xref: /dflybsd-src/sys/dev/netif/jme/if_jme.c (revision f00eae149c338528630cd778fd4de222713daa11)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_ifpoll.h"
31 #include "opt_jme.h"
32 
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_poll.h>
54 #include <net/ifq_var.h>
55 #include <net/toeplitz.h>
56 #include <net/toeplitz2.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/netif/mii_layer/miivar.h>
64 #include <dev/netif/mii_layer/jmphyreg.h>
65 
66 #include <bus/pci/pcireg.h>
67 #include <bus/pci/pcivar.h>
68 #include <bus/pci/pcidevs.h>
69 
70 #include <dev/netif/jme/if_jmereg.h>
71 #include <dev/netif/jme/if_jmevar.h>
72 
73 #include "miibus_if.h"
74 
75 #define JME_TICK_CPUID		0	/* DO NOT CHANGE THIS */
76 
77 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
78 
79 #ifdef JME_RSS_DEBUG
80 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
81 do { \
82 	if ((sc)->jme_rss_debug >= (lvl)) \
83 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
84 } while (0)
85 #else	/* !JME_RSS_DEBUG */
86 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
87 #endif	/* JME_RSS_DEBUG */
88 
89 static int	jme_probe(device_t);
90 static int	jme_attach(device_t);
91 static int	jme_detach(device_t);
92 static int	jme_shutdown(device_t);
93 static int	jme_suspend(device_t);
94 static int	jme_resume(device_t);
95 
96 static int	jme_miibus_readreg(device_t, int, int);
97 static int	jme_miibus_writereg(device_t, int, int, int);
98 static void	jme_miibus_statchg(device_t);
99 
100 static void	jme_init(void *);
101 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
102 static void	jme_start(struct ifnet *, struct ifaltq_subque *);
103 static void	jme_watchdog(struct ifnet *);
104 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int	jme_mediachange(struct ifnet *);
106 #ifdef IFPOLL_ENABLE
107 static void	jme_npoll(struct ifnet *, struct ifpoll_info *);
108 static void	jme_npoll_status(struct ifnet *);
109 static void	jme_npoll_rx(struct ifnet *, void *, int);
110 static void	jme_npoll_tx(struct ifnet *, void *, int);
111 #endif
112 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
113 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
114 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
115 #ifdef INVARIANTS
116 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
117 		    boolean_t);
118 #endif
119 
120 static void	jme_intr(void *);
121 static void	jme_msix_tx(void *);
122 static void	jme_msix_rx(void *);
123 static void	jme_msix_status(void *);
124 static void	jme_txeof(struct jme_txdata *);
125 static void	jme_rxeof(struct jme_rxdata *, int);
126 static void	jme_rx_intr(struct jme_softc *, uint32_t);
127 static void	jme_enable_intr(struct jme_softc *);
128 static void	jme_disable_intr(struct jme_softc *);
129 static void	jme_rx_restart(struct jme_softc *, uint32_t);
130 
131 static int	jme_msix_setup(device_t);
132 static void	jme_msix_teardown(device_t, int);
133 static int	jme_intr_setup(device_t);
134 static void	jme_intr_teardown(device_t);
135 static void	jme_msix_try_alloc(device_t);
136 static void	jme_msix_free(device_t);
137 static int	jme_intr_alloc(device_t);
138 static void	jme_intr_free(device_t);
139 static int	jme_dma_alloc(struct jme_softc *);
140 static void	jme_dma_free(struct jme_softc *);
141 static int	jme_init_rx_ring(struct jme_rxdata *);
142 static void	jme_init_tx_ring(struct jme_txdata *);
143 static void	jme_init_ssb(struct jme_softc *);
144 static int	jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
145 static int	jme_encap(struct jme_txdata *, struct mbuf **, int *);
146 static void	jme_rxpkt(struct jme_rxdata *);
147 static int	jme_rxring_dma_alloc(struct jme_rxdata *);
148 static int	jme_rxbuf_dma_alloc(struct jme_rxdata *);
149 static int	jme_rxbuf_dma_filter(void *, bus_addr_t);
150 
151 static void	jme_tick(void *);
152 static void	jme_stop(struct jme_softc *);
153 static void	jme_reset(struct jme_softc *);
154 static void	jme_set_msinum(struct jme_softc *);
155 static void	jme_set_vlan(struct jme_softc *);
156 static void	jme_set_filter(struct jme_softc *);
157 static void	jme_stop_tx(struct jme_softc *);
158 static void	jme_stop_rx(struct jme_softc *);
159 static void	jme_mac_config(struct jme_softc *);
160 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
161 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
162 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
163 #ifdef notyet
164 static void	jme_setwol(struct jme_softc *);
165 static void	jme_setlinkspeed(struct jme_softc *);
166 #endif
167 static void	jme_set_tx_coal(struct jme_softc *);
168 static void	jme_set_rx_coal(struct jme_softc *);
169 static void	jme_enable_rss(struct jme_softc *);
170 static void	jme_disable_rss(struct jme_softc *);
171 static void	jme_serialize_skipmain(struct jme_softc *);
172 static void	jme_deserialize_skipmain(struct jme_softc *);
173 
174 static void	jme_sysctl_node(struct jme_softc *);
175 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
176 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
177 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
178 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
179 #ifdef IFPOLL_ENABLE
180 static int	jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
181 static int	jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
182 #endif
183 
184 /*
185  * Devices supported by this driver.
186  */
187 static const struct jme_dev {
188 	uint16_t	jme_vendorid;
189 	uint16_t	jme_deviceid;
190 	uint32_t	jme_caps;
191 	const char	*jme_name;
192 } jme_devs[] = {
193 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
194 	    JME_CAP_JUMBO,
195 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
196 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
197 	    JME_CAP_FASTETH,
198 	    "JMicron Inc, JMC260 Fast Ethernet" },
199 	{ 0, 0, 0, NULL }
200 };
201 
202 static device_method_t jme_methods[] = {
203 	/* Device interface. */
204 	DEVMETHOD(device_probe,		jme_probe),
205 	DEVMETHOD(device_attach,	jme_attach),
206 	DEVMETHOD(device_detach,	jme_detach),
207 	DEVMETHOD(device_shutdown,	jme_shutdown),
208 	DEVMETHOD(device_suspend,	jme_suspend),
209 	DEVMETHOD(device_resume,	jme_resume),
210 
211 	/* Bus interface. */
212 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
213 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
214 
215 	/* MII interface. */
216 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
217 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
218 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
219 
220 	{ NULL, NULL }
221 };
222 
223 static driver_t jme_driver = {
224 	"jme",
225 	jme_methods,
226 	sizeof(struct jme_softc)
227 };
228 
229 static devclass_t jme_devclass;
230 
231 DECLARE_DUMMY_MODULE(if_jme);
232 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
233 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
234 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
235 
236 static const struct {
237 	uint32_t	jme_coal;
238 	uint32_t	jme_comp;
239 	uint32_t	jme_empty;
240 } jme_rx_status[JME_NRXRING_MAX] = {
241 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
242 	  INTR_RXQ0_DESC_EMPTY },
243 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
244 	  INTR_RXQ1_DESC_EMPTY },
245 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
246 	  INTR_RXQ2_DESC_EMPTY },
247 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
248 	  INTR_RXQ3_DESC_EMPTY }
249 };
250 
251 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
252 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
253 static int	jme_rx_ring_count = 0;
254 static int	jme_msi_enable = 1;
255 static int	jme_msix_enable = 1;
256 
257 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
258 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
259 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
260 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
261 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
262 
263 static __inline void
264 jme_setup_rxdesc(struct jme_rxdesc *rxd)
265 {
266 	struct jme_desc *desc;
267 
268 	desc = rxd->rx_desc;
269 	desc->buflen = htole32(MCLBYTES);
270 	desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
271 	desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
272 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
273 }
274 
275 /*
276  *	Read a PHY register on the MII of the JMC250.
277  */
278 static int
279 jme_miibus_readreg(device_t dev, int phy, int reg)
280 {
281 	struct jme_softc *sc = device_get_softc(dev);
282 	uint32_t val;
283 	int i;
284 
285 	/* For FPGA version, PHY address 0 should be ignored. */
286 	if (sc->jme_caps & JME_CAP_FPGA) {
287 		if (phy == 0)
288 			return (0);
289 	} else {
290 		if (sc->jme_phyaddr != phy)
291 			return (0);
292 	}
293 
294 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
295 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
296 
297 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
298 		DELAY(1);
299 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
300 			break;
301 	}
302 	if (i == 0) {
303 		device_printf(sc->jme_dev, "phy read timeout: "
304 			      "phy %d, reg %d\n", phy, reg);
305 		return (0);
306 	}
307 
308 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
309 }
310 
311 /*
312  *	Write a PHY register on the MII of the JMC250.
313  */
314 static int
315 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
316 {
317 	struct jme_softc *sc = device_get_softc(dev);
318 	int i;
319 
320 	/* For FPGA version, PHY address 0 should be ignored. */
321 	if (sc->jme_caps & JME_CAP_FPGA) {
322 		if (phy == 0)
323 			return (0);
324 	} else {
325 		if (sc->jme_phyaddr != phy)
326 			return (0);
327 	}
328 
329 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
330 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
331 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
332 
333 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
334 		DELAY(1);
335 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
336 			break;
337 	}
338 	if (i == 0) {
339 		device_printf(sc->jme_dev, "phy write timeout: "
340 			      "phy %d, reg %d\n", phy, reg);
341 	}
342 
343 	return (0);
344 }
345 
346 /*
347  *	Callback from MII layer when media changes.
348  */
349 static void
350 jme_miibus_statchg(device_t dev)
351 {
352 	struct jme_softc *sc = device_get_softc(dev);
353 	struct ifnet *ifp = &sc->arpcom.ac_if;
354 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
355 	struct mii_data *mii;
356 	struct jme_txdesc *txd;
357 	bus_addr_t paddr;
358 	int i, r;
359 
360 	if (sc->jme_in_tick)
361 		jme_serialize_skipmain(sc);
362 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
363 
364 	if ((ifp->if_flags & IFF_RUNNING) == 0)
365 		goto done;
366 
367 	mii = device_get_softc(sc->jme_miibus);
368 
369 	sc->jme_has_link = FALSE;
370 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
371 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
372 		case IFM_10_T:
373 		case IFM_100_TX:
374 			sc->jme_has_link = TRUE;
375 			break;
376 		case IFM_1000_T:
377 			if (sc->jme_caps & JME_CAP_FASTETH)
378 				break;
379 			sc->jme_has_link = TRUE;
380 			break;
381 		default:
382 			break;
383 		}
384 	}
385 
386 	/*
387 	 * Disabling Rx/Tx MACs have a side-effect of resetting
388 	 * JME_TXNDA/JME_RXNDA register to the first address of
389 	 * Tx/Rx descriptor address. So driver should reset its
390 	 * internal procucer/consumer pointer and reclaim any
391 	 * allocated resources.  Note, just saving the value of
392 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
393 	 * and restoring JME_TXNDA/JME_RXNDA register is not
394 	 * sufficient to make sure correct MAC state because
395 	 * stopping MAC operation can take a while and hardware
396 	 * might have updated JME_TXNDA/JME_RXNDA registers
397 	 * during the stop operation.
398 	 */
399 
400 	/* Disable interrupts */
401 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
402 
403 	/* Stop driver */
404 	ifp->if_flags &= ~IFF_RUNNING;
405 	ifq_clr_oactive(&ifp->if_snd);
406 	ifp->if_timer = 0;
407 	callout_stop(&sc->jme_tick_ch);
408 
409 	/* Stop receiver/transmitter. */
410 	jme_stop_rx(sc);
411 	jme_stop_tx(sc);
412 
413 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
414 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
415 
416 		jme_rxeof(rdata, -1);
417 		if (rdata->jme_rxhead != NULL)
418 			m_freem(rdata->jme_rxhead);
419 		JME_RXCHAIN_RESET(rdata);
420 
421 		/*
422 		 * Reuse configured Rx descriptors and reset
423 		 * procuder/consumer index.
424 		 */
425 		rdata->jme_rx_cons = 0;
426 	}
427 	if (JME_ENABLE_HWRSS(sc))
428 		jme_enable_rss(sc);
429 	else
430 		jme_disable_rss(sc);
431 
432 	jme_txeof(tdata);
433 	if (tdata->jme_tx_cnt != 0) {
434 		/* Remove queued packets for transmit. */
435 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
436 			txd = &tdata->jme_txdesc[i];
437 			if (txd->tx_m != NULL) {
438 				bus_dmamap_unload( tdata->jme_tx_tag,
439 				    txd->tx_dmamap);
440 				m_freem(txd->tx_m);
441 				txd->tx_m = NULL;
442 				txd->tx_ndesc = 0;
443 				IFNET_STAT_INC(ifp, oerrors, 1);
444 			}
445 		}
446 	}
447 	jme_init_tx_ring(tdata);
448 
449 	/* Initialize shadow status block. */
450 	jme_init_ssb(sc);
451 
452 	/* Program MAC with resolved speed/duplex/flow-control. */
453 	if (sc->jme_has_link) {
454 		jme_mac_config(sc);
455 
456 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
457 
458 		/* Set Tx ring address to the hardware. */
459 		paddr = tdata->jme_tx_ring_paddr;
460 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
461 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
462 
463 		for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
464 			CSR_WRITE_4(sc, JME_RXCSR,
465 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
466 
467 			/* Set Rx ring address to the hardware. */
468 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
469 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
470 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
471 		}
472 
473 		/* Restart receiver/transmitter. */
474 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
475 		    RXCSR_RXQ_START);
476 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
477 	}
478 
479 	ifp->if_flags |= IFF_RUNNING;
480 	ifq_clr_oactive(&ifp->if_snd);
481 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
482 	    JME_TICK_CPUID);
483 
484 #ifdef IFPOLL_ENABLE
485 	if (!(ifp->if_flags & IFF_NPOLLING))
486 #endif
487 	/* Reenable interrupts. */
488 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
489 
490 done:
491 	if (sc->jme_in_tick)
492 		jme_deserialize_skipmain(sc);
493 }
494 
495 /*
496  *	Get the current interface media status.
497  */
498 static void
499 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
500 {
501 	struct jme_softc *sc = ifp->if_softc;
502 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
503 
504 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
505 
506 	mii_pollstat(mii);
507 	ifmr->ifm_status = mii->mii_media_status;
508 	ifmr->ifm_active = mii->mii_media_active;
509 }
510 
511 /*
512  *	Set hardware to newly-selected media.
