xref: /dflybsd-src/sys/dev/netif/jme/if_jme.c (revision eda7db0843743319744b6ffa93dbc2536ff89f3f)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_polling.h"
31 #include "opt_rss.h"
32 #include "opt_jme.h"
33 
34 #include <sys/param.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/bus.h>
38 #include <sys/interrupt.h>
39 #include <sys/malloc.h>
40 #include <sys/proc.h>
41 #include <sys/rman.h>
42 #include <sys/serialize.h>
43 #include <sys/serialize2.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/ethernet.h>
49 #include <net/if.h>
50 #include <net/bpf.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/ifq_var.h>
55 #include <net/toeplitz.h>
56 #include <net/toeplitz2.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 
60 #include <netinet/in.h>
61 
62 #include <dev/netif/mii_layer/miivar.h>
63 #include <dev/netif/mii_layer/jmphyreg.h>
64 
65 #include <bus/pci/pcireg.h>
66 #include <bus/pci/pcivar.h>
67 #include <bus/pci/pcidevs.h>
68 
69 #include <dev/netif/jme/if_jmereg.h>
70 #include <dev/netif/jme/if_jmevar.h>
71 
72 #include "miibus_if.h"
73 
74 /* Define the following to disable printing Rx errors. */
75 #undef	JME_SHOW_ERRORS
76 
77 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
78 
79 #ifdef JME_RSS_DEBUG
80 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
81 do { \
82 	if ((sc)->jme_rss_debug >= (lvl)) \
83 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
84 } while (0)
85 #else	/* !JME_RSS_DEBUG */
86 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
87 #endif	/* JME_RSS_DEBUG */
88 
89 static int	jme_probe(device_t);
90 static int	jme_attach(device_t);
91 static int	jme_detach(device_t);
92 static int	jme_shutdown(device_t);
93 static int	jme_suspend(device_t);
94 static int	jme_resume(device_t);
95 
96 static int	jme_miibus_readreg(device_t, int, int);
97 static int	jme_miibus_writereg(device_t, int, int, int);
98 static void	jme_miibus_statchg(device_t);
99 
100 static void	jme_init(void *);
101 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
102 static void	jme_start(struct ifnet *);
103 static void	jme_watchdog(struct ifnet *);
104 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int	jme_mediachange(struct ifnet *);
106 #ifdef DEVICE_POLLING
107 static void	jme_poll(struct ifnet *, enum poll_cmd, int);
108 #endif
109 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
110 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
111 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
112 #ifdef INVARIANTS
113 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
114 		    boolean_t);
115 #endif
116 
117 static void	jme_intr(void *);
118 static void	jme_msix_tx(void *);
119 static void	jme_msix_rx(void *);
120 static void	jme_txeof(struct jme_softc *);
121 static void	jme_rxeof(struct jme_softc *, int, int);
122 static void	jme_rx_intr(struct jme_softc *, uint32_t);
123 
124 static int	jme_msix_setup(device_t);
125 static void	jme_msix_teardown(device_t, int);
126 static int	jme_intr_setup(device_t);
127 static void	jme_intr_teardown(device_t);
128 static void	jme_msix_try_alloc(device_t);
129 static void	jme_msix_free(device_t);
130 static int	jme_intr_alloc(device_t);
131 static void	jme_intr_free(device_t);
132 static int	jme_dma_alloc(struct jme_softc *);
133 static void	jme_dma_free(struct jme_softc *);
134 static int	jme_init_rx_ring(struct jme_softc *, int);
135 static void	jme_init_tx_ring(struct jme_softc *);
136 static void	jme_init_ssb(struct jme_softc *);
137 static int	jme_newbuf(struct jme_softc *, int, struct jme_rxdesc *, int);
138 static int	jme_encap(struct jme_softc *, struct mbuf **);
139 static void	jme_rxpkt(struct jme_softc *, int);
140 static int	jme_rxring_dma_alloc(struct jme_softc *, int);
141 static int	jme_rxbuf_dma_alloc(struct jme_softc *, int);
142 
143 static void	jme_tick(void *);
144 static void	jme_stop(struct jme_softc *);
145 static void	jme_reset(struct jme_softc *);
146 static void	jme_set_msinum(struct jme_softc *);
147 static void	jme_set_vlan(struct jme_softc *);
148 static void	jme_set_filter(struct jme_softc *);
149 static void	jme_stop_tx(struct jme_softc *);
150 static void	jme_stop_rx(struct jme_softc *);
151 static void	jme_mac_config(struct jme_softc *);
152 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
153 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
154 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
155 #ifdef notyet
156 static void	jme_setwol(struct jme_softc *);
157 static void	jme_setlinkspeed(struct jme_softc *);
158 #endif
159 static void	jme_set_tx_coal(struct jme_softc *);
160 static void	jme_set_rx_coal(struct jme_softc *);
161 static void	jme_enable_rss(struct jme_softc *);
162 static void	jme_disable_rss(struct jme_softc *);
163 
164 static void	jme_sysctl_node(struct jme_softc *);
165 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
166 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
167 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
168 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
169 
170 /*
171  * Devices supported by this driver.
172  */
173 static const struct jme_dev {
174 	uint16_t	jme_vendorid;
175 	uint16_t	jme_deviceid;
176 	uint32_t	jme_caps;
177 	const char	*jme_name;
178 } jme_devs[] = {
179 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
180 	    JME_CAP_JUMBO,
181 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
182 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
183 	    JME_CAP_FASTETH,
184 	    "JMicron Inc, JMC260 Fast Ethernet" },
185 	{ 0, 0, 0, NULL }
186 };
187 
188 static device_method_t jme_methods[] = {
189 	/* Device interface. */
190 	DEVMETHOD(device_probe,		jme_probe),
191 	DEVMETHOD(device_attach,	jme_attach),
192 	DEVMETHOD(device_detach,	jme_detach),
193 	DEVMETHOD(device_shutdown,	jme_shutdown),
194 	DEVMETHOD(device_suspend,	jme_suspend),
195 	DEVMETHOD(device_resume,	jme_resume),
196 
197 	/* Bus interface. */
198 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
199 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
200 
201 	/* MII interface. */
202 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
203 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
204 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
205 
206 	{ NULL, NULL }
207 };
208 
209 static driver_t jme_driver = {
210 	"jme",
211 	jme_methods,
212 	sizeof(struct jme_softc)
213 };
214 
215 static devclass_t jme_devclass;
216 
217 DECLARE_DUMMY_MODULE(if_jme);
218 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
219 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
220 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
221 
222 static const struct {
223 	uint32_t	jme_coal;
224 	uint32_t	jme_comp;
225 	uint32_t	jme_empty;
226 } jme_rx_status[JME_NRXRING_MAX] = {
227 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
228 	  INTR_RXQ0_DESC_EMPTY },
229 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
230 	  INTR_RXQ1_DESC_EMPTY },
231 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
232 	  INTR_RXQ2_DESC_EMPTY },
233 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
234 	  INTR_RXQ3_DESC_EMPTY }
235 };
236 
237 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
238 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
239 static int	jme_rx_ring_count = JME_NRXRING_DEF;
240 static int	jme_msi_enable = 1;
241 static int	jme_msix_enable = 1;
242 
243 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
244 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
245 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
246 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
247 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
248 
249 /*
250  *	Read a PHY register on the MII of the JMC250.
251  */
252 static int
253 jme_miibus_readreg(device_t dev, int phy, int reg)
254 {
255 	struct jme_softc *sc = device_get_softc(dev);
256 	uint32_t val;
257 	int i;
258 
259 	/* For FPGA version, PHY address 0 should be ignored. */
260 	if (sc->jme_caps & JME_CAP_FPGA) {
261 		if (phy == 0)
262 			return (0);
263 	} else {
264 		if (sc->jme_phyaddr != phy)
265 			return (0);
266 	}
267 
268 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
269 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
270 
271 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
272 		DELAY(1);
273 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
274 			break;
275 	}
276 	if (i == 0) {
277 		device_printf(sc->jme_dev, "phy read timeout: "
278 			      "phy %d, reg %d\n", phy, reg);
279 		return (0);
280 	}
281 
282 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
283 }
284 
285 /*
286  *	Write a PHY register on the MII of the JMC250.
287  */
288 static int
289 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
290 {
291 	struct jme_softc *sc = device_get_softc(dev);
292 	int i;
293 
294 	/* For FPGA version, PHY address 0 should be ignored. */
295 	if (sc->jme_caps & JME_CAP_FPGA) {
296 		if (phy == 0)
297 			return (0);
298 	} else {
299 		if (sc->jme_phyaddr != phy)
300 			return (0);
301 	}
302 
303 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
304 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
305 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
306 
307 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
308 		DELAY(1);
309 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
310 			break;
311 	}
312 	if (i == 0) {
313 		device_printf(sc->jme_dev, "phy write timeout: "
314 			      "phy %d, reg %d\n", phy, reg);
315 	}
316 
317 	return (0);
318 }
319 
320 /*
321  *	Callback from MII layer when media changes.
322  */
323 static void
324 jme_miibus_statchg(device_t dev)
325 {
326 	struct jme_softc *sc = device_get_softc(dev);
327 	struct ifnet *ifp = &sc->arpcom.ac_if;
328 	struct mii_data *mii;
329 	struct jme_txdesc *txd;
330 	bus_addr_t paddr;
331 	int i, r;
332 
333 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
334 
335 	if ((ifp->if_flags & IFF_RUNNING) == 0)
336 		return;
337 
338 	mii = device_get_softc(sc->jme_miibus);
339 
340 	sc->jme_flags &= ~JME_FLAG_LINK;
341 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
342 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
343 		case IFM_10_T:
344 		case IFM_100_TX:
345 			sc->jme_flags |= JME_FLAG_LINK;
346 			break;
347 		case IFM_1000_T:
348 			if (sc->jme_caps & JME_CAP_FASTETH)
349 				break;
350 			sc->jme_flags |= JME_FLAG_LINK;
351 			break;
352 		default:
353 			break;
354 		}
355 	}
356 
357 	/*
358 	 * Disabling Rx/Tx MACs have a side-effect of resetting
359 	 * JME_TXNDA/JME_RXNDA register to the first address of
360 	 * Tx/Rx descriptor address. So driver should reset its
361 	 * internal procucer/consumer pointer and reclaim any
362 	 * allocated resources.  Note, just saving the value of
363 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
364 	 * and restoring JME_TXNDA/JME_RXNDA register is not
365 	 * sufficient to make sure correct MAC state because
366 	 * stopping MAC operation can take a while and hardware
367 	 * might have updated JME_TXNDA/JME_RXNDA registers
368 	 * during the stop operation.
369 	 */
370 
371 	/* Disable interrupts */
372 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
373 
374 	/* Stop driver */
375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
376 	ifp->if_timer = 0;
377 	callout_stop(&sc->jme_tick_ch);
378 
379 	/* Stop receiver/transmitter. */
380 	jme_stop_rx(sc);
381 	jme_stop_tx(sc);
382 
383 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
384 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
385 
386 		jme_rxeof(sc, r, -1);
387 		if (rdata->jme_rxhead != NULL)
388 			m_freem(rdata->jme_rxhead);
389 		JME_RXCHAIN_RESET(sc, r);
390 
391 		/*
392 		 * Reuse configured Rx descriptors and reset
393 		 * procuder/consumer index.
394 		 */
395 		rdata->jme_rx_cons = 0;
396 	}
397 
398 	jme_txeof(sc);
399 	if (sc->jme_cdata.jme_tx_cnt != 0) {
400 		/* Remove queued packets for transmit. */
401 		for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
402 			txd = &sc->jme_cdata.jme_txdesc[i];
403 			if (txd->tx_m != NULL) {
404 				bus_dmamap_unload(
405 				    sc->jme_cdata.jme_tx_tag,
406 				    txd->tx_dmamap);
407 				m_freem(txd->tx_m);
408 				txd->tx_m = NULL;
409 				txd->tx_ndesc = 0;
410 				ifp->if_oerrors++;
411 			}
412 		}
413 	}
414 	jme_init_tx_ring(sc);
415 
416 	/* Initialize shadow status block. */
417 	jme_init_ssb(sc);
418 
419 	/* Program MAC with resolved speed/duplex/flow-control. */
420 	if (sc->jme_flags & JME_FLAG_LINK) {
421 		jme_mac_config(sc);
422 
423 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
424 
425 		/* Set Tx ring address to the hardware. */
426 		paddr = sc->jme_cdata.jme_tx_ring_paddr;
427 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
428 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
429 
430 		for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
431 			CSR_WRITE_4(sc, JME_RXCSR,
432 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
433 
434 			/* Set Rx ring address to the hardware. */
435 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
436 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
437 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
438 		}
439 
440 		/* Restart receiver/transmitter. */
441 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
442 		    RXCSR_RXQ_START);
443 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
444 	}
445 
446 	ifp->if_flags |= IFF_RUNNING;
447 	ifp->if_flags &= ~IFF_OACTIVE;
448 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
449 
450 #ifdef DEVICE_POLLING
451 	if (!(ifp->if_flags & IFF_POLLING))
452 #endif
453 	/* Reenable interrupts. */
454 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
455 }
456 
457 /*
458  *	Get the current interface media status.
459  */
460 static void
461 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
462 {
463 	struct jme_softc *sc = ifp->if_softc;
464 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
465 
466 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
467 
468 	mii_pollstat(mii);
469 	ifmr->ifm_status = mii->mii_media_status;
470 	ifmr->ifm_active = mii->mii_media_active;
471 }
472 
473 /*
474  *	Set hardware to newly-selected media.
