xref: /dflybsd-src/sys/dev/netif/jme/if_jme.c (revision 767a43118674e3039d1f3dd7d3f2662a2eccf599)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_polling.h"
31 #include "opt_jme.h"
32 
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/ifq_var.h>
54 #include <net/toeplitz.h>
55 #include <net/toeplitz2.h>
56 #include <net/vlan/if_vlan_var.h>
57 #include <net/vlan/if_vlan_ether.h>
58 
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/netif/mii_layer/miivar.h>
63 #include <dev/netif/mii_layer/jmphyreg.h>
64 
65 #include <bus/pci/pcireg.h>
66 #include <bus/pci/pcivar.h>
67 #include <bus/pci/pcidevs.h>
68 
69 #include <dev/netif/jme/if_jmereg.h>
70 #include <dev/netif/jme/if_jmevar.h>
71 
72 #include "miibus_if.h"
73 
74 #define JME_TX_SERIALIZE	1
75 #define JME_RX_SERIALIZE	2
76 
77 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
78 
79 #ifdef JME_RSS_DEBUG
80 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
81 do { \
82 	if ((sc)->jme_rss_debug >= (lvl)) \
83 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
84 } while (0)
85 #else	/* !JME_RSS_DEBUG */
86 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
87 #endif	/* JME_RSS_DEBUG */
88 
89 static int	jme_probe(device_t);
90 static int	jme_attach(device_t);
91 static int	jme_detach(device_t);
92 static int	jme_shutdown(device_t);
93 static int	jme_suspend(device_t);
94 static int	jme_resume(device_t);
95 
96 static int	jme_miibus_readreg(device_t, int, int);
97 static int	jme_miibus_writereg(device_t, int, int, int);
98 static void	jme_miibus_statchg(device_t);
99 
100 static void	jme_init(void *);
101 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
102 static void	jme_start(struct ifnet *);
103 static void	jme_watchdog(struct ifnet *);
104 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int	jme_mediachange(struct ifnet *);
106 #ifdef DEVICE_POLLING
107 static void	jme_poll(struct ifnet *, enum poll_cmd, int);
108 #endif
109 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
110 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
111 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
112 #ifdef INVARIANTS
113 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
114 		    boolean_t);
115 #endif
116 
117 static void	jme_intr(void *);
118 static void	jme_msix_tx(void *);
119 static void	jme_msix_rx(void *);
120 static void	jme_txeof(struct jme_softc *);
121 static void	jme_rxeof(struct jme_rxdata *, int);
122 static void	jme_rx_intr(struct jme_softc *, uint32_t);
123 
124 static int	jme_msix_setup(device_t);
125 static void	jme_msix_teardown(device_t, int);
126 static int	jme_intr_setup(device_t);
127 static void	jme_intr_teardown(device_t);
128 static void	jme_msix_try_alloc(device_t);
129 static void	jme_msix_free(device_t);
130 static int	jme_intr_alloc(device_t);
131 static void	jme_intr_free(device_t);
132 static int	jme_dma_alloc(struct jme_softc *);
133 static void	jme_dma_free(struct jme_softc *);
134 static int	jme_init_rx_ring(struct jme_rxdata *);
135 static void	jme_init_tx_ring(struct jme_softc *);
136 static void	jme_init_ssb(struct jme_softc *);
137 static int	jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
138 static int	jme_encap(struct jme_softc *, struct mbuf **);
139 static void	jme_rxpkt(struct jme_rxdata *);
140 static int	jme_rxring_dma_alloc(struct jme_rxdata *);
141 static int	jme_rxbuf_dma_alloc(struct jme_rxdata *);
142 static int	jme_rxbuf_dma_filter(void *, bus_addr_t);
143 
144 static void	jme_tick(void *);
145 static void	jme_stop(struct jme_softc *);
146 static void	jme_reset(struct jme_softc *);
147 static void	jme_set_msinum(struct jme_softc *);
148 static void	jme_set_vlan(struct jme_softc *);
149 static void	jme_set_filter(struct jme_softc *);
150 static void	jme_stop_tx(struct jme_softc *);
151 static void	jme_stop_rx(struct jme_softc *);
152 static void	jme_mac_config(struct jme_softc *);
153 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
154 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
155 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
156 #ifdef notyet
157 static void	jme_setwol(struct jme_softc *);
158 static void	jme_setlinkspeed(struct jme_softc *);
159 #endif
160 static void	jme_set_tx_coal(struct jme_softc *);
161 static void	jme_set_rx_coal(struct jme_softc *);
162 static void	jme_enable_rss(struct jme_softc *);
163 static void	jme_disable_rss(struct jme_softc *);
164 static void	jme_serialize_skipmain(struct jme_softc *);
165 static void	jme_deserialize_skipmain(struct jme_softc *);
166 
167 static void	jme_sysctl_node(struct jme_softc *);
168 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
169 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
170 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
171 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
172 
173 /*
174  * Devices supported by this driver.