513  */
514 static int
515 jme_mediachange(struct ifnet *ifp)
516 {
517 	struct jme_softc *sc = ifp->if_softc;
518 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
519 	int error;
520 
521 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
522 
523 	if (mii->mii_instance != 0) {
524 		struct mii_softc *miisc;
525 
526 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
527 			mii_phy_reset(miisc);
528 	}
529 	error = mii_mediachg(mii);
530 
531 	return (error);
532 }
533 
534 static int
535 jme_probe(device_t dev)
536 {
537 	const struct jme_dev *sp;
538 	uint16_t vid, did;
539 
540 	vid = pci_get_vendor(dev);
541 	did = pci_get_device(dev);
542 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
543 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
544 			struct jme_softc *sc = device_get_softc(dev);
545 
546 			sc->jme_caps = sp->jme_caps;
547 			device_set_desc(dev, sp->jme_name);
548 			return (0);
549 		}
550 	}
551 	return (ENXIO);
552 }
553 
554 static int
555 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
556 {
557 	uint32_t reg;
558 	int i;
559 
560 	*val = 0;
561 	for (i = JME_TIMEOUT; i > 0; i--) {
562 		reg = CSR_READ_4(sc, JME_SMBCSR);
563 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
564 			break;
565 		DELAY(1);
566 	}
567 
568 	if (i == 0) {
569 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
570 		return (ETIMEDOUT);
571 	}
572 
573 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
574 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
575 	for (i = JME_TIMEOUT; i > 0; i--) {
576 		DELAY(1);
577 		reg = CSR_READ_4(sc, JME_SMBINTF);
578 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
579 			break;
580 	}
581 
582 	if (i == 0) {
583 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
584 		return (ETIMEDOUT);
585 	}
586 
587 	reg = CSR_READ_4(sc, JME_SMBINTF);
588 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
589 
590 	return (0);
591 }
592 
593 static int
594 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
595 {
596 	uint8_t fup, reg, val;
597 	uint32_t offset;
598 	int match;
599 
600 	offset = 0;
601 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
602 	    fup != JME_EEPROM_SIG0)
603 		return (ENOENT);
604 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
605 	    fup != JME_EEPROM_SIG1)
606 		return (ENOENT);
607 	match = 0;
608 	do {
609 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
610 			break;
611 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
612 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
613 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
614 				break;
615 			if (reg >= JME_PAR0 &&
616 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
617 				if (jme_eeprom_read_byte(sc, offset + 2,
618 				    &val) != 0)
619 					break;
620 				eaddr[reg - JME_PAR0] = val;
621 				match++;
622 			}
623 		}
624 		/* Check for the end of EEPROM descriptor. */
625 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
626 			break;
627 		/* Try next eeprom descriptor. */
628 		offset += JME_EEPROM_DESC_BYTES;
629 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
630 
631 	if (match == ETHER_ADDR_LEN)
632 		return (0);
633 
634 	return (ENOENT);
635 }
636 
637 static void
638 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
639 {
640 	uint32_t par0, par1;
641 
642 	/* Read station address. */
643 	par0 = CSR_READ_4(sc, JME_PAR0);
644 	par1 = CSR_READ_4(sc, JME_PAR1);
645 	par1 &= 0xFFFF;
646 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
647 		device_printf(sc->jme_dev,
648 		    "generating fake ethernet address.\n");
649 		par0 = karc4random();
650 		/* Set OUI to JMicron. */
651 		eaddr[0] = 0x00;
652 		eaddr[1] = 0x1B;
653 		eaddr[2] = 0x8C;
654 		eaddr[3] = (par0 >> 16) & 0xff;
655 		eaddr[4] = (par0 >> 8) & 0xff;
656 		eaddr[5] = par0 & 0xff;
657 	} else {
658 		eaddr[0] = (par0 >> 0) & 0xFF;
659 		eaddr[1] = (par0 >> 8) & 0xFF;
660 		eaddr[2] = (par0 >> 16) & 0xFF;
661 		eaddr[3] = (par0 >> 24) & 0xFF;
662 		eaddr[4] = (par1 >> 0) & 0xFF;
663 		eaddr[5] = (par1 >> 8) & 0xFF;
664 	}
665 }
666 
667 static int
668 jme_attach(device_t dev)
669 {
670 	struct jme_softc *sc = device_get_softc(dev);
671 	struct ifnet *ifp = &sc->arpcom.ac_if;
672 	uint32_t reg;
673 	uint16_t did;
674 	uint8_t pcie_ptr, rev;
675 	int error = 0, i, j, rx_desc_cnt, coal_max;
676 	uint8_t eaddr[ETHER_ADDR_LEN];
677 #ifdef IFPOLL_ENABLE
678 	int offset, offset_def;
679 #endif
680 
681 	/*
682 	 * Initialize serializers
683 	 */
684 	lwkt_serialize_init(&sc->jme_serialize);
685 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_data.jme_tx_serialize);
686 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
687 		lwkt_serialize_init(
688 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
689 	}
690 
691 	/*
692 	 * Get # of RX ring descriptors
693 	 */
694 	rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
695 	    jme_rx_desc_count);
696 	rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
697 	if (rx_desc_cnt > JME_NDESC_MAX)
698 		rx_desc_cnt = JME_NDESC_MAX;
699 
700 	/*
701 	 * Get # of TX ring descriptors
702 	 */
703 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
704 	    device_getenv_int(dev, "tx_desc_count", jme_tx_desc_count);
705 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
706 	    roundup(sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt, JME_NDESC_ALIGN);
707 	if (sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt > JME_NDESC_MAX)
708 		sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt = JME_NDESC_MAX;
709 
710 	/*
711 	 * Get # of RX rings
712 	 */
713 	sc->jme_cdata.jme_rx_ring_cnt = device_getenv_int(dev, "rx_ring_count",
714 	    jme_rx_ring_count);
715 	sc->jme_cdata.jme_rx_ring_cnt =
716 	    if_ring_count2(sc->jme_cdata.jme_rx_ring_cnt, JME_NRXRING_MAX);
717 
718 	/*
719 	 * Initialize serializer array
720 	 */
721 	i = 0;
722 
723 	KKASSERT(i < JME_NSERIALIZE);
724 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
725 
726 	KKASSERT(i < JME_NSERIALIZE);
727 	sc->jme_serialize_arr[i++] =
728 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
729 
730 	for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
731 		KKASSERT(i < JME_NSERIALIZE);
732 		sc->jme_serialize_arr[i++] =
733 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
734 	}
735 
736 	KKASSERT(i <= JME_NSERIALIZE);
737 	sc->jme_serialize_cnt = i;
738 
739 	/*
740 	 * Setup TX ring specific data
741 	 */
742 	sc->jme_cdata.jme_tx_data.jme_sc = sc;
743 
744 	/*
745 	 * Setup RX rings specific data
746 	 */
747 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
748 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
749 
750 		rdata->jme_sc = sc;
751 		rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
752 		rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
753 		rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
754 		rdata->jme_rx_idx = i;
755 		rdata->jme_rx_desc_cnt = rx_desc_cnt;
756 	}
757 
758 	sc->jme_dev = dev;
759 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
760 
761 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
762 
763 	callout_init(&sc->jme_tick_ch);
764 
765 #ifndef BURN_BRIDGES
766 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
767 		uint32_t irq, mem;
768 
769 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
770 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
771 
772 		device_printf(dev, "chip is in D%d power mode "
773 		    "-- setting to D0\n", pci_get_powerstate(dev));
774 
775 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
776 
777 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
778 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
779 	}
780 #endif	/* !BURN_BRIDGE */
781 
782 	/* Enable bus mastering */
783 	pci_enable_busmaster(dev);
784 
785 	/*
786 	 * Allocate IO memory
787 	 *
788 	 * JMC250 supports both memory mapped and I/O register space
789 	 * access.  Because I/O register access should use different
790 	 * BARs to access registers it's waste of time to use I/O
791 	 * register spce access.  JMC250 uses 16K to map entire memory
792 	 * space.
793 	 */
794 	sc->jme_mem_rid = JME_PCIR_BAR;
795 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
796 						 &sc->jme_mem_rid, RF_ACTIVE);
797 	if (sc->jme_mem_res == NULL) {
798 		device_printf(dev, "can't allocate IO memory\n");
799 		return ENXIO;
800 	}
801 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
802 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
803 
804 	/*
805 	 * Allocate IRQ
806 	 */
807 	error = jme_intr_alloc(dev);
808 	if (error)
809 		goto fail;
810 
811 	/*
812 	 * Extract revisions
813 	 */
814 	reg = CSR_READ_4(sc, JME_CHIPMODE);
815 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
816 	    CHIPMODE_NOT_FPGA) {
817 		sc->jme_caps |= JME_CAP_FPGA;
818 		if (bootverbose) {
819 			device_printf(dev, "FPGA revision: 0x%04x\n",
820 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
821 				      CHIPMODE_FPGA_REV_SHIFT);
822 		}
823 	}
824 
825 	/* NOTE: FM revision is put in the upper 4 bits */
826 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
827 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
828 	if (bootverbose)
829 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
830 
831 	did = pci_get_device(dev);
832 	switch (did) {
833 	case PCI_PRODUCT_JMICRON_JMC250:
834 		if (rev == JME_REV1_A2)
835 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
836 		break;
837 
838 	case PCI_PRODUCT_JMICRON_JMC260:
839 		if (rev == JME_REV2)
840 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
841 		break;
842 
843 	default:
844 		panic("unknown device id 0x%04x", did);
845 	}
846 	if (rev >= JME_REV2) {
847 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
848 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
849 				      GHC_TXMAC_CLKSRC_1000;
850 	}
851 
852 	/* Reset the ethernet controller. */
853 	jme_reset(sc);
854 
855 	/* Map MSI/MSI-X vectors */
856 	jme_set_msinum(sc);
857 
858 	/* Get station address. */
859 	reg = CSR_READ_4(sc, JME_SMBCSR);
860 	if (reg & SMBCSR_EEPROM_PRESENT)
861 		error = jme_eeprom_macaddr(sc, eaddr);
862 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
863 		if (error != 0 && (bootverbose)) {
864 			device_printf(dev, "ethernet hardware address "
865 				      "not found in EEPROM.\n");
866 		}
867 		jme_reg_macaddr(sc, eaddr);
868 	}
869 
870 	/*
871 	 * Save PHY address.
872 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
873 	 * requires PHY probing to get correct PHY address.
874 	 */
875 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
876 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
877 		    GPREG0_PHY_ADDR_MASK;
878 		if (bootverbose) {
879 			device_printf(dev, "PHY is at address %d.\n",
880 			    sc->jme_phyaddr);
881 		}
882 	} else {
883 		sc->jme_phyaddr = 0;
884 	}
885 
886 	/* Set max allowable DMA size. */
887 	pcie_ptr = pci_get_pciecap_ptr(dev);
888 	if (pcie_ptr != 0) {
889 		uint16_t ctrl;
890 
891 		sc->jme_caps |= JME_CAP_PCIE;
892 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
893 		if (bootverbose) {
894 			device_printf(dev, "Read request size : %d bytes.\n",
895 			    128 << ((ctrl >> 12) & 0x07));
896 			device_printf(dev, "TLP payload size : %d bytes.\n",
897 			    128 << ((ctrl >> 5) & 0x07));
898 		}
899 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
900 		case PCIEM_DEVCTL_MAX_READRQ_128:
901 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
902 			break;
903 		case PCIEM_DEVCTL_MAX_READRQ_256:
904 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
905 			break;
906 		default:
907 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
908 			break;
909 		}
910 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
911 	} else {
912 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
913 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
914 	}
915 
916 #ifdef notyet
917 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
918 		sc->jme_caps |= JME_CAP_PMCAP;
919 #endif
920 
921 #ifdef IFPOLL_ENABLE
922 	/*
923 	 * NPOLLING RX CPU offset
924 	 */
925 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
926 		offset = 0;
927 	} else {
928 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
929 		    device_get_unit(dev)) % ncpus2;
930 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
931 		if (offset >= ncpus2 ||
932 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
933 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
934 			    offset, offset_def);
935 			offset = offset_def;
936 		}
937 	}
938 	sc->jme_npoll_rxoff = offset;
939 
940 	/*
941 	 * NPOLLING TX CPU offset
942 	 */
943 	offset_def = sc->jme_npoll_rxoff;
944 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
945 	if (offset >= ncpus2) {
946 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
947 		    offset, offset_def);
948 		offset = offset_def;
949 	}
950 	sc->jme_npoll_txoff = offset;
951 #endif
952 
953 	/*
954 	 * Set default coalesce valves
955 	 */
956 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
957 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
958 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
959 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
960 
961 	/*
962 	 * Adjust coalesce valves, in case that the number of TX/RX
963 	 * descs are set to small values by users.
964 	 *
965 	 * NOTE: coal_max will not be zero, since number of descs
966 	 * must aligned by JME_NDESC_ALIGN (16 currently)
967 	 */
968 	coal_max = sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt / 2;
969 	if (coal_max < sc->jme_tx_coal_pkt)
970 		sc->jme_tx_coal_pkt = coal_max;
971 
972 	coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
973 	if (coal_max < sc->jme_rx_coal_pkt)
974 		sc->jme_rx_coal_pkt = coal_max;
975 
976 	sc->jme_cdata.jme_tx_data.jme_tx_wreg = JME_TXWREG_NSEGS;
977 
978 	/*
979 	 * Create sysctl tree
980 	 */
981 	jme_sysctl_node(sc);
982 
983 	/* Allocate DMA stuffs */
984 	error = jme_dma_alloc(sc);
985 	if (error)
986 		goto fail;
987 
988 	ifp->if_softc = sc;
989 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
990 	ifp->if_init = jme_init;
991 	ifp->if_ioctl = jme_ioctl;
992 	ifp->if_start = jme_start;
993 #ifdef IFPOLL_ENABLE
994 	ifp->if_npoll = jme_npoll;
995 #endif
996 	ifp->if_watchdog = jme_watchdog;
997 	ifp->if_serialize = jme_serialize;
998 	ifp->if_deserialize = jme_deserialize;
999 	ifp->if_tryserialize = jme_tryserialize;
1000 #ifdef INVARIANTS
1001 	ifp->if_serialize_assert = jme_serialize_assert;
1002 #endif
1003 	ifq_set_maxlen(&ifp->if_snd,
1004 	    sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt - JME_TXD_RSVD);
1005 	ifq_set_ready(&ifp->if_snd);
1006 
1007 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
1008 	ifp->if_capabilities = IFCAP_HWCSUM |
1009 			       IFCAP_TSO |
1010 			       IFCAP_VLAN_MTU |
1011 			       IFCAP_VLAN_HWTAGGING;
1012 	if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
1013 		ifp->if_capabilities |= IFCAP_RSS;
1014 	ifp->if_capenable = ifp->if_capabilities;
1015 
1016 	/*
1017 	 * Disable TXCSUM by default to improve bulk data
1018 	 * transmit performance (+20Mbps improvement).
1019 	 */
1020 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1021 
1022 	if (ifp->if_capenable & IFCAP_TXCSUM)
1023 		ifp->if_hwassist |= JME_CSUM_FEATURES;
1024 	ifp->if_hwassist |= CSUM_TSO;
1025 
1026 	/* Set up MII bus. */
1027 	error = mii_phy_probe(dev, &sc->jme_miibus,
1028 			      jme_mediachange, jme_mediastatus);
1029 	if (error) {
1030 		device_printf(dev, "no PHY found!\n");
1031 		goto fail;
1032 	}
1033 
1034 	/*
1035 	 * Save PHYADDR for FPGA mode PHY.