475  */
476 static int
477 jme_mediachange(struct ifnet *ifp)
478 {
479 	struct jme_softc *sc = ifp->if_softc;
480 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
481 	int error;
482 
483 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
484 
485 	if (mii->mii_instance != 0) {
486 		struct mii_softc *miisc;
487 
488 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
489 			mii_phy_reset(miisc);
490 	}
491 	error = mii_mediachg(mii);
492 
493 	return (error);
494 }
495 
496 static int
497 jme_probe(device_t dev)
498 {
499 	const struct jme_dev *sp;
500 	uint16_t vid, did;
501 
502 	vid = pci_get_vendor(dev);
503 	did = pci_get_device(dev);
504 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
505 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
506 			struct jme_softc *sc = device_get_softc(dev);
507 
508 			sc->jme_caps = sp->jme_caps;
509 			device_set_desc(dev, sp->jme_name);
510 			return (0);
511 		}
512 	}
513 	return (ENXIO);
514 }
515 
516 static int
517 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
518 {
519 	uint32_t reg;
520 	int i;
521 
522 	*val = 0;
523 	for (i = JME_TIMEOUT; i > 0; i--) {
524 		reg = CSR_READ_4(sc, JME_SMBCSR);
525 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
526 			break;
527 		DELAY(1);
528 	}
529 
530 	if (i == 0) {
531 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
532 		return (ETIMEDOUT);
533 	}
534 
535 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
536 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
537 	for (i = JME_TIMEOUT; i > 0; i--) {
538 		DELAY(1);
539 		reg = CSR_READ_4(sc, JME_SMBINTF);
540 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
541 			break;
542 	}
543 
544 	if (i == 0) {
545 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
546 		return (ETIMEDOUT);
547 	}
548 
549 	reg = CSR_READ_4(sc, JME_SMBINTF);
550 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
551 
552 	return (0);
553 }
554 
555 static int
556 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
557 {
558 	uint8_t fup, reg, val;
559 	uint32_t offset;
560 	int match;
561 
562 	offset = 0;
563 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
564 	    fup != JME_EEPROM_SIG0)
565 		return (ENOENT);
566 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
567 	    fup != JME_EEPROM_SIG1)
568 		return (ENOENT);
569 	match = 0;
570 	do {
571 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
572 			break;
573 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
574 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
575 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
576 				break;
577 			if (reg >= JME_PAR0 &&
578 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
579 				if (jme_eeprom_read_byte(sc, offset + 2,
580 				    &val) != 0)
581 					break;
582 				eaddr[reg - JME_PAR0] = val;
583 				match++;
584 			}
585 		}
586 		/* Check for the end of EEPROM descriptor. */
587 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
588 			break;
589 		/* Try next eeprom descriptor. */
590 		offset += JME_EEPROM_DESC_BYTES;
591 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
592 
593 	if (match == ETHER_ADDR_LEN)
594 		return (0);
595 
596 	return (ENOENT);
597 }
598 
599 static void
600 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
601 {
602 	uint32_t par0, par1;
603 
604 	/* Read station address. */
605 	par0 = CSR_READ_4(sc, JME_PAR0);
606 	par1 = CSR_READ_4(sc, JME_PAR1);
607 	par1 &= 0xFFFF;
608 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
609 		device_printf(sc->jme_dev,
610 		    "generating fake ethernet address.\n");
611 		par0 = karc4random();
612 		/* Set OUI to JMicron. */
613 		eaddr[0] = 0x00;
614 		eaddr[1] = 0x1B;
615 		eaddr[2] = 0x8C;
616 		eaddr[3] = (par0 >> 16) & 0xff;
617 		eaddr[4] = (par0 >> 8) & 0xff;
618 		eaddr[5] = par0 & 0xff;
619 	} else {
620 		eaddr[0] = (par0 >> 0) & 0xFF;
621 		eaddr[1] = (par0 >> 8) & 0xFF;
622 		eaddr[2] = (par0 >> 16) & 0xFF;
623 		eaddr[3] = (par0 >> 24) & 0xFF;
624 		eaddr[4] = (par1 >> 0) & 0xFF;
625 		eaddr[5] = (par1 >> 8) & 0xFF;
626 	}
627 }
628 
629 static int
630 jme_attach(device_t dev)
631 {
632 	struct jme_softc *sc = device_get_softc(dev);
633 	struct ifnet *ifp = &sc->arpcom.ac_if;
634 	uint32_t reg;
635 	uint16_t did;
636 	uint8_t pcie_ptr, rev;
637 	int error = 0, i, j;
638 	uint8_t eaddr[ETHER_ADDR_LEN];
639 
640 	lwkt_serialize_init(&sc->jme_serialize);
641 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_serialize);
642 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
643 		lwkt_serialize_init(
644 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
645 	}
646 
647 	sc->jme_rx_desc_cnt = roundup(jme_rx_desc_count, JME_NDESC_ALIGN);
648 	if (sc->jme_rx_desc_cnt > JME_NDESC_MAX)
649 		sc->jme_rx_desc_cnt = JME_NDESC_MAX;
650 
651 	sc->jme_tx_desc_cnt = roundup(jme_tx_desc_count, JME_NDESC_ALIGN);
652 	if (sc->jme_tx_desc_cnt > JME_NDESC_MAX)
653 		sc->jme_tx_desc_cnt = JME_NDESC_MAX;
654 
655 	/*
656 	 * Calculate rx rings based on ncpus2
657 	 */
658 	sc->jme_rx_ring_cnt = jme_rx_ring_count;
659 	if (sc->jme_rx_ring_cnt <= 0)
660 		sc->jme_rx_ring_cnt = JME_NRXRING_1;
661 	if (sc->jme_rx_ring_cnt > ncpus2)
662 		sc->jme_rx_ring_cnt = ncpus2;
663 
664 	if (sc->jme_rx_ring_cnt >= JME_NRXRING_4)
665 		sc->jme_rx_ring_cnt = JME_NRXRING_4;
666 	else if (sc->jme_rx_ring_cnt >= JME_NRXRING_2)
667 		sc->jme_rx_ring_cnt = JME_NRXRING_2;
668 	sc->jme_rx_ring_inuse = sc->jme_rx_ring_cnt;
669 
670 	i = 0;
671 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
672 	sc->jme_serialize_arr[i++] = &sc->jme_cdata.jme_tx_serialize;
673 	for (j = 0; j < sc->jme_rx_ring_cnt; ++j) {
674 		sc->jme_serialize_arr[i++] =
675 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
676 	}
677 	KKASSERT(i <= JME_NSERIALIZE);
678 	sc->jme_serialize_cnt = i;
679 
680 	sc->jme_cdata.jme_sc = sc;
681 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
682 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
683 
684 		rdata->jme_sc = sc;
685 		rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
686 		rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
687 		rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
688 		rdata->jme_rx_idx = i;
689 	}
690 
691 	sc->jme_dev = dev;
692 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
693 
694 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
695 
696 	callout_init(&sc->jme_tick_ch);
697 
698 #ifndef BURN_BRIDGES
699 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
700 		uint32_t irq, mem;
701 
702 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
703 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
704 
705 		device_printf(dev, "chip is in D%d power mode "
706 		    "-- setting to D0\n", pci_get_powerstate(dev));
707 
708 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
709 
710 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
711 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
712 	}
713 #endif	/* !BURN_BRIDGE */
714 
715 	/* Enable bus mastering */
716 	pci_enable_busmaster(dev);
717 
718 	/*
719 	 * Allocate IO memory
720 	 *
721 	 * JMC250 supports both memory mapped and I/O register space
722 	 * access.  Because I/O register access should use different
723 	 * BARs to access registers it's waste of time to use I/O
724 	 * register spce access.  JMC250 uses 16K to map entire memory
725 	 * space.
726 	 */
727 	sc->jme_mem_rid = JME_PCIR_BAR;
728 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
729 						 &sc->jme_mem_rid, RF_ACTIVE);
730 	if (sc->jme_mem_res == NULL) {
731 		device_printf(dev, "can't allocate IO memory\n");
732 		return ENXIO;
733 	}
734 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
735 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
736 
737 	/*
738 	 * Allocate IRQ
739 	 */
740 	error = jme_intr_alloc(dev);
741 	if (error)
742 		goto fail;
743 
744 	/*
745 	 * Extract revisions
746 	 */
747 	reg = CSR_READ_4(sc, JME_CHIPMODE);
748 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
749 	    CHIPMODE_NOT_FPGA) {
750 		sc->jme_caps |= JME_CAP_FPGA;
751 		if (bootverbose) {
752 			device_printf(dev, "FPGA revision: 0x%04x\n",
753 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
754 				      CHIPMODE_FPGA_REV_SHIFT);
755 		}
756 	}
757 
758 	/* NOTE: FM revision is put in the upper 4 bits */
759 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
760 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
761 	if (bootverbose)
762 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
763 
764 	did = pci_get_device(dev);
765 	switch (did) {
766 	case PCI_PRODUCT_JMICRON_JMC250:
767 		if (rev == JME_REV1_A2)
768 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
769 		break;
770 
771 	case PCI_PRODUCT_JMICRON_JMC260:
772 		if (rev == JME_REV2)
773 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
774 		break;
775 
776 	default:
777 		panic("unknown device id 0x%04x\n", did);
778 	}
779 	if (rev >= JME_REV2) {
780 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
781 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
782 				      GHC_TXMAC_CLKSRC_1000;
783 	}
784 
785 	/* Reset the ethernet controller. */
786 	jme_reset(sc);
787 
788 	/* Map MSI/MSI-X vectors */
789 	jme_set_msinum(sc);
790 
791 	/* Get station address. */
792 	reg = CSR_READ_4(sc, JME_SMBCSR);
793 	if (reg & SMBCSR_EEPROM_PRESENT)
794 		error = jme_eeprom_macaddr(sc, eaddr);
795 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
796 		if (error != 0 && (bootverbose)) {
797 			device_printf(dev, "ethernet hardware address "
798 				      "not found in EEPROM.\n");
799 		}
800 		jme_reg_macaddr(sc, eaddr);
801 	}
802 
803 	/*
804 	 * Save PHY address.
805 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
806 	 * requires PHY probing to get correct PHY address.
807 	 */
808 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
809 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
810 		    GPREG0_PHY_ADDR_MASK;
811 		if (bootverbose) {
812 			device_printf(dev, "PHY is at address %d.\n",
813 			    sc->jme_phyaddr);
814 		}
815 	} else {
816 		sc->jme_phyaddr = 0;
817 	}
818 
819 	/* Set max allowable DMA size. */
820 	pcie_ptr = pci_get_pciecap_ptr(dev);
821 	if (pcie_ptr != 0) {
822 		uint16_t ctrl;
823 
824 		sc->jme_caps |= JME_CAP_PCIE;
825 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
826 		if (bootverbose) {
827 			device_printf(dev, "Read request size : %d bytes.\n",
828 			    128 << ((ctrl >> 12) & 0x07));
829 			device_printf(dev, "TLP payload size : %d bytes.\n",
830 			    128 << ((ctrl >> 5) & 0x07));
831 		}
832 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
833 		case PCIEM_DEVCTL_MAX_READRQ_128:
834 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
835 			break;
836 		case PCIEM_DEVCTL_MAX_READRQ_256:
837 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
838 			break;
839 		default:
840 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
841 			break;
842 		}
843 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
844 	} else {
845 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
846 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
847 	}
848 
849 #ifdef notyet
850 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
851 		sc->jme_caps |= JME_CAP_PMCAP;
852 #endif
853 
854 	/*
855 	 * Create sysctl tree
856 	 */
857 	jme_sysctl_node(sc);
858 
859 	/* Allocate DMA stuffs */
860 	error = jme_dma_alloc(sc);
861 	if (error)
862 		goto fail;
863 
864 	ifp->if_softc = sc;
865 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
866 	ifp->if_init = jme_init;
867 	ifp->if_ioctl = jme_ioctl;
868 	ifp->if_start = jme_start;
869 #ifdef DEVICE_POLLING
870 	ifp->if_poll = jme_poll;
871 #endif
872 	ifp->if_watchdog = jme_watchdog;
873 	ifp->if_serialize = jme_serialize;
874 	ifp->if_deserialize = jme_deserialize;
875 	ifp->if_tryserialize = jme_tryserialize;
876 #ifdef INVARIANTS
877 	ifp->if_serialize_assert = jme_serialize_assert;
878 #endif
879 	ifq_set_maxlen(&ifp->if_snd, sc->jme_tx_desc_cnt - JME_TXD_RSVD);
880 	ifq_set_ready(&ifp->if_snd);
881 
882 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
883 	ifp->if_capabilities = IFCAP_HWCSUM |
884 			       IFCAP_VLAN_MTU |
885 			       IFCAP_VLAN_HWTAGGING;
886 	if (sc->jme_rx_ring_cnt > JME_NRXRING_MIN)
887 		ifp->if_capabilities |= IFCAP_RSS;
888 	ifp->if_capenable = ifp->if_capabilities;
889 
890 	/*
891 	 * Disable TXCSUM by default to improve bulk data
892 	 * transmit performance (+20Mbps improvement).
893 	 */
894 	ifp->if_capenable &= ~IFCAP_TXCSUM;
895 
896 	if (ifp->if_capenable & IFCAP_TXCSUM)
897 		ifp->if_hwassist = JME_CSUM_FEATURES;
898 
899 	/* Set up MII bus. */
900 	error = mii_phy_probe(dev, &sc->jme_miibus,
901 			      jme_mediachange, jme_mediastatus);
902 	if (error) {
903 		device_printf(dev, "no PHY found!\n");
904 		goto fail;
905 	}
906 
907 	/*
908 	 * Save PHYADDR for FPGA mode PHY.
909 	 */
910 	if (sc->jme_caps & JME_CAP_FPGA) {
911 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
912 
913 		if (mii->mii_instance != 0) {
914 			struct mii_softc *miisc;
915 
916 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
917 				if (miisc->mii_phy != 0) {
918 					sc->jme_phyaddr = miisc->mii_phy;
919 					break;
920 				}
921 			}
922 			if (sc->jme_phyaddr != 0) {
923 				device_printf(sc->jme_dev,
924 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
925 				/* vendor magic. */
926 				jme_miibus_writereg(dev, sc->jme_phyaddr,
927 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
928 
929 				/* XXX should we clear JME_WA_EXTFIFO */
930 			}
931 		}
932 	}
933 
934 	ether_ifattach(ifp, eaddr, NULL);
935 
936 	/* Tell the upper layer(s) we support long frames. */
937 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
938 
939 	error = jme_intr_setup(dev);
940 	if (error) {
941 		ether_ifdetach(ifp);
942 		goto fail;
943 	}
944 
945 	return 0;
946 fail:
947 	jme_detach(dev);
948 	return (error);
949 }
950 
951 static int
952 jme_detach(device_t dev)
953 {
954 	struct jme_softc *sc = device_get_softc(dev);
955 
956 	if (device_is_attached(dev)) {
957 		struct ifnet *ifp = &sc->arpcom.ac_if;
958 
959 		ifnet_serialize_all(ifp);
960 		jme_stop(sc);
961 		jme_intr_teardown(dev);
962 		ifnet_deserialize_all(ifp);
963 
964 		ether_ifdetach(ifp);
965 	}
966 
967 	if (sc->jme_sysctl_tree != NULL)
968 		sysctl_ctx_free(&sc->jme_sysctl_ctx);
969 
970 	if (sc->jme_miibus != NULL)
971 		device_delete_child(dev, sc->jme_miibus);
972 	bus_generic_detach(dev);
973 
974 	jme_intr_free(dev);
975 
976 	if (sc->jme_mem_res != NULL) {
977 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
978 				     sc->jme_mem_res);
979 	}
980 
981 	jme_dma_free(sc);
982 
983 	return (0);
984 }
985 
986 static void
987 jme_sysctl_node(struct jme_softc *sc)
988 {
989 	int coal_max;
990 #ifdef JME_RSS_DEBUG
991 	char rx_ring_pkt[32];
992 	int r;
993 #endif
994 
995 	sysctl_ctx_init(&sc->jme_sysctl_ctx);
996 	sc->jme_sysctl_tree = SYSCTL_ADD_NODE(&sc->jme_sysctl_ctx,
997 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
998 				device_get_nameunit(sc->jme_dev),
999 				CTLFLAG_RD, 0, "");
1000 	if (sc->jme_sysctl_tree == NULL) {
1001 		device_printf(sc->jme_dev, "can't add sysctl node\n");
1002 		return;
1003 	}
1004 
1005 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1006 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1007 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1008 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1009 
1010 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1011 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1012 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1013 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1014 
1015 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1016 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1017 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1018 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1019 
1020 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1021 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1022 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1023 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1024 
1025 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1026 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1027 		       "rx_desc_count", CTLFLAG_RD, &sc->jme_rx_desc_cnt,
1028 		       0, "RX desc count");
1029 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1030 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1031 		       "tx_desc_count", CTLFLAG_RD, &sc->jme_tx_desc_cnt,
1032 		       0, "TX desc count");
1033 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1034 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1035 		       "rx_ring_count", CTLFLAG_RD, &sc->jme_rx_ring_cnt,
1036 		       0, "RX ring count");
1037 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1038 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1039 		       "rx_ring_inuse", CTLFLAG_RD, &sc->jme_rx_ring_inuse,
1040 		       0, "RX ring in use");
1041 #ifdef JME_RSS_DEBUG
1042 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1043 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1044 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1045 		       0, "RSS debug level");
1046 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1047 		ksnprintf(rx_ring_pkt, sizeof(rx_ring_pkt), "rx_ring%d_pkt", r);
1048 		SYSCTL_ADD_UINT(&sc->jme_sysctl_ctx,
1049 				SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1050 				rx_ring_pkt, CTLFLAG_RW,
1051 				&sc->jme_rx_ring_pkt[r],
1052 				0, "RXed packets");
1053 	}
1054 #endif
1055 
1056 	/*
1057 	 * Set default coalesce valves
1058 	 */
1059 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1060 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1061 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1062 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1063 
1064 	/*
1065 	 * Adjust coalesce valves, in case that the number of TX/RX
1066 	 * descs are set to small values by users.
