237 
238 /*
239  * Read a sequence of words from the EEPROM.
240  */
241 static void
242 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
243 {
244 	int i;
245 	uint16_t word = 0, *ptr;
246 
247 	for (i = 0; i < cnt; i++) {
248 		lge_eeprom_getword(sc, off + i, &word);
249 		ptr = (uint16_t *)(dest + (i * 2));
250 		*ptr = ntohs(word);
251 	}
252 }
253 
254 static int
255 lge_miibus_readreg(device_t dev, int phy, int reg)
256 {
257 	struct lge_softc *sc = device_get_softc(dev);
258 	int i;
259 
260 	/*
261 	 * If we have a non-PCS PHY, pretend that the internal
262 	 * autoneg stuff at PHY address 0 isn't there so that
263 	 * the miibus code will find only the GMII PHY.
264 	 */
265 	if (sc->lge_pcs == 0 && phy == 0)
266 		return(0);
267 
268 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
269 
270 	for (i = 0; i < LGE_TIMEOUT; i++) {
271 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
272 			break;
273 	}
274 
275 	if (i == LGE_TIMEOUT) {
276 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
277 		return(0);
278 	}
279 
280 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
281 }
282 
283 static int
284 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
285 {
286 	struct lge_softc *sc = device_get_softc(dev);
287 	int i;
288 
289 	CSR_WRITE_4(sc, LGE_GMIICTL,
290 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
291 
292 	for (i = 0; i < LGE_TIMEOUT; i++) {
293 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
294 			break;
295 	}
296 
297 	if (i == LGE_TIMEOUT) {
298 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
299 		return(0);
300 	}
301 
302 	return(0);
303 }
304 
305 static void
306 lge_miibus_statchg(device_t dev)
307 {
308 	struct lge_softc *sc = device_get_softc(dev);
309 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
310 
311 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
312 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
313 	case IFM_1000_T:
314 	case IFM_1000_SX:
315 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
316 		break;
317 	case IFM_100_TX:
318 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
319 		break;
320 	case IFM_10_T:
321 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
322 		break;
323 	default:
324 		/*
325 		 * Choose something, even if it's wrong. Clearing
326 		 * all the bits will hose autoneg on the internal
327 		 * PHY.
328 		 */
329 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
330 		break;
331 	}
332 
333 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
334 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
335 	else
336 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
337 }
338 
339 static void
340 lge_setmulti(struct lge_softc *sc)
341 {
342 	struct ifnet *ifp = &sc->arpcom.ac_if;
343 	struct ifmultiaddr *ifma;
344 	uint32_t h = 0, hashes[2] = { 0, 0 };
345 
346 	/* Make sure multicast hash table is enabled. */
347 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
348 
349 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
350 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
351 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
352 		return;
353 	}
354 
355 	/* first, zot all the existing hash bits */
356 	CSR_WRITE_4(sc, LGE_MAR0, 0);
357 	CSR_WRITE_4(sc, LGE_MAR1, 0);
358 
359 	/* now program new ones */
360 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
361 		if (ifma->ifma_addr->sa_family != AF_LINK)
362 			continue;
363 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
364 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
365 		if (h < 32)
366 			hashes[0] |= (1 << h);
367 		else
368 			hashes[1] |= (1 << (h - 32));
369 	}
370 
371 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
372 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
373 
374 	return;
375 }
376 
377 static void
378 lge_reset(struct lge_softc *sc)
379 {
380 	int i;
381 
382 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
383 
384 	for (i = 0; i < LGE_TIMEOUT; i++) {
385 		if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
386 			break;
387 	}
388 
389 	if (i == LGE_TIMEOUT)
390 		printf("lge%d: reset never completed\n", sc->lge_unit);
391 
392 	/* Wait a little while for the chip to get its brains in order. */
393 	DELAY(1000);
394 }
395 
396 /*
397  * Probe for a Level 1 chip. Check the PCI vendor and device
398  * IDs against our list and return a device name if we find a match.
399  */
400 static int
401 lge_probe(device_t dev)
402 {
403 	struct lge_type *t;
404 	uint16_t vendor, product;
405 
406 	vendor = pci_get_vendor(dev);
407 	product = pci_get_device(dev);
408 
409 	for (t = lge_devs; t->lge_name != NULL; t++) {
410 		if (vendor == t->lge_vid && product == t->lge_did) {
411 			device_set_desc(dev, t->lge_name);
412 			return(0);
413 		}
414 	}
415 
416 	return(ENXIO);
417 }
418 
419 /*
420  * Attach the interface. Allocate softc structures, do ifmedia
421  * setup and ethernet/BPF attach.