175  */
176 static const struct jme_dev {
177 	uint16_t	jme_vendorid;
178 	uint16_t	jme_deviceid;
179 	uint32_t	jme_caps;
180 	const char	*jme_name;
181 } jme_devs[] = {
182 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
183 	    JME_CAP_JUMBO,
184 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
185 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
186 	    JME_CAP_FASTETH,
187 	    "JMicron Inc, JMC260 Fast Ethernet" },
188 	{ 0, 0, 0, NULL }
189 };
190 
191 static device_method_t jme_methods[] = {
192 	/* Device interface. */
193 	DEVMETHOD(device_probe,		jme_probe),
194 	DEVMETHOD(device_attach,	jme_attach),
195 	DEVMETHOD(device_detach,	jme_detach),
196 	DEVMETHOD(device_shutdown,	jme_shutdown),
197 	DEVMETHOD(device_suspend,	jme_suspend),
198 	DEVMETHOD(device_resume,	jme_resume),
199 
200 	/* Bus interface. */
201 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
202 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
203 
204 	/* MII interface. */
205 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
206 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
207 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
208 
209 	{ NULL, NULL }
210 };
211 
212 static driver_t jme_driver = {
213 	"jme",
214 	jme_methods,
215 	sizeof(struct jme_softc)
216 };
217 
218 static devclass_t jme_devclass;
219 
220 DECLARE_DUMMY_MODULE(if_jme);
221 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
222 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
223 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
224 
225 static const struct {
226 	uint32_t	jme_coal;
227 	uint32_t	jme_comp;
228 	uint32_t	jme_empty;
229 } jme_rx_status[JME_NRXRING_MAX] = {
230 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
231 	  INTR_RXQ0_DESC_EMPTY },
232 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
233 	  INTR_RXQ1_DESC_EMPTY },
234 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
235 	  INTR_RXQ2_DESC_EMPTY },
236 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
237 	  INTR_RXQ3_DESC_EMPTY }
238 };
239 
240 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
241 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
242 static int	jme_rx_ring_count = 0;
243 static int	jme_msi_enable = 1;
244 static int	jme_msix_enable = 1;
245 
246 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
247 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
248 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
249 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
250 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
251 
252 static __inline void
253 jme_setup_rxdesc(struct jme_rxdesc *rxd)
254 {
255 	struct jme_desc *desc;
256 
257 	desc = rxd->rx_desc;
258 	desc->buflen = htole32(MCLBYTES);
259 	desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
260 	desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
261 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
262 }
263 
264 /*
265  *	Read a PHY register on the MII of the JMC250.
266  */
267 static int
268 jme_miibus_readreg(device_t dev, int phy, int reg)
269 {
270 	struct jme_softc *sc = device_get_softc(dev);
271 	uint32_t val;
272 	int i;
273 
274 	/* For FPGA version, PHY address 0 should be ignored. */
275 	if (sc->jme_caps & JME_CAP_FPGA) {
276 		if (phy == 0)
277 			return (0);
278 	} else {
279 		if (sc->jme_phyaddr != phy)
280 			return (0);
281 	}
282 
283 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
284 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
285 
286 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
287 		DELAY(1);
288 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
289 			break;
290 	}
291 	if (i == 0) {
292 		device_printf(sc->jme_dev, "phy read timeout: "
293 			      "phy %d, reg %d\n", phy, reg);
294 		return (0);
295 	}
296 
297 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
298 }
299 
300 /*
301  *	Write a PHY register on the MII of the JMC250.
302  */
303 static int
304 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
305 {
306 	struct jme_softc *sc = device_get_softc(dev);
307 	int i;
308 
309 	/* For FPGA version, PHY address 0 should be ignored. */
310 	if (sc->jme_caps & JME_CAP_FPGA) {
311 		if (phy == 0)
312 			return (0);
313 	} else {
314 		if (sc->jme_phyaddr != phy)
315 			return (0);
316 	}
317 
318 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
319 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
320 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
321 
322 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
323 		DELAY(1);
324 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
325 			break;
326 	}
327 	if (i == 0) {
328 		device_printf(sc->jme_dev, "phy write timeout: "
329 			      "phy %d, reg %d\n", phy, reg);
330 	}
331 
332 	return (0);
333 }
334 
335 /*
336  *	Callback from MII layer when media changes.
337  */
338 static void
339 jme_miibus_statchg(device_t dev)
340 {
341 	struct jme_softc *sc = device_get_softc(dev);
342 	struct ifnet *ifp = &sc->arpcom.ac_if;
343 	struct mii_data *mii;
344 	struct jme_txdesc *txd;
345 	bus_addr_t paddr;
346 	int i, r;
347 
348 	if (sc->jme_in_tick)
349 		jme_serialize_skipmain(sc);
350 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
351 
352 	if ((ifp->if_flags & IFF_RUNNING) == 0)
353 		goto done;
354 
355 	mii = device_get_softc(sc->jme_miibus);
356 
357 	sc->jme_has_link = FALSE;
358 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
359 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
360 		case IFM_10_T:
361 		case IFM_100_TX:
362 			sc->jme_has_link = TRUE;
363 			break;
364 		case IFM_1000_T:
365 			if (sc->jme_caps & JME_CAP_FASTETH)
366 				break;
367 			sc->jme_has_link = TRUE;
368 			break;
369 		default:
370 			break;
371 		}
372 	}
373 
374 	/*
375 	 * Disabling Rx/Tx MACs have a side-effect of resetting
376 	 * JME_TXNDA/JME_RXNDA register to the first address of
377 	 * Tx/Rx descriptor address. So driver should reset its
378 	 * internal procucer/consumer pointer and reclaim any
379 	 * allocated resources.  Note, just saving the value of
380 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
381 	 * and restoring JME_TXNDA/JME_RXNDA register is not
382 	 * sufficient to make sure correct MAC state because
383 	 * stopping MAC operation can take a while and hardware
384 	 * might have updated JME_TXNDA/JME_RXNDA registers
385 	 * during the stop operation.