1067 	 *
1068 	 * NOTE: coal_max will not be zero, since number of descs
1069 	 * must aligned by JME_NDESC_ALIGN (16 currently)
1070 	 */
1071 	coal_max = sc->jme_tx_desc_cnt / 6;
1072 	if (coal_max < sc->jme_tx_coal_pkt)
1073 		sc->jme_tx_coal_pkt = coal_max;
1074 
1075 	coal_max = sc->jme_rx_desc_cnt / 4;
1076 	if (coal_max < sc->jme_rx_coal_pkt)
1077 		sc->jme_rx_coal_pkt = coal_max;
1078 }
1079 
1080 static int
1081 jme_dma_alloc(struct jme_softc *sc)
1082 {
1083 	struct jme_txdesc *txd;
1084 	bus_dmamem_t dmem;
1085 	int error, i;
1086 
1087 	sc->jme_cdata.jme_txdesc =
1088 	kmalloc(sc->jme_tx_desc_cnt * sizeof(struct jme_txdesc),
1089 		M_DEVBUF, M_WAITOK | M_ZERO);
1090 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
1091 		sc->jme_cdata.jme_rx_data[i].jme_rxdesc =
1092 		kmalloc(sc->jme_rx_desc_cnt * sizeof(struct jme_rxdesc),
1093 			M_DEVBUF, M_WAITOK | M_ZERO);
1094 	}
1095 
1096 	/* Create parent ring tag. */
1097 	error = bus_dma_tag_create(NULL,/* parent */
1098 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1099 	    sc->jme_lowaddr,		/* lowaddr */
1100 	    BUS_SPACE_MAXADDR,		/* highaddr */
1101 	    NULL, NULL,			/* filter, filterarg */
1102 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1103 	    0,				/* nsegments */
1104 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1105 	    0,				/* flags */
1106 	    &sc->jme_cdata.jme_ring_tag);
1107 	if (error) {
1108 		device_printf(sc->jme_dev,
1109 		    "could not create parent ring DMA tag.\n");
1110 		return error;
1111 	}
1112 
1113 	/*
1114 	 * Create DMA stuffs for TX ring
1115 	 */
1116 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1117 			JME_TX_RING_ALIGN, 0,
1118 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1119 			JME_TX_RING_SIZE(sc),
1120 			BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1121 	if (error) {
1122 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1123 		return error;
1124 	}
1125 	sc->jme_cdata.jme_tx_ring_tag = dmem.dmem_tag;
1126 	sc->jme_cdata.jme_tx_ring_map = dmem.dmem_map;
1127 	sc->jme_cdata.jme_tx_ring = dmem.dmem_addr;
1128 	sc->jme_cdata.jme_tx_ring_paddr = dmem.dmem_busaddr;
1129 
1130 	/*
1131 	 * Create DMA stuffs for RX rings
1132 	 */
1133 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
1134 		error = jme_rxring_dma_alloc(sc, i);
1135 		if (error)
1136 			return error;
1137 	}
1138 
1139 	/* Create parent buffer tag. */
1140 	error = bus_dma_tag_create(NULL,/* parent */
1141 	    1, 0,			/* algnmnt, boundary */
1142 	    sc->jme_lowaddr,		/* lowaddr */
1143 	    BUS_SPACE_MAXADDR,		/* highaddr */
1144 	    NULL, NULL,			/* filter, filterarg */
1145 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1146 	    0,				/* nsegments */
1147 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1148 	    0,				/* flags */
1149 	    &sc->jme_cdata.jme_buffer_tag);
1150 	if (error) {
1151 		device_printf(sc->jme_dev,
1152 		    "could not create parent buffer DMA tag.\n");
1153 		return error;
1154 	}
1155 
1156 	/*
1157 	 * Create DMA stuffs for shadow status block
1158 	 */
1159 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1160 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1161 			JME_SSB_SIZE, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1162 	if (error) {
1163 		device_printf(sc->jme_dev,
1164 		    "could not create shadow status block.\n");
1165 		return error;
1166 	}
1167 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1168 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1169 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1170 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1171 
1172 	/*
1173 	 * Create DMA stuffs for TX buffers
1174 	 */
1175 
1176 	/* Create tag for Tx buffers. */
1177 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1178 	    1, 0,			/* algnmnt, boundary */
1179 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1180 	    BUS_SPACE_MAXADDR,		/* highaddr */
1181 	    NULL, NULL,			/* filter, filterarg */
1182 	    JME_JUMBO_FRAMELEN,		/* maxsize */
1183 	    JME_MAXTXSEGS,		/* nsegments */
1184 	    JME_MAXSEGSIZE,		/* maxsegsize */
1185 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1186 	    &sc->jme_cdata.jme_tx_tag);
1187 	if (error != 0) {
1188 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1189 		return error;
1190 	}
1191 
1192 	/* Create DMA maps for Tx buffers. */
1193 	for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
1194 		txd = &sc->jme_cdata.jme_txdesc[i];
1195 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag,
1196 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1197 				&txd->tx_dmamap);
1198 		if (error) {
1199 			int j;
1200 
1201 			device_printf(sc->jme_dev,
1202 			    "could not create %dth Tx dmamap.\n", i);
1203 
1204 			for (j = 0; j < i; ++j) {
1205 				txd = &sc->jme_cdata.jme_txdesc[j];
1206 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1207 						   txd->tx_dmamap);
1208 			}
1209 			bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1210 			sc->jme_cdata.jme_tx_tag = NULL;
1211 			return error;
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * Create DMA stuffs for RX buffers
1217 	 */
1218 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
1219 		error = jme_rxbuf_dma_alloc(sc, i);
1220 		if (error)
1221 			return error;
1222 	}
1223 	return 0;
1224 }
1225 
1226 static void
1227 jme_dma_free(struct jme_softc *sc)
1228 {
1229 	struct jme_txdesc *txd;
1230 	struct jme_rxdesc *rxd;
1231 	struct jme_rxdata *rdata;
1232 	int i, r;
1233 
1234 	/* Tx ring */
1235 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1236 		bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1237 		    sc->jme_cdata.jme_tx_ring_map);
1238 		bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1239 		    sc->jme_cdata.jme_tx_ring,
1240 		    sc->jme_cdata.jme_tx_ring_map);
1241 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1242 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1243 	}
1244 
1245 	/* Rx ring */
1246 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1247 		rdata = &sc->jme_cdata.jme_rx_data[r];
1248 		if (rdata->jme_rx_ring_tag != NULL) {
1249 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1250 					  rdata->jme_rx_ring_map);
1251 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1252 					rdata->jme_rx_ring,
1253 					rdata->jme_rx_ring_map);
1254 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1255 			rdata->jme_rx_ring_tag = NULL;
1256 		}
1257 	}
1258 
1259 	/* Tx buffers */
1260 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1261 		for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
1262 			txd = &sc->jme_cdata.jme_txdesc[i];
1263 			bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1264 			    txd->tx_dmamap);
1265 		}
1266 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1267 		sc->jme_cdata.jme_tx_tag = NULL;
1268 	}
1269 
1270 	/* Rx buffers */
1271 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1272 		rdata = &sc->jme_cdata.jme_rx_data[r];
1273 		if (rdata->jme_rx_tag != NULL) {
1274 			for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
1275 				rxd = &rdata->jme_rxdesc[i];
1276 				bus_dmamap_destroy(rdata->jme_rx_tag,
1277 						   rxd->rx_dmamap);
1278 			}
1279 			bus_dmamap_destroy(rdata->jme_rx_tag,
1280 					   rdata->jme_rx_sparemap);
1281 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1282 			rdata->jme_rx_tag = NULL;
1283 		}
1284 	}
1285 
1286 	/* Shadow status block. */
1287 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1288 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1289 		    sc->jme_cdata.jme_ssb_map);
1290 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1291 		    sc->jme_cdata.jme_ssb_block,
1292 		    sc->jme_cdata.jme_ssb_map);
1293 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1294 		sc->jme_cdata.jme_ssb_tag = NULL;
1295 	}
1296 
1297 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1298 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1299 		sc->jme_cdata.jme_buffer_tag = NULL;
1300 	}
1301 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1302 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1303 		sc->jme_cdata.jme_ring_tag = NULL;
1304 	}
1305 
1306 	if (sc->jme_cdata.jme_txdesc != NULL) {
1307 		kfree(sc->jme_cdata.jme_txdesc, M_DEVBUF);
1308 		sc->jme_cdata.jme_txdesc = NULL;
1309 	}
1310 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1311 		rdata = &sc->jme_cdata.jme_rx_data[r];
1312 		if (rdata->jme_rxdesc != NULL) {
1313 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1314 			rdata->jme_rxdesc = NULL;
1315 		}
1316 	}
1317 }
1318 
1319 /*
1320  *	Make sure the interface is stopped at reboot time.
1321  */
1322 static int
1323 jme_shutdown(device_t dev)
1324 {
1325 	return jme_suspend(dev);
1326 }
1327 
1328 #ifdef notyet
1329 /*
1330  * Unlike other ethernet controllers, JMC250 requires
1331  * explicit resetting link speed to 10/100Mbps as gigabit
1332  * link will cunsume more power than 375mA.
1333  * Note, we reset the link speed to 10/100Mbps with
1334  * auto-negotiation but we don't know whether that operation
1335  * would succeed or not as we have no control after powering
1336  * off. If the renegotiation fail WOL may not work. Running
1337  * at 1Gbps draws more power than 375mA at 3.3V which is
1338  * specified in PCI specification and that would result in
1339  * complete shutdowning power to ethernet controller.
1340  *
1341  * TODO
1342  *  Save current negotiated media speed/duplex/flow-control
1343  *  to softc and restore the same link again after resuming.
1344  *  PHY handling such as power down/resetting to 100Mbps
1345  *  may be better handled in suspend method in phy driver.
1346  */
1347 static void
1348 jme_setlinkspeed(struct jme_softc *sc)
1349 {
1350 	struct mii_data *mii;
1351 	int aneg, i;
1352 
1353 	JME_LOCK_ASSERT(sc);
1354 
1355 	mii = device_get_softc(sc->jme_miibus);
1356 	mii_pollstat(mii);
1357 	aneg = 0;
1358 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1359 		switch IFM_SUBTYPE(mii->mii_media_active) {
1360 		case IFM_10_T:
1361 		case IFM_100_TX:
1362 			return;
1363 		case IFM_1000_T:
1364 			aneg++;
1365 		default:
1366 			break;
1367 		}
1368 	}
1369 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1370 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1371 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1372 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1373 	    BMCR_AUTOEN | BMCR_STARTNEG);
1374 	DELAY(1000);
1375 	if (aneg != 0) {
1376 		/* Poll link state until jme(4) get a 10/100 link. */
1377 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1378 			mii_pollstat(mii);
1379 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1380 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1381 				case IFM_10_T:
1382 				case IFM_100_TX:
1383 					jme_mac_config(sc);
1384 					return;
1385 				default:
1386 					break;
1387 				}
1388 			}
1389 			JME_UNLOCK(sc);
1390 			pause("jmelnk", hz);
1391 			JME_LOCK(sc);
1392 		}
1393 		if (i == MII_ANEGTICKS_GIGE)
1394 			device_printf(sc->jme_dev, "establishing link failed, "
1395 			    "WOL may not work!");
1396 	}
1397 	/*
1398 	 * No link, force MAC to have 100Mbps, full-duplex link.
1399 	 * This is the last resort and may/may not work.