422  */
423 static int
424 lge_attach(device_t dev)
425 {
426 	uint8_t eaddr[ETHER_ADDR_LEN];
427 	uint32_t command;
428 	struct lge_softc *sc;
429 	struct ifnet *ifp;
430 	int unit, error = 0, rid, s;
431 
432 	s = splimp();
433 
434 	sc = device_get_softc(dev);
435 	unit = device_get_unit(dev);
436 	callout_init(&sc->lge_stat_timer);
437 
438 	/*
439 	 * Handle power management nonsense.
440 	 */
441 	command = pci_read_config(dev, LGE_PCI_CAPID, 4) & 0x000000FF;
442 	if (command == 0x01) {
443 
444 		command = pci_read_config(dev, LGE_PCI_PWRMGMTCTRL, 4);
445 		if (command & LGE_PSTATE_MASK) {
446 			uint32_t iobase, membase, irq;
447 
448 			/* Save important PCI config data. */
449 			iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
450 			membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
451 			irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
452 
453 			/* Reset the power state. */
454 			printf("lge%d: chip is in D%d power mode "
455 			"-- setting to D0\n", unit, command & LGE_PSTATE_MASK);
456 			command &= 0xFFFFFFFC;
457 			pci_write_config(dev, LGE_PCI_PWRMGMTCTRL, command, 4);
458 
459 			/* Restore PCI config data. */
460 			pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
461 			pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
462 			pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
463 		}
464 	}
465 
466 	/*
467 	 * Map control/status registers.
468 	 */
469 	command = pci_read_config(dev, PCIR_COMMAND, 4);
470 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
471 	pci_write_config(dev, PCIR_COMMAND, command, 4);
472 	command = pci_read_config(dev, PCIR_COMMAND, 4);
473 
474 #ifdef LGE_USEIOSPACE
475 	if (!(command & PCIM_CMD_PORTEN)) {
476 		printf("lge%d: failed to enable I/O ports!\n", unit);
477 		error = ENXIO;
478 		goto fail;
479 	}
480 #else
481 	if (!(command & PCIM_CMD_MEMEN)) {
482 		printf("lge%d: failed to enable memory mapping!\n", unit);
483 		error = ENXIO;
484 		goto fail;
485 	}
486 #endif
487 
488 	rid = LGE_RID;
489 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
490 
491 	if (sc->lge_res == NULL) {
492 		printf("lge%d: couldn't map ports/memory\n", unit);
493 		error = ENXIO;
494 		goto fail;
495 	}
496 
497 	sc->lge_btag = rman_get_bustag(sc->lge_res);
498 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
499 
500 	/* Allocate interrupt */
501 	rid = 0;
502 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
503 	    RF_SHAREABLE | RF_ACTIVE);
504 
505 	if (sc->lge_irq == NULL) {
506 		printf("lge%d: couldn't map interrupt\n", unit);
507 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
508 		error = ENXIO;
509 		goto fail;
510 	}
511 
512 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
513 			       lge_intr, sc, &sc->lge_intrhand, NULL);
514 
515 	if (error) {
516 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
517 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
518 		printf("lge%d: couldn't set up irq\n", unit);
519 		goto fail;
520 	}
521 
522 	/* Reset the adapter. */
523 	lge_reset(sc);
524 
525 	/*
526 	 * Get station address from the EEPROM.
527 	 */
528 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
529 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
530 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
531 
532 	sc->lge_unit = unit;
533 
534 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
535 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
536 
537 	if (sc->lge_ldata == NULL) {
538 		printf("lge%d: no memory for list buffers!\n", unit);
539 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
540 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
541 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
542 		error = ENXIO;
543 		goto fail;
544 	}
545 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
546 
547 	/* Try to allocate memory for jumbo buffers. */
548 	if (lge_alloc_jumbo_mem(sc)) {
549 		printf("lge%d: jumbo buffer allocation failed\n",
550                     sc->lge_unit);
551 		contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
552 			   M_DEVBUF);
553 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
554 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
555 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
556 		error = ENXIO;
557 		goto fail;
558 	}
559 
560 	ifp = &sc->arpcom.ac_if;
561 	ifp->if_softc = sc;
562 	if_initname(ifp, "lge", unit);
563 	ifp->if_mtu = ETHERMTU;
564 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
565 	ifp->if_ioctl = lge_ioctl;
566 	ifp->if_start = lge_start;
567 	ifp->if_watchdog = lge_watchdog;
568 	ifp->if_init = lge_init;
569 	ifp->if_baudrate = 1000000000;
570 	ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
571 	ifq_set_ready(&ifp->if_snd);
572 	ifp->if_capabilities = IFCAP_RXCSUM;
573 	ifp->if_capenable = ifp->if_capabilities;
574 
575 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
576 		sc->lge_pcs = 1;
577 	else
578 		sc->lge_pcs = 0;
579 
580 	/*
581 	 * Do MII setup.