1036 	 */
1037 	if (sc->jme_caps & JME_CAP_FPGA) {
1038 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
1039 
1040 		if (mii->mii_instance != 0) {
1041 			struct mii_softc *miisc;
1042 
1043 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1044 				if (miisc->mii_phy != 0) {
1045 					sc->jme_phyaddr = miisc->mii_phy;
1046 					break;
1047 				}
1048 			}
1049 			if (sc->jme_phyaddr != 0) {
1050 				device_printf(sc->jme_dev,
1051 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
1052 				/* vendor magic. */
1053 				jme_miibus_writereg(dev, sc->jme_phyaddr,
1054 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
1055 
1056 				/* XXX should we clear JME_WA_EXTFIFO */
1057 			}
1058 		}
1059 	}
1060 
1061 	ether_ifattach(ifp, eaddr, NULL);
1062 
1063 	/* Tell the upper layer(s) we support long frames. */
1064 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1065 
1066 	/* Setup the TX ring's CPUID */
1067 	ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
1068 	ifsq_set_hw_serialize(ifq_get_subq_default(&ifp->if_snd),
1069 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize);
1070 
1071 	error = jme_intr_setup(dev);
1072 	if (error) {
1073 		ether_ifdetach(ifp);
1074 		goto fail;
1075 	}
1076 
1077 	return 0;
1078 fail:
1079 	jme_detach(dev);
1080 	return (error);
1081 }
1082 
1083 static int
1084 jme_detach(device_t dev)
1085 {
1086 	struct jme_softc *sc = device_get_softc(dev);
1087 
1088 	if (device_is_attached(dev)) {
1089 		struct ifnet *ifp = &sc->arpcom.ac_if;
1090 
1091 		ifnet_serialize_all(ifp);
1092 		jme_stop(sc);
1093 		jme_intr_teardown(dev);
1094 		ifnet_deserialize_all(ifp);
1095 
1096 		ether_ifdetach(ifp);
1097 	}
1098 
1099 	if (sc->jme_sysctl_tree != NULL)
1100 		sysctl_ctx_free(&sc->jme_sysctl_ctx);
1101 
1102 	if (sc->jme_miibus != NULL)
1103 		device_delete_child(dev, sc->jme_miibus);
1104 	bus_generic_detach(dev);
1105 
1106 	jme_intr_free(dev);
1107 
1108 	if (sc->jme_mem_res != NULL) {
1109 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1110 				     sc->jme_mem_res);
1111 	}
1112 
1113 	jme_dma_free(sc);
1114 
1115 	return (0);
1116 }
1117 
1118 static void
1119 jme_sysctl_node(struct jme_softc *sc)
1120 {
1121 #ifdef JME_RSS_DEBUG
1122 	int r;
1123 #endif
1124 
1125 	sysctl_ctx_init(&sc->jme_sysctl_ctx);
1126 	sc->jme_sysctl_tree = SYSCTL_ADD_NODE(&sc->jme_sysctl_ctx,
1127 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1128 				device_get_nameunit(sc->jme_dev),
1129 				CTLFLAG_RD, 0, "");
1130 	if (sc->jme_sysctl_tree == NULL) {
1131 		device_printf(sc->jme_dev, "can't add sysctl node\n");
1132 		return;
1133 	}
1134 
1135 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1136 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1137 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1138 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1139 
1140 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1141 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1142 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1143 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1144 
1145 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1146 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1147 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1148 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1149 
1150 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1151 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1152 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1153 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1154 
1155 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1156 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1157 		       "rx_desc_count", CTLFLAG_RD,
1158 		       &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1159 		       0, "RX desc count");
1160 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1161 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1162 		       "tx_desc_count", CTLFLAG_RD,
1163 		       &sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt,
1164 		       0, "TX desc count");
1165 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1166 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1167 		       "rx_ring_count", CTLFLAG_RD,
1168 		       &sc->jme_cdata.jme_rx_ring_cnt,
1169 		       0, "RX ring count");
1170 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1171 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1172 		       "tx_wreg", CTLFLAG_RW,
1173 		       &sc->jme_cdata.jme_tx_data.jme_tx_wreg, 0,
1174 		       "# of segments before writing to hardware register");
1175 
1176 #ifdef JME_RSS_DEBUG
1177 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1178 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1179 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1180 		       0, "RSS debug level");
1181 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1182 		char rx_ring_desc[32];
1183 
1184 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1185 		    "rx_ring%d_pkt", r);
1186 		SYSCTL_ADD_ULONG(&sc->jme_sysctl_ctx,
1187 		    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1188 		    rx_ring_desc, CTLFLAG_RW,
1189 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1190 
1191 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1192 		    "rx_ring%d_emp", r);
1193 		SYSCTL_ADD_ULONG(&sc->jme_sysctl_ctx,
1194 		    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1195 		    rx_ring_desc, CTLFLAG_RW,
1196 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1197 		    "# of time RX ring empty");
1198 	}
1199 #endif
1200 
1201 #ifdef IFPOLL_ENABLE
1202 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1203 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1204 	    "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1205 	    jme_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1206 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1207 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1208 	    "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1209 	    jme_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1210 #endif
1211 }
1212 
1213 static int
1214 jme_dma_alloc(struct jme_softc *sc)
1215 {
1216 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1217 	struct jme_txdesc *txd;
1218 	bus_dmamem_t dmem;
1219 	int error, i, asize;
1220 
1221 	asize = __VM_CACHELINE_ALIGN(
1222 	    tdata->jme_tx_desc_cnt * sizeof(struct jme_txdesc));
1223 	tdata->jme_txdesc = kmalloc_cachealign(asize, M_DEVBUF,
1224 	    M_WAITOK | M_ZERO);
1225 
1226 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1227 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1228 
1229 		asize = __VM_CACHELINE_ALIGN(
1230 		    rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc));
1231 		rdata->jme_rxdesc = kmalloc_cachealign(asize, M_DEVBUF,
1232 		    M_WAITOK | M_ZERO);
1233 	}
1234 
1235 	/* Create parent ring tag. */
1236 	error = bus_dma_tag_create(NULL,/* parent */
1237 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1238 	    sc->jme_lowaddr,		/* lowaddr */
1239 	    BUS_SPACE_MAXADDR,		/* highaddr */
1240 	    NULL, NULL,			/* filter, filterarg */
1241 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1242 	    0,				/* nsegments */
1243 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1244 	    0,				/* flags */
1245 	    &sc->jme_cdata.jme_ring_tag);
1246 	if (error) {
1247 		device_printf(sc->jme_dev,
1248 		    "could not create parent ring DMA tag.\n");
1249 		return error;
1250 	}
1251 
1252 	/*
1253 	 * Create DMA stuffs for TX ring
1254 	 */
1255 	asize = roundup2(JME_TX_RING_SIZE(tdata), JME_TX_RING_ALIGN);
1256 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1257 			JME_TX_RING_ALIGN, 0,
1258 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1259 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1260 	if (error) {
1261 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1262 		return error;
1263 	}
1264 	tdata->jme_tx_ring_tag = dmem.dmem_tag;
1265 	tdata->jme_tx_ring_map = dmem.dmem_map;
1266 	tdata->jme_tx_ring = dmem.dmem_addr;
1267 	tdata->jme_tx_ring_paddr = dmem.dmem_busaddr;
1268 
1269 	/*
1270 	 * Create DMA stuffs for RX rings
1271 	 */
1272 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1273 		error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1274 		if (error)
1275 			return error;
1276 	}
1277 
1278 	/* Create parent buffer tag. */
1279 	error = bus_dma_tag_create(NULL,/* parent */
1280 	    1, 0,			/* algnmnt, boundary */
1281 	    sc->jme_lowaddr,		/* lowaddr */
1282 	    BUS_SPACE_MAXADDR,		/* highaddr */
1283 	    NULL, NULL,			/* filter, filterarg */
1284 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1285 	    0,				/* nsegments */
1286 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1287 	    0,				/* flags */
1288 	    &sc->jme_cdata.jme_buffer_tag);
1289 	if (error) {
1290 		device_printf(sc->jme_dev,
1291 		    "could not create parent buffer DMA tag.\n");
1292 		return error;
1293 	}
1294 
1295 	/*
1296 	 * Create DMA stuffs for shadow status block
1297 	 */
1298 	asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1299 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1300 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1301 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1302 	if (error) {
1303 		device_printf(sc->jme_dev,
1304 		    "could not create shadow status block.\n");
1305 		return error;
1306 	}
1307 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1308 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1309 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1310 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1311 
1312 	/*
1313 	 * Create DMA stuffs for TX buffers
1314 	 */
1315 
1316 	/* Create tag for Tx buffers. */
1317 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1318 	    1, 0,			/* algnmnt, boundary */
1319 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1320 	    BUS_SPACE_MAXADDR,		/* highaddr */
1321 	    NULL, NULL,			/* filter, filterarg */
1322 	    JME_TSO_MAXSIZE,		/* maxsize */
1323 	    JME_MAXTXSEGS,		/* nsegments */
1324 	    JME_MAXSEGSIZE,		/* maxsegsize */
1325 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1326 	    &tdata->jme_tx_tag);
1327 	if (error != 0) {
1328 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1329 		return error;
1330 	}
1331 
1332 	/* Create DMA maps for Tx buffers. */
1333 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1334 		txd = &tdata->jme_txdesc[i];
1335 		error = bus_dmamap_create(tdata->jme_tx_tag,
1336 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1337 				&txd->tx_dmamap);
1338 		if (error) {
1339 			int j;
1340 
1341 			device_printf(sc->jme_dev,
1342 			    "could not create %dth Tx dmamap.\n", i);
1343 
1344 			for (j = 0; j < i; ++j) {
1345 				txd = &tdata->jme_txdesc[j];
1346 				bus_dmamap_destroy(tdata->jme_tx_tag,
1347 						   txd->tx_dmamap);
1348 			}
1349 			bus_dma_tag_destroy(tdata->jme_tx_tag);
1350 			tdata->jme_tx_tag = NULL;
1351 			return error;
1352 		}
1353 	}
1354 
1355 	/*
1356 	 * Create DMA stuffs for RX buffers
1357 	 */
1358 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1359 		error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1360 		if (error)
1361 			return error;
1362 	}
1363 	return 0;
1364 }
1365 
1366 static void
1367 jme_dma_free(struct jme_softc *sc)
1368 {
1369 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1370 	struct jme_txdesc *txd;
1371 	struct jme_rxdesc *rxd;
1372 	struct jme_rxdata *rdata;
1373 	int i, r;
1374 
1375 	/* Tx ring */
1376 	if (tdata->jme_tx_ring_tag != NULL) {
1377 		bus_dmamap_unload(tdata->jme_tx_ring_tag,
1378 		    tdata->jme_tx_ring_map);
1379 		bus_dmamem_free(tdata->jme_tx_ring_tag,
1380 		    tdata->jme_tx_ring, tdata->jme_tx_ring_map);
1381 		bus_dma_tag_destroy(tdata->jme_tx_ring_tag);
1382 		tdata->jme_tx_ring_tag = NULL;
1383 	}
1384 
1385 	/* Rx ring */
1386 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1387 		rdata = &sc->jme_cdata.jme_rx_data[r];
1388 		if (rdata->jme_rx_ring_tag != NULL) {
1389 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1390 					  rdata->jme_rx_ring_map);
1391 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1392 					rdata->jme_rx_ring,
1393 					rdata->jme_rx_ring_map);
1394 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1395 			rdata->jme_rx_ring_tag = NULL;
1396 		}
1397 	}
1398 
1399 	/* Tx buffers */
1400 	if (tdata->jme_tx_tag != NULL) {
1401 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1402 			txd = &tdata->jme_txdesc[i];
1403 			bus_dmamap_destroy(tdata->jme_tx_tag, txd->tx_dmamap);
1404 		}
1405 		bus_dma_tag_destroy(tdata->jme_tx_tag);
1406 		tdata->jme_tx_tag = NULL;
1407 	}
1408 
1409 	/* Rx buffers */
1410 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1411 		rdata = &sc->jme_cdata.jme_rx_data[r];
1412 		if (rdata->jme_rx_tag != NULL) {
1413 			for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1414 				rxd = &rdata->jme_rxdesc[i];
1415 				bus_dmamap_destroy(rdata->jme_rx_tag,
1416 						   rxd->rx_dmamap);
1417 			}
1418 			bus_dmamap_destroy(rdata->jme_rx_tag,
1419 					   rdata->jme_rx_sparemap);
1420 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1421 			rdata->jme_rx_tag = NULL;
1422 		}
1423 	}
1424 
1425 	/* Shadow status block. */
1426 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1427 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1428 		    sc->jme_cdata.jme_ssb_map);
1429 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1430 		    sc->jme_cdata.jme_ssb_block,
1431 		    sc->jme_cdata.jme_ssb_map);
1432 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1433 		sc->jme_cdata.jme_ssb_tag = NULL;
1434 	}
1435 
1436 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1437 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1438 		sc->jme_cdata.jme_buffer_tag = NULL;
1439 	}
1440 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1441 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1442 		sc->jme_cdata.jme_ring_tag = NULL;
1443 	}
1444 
1445 	if (tdata->jme_txdesc != NULL) {
1446 		kfree(tdata->jme_txdesc, M_DEVBUF);
1447 		tdata->jme_txdesc = NULL;
1448 	}
1449 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1450 		rdata = &sc->jme_cdata.jme_rx_data[r];
1451 		if (rdata->jme_rxdesc != NULL) {
1452 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1453 			rdata->jme_rxdesc = NULL;
1454 		}
1455 	}
1456 }
1457 
1458 /*
1459  *	Make sure the interface is stopped at reboot time.
1460  */
1461 static int
1462 jme_shutdown(device_t dev)
1463 {
1464 	return jme_suspend(dev);
1465 }
1466 
1467 #ifdef notyet
1468 /*
1469  * Unlike other ethernet controllers, JMC250 requires
1470  * explicit resetting link speed to 10/100Mbps as gigabit
1471  * link will cunsume more power than 375mA.
1472  * Note, we reset the link speed to 10/100Mbps with
1473  * auto-negotiation but we don't know whether that operation
1474  * would succeed or not as we have no control after powering
1475  * off. If the renegotiation fail WOL may not work. Running
1476  * at 1Gbps draws more power than 375mA at 3.3V which is
1477  * specified in PCI specification and that would result in
1478  * complete shutdowning power to ethernet controller.
1479  *
1480  * TODO
1481  *  Save current negotiated media speed/duplex/flow-control
1482  *  to softc and restore the same link again after resuming.
1483  *  PHY handling such as power down/resetting to 100Mbps
1484  *  may be better handled in suspend method in phy driver.
1485  */
1486 static void
1487 jme_setlinkspeed(struct jme_softc *sc)
1488 {
1489 	struct mii_data *mii;
1490 	int aneg, i;
1491 
1492 	JME_LOCK_ASSERT(sc);
1493 
1494 	mii = device_get_softc(sc->jme_miibus);
1495 	mii_pollstat(mii);
1496 	aneg = 0;
1497 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1498 		switch IFM_SUBTYPE(mii->mii_media_active) {
1499 		case IFM_10_T:
1500 		case IFM_100_TX:
1501 			return;
1502 		case IFM_1000_T:
1503 			aneg++;
1504 		default:
1505 			break;
1506 		}
1507 	}
1508 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1509 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1510 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1511 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1512 	    BMCR_AUTOEN | BMCR_STARTNEG);
1513 	DELAY(1000);
1514 	if (aneg != 0) {
1515 		/* Poll link state until jme(4) get a 10/100 link. */
1516 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1517 			mii_pollstat(mii);
1518 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1519 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1520 				case IFM_10_T:
1521 				case IFM_100_TX:
1522 					jme_mac_config(sc);
1523 					return;
1524 				default:
1525 					break;
1526 				}
1527 			}
1528 			JME_UNLOCK(sc);
1529 			pause("jmelnk", hz);
1530 			JME_LOCK(sc);
1531 		}
1532 		if (i == MII_ANEGTICKS_GIGE)
1533 			device_printf(sc->jme_dev, "establishing link failed, "
1534 			    "WOL may not work!");
1535 	}
1536 	/*
1537 	 * No link, force MAC to have 100Mbps, full-duplex link.
1538 	 * This is the last resort and may/may not work.