1400 	 */
1401 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1402 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1403 	jme_mac_config(sc);
1404 }
1405 
1406 static void
1407 jme_setwol(struct jme_softc *sc)
1408 {
1409 	struct ifnet *ifp = &sc->arpcom.ac_if;
1410 	uint32_t gpr, pmcs;
1411 	uint16_t pmstat;
1412 	int pmc;
1413 
1414 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1415 		/* No PME capability, PHY power down. */
1416 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1417 		    MII_BMCR, BMCR_PDOWN);
1418 		return;
1419 	}
1420 
1421 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1422 	pmcs = CSR_READ_4(sc, JME_PMCS);
1423 	pmcs &= ~PMCS_WOL_ENB_MASK;
1424 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1425 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1426 		/* Enable PME message. */
1427 		gpr |= GPREG0_PME_ENB;
1428 		/* For gigabit controllers, reset link speed to 10/100. */
1429 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1430 			jme_setlinkspeed(sc);
1431 	}
1432 
1433 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1434 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1435 
1436 	/* Request PME. */
1437 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1438 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1439 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1440 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1441 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1442 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1443 		/* No WOL, PHY power down. */
1444 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1445 		    MII_BMCR, BMCR_PDOWN);
1446 	}
1447 }
1448 #endif
1449 
1450 static int
1451 jme_suspend(device_t dev)
1452 {
1453 	struct jme_softc *sc = device_get_softc(dev);
1454 	struct ifnet *ifp = &sc->arpcom.ac_if;
1455 
1456 	ifnet_serialize_all(ifp);
1457 	jme_stop(sc);
1458 #ifdef notyet
1459 	jme_setwol(sc);
1460 #endif
1461 	ifnet_deserialize_all(ifp);
1462 
1463 	return (0);
1464 }
1465 
1466 static int
1467 jme_resume(device_t dev)
1468 {
1469 	struct jme_softc *sc = device_get_softc(dev);
1470 	struct ifnet *ifp = &sc->arpcom.ac_if;
1471 #ifdef notyet
1472 	int pmc;
1473 #endif
1474 
1475 	ifnet_serialize_all(ifp);
1476 
1477 #ifdef notyet
1478 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1479 		uint16_t pmstat;
1480 
1481 		pmstat = pci_read_config(sc->jme_dev,
1482 		    pmc + PCIR_POWER_STATUS, 2);
1483 		/* Disable PME clear PME status. */
1484 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1485 		pci_write_config(sc->jme_dev,
1486 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1487 	}
1488 #endif
1489 
1490 	if (ifp->if_flags & IFF_UP)
1491 		jme_init(sc);
1492 
1493 	ifnet_deserialize_all(ifp);
1494 
1495 	return (0);
1496 }
1497 
1498 static int
1499 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1500 {
1501 	struct jme_txdesc *txd;
1502 	struct jme_desc *desc;
1503 	struct mbuf *m;
1504 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1505 	int maxsegs, nsegs;
1506 	int error, i, prod, symbol_desc;
1507 	uint32_t cflags, flag64;
1508 
1509 	M_ASSERTPKTHDR((*m_head));
1510 
1511 	prod = sc->jme_cdata.jme_tx_prod;
1512 	txd = &sc->jme_cdata.jme_txdesc[prod];
1513 
1514 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1515 		symbol_desc = 1;
1516 	else
1517 		symbol_desc = 0;
1518 
1519 	maxsegs = (sc->jme_tx_desc_cnt - sc->jme_cdata.jme_tx_cnt) -
1520 		  (JME_TXD_RSVD + symbol_desc);
1521 	if (maxsegs > JME_MAXTXSEGS)
1522 		maxsegs = JME_MAXTXSEGS;
1523 	KASSERT(maxsegs >= (sc->jme_txd_spare - symbol_desc),
1524 		("not enough segments %d\n", maxsegs));
1525 
1526 	error = bus_dmamap_load_mbuf_defrag(sc->jme_cdata.jme_tx_tag,
1527 			txd->tx_dmamap, m_head,
1528 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1529 	if (error)
1530 		goto fail;
1531 
1532 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1533 			BUS_DMASYNC_PREWRITE);
1534 
1535 	m = *m_head;
1536 	cflags = 0;
1537 
1538 	/* Configure checksum offload. */
1539 	if (m->m_pkthdr.csum_flags & CSUM_IP)
1540 		cflags |= JME_TD_IPCSUM;
1541 	if (m->m_pkthdr.csum_flags & CSUM_TCP)
1542 		cflags |= JME_TD_TCPCSUM;
1543 	if (m->m_pkthdr.csum_flags & CSUM_UDP)
1544 		cflags |= JME_TD_UDPCSUM;
1545 
1546 	/* Configure VLAN. */
1547 	if (m->m_flags & M_VLANTAG) {
1548 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1549 		cflags |= JME_TD_VLAN_TAG;
1550 	}
1551 
1552 	desc = &sc->jme_cdata.jme_tx_ring[prod];
1553 	desc->flags = htole32(cflags);
1554 	desc->addr_hi = htole32(m->m_pkthdr.len);
1555 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1556 		/*
1557 		 * Use 64bits TX desc chain format.
1558 		 *
1559 		 * The first TX desc of the chain, which is setup here,
1560 		 * is just a symbol TX desc carrying no payload.
1561 		 */
1562 		flag64 = JME_TD_64BIT;
1563 		desc->buflen = 0;
1564 		desc->addr_lo = 0;
1565 
1566 		/* No effective TX desc is consumed */
1567 		i = 0;
1568 	} else {
1569 		/*
1570 		 * Use 32bits TX desc chain format.
1571 		 *
1572 		 * The first TX desc of the chain, which is setup here,
1573 		 * is an effective TX desc carrying the first segment of
1574 		 * the mbuf chain.
1575 		 */
1576 		flag64 = 0;
1577 		desc->buflen = htole32(txsegs[0].ds_len);
1578 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1579 
1580 		/* One effective TX desc is consumed */
1581 		i = 1;
1582 	}
1583 	sc->jme_cdata.jme_tx_cnt++;
1584 	KKASSERT(sc->jme_cdata.jme_tx_cnt - i <
1585 		 sc->jme_tx_desc_cnt - JME_TXD_RSVD);
1586 	JME_DESC_INC(prod, sc->jme_tx_desc_cnt);
1587 
1588 	txd->tx_ndesc = 1 - i;
1589 	for (; i < nsegs; i++) {
1590 		desc = &sc->jme_cdata.jme_tx_ring[prod];
1591 		desc->flags = htole32(JME_TD_OWN | flag64);
1592 		desc->buflen = htole32(txsegs[i].ds_len);
1593 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1594 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1595 
1596 		sc->jme_cdata.jme_tx_cnt++;
1597 		KKASSERT(sc->jme_cdata.jme_tx_cnt <=
1598 			 sc->jme_tx_desc_cnt - JME_TXD_RSVD);
1599 		JME_DESC_INC(prod, sc->jme_tx_desc_cnt);
1600 	}
1601 
1602 	/* Update producer index. */
1603 	sc->jme_cdata.jme_tx_prod = prod;
1604 	/*
1605 	 * Finally request interrupt and give the first descriptor
1606 	 * owenership to hardware.
1607 	 */
1608 	desc = txd->tx_desc;
1609 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1610 
1611 	txd->tx_m = m;
1612 	txd->tx_ndesc += nsegs;
1613 
1614 	return 0;
1615 fail:
1616 	m_freem(*m_head);
1617 	*m_head = NULL;
1618 	return error;
1619 }
1620 
1621 static void
1622 jme_start(struct ifnet *ifp)
1623 {
1624 	struct jme_softc *sc = ifp->if_softc;
1625 	struct mbuf *m_head;
1626 	int enq = 0;
1627 
1628 	ASSERT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
1629 
1630 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1631 		ifq_purge(&ifp->if_snd);
1632 		return;
1633 	}
1634 
1635 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1636 		return;
1637 
1638 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT(sc))
1639 		jme_txeof(sc);
1640 
1641 	while (!ifq_is_empty(&ifp->if_snd)) {
1642 		/*
1643 		 * Check number of available TX descs, always
1644 		 * leave JME_TXD_RSVD free TX descs.
1645 		 */
1646 		if (sc->jme_cdata.jme_tx_cnt + sc->jme_txd_spare >
1647 		    sc->jme_tx_desc_cnt - JME_TXD_RSVD) {
1648 			ifp->if_flags |= IFF_OACTIVE;
1649 			break;
1650 		}
1651 
1652 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1653 		if (m_head == NULL)
1654 			break;
1655 
1656 		/*
1657 		 * Pack the data into the transmit ring. If we
1658 		 * don't have room, set the OACTIVE flag and wait
1659 		 * for the NIC to drain the ring.
1660 		 */
1661 		if (jme_encap(sc, &m_head)) {
1662 			KKASSERT(m_head == NULL);
1663 			ifp->if_oerrors++;
1664 			ifp->if_flags |= IFF_OACTIVE;
1665 			break;
1666 		}
1667 		enq++;
1668 
1669 		/*
1670 		 * If there's a BPF listener, bounce a copy of this frame
1671 		 * to him.
1672 		 */
1673 		ETHER_BPF_MTAP(ifp, m_head);
1674 	}
1675 
1676 	if (enq > 0) {
1677 		/*
1678 		 * Reading TXCSR takes very long time under heavy load
1679 		 * so cache TXCSR value and writes the ORed value with
1680 		 * the kick command to the TXCSR. This saves one register
1681 		 * access cycle.
1682 		 */
1683 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1684 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1685 		/* Set a timeout in case the chip goes out to lunch. */
1686 		ifp->if_timer = JME_TX_TIMEOUT;
1687 	}
1688 }
1689 
1690 static void
1691 jme_watchdog(struct ifnet *ifp)
1692 {
1693 	struct jme_softc *sc = ifp->if_softc;
1694 
1695 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1696 
1697 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1698 		if_printf(ifp, "watchdog timeout (missed link)\n");
1699 		ifp->if_oerrors++;
1700 		jme_init(sc);
1701 		return;
1702 	}
1703 
1704 	jme_txeof(sc);
1705 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1706 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1707 			  "-- recovering\n");
1708 		if (!ifq_is_empty(&ifp->if_snd))
1709 			if_devstart(ifp);
1710 		return;
1711 	}
1712 
1713 	if_printf(ifp, "watchdog timeout\n");
1714 	ifp->if_oerrors++;
1715 	jme_init(sc);
1716 	if (!ifq_is_empty(&ifp->if_snd))
1717 		if_devstart(ifp);
1718 }
1719 
1720 static int
1721 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1722 {
1723 	struct jme_softc *sc = ifp->if_softc;
1724 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1725 	struct ifreq *ifr = (struct ifreq *)data;
1726 	int error = 0, mask;
1727 
1728 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1729 
1730 	switch (cmd) {
1731 	case SIOCSIFMTU:
1732 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1733 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1734 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1735 			error = EINVAL;
1736 			break;
1737 		}
1738 
1739 		if (ifp->if_mtu != ifr->ifr_mtu) {
1740 			/*
1741 			 * No special configuration is required when interface
1742 			 * MTU is changed but availability of Tx checksum
1743 			 * offload should be chcked against new MTU size as
1744 			 * FIFO size is just 2K.
1745 			 */
1746 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1747 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1748 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1749 			}
1750 			ifp->if_mtu = ifr->ifr_mtu;
1751 			if (ifp->if_flags & IFF_RUNNING)
1752 				jme_init(sc);
1753 		}
1754 		break;
1755 
1756 	case SIOCSIFFLAGS:
1757 		if (ifp->if_flags & IFF_UP) {
1758 			if (ifp->if_flags & IFF_RUNNING) {
1759 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1760 				    (IFF_PROMISC | IFF_ALLMULTI))
1761 					jme_set_filter(sc);
1762 			} else {
1763 				jme_init(sc);
1764 			}
1765 		} else {
1766 			if (ifp->if_flags & IFF_RUNNING)
1767 				jme_stop(sc);
1768 		}
1769 		sc->jme_if_flags = ifp->if_flags;
1770 		break;
1771 
1772 	case SIOCADDMULTI:
1773 	case SIOCDELMULTI:
1774 		if (ifp->if_flags & IFF_RUNNING)
1775 			jme_set_filter(sc);
1776 		break;
1777 
1778 	case SIOCSIFMEDIA:
1779 	case SIOCGIFMEDIA:
1780 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1781 		break;
1782 
1783 	case SIOCSIFCAP:
1784 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1785 
1786 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1787 			ifp->if_capenable ^= IFCAP_TXCSUM;
1788 			if (IFCAP_TXCSUM & ifp->if_capenable)
1789 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1790 			else
1791 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1792 		}
1793 		if (mask & IFCAP_RXCSUM) {
1794 			uint32_t reg;
1795 
1796 			ifp->if_capenable ^= IFCAP_RXCSUM;
1797 			reg = CSR_READ_4(sc, JME_RXMAC);
1798 			reg &= ~RXMAC_CSUM_ENB;
1799 			if (ifp->if_capenable & IFCAP_RXCSUM)
1800 				reg |= RXMAC_CSUM_ENB;
1801 			CSR_WRITE_4(sc, JME_RXMAC, reg);
1802 		}
1803 
1804 		if (mask & IFCAP_VLAN_HWTAGGING) {
1805 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1806 			jme_set_vlan(sc);
1807 		}
1808 
1809 		if (mask & IFCAP_RSS) {
1810 			ifp->if_capenable ^= IFCAP_RSS;
1811 			if (ifp->if_flags & IFF_RUNNING)
1812 				jme_init(sc);
1813 		}
1814 		break;
1815 
1816 	default:
1817 		error = ether_ioctl(ifp, cmd, data);
1818 		break;
1819 	}
1820 	return (error);
1821 }
1822 
1823 static void
1824 jme_mac_config(struct jme_softc *sc)
1825 {
1826 	struct mii_data *mii;
1827 	uint32_t ghc, rxmac, txmac, txpause, gp1;
1828 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
1829 
1830 	mii = device_get_softc(sc->jme_miibus);
1831 
1832 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
1833 	DELAY(10);
1834 	CSR_WRITE_4(sc, JME_GHC, 0);
1835 	ghc = 0;
1836 	rxmac = CSR_READ_4(sc, JME_RXMAC);
1837 	rxmac &= ~RXMAC_FC_ENB;
1838 	txmac = CSR_READ_4(sc, JME_TXMAC);
1839 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1840 	txpause = CSR_READ_4(sc, JME_TXPFC);
1841 	txpause &= ~TXPFC_PAUSE_ENB;
1842 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1843 		ghc |= GHC_FULL_DUPLEX;
1844 		rxmac &= ~RXMAC_COLL_DET_ENB;
1845 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1846 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1847 		    TXMAC_FRAME_BURST);
1848 #ifdef notyet
1849 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1850 			txpause |= TXPFC_PAUSE_ENB;
1851 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1852 			rxmac |= RXMAC_FC_ENB;
1853 #endif
1854 		/* Disable retry transmit timer/retry limit. */
1855 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
1856 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1857 	} else {
1858 		rxmac |= RXMAC_COLL_DET_ENB;
1859 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1860 		/* Enable retry transmit timer/retry limit. */
1861 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
1862 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1863 	}
1864 
1865 	/*
1866 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
1867 	 */
1868 	gp1 = CSR_READ_4(sc, JME_GPREG1);
1869 	gp1 &= ~GPREG1_WA_HDX;
1870 
1871 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1872 		hdx = 1;
1873 
1874 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1875 	case IFM_10_T:
1876 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
1877 		if (hdx)
1878 			gp1 |= GPREG1_WA_HDX;
1879 		break;
1880 
1881 	case IFM_100_TX:
1882 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
1883 		if (hdx)
1884 			gp1 |= GPREG1_WA_HDX;
1885 
1886 		/*
1887 		 * Use extended FIFO depth to workaround CRC errors
1888 		 * emitted by chips before JMC250B
1889 		 */
1890 		phyconf = JMPHY_CONF_EXTFIFO;
1891 		break;
1892 
1893 	case IFM_1000_T:
1894 		if (sc->jme_caps & JME_CAP_FASTETH)
1895 			break;
1896 
1897 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
1898 		if (hdx)
1899 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1900 		break;
1901 
1902 	default:
1903 		break;
1904 	}
1905 	CSR_WRITE_4(sc, JME_GHC, ghc);
1906 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
1907 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
1908 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
1909 
1910 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
1911 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1912 				    JMPHY_CONF, phyconf);
1913 	}
1914 	if (sc->jme_workaround & JME_WA_HDX)
1915 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
1916 }
1917 
1918 static void
1919 jme_intr(void *xsc)
1920 {
1921 	struct jme_softc *sc = xsc;
1922 	struct ifnet *ifp = &sc->arpcom.ac_if;
1923 	uint32_t status;
1924 	int r;
1925 
1926 	ASSERT_SERIALIZED(&sc->jme_serialize);
1927 
1928 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
1929 	if (status == 0 || status == 0xFFFFFFFF)
1930 		return;
1931 
1932 	/* Disable interrupts. */
1933 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
1934 
1935 	status = CSR_READ_4(sc, JME_INTR_STATUS);
1936 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
1937 		goto back;
1938 
1939 	/* Reset PCC counter/timer and Ack interrupts. */
1940 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
1941 
1942 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
1943 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1944 
1945 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
1946 		if (status & jme_rx_status[r].jme_coal) {
1947 			status |= jme_rx_status[r].jme_coal |
1948 				  jme_rx_status[r].jme_comp;
1949 		}
1950 	}
1951 
1952 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
1953 
1954 	if (ifp->if_flags & IFF_RUNNING) {
1955 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
1956 			jme_rx_intr(sc, status);
1957 
1958 		if (status & INTR_RXQ_DESC_EMPTY) {
1959 			/*
1960 			 * Notify hardware availability of new Rx buffers.