582 	 */
583 	if (mii_phy_probe(dev, &sc->lge_miibus,
584 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
585 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
586 		contigfree(sc->lge_ldata,
587 		    sizeof(struct lge_list_data), M_DEVBUF);
588 		lge_free_jumbo_mem(sc);
589 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
590 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
591 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
592 		error = ENXIO;
593 		goto fail;
594 	}
595 
596 	/*
597 	 * Call MI attach routine.
598 	 */
599 	ether_ifattach(ifp, eaddr);
600 
601 fail:
602 	splx(s);
603 	return(error);
604 }
605 
606 static int
607 lge_detach(device_t dev)
608 {
609 	struct lge_softc *sc= device_get_softc(dev);
610 	struct ifnet *ifp = &sc->arpcom.ac_if;
611 	int s;
612 
613 	s = splimp();
614 
615 	lge_reset(sc);
616 	lge_stop(sc);
617 	ether_ifdetach(ifp);
618 
619 	bus_generic_detach(dev);
620 	device_delete_child(dev, sc->lge_miibus);
621 
622 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
623 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
624 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
625 
626 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
627 	lge_free_jumbo_mem(sc);
628 
629 	splx(s);
630 
631 	return(0);
632 }
633 
634 /*
635  * Initialize the transmit descriptors.
636  */
637 static int
638 lge_list_tx_init(struct lge_softc *sc)
639 {
640 	struct lge_list_data *ld;
641 	struct lge_ring_data *cd;
642 	int i;
643 
644 	cd = &sc->lge_cdata;
645 	ld = sc->lge_ldata;
646 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
647 		ld->lge_tx_list[i].lge_mbuf = NULL;
648 		ld->lge_tx_list[i].lge_ctl = 0;
649 	}
650 
651 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
652 
653 	return(0);
654 }
655 
656 
657 /*
658  * Initialize the RX descriptors and allocate mbufs for them. Note that
659  * we arralge the descriptors in a closed ring, so that the last descriptor
660  * points back to the first.
661  */
662 static int
663 lge_list_rx_init(struct lge_softc *sc)
664 {
665 	struct lge_list_data *ld;
666 	struct lge_ring_data *cd;
667 	int i;
668 
669 	ld = sc->lge_ldata;
670 	cd = &sc->lge_cdata;
671 
672 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
673 
674 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
675 
676 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
677 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
678 			break;
679 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
680 			return(ENOBUFS);
681 	}
682 
683 	/* Clear possible 'rx command queue empty' interrupt. */
684 	CSR_READ_4(sc, LGE_ISR);
685 
686 	return(0);
687 }
688 
689 /*
690  * Initialize an RX descriptor and attach an MBUF cluster.
691  */
692 static int
693 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
694 {
695 	struct mbuf *m_new = NULL;
696 	struct lge_jslot *buf;
697 
698 	if (m == NULL) {
699 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
700 		if (m_new == NULL) {
701 			printf("lge%d: no memory for rx list "
702 			    "-- packet dropped!\n", sc->lge_unit);
703 			return(ENOBUFS);
704 		}
705 
706 		/* Allocate the jumbo buffer */
707 		buf = lge_jalloc(sc);
708 		if (buf == NULL) {
709 #ifdef LGE_VERBOSE
710 			printf("lge%d: jumbo allocation failed "
711 			    "-- packet dropped!\n", sc->lge_unit);
712 #endif
713 			m_freem(m_new);
714 			return(ENOBUFS);
715 		}
716 		/* Attach the buffer to the mbuf */
717 		m_new->m_ext.ext_arg = buf;
718 		m_new->m_ext.ext_buf = buf->lge_buf;
719 		m_new->m_ext.ext_free = lge_jfree;
720 		m_new->m_ext.ext_ref = lge_jref;
721 		m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
722 
723 		m_new->m_data = m_new->m_ext.ext_buf;
724 		m_new->m_flags |= M_EXT;
725 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
726 	} else {
727 		m_new = m;
728 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
729 		m_new->m_data = m_new->m_ext.ext_buf;
730 	}
731 
732 	/*
733 	 * Adjust alignment so packet payload begins on a
734 	 * longword boundary. Mandatory for Alpha, useful on
735 	 * x86 too.