1539 	 */
1540 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1541 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1542 	jme_mac_config(sc);
1543 }
1544 
1545 static void
1546 jme_setwol(struct jme_softc *sc)
1547 {
1548 	struct ifnet *ifp = &sc->arpcom.ac_if;
1549 	uint32_t gpr, pmcs;
1550 	uint16_t pmstat;
1551 	int pmc;
1552 
1553 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1554 		/* No PME capability, PHY power down. */
1555 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1556 		    MII_BMCR, BMCR_PDOWN);
1557 		return;
1558 	}
1559 
1560 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1561 	pmcs = CSR_READ_4(sc, JME_PMCS);
1562 	pmcs &= ~PMCS_WOL_ENB_MASK;
1563 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1564 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1565 		/* Enable PME message. */
1566 		gpr |= GPREG0_PME_ENB;
1567 		/* For gigabit controllers, reset link speed to 10/100. */
1568 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1569 			jme_setlinkspeed(sc);
1570 	}
1571 
1572 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1573 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1574 
1575 	/* Request PME. */
1576 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1577 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1578 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1579 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1580 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1581 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1582 		/* No WOL, PHY power down. */
1583 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1584 		    MII_BMCR, BMCR_PDOWN);
1585 	}
1586 }
1587 #endif
1588 
1589 static int
1590 jme_suspend(device_t dev)
1591 {
1592 	struct jme_softc *sc = device_get_softc(dev);
1593 	struct ifnet *ifp = &sc->arpcom.ac_if;
1594 
1595 	ifnet_serialize_all(ifp);
1596 	jme_stop(sc);
1597 #ifdef notyet
1598 	jme_setwol(sc);
1599 #endif
1600 	ifnet_deserialize_all(ifp);
1601 
1602 	return (0);
1603 }
1604 
1605 static int
1606 jme_resume(device_t dev)
1607 {
1608 	struct jme_softc *sc = device_get_softc(dev);
1609 	struct ifnet *ifp = &sc->arpcom.ac_if;
1610 #ifdef notyet
1611 	int pmc;
1612 #endif
1613 
1614 	ifnet_serialize_all(ifp);
1615 
1616 #ifdef notyet
1617 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1618 		uint16_t pmstat;
1619 
1620 		pmstat = pci_read_config(sc->jme_dev,
1621 		    pmc + PCIR_POWER_STATUS, 2);
1622 		/* Disable PME clear PME status. */
1623 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1624 		pci_write_config(sc->jme_dev,
1625 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1626 	}
1627 #endif
1628 
1629 	if (ifp->if_flags & IFF_UP)
1630 		jme_init(sc);
1631 
1632 	ifnet_deserialize_all(ifp);
1633 
1634 	return (0);
1635 }
1636 
1637 static __inline int
1638 jme_tso_pullup(struct mbuf **mp)
1639 {
1640 	int hoff, iphlen, thoff;
1641 	struct mbuf *m;
1642 
1643 	m = *mp;
1644 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1645 
1646 	iphlen = m->m_pkthdr.csum_iphlen;
1647 	thoff = m->m_pkthdr.csum_thlen;
1648 	hoff = m->m_pkthdr.csum_lhlen;
1649 
1650 	KASSERT(iphlen > 0, ("invalid ip hlen"));
1651 	KASSERT(thoff > 0, ("invalid tcp hlen"));
1652 	KASSERT(hoff > 0, ("invalid ether hlen"));
1653 
1654 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1655 		m = m_pullup(m, hoff + iphlen + thoff);
1656 		if (m == NULL) {
1657 			*mp = NULL;
1658 			return ENOBUFS;
1659 		}
1660 		*mp = m;
1661 	}
1662 	return 0;
1663 }
1664 
1665 static int
1666 jme_encap(struct jme_txdata *tdata, struct mbuf **m_head, int *segs_used)
1667 {
1668 	struct jme_txdesc *txd;
1669 	struct jme_desc *desc;
1670 	struct mbuf *m;
1671 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1672 	int maxsegs, nsegs;
1673 	int error, i, prod, symbol_desc;
1674 	uint32_t cflags, flag64, mss;
1675 
1676 	M_ASSERTPKTHDR((*m_head));
1677 
1678 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1679 		/* XXX Is this necessary? */
1680 		error = jme_tso_pullup(m_head);
1681 		if (error)
1682 			return error;
1683 	}
1684 
1685 	prod = tdata->jme_tx_prod;
1686 	txd = &tdata->jme_txdesc[prod];
1687 
1688 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1689 		symbol_desc = 1;
1690 	else
1691 		symbol_desc = 0;
1692 
1693 	maxsegs = (tdata->jme_tx_desc_cnt - tdata->jme_tx_cnt) -
1694 		  (JME_TXD_RSVD + symbol_desc);
1695 	if (maxsegs > JME_MAXTXSEGS)
1696 		maxsegs = JME_MAXTXSEGS;
1697 	KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1698 		("not enough segments %d", maxsegs));
1699 
1700 	error = bus_dmamap_load_mbuf_defrag(tdata->jme_tx_tag,
1701 			txd->tx_dmamap, m_head,
1702 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1703 	if (error)
1704 		goto fail;
1705 	*segs_used += nsegs;
1706 
1707 	bus_dmamap_sync(tdata->jme_tx_tag, txd->tx_dmamap,
1708 			BUS_DMASYNC_PREWRITE);
1709 
1710 	m = *m_head;
1711 	cflags = 0;
1712 	mss = 0;
1713 
1714 	/* Configure checksum offload. */
1715 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1716 		mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1717 		cflags |= JME_TD_TSO;
1718 	} else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1719 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1720 			cflags |= JME_TD_IPCSUM;
1721 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1722 			cflags |= JME_TD_TCPCSUM;
1723 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1724 			cflags |= JME_TD_UDPCSUM;
1725 	}
1726 
1727 	/* Configure VLAN. */
1728 	if (m->m_flags & M_VLANTAG) {
1729 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1730 		cflags |= JME_TD_VLAN_TAG;
1731 	}
1732 
1733 	desc = &tdata->jme_tx_ring[prod];
1734 	desc->flags = htole32(cflags);
1735 	desc->addr_hi = htole32(m->m_pkthdr.len);
1736 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1737 		/*
1738 		 * Use 64bits TX desc chain format.
1739 		 *
1740 		 * The first TX desc of the chain, which is setup here,
1741 		 * is just a symbol TX desc carrying no payload.
1742 		 */
1743 		flag64 = JME_TD_64BIT;
1744 		desc->buflen = htole32(mss);
1745 		desc->addr_lo = 0;
1746 
1747 		*segs_used += 1;
1748 
1749 		/* No effective TX desc is consumed */
1750 		i = 0;
1751 	} else {
1752 		/*
1753 		 * Use 32bits TX desc chain format.
1754 		 *
1755 		 * The first TX desc of the chain, which is setup here,
1756 		 * is an effective TX desc carrying the first segment of
1757 		 * the mbuf chain.
1758 		 */
1759 		flag64 = 0;
1760 		desc->buflen = htole32(mss | txsegs[0].ds_len);
1761 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1762 
1763 		/* One effective TX desc is consumed */
1764 		i = 1;
1765 	}
1766 	tdata->jme_tx_cnt++;
1767 	KKASSERT(tdata->jme_tx_cnt - i < tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1768 	JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1769 
1770 	txd->tx_ndesc = 1 - i;
1771 	for (; i < nsegs; i++) {
1772 		desc = &tdata->jme_tx_ring[prod];
1773 		desc->buflen = htole32(txsegs[i].ds_len);
1774 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1775 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1776 		desc->flags = htole32(JME_TD_OWN | flag64);
1777 
1778 		tdata->jme_tx_cnt++;
1779 		KKASSERT(tdata->jme_tx_cnt <=
1780 			 tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1781 		JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1782 	}
1783 
1784 	/* Update producer index. */
1785 	tdata->jme_tx_prod = prod;
1786 	/*
1787 	 * Finally request interrupt and give the first descriptor
1788 	 * owenership to hardware.
1789 	 */
1790 	desc = txd->tx_desc;
1791 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1792 
1793 	txd->tx_m = m;
1794 	txd->tx_ndesc += nsegs;
1795 
1796 	return 0;
1797 fail:
1798 	m_freem(*m_head);
1799 	*m_head = NULL;
1800 	return error;
1801 }
1802 
1803 static void
1804 jme_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1805 {
1806 	struct jme_softc *sc = ifp->if_softc;
1807 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1808 	struct mbuf *m_head;
1809 	int enq = 0;
1810 
1811 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1812 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
1813 
1814 	if (!sc->jme_has_link) {
1815 		ifq_purge(&ifp->if_snd);
1816 		return;
1817 	}
1818 
1819 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1820 		return;
1821 
1822 	if (tdata->jme_tx_cnt >= JME_TX_DESC_HIWAT(tdata))
1823 		jme_txeof(tdata);
1824 
1825 	while (!ifq_is_empty(&ifp->if_snd)) {
1826 		/*
1827 		 * Check number of available TX descs, always
1828 		 * leave JME_TXD_RSVD free TX descs.
1829 		 */
1830 		if (tdata->jme_tx_cnt + JME_TXD_SPARE >
1831 		    tdata->jme_tx_desc_cnt - JME_TXD_RSVD) {
1832 			ifq_set_oactive(&ifp->if_snd);
1833 			break;
1834 		}
1835 
1836 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1837 		if (m_head == NULL)
1838 			break;
1839 
1840 		/*
1841 		 * Pack the data into the transmit ring. If we
1842 		 * don't have room, set the OACTIVE flag and wait
1843 		 * for the NIC to drain the ring.
1844 		 */
1845 		if (jme_encap(tdata, &m_head, &enq)) {
1846 			KKASSERT(m_head == NULL);
1847 			IFNET_STAT_INC(ifp, oerrors, 1);
1848 			ifq_set_oactive(&ifp->if_snd);
1849 			break;
1850 		}
1851 
1852 		if (enq >= tdata->jme_tx_wreg) {
1853 			CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr |
1854 			    TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1855 			enq = 0;
1856 		}
1857 
1858 		/*
1859 		 * If there's a BPF listener, bounce a copy of this frame
1860 		 * to him.
1861 		 */
1862 		ETHER_BPF_MTAP(ifp, m_head);
1863 
1864 		/* Set a timeout in case the chip goes out to lunch. */
1865 		ifp->if_timer = JME_TX_TIMEOUT;
1866 	}
1867 
1868 	if (enq > 0) {
1869 		/*
1870 		 * Reading TXCSR takes very long time under heavy load
1871 		 * so cache TXCSR value and writes the ORed value with
1872 		 * the kick command to the TXCSR. This saves one register
1873 		 * access cycle.
1874 		 */
1875 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1876 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1877 	}
1878 }
1879 
1880 static void
1881 jme_watchdog(struct ifnet *ifp)
1882 {
1883 	struct jme_softc *sc = ifp->if_softc;
1884 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1885 
1886 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1887 
1888 	if (!sc->jme_has_link) {
1889 		if_printf(ifp, "watchdog timeout (missed link)\n");
1890 		IFNET_STAT_INC(ifp, oerrors, 1);
1891 		jme_init(sc);
1892 		return;
1893 	}
1894 
1895 	jme_txeof(tdata);
1896 	if (tdata->jme_tx_cnt == 0) {
1897 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1898 			  "-- recovering\n");
1899 		if (!ifq_is_empty(&ifp->if_snd))
1900 			if_devstart(ifp);
1901 		return;
1902 	}
1903 
1904 	if_printf(ifp, "watchdog timeout\n");
1905 	IFNET_STAT_INC(ifp, oerrors, 1);
1906 	jme_init(sc);
1907 	if (!ifq_is_empty(&ifp->if_snd))
1908 		if_devstart(ifp);
1909 }
1910 
1911 static int
1912 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1913 {
1914 	struct jme_softc *sc = ifp->if_softc;
1915 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1916 	struct ifreq *ifr = (struct ifreq *)data;
1917 	int error = 0, mask;
1918 
1919 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1920 
1921 	switch (cmd) {
1922 	case SIOCSIFMTU:
1923 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1924 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1925 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1926 			error = EINVAL;
1927 			break;
1928 		}
1929 
1930 		if (ifp->if_mtu != ifr->ifr_mtu) {
1931 			/*
1932 			 * No special configuration is required when interface
1933 			 * MTU is changed but availability of Tx checksum
1934 			 * offload should be chcked against new MTU size as
1935 			 * FIFO size is just 2K.
1936 			 */
1937 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1938 				ifp->if_capenable &=
1939 				    ~(IFCAP_TXCSUM | IFCAP_TSO);
1940 				ifp->if_hwassist &=
1941 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1942 			}
1943 			ifp->if_mtu = ifr->ifr_mtu;
1944 			if (ifp->if_flags & IFF_RUNNING)
1945 				jme_init(sc);
1946 		}
1947 		break;
1948 
1949 	case SIOCSIFFLAGS:
1950 		if (ifp->if_flags & IFF_UP) {
1951 			if (ifp->if_flags & IFF_RUNNING) {
1952 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1953 				    (IFF_PROMISC | IFF_ALLMULTI))
1954 					jme_set_filter(sc);
1955 			} else {
1956 				jme_init(sc);
1957 			}
1958 		} else {
1959 			if (ifp->if_flags & IFF_RUNNING)
1960 				jme_stop(sc);
1961 		}
1962 		sc->jme_if_flags = ifp->if_flags;
1963 		break;
1964 
1965 	case SIOCADDMULTI:
1966 	case SIOCDELMULTI:
1967 		if (ifp->if_flags & IFF_RUNNING)
1968 			jme_set_filter(sc);
1969 		break;
1970 
1971 	case SIOCSIFMEDIA:
1972 	case SIOCGIFMEDIA:
1973 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1974 		break;
1975 
1976 	case SIOCSIFCAP:
1977 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1978 
1979 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1980 			ifp->if_capenable ^= IFCAP_TXCSUM;
1981 			if (ifp->if_capenable & IFCAP_TXCSUM)
1982 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1983 			else
1984 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1985 		}
1986 		if (mask & IFCAP_RXCSUM) {
1987 			uint32_t reg;
1988 
1989 			ifp->if_capenable ^= IFCAP_RXCSUM;
1990 			reg = CSR_READ_4(sc, JME_RXMAC);
1991 			reg &= ~RXMAC_CSUM_ENB;
1992 			if (ifp->if_capenable & IFCAP_RXCSUM)
1993 				reg |= RXMAC_CSUM_ENB;
1994 			CSR_WRITE_4(sc, JME_RXMAC, reg);
1995 		}
1996 
1997 		if (mask & IFCAP_VLAN_HWTAGGING) {
1998 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1999 			jme_set_vlan(sc);
2000 		}
2001 
2002 		if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
2003 			ifp->if_capenable ^= IFCAP_TSO;
2004 			if (ifp->if_capenable & IFCAP_TSO)
2005 				ifp->if_hwassist |= CSUM_TSO;
2006 			else
2007 				ifp->if_hwassist &= ~CSUM_TSO;
2008 		}
2009 
2010 		if (mask & IFCAP_RSS)
2011 			ifp->if_capenable ^= IFCAP_RSS;
2012 		break;
2013 
2014 	default:
2015 		error = ether_ioctl(ifp, cmd, data);
2016 		break;
2017 	}
2018 	return (error);
2019 }
2020 
2021 static void
2022 jme_mac_config(struct jme_softc *sc)
2023 {
2024 	struct mii_data *mii;
2025 	uint32_t ghc, rxmac, txmac, txpause, gp1;
2026 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
2027 
2028 	mii = device_get_softc(sc->jme_miibus);
2029 
2030 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2031 	DELAY(10);
2032 	CSR_WRITE_4(sc, JME_GHC, 0);
2033 	ghc = 0;
2034 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2035 	rxmac &= ~RXMAC_FC_ENB;
2036 	txmac = CSR_READ_4(sc, JME_TXMAC);
2037 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2038 	txpause = CSR_READ_4(sc, JME_TXPFC);
2039 	txpause &= ~TXPFC_PAUSE_ENB;
2040 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2041 		ghc |= GHC_FULL_DUPLEX;
2042 		rxmac &= ~RXMAC_COLL_DET_ENB;
2043 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2044 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2045 		    TXMAC_FRAME_BURST);
2046 #ifdef notyet
2047 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2048 			txpause |= TXPFC_PAUSE_ENB;
2049 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2050 			rxmac |= RXMAC_FC_ENB;
2051 #endif
2052 		/* Disable retry transmit timer/retry limit. */
2053 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2054 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2055 	} else {
2056 		rxmac |= RXMAC_COLL_DET_ENB;
2057 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2058 		/* Enable retry transmit timer/retry limit. */
2059 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2060 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2061 	}
2062 
2063 	/*
2064 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
2065 	 */
2066 	gp1 = CSR_READ_4(sc, JME_GPREG1);
2067 	gp1 &= ~GPREG1_WA_HDX;
2068 
2069 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2070 		hdx = 1;
2071 
2072 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2073 	case IFM_10_T:
2074 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
2075 		if (hdx)
2076 			gp1 |= GPREG1_WA_HDX;
2077 		break;
2078 
2079 	case IFM_100_TX:
2080 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
2081 		if (hdx)
2082 			gp1 |= GPREG1_WA_HDX;
2083 
2084 		/*
2085 		 * Use extended FIFO depth to workaround CRC errors
2086 		 * emitted by chips before JMC250B
2087 		 */
2088 		phyconf = JMPHY_CONF_EXTFIFO;
2089 		break;
2090 
2091 	case IFM_1000_T:
2092 		if (sc->jme_caps & JME_CAP_FASTETH)
2093 			break;
2094 
2095 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
2096 		if (hdx)
2097 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2098 		break;
2099 
2100 	default:
2101 		break;
2102 	}
2103 	CSR_WRITE_4(sc, JME_GHC, ghc);
2104 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2105 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2106 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2107 
2108 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
2109 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2110 				    JMPHY_CONF, phyconf);
2111 	}
2112 	if (sc->jme_workaround & JME_WA_HDX)
2113 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
2114 }
2115 
2116 static void
2117 jme_intr(void *xsc)
2118 {
2119 	struct jme_softc *sc = xsc;
2120 	struct ifnet *ifp = &sc->arpcom.ac_if;
2121 	uint32_t status;
2122 	int r;
2123 
2124 	ASSERT_SERIALIZED(&sc->jme_serialize);
2125 
2126 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2127 	if (status == 0 || status == 0xFFFFFFFF)
2128 		return;
2129 
2130 	/* Disable interrupts. */
2131 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2132 
2133 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2134 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2135 		goto back;
2136 
2137 	/* Reset PCC counter/timer and Ack interrupts. */
2138 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2139 
2140 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2141 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2142 
2143 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2144 		if (status & jme_rx_status[r].jme_coal) {
2145 			status |= jme_rx_status[r].jme_coal |
2146 				  jme_rx_status[r].jme_comp;
2147 		}
2148 	}
2149 
2150 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2151 
2152 	if (ifp->if_flags & IFF_RUNNING) {
2153 		struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2154 
2155 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2156 			jme_rx_intr(sc, status);
2157 
2158 		if (status & INTR_RXQ_DESC_EMPTY) {
2159 			/*
2160 			 * Notify hardware availability of new Rx buffers.