386 	 */
387 
388 	/* Disable interrupts */
389 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
390 
391 	/* Stop driver */
392 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
393 	ifp->if_timer = 0;
394 	callout_stop(&sc->jme_tick_ch);
395 
396 	/* Stop receiver/transmitter. */
397 	jme_stop_rx(sc);
398 	jme_stop_tx(sc);
399 
400 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
401 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
402 
403 		jme_rxeof(rdata, -1);
404 		if (rdata->jme_rxhead != NULL)
405 			m_freem(rdata->jme_rxhead);
406 		JME_RXCHAIN_RESET(rdata);
407 
408 		/*
409 		 * Reuse configured Rx descriptors and reset
410 		 * procuder/consumer index.
411 		 */
412 		rdata->jme_rx_cons = 0;
413 	}
414 	if (JME_ENABLE_HWRSS(sc))
415 		jme_enable_rss(sc);
416 	else
417 		jme_disable_rss(sc);
418 
419 	jme_txeof(sc);
420 	if (sc->jme_cdata.jme_tx_cnt != 0) {
421 		/* Remove queued packets for transmit. */
422 		for (i = 0; i < sc->jme_cdata.jme_tx_desc_cnt; i++) {
423 			txd = &sc->jme_cdata.jme_txdesc[i];
424 			if (txd->tx_m != NULL) {
425 				bus_dmamap_unload(
426 				    sc->jme_cdata.jme_tx_tag,
427 				    txd->tx_dmamap);
428 				m_freem(txd->tx_m);
429 				txd->tx_m = NULL;
430 				txd->tx_ndesc = 0;
431 				ifp->if_oerrors++;
432 			}
433 		}
434 	}
435 	jme_init_tx_ring(sc);
436 
437 	/* Initialize shadow status block. */
438 	jme_init_ssb(sc);
439 
440 	/* Program MAC with resolved speed/duplex/flow-control. */
441 	if (sc->jme_has_link) {
442 		jme_mac_config(sc);
443 
444 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
445 
446 		/* Set Tx ring address to the hardware. */
447 		paddr = sc->jme_cdata.jme_tx_ring_paddr;
448 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
449 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
450 
451 		for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
452 			CSR_WRITE_4(sc, JME_RXCSR,
453 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
454 
455 			/* Set Rx ring address to the hardware. */
456 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
457 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
458 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
459 		}
460 
461 		/* Restart receiver/transmitter. */
462 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
463 		    RXCSR_RXQ_START);
464 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
465 	}
466 
467 	ifp->if_flags |= IFF_RUNNING;
468 	ifp->if_flags &= ~IFF_OACTIVE;
469 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
470 
471 #ifdef DEVICE_POLLING
472 	if (!(ifp->if_flags & IFF_POLLING))
473 #endif
474 	/* Reenable interrupts. */
475 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
476 
477 done:
478 	if (sc->jme_in_tick)
479 		jme_deserialize_skipmain(sc);
480 }
481 
482 /*
483  *	Get the current interface media status.
484  */
485 static void
486 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
487 {
488 	struct jme_softc *sc = ifp->if_softc;
489 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
490 
491 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
492 
493 	mii_pollstat(mii);
494 	ifmr->ifm_status = mii->mii_media_status;
495 	ifmr->ifm_active = mii->mii_media_active;
496 }
497 
498 /*
499  *	Set hardware to newly-selected media.