736 	*/
737 	m_adj(m_new, ETHER_ALIGN);
738 
739 	c->lge_mbuf = m_new;
740 	c->lge_fragptr_hi = 0;
741 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
742 	c->lge_fraglen = m_new->m_len;
743 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
744 	c->lge_sts = 0;
745 
746 	/*
747 	 * Put this buffer in the RX command FIFO. To do this,
748 	 * we just write the physical address of the descriptor
749 	 * into the RX descriptor address registers. Note that
750 	 * there are two registers, one high DWORD and one low
751 	 * DWORD, which lets us specify a 64-bit address if
752 	 * desired. We only use a 32-bit address for now.
753 	 * Writing to the low DWORD register is what actually
754 	 * causes the command to be issued, so we do that
755 	 * last.
756 	 */
757 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
758 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
759 
760 	return(0);
761 }
762 
763 static int
764 lge_alloc_jumbo_mem(struct lge_softc *sc)
765 {
766 	struct lge_jslot *entry;
767 	caddr_t ptr;
768 	int i;
769 
770 	/* Grab a big chunk o' storage. */
771 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
772 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
773 
774 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
775 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
776 		return(ENOBUFS);
777 	}
778 
779 	SLIST_INIT(&sc->lge_jfree_listhead);
780 
781 	/*
782 	 * Now divide it up into 9K pieces and save the addresses
783 	 * in an array.
784 	 */
785 	ptr = sc->lge_cdata.lge_jumbo_buf;
786 	for (i = 0; i < LGE_JSLOTS; i++) {
787 		entry = &sc->lge_cdata.lge_jslots[i];
788 		entry->lge_sc = sc;
789 		entry->lge_buf = ptr;
790 		entry->lge_inuse = 0;
791 		entry->lge_slot = i;
792 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
793 		ptr += LGE_JLEN;
794 	}
795 
796 	return(0);
797 }
798 
799 static void
800 lge_free_jumbo_mem(struct lge_softc *sc)
801 {
802 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
803 }
804 
805 /*
806  * Allocate a jumbo buffer.
807  */
808 static struct lge_jslot *
809 lge_jalloc(struct lge_softc *sc)
810 {
811 	struct lge_jslot *entry;
812 
813 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
814 
815 	if (entry == NULL) {
816 #ifdef LGE_VERBOSE
817 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
818 #endif
819 		return(NULL);
820 	}
821 
822 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
823 	entry->lge_inuse = 1;
824 
825 	return(entry);
826 }
827 
828 /*
829  * Adjust usage count on a jumbo buffer. In general this doesn't
830  * get used much because our jumbo buffers don't get passed around
831  * a lot, but it's implemented for correctness.
832  */
833 static void
834 lge_jref(void *arg)
835 {
836 	struct lge_jslot *entry = (struct lge_jslot *)arg;
837 	struct lge_softc *sc = entry->lge_sc;
838 
839 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
840 		panic("lge_jref: asked to reference buffer "
841 		    "that we don't manage!");
842 	else if (entry->lge_inuse == 0)
843 		panic("lge_jref: buffer already free!");
844 	else
845 		entry->lge_inuse++;
846 }
847 
848 /*
849  * Release a jumbo buffer.
850  */
851 static void
852 lge_jfree(void *arg)
853 {
854 	struct lge_jslot *entry = (struct lge_jslot *)arg;
855 	struct lge_softc *sc = entry->lge_sc;
856 
857 	if (sc == NULL)
858 		panic("lge_jfree: can't find softc pointer!");
859 
860 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
861 		panic("lge_jfree: asked to free buffer that we don't manage!");
862 	else if (entry->lge_inuse == 0)
863 		panic("lge_jfree: buffer already free!");
864 	else if (--entry->lge_inuse == 0)
865 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
866 }
867 
868 /*
869  * A frame has been uploaded: pass the resulting mbuf chain up to
870  * the higher level protocols.