1961 			 * Reading RXCSR takes very long time under heavy
1962 			 * load so cache RXCSR value and writes the ORed
1963 			 * value with the kick command to the RXCSR. This
1964 			 * saves one register access cycle.
1965 			 */
1966 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
1967 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
1968 		}
1969 
1970 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
1971 			lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
1972 			jme_txeof(sc);
1973 			if (!ifq_is_empty(&ifp->if_snd))
1974 				if_devstart(ifp);
1975 			lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
1976 		}
1977 	}
1978 back:
1979 	/* Reenable interrupts. */
1980 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
1981 }
1982 
1983 static void
1984 jme_txeof(struct jme_softc *sc)
1985 {
1986 	struct ifnet *ifp = &sc->arpcom.ac_if;
1987 	struct jme_txdesc *txd;
1988 	uint32_t status;
1989 	int cons, nsegs;
1990 
1991 	cons = sc->jme_cdata.jme_tx_cons;
1992 	if (cons == sc->jme_cdata.jme_tx_prod)
1993 		return;
1994 
1995 	/*
1996 	 * Go through our Tx list and free mbufs for those
1997 	 * frames which have been transmitted.
1998 	 */
1999 	while (cons != sc->jme_cdata.jme_tx_prod) {
2000 		txd = &sc->jme_cdata.jme_txdesc[cons];
2001 		KASSERT(txd->tx_m != NULL,
2002 			("%s: freeing NULL mbuf!\n", __func__));
2003 
2004 		status = le32toh(txd->tx_desc->flags);
2005 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2006 			break;
2007 
2008 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2009 			ifp->if_oerrors++;
2010 		} else {
2011 			ifp->if_opackets++;
2012 			if (status & JME_TD_COLLISION) {
2013 				ifp->if_collisions +=
2014 				    le32toh(txd->tx_desc->buflen) &
2015 				    JME_TD_BUF_LEN_MASK;
2016 			}
2017 		}
2018 
2019 		/*
2020 		 * Only the first descriptor of multi-descriptor
2021 		 * transmission is updated so driver have to skip entire
2022 		 * chained buffers for the transmiited frame. In other
2023 		 * words, JME_TD_OWN bit is valid only at the first
2024 		 * descriptor of a multi-descriptor transmission.
2025 		 */
2026 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2027 			sc->jme_cdata.jme_tx_ring[cons].flags = 0;
2028 			JME_DESC_INC(cons, sc->jme_tx_desc_cnt);
2029 		}
2030 
2031 		/* Reclaim transferred mbufs. */
2032 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2033 		m_freem(txd->tx_m);
2034 		txd->tx_m = NULL;
2035 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2036 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2037 			("%s: Active Tx desc counter was garbled\n", __func__));
2038 		txd->tx_ndesc = 0;
2039 	}
2040 	sc->jme_cdata.jme_tx_cons = cons;
2041 
2042 	if (sc->jme_cdata.jme_tx_cnt == 0)
2043 		ifp->if_timer = 0;
2044 
2045 	if (sc->jme_cdata.jme_tx_cnt + sc->jme_txd_spare <=
2046 	    sc->jme_tx_desc_cnt - JME_TXD_RSVD)
2047 		ifp->if_flags &= ~IFF_OACTIVE;
2048 }
2049 
2050 static __inline void
2051 jme_discard_rxbufs(struct jme_softc *sc, int ring, int cons, int count)
2052 {
2053 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2054 	int i;
2055 
2056 	for (i = 0; i < count; ++i) {
2057 		struct jme_desc *desc = &rdata->jme_rx_ring[cons];
2058 
2059 		desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2060 		desc->buflen = htole32(MCLBYTES);
2061 		JME_DESC_INC(cons, sc->jme_rx_desc_cnt);
2062 	}
2063 }
2064 
2065 static __inline struct pktinfo *
2066 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2067 {
2068 	if (flags & JME_RD_IPV4)
2069 		pi->pi_netisr = NETISR_IP;
2070 	else if (flags & JME_RD_IPV6)
2071 		pi->pi_netisr = NETISR_IPV6;
2072 	else
2073 		return NULL;
2074 
2075 	pi->pi_flags = 0;
2076 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2077 
2078 	if (flags & JME_RD_MORE_FRAG)
2079 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2080 	else if (flags & JME_RD_TCP)
2081 		pi->pi_l3proto = IPPROTO_TCP;
2082 	else if (flags & JME_RD_UDP)
2083 		pi->pi_l3proto = IPPROTO_UDP;
2084 	else
2085 		pi = NULL;
2086 	return pi;
2087 }
2088 
2089 /* Receive a frame. */
2090 static void
2091 jme_rxpkt(struct jme_softc *sc, int ring)
2092 {
2093 	struct ifnet *ifp = &sc->arpcom.ac_if;
2094 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2095 	struct jme_desc *desc;
2096 	struct jme_rxdesc *rxd;
2097 	struct mbuf *mp, *m;
2098 	uint32_t flags, status, hash, hashinfo;
2099 	int cons, count, nsegs;
2100 
2101 	cons = rdata->jme_rx_cons;
2102 	desc = &rdata->jme_rx_ring[cons];
2103 	flags = le32toh(desc->flags);
2104 	status = le32toh(desc->buflen);
2105 	hash = le32toh(desc->addr_hi);
2106 	hashinfo = le32toh(desc->addr_lo);
2107 	nsegs = JME_RX_NSEGS(status);
2108 
2109 	JME_RSS_DPRINTF(sc, 15, "ring%d, flags 0x%08x, "
2110 			"hash 0x%08x, hash info 0x%08x\n",
2111 			ring, flags, hash, hashinfo);
2112 
2113 	if (status & JME_RX_ERR_STAT) {
2114 		ifp->if_ierrors++;
2115 		jme_discard_rxbufs(sc, ring, cons, nsegs);
2116 #ifdef JME_SHOW_ERRORS
2117 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2118 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2119 #endif
2120 		rdata->jme_rx_cons += nsegs;
2121 		rdata->jme_rx_cons %= sc->jme_rx_desc_cnt;
2122 		return;
2123 	}
2124 
2125 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2126 	for (count = 0; count < nsegs; count++,
2127 	     JME_DESC_INC(cons, sc->jme_rx_desc_cnt)) {
2128 		rxd = &rdata->jme_rxdesc[cons];
2129 		mp = rxd->rx_m;
2130 
2131 		/* Add a new receive buffer to the ring. */
2132 		if (jme_newbuf(sc, ring, rxd, 0) != 0) {
2133 			ifp->if_iqdrops++;
2134 			/* Reuse buffer. */
2135 			jme_discard_rxbufs(sc, ring, cons, nsegs - count);
2136 			if (rdata->jme_rxhead != NULL) {
2137 				m_freem(rdata->jme_rxhead);
2138 				JME_RXCHAIN_RESET(sc, ring);
2139 			}
2140 			break;
2141 		}
2142 
2143 		/*
2144 		 * Assume we've received a full sized frame.
2145 		 * Actual size is fixed when we encounter the end of
2146 		 * multi-segmented frame.
2147 		 */
2148 		mp->m_len = MCLBYTES;
2149 
2150 		/* Chain received mbufs. */
2151 		if (rdata->jme_rxhead == NULL) {
2152 			rdata->jme_rxhead = mp;
2153 			rdata->jme_rxtail = mp;
2154 		} else {
2155 			/*
2156 			 * Receive processor can receive a maximum frame
2157 			 * size of 65535 bytes.
2158 			 */
2159 			rdata->jme_rxtail->m_next = mp;
2160 			rdata->jme_rxtail = mp;
2161 		}
2162 
2163 		if (count == nsegs - 1) {
2164 			struct pktinfo pi0, *pi;
2165 
2166 			/* Last desc. for this frame. */
2167 			m = rdata->jme_rxhead;
2168 			m->m_pkthdr.len = rdata->jme_rxlen;
2169 			if (nsegs > 1) {
2170 				/* Set first mbuf size. */
2171 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2172 				/* Set last mbuf size. */
2173 				mp->m_len = rdata->jme_rxlen -
2174 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2175 				    (MCLBYTES * (nsegs - 2)));
2176 			} else {
2177 				m->m_len = rdata->jme_rxlen;
2178 			}
2179 			m->m_pkthdr.rcvif = ifp;
2180 
2181 			/*
2182 			 * Account for 10bytes auto padding which is used
2183 			 * to align IP header on 32bit boundary. Also note,
2184 			 * CRC bytes is automatically removed by the
2185 			 * hardware.
2186 			 */
2187 			m->m_data += JME_RX_PAD_BYTES;
2188 
2189 			/* Set checksum information. */
2190 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2191 			    (flags & JME_RD_IPV4)) {
2192 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2193 				if (flags & JME_RD_IPCSUM)
2194 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2195 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2196 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2197 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2198 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2199 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2200 					m->m_pkthdr.csum_flags |=
2201 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2202 					m->m_pkthdr.csum_data = 0xffff;
2203 				}
2204 			}
2205 
2206 			/* Check for VLAN tagged packets. */
2207 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2208 			    (flags & JME_RD_VLAN_TAG)) {
2209 				m->m_pkthdr.ether_vlantag =
2210 				    flags & JME_RD_VLAN_MASK;
2211 				m->m_flags |= M_VLANTAG;
2212 			}
2213 
2214 			ifp->if_ipackets++;
2215 
2216 			if (ifp->if_capenable & IFCAP_RSS)
2217 				pi = jme_pktinfo(&pi0, flags);
2218 			else
2219 				pi = NULL;
2220 
2221 			if (pi != NULL &&
2222 			    (hashinfo & JME_RD_HASH_FN_MASK) != 0) {
2223 				m->m_flags |= M_HASH;
2224 				m->m_pkthdr.hash = toeplitz_hash(hash);
2225 			}
2226 
2227 #ifdef JME_RSS_DEBUG
2228 			if (pi != NULL) {
2229 				JME_RSS_DPRINTF(sc, 10,
2230 				    "isr %d flags %08x, l3 %d %s\n",
2231 				    pi->pi_netisr, pi->pi_flags,
2232 				    pi->pi_l3proto,
2233 				    (m->m_flags & M_HASH) ? "hash" : "");
2234 			}
2235 #endif
2236 
2237 			/* Pass it on. */
2238 			ether_input_pkt(ifp, m, pi);
2239 
2240 			/* Reset mbuf chains. */
2241 			JME_RXCHAIN_RESET(sc, ring);
2242 #ifdef JME_RSS_DEBUG
2243 			sc->jme_rx_ring_pkt[ring]++;
2244 #endif
2245 		}
2246 	}
2247 
2248 	rdata->jme_rx_cons += nsegs;
2249 	rdata->jme_rx_cons %= sc->jme_rx_desc_cnt;
2250 }
2251 
2252 static void
2253 jme_rxeof(struct jme_softc *sc, int ring, int count)
2254 {
2255 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2256 	struct jme_desc *desc;
2257 	int nsegs, pktlen;
2258 
2259 	for (;;) {
2260 #ifdef DEVICE_POLLING
2261 		if (count >= 0 && count-- == 0)
2262 			break;
2263 #endif
2264 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2265 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2266 			break;
2267 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2268 			break;
2269 
2270 		/*
2271 		 * Check number of segments against received bytes.
2272 		 * Non-matching value would indicate that hardware
2273 		 * is still trying to update Rx descriptors. I'm not
2274 		 * sure whether this check is needed.
2275 		 */
2276 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2277 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2278 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2279 			if_printf(&sc->arpcom.ac_if, "RX fragment count(%d) "
2280 				  "and packet size(%d) mismach\n",
2281 				  nsegs, pktlen);
2282 			break;
2283 		}
2284 
2285 		/* Received a frame. */
2286 		jme_rxpkt(sc, ring);
2287 	}
2288 }
2289 
2290 static void
2291 jme_tick(void *xsc)
2292 {
2293 	struct jme_softc *sc = xsc;
2294 	struct ifnet *ifp = &sc->arpcom.ac_if;
2295 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2296 
2297 	ifnet_serialize_all(ifp);
2298 
2299 	mii_tick(mii);
2300 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2301 
2302 	ifnet_deserialize_all(ifp);
2303 }
2304 
2305 static void
2306 jme_reset(struct jme_softc *sc)
2307 {
2308 	uint32_t val;
2309 
2310 	/* Make sure that TX and RX are stopped */
2311 	jme_stop_tx(sc);
2312 	jme_stop_rx(sc);
2313 
2314 	/* Start reset */
2315 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2316 	DELAY(20);
2317 
2318 	/*
2319 	 * Hold reset bit before stop reset
2320 	 */
2321 
2322 	/* Disable TXMAC and TXOFL clock sources */
2323 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2324 	/* Disable RXMAC clock source */
2325 	val = CSR_READ_4(sc, JME_GPREG1);
2326 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2327 	/* Flush */
2328 	CSR_READ_4(sc, JME_GHC);
2329 
2330 	/* Stop reset */
2331 	CSR_WRITE_4(sc, JME_GHC, 0);
2332 	/* Flush */
2333 	CSR_READ_4(sc, JME_GHC);
2334 
2335 	/*
2336 	 * Clear reset bit after stop reset
2337 	 */
2338 
2339 	/* Enable TXMAC and TXOFL clock sources */
2340 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2341 	/* Enable RXMAC clock source */
2342 	val = CSR_READ_4(sc, JME_GPREG1);
2343 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2344 	/* Flush */
2345 	CSR_READ_4(sc, JME_GHC);
2346 
2347 	/* Disable TXMAC and TXOFL clock sources */
2348 	CSR_WRITE_4(sc, JME_GHC, 0);
2349 	/* Disable RXMAC clock source */
2350 	val = CSR_READ_4(sc, JME_GPREG1);
2351 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2352 	/* Flush */
2353 	CSR_READ_4(sc, JME_GHC);
2354 
2355 	/* Enable TX and RX */
2356 	val = CSR_READ_4(sc, JME_TXCSR);
2357 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2358 	val = CSR_READ_4(sc, JME_RXCSR);
2359 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2360 	/* Flush */
2361 	CSR_READ_4(sc, JME_TXCSR);
2362 	CSR_READ_4(sc, JME_RXCSR);
2363 
2364 	/* Enable TXMAC and TXOFL clock sources */
2365 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2366 	/* Eisable RXMAC clock source */
2367 	val = CSR_READ_4(sc, JME_GPREG1);
2368 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2369 	/* Flush */
2370 	CSR_READ_4(sc, JME_GHC);
2371 
2372 	/* Stop TX and RX */
2373 	jme_stop_tx(sc);
2374 	jme_stop_rx(sc);
2375 }
2376 
2377 static void
2378 jme_init(void *xsc)
2379 {
2380 	struct jme_softc *sc = xsc;
2381 	struct ifnet *ifp = &sc->arpcom.ac_if;
2382 	struct mii_data *mii;
2383 	uint8_t eaddr[ETHER_ADDR_LEN];
2384 	bus_addr_t paddr;
2385 	uint32_t reg;
2386 	int error, r;
2387 
2388 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2389 
2390 	/*
2391 	 * Cancel any pending I/O.