500  */
501 static int
502 jme_mediachange(struct ifnet *ifp)
503 {
504 	struct jme_softc *sc = ifp->if_softc;
505 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
506 	int error;
507 
508 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
509 
510 	if (mii->mii_instance != 0) {
511 		struct mii_softc *miisc;
512 
513 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
514 			mii_phy_reset(miisc);
515 	}
516 	error = mii_mediachg(mii);
517 
518 	return (error);
519 }
520 
521 static int
522 jme_probe(device_t dev)
523 {
524 	const struct jme_dev *sp;
525 	uint16_t vid, did;
526 
527 	vid = pci_get_vendor(dev);
528 	did = pci_get_device(dev);
529 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
530 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
531 			struct jme_softc *sc = device_get_softc(dev);
532 
533 			sc->jme_caps = sp->jme_caps;
534 			device_set_desc(dev, sp->jme_name);
535 			return (0);
536 		}
537 	}
538 	return (ENXIO);
539 }
540 
541 static int
542 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
543 {
544 	uint32_t reg;
545 	int i;
546 
547 	*val = 0;
548 	for (i = JME_TIMEOUT; i > 0; i--) {
549 		reg = CSR_READ_4(sc, JME_SMBCSR);
550 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
551 			break;
552 		DELAY(1);
553 	}
554 
555 	if (i == 0) {
556 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
557 		return (ETIMEDOUT);
558 	}
559 
560 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
561 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
562 	for (i = JME_TIMEOUT; i > 0; i--) {
563 		DELAY(1);
564 		reg = CSR_READ_4(sc, JME_SMBINTF);
565 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
566 			break;
567 	}
568 
569 	if (i == 0) {
570 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
571 		return (ETIMEDOUT);
572 	}
573 
574 	reg = CSR_READ_4(sc, JME_SMBINTF);
575 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
576 
577 	return (0);
578 }
579 
580 static int
581 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
582 {
583 	uint8_t fup, reg, val;
584 	uint32_t offset;
585 	int match;
586 
587 	offset = 0;
588 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
589 	    fup != JME_EEPROM_SIG0)
590 		return (ENOENT);
591 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
592 	    fup != JME_EEPROM_SIG1)
593 		return (ENOENT);
594 	match = 0;
595 	do {
596 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
597 			break;
598 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
599 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
600 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
601 				break;
602 			if (reg >= JME_PAR0 &&
603 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
604 				if (jme_eeprom_read_byte(sc, offset + 2,
605 				    &val) != 0)
606 					break;
607 				eaddr[reg - JME_PAR0] = val;
608 				match++;
609 			}
610 		}
611 		/* Check for the end of EEPROM descriptor. */
612 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
613 			break;
614 		/* Try next eeprom descriptor. */
615 		offset += JME_EEPROM_DESC_BYTES;
616 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
617 
618 	if (match == ETHER_ADDR_LEN)
619 		return (0);
620 
621 	return (ENOENT);
622 }
623 
624 static void
625 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
626 {
627 	uint32_t par0, par1;
628 
629 	/* Read station address. */
630 	par0 = CSR_READ_4(sc, JME_PAR0);
631 	par1 = CSR_READ_4(sc, JME_PAR1);
632 	par1 &= 0xFFFF;
633 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
634 		device_printf(sc->jme_dev,
635 		    "generating fake ethernet address.\n");
636 		par0 = karc4random();
637 		/* Set OUI to JMicron. */
638 		eaddr[0] = 0x00;
639 		eaddr[1] = 0x1B;
640 		eaddr[2] = 0x8C;
641 		eaddr[3] = (par0 >> 16) & 0xff;
642 		eaddr[4] = (par0 >> 8) & 0xff;
643 		eaddr[5] = par0 & 0xff;
644 	} else {
645 		eaddr[0] = (par0 >> 0) & 0xFF;
646 		eaddr[1] = (par0 >> 8) & 0xFF;
647 		eaddr[2] = (par0 >> 16) & 0xFF;
648 		eaddr[3] = (par0 >> 24) & 0xFF;
649 		eaddr[4] = (par1 >> 0) & 0xFF;
650 		eaddr[5] = (par1 >> 8) & 0xFF;
651 	}
652 }
653 
654 static int
655 jme_attach(device_t dev)
656 {
657 	struct jme_softc *sc = device_get_softc(dev);
658 	struct ifnet *ifp = &sc->arpcom.ac_if;
659 	uint32_t reg;
660 	uint16_t did;
661 	uint8_t pcie_ptr, rev;
662 	int error = 0, i, j, rx_desc_cnt;
663 	uint8_t eaddr[ETHER_ADDR_LEN];
664 
665 	lwkt_serialize_init(&sc->jme_serialize);
666 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_serialize);
667 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
668 		lwkt_serialize_init(
669 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
670 	}
671 
672 	rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
673 	    jme_rx_desc_count);
674 	rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
675 	if (rx_desc_cnt > JME_NDESC_MAX)
676 		rx_desc_cnt = JME_NDESC_MAX;
677 
678 	sc->jme_cdata.jme_tx_desc_cnt = device_getenv_int(dev, "tx_desc_count",
679 	    jme_tx_desc_count);
680 	sc->jme_cdata.jme_tx_desc_cnt = roundup(sc->jme_cdata.jme_tx_desc_cnt,
681 	    JME_NDESC_ALIGN);
682 	if (sc->jme_cdata.jme_tx_desc_cnt > JME_NDESC_MAX)
683 		sc->jme_cdata.jme_tx_desc_cnt = JME_NDESC_MAX;
684 
685 	/*
686 	 * Calculate rx rings
687 	 */
688 	sc->jme_cdata.jme_rx_ring_cnt = device_getenv_int(dev, "rx_ring_count",
689 	    jme_rx_ring_count);
690 	sc->jme_cdata.jme_rx_ring_cnt =
691 	    if_ring_count2(sc->jme_cdata.jme_rx_ring_cnt, JME_NRXRING_MAX);
692 
693 	i = 0;
694 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
695 
696 	KKASSERT(i == JME_TX_SERIALIZE);
697 	sc->jme_serialize_arr[i++] = &sc->jme_cdata.jme_tx_serialize;
698 
699 	KKASSERT(i == JME_RX_SERIALIZE);
700 	for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
701 		sc->jme_serialize_arr[i++] =
702 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
703 	}
704 	KKASSERT(i <= JME_NSERIALIZE);
705 	sc->jme_serialize_cnt = i;
706 
707 	sc->jme_cdata.jme_sc = sc;
708 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
709 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
710 
711 		rdata->jme_sc = sc;
712 		rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
713 		rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
714 		rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
715 		rdata->jme_rx_idx = i;
716 		rdata->jme_rx_desc_cnt = rx_desc_cnt;
717 	}
718 
719 	sc->jme_dev = dev;
720 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
721 
722 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
723 
724 	callout_init(&sc->jme_tick_ch);
725 
726 #ifndef BURN_BRIDGES
727 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
728 		uint32_t irq, mem;
729 
730 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
731 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
732 
733 		device_printf(dev, "chip is in D%d power mode "
734 		    "-- setting to D0\n", pci_get_powerstate(dev));
735 
736 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
737 
738 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
739 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
740 	}
741 #endif	/* !BURN_BRIDGE */
742 
743 	/* Enable bus mastering */
744 	pci_enable_busmaster(dev);
745 
746 	/*
747 	 * Allocate IO memory
748 	 *
749 	 * JMC250 supports both memory mapped and I/O register space
750 	 * access.  Because I/O register access should use different
751 	 * BARs to access registers it's waste of time to use I/O
752 	 * register spce access.  JMC250 uses 16K to map entire memory
753 	 * space.