871  */
872 static void
873 lge_rxeof(struct lge_softc *sc, int cnt)
874 {
875         struct ifnet *ifp = &sc->arpcom.ac_if;
876         struct mbuf *m;
877 	struct lge_rx_desc *cur_rx;
878 	int c, i, total_len = 0;
879 	uint32_t rxsts, rxctl;
880 
881 
882 	/* Find out how many frames were processed. */
883 	c = cnt;
884 	i = sc->lge_cdata.lge_rx_cons;
885 
886 	/* Suck them in. */
887 	while(c) {
888 		struct mbuf *m0 = NULL;
889 
890 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
891 		rxctl = cur_rx->lge_ctl;
892 		rxsts = cur_rx->lge_sts;
893 		m = cur_rx->lge_mbuf;
894 		cur_rx->lge_mbuf = NULL;
895 		total_len = LGE_RXBYTES(cur_rx);
896 		LGE_INC(i, LGE_RX_LIST_CNT);
897 		c--;
898 
899 		/*
900 		 * If an error occurs, update stats, clear the
901 		 * status word and leave the mbuf cluster in place:
902 		 * it should simply get re-used next time this descriptor
903 	 	 * comes up in the ring.
904 		 */
905 		if (rxctl & LGE_RXCTL_ERRMASK) {
906 			ifp->if_ierrors++;
907 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
908 			continue;
909 		}
910 
911 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
912 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
913 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
914 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
915 			if (m0 == NULL) {
916 				printf("lge%d: no receive buffers "
917 				    "available -- packet dropped!\n",
918 				    sc->lge_unit);
919 				ifp->if_ierrors++;
920 				continue;
921 			}
922 			m_adj(m0, ETHER_ALIGN);
923 			m = m0;
924 		} else {
925 			m->m_pkthdr.rcvif = ifp;
926 			m->m_pkthdr.len = m->m_len = total_len;
927 		}
928 
929 		ifp->if_ipackets++;
930 
931 		/* Do IP checksum checking. */
932 		if (rxsts & LGE_RXSTS_ISIP)
933 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
934 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
935 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
936 		if ((rxsts & LGE_RXSTS_ISTCP &&
937 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
938 		    (rxsts & LGE_RXSTS_ISUDP &&
939 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
940 			m->m_pkthdr.csum_flags |=
941 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
942 			m->m_pkthdr.csum_data = 0xffff;
943 		}
944 
945 		(*ifp->if_input)(ifp, m);
946 	}
947 
948 	sc->lge_cdata.lge_rx_cons = i;
949 }
950 
951 static void
952 lge_rxeoc(struct lge_softc *sc)
953 {
954 	struct ifnet *ifp = &sc->arpcom.ac_if;
955 
956 	ifp->if_flags &= ~IFF_RUNNING;
957 	lge_init(sc);
958 }
959 
960 /*
961  * A frame was downloaded to the chip. It's safe for us to clean up
962  * the list buffers.
963  */
964 static void
965 lge_txeof(struct lge_softc *sc)
966 {
967 	struct ifnet *ifp = &sc->arpcom.ac_if;
968 	struct lge_tx_desc *cur_tx = NULL;
969 	uint32_t idx, txdone;
970 
971 	/* Clear the timeout timer. */
972 	ifp->if_timer = 0;
973 
974 	/*
975 	 * Go through our tx list and free mbufs for those
976 	 * frames that have been transmitted.