2392 	 */
2393 	jme_stop(sc);
2394 
2395 	/*
2396 	 * Reset the chip to a known state.
2397 	 */
2398 	jme_reset(sc);
2399 
2400 	/*
2401 	 * Setup MSI/MSI-X vectors to interrupts mapping
2402 	 */
2403 	jme_set_msinum(sc);
2404 
2405 	sc->jme_txd_spare =
2406 	howmany(ifp->if_mtu + sizeof(struct ether_vlan_header), MCLBYTES);
2407 	KKASSERT(sc->jme_txd_spare >= 1);
2408 
2409 	/*
2410 	 * If we use 64bit address mode for transmitting, each Tx request
2411 	 * needs one more symbol descriptor.
2412 	 */
2413 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
2414 		sc->jme_txd_spare += 1;
2415 
2416 	if (ifp->if_capenable & IFCAP_RSS)
2417 		jme_enable_rss(sc);
2418 	else
2419 		jme_disable_rss(sc);
2420 
2421 	/* Init RX descriptors */
2422 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2423 		error = jme_init_rx_ring(sc, r);
2424 		if (error) {
2425 			if_printf(ifp, "initialization failed: "
2426 				  "no memory for %dth RX ring.\n", r);
2427 			jme_stop(sc);
2428 			return;
2429 		}
2430 	}
2431 
2432 	/* Init TX descriptors */
2433 	jme_init_tx_ring(sc);
2434 
2435 	/* Initialize shadow status block. */
2436 	jme_init_ssb(sc);
2437 
2438 	/* Reprogram the station address. */
2439 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2440 	CSR_WRITE_4(sc, JME_PAR0,
2441 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2442 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2443 
2444 	/*
2445 	 * Configure Tx queue.
2446 	 *  Tx priority queue weight value : 0
2447 	 *  Tx FIFO threshold for processing next packet : 16QW
2448 	 *  Maximum Tx DMA length : 512
2449 	 *  Allow Tx DMA burst.
2450 	 */
2451 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2452 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2453 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2454 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2455 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2456 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2457 
2458 	/* Set Tx descriptor counter. */
2459 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_tx_desc_cnt);
2460 
2461 	/* Set Tx ring address to the hardware. */
2462 	paddr = sc->jme_cdata.jme_tx_ring_paddr;
2463 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2464 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2465 
2466 	/* Configure TxMAC parameters. */
2467 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2468 	reg |= TXMAC_THRESH_1_PKT;
2469 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2470 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2471 
2472 	/*
2473 	 * Configure Rx queue.
2474 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2475 	 *  FIFO threshold for processing next packet : 128QW
2476 	 *  Rx queue 0 select
2477 	 *  Max Rx DMA length : 128
2478 	 *  Rx descriptor retry : 32
2479 	 *  Rx descriptor retry time gap : 256ns
2480 	 *  Don't receive runt/bad frame.
2481 	 */
2482 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2483 #if 0
2484 	/*
2485 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2486 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2487 	 * decrease FIFO threshold to reduce the FIFO overruns for
2488 	 * frames larger than 4000 bytes.
2489 	 * For best performance of standard MTU sized frames use
2490 	 * maximum allowable FIFO threshold, 128QW.
2491 	 */
2492 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2493 	    JME_RX_FIFO_SIZE)
2494 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2495 	else
2496 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2497 #else
2498 	/* Improve PCI Express compatibility */
2499 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2500 #endif
2501 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2502 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2503 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2504 	/* XXX TODO DROP_BAD */
2505 
2506 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2507 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2508 
2509 		/* Set Rx descriptor counter. */
2510 		CSR_WRITE_4(sc, JME_RXQDC, sc->jme_rx_desc_cnt);
2511 
2512 		/* Set Rx ring address to the hardware. */
2513 		paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
2514 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2515 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2516 	}
2517 
2518 	/* Clear receive filter. */
2519 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2520 
2521 	/* Set up the receive filter. */
2522 	jme_set_filter(sc);
2523 	jme_set_vlan(sc);
2524 
2525 	/*
2526 	 * Disable all WOL bits as WOL can interfere normal Rx
2527 	 * operation. Also clear WOL detection status bits.
2528 	 */
2529 	reg = CSR_READ_4(sc, JME_PMCS);
2530 	reg &= ~PMCS_WOL_ENB_MASK;
2531 	CSR_WRITE_4(sc, JME_PMCS, reg);
2532 
2533 	/*
2534 	 * Pad 10bytes right before received frame. This will greatly
2535 	 * help Rx performance on strict-alignment architectures as
2536 	 * it does not need to copy the frame to align the payload.
2537 	 */
2538 	reg = CSR_READ_4(sc, JME_RXMAC);
2539 	reg |= RXMAC_PAD_10BYTES;
2540 
2541 	if (ifp->if_capenable & IFCAP_RXCSUM)
2542 		reg |= RXMAC_CSUM_ENB;
2543 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2544 
2545 	/* Configure general purpose reg0 */
2546 	reg = CSR_READ_4(sc, JME_GPREG0);
2547 	reg &= ~GPREG0_PCC_UNIT_MASK;
2548 	/* Set PCC timer resolution to micro-seconds unit. */
2549 	reg |= GPREG0_PCC_UNIT_US;
2550 	/*
2551 	 * Disable all shadow register posting as we have to read
2552 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2553 	 * that it's hard to synchronize interrupt status between
2554 	 * hardware and software with shadow posting due to
2555 	 * requirements of bus_dmamap_sync(9).
2556 	 */
2557 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2558 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2559 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2560 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2561 	/* Disable posting of DW0. */
2562 	reg &= ~GPREG0_POST_DW0_ENB;
2563 	/* Clear PME message. */
2564 	reg &= ~GPREG0_PME_ENB;
2565 	/* Set PHY address. */
2566 	reg &= ~GPREG0_PHY_ADDR_MASK;
2567 	reg |= sc->jme_phyaddr;
2568 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2569 
2570 	/* Configure Tx queue 0 packet completion coalescing. */
2571 	jme_set_tx_coal(sc);
2572 
2573 	/* Configure Rx queue 0 packet completion coalescing. */
2574 	jme_set_rx_coal(sc);
2575 
2576 	/* Configure shadow status block but don't enable posting. */
2577 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2578 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2579 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2580 
2581 	/* Disable Timer 1 and Timer 2. */
2582 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2583 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2584 
2585 	/* Configure retry transmit period, retry limit value. */
2586 	CSR_WRITE_4(sc, JME_TXTRHD,
2587 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2588 	    TXTRHD_RT_PERIOD_MASK) |
2589 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2590 	    TXTRHD_RT_LIMIT_SHIFT));
2591 
2592 #ifdef DEVICE_POLLING
2593 	if (!(ifp->if_flags & IFF_POLLING))
2594 #endif
2595 	/* Initialize the interrupt mask. */
2596 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2597 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2598 
2599 	/*
2600 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2601 	 * done after detection of valid link in jme_miibus_statchg.
2602 	 */
2603 	sc->jme_flags &= ~JME_FLAG_LINK;
2604 
2605 	/* Set the current media. */
2606 	mii = device_get_softc(sc->jme_miibus);
2607 	mii_mediachg(mii);
2608 
2609 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2610 
2611 	ifp->if_flags |= IFF_RUNNING;
2612 	ifp->if_flags &= ~IFF_OACTIVE;
2613 }
2614 
2615 static void
2616 jme_stop(struct jme_softc *sc)
2617 {
2618 	struct ifnet *ifp = &sc->arpcom.ac_if;
2619 	struct jme_txdesc *txd;
2620 	struct jme_rxdesc *rxd;
2621 	struct jme_rxdata *rdata;
2622 	int i, r;
2623 
2624 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2625 
2626 	/*
2627 	 * Mark the interface down and cancel the watchdog timer.
2628 	 */
2629 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2630 	ifp->if_timer = 0;
2631 
2632 	callout_stop(&sc->jme_tick_ch);
2633 	sc->jme_flags &= ~JME_FLAG_LINK;
2634 
2635 	/*
2636 	 * Disable interrupts.
2637 	 */
2638 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2639 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2640 
2641 	/* Disable updating shadow status block. */
2642 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2643 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2644 
2645 	/* Stop receiver, transmitter. */
2646 	jme_stop_rx(sc);
2647 	jme_stop_tx(sc);
2648 
2649 	/*
2650 	 * Free partial finished RX segments
2651 	 */
2652 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2653 		rdata = &sc->jme_cdata.jme_rx_data[r];
2654 		if (rdata->jme_rxhead != NULL)
2655 			m_freem(rdata->jme_rxhead);
2656 		JME_RXCHAIN_RESET(sc, r);
2657 	}
2658 
2659 	/*
2660 	 * Free RX and TX mbufs still in the queues.
2661 	 */
2662 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2663 		rdata = &sc->jme_cdata.jme_rx_data[r];
2664 		for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
2665 			rxd = &rdata->jme_rxdesc[i];
2666 			if (rxd->rx_m != NULL) {
2667 				bus_dmamap_unload(rdata->jme_rx_tag,
2668 						  rxd->rx_dmamap);
2669 				m_freem(rxd->rx_m);
2670 				rxd->rx_m = NULL;
2671 			}
2672 		}
2673 	}
2674 	for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
2675 		txd = &sc->jme_cdata.jme_txdesc[i];
2676 		if (txd->tx_m != NULL) {
2677 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
2678 			    txd->tx_dmamap);
2679 			m_freem(txd->tx_m);
2680 			txd->tx_m = NULL;
2681 			txd->tx_ndesc = 0;
2682 		}
2683         }
2684 }
2685 
2686 static void
2687 jme_stop_tx(struct jme_softc *sc)
2688 {
2689 	uint32_t reg;
2690 	int i;
2691 
2692 	reg = CSR_READ_4(sc, JME_TXCSR);
2693 	if ((reg & TXCSR_TX_ENB) == 0)
2694 		return;
2695 	reg &= ~TXCSR_TX_ENB;
2696 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2697 	for (i = JME_TIMEOUT; i > 0; i--) {
2698 		DELAY(1);
2699 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2700 			break;
2701 	}
2702 	if (i == 0)
2703 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2704 }
2705 
2706 static void
2707 jme_stop_rx(struct jme_softc *sc)
2708 {
2709 	uint32_t reg;
2710 	int i;
2711 
2712 	reg = CSR_READ_4(sc, JME_RXCSR);
2713 	if ((reg & RXCSR_RX_ENB) == 0)
2714 		return;
2715 	reg &= ~RXCSR_RX_ENB;
2716 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2717 	for (i = JME_TIMEOUT; i > 0; i--) {
2718 		DELAY(1);
2719 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2720 			break;
2721 	}
2722 	if (i == 0)
2723 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
2724 }
2725 
2726 static void
2727 jme_init_tx_ring(struct jme_softc *sc)
2728 {
2729 	struct jme_chain_data *cd;
2730 	struct jme_txdesc *txd;
2731 	int i;
2732 
2733 	sc->jme_cdata.jme_tx_prod = 0;
2734 	sc->jme_cdata.jme_tx_cons = 0;
2735 	sc->jme_cdata.jme_tx_cnt = 0;
2736 
2737 	cd = &sc->jme_cdata;
2738 	bzero(cd->jme_tx_ring, JME_TX_RING_SIZE(sc));
2739 	for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
2740 		txd = &sc->jme_cdata.jme_txdesc[i];
2741 		txd->tx_m = NULL;
2742 		txd->tx_desc = &cd->jme_tx_ring[i];
2743 		txd->tx_ndesc = 0;
2744 	}
2745 }
2746 
2747 static void
2748 jme_init_ssb(struct jme_softc *sc)
2749 {
2750 	struct jme_chain_data *cd;
2751 
2752 	cd = &sc->jme_cdata;
2753 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
2754 }
2755 
2756 static int
2757 jme_init_rx_ring(struct jme_softc *sc, int ring)
2758 {
2759 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2760 	struct jme_rxdesc *rxd;
2761 	int i;
2762 
2763 	KKASSERT(rdata->jme_rxhead == NULL &&
2764 		 rdata->jme_rxtail == NULL &&
2765 		 rdata->jme_rxlen == 0);
2766 	rdata->jme_rx_cons = 0;
2767 
2768 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(sc));
2769 	for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
2770 		int error;
2771 
2772 		rxd = &rdata->jme_rxdesc[i];
2773 		rxd->rx_m = NULL;
2774 		rxd->rx_desc = &rdata->jme_rx_ring[i];
2775 		error = jme_newbuf(sc, ring, rxd, 1);
2776 		if (error)
2777 			return error;
2778 	}
2779 	return 0;
2780 }
2781 
2782 static int
2783 jme_newbuf(struct jme_softc *sc, int ring, struct jme_rxdesc *rxd, int init)
2784 {
2785 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2786 	struct jme_desc *desc;
2787 	struct mbuf *m;
2788 	bus_dma_segment_t segs;
2789 	bus_dmamap_t map;
2790 	int error, nsegs;
2791 
2792 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2793 	if (m == NULL)
2794 		return ENOBUFS;
2795 	/*
2796 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
2797 	 * takes advantage of 10 bytes padding feature of hardware
2798 	 * in order not to copy entire frame to align IP header on
2799 	 * 32bit boundary.
2800 	 */
2801 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2802 
2803 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
2804 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
2805 			BUS_DMA_NOWAIT);
2806 	if (error) {
2807 		m_freem(m);
2808 		if (init)
2809 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2810 		return error;
2811 	}
2812 
2813 	if (rxd->rx_m != NULL) {
2814 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
2815 				BUS_DMASYNC_POSTREAD);
2816 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
2817 	}
2818 	map = rxd->rx_dmamap;
2819 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
2820 	rdata->jme_rx_sparemap = map;
2821 	rxd->rx_m = m;
2822 
2823 	desc = rxd->rx_desc;
2824 	desc->buflen = htole32(segs.ds_len);
2825 	desc->addr_lo = htole32(JME_ADDR_LO(segs.ds_addr));
2826 	desc->addr_hi = htole32(JME_ADDR_HI(segs.ds_addr));
2827 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2828 
2829 	return 0;
2830 }
2831 
2832 static void
2833 jme_set_vlan(struct jme_softc *sc)
2834 {
2835 	struct ifnet *ifp = &sc->arpcom.ac_if;
2836 	uint32_t reg;
2837 
2838 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2839 
2840 	reg = CSR_READ_4(sc, JME_RXMAC);
2841 	reg &= ~RXMAC_VLAN_ENB;
2842 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2843 		reg |= RXMAC_VLAN_ENB;
2844 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2845 }
2846 
2847 static void
2848 jme_set_filter(struct jme_softc *sc)
2849 {
2850 	struct ifnet *ifp = &sc->arpcom.ac_if;
2851 	struct ifmultiaddr *ifma;
2852 	uint32_t crc;
2853 	uint32_t mchash[2];
2854 	uint32_t rxcfg;
2855 
2856 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2857 
2858 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
2859 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
2860 	    RXMAC_ALLMULTI);
2861 
2862 	/*
2863 	 * Always accept frames destined to our station address.