754 	 */
755 	sc->jme_mem_rid = JME_PCIR_BAR;
756 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
757 						 &sc->jme_mem_rid, RF_ACTIVE);
758 	if (sc->jme_mem_res == NULL) {
759 		device_printf(dev, "can't allocate IO memory\n");
760 		return ENXIO;
761 	}
762 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
763 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
764 
765 	/*
766 	 * Allocate IRQ
767 	 */
768 	error = jme_intr_alloc(dev);
769 	if (error)
770 		goto fail;
771 
772 	/*
773 	 * Extract revisions
774 	 */
775 	reg = CSR_READ_4(sc, JME_CHIPMODE);
776 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
777 	    CHIPMODE_NOT_FPGA) {
778 		sc->jme_caps |= JME_CAP_FPGA;
779 		if (bootverbose) {
780 			device_printf(dev, "FPGA revision: 0x%04x\n",
781 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
782 				      CHIPMODE_FPGA_REV_SHIFT);
783 		}
784 	}
785 
786 	/* NOTE: FM revision is put in the upper 4 bits */
787 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
788 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
789 	if (bootverbose)
790 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
791 
792 	did = pci_get_device(dev);
793 	switch (did) {
794 	case PCI_PRODUCT_JMICRON_JMC250:
795 		if (rev == JME_REV1_A2)
796 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
797 		break;
798 
799 	case PCI_PRODUCT_JMICRON_JMC260:
800 		if (rev == JME_REV2)
801 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
802 		break;
803 
804 	default:
805 		panic("unknown device id 0x%04x", did);
806 	}
807 	if (rev >= JME_REV2) {
808 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
809 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
810 				      GHC_TXMAC_CLKSRC_1000;
811 	}
812 
813 	/* Reset the ethernet controller. */
814 	jme_reset(sc);
815 
816 	/* Map MSI/MSI-X vectors */
817 	jme_set_msinum(sc);
818 
819 	/* Get station address. */
820 	reg = CSR_READ_4(sc, JME_SMBCSR);
821 	if (reg & SMBCSR_EEPROM_PRESENT)
822 		error = jme_eeprom_macaddr(sc, eaddr);
823 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
824 		if (error != 0 && (bootverbose)) {
825 			device_printf(dev, "ethernet hardware address "
826 				      "not found in EEPROM.\n");
827 		}
828 		jme_reg_macaddr(sc, eaddr);
829 	}
830 
831 	/*
832 	 * Save PHY address.
833 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
834 	 * requires PHY probing to get correct PHY address.