2161 			 * Reading RXCSR takes very long time under heavy
2162 			 * load so cache RXCSR value and writes the ORed
2163 			 * value with the kick command to the RXCSR. This
2164 			 * saves one register access cycle.
2165 			 */
2166 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2167 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2168 		}
2169 
2170 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2171 			lwkt_serialize_enter(&tdata->jme_tx_serialize);
2172 			jme_txeof(tdata);
2173 			if (!ifq_is_empty(&ifp->if_snd))
2174 				if_devstart(ifp);
2175 			lwkt_serialize_exit(&tdata->jme_tx_serialize);
2176 		}
2177 	}
2178 back:
2179 	/* Reenable interrupts. */
2180 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2181 }
2182 
2183 static void
2184 jme_txeof(struct jme_txdata *tdata)
2185 {
2186 	struct ifnet *ifp = &tdata->jme_sc->arpcom.ac_if;
2187 	int cons;
2188 
2189 	cons = tdata->jme_tx_cons;
2190 	if (cons == tdata->jme_tx_prod)
2191 		return;
2192 
2193 	/*
2194 	 * Go through our Tx list and free mbufs for those
2195 	 * frames which have been transmitted.
2196 	 */
2197 	while (cons != tdata->jme_tx_prod) {
2198 		struct jme_txdesc *txd, *next_txd;
2199 		uint32_t status, next_status;
2200 		int next_cons, nsegs;
2201 
2202 		txd = &tdata->jme_txdesc[cons];
2203 		KASSERT(txd->tx_m != NULL,
2204 			("%s: freeing NULL mbuf!", __func__));
2205 
2206 		status = le32toh(txd->tx_desc->flags);
2207 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2208 			break;
2209 
2210 		/*
2211 		 * NOTE:
2212 		 * This chip will always update the TX descriptor's
2213 		 * buflen field and this updating always happens
2214 		 * after clearing the OWN bit, so even if the OWN
2215 		 * bit is cleared by the chip, we still don't sure
2216 		 * about whether the buflen field has been updated
2217 		 * by the chip or not.  To avoid this race, we wait
2218 		 * for the next TX descriptor's OWN bit to be cleared
2219 		 * by the chip before reusing this TX descriptor.
2220 		 */
2221 		next_cons = cons;
2222 		JME_DESC_ADD(next_cons, txd->tx_ndesc, tdata->jme_tx_desc_cnt);
2223 		next_txd = &tdata->jme_txdesc[next_cons];
2224 		if (next_txd->tx_m == NULL)
2225 			break;
2226 		next_status = le32toh(next_txd->tx_desc->flags);
2227 		if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2228 			break;
2229 
2230 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2231 			IFNET_STAT_INC(ifp, oerrors, 1);
2232 		} else {
2233 			IFNET_STAT_INC(ifp, opackets, 1);
2234 			if (status & JME_TD_COLLISION) {
2235 				IFNET_STAT_INC(ifp, collisions,
2236 				    le32toh(txd->tx_desc->buflen) &
2237 				    JME_TD_BUF_LEN_MASK);
2238 			}
2239 		}
2240 
2241 		/*
2242 		 * Only the first descriptor of multi-descriptor
2243 		 * transmission is updated so driver have to skip entire
2244 		 * chained buffers for the transmiited frame. In other
2245 		 * words, JME_TD_OWN bit is valid only at the first
2246 		 * descriptor of a multi-descriptor transmission.
2247 		 */
2248 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2249 			tdata->jme_tx_ring[cons].flags = 0;
2250 			JME_DESC_INC(cons, tdata->jme_tx_desc_cnt);
2251 		}
2252 
2253 		/* Reclaim transferred mbufs. */
2254 		bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2255 		m_freem(txd->tx_m);
2256 		txd->tx_m = NULL;
2257 		tdata->jme_tx_cnt -= txd->tx_ndesc;
2258 		KASSERT(tdata->jme_tx_cnt >= 0,
2259 			("%s: Active Tx desc counter was garbled", __func__));
2260 		txd->tx_ndesc = 0;
2261 	}
2262 	tdata->jme_tx_cons = cons;
2263 
2264 	/* 1 for symbol TX descriptor */
2265 	if (tdata->jme_tx_cnt <= JME_MAXTXSEGS + 1)
2266 		ifp->if_timer = 0;
2267 
2268 	if (tdata->jme_tx_cnt + JME_TXD_SPARE <=
2269 	    tdata->jme_tx_desc_cnt - JME_TXD_RSVD)
2270 		ifq_clr_oactive(&ifp->if_snd);
2271 }
2272 
2273 static __inline void
2274 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2275 {
2276 	int i;
2277 
2278 	for (i = 0; i < count; ++i) {
2279 		jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2280 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2281 	}
2282 }
2283 
2284 static __inline struct pktinfo *
2285 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2286 {
2287 	if (flags & JME_RD_IPV4)
2288 		pi->pi_netisr = NETISR_IP;
2289 	else if (flags & JME_RD_IPV6)
2290 		pi->pi_netisr = NETISR_IPV6;
2291 	else
2292 		return NULL;
2293 
2294 	pi->pi_flags = 0;
2295 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2296 
2297 	if (flags & JME_RD_MORE_FRAG)
2298 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2299 	else if (flags & JME_RD_TCP)
2300 		pi->pi_l3proto = IPPROTO_TCP;
2301 	else if (flags & JME_RD_UDP)
2302 		pi->pi_l3proto = IPPROTO_UDP;
2303 	else
2304 		pi = NULL;
2305 	return pi;
2306 }
2307 
2308 /* Receive a frame. */
2309 static void
2310 jme_rxpkt(struct jme_rxdata *rdata)
2311 {
2312 	struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2313 	struct jme_desc *desc;
2314 	struct jme_rxdesc *rxd;
2315 	struct mbuf *mp, *m;
2316 	uint32_t flags, status, hash, hashinfo;
2317 	int cons, count, nsegs;
2318 
2319 	cons = rdata->jme_rx_cons;
2320 	desc = &rdata->jme_rx_ring[cons];
2321 
2322 	flags = le32toh(desc->flags);
2323 	status = le32toh(desc->buflen);
2324 	hash = le32toh(desc->addr_hi);
2325 	hashinfo = le32toh(desc->addr_lo);
2326 	nsegs = JME_RX_NSEGS(status);
2327 
2328 	if (nsegs > 1) {
2329 		/* Skip the first descriptor. */
2330 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2331 
2332 		/*
2333 		 * Clear the OWN bit of the following RX descriptors;
2334 		 * hardware will not clear the OWN bit except the first
2335 		 * RX descriptor.
2336 		 *
2337 		 * Since the first RX descriptor is setup, i.e. OWN bit
2338 		 * on, before its followins RX descriptors, leaving the
2339 		 * OWN bit on the following RX descriptors will trick
2340 		 * the hardware into thinking that the following RX
2341 		 * descriptors are ready to be used too.
2342 		 */
2343 		for (count = 1; count < nsegs; count++,
2344 		     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2345 			rdata->jme_rx_ring[cons].flags = 0;
2346 
2347 		cons = rdata->jme_rx_cons;
2348 	}
2349 
2350 	JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2351 			"hash 0x%08x, hash info 0x%08x\n",
2352 			rdata->jme_rx_idx, flags, hash, hashinfo);
2353 
2354 	if (status & JME_RX_ERR_STAT) {
2355 		IFNET_STAT_INC(ifp, ierrors, 1);
2356 		jme_discard_rxbufs(rdata, cons, nsegs);
2357 #ifdef JME_SHOW_ERRORS
2358 		if_printf(ifp, "%s : receive error = 0x%b\n",
2359 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2360 #endif
2361 		rdata->jme_rx_cons += nsegs;
2362 		rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2363 		return;
2364 	}
2365 
2366 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2367 	for (count = 0; count < nsegs; count++,
2368 	     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2369 		rxd = &rdata->jme_rxdesc[cons];
2370 		mp = rxd->rx_m;
2371 
2372 		/* Add a new receive buffer to the ring. */
2373 		if (jme_newbuf(rdata, rxd, 0) != 0) {
2374 			IFNET_STAT_INC(ifp, iqdrops, 1);
2375 			/* Reuse buffer. */
2376 			jme_discard_rxbufs(rdata, cons, nsegs - count);
2377 			if (rdata->jme_rxhead != NULL) {
2378 				m_freem(rdata->jme_rxhead);
2379 				JME_RXCHAIN_RESET(rdata);
2380 			}
2381 			break;
2382 		}
2383 
2384 		/*
2385 		 * Assume we've received a full sized frame.
2386 		 * Actual size is fixed when we encounter the end of
2387 		 * multi-segmented frame.
2388 		 */
2389 		mp->m_len = MCLBYTES;
2390 
2391 		/* Chain received mbufs. */
2392 		if (rdata->jme_rxhead == NULL) {
2393 			rdata->jme_rxhead = mp;
2394 			rdata->jme_rxtail = mp;
2395 		} else {
2396 			/*
2397 			 * Receive processor can receive a maximum frame
2398 			 * size of 65535 bytes.
2399 			 */
2400 			rdata->jme_rxtail->m_next = mp;
2401 			rdata->jme_rxtail = mp;
2402 		}
2403 
2404 		if (count == nsegs - 1) {
2405 			struct pktinfo pi0, *pi;
2406 
2407 			/* Last desc. for this frame. */
2408 			m = rdata->jme_rxhead;
2409 			m->m_pkthdr.len = rdata->jme_rxlen;
2410 			if (nsegs > 1) {
2411 				/* Set first mbuf size. */
2412 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2413 				/* Set last mbuf size. */
2414 				mp->m_len = rdata->jme_rxlen -
2415 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2416 				    (MCLBYTES * (nsegs - 2)));
2417 			} else {
2418 				m->m_len = rdata->jme_rxlen;
2419 			}
2420 			m->m_pkthdr.rcvif = ifp;
2421 
2422 			/*
2423 			 * Account for 10bytes auto padding which is used
2424 			 * to align IP header on 32bit boundary. Also note,
2425 			 * CRC bytes is automatically removed by the
2426 			 * hardware.
2427 			 */
2428 			m->m_data += JME_RX_PAD_BYTES;
2429 
2430 			/* Set checksum information. */
2431 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2432 			    (flags & JME_RD_IPV4)) {
2433 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2434 				if (flags & JME_RD_IPCSUM)
2435 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2436 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2437 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2438 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2439 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2440 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2441 					m->m_pkthdr.csum_flags |=
2442 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2443 					m->m_pkthdr.csum_data = 0xffff;
2444 				}
2445 			}
2446 
2447 			/* Check for VLAN tagged packets. */
2448 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2449 			    (flags & JME_RD_VLAN_TAG)) {
2450 				m->m_pkthdr.ether_vlantag =
2451 				    flags & JME_RD_VLAN_MASK;
2452 				m->m_flags |= M_VLANTAG;
2453 			}
2454 
2455 			IFNET_STAT_INC(ifp, ipackets, 1);
2456 
2457 			if (ifp->if_capenable & IFCAP_RSS)
2458 				pi = jme_pktinfo(&pi0, flags);
2459 			else
2460 				pi = NULL;
2461 
2462 			if (pi != NULL &&
2463 			    (hashinfo & JME_RD_HASH_FN_MASK) ==
2464 			    JME_RD_HASH_FN_TOEPLITZ) {
2465 				m->m_flags |= (M_HASH | M_CKHASH);
2466 				m->m_pkthdr.hash = toeplitz_hash(hash);
2467 			}
2468 
2469 #ifdef JME_RSS_DEBUG
2470 			if (pi != NULL) {
2471 				JME_RSS_DPRINTF(rdata->jme_sc, 10,
2472 				    "isr %d flags %08x, l3 %d %s\n",
2473 				    pi->pi_netisr, pi->pi_flags,
2474 				    pi->pi_l3proto,
2475 				    (m->m_flags & M_HASH) ? "hash" : "");
2476 			}
2477 #endif
2478 
2479 			/* Pass it on. */
2480 			ether_input_pkt(ifp, m, pi);
2481 
2482 			/* Reset mbuf chains. */
2483 			JME_RXCHAIN_RESET(rdata);
2484 #ifdef JME_RSS_DEBUG
2485 			rdata->jme_rx_pkt++;
2486 #endif
2487 		}
2488 	}
2489 
2490 	rdata->jme_rx_cons += nsegs;
2491 	rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2492 }
2493 
2494 static void
2495 jme_rxeof(struct jme_rxdata *rdata, int count)
2496 {
2497 	struct jme_desc *desc;
2498 	int nsegs, pktlen;
2499 
2500 	for (;;) {
2501 #ifdef IFPOLL_ENABLE
2502 		if (count >= 0 && count-- == 0)
2503 			break;
2504 #endif
2505 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2506 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2507 			break;
2508 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2509 			break;
2510 
2511 		/*
2512 		 * Check number of segments against received bytes.
2513 		 * Non-matching value would indicate that hardware
2514 		 * is still trying to update Rx descriptors. I'm not
2515 		 * sure whether this check is needed.
2516 		 */
2517 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2518 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2519 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2520 			if_printf(&rdata->jme_sc->arpcom.ac_if,
2521 			    "RX fragment count(%d) and "
2522 			    "packet size(%d) mismach\n", nsegs, pktlen);
2523 			break;
2524 		}
2525 
2526 		/*
2527 		 * NOTE:
2528 		 * RSS hash and hash information may _not_ be set by the
2529 		 * hardware even if the OWN bit is cleared and VALID bit
2530 		 * is set.
2531 		 *
2532 		 * If the RSS information is not delivered by the hardware
2533 		 * yet, we MUST NOT accept this packet, let alone reusing
2534 		 * its RX descriptor.  If this packet was accepted and its
2535 		 * RX descriptor was reused before hardware delivering the
2536 		 * RSS information, the RX buffer's address would be trashed
2537 		 * by the RSS information delivered by the hardware.
2538 		 */
2539 		if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2540 			struct jme_rxdesc *rxd;
2541 			uint32_t hashinfo;
2542 
2543 			hashinfo = le32toh(desc->addr_lo);
2544 			rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2545 
2546 			/*
2547 			 * This test should be enough to detect the pending
2548 			 * RSS information delivery, given:
2549 			 * - If RSS hash is not calculated, the hashinfo
2550 			 *   will be 0.  Howvever, the lower 32bits of RX
2551 			 *   buffers' physical address will never be 0.