2864 	 * Always accept broadcast frames.
2865 	 */
2866 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
2867 
2868 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2869 		if (ifp->if_flags & IFF_PROMISC)
2870 			rxcfg |= RXMAC_PROMISC;
2871 		if (ifp->if_flags & IFF_ALLMULTI)
2872 			rxcfg |= RXMAC_ALLMULTI;
2873 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
2874 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
2875 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
2876 		return;
2877 	}
2878 
2879 	/*
2880 	 * Set up the multicast address filter by passing all multicast
2881 	 * addresses through a CRC generator, and then using the low-order
2882 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2883 	 * high order bits select the register, while the rest of the bits
2884 	 * select the bit within the register.
2885 	 */
2886 	rxcfg |= RXMAC_MULTICAST;
2887 	bzero(mchash, sizeof(mchash));
2888 
2889 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2890 		if (ifma->ifma_addr->sa_family != AF_LINK)
2891 			continue;
2892 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2893 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2894 
2895 		/* Just want the 6 least significant bits. */
2896 		crc &= 0x3f;
2897 
2898 		/* Set the corresponding bit in the hash table. */
2899 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2900 	}
2901 
2902 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
2903 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
2904 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
2905 }
2906 
2907 static int
2908 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
2909 {
2910 	struct jme_softc *sc = arg1;
2911 	struct ifnet *ifp = &sc->arpcom.ac_if;
2912 	int error, v;
2913 
2914 	ifnet_serialize_all(ifp);
2915 
2916 	v = sc->jme_tx_coal_to;
2917 	error = sysctl_handle_int(oidp, &v, 0, req);
2918 	if (error || req->newptr == NULL)
2919 		goto back;
2920 
2921 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
2922 		error = EINVAL;
2923 		goto back;
2924 	}
2925 
2926 	if (v != sc->jme_tx_coal_to) {
2927 		sc->jme_tx_coal_to = v;
2928 		if (ifp->if_flags & IFF_RUNNING)
2929 			jme_set_tx_coal(sc);
2930 	}
2931 back:
2932 	ifnet_deserialize_all(ifp);
2933 	return error;
2934 }
2935 
2936 static int
2937 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
2938 {
2939 	struct jme_softc *sc = arg1;
2940 	struct ifnet *ifp = &sc->arpcom.ac_if;
2941 	int error, v;
2942 
2943 	ifnet_serialize_all(ifp);
2944 
2945 	v = sc->jme_tx_coal_pkt;
2946 	error = sysctl_handle_int(oidp, &v, 0, req);
2947 	if (error || req->newptr == NULL)
2948 		goto back;
2949 
2950 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
2951 		error = EINVAL;
2952 		goto back;
2953 	}
2954 
2955 	if (v != sc->jme_tx_coal_pkt) {
2956 		sc->jme_tx_coal_pkt = v;
2957 		if (ifp->if_flags & IFF_RUNNING)
2958 			jme_set_tx_coal(sc);
2959 	}
2960 back:
2961 	ifnet_deserialize_all(ifp);
2962 	return error;
2963 }
2964 
2965 static int
2966 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
2967 {
2968 	struct jme_softc *sc = arg1;
2969 	struct ifnet *ifp = &sc->arpcom.ac_if;
2970 	int error, v;
2971 
2972 	ifnet_serialize_all(ifp);
2973 
2974 	v = sc->jme_rx_coal_to;
2975 	error = sysctl_handle_int(oidp, &v, 0, req);
2976 	if (error || req->newptr == NULL)
2977 		goto back;
2978 
2979 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
2980 		error = EINVAL;
2981 		goto back;
2982 	}
2983 
2984 	if (v != sc->jme_rx_coal_to) {
2985 		sc->jme_rx_coal_to = v;
2986 		if (ifp->if_flags & IFF_RUNNING)
2987 			jme_set_rx_coal(sc);
2988 	}
2989 back:
2990 	ifnet_deserialize_all(ifp);
2991 	return error;
2992 }
2993 
2994 static int
2995 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
2996 {
2997 	struct jme_softc *sc = arg1;
2998 	struct ifnet *ifp = &sc->arpcom.ac_if;
2999 	int error, v;
3000 
3001 	ifnet_serialize_all(ifp);
3002 
3003 	v = sc->jme_rx_coal_pkt;
3004 	error = sysctl_handle_int(oidp, &v, 0, req);
3005 	if (error || req->newptr == NULL)
3006 		goto back;
3007 
3008 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3009 		error = EINVAL;
3010 		goto back;
3011 	}
3012 
3013 	if (v != sc->jme_rx_coal_pkt) {
3014 		sc->jme_rx_coal_pkt = v;
3015 		if (ifp->if_flags & IFF_RUNNING)
3016 			jme_set_rx_coal(sc);
3017 	}
3018 back:
3019 	ifnet_deserialize_all(ifp);
3020 	return error;
3021 }
3022 
3023 static void
3024 jme_set_tx_coal(struct jme_softc *sc)
3025 {
3026 	uint32_t reg;
3027 
3028 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3029 	    PCCTX_COAL_TO_MASK;
3030 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3031 	    PCCTX_COAL_PKT_MASK;
3032 	reg |= PCCTX_COAL_TXQ0;
3033 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3034 }
3035 
3036 static void
3037 jme_set_rx_coal(struct jme_softc *sc)
3038 {
3039 	uint32_t reg;
3040 	int r;
3041 
3042 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3043 	    PCCRX_COAL_TO_MASK;
3044 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3045 	    PCCRX_COAL_PKT_MASK;
3046 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
3047 		if (r < sc->jme_rx_ring_inuse)
3048 			CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3049 		else
3050 			CSR_WRITE_4(sc, JME_PCCRX(r), 0);
3051 	}
3052 }
3053 
3054 #ifdef DEVICE_POLLING
3055 
3056 static void
3057 jme_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3058 {
3059 	struct jme_softc *sc = ifp->if_softc;
3060 	uint32_t status;
3061 	int r;
3062 
3063 	ASSERT_SERIALIZED(&sc->jme_serialize);
3064 
3065 	switch (cmd) {
3066 	case POLL_REGISTER:
3067 		CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3068 		break;
3069 
3070 	case POLL_DEREGISTER:
3071 		CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
3072 		break;
3073 
3074 	case POLL_AND_CHECK_STATUS:
3075 	case POLL_ONLY:
3076 		status = CSR_READ_4(sc, JME_INTR_STATUS);
3077 
3078 		for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
3079 			struct jme_rxdata *rdata =
3080 			    &sc->jme_cdata.jme_rx_data[r];
3081 
3082 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3083 			jme_rxeof(sc, r, count);
3084 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3085 		}
3086 
3087 		if (status & INTR_RXQ_DESC_EMPTY) {
3088 			CSR_WRITE_4(sc, JME_INTR_STATUS, status);
3089 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
3090 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
3091 		}
3092 
3093 		lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
3094 		jme_txeof(sc);
3095 		if (!ifq_is_empty(&ifp->if_snd))
3096 			if_devstart(ifp);
3097 		lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
3098 		break;
3099 	}
3100 }
3101 
3102 #endif	/* DEVICE_POLLING */
3103 
3104 static int
3105 jme_rxring_dma_alloc(struct jme_softc *sc, int ring)
3106 {
3107 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
3108 	bus_dmamem_t dmem;
3109 	int error;
3110 
3111 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
3112 			JME_RX_RING_ALIGN, 0,
3113 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3114 			JME_RX_RING_SIZE(sc),
3115 			BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3116 	if (error) {
3117 		device_printf(sc->jme_dev,
3118 		    "could not allocate %dth Rx ring.\n", ring);
3119 		return error;
3120 	}
3121 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3122 	rdata->jme_rx_ring_map = dmem.dmem_map;
3123 	rdata->jme_rx_ring = dmem.dmem_addr;
3124 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3125 
3126 	return 0;
3127 }
3128 
3129 static int
3130 jme_rxbuf_dma_alloc(struct jme_softc *sc, int ring)
3131 {
3132 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
3133 	int i, error;
3134 
3135 	/* Create tag for Rx buffers. */
3136 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
3137 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3138 	    BUS_SPACE_MAXADDR,		/* lowaddr */
3139 	    BUS_SPACE_MAXADDR,		/* highaddr */
3140 	    NULL, NULL,			/* filter, filterarg */
3141 	    MCLBYTES,			/* maxsize */
3142 	    1,				/* nsegments */
3143 	    MCLBYTES,			/* maxsegsize */
3144 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3145 	    &rdata->jme_rx_tag);
3146 	if (error) {
3147 		device_printf(sc->jme_dev,
3148 		    "could not create %dth Rx DMA tag.\n", ring);
3149 		return error;
3150 	}
3151 
3152 	/* Create DMA maps for Rx buffers. */
3153 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3154 				  &rdata->jme_rx_sparemap);
3155 	if (error) {
3156 		device_printf(sc->jme_dev,
3157 		    "could not create %dth spare Rx dmamap.\n", ring);
3158 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3159 		rdata->jme_rx_tag = NULL;
3160 		return error;
3161 	}
3162 	for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
3163 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3164 
3165 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3166 					  &rxd->rx_dmamap);
3167 		if (error) {
3168 			int j;
3169 
3170 			device_printf(sc->jme_dev,
3171 			    "could not create %dth Rx dmamap "
3172 			    "for %dth RX ring.\n", i, ring);
3173 
3174 			for (j = 0; j < i; ++j) {
3175 				rxd = &rdata->jme_rxdesc[j];
3176 				bus_dmamap_destroy(rdata->jme_rx_tag,
3177 						   rxd->rx_dmamap);
3178 			}
3179 			bus_dmamap_destroy(rdata->jme_rx_tag,
3180 					   rdata->jme_rx_sparemap);
3181 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3182 			rdata->jme_rx_tag = NULL;
3183 			return error;
3184 		}
3185 	}
3186 	return 0;
3187 }
3188 
3189 static void
3190 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3191 {
3192 	int r;
3193 
3194 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
3195 		if (status & jme_rx_status[r].jme_coal) {
3196 			struct jme_rxdata *rdata =
3197 			    &sc->jme_cdata.jme_rx_data[r];
3198 
3199 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3200 			jme_rxeof(sc, r, -1);
3201 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3202 		}
3203 	}
3204 }
3205 
3206 static void
3207 jme_enable_rss(struct jme_softc *sc)
3208 {
3209 	uint32_t rssc, ind;
3210 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3211 	int i;
3212 
3213 	sc->jme_rx_ring_inuse = sc->jme_rx_ring_cnt;
3214 
3215 	KASSERT(sc->jme_rx_ring_inuse == JME_NRXRING_2 ||
3216 		sc->jme_rx_ring_inuse == JME_NRXRING_4,
3217 		("%s: invalid # of RX rings (%d)\n",
3218 		 sc->arpcom.ac_if.if_xname, sc->jme_rx_ring_inuse));
3219 
3220 	rssc = RSSC_HASH_64_ENTRY;
3221 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3222 	rssc |= sc->jme_rx_ring_inuse >> 1;
3223 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3224 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3225 
3226 	toeplitz_get_key(key, sizeof(key));
3227 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3228 		uint32_t keyreg;
3229 
3230 		keyreg = RSSKEY_REGVAL(key, i);
3231 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x\n", i, keyreg);
3232 
3233 		CSR_WRITE_4(sc, RSSKEY_REG(i), keyreg);
3234 	}
3235 
3236 	/*
3237 	 * Create redirect table in following fashion:
3238 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3239 	 */
3240 	ind = 0;
3241 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3242 		int q;
3243 
3244 		q = i % sc->jme_rx_ring_inuse;
3245 		ind |= q << (i * 8);
3246 	}
3247 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3248 
3249 	for (i = 0; i < RSSTBL_NREGS; ++i)
3250 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3251 }
3252 
3253 static void
3254 jme_disable_rss(struct jme_softc *sc)
3255 {
3256 	sc->jme_rx_ring_inuse = JME_NRXRING_1;
3257 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3258 }
3259 
3260 static void
3261 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3262 {
3263 	struct jme_softc *sc = ifp->if_softc;
3264 
3265 	switch (slz) {
3266 	case IFNET_SERIALIZE_ALL:
3267 		lwkt_serialize_array_enter(sc->jme_serialize_arr,
3268 		    sc->jme_serialize_cnt, 0);
3269 		break;
3270 
3271 	case IFNET_SERIALIZE_MAIN:
3272 		lwkt_serialize_enter(&sc->jme_serialize);
3273 		break;
3274 
3275 	case IFNET_SERIALIZE_TX:
3276 		lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
3277 		break;
3278 
3279 	case IFNET_SERIALIZE_RX(0):
3280 		lwkt_serialize_enter(
3281 		    &sc->jme_cdata.jme_rx_data[0].jme_rx_serialize);
3282 		break;
3283 
3284 	case IFNET_SERIALIZE_RX(1):
3285 		lwkt_serialize_enter(
3286 		    &sc->jme_cdata.jme_rx_data[1].jme_rx_serialize);
3287 		break;
3288 
3289 	case IFNET_SERIALIZE_RX(2):
3290 		lwkt_serialize_enter(
3291 		    &sc->jme_cdata.jme_rx_data[2].jme_rx_serialize);
3292 		break;
3293 
3294 	case IFNET_SERIALIZE_RX(3):
3295 		lwkt_serialize_enter(
3296 		    &sc->jme_cdata.jme_rx_data[3].jme_rx_serialize);
3297 		break;
3298 
3299 	default:
3300 		panic("%s unsupported serialize type\n", ifp->if_xname);
3301 	}
3302 }
3303 
3304 static void
3305 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3306 {
3307 	struct jme_softc *sc = ifp->if_softc;
3308 
3309 	switch (slz) {
3310 	case IFNET_SERIALIZE_ALL:
3311 		lwkt_serialize_array_exit(sc->jme_serialize_arr,