835 	 */
836 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
837 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
838 		    GPREG0_PHY_ADDR_MASK;
839 		if (bootverbose) {
840 			device_printf(dev, "PHY is at address %d.\n",
841 			    sc->jme_phyaddr);
842 		}
843 	} else {
844 		sc->jme_phyaddr = 0;
845 	}
846 
847 	/* Set max allowable DMA size. */
848 	pcie_ptr = pci_get_pciecap_ptr(dev);
849 	if (pcie_ptr != 0) {
850 		uint16_t ctrl;
851 
852 		sc->jme_caps |= JME_CAP_PCIE;
853 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
854 		if (bootverbose) {
855 			device_printf(dev, "Read request size : %d bytes.\n",
856 			    128 << ((ctrl >> 12) & 0x07));
857 			device_printf(dev, "TLP payload size : %d bytes.\n",
858 			    128 << ((ctrl >> 5) & 0x07));
859 		}
860 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
861 		case PCIEM_DEVCTL_MAX_READRQ_128:
862 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
863 			break;
864 		case PCIEM_DEVCTL_MAX_READRQ_256:
865 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
866 			break;
867 		default:
868 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
869 			break;
870 		}
871 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
872 	} else {
873 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
874 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
875 	}
876 
877 #ifdef notyet
878 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
879 		sc->jme_caps |= JME_CAP_PMCAP;
880 #endif
881 
882 	/*
883 	 * Create sysctl tree
884 	 */
885 	jme_sysctl_node(sc);
886 
887 	/* Allocate DMA stuffs */
888 	error = jme_dma_alloc(sc);
889 	if (error)
890 		goto fail;
891 
892 	ifp->if_softc = sc;
893 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
894 	ifp->if_init = jme_init;
895 	ifp->if_ioctl = jme_ioctl;
896 	ifp->if_start = jme_start;
897 #ifdef DEVICE_POLLING
898 	ifp->if_poll = jme_poll;
899 #endif
900 	ifp->if_watchdog = jme_watchdog;
901 	ifp->if_serialize = jme_serialize;
902 	ifp->if_deserialize = jme_deserialize;
903 	ifp->if_tryserialize = jme_tryserialize;
904 #ifdef INVARIANTS
905 	ifp->if_serialize_assert = jme_serialize_assert;
906 #endif
907 	ifq_set_maxlen(&ifp->if_snd,
908 	    sc->jme_cdata.jme_tx_desc_cnt - JME_TXD_RSVD);
909 	ifq_set_ready(&ifp->if_snd);
910 
911 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
912 	ifp->if_capabilities = IFCAP_HWCSUM |
913 			       IFCAP_TSO |
914 			       IFCAP_VLAN_MTU |
915 			       IFCAP_VLAN_HWTAGGING;
916 	if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
917 		ifp->if_capabilities |= IFCAP_RSS;
918 	ifp->if_capenable = ifp->if_capabilities;
919 
920 	/*
921 	 * Disable TXCSUM by default to improve bulk data
922 	 * transmit performance (+20Mbps improvement).
923 	 */
924 	ifp->if_capenable &= ~IFCAP_TXCSUM;
925 
926 	if (ifp->if_capenable & IFCAP_TXCSUM)
927 		ifp->if_hwassist |= JME_CSUM_FEATURES;
928 	ifp->if_hwassist |= CSUM_TSO;
929 
930 	/* Set up MII bus. */
931 	error = mii_phy_probe(dev, &sc->jme_miibus,
932 			      jme_mediachange, jme_mediastatus);
933 	if (error) {
934 		device_printf(dev, "no PHY found!\n");
935 		goto fail;
936 	}
937 
938 	/*
939 	 * Save PHYADDR for FPGA mode PHY.
940 	 */
941 	if (sc->jme_caps & JME_CAP_FPGA) {
942 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
943 
944 		if (mii->mii_instance != 0) {
945 			struct mii_softc *miisc;
946 
947 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
948 				if (miisc->mii_phy != 0) {
949 					sc->jme_phyaddr = miisc->mii_phy;
950 					break;
951 				}
952 			}
953 			if (sc->jme_phyaddr != 0) {
954 				device_printf(sc->jme_dev,
955 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
956 				/* vendor magic. */
957 				jme_miibus_writereg(dev, sc->jme_phyaddr,
958 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
959 
960 				/* XXX should we clear JME_WA_EXTFIFO */
961 			}
962 		}
963 	}
964 
965 	ether_ifattach(ifp, eaddr, NULL);
966 
967 	/* Tell the upper layer(s) we support long frames. */
968 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
969 
970 	error = jme_intr_setup(dev);
971 	if (error) {
972 		ether_ifdetach(ifp);
973 		goto fail;
974 	}
975 
976 	return 0;
977 fail:
978 	jme_detach(dev);
979 	return (error);
980 }
981 
982 static int
983 jme_detach(device_t dev)
984 {
985 	struct jme_softc *sc = device_get_softc(dev);
986 
987 	if (device_is_attached(dev)) {
988 		struct ifnet *ifp = &sc->arpcom.ac_if;
989 
990 		ifnet_serialize_all(ifp);
991 		jme_stop(sc);
992 		jme_intr_teardown(dev);
993 		ifnet_deserialize_all(ifp);
994 
995 		ether_ifdetach(ifp);
996 	}
997 
998 	if (sc->jme_sysctl_tree != NULL)
999 		sysctl_ctx_free(&sc->jme_sysctl_ctx);
1000 
1001 	if (sc->jme_miibus != NULL)
1002 		device_delete_child(dev, sc->jme_miibus);
1003 	bus_generic_detach(dev);
1004 
1005 	jme_intr_free(dev);
1006 
1007 	if (sc->jme_mem_res != NULL) {
1008 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1009 				     sc->jme_mem_res);
1010 	}
1011 
1012 	jme_dma_free(sc);
1013 
1014 	return (0);
1015 }
1016 
1017 static void
1018 jme_sysctl_node(struct jme_softc *sc)
1019 {
1020 	int coal_max;
1021 #ifdef JME_RSS_DEBUG
1022 	int r;
1023 #endif
1024 
1025 	sysctl_ctx_init(&sc->jme_sysctl_ctx);
1026 	sc->jme_sysctl_tree = SYSCTL_ADD_NODE(&sc->jme_sysctl_ctx,
1027 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1028 				device_get_nameunit(sc->jme_dev),
1029 				CTLFLAG_RD, 0, "");
1030 	if (sc->jme_sysctl_tree == NULL) {
1031 		device_printf(sc->jme_dev, "can't add sysctl node\n");
1032 		return;
1033 	}
1034 
1035 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1036 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1037 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1038 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1039 