2552 			 *   (see jme_rxbuf_dma_filter)
2553 			 * - If RSS hash is calculated, the lowest 4 bits
2554 			 *   of hashinfo will be set, while the RX buffers
2555 			 *   are at least 2K aligned.
2556 			 */
2557 			if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2558 #ifdef JME_SHOW_RSSWB
2559 				if_printf(&rdata->jme_sc->arpcom.ac_if,
2560 				    "RSS is not written back yet\n");
2561 #endif
2562 				break;
2563 			}
2564 		}
2565 
2566 		/* Received a frame. */
2567 		jme_rxpkt(rdata);
2568 	}
2569 }
2570 
2571 static void
2572 jme_tick(void *xsc)
2573 {
2574 	struct jme_softc *sc = xsc;
2575 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2576 
2577 	lwkt_serialize_enter(&sc->jme_serialize);
2578 
2579 	KKASSERT(mycpuid == JME_TICK_CPUID);
2580 
2581 	sc->jme_in_tick = TRUE;
2582 	mii_tick(mii);
2583 	sc->jme_in_tick = FALSE;
2584 
2585 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2586 
2587 	lwkt_serialize_exit(&sc->jme_serialize);
2588 }
2589 
2590 static void
2591 jme_reset(struct jme_softc *sc)
2592 {
2593 	uint32_t val;
2594 
2595 	/* Make sure that TX and RX are stopped */
2596 	jme_stop_tx(sc);
2597 	jme_stop_rx(sc);
2598 
2599 	/* Start reset */
2600 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2601 	DELAY(20);
2602 
2603 	/*
2604 	 * Hold reset bit before stop reset
2605 	 */
2606 
2607 	/* Disable TXMAC and TXOFL clock sources */
2608 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2609 	/* Disable RXMAC clock source */
2610 	val = CSR_READ_4(sc, JME_GPREG1);
2611 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2612 	/* Flush */
2613 	CSR_READ_4(sc, JME_GHC);
2614 
2615 	/* Stop reset */
2616 	CSR_WRITE_4(sc, JME_GHC, 0);
2617 	/* Flush */
2618 	CSR_READ_4(sc, JME_GHC);
2619 
2620 	/*
2621 	 * Clear reset bit after stop reset
2622 	 */
2623 
2624 	/* Enable TXMAC and TXOFL clock sources */
2625 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2626 	/* Enable RXMAC clock source */
2627 	val = CSR_READ_4(sc, JME_GPREG1);
2628 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2629 	/* Flush */
2630 	CSR_READ_4(sc, JME_GHC);
2631 
2632 	/* Disable TXMAC and TXOFL clock sources */
2633 	CSR_WRITE_4(sc, JME_GHC, 0);
2634 	/* Disable RXMAC clock source */
2635 	val = CSR_READ_4(sc, JME_GPREG1);
2636 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2637 	/* Flush */
2638 	CSR_READ_4(sc, JME_GHC);
2639 
2640 	/* Enable TX and RX */
2641 	val = CSR_READ_4(sc, JME_TXCSR);
2642 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2643 	val = CSR_READ_4(sc, JME_RXCSR);
2644 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2645 	/* Flush */
2646 	CSR_READ_4(sc, JME_TXCSR);
2647 	CSR_READ_4(sc, JME_RXCSR);
2648 
2649 	/* Enable TXMAC and TXOFL clock sources */
2650 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2651 	/* Eisable RXMAC clock source */
2652 	val = CSR_READ_4(sc, JME_GPREG1);
2653 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2654 	/* Flush */
2655 	CSR_READ_4(sc, JME_GHC);
2656 
2657 	/* Stop TX and RX */
2658 	jme_stop_tx(sc);
2659 	jme_stop_rx(sc);
2660 }
2661 
2662 static void
2663 jme_init(void *xsc)
2664 {
2665 	struct jme_softc *sc = xsc;
2666 	struct ifnet *ifp = &sc->arpcom.ac_if;
2667 	struct mii_data *mii;
2668 	uint8_t eaddr[ETHER_ADDR_LEN];
2669 	bus_addr_t paddr;
2670 	uint32_t reg;
2671 	int error, r;
2672 
2673 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2674 
2675 	/*
2676 	 * Cancel any pending I/O.
2677 	 */
2678 	jme_stop(sc);
2679 
2680 	/*
2681 	 * Reset the chip to a known state.
2682 	 */
2683 	jme_reset(sc);
2684 
2685 	/*
2686 	 * Setup MSI/MSI-X vectors to interrupts mapping
2687 	 */
2688 	jme_set_msinum(sc);
2689 
2690 	if (JME_ENABLE_HWRSS(sc))
2691 		jme_enable_rss(sc);
2692 	else
2693 		jme_disable_rss(sc);
2694 
2695 	/* Init RX descriptors */
2696 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2697 		error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2698 		if (error) {
2699 			if_printf(ifp, "initialization failed: "
2700 				  "no memory for %dth RX ring.\n", r);
2701 			jme_stop(sc);
2702 			return;
2703 		}
2704 	}
2705 
2706 	/* Init TX descriptors */
2707 	jme_init_tx_ring(&sc->jme_cdata.jme_tx_data);
2708 
2709 	/* Initialize shadow status block. */
2710 	jme_init_ssb(sc);
2711 
2712 	/* Reprogram the station address. */
2713 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2714 	CSR_WRITE_4(sc, JME_PAR0,
2715 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2716 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2717 
2718 	/*
2719 	 * Configure Tx queue.
2720 	 *  Tx priority queue weight value : 0
2721 	 *  Tx FIFO threshold for processing next packet : 16QW
2722 	 *  Maximum Tx DMA length : 512
2723 	 *  Allow Tx DMA burst.
2724 	 */
2725 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2726 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2727 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2728 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2729 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2730 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2731 
2732 	/* Set Tx descriptor counter. */
2733 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt);
2734 
2735 	/* Set Tx ring address to the hardware. */
2736 	paddr = sc->jme_cdata.jme_tx_data.jme_tx_ring_paddr;
2737 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2738 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2739 
2740 	/* Configure TxMAC parameters. */
2741 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2742 	reg |= TXMAC_THRESH_1_PKT;
2743 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2744 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2745 
2746 	/*
2747 	 * Configure Rx queue.
2748 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2749 	 *  FIFO threshold for processing next packet : 128QW
2750 	 *  Rx queue 0 select
2751 	 *  Max Rx DMA length : 128
2752 	 *  Rx descriptor retry : 32
2753 	 *  Rx descriptor retry time gap : 256ns
2754 	 *  Don't receive runt/bad frame.
2755 	 */
2756 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2757 #if 0
2758 	/*
2759 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2760 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2761 	 * decrease FIFO threshold to reduce the FIFO overruns for
2762 	 * frames larger than 4000 bytes.
2763 	 * For best performance of standard MTU sized frames use
2764 	 * maximum allowable FIFO threshold, 128QW.
2765 	 */
2766 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2767 	    JME_RX_FIFO_SIZE)
2768 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2769 	else
2770 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2771 #else
2772 	/* Improve PCI Express compatibility */
2773 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2774 #endif
2775 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2776 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2777 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2778 	/* XXX TODO DROP_BAD */
2779 
2780 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2781 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2782 
2783 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2784 
2785 		/* Set Rx descriptor counter. */
2786 		CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2787 
2788 		/* Set Rx ring address to the hardware. */
2789 		paddr = rdata->jme_rx_ring_paddr;
2790 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2791 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2792 	}
2793 
2794 	/* Clear receive filter. */
2795 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2796 
2797 	/* Set up the receive filter. */
2798 	jme_set_filter(sc);
2799 	jme_set_vlan(sc);
2800 
2801 	/*
2802 	 * Disable all WOL bits as WOL can interfere normal Rx
2803 	 * operation. Also clear WOL detection status bits.
2804 	 */
2805 	reg = CSR_READ_4(sc, JME_PMCS);
2806 	reg &= ~PMCS_WOL_ENB_MASK;
2807 	CSR_WRITE_4(sc, JME_PMCS, reg);
2808 
2809 	/*
2810 	 * Pad 10bytes right before received frame. This will greatly
2811 	 * help Rx performance on strict-alignment architectures as
2812 	 * it does not need to copy the frame to align the payload.
2813 	 */
2814 	reg = CSR_READ_4(sc, JME_RXMAC);
2815 	reg |= RXMAC_PAD_10BYTES;
2816 
2817 	if (ifp->if_capenable & IFCAP_RXCSUM)
2818 		reg |= RXMAC_CSUM_ENB;
2819 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2820 
2821 	/* Configure general purpose reg0 */
2822 	reg = CSR_READ_4(sc, JME_GPREG0);
2823 	reg &= ~GPREG0_PCC_UNIT_MASK;
2824 	/* Set PCC timer resolution to micro-seconds unit. */
2825 	reg |= GPREG0_PCC_UNIT_US;
2826 	/*
2827 	 * Disable all shadow register posting as we have to read
2828 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2829 	 * that it's hard to synchronize interrupt status between
2830 	 * hardware and software with shadow posting due to
2831 	 * requirements of bus_dmamap_sync(9).
2832 	 */
2833 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2834 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2835 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2836 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2837 	/* Disable posting of DW0. */
2838 	reg &= ~GPREG0_POST_DW0_ENB;
2839 	/* Clear PME message. */
2840 	reg &= ~GPREG0_PME_ENB;
2841 	/* Set PHY address. */
2842 	reg &= ~GPREG0_PHY_ADDR_MASK;
2843 	reg |= sc->jme_phyaddr;
2844 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2845 
2846 	/* Configure Tx queue 0 packet completion coalescing. */
2847 	jme_set_tx_coal(sc);
2848 
2849 	/* Configure Rx queues packet completion coalescing. */
2850 	jme_set_rx_coal(sc);
2851 
2852 	/* Configure shadow status block but don't enable posting. */
2853 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2854 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2855 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2856 
2857 	/* Disable Timer 1 and Timer 2. */
2858 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2859 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2860 
2861 	/* Configure retry transmit period, retry limit value. */
2862 	CSR_WRITE_4(sc, JME_TXTRHD,
2863 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2864 	    TXTRHD_RT_PERIOD_MASK) |
2865 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2866 	    TXTRHD_RT_LIMIT_SHIFT));
2867 
2868 #ifdef IFPOLL_ENABLE
2869 	if (!(ifp->if_flags & IFF_NPOLLING))
2870 #endif
2871 	/* Initialize the interrupt mask. */
2872 	jme_enable_intr(sc);
2873 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2874 
2875 	/*
2876 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2877 	 * done after detection of valid link in jme_miibus_statchg.
2878 	 */
2879 	sc->jme_has_link = FALSE;
2880 
2881 	/* Set the current media. */
2882 	mii = device_get_softc(sc->jme_miibus);
2883 	mii_mediachg(mii);
2884 
2885 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
2886 	    JME_TICK_CPUID);
2887 
2888 	ifp->if_flags |= IFF_RUNNING;
2889 	ifq_clr_oactive(&ifp->if_snd);
2890 }
2891 
2892 static void
2893 jme_stop(struct jme_softc *sc)
2894 {
2895 	struct ifnet *ifp = &sc->arpcom.ac_if;
2896 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2897 	struct jme_txdesc *txd;
2898 	struct jme_rxdesc *rxd;
2899 	struct jme_rxdata *rdata;
2900 	int i, r;
2901 
2902 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2903 
2904 	/*
2905 	 * Mark the interface down and cancel the watchdog timer.
2906 	 */
2907 	ifp->if_flags &= ~IFF_RUNNING;
2908 	ifq_clr_oactive(&ifp->if_snd);
2909 	ifp->if_timer = 0;
2910 
2911 	callout_stop(&sc->jme_tick_ch);
2912 	sc->jme_has_link = FALSE;
2913 
2914 	/*
2915 	 * Disable interrupts.
2916 	 */
2917 	jme_disable_intr(sc);
2918 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2919 
2920 	/* Disable updating shadow status block. */
2921 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2922 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2923 
2924 	/* Stop receiver, transmitter. */
2925 	jme_stop_rx(sc);
2926 	jme_stop_tx(sc);
2927 
2928 	/*
2929 	 * Free partial finished RX segments
2930 	 */
2931 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2932 		rdata = &sc->jme_cdata.jme_rx_data[r];
2933 		if (rdata->jme_rxhead != NULL)
2934 			m_freem(rdata->jme_rxhead);
2935 		JME_RXCHAIN_RESET(rdata);
2936 	}
2937 
2938 	/*
2939 	 * Free RX and TX mbufs still in the queues.
2940 	 */
2941 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2942 		rdata = &sc->jme_cdata.jme_rx_data[r];
2943 		for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2944 			rxd = &rdata->jme_rxdesc[i];
2945 			if (rxd->rx_m != NULL) {
2946 				bus_dmamap_unload(rdata->jme_rx_tag,
2947 						  rxd->rx_dmamap);
2948 				m_freem(rxd->rx_m);
2949 				rxd->rx_m = NULL;
2950 			}
2951 		}
2952 	}
2953 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
2954 		txd = &tdata->jme_txdesc[i];
2955 		if (txd->tx_m != NULL) {
2956 			bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2957 			m_freem(txd->tx_m);
2958 			txd->tx_m = NULL;
2959 			txd->tx_ndesc = 0;
2960 		}
2961         }
2962 }
2963 
2964 static void
2965 jme_stop_tx(struct jme_softc *sc)
2966 {
2967 	uint32_t reg;
2968 	int i;
2969 
2970 	reg = CSR_READ_4(sc, JME_TXCSR);
2971 	if ((reg & TXCSR_TX_ENB) == 0)
2972 		return;
2973 	reg &= ~TXCSR_TX_ENB;
2974 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2975 	for (i = JME_TIMEOUT; i > 0; i--) {
2976 		DELAY(1);
2977 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2978 			break;
2979 	}
2980 	if (i == 0)
2981 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2982 }
2983 
2984 static void
2985 jme_stop_rx(struct jme_softc *sc)
2986 {
2987 	uint32_t reg;
2988 	int i;
2989 
2990 	reg = CSR_READ_4(sc, JME_RXCSR);
2991 	if ((reg & RXCSR_RX_ENB) == 0)
2992 		return;
2993 	reg &= ~RXCSR_RX_ENB;
2994 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2995 	for (i = JME_TIMEOUT; i > 0; i--) {
2996 		DELAY(1);
2997 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2998 			break;
2999 	}
3000 	if (i == 0)
3001 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3002 }
3003 
3004 static void
3005 jme_init_tx_ring(struct jme_txdata *tdata)
3006 {
3007 	struct jme_txdesc *txd;
3008 	int i;
3009 
3010 	tdata->jme_tx_prod = 0;
3011 	tdata->jme_tx_cons = 0;
3012 	tdata->jme_tx_cnt = 0;
3013 
3014 	bzero(tdata->jme_tx_ring, JME_TX_RING_SIZE(tdata));
3015 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
3016 		txd = &tdata->jme_txdesc[i];
3017 		txd->tx_m = NULL;
3018 		txd->tx_desc = &tdata->jme_tx_ring[i];
3019 		txd->tx_ndesc = 0;
3020 	}
3021 }
3022 
3023 static void
3024 jme_init_ssb(struct jme_softc *sc)
3025 {
3026 	struct jme_chain_data *cd;
3027 
3028 	cd = &sc->jme_cdata;
3029 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
3030 }
3031 
3032 static int
3033 jme_init_rx_ring(struct jme_rxdata *rdata)
3034 {
3035 	struct jme_rxdesc *rxd;
3036 	int i;
3037 
3038 	KKASSERT(rdata->jme_rxhead == NULL &&
3039 		 rdata->jme_rxtail == NULL &&
3040 		 rdata->jme_rxlen == 0);
3041 	rdata->jme_rx_cons = 0;
3042 
3043 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
3044 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3045 		int error;
3046 
3047 		rxd = &rdata->jme_rxdesc[i];
3048 		rxd->rx_m = NULL;
3049 		rxd->rx_desc = &rdata->jme_rx_ring[i];
3050 		error = jme_newbuf(rdata, rxd, 1);
3051 		if (error)
3052 			return error;
3053 	}
3054 	return 0;
3055 }
3056 
3057 static int
3058 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
3059 {
3060 	struct mbuf *m;
3061 	bus_dma_segment_t segs;
3062 	bus_dmamap_t map;
3063 	int error, nsegs;
3064 
3065 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3066 	if (m == NULL)
3067 		return ENOBUFS;
3068 	/*
3069 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3070 	 * takes advantage of 10 bytes padding feature of hardware
3071 	 * in order not to copy entire frame to align IP header on
3072 	 * 32bit boundary.