3312 		    sc->jme_serialize_cnt, 0);
3313 		break;
3314 
3315 	case IFNET_SERIALIZE_MAIN:
3316 		lwkt_serialize_exit(&sc->jme_serialize);
3317 		break;
3318 
3319 	case IFNET_SERIALIZE_TX:
3320 		lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
3321 		break;
3322 
3323 	case IFNET_SERIALIZE_RX(0):
3324 		lwkt_serialize_exit(
3325 		    &sc->jme_cdata.jme_rx_data[0].jme_rx_serialize);
3326 		break;
3327 
3328 	case IFNET_SERIALIZE_RX(1):
3329 		lwkt_serialize_exit(
3330 		    &sc->jme_cdata.jme_rx_data[1].jme_rx_serialize);
3331 		break;
3332 
3333 	case IFNET_SERIALIZE_RX(2):
3334 		lwkt_serialize_exit(
3335 		    &sc->jme_cdata.jme_rx_data[2].jme_rx_serialize);
3336 		break;
3337 
3338 	case IFNET_SERIALIZE_RX(3):
3339 		lwkt_serialize_exit(
3340 		    &sc->jme_cdata.jme_rx_data[3].jme_rx_serialize);
3341 		break;
3342 
3343 	default:
3344 		panic("%s unsupported serialize type\n", ifp->if_xname);
3345 	}
3346 }
3347 
3348 static int
3349 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3350 {
3351 	struct jme_softc *sc = ifp->if_softc;
3352 
3353 	switch (slz) {
3354 	case IFNET_SERIALIZE_ALL:
3355 		return lwkt_serialize_array_try(sc->jme_serialize_arr,
3356 		    sc->jme_serialize_cnt, 0);
3357 
3358 	case IFNET_SERIALIZE_MAIN:
3359 		return lwkt_serialize_try(&sc->jme_serialize);
3360 
3361 	case IFNET_SERIALIZE_TX:
3362 		return lwkt_serialize_try(&sc->jme_cdata.jme_tx_serialize);
3363 
3364 	case IFNET_SERIALIZE_RX(0):
3365 		return lwkt_serialize_try(
3366 		    &sc->jme_cdata.jme_rx_data[0].jme_rx_serialize);
3367 
3368 	case IFNET_SERIALIZE_RX(1):
3369 		return lwkt_serialize_try(
3370 		    &sc->jme_cdata.jme_rx_data[1].jme_rx_serialize);
3371 
3372 	case IFNET_SERIALIZE_RX(2):
3373 		return lwkt_serialize_try(
3374 		    &sc->jme_cdata.jme_rx_data[2].jme_rx_serialize);
3375 
3376 	case IFNET_SERIALIZE_RX(3):
3377 		return lwkt_serialize_try(
3378 		    &sc->jme_cdata.jme_rx_data[3].jme_rx_serialize);
3379 
3380 	default:
3381 		panic("%s unsupported serialize type\n", ifp->if_xname);
3382 	}
3383 }
3384 
3385 #ifdef INVARIANTS
3386 
3387 static void
3388 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3389     boolean_t serialized)
3390 {
3391 	struct jme_softc *sc = ifp->if_softc;
3392 	struct jme_rxdata *rdata;
3393 	int i;
3394 
3395 	switch (slz) {
3396 	case IFNET_SERIALIZE_ALL:
3397 		if (serialized) {
3398 			for (i = 0; i < sc->jme_serialize_cnt; ++i)
3399 				ASSERT_SERIALIZED(sc->jme_serialize_arr[i]);
3400 		} else {
3401 			for (i = 0; i < sc->jme_serialize_cnt; ++i)
3402 				ASSERT_NOT_SERIALIZED(sc->jme_serialize_arr[i]);
3403 		}
3404 		break;
3405 
3406 	case IFNET_SERIALIZE_MAIN:
3407 		if (serialized)
3408 			ASSERT_SERIALIZED(&sc->jme_serialize);
3409 		else
3410 			ASSERT_NOT_SERIALIZED(&sc->jme_serialize);
3411 		break;
3412 
3413 	case IFNET_SERIALIZE_TX:
3414 		if (serialized)
3415 			ASSERT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
3416 		else
3417 			ASSERT_NOT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
3418 		break;
3419 
3420 	case IFNET_SERIALIZE_RX(0):
3421 		rdata = &sc->jme_cdata.jme_rx_data[0];
3422 		if (serialized)
3423 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3424 		else
3425 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3426 		break;
3427 
3428 	case IFNET_SERIALIZE_RX(1):
3429 		rdata = &sc->jme_cdata.jme_rx_data[1];
3430 		if (serialized)
3431 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3432 		else
3433 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3434 		break;
3435 
3436 	case IFNET_SERIALIZE_RX(2):
3437 		rdata = &sc->jme_cdata.jme_rx_data[2];
3438 		if (serialized)
3439 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3440 		else
3441 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3442 		break;
3443 
3444 	case IFNET_SERIALIZE_RX(3):
3445 		rdata = &sc->jme_cdata.jme_rx_data[3];
3446 		if (serialized)
3447 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3448 		else
3449 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3450 		break;
3451 
3452 	default:
3453 		panic("%s unsupported serialize type\n", ifp->if_xname);
3454 	}
3455 }
3456 
3457 #endif	/* INVARIANTS */
3458 
3459 static void
3460 jme_msix_try_alloc(device_t dev)
3461 {
3462 	struct jme_softc *sc = device_get_softc(dev);
3463 	struct jme_msix_data *msix;
3464 	int error, i, r, msix_enable, msix_count;
3465 	char env[64];
3466 
3467 	msix_count = 1 + sc->jme_rx_ring_cnt;
3468 	KKASSERT(msix_count <= JME_NMSIX);
3469 
3470 	msix_enable = jme_msix_enable;
3471 	ksnprintf(env, sizeof(env), "hw.%s.msix.enable",
3472 	    device_get_nameunit(dev));
3473 	kgetenv_int(env, &msix_enable);
3474 
3475 	/*
3476 	 * We leave the 1st MSI-X vector unused, so we
3477 	 * actually need msix_count + 1 MSI-X vectors.
3478 	 */
3479 	if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3480 		return;
3481 
3482 	for (i = 0; i < msix_count; ++i)
3483 		sc->jme_msix[i].jme_msix_rid = -1;
3484 
3485 	i = 0;
3486 
3487 	msix = &sc->jme_msix[i++];
3488 	msix->jme_msix_cpuid = 0;		/* XXX Put TX to cpu0 */
3489 	msix->jme_msix_arg = &sc->jme_cdata;
3490 	msix->jme_msix_func = jme_msix_tx;
3491 	msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3492 	msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_serialize;
3493 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3494 	    device_get_nameunit(dev));
3495 
3496 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
3497 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3498 
3499 		msix = &sc->jme_msix[i++];
3500 		msix->jme_msix_cpuid = r;	/* XXX Put RX to cpuX */
3501 		msix->jme_msix_arg = rdata;
3502 		msix->jme_msix_func = jme_msix_rx;
3503 		msix->jme_msix_intrs = rdata->jme_rx_coal | rdata->jme_rx_empty;
3504 		msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3505 		ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3506 		    "%s rx%d", device_get_nameunit(dev), r);
3507 	}
3508 
3509 	KKASSERT(i == msix_count);
3510 
3511 	error = pci_setup_msix(dev);
3512 	if (error)
3513 		return;
3514 
3515 	/* Setup jme_msix_cnt early, so we could cleanup */
3516 	sc->jme_msix_cnt = msix_count;
3517 
3518 	for (i = 0; i < msix_count; ++i) {
3519 		msix = &sc->jme_msix[i];
3520 
3521 		msix->jme_msix_vector = i + 1;
3522 		error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3523 		    &msix->jme_msix_rid, msix->jme_msix_cpuid);
3524 		if (error)
3525 			goto back;
3526 
3527 		msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3528 		    &msix->jme_msix_rid, RF_ACTIVE);
3529 		if (msix->jme_msix_res == NULL) {
3530 			error = ENOMEM;
3531 			goto back;
3532 		}
3533 	}
3534 
3535 	for (i = 0; i < JME_INTR_CNT; ++i) {
3536 		uint32_t intr_mask = (1 << i);
3537 		int x;
3538 
3539 		if ((JME_INTRS & intr_mask) == 0)
3540 			continue;
3541 
3542 		for (x = 0; x < msix_count; ++x) {
3543 			msix = &sc->jme_msix[x];
3544 			if (msix->jme_msix_intrs & intr_mask) {
3545 				int reg, shift;
3546 
3547 				reg = i / JME_MSINUM_FACTOR;
3548 				KKASSERT(reg < JME_MSINUM_CNT);
3549 
3550 				shift = (i % JME_MSINUM_FACTOR) * 4;
3551 
3552 				sc->jme_msinum[reg] |=
3553 				    (msix->jme_msix_vector << shift);
3554 
3555 				break;
3556 			}
3557 		}
3558 	}
3559 
3560 	if (bootverbose) {
3561 		for (i = 0; i < JME_MSINUM_CNT; ++i) {
3562 			device_printf(dev, "MSINUM%d: %#x\n", i,
3563 			    sc->jme_msinum[i]);
3564 		}
3565 	}
3566 
3567 	pci_enable_msix(dev);
3568 	sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3569 
3570 back:
3571 	if (error)
3572 		jme_msix_free(dev);
3573 }
3574 
3575 static int
3576 jme_intr_alloc(device_t dev)
3577 {
3578 	struct jme_softc *sc = device_get_softc(dev);
3579 	u_int irq_flags;
3580 
3581 	jme_msix_try_alloc(dev);
3582 
3583 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3584 		sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3585 		    &sc->jme_irq_rid, &irq_flags);
3586 
3587 		sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3588 		    &sc->jme_irq_rid, irq_flags);
3589 		if (sc->jme_irq_res == NULL) {
3590 			device_printf(dev, "can't allocate irq\n");
3591 			return ENXIO;
3592 		}
3593 	}
3594 	return 0;
3595 }
3596 
3597 static void
3598 jme_msix_free(device_t dev)
3599 {
3600 	struct jme_softc *sc = device_get_softc(dev);
3601 	int i;
3602 
3603 	KKASSERT(sc->jme_msix_cnt > 1);
3604 
3605 	for (i = 0; i < sc->jme_msix_cnt; ++i) {
3606 		struct jme_msix_data *msix = &sc->jme_msix[i];
3607 
3608 		if (msix->jme_msix_res != NULL) {
3609 			bus_release_resource(dev, SYS_RES_IRQ,
3610 			    msix->jme_msix_rid, msix->jme_msix_res);
3611 			msix->jme_msix_res = NULL;
3612 		}
3613 		if (msix->jme_msix_rid >= 0) {
3614 			pci_release_msix_vector(dev, msix->jme_msix_rid);
3615 			msix->jme_msix_rid = -1;
3616 		}
3617 	}
3618 	pci_teardown_msix(dev);
3619 }
3620 
3621 static void
3622 jme_intr_free(device_t dev)
3623 {
3624 	struct jme_softc *sc = device_get_softc(dev);
3625 
3626 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3627 		if (sc->jme_irq_res != NULL) {
3628 			bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3629 					     sc->jme_irq_res);
3630 		}
3631 		if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3632 			pci_release_msi(dev);
3633 	} else {
3634 		jme_msix_free(dev);
3635 	}
3636 }
3637 
3638 static void
3639 jme_msix_tx(void *xcd)
3640 {
3641 	struct jme_chain_data *cd = xcd;
3642 	struct jme_softc *sc = cd->jme_sc;
3643 	struct ifnet *ifp = &sc->arpcom.ac_if;
3644 
3645 	ASSERT_SERIALIZED(&cd->jme_tx_serialize);
3646 
3647 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3648 	    INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3649 
3650 	if (ifp->if_flags & IFF_RUNNING) {
3651 		jme_txeof(sc);
3652 		if (!ifq_is_empty(&ifp->if_snd))
3653 			if_devstart(ifp);
3654 	}
3655 }
3656 
3657 static void
3658 jme_msix_rx(void *xrdata)
3659 {
3660 	struct jme_rxdata *rdata = xrdata;
3661 	struct jme_softc *sc = rdata->jme_sc;
3662 	struct ifnet *ifp = &sc->arpcom.ac_if;
3663 	uint32_t status;
3664 
3665 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3666 
3667 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3668 	status &= (rdata->jme_rx_coal | rdata->jme_rx_empty);
3669 
3670 	if (status & rdata->jme_rx_coal) {
3671 		status |= (rdata->jme_rx_coal | rdata->jme_rx_comp);
3672 		CSR_WRITE_4(sc, JME_INTR_STATUS, status);
3673 	}
3674 
3675 	if (ifp->if_flags & IFF_RUNNING) {
3676 		if (status & rdata->jme_rx_coal)
3677 			jme_rxeof(sc, rdata->jme_rx_idx, -1);
3678 
3679 		if (status & rdata->jme_rx_empty) {
3680 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
3681 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
3682 		}
3683 	}
3684 }
3685 
3686 static void
3687 jme_set_msinum(struct jme_softc *sc)
3688 {
3689 	int i;
3690 
3691 	for (i = 0; i < JME_MSINUM_CNT; ++i)
3692 		CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3693 }
3694 
3695 static int
3696 jme_intr_setup(device_t dev)
3697 {
3698 	struct jme_softc *sc = device_get_softc(dev);
3699 	struct ifnet *ifp = &sc->arpcom.ac_if;
3700 	int error;
3701 
3702 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3703 		return jme_msix_setup(dev);
3704 
3705 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
3706 	    jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
3707 	if (error) {
3708 		device_printf(dev, "could not set up interrupt handler.\n");
3709 		return error;
3710 	}
3711 
3712 	ifp->if_cpuid = rman_get_cpuid(sc->jme_irq_res);
3713 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3714 	return 0;
3715 }
3716 
3717 static void
3718 jme_intr_teardown(device_t dev)
3719 {
3720 	struct jme_softc *sc = device_get_softc(dev);
3721 
3722 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3723 		jme_msix_teardown(dev, sc->jme_msix_cnt);
3724 	else
3725 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
3726 }
3727 
3728 static int
3729 jme_msix_setup(device_t dev)
3730 {
3731 	struct jme_softc *sc = device_get_softc(dev);
3732 	struct ifnet *ifp = &sc->arpcom.ac_if;
3733 	int x;
3734 
3735 	for (x = 0; x < sc->jme_msix_cnt; ++x) {
3736 		struct jme_msix_data *msix = &sc->jme_msix[x];
3737 		int error;
3738 
3739 		error = bus_setup_intr_descr(dev, msix->jme_msix_res,
3740 		    INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
3741 		    &msix->jme_msix_handle, msix->jme_msix_serialize,
3742 		    msix->jme_msix_desc);
3743 		if (error) {
3744 			device_printf(dev, "could not set up %s "
3745 			    "interrupt handler.\n", msix->jme_msix_desc);
3746 			jme_msix_teardown(dev, x);
3747 			return error;
3748 		}
3749 	}
3750 	ifp->if_cpuid = 0; /* XXX */
3751 	return 0;
3752 }
3753 
3754 static void
3755 jme_msix_teardown(device_t dev, int msix_count)
3756 {
3757 	struct jme_softc *sc = device_get_softc(dev);
3758 	int x;
3759 
3760 	for (x = 0; x < msix_count; ++x) {
3761 		struct jme_msix_data *msix = &sc->jme_msix[x];
3762 
3763 		bus_teardown_intr(dev, msix->jme_msix_res,
3764 		    msix->jme_msix_handle);
3765 	}
3766 }
3767