977 	 */
978 	idx = sc->lge_cdata.lge_tx_cons;
979 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
980 
981 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
982 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
983 
984 		ifp->if_opackets++;
985 		if (cur_tx->lge_mbuf != NULL) {
986 			m_freem(cur_tx->lge_mbuf);
987 			cur_tx->lge_mbuf = NULL;
988 		}
989 		cur_tx->lge_ctl = 0;
990 
991 		txdone--;
992 		LGE_INC(idx, LGE_TX_LIST_CNT);
993 		ifp->if_timer = 0;
994 	}
995 
996 	sc->lge_cdata.lge_tx_cons = idx;
997 
998 	if (cur_tx != NULL)
999 		ifp->if_flags &= ~IFF_OACTIVE;
1000 }
1001 
1002 static void
1003 lge_tick(void *xsc)
1004 {
1005 	struct lge_softc *sc = xsc;
1006 	struct mii_data *mii;
1007 	struct ifnet *ifp = &sc->arpcom.ac_if;
1008 	int s;
1009 
1010 	s = splimp();
1011 
1012 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1013 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1014 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1015 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1016 
1017 	if (!sc->lge_link) {
1018 		mii = device_get_softc(sc->lge_miibus);
1019 		mii_tick(mii);
1020 		mii_pollstat(mii);
1021 		if (mii->mii_media_status & IFM_ACTIVE &&
1022 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1023 			sc->lge_link++;
1024 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1025 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1026 				printf("lge%d: gigabit link up\n",
1027 				    sc->lge_unit);
1028 			if (!ifq_is_empty(&ifp->if_snd))
1029 				(*ifp->if_start)(ifp);
1030 		}
1031 	}
1032 
1033 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1034 
1035 	splx(s);
1036 }
1037 
1038 static void
1039 lge_intr(void *arg)
1040 {
1041 	struct lge_softc *sc = arg;
1042 	struct ifnet *ifp = &sc->arpcom.ac_if;
1043 	uint32_t status;
1044 
1045 	/* Supress unwanted interrupts */
1046 	if ((ifp->if_flags & IFF_UP) == 0) {
1047 		lge_stop(sc);
1048 		return;
1049 	}
1050 
1051 	for (;;) {
1052 		/*
1053 		 * Reading the ISR register clears all interrupts, and
1054 		 * clears the 'interrupts enabled' bit in the IMR
1055 		 * register.
1056 		 */
1057 		status = CSR_READ_4(sc, LGE_ISR);
1058 
1059 		if ((status & LGE_INTRS) == 0)
1060 			break;
1061 
1062 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1063 			lge_txeof(sc);
1064 
1065 		if (status & LGE_ISR_RXDMA_DONE)
1066 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1067 
1068 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1069 			lge_rxeoc(sc);
1070 
1071 		if (status & LGE_ISR_PHY_INTR) {
1072 			sc->lge_link = 0;
1073 			callout_stop(&sc->lge_stat_timer);
1074 			lge_tick(sc);
1075 		}
1076 	}
1077 
1078 	/* Re-enable interrupts. */
1079 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1080 
1081 	if (!ifq_is_empty(&ifp->if_snd))
1082 		(*ifp->if_start)(ifp);
1083 }
1084 
1085 /*
1086  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1087  * pointers to the fragment pointers.
1088  */
1089 static int
1090 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1091 {
1092 	struct lge_frag *f = NULL;
1093 	struct lge_tx_desc *cur_tx;
1094 	struct mbuf *m;
1095 	int frag = 0, tot_len = 0;
1096 
1097 	/*
1098  	 * Start packing the mbufs in this chain into
1099 	 * the fragment pointers. Stop when we run out
1100  	 * of fragments or hit the end of the mbuf chain.
1101 	 */
1102 	m = m_head;
1103 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1104 	frag = 0;
1105 
1106 	for (m = m_head; m != NULL; m = m->m_next) {
1107 		if (m->m_len != 0) {
1108 			tot_len += m->m_len;
1109 			f = &cur_tx->lge_frags[frag];
1110 			f->lge_fraglen = m->m_len;
1111 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1112 			f->lge_fragptr_hi = 0;
1113 			frag++;
1114 		}
1115 	}
1116 
1117 	if (m != NULL)
1118 		return(ENOBUFS);
1119 
1120 	cur_tx->lge_mbuf = m_head;
1121 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1122 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1123 
1124 	/* Queue for transmit */
1125 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1126 
1127 	return(0);
1128 }
1129 
1130 /*
1131  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1132  * to the mbuf data regions directly in the transmit lists. We also save a
1133  * copy of the pointers since the transmit list fragment pointers are
1134  * physical addresses.
1135  */
1136 
1137 static void
1138 lge_start(struct ifnet *ifp)
1139 {
1140 	struct lge_softc *sc = ifp->if_softc;
1141 	struct mbuf *m_head = NULL;
1142 	uint32_t idx;
1143 
1144 	if (!sc->lge_link)
1145 		return;
1146 
1147 	idx = sc->lge_cdata.lge_tx_prod;
1148 
1149 	if (ifp->if_flags & IFF_OACTIVE)
1150 		return;
1151 
1152 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1153 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1154 			break;
1155 
1156 		m_head = ifq_poll(&ifp->if_snd);
1157 		if (m_head == NULL)
1158 			break;
1159 
1160 		if (lge_encap(sc, m_head, &idx)) {
1161 			ifp->if_flags |= IFF_OACTIVE;
1162 			break;
1163 		}
1164 		m_head = ifq_dequeue(&ifp->if_snd);
1165 
1166 		BPF_MTAP(ifp, m_head);
1167 	}
1168 
1169 	sc->lge_cdata.lge_tx_prod = idx;
1170 
1171 	/*
1172 	 * Set a timeout in case the chip goes out to lunch.