3073 	 */
3074 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3075 
3076 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
3077 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
3078 			BUS_DMA_NOWAIT);
3079 	if (error) {
3080 		m_freem(m);
3081 		if (init) {
3082 			if_printf(&rdata->jme_sc->arpcom.ac_if,
3083 			    "can't load RX mbuf\n");
3084 		}
3085 		return error;
3086 	}
3087 
3088 	if (rxd->rx_m != NULL) {
3089 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
3090 				BUS_DMASYNC_POSTREAD);
3091 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
3092 	}
3093 	map = rxd->rx_dmamap;
3094 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
3095 	rdata->jme_rx_sparemap = map;
3096 	rxd->rx_m = m;
3097 	rxd->rx_paddr = segs.ds_addr;
3098 
3099 	jme_setup_rxdesc(rxd);
3100 	return 0;
3101 }
3102 
3103 static void
3104 jme_set_vlan(struct jme_softc *sc)
3105 {
3106 	struct ifnet *ifp = &sc->arpcom.ac_if;
3107 	uint32_t reg;
3108 
3109 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3110 
3111 	reg = CSR_READ_4(sc, JME_RXMAC);
3112 	reg &= ~RXMAC_VLAN_ENB;
3113 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3114 		reg |= RXMAC_VLAN_ENB;
3115 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3116 }
3117 
3118 static void
3119 jme_set_filter(struct jme_softc *sc)
3120 {
3121 	struct ifnet *ifp = &sc->arpcom.ac_if;
3122 	struct ifmultiaddr *ifma;
3123 	uint32_t crc;
3124 	uint32_t mchash[2];
3125 	uint32_t rxcfg;
3126 
3127 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3128 
3129 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3130 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3131 	    RXMAC_ALLMULTI);
3132 
3133 	/*
3134 	 * Always accept frames destined to our station address.
3135 	 * Always accept broadcast frames.
3136 	 */
3137 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3138 
3139 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3140 		if (ifp->if_flags & IFF_PROMISC)
3141 			rxcfg |= RXMAC_PROMISC;
3142 		if (ifp->if_flags & IFF_ALLMULTI)
3143 			rxcfg |= RXMAC_ALLMULTI;
3144 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3145 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3146 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3147 		return;
3148 	}
3149 
3150 	/*
3151 	 * Set up the multicast address filter by passing all multicast
3152 	 * addresses through a CRC generator, and then using the low-order
3153 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3154 	 * high order bits select the register, while the rest of the bits
3155 	 * select the bit within the register.
3156 	 */
3157 	rxcfg |= RXMAC_MULTICAST;
3158 	bzero(mchash, sizeof(mchash));
3159 
3160 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3161 		if (ifma->ifma_addr->sa_family != AF_LINK)
3162 			continue;
3163 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3164 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3165 
3166 		/* Just want the 6 least significant bits. */
3167 		crc &= 0x3f;
3168 
3169 		/* Set the corresponding bit in the hash table. */
3170 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3171 	}
3172 
3173 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3174 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3175 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3176 }
3177 
3178 static int
3179 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3180 {
3181 	struct jme_softc *sc = arg1;
3182 	struct ifnet *ifp = &sc->arpcom.ac_if;
3183 	int error, v;
3184 
3185 	ifnet_serialize_all(ifp);
3186 
3187 	v = sc->jme_tx_coal_to;
3188 	error = sysctl_handle_int(oidp, &v, 0, req);
3189 	if (error || req->newptr == NULL)
3190 		goto back;
3191 
3192 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3193 		error = EINVAL;
3194 		goto back;
3195 	}
3196 
3197 	if (v != sc->jme_tx_coal_to) {
3198 		sc->jme_tx_coal_to = v;
3199 		if (ifp->if_flags & IFF_RUNNING)
3200 			jme_set_tx_coal(sc);
3201 	}
3202 back:
3203 	ifnet_deserialize_all(ifp);
3204 	return error;
3205 }
3206 
3207 static int
3208 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3209 {
3210 	struct jme_softc *sc = arg1;
3211 	struct ifnet *ifp = &sc->arpcom.ac_if;
3212 	int error, v;
3213 
3214 	ifnet_serialize_all(ifp);
3215 
3216 	v = sc->jme_tx_coal_pkt;
3217 	error = sysctl_handle_int(oidp, &v, 0, req);
3218 	if (error || req->newptr == NULL)
3219 		goto back;
3220 
3221 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3222 		error = EINVAL;
3223 		goto back;
3224 	}
3225 
3226 	if (v != sc->jme_tx_coal_pkt) {
3227 		sc->jme_tx_coal_pkt = v;
3228 		if (ifp->if_flags & IFF_RUNNING)
3229 			jme_set_tx_coal(sc);
3230 	}
3231 back:
3232 	ifnet_deserialize_all(ifp);
3233 	return error;
3234 }
3235 
3236 static int
3237 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3238 {
3239 	struct jme_softc *sc = arg1;
3240 	struct ifnet *ifp = &sc->arpcom.ac_if;
3241 	int error, v;
3242 
3243 	ifnet_serialize_all(ifp);
3244 
3245 	v = sc->jme_rx_coal_to;
3246 	error = sysctl_handle_int(oidp, &v, 0, req);
3247 	if (error || req->newptr == NULL)
3248 		goto back;
3249 
3250 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3251 		error = EINVAL;
3252 		goto back;
3253 	}
3254 
3255 	if (v != sc->jme_rx_coal_to) {
3256 		sc->jme_rx_coal_to = v;
3257 		if (ifp->if_flags & IFF_RUNNING)
3258 			jme_set_rx_coal(sc);
3259 	}
3260 back:
3261 	ifnet_deserialize_all(ifp);
3262 	return error;
3263 }
3264 
3265 static int
3266 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3267 {
3268 	struct jme_softc *sc = arg1;
3269 	struct ifnet *ifp = &sc->arpcom.ac_if;
3270 	int error, v;
3271 
3272 	ifnet_serialize_all(ifp);
3273 
3274 	v = sc->jme_rx_coal_pkt;
3275 	error = sysctl_handle_int(oidp, &v, 0, req);
3276 	if (error || req->newptr == NULL)
3277 		goto back;
3278 
3279 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3280 		error = EINVAL;
3281 		goto back;
3282 	}
3283 
3284 	if (v != sc->jme_rx_coal_pkt) {
3285 		sc->jme_rx_coal_pkt = v;
3286 		if (ifp->if_flags & IFF_RUNNING)
3287 			jme_set_rx_coal(sc);
3288 	}
3289 back:
3290 	ifnet_deserialize_all(ifp);
3291 	return error;
3292 }
3293 
3294 static void
3295 jme_set_tx_coal(struct jme_softc *sc)
3296 {
3297 	uint32_t reg;
3298 
3299 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3300 	    PCCTX_COAL_TO_MASK;
3301 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3302 	    PCCTX_COAL_PKT_MASK;
3303 	reg |= PCCTX_COAL_TXQ0;
3304 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3305 }
3306 
3307 static void
3308 jme_set_rx_coal(struct jme_softc *sc)
3309 {
3310 	uint32_t reg;
3311 	int r;
3312 
3313 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3314 	    PCCRX_COAL_TO_MASK;
3315 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3316 	    PCCRX_COAL_PKT_MASK;
3317 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3318 		CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3319 }
3320 
3321 #ifdef IFPOLL_ENABLE
3322 
3323 static void
3324 jme_npoll_status(struct ifnet *ifp)
3325 {
3326 	struct jme_softc *sc = ifp->if_softc;
3327 	uint32_t status;
3328 
3329 	ASSERT_SERIALIZED(&sc->jme_serialize);
3330 
3331 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3332 	if (status & INTR_RXQ_DESC_EMPTY) {
3333 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3334 		jme_rx_restart(sc, status);
3335 	}
3336 }
3337 
3338 static void
3339 jme_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3340 {
3341 	struct jme_rxdata *rdata = arg;
3342 
3343 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3344 
3345 	jme_rxeof(rdata, cycle);
3346 }
3347 
3348 static void
3349 jme_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3350 {
3351 	struct jme_txdata *tdata = arg;
3352 
3353 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3354 
3355 	jme_txeof(tdata);
3356 	if (!ifq_is_empty(&ifp->if_snd))
3357 		if_devstart(ifp);
3358 }
3359 
3360 static void
3361 jme_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3362 {
3363 	struct jme_softc *sc = ifp->if_softc;
3364 
3365 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3366 
3367 	if (info) {
3368 		int i, off;
3369 
3370 		info->ifpi_status.status_func = jme_npoll_status;
3371 		info->ifpi_status.serializer = &sc->jme_serialize;
3372 
3373 		off = sc->jme_npoll_txoff;
3374 		KKASSERT(off <= ncpus2);
3375 		info->ifpi_tx[off].poll_func = jme_npoll_tx;
3376 		info->ifpi_tx[off].arg = &sc->jme_cdata.jme_tx_data;
3377 		info->ifpi_tx[off].serializer =
3378 		    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3379 		ifq_set_cpuid(&ifp->if_snd, sc->jme_npoll_txoff);
3380 
3381 		off = sc->jme_npoll_rxoff;
3382 		for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3383 			struct jme_rxdata *rdata =
3384 			    &sc->jme_cdata.jme_rx_data[i];
3385 			int idx = i + off;
3386 
3387 			info->ifpi_rx[idx].poll_func = jme_npoll_rx;
3388 			info->ifpi_rx[idx].arg = rdata;
3389 			info->ifpi_rx[idx].serializer =
3390 			    &rdata->jme_rx_serialize;
3391 		}
3392 
3393 		if (ifp->if_flags & IFF_RUNNING)
3394 			jme_disable_intr(sc);
3395 	} else {
3396 		ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
3397 		if (ifp->if_flags & IFF_RUNNING)
3398 			jme_enable_intr(sc);
3399 	}
3400 }
3401 
3402 static int
3403 jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3404 {
3405 	struct jme_softc *sc = (void *)arg1;
3406 	struct ifnet *ifp = &sc->arpcom.ac_if;
3407 	int error, off;
3408 
3409 	off = sc->jme_npoll_rxoff;
3410 	error = sysctl_handle_int(oidp, &off, 0, req);
3411 	if (error || req->newptr == NULL)
3412 		return error;
3413 	if (off < 0)
3414 		return EINVAL;
3415 
3416 	ifnet_serialize_all(ifp);
3417 	if (off >= ncpus2 || off % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3418 		error = EINVAL;
3419 	} else {
3420 		error = 0;
3421 		sc->jme_npoll_rxoff = off;
3422 	}
3423 	ifnet_deserialize_all(ifp);
3424 
3425 	return error;
3426 }
3427 
3428 static int
3429 jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3430 {
3431 	struct jme_softc *sc = (void *)arg1;
3432 	struct ifnet *ifp = &sc->arpcom.ac_if;
3433 	int error, off;
3434 
3435 	off = sc->jme_npoll_txoff;
3436 	error = sysctl_handle_int(oidp, &off, 0, req);
3437 	if (error || req->newptr == NULL)
3438 		return error;
3439 	if (off < 0)
3440 		return EINVAL;
3441 
3442 	ifnet_serialize_all(ifp);
3443 	if (off >= ncpus2) {
3444 		error = EINVAL;
3445 	} else {
3446 		error = 0;
3447 		sc->jme_npoll_txoff = off;
3448 	}
3449 	ifnet_deserialize_all(ifp);
3450 
3451 	return error;
3452 }
3453 
3454 #endif	/* IFPOLL_ENABLE */
3455 
3456 static int
3457 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3458 {
3459 	bus_dmamem_t dmem;
3460 	int error, asize;
3461 
3462 	asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3463 	error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3464 			JME_RX_RING_ALIGN, 0,
3465 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3466 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3467 	if (error) {
3468 		device_printf(rdata->jme_sc->jme_dev,
3469 		    "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3470 		return error;
3471 	}
3472 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3473 	rdata->jme_rx_ring_map = dmem.dmem_map;
3474 	rdata->jme_rx_ring = dmem.dmem_addr;
3475 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3476 
3477 	return 0;
3478 }
3479 
3480 static int
3481 jme_rxbuf_dma_filter(void *arg __unused, bus_addr_t paddr)
3482 {
3483 	if ((paddr & 0xffffffff) == 0) {
3484 		/*
3485 		 * Don't allow lower 32bits of the RX buffer's
3486 		 * physical address to be 0, else it will break
3487 		 * hardware pending RSS information delivery
3488 		 * detection on RX path.