1040 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1041 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1042 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1043 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1044 
1045 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1046 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1047 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1048 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1049 
1050 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1051 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1052 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1053 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1054 
1055 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1056 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1057 		       "rx_desc_count", CTLFLAG_RD,
1058 		       &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1059 		       0, "RX desc count");
1060 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1061 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1062 		       "tx_desc_count", CTLFLAG_RD,
1063 		       &sc->jme_cdata.jme_tx_desc_cnt,
1064 		       0, "TX desc count");
1065 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1066 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1067 		       "rx_ring_count", CTLFLAG_RD,
1068 		       &sc->jme_cdata.jme_rx_ring_cnt,
1069 		       0, "RX ring count");
1070 #ifdef JME_RSS_DEBUG
1071 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1072 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1073 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1074 		       0, "RSS debug level");
1075 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1076 		char rx_ring_desc[32];
1077 
1078 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1079 		    "rx_ring%d_pkt", r);
1080 		SYSCTL_ADD_ULONG(&sc->jme_sysctl_ctx,
1081 		    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1082 		    rx_ring_desc, CTLFLAG_RW,
1083 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1084 
1085 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1086 		    "rx_ring%d_emp", r);
1087 		SYSCTL_ADD_ULONG(&sc->jme_sysctl_ctx,
1088 		    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1089 		    rx_ring_desc, CTLFLAG_RW,
1090 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1091 		    "# of time RX ring empty");
1092 	}
1093 #endif
1094 
1095 	/*
1096 	 * Set default coalesce valves
1097 	 */
1098 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1099 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1100 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1101 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1102 
1103 	/*
1104 	 * Adjust coalesce valves, in case that the number of TX/RX
1105 	 * descs are set to small values by users.
1106 	 *
1107 	 * NOTE: coal_max will not be zero, since number of descs
1108 	 * must aligned by JME_NDESC_ALIGN (16 currently)
1109 	 */
1110 	coal_max = sc->jme_cdata.jme_tx_desc_cnt / 2;
1111 	if (coal_max < sc->jme_tx_coal_pkt)
1112 		sc->jme_tx_coal_pkt = coal_max;
1113 
1114 	coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
1115 	if (coal_max < sc->jme_rx_coal_pkt)
1116 		sc->jme_rx_coal_pkt = coal_max;
1117 }
1118 
1119 static int
1120 jme_dma_alloc(struct jme_softc *sc)
1121 {
1122 	struct jme_txdesc *txd;
1123 	bus_dmamem_t dmem;
1124 	int error, i, asize;
1125 
1126 	sc->jme_cdata.jme_txdesc =
1127 	kmalloc(sc->jme_cdata.jme_tx_desc_cnt * sizeof(struct jme_txdesc),
1128 		M_DEVBUF, M_WAITOK | M_ZERO);
1129 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1130 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1131 
1132 		rdata->jme_rxdesc =
1133 		kmalloc(rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc),
1134 			M_DEVBUF, M_WAITOK | M_ZERO);
1135 	}
1136 
1137 	/* Create parent ring tag. */
1138 	error = bus_dma_tag_create(NULL,/* parent */
1139 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1140 	    sc->jme_lowaddr,		/* lowaddr */
1141 	    BUS_SPACE_MAXADDR,		/* highaddr */
1142 	    NULL, NULL,			/* filter, filterarg */
1143 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1144 	    0,				/* nsegments */
1145 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1146 	    0,				/* flags */
1147 	    &sc->jme_cdata.jme_ring_tag);
1148 	if (error) {
1149 		device_printf(sc->jme_dev,
1150 		    "could not create parent ring DMA tag.\n");
1151 		return error;
1152 	}
1153 
1154 	/*
1155 	 * Create DMA stuffs for TX ring
1156 	 */
1157 	asize = roundup2(JME_TX_RING_SIZE(sc), JME_TX_RING_ALIGN);
1158 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1159 			JME_TX_RING_ALIGN, 0,
1160 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1161 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1162 	if (error) {
1163 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1164 		return error;
1165 	}
1166 	sc->jme_cdata.jme_tx_ring_tag = dmem.dmem_tag;
1167 	sc->jme_cdata.jme_tx_ring_map = dmem.dmem_map;
1168 	sc->jme_cdata.jme_tx_ring = dmem.dmem_addr;
1169 	sc->jme_cdata.jme_tx_ring_paddr = dmem.dmem_busaddr;
1170 
1171 	/*
1172 	 * Create DMA stuffs for RX rings
1173 	 */
1174 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1175 		error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1176 		if (error)
1177 			return error;
1178 	}
1179 
1180 	/* Create parent buffer tag. */
1181 	error = bus_dma_tag_create(NULL,/* parent */
1182 	    1, 0,			/* algnmnt, boundary */
1183 	    sc->jme_lowaddr,		/* lowaddr */
1184 	    BUS_SPACE_MAXADDR,		/* highaddr */
1185 	    NULL, NULL,			/* filter, filterarg */