1173 	 */
1174 	ifp->if_timer = 5;
1175 }
1176 
1177 static void
1178 lge_init(void *xsc)
1179 {
1180 	struct lge_softc *sc = xsc;
1181 	struct ifnet *ifp = &sc->arpcom.ac_if;
1182 	struct mii_data *mii;
1183 	int s;
1184 
1185 	if (ifp->if_flags & IFF_RUNNING)
1186 		return;
1187 
1188 	s = splimp();
1189 
1190 	/*
1191 	 * Cancel pending I/O and free all RX/TX buffers.
1192 	 */
1193 	lge_stop(sc);
1194 	lge_reset(sc);
1195 
1196 	mii = device_get_softc(sc->lge_miibus);
1197 
1198 	/* Set MAC address */
1199 	CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1200 	CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1201 
1202 	/* Init circular RX list. */
1203 	if (lge_list_rx_init(sc) == ENOBUFS) {
1204 		printf("lge%d: initialization failed: no "
1205 		    "memory for rx buffers\n", sc->lge_unit);
1206 		lge_stop(sc);
1207 		splx(s);
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * Init tx descriptors.
1213 	 */
1214 	lge_list_tx_init(sc);
1215 
1216 	/* Set initial value for MODE1 register. */
1217 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1218 	    LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1219 	    LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1220 	    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1221 
1222 	 /* If we want promiscuous mode, set the allframes bit. */
1223 	if (ifp->if_flags & IFF_PROMISC) {
1224 		CSR_WRITE_4(sc, LGE_MODE1,
1225 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1226 	} else {
1227 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1228 	}
1229 
1230 	/*
1231 	 * Set the capture broadcast bit to capture broadcast frames.
1232 	 */
1233 	if (ifp->if_flags & IFF_BROADCAST) {
1234 		CSR_WRITE_4(sc, LGE_MODE1,
1235 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1236 	} else {
1237 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1238 	}
1239 
1240 	/* Packet padding workaround? */
1241 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1242 
1243 	/* No error frames */
1244 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1245 
1246 	/* Receive large frames */
1247 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1248 
1249 	/* Workaround: disable RX/TX flow control */
1250 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1251 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1252 
1253 	/* Make sure to strip CRC from received frames */
1254 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1255 
1256 	/* Turn off magic packet mode */
1257 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1258 
1259 	/* Turn off all VLAN stuff */
1260 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1261 	    LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1262 
1263 	/* Workarond: FIFO overflow */
1264 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1265 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1266 
1267 	/*
1268 	 * Load the multicast filter.
1269 	 */
1270 	lge_setmulti(sc);
1271 
1272 	/*
1273 	 * Enable hardware checksum validation for all received IPv4
1274 	 * packets, do not reject packets with bad checksums.
1275 	 */
1276 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1277 	    LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1278 	    LGE_MODE2_RX_ERRCSUM);
1279 
1280 	/*
1281 	 * Enable the delivery of PHY interrupts based on
1282 	 * link/speed/duplex status chalges.
1283 	 */
1284 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1285 
1286 	/* Enable receiver and transmitter. */
1287 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1288 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1289 
1290 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1291 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1292 
1293 	/*
1294 	 * Enable interrupts.
1295 	 */
1296 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1297 	    LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1298 
1299 	lge_ifmedia_upd(ifp);
1300 
1301 	ifp->if_flags |= IFF_RUNNING;
1302 	ifp->if_flags &= ~IFF_OACTIVE;
1303 
1304 	splx(s);
1305 
1306 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1307 }
1308 
1309 /*
1310  * Set media options.
1311  */
1312 static int
1313 lge_ifmedia_upd(struct ifnet *ifp)
1314 {
1315 	struct lge_softc *sc = ifp->if_softc;
1316 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
1317 
1318 	sc->lge_link = 0;
1319 	if (mii->mii_instance) {
1320 		struct mii_softc *miisc;
1321 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1322 			mii_phy_reset(miisc);
1323 	}
1324 	mii_mediachg(mii);
1325 
1326 	return(0);
1327 }
1328 
1329 /*
1330  * Report current media status.