3489 		 */
3490 		return 1;
3491 	}
3492 	return 0;
3493 }
3494 
3495 static int
3496 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3497 {
3498 	bus_addr_t lowaddr;
3499 	int i, error;
3500 
3501 	lowaddr = BUS_SPACE_MAXADDR;
3502 	if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3503 		/* jme_rxbuf_dma_filter will be called */
3504 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
3505 	}
3506 
3507 	/* Create tag for Rx buffers. */
3508 	error = bus_dma_tag_create(
3509 	    rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3510 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3511 	    lowaddr,			/* lowaddr */
3512 	    BUS_SPACE_MAXADDR,		/* highaddr */
3513 	    jme_rxbuf_dma_filter, NULL,	/* filter, filterarg */
3514 	    MCLBYTES,			/* maxsize */
3515 	    1,				/* nsegments */
3516 	    MCLBYTES,			/* maxsegsize */
3517 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3518 	    &rdata->jme_rx_tag);
3519 	if (error) {
3520 		device_printf(rdata->jme_sc->jme_dev,
3521 		    "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3522 		return error;
3523 	}
3524 
3525 	/* Create DMA maps for Rx buffers. */
3526 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3527 				  &rdata->jme_rx_sparemap);
3528 	if (error) {
3529 		device_printf(rdata->jme_sc->jme_dev,
3530 		    "could not create %dth spare Rx dmamap.\n",
3531 		    rdata->jme_rx_idx);
3532 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3533 		rdata->jme_rx_tag = NULL;
3534 		return error;
3535 	}
3536 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3537 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3538 
3539 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3540 					  &rxd->rx_dmamap);
3541 		if (error) {
3542 			int j;
3543 
3544 			device_printf(rdata->jme_sc->jme_dev,
3545 			    "could not create %dth Rx dmamap "
3546 			    "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3547 
3548 			for (j = 0; j < i; ++j) {
3549 				rxd = &rdata->jme_rxdesc[j];
3550 				bus_dmamap_destroy(rdata->jme_rx_tag,
3551 						   rxd->rx_dmamap);
3552 			}
3553 			bus_dmamap_destroy(rdata->jme_rx_tag,
3554 					   rdata->jme_rx_sparemap);
3555 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3556 			rdata->jme_rx_tag = NULL;
3557 			return error;
3558 		}
3559 	}
3560 	return 0;
3561 }
3562 
3563 static void
3564 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3565 {
3566 	int r;
3567 
3568 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3569 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3570 
3571 		if (status & rdata->jme_rx_coal) {
3572 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3573 			jme_rxeof(rdata, -1);
3574 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3575 		}
3576 	}
3577 }
3578 
3579 static void
3580 jme_enable_rss(struct jme_softc *sc)
3581 {
3582 	uint32_t rssc, ind;
3583 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3584 	int i;
3585 
3586 	KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3587 		sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3588 		("%s: invalid # of RX rings (%d)",
3589 		 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3590 
3591 	rssc = RSSC_HASH_64_ENTRY;
3592 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3593 	rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3594 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3595 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3596 
3597 	toeplitz_get_key(key, sizeof(key));
3598 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3599 		uint32_t keyreg;
3600 
3601 		keyreg = RSSKEY_REGVAL(key, i);
3602 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x, reg 0x%08x\n",
3603 		    i, keyreg, RSSKEY_REG(RSSKEY_NREGS - 1 - i));
3604 
3605 		CSR_WRITE_4(sc, RSSKEY_REG(RSSKEY_NREGS - 1 - i), keyreg);
3606 	}
3607 
3608 	/*
3609 	 * Create redirect table in following fashion:
3610 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3611 	 */
3612 	ind = 0;
3613 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3614 		int q;
3615 
3616 		q = i % sc->jme_cdata.jme_rx_ring_cnt;
3617 		ind |= q << (i * 8);
3618 	}
3619 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3620 
3621 	for (i = 0; i < RSSTBL_NREGS; ++i)
3622 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3623 }
3624 
3625 static void
3626 jme_disable_rss(struct jme_softc *sc)
3627 {
3628 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3629 }
3630 
3631 static void
3632 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3633 {
3634 	struct jme_softc *sc = ifp->if_softc;
3635 
3636 	ifnet_serialize_array_enter(sc->jme_serialize_arr,
3637 	    sc->jme_serialize_cnt, slz);
3638 }
3639 
3640 static void
3641 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3642 {
3643 	struct jme_softc *sc = ifp->if_softc;
3644 
3645 	ifnet_serialize_array_exit(sc->jme_serialize_arr,
3646 	    sc->jme_serialize_cnt, slz);
3647 }
3648 
3649 static int
3650 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3651 {
3652 	struct jme_softc *sc = ifp->if_softc;
3653 
3654 	return ifnet_serialize_array_try(sc->jme_serialize_arr,
3655 	    sc->jme_serialize_cnt, slz);
3656 }
3657 
3658 #ifdef INVARIANTS
3659 
3660 static void
3661 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3662     boolean_t serialized)
3663 {
3664 	struct jme_softc *sc = ifp->if_softc;
3665 
3666 	ifnet_serialize_array_assert(sc->jme_serialize_arr,
3667 	    sc->jme_serialize_cnt, slz, serialized);
3668 }
3669 
3670 #endif	/* INVARIANTS */
3671 
3672 static void
3673 jme_msix_try_alloc(device_t dev)
3674 {
3675 	struct jme_softc *sc = device_get_softc(dev);
3676 	struct jme_msix_data *msix;
3677 	int error, i, r, msix_enable, msix_count;
3678 	int offset, offset_def;
3679 
3680 	msix_count = JME_MSIXCNT(sc->jme_cdata.jme_rx_ring_cnt);
3681 	KKASSERT(msix_count <= JME_NMSIX);
3682 
3683 	msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3684 
3685 	/*
3686 	 * We leave the 1st MSI-X vector unused, so we
3687 	 * actually need msix_count + 1 MSI-X vectors.
3688 	 */
3689 	if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3690 		return;
3691 
3692 	for (i = 0; i < msix_count; ++i)
3693 		sc->jme_msix[i].jme_msix_rid = -1;
3694 
3695 	i = 0;
3696 
3697 	/*
3698 	 * Setup status MSI-X
3699 	 */
3700 
3701 	msix = &sc->jme_msix[i++];
3702 	msix->jme_msix_cpuid = 0;
3703 	msix->jme_msix_arg = sc;
3704 	msix->jme_msix_func = jme_msix_status;
3705 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3706 		msix->jme_msix_intrs |=
3707 		    sc->jme_cdata.jme_rx_data[r].jme_rx_empty;
3708 	}
3709 	msix->jme_msix_serialize = &sc->jme_serialize;
3710 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s sts",
3711 	    device_get_nameunit(dev));
3712 
3713 	/*
3714 	 * Setup TX MSI-X
3715 	 */
3716 
3717 	offset_def = device_get_unit(dev) % ncpus2;
3718 	offset = device_getenv_int(dev, "msix.txoff", offset_def);
3719 	if (offset >= ncpus2) {
3720 		device_printf(dev, "invalid msix.txoff %d, use %d\n",
3721 		    offset, offset_def);
3722 		offset = offset_def;
3723 	}
3724 
3725 	msix = &sc->jme_msix[i++];
3726 	msix->jme_msix_cpuid = offset;
3727 	sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3728 	msix->jme_msix_arg = &sc->jme_cdata.jme_tx_data;
3729 	msix->jme_msix_func = jme_msix_tx;
3730 	msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3731 	msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3732 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3733 	    device_get_nameunit(dev));
3734 
3735 	/*
3736 	 * Setup RX MSI-X
3737 	 */
3738 
3739 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
3740 		offset = 0;
3741 	} else {
3742 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
3743 		    device_get_unit(dev)) % ncpus2;
3744 
3745 		offset = device_getenv_int(dev, "msix.rxoff", offset_def);
3746 		if (offset >= ncpus2 ||
3747 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3748 			device_printf(dev, "invalid msix.rxoff %d, use %d\n",
3749 			    offset, offset_def);
3750 			offset = offset_def;
3751 		}
3752 	}
3753 
3754 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3755 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3756 
3757 		msix = &sc->jme_msix[i++];
3758 		msix->jme_msix_cpuid = r + offset;
3759 		KKASSERT(msix->jme_msix_cpuid < ncpus2);
3760 		msix->jme_msix_arg = rdata;
3761 		msix->jme_msix_func = jme_msix_rx;
3762 		msix->jme_msix_intrs = rdata->jme_rx_coal;
3763 		msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3764 		ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3765 		    "%s rx%d", device_get_nameunit(dev), r);
3766 	}
3767 
3768 	KKASSERT(i == msix_count);
3769 
3770 	error = pci_setup_msix(dev);
3771 	if (error)
3772 		return;
3773 
3774 	/* Setup jme_msix_cnt early, so we could cleanup */
3775 	sc->jme_msix_cnt = msix_count;
3776 
3777 	for (i = 0; i < msix_count; ++i) {
3778 		msix = &sc->jme_msix[i];
3779 
3780 		msix->jme_msix_vector = i + 1;
3781 		error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3782 		    &msix->jme_msix_rid, msix->jme_msix_cpuid);
3783 		if (error)
3784 			goto back;
3785 
3786 		msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3787 		    &msix->jme_msix_rid, RF_ACTIVE);
3788 		if (msix->jme_msix_res == NULL) {
3789 			error = ENOMEM;
3790 			goto back;
3791 		}
3792 	}
3793 
3794 	for (i = 0; i < JME_INTR_CNT; ++i) {
3795 		uint32_t intr_mask = (1 << i);
3796 		int x;
3797 
3798 		if ((JME_INTRS & intr_mask) == 0)
3799 			continue;
3800 
3801 		for (x = 0; x < msix_count; ++x) {
3802 			msix = &sc->jme_msix[x];
3803 			if (msix->jme_msix_intrs & intr_mask) {
3804 				int reg, shift;
3805 
3806 				reg = i / JME_MSINUM_FACTOR;
3807 				KKASSERT(reg < JME_MSINUM_CNT);
3808 
3809 				shift = (i % JME_MSINUM_FACTOR) * 4;
3810 
3811 				sc->jme_msinum[reg] |=
3812 				    (msix->jme_msix_vector << shift);
3813 
3814 				break;
3815 			}
3816 		}
3817 	}
3818 
3819 	if (bootverbose) {
3820 		for (i = 0; i < JME_MSINUM_CNT; ++i) {
3821 			device_printf(dev, "MSINUM%d: %#x\n", i,
3822 			    sc->jme_msinum[i]);
3823 		}
3824 	}
3825 
3826 	pci_enable_msix(dev);
3827 	sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3828 
3829 back:
3830 	if (error)
3831 		jme_msix_free(dev);
3832 }
3833 
3834 static int
3835 jme_intr_alloc(device_t dev)
3836 {
3837 	struct jme_softc *sc = device_get_softc(dev);
3838 	u_int irq_flags;
3839 
3840 	jme_msix_try_alloc(dev);
3841 
3842 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3843 		sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3844 		    &sc->jme_irq_rid, &irq_flags);
3845 
3846 		sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3847 		    &sc->jme_irq_rid, irq_flags);
3848 		if (sc->jme_irq_res == NULL) {
3849 			device_printf(dev, "can't allocate irq\n");
3850 			return ENXIO;
3851 		}
3852 		sc->jme_tx_cpuid = rman_get_cpuid(sc->jme_irq_res);
3853 	}
3854 	return 0;
3855 }
3856 
3857 static void
3858 jme_msix_free(device_t dev)
3859 {
3860 	struct jme_softc *sc = device_get_softc(dev);
3861 	int i;
3862 
3863 	KKASSERT(sc->jme_msix_cnt > 1);
3864 
3865 	for (i = 0; i < sc->jme_msix_cnt; ++i) {
3866 		struct jme_msix_data *msix = &sc->jme_msix[i];
3867 
3868 		if (msix->jme_msix_res != NULL) {
3869 			bus_release_resource(dev, SYS_RES_IRQ,
3870 			    msix->jme_msix_rid, msix->jme_msix_res);
3871 			msix->jme_msix_res = NULL;
3872 		}
3873 		if (msix->jme_msix_rid >= 0) {
3874 			pci_release_msix_vector(dev, msix->jme_msix_rid);
3875 			msix->jme_msix_rid = -1;
3876 		}
3877 	}
3878 	pci_teardown_msix(dev);
3879 }
3880 
3881 static void
3882 jme_intr_free(device_t dev)
3883 {
3884 	struct jme_softc *sc = device_get_softc(dev);
3885 
3886 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3887 		if (sc->jme_irq_res != NULL) {
3888 			bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3889 					     sc->jme_irq_res);
3890 		}
3891 		if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3892 			pci_release_msi(dev);
3893 	} else {
3894 		jme_msix_free(dev);
3895 	}
3896 }
3897 
3898 static void
3899 jme_msix_tx(void *xtdata)
3900 {
3901 	struct jme_txdata *tdata = xtdata;
3902 	struct jme_softc *sc = tdata->jme_sc;
3903 	struct ifnet *ifp = &sc->arpcom.ac_if;
3904 
3905 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3906 
3907 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3908 
3909 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3910 	    INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3911 
3912 	if (ifp->if_flags & IFF_RUNNING) {
3913 		jme_txeof(tdata);
3914 		if (!ifq_is_empty(&ifp->if_snd))
3915 			if_devstart(ifp);
3916 	}
3917 
3918 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3919 }
3920 
3921 static void
3922 jme_msix_rx(void *xrdata)
3923 {
3924 	struct jme_rxdata *rdata = xrdata;
3925 	struct jme_softc *sc = rdata->jme_sc;
3926 	struct ifnet *ifp = &sc->arpcom.ac_if;
3927 
3928 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3929 
3930 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, rdata->jme_rx_coal);
3931 
3932 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3933 	    rdata->jme_rx_coal | rdata->jme_rx_comp);
3934 
3935 	if (ifp->if_flags & IFF_RUNNING)
3936 		jme_rxeof(rdata, -1);
3937 
3938 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, rdata->jme_rx_coal);
3939 }
3940 
3941 static void
3942 jme_msix_status(void *xsc)
3943 {
3944 	struct jme_softc *sc = xsc;
3945 	struct ifnet *ifp = &sc->arpcom.ac_if;
3946 	uint32_t status;
3947 
3948 	ASSERT_SERIALIZED(&sc->jme_serialize);
3949 
3950 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_RXQ_DESC_EMPTY);
3951 
3952 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3953 
3954 	if (status & INTR_RXQ_DESC_EMPTY) {
3955 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3956 		if (ifp->if_flags & IFF_RUNNING)
3957 			jme_rx_restart(sc, status);
3958 	}
3959 
3960 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_RXQ_DESC_EMPTY);
3961 }
3962 
3963 static void
3964 jme_rx_restart(struct jme_softc *sc, uint32_t status)
3965 {
3966 	int i;
3967 
3968 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3969 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
3970 
3971 		if (status & rdata->jme_rx_empty) {
3972 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3973 			jme_rxeof(rdata, -1);
3974 #ifdef JME_RSS_DEBUG
3975 			rdata->jme_rx_emp++;
3976 #endif
3977 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3978 		}
3979 	}
3980 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
3981 	    RXCSR_RXQ_START);
3982 }
3983 
3984 static void
3985 jme_set_msinum(struct jme_softc *sc)
3986 {
3987 	int i;
3988 
3989 	for (i = 0; i < JME_MSINUM_CNT; ++i)
3990 		CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3991 }
3992 
3993 static int
3994 jme_intr_setup(device_t dev)
3995 {
3996 	struct jme_softc *sc = device_get_softc(dev);
3997 	int error;
3998 
3999 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4000 		return jme_msix_setup(dev);
4001 
4002 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
4003 	    jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
4004 	if (error) {
4005 		device_printf(dev, "could not set up interrupt handler.\n");
4006 		return error;
4007 	}
4008 
4009 	return 0;
4010 }
4011 
4012 static void
4013 jme_intr_teardown(device_t dev)
4014 {
4015 	struct jme_softc *sc = device_get_softc(dev);
4016 
4017 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4018 		jme_msix_teardown(dev, sc->jme_msix_cnt);
4019 	else
4020 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
4021 }
4022 
4023 static int
4024 jme_msix_setup(device_t dev)
4025 {
4026 	struct jme_softc *sc = device_get_softc(dev);
4027 	int x;
4028 
4029 	for (x = 0; x < sc->jme_msix_cnt; ++x) {
4030 		struct jme_msix_data *msix = &sc->jme_msix[x];
4031 		int error;
4032 
4033 		error = bus_setup_intr_descr(dev, msix->jme_msix_res,
4034 		    INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
4035 		    &msix->jme_msix_handle, msix->jme_msix_serialize,
4036 		    msix->jme_msix_desc);
4037 		if (error) {
4038 			device_printf(dev, "could not set up %s "
4039 			    "interrupt handler.\n", msix->jme_msix_desc);
4040 			jme_msix_teardown(dev, x);
4041 			return error;
4042 		}
4043 	}
4044 	return 0;
4045 }
4046 
4047 static void
4048 jme_msix_teardown(device_t dev, int msix_count)
4049 {
4050 	struct jme_softc *sc = device_get_softc(dev);
4051 	int x;
4052 
4053 	for (x = 0; x < msix_count; ++x) {
4054 		struct jme_msix_data *msix = &sc->jme_msix[x];
4055 
4056 		bus_teardown_intr(dev, msix->jme_msix_res,
4057 		    msix->jme_msix_handle);
4058 	}
4059 }
4060 
4061 static void
4062 jme_serialize_skipmain(struct jme_softc *sc)
4063 {
4064 	lwkt_serialize_array_enter(sc->jme_serialize_arr,
4065 	    sc->jme_serialize_cnt, 1);
4066 }
4067 
4068 static void
4069 jme_deserialize_skipmain(struct jme_softc *sc)
4070 {
4071 	lwkt_serialize_array_exit(sc->jme_serialize_arr,
4072 	    sc->jme_serialize_cnt, 1);
4073 }
4074 
4075 static void
4076 jme_enable_intr(struct jme_softc *sc)
4077 {
4078 	int i;
4079 
4080 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4081 		lwkt_serialize_handler_enable(sc->jme_serialize_arr[i]);
4082 
4083 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
4084 }
4085 
4086 static void
4087 jme_disable_intr(struct jme_softc *sc)
4088 {
4089 	int i;
4090 
4091 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
4092 
4093 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4094 		lwkt_serialize_handler_disable(sc->jme_serialize_arr[i]);
4095 }
4096