1331  */
1332 static void
1333 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1334 {
1335 	struct lge_softc *sc = ifp->if_softc;
1336 	struct mii_data *mii;
1337 
1338 	mii = device_get_softc(sc->lge_miibus);
1339 	mii_pollstat(mii);
1340 	ifmr->ifm_active = mii->mii_media_active;
1341 	ifmr->ifm_status = mii->mii_media_status;
1342 }
1343 
1344 static int
1345 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1346 {
1347 	struct lge_softc *sc = ifp->if_softc;
1348 	struct ifreq *ifr = (struct ifreq *) data;
1349 	struct mii_data	 *mii;
1350 	int error = 0, s;
1351 
1352 	s = splimp();
1353 
1354 	switch(command) {
1355 	case SIOCSIFMTU:
1356 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1357 			error = EINVAL;
1358 		else
1359 			ifp->if_mtu = ifr->ifr_mtu;
1360 		break;
1361 	case SIOCSIFFLAGS:
1362 		if (ifp->if_flags & IFF_UP) {
1363 			if (ifp->if_flags & IFF_RUNNING &&
1364 			    ifp->if_flags & IFF_PROMISC &&
1365 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1366 				CSR_WRITE_4(sc, LGE_MODE1,
1367 				    LGE_MODE1_SETRST_CTL1|
1368 				    LGE_MODE1_RX_PROMISC);
1369 			} else if (ifp->if_flags & IFF_RUNNING &&
1370 			    !(ifp->if_flags & IFF_PROMISC) &&
1371 			    sc->lge_if_flags & IFF_PROMISC) {
1372 				CSR_WRITE_4(sc, LGE_MODE1,
1373 				    LGE_MODE1_RX_PROMISC);
1374 			} else {
1375 				ifp->if_flags &= ~IFF_RUNNING;
1376 				lge_init(sc);
1377 			}
1378 		} else {
1379 			if (ifp->if_flags & IFF_RUNNING)
1380 				lge_stop(sc);
1381 		}
1382 		sc->lge_if_flags = ifp->if_flags;
1383 		error = 0;
1384 		break;
1385 	case SIOCADDMULTI:
1386 	case SIOCDELMULTI:
1387 		lge_setmulti(sc);
1388 		error = 0;
1389 		break;
1390 	case SIOCGIFMEDIA:
1391 	case SIOCSIFMEDIA:
1392 		mii = device_get_softc(sc->lge_miibus);
1393 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1394 		break;
1395 	default:
1396 		error = ether_ioctl(ifp, command, data);
1397 		break;
1398 	}
1399 
1400 	splx(s);
1401 
1402 	return(error);
1403 }
1404 
1405 static void
1406 lge_watchdog(struct ifnet *ifp)
1407 {
1408 	struct lge_softc *sc = ifp->if_softc;
1409 
1410 	ifp->if_oerrors++;
1411 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1412 
1413 	lge_stop(sc);
1414 	lge_reset(sc);
1415 	ifp->if_flags &= ~IFF_RUNNING;
1416 	lge_init(sc);
1417 
1418 	if (!ifq_is_empty(&ifp->if_snd))
1419 		(*ifp->if_start)(ifp);
1420 }
1421 
1422 /*
1423  * Stop the adapter and free any mbufs allocated to the
1424  * RX and TX lists.
1425  */
1426 static void
1427 lge_stop(struct lge_softc *sc)
1428 {
1429 	struct ifnet *ifp = &sc->arpcom.ac_if;
1430 	int i;
1431 
1432 	ifp->if_timer = 0;
1433 	callout_stop(&sc->lge_stat_timer);
1434 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1435 
1436 	/* Disable receiver and transmitter. */
1437 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1438 	sc->lge_link = 0;
1439 
1440 	/*
1441 	 * Free data in the RX lists.
1442 	 */
1443 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1444 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1445 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1446 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1447 		}
1448 	}
1449 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1450 
1451 	/*
1452 	 * Free the TX list buffers.
1453 	 */
1454 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1455 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1456 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1457 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1458 		}
1459 	}
1460 
1461 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1462 
1463 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1464 }
1465 
1466 /*
1467  * Stop all chip I/O so that the kernel's probe routines don't
1468  * get confused by errant DMAs when rebooting.
1469  */
1470 static void
1471 lge_shutdown(device_t dev)
1472 {
1473 	struct lge_softc *sc = device_get_softc(dev);
1474 
1475 	lge_reset(sc);
1476 	lge_stop(sc);
1477 }
1478