1186 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1187 	    0,				/* nsegments */
1188 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1189 	    0,				/* flags */
1190 	    &sc->jme_cdata.jme_buffer_tag);
1191 	if (error) {
1192 		device_printf(sc->jme_dev,
1193 		    "could not create parent buffer DMA tag.\n");
1194 		return error;
1195 	}
1196 
1197 	/*
1198 	 * Create DMA stuffs for shadow status block
1199 	 */
1200 	asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1201 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1202 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1203 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1204 	if (error) {
1205 		device_printf(sc->jme_dev,
1206 		    "could not create shadow status block.\n");
1207 		return error;
1208 	}
1209 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1210 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1211 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1212 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1213 
1214 	/*
1215 	 * Create DMA stuffs for TX buffers
1216 	 */
1217 
1218 	/* Create tag for Tx buffers. */
1219 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1220 	    1, 0,			/* algnmnt, boundary */
1221 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1222 	    BUS_SPACE_MAXADDR,		/* highaddr */
1223 	    NULL, NULL,			/* filter, filterarg */
1224 	    JME_TSO_MAXSIZE,		/* maxsize */
1225 	    JME_MAXTXSEGS,		/* nsegments */
1226 	    JME_MAXSEGSIZE,		/* maxsegsize */
1227 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1228 	    &sc->jme_cdata.jme_tx_tag);
1229 	if (error != 0) {
1230 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1231 		return error;
1232 	}
1233 
1234 	/* Create DMA maps for Tx buffers. */
1235 	for (i = 0; i < sc->jme_cdata.jme_tx_desc_cnt; i++) {
1236 		txd = &sc->jme_cdata.jme_txdesc[i];
1237 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag,
1238 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1239 				&txd->tx_dmamap);
1240 		if (error) {
1241 			int j;
1242 
1243 			device_printf(sc->jme_dev,
1244 			    "could not create %dth Tx dmamap.\n", i);
1245 
1246 			for (j = 0; j < i; ++j) {
1247 				txd = &sc->jme_cdata.jme_txdesc[j];
1248 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1249 						   txd->tx_dmamap);
1250 			}
1251 			bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1252 			sc->jme_cdata.jme_tx_tag = NULL;
1253 			return error;
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * Create DMA stuffs for RX buffers
1259 	 */
1260 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1261 		error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1262 		if (error)
1263 			return error;
1264 	}
1265 	return 0;
1266 }
1267 
1268 static void
1269 jme_dma_free(struct jme_softc *sc)
1270 {
1271 	struct jme_txdesc *txd;
1272 	struct jme_rxdesc *rxd;
1273 	struct jme_rxdata *rdata;
1274 	int i, r;
1275 
1276 	/* Tx ring */
1277 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1278 		bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1279 		    sc->jme_cdata.jme_tx_ring_map);
1280 		bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1281 		    sc->jme_cdata.jme_tx_ring,
1282 		    sc->jme_cdata.jme_tx_ring_map);
1283 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1284 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1285 	}
1286 
1287 	/* Rx ring */
1288 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1289 		rdata = &sc->jme_cdata.jme_rx_data[r];
1290 		if (rdata->jme_rx_ring_tag != NULL) {
1291 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1292 					  rdata->jme_rx_ring_map);
1293 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1294 					rdata->jme_rx_ring,
1295 					rdata->jme_rx_ring_map);
1296 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1297 			rdata->jme_rx_ring_tag = NULL;
1298 		}
1299 	}
1300 
1301 	/* Tx buffers */
1302 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1303 		for (i = 0; i < sc->jme_cdata.jme_tx_desc_cnt; i++) {
1304 			txd = &sc->jme_cdata.jme_txdesc[i];
1305 			bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1306 			    txd->tx_dmamap);
1307 		}
1308 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1309 		sc->jme_cdata.jme_tx_tag = NULL;
1310 	}
1311 
1312 	/* Rx buffers */
1313 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1314 		rdata = &sc->jme_cdata.jme_rx_data[r];
1315 		if (rdata->jme_rx_tag != NULL) {
1316 			for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1317 				rxd = &rdata->jme_rxdesc[i];
1318 				bus_dmamap_destroy(rdata->jme_rx_tag,
1319 						   rxd->rx_dmamap);
1320 			}
1321 			bus_dmamap_destroy(rdata->jme_rx_tag,
1322 					   rdata->jme_rx_sparemap);
1323 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1324 			rdata->jme_rx_tag = NULL;
1325 		}
1326 	}
1327 
1328 	/* Shadow status block. */
1329 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1330 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1331 		    sc->jme_cdata.jme_ssb_map);
1332 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1333 		    sc->jme_cdata.jme_ssb_block,
1334 		    sc->jme_cdata.jme_ssb_map);
1335 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1336 		sc->jme_cdata.jme_ssb_tag = NULL;
1337 	}
1338 
1339 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1340 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1341 		sc->jme_cdata.jme_buffer_tag = NULL;
1342 	}
1343 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1344 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1345 		sc->jme_cdata.jme_ring_tag = NULL;
1346 	}
1347 
1348 	if (sc->jme_cdata.jme_txdesc != NULL) {
1349 		kfree(sc->jme_cdata.jme_txdesc, M_DEVBUF);
1350 		sc->jme_cdata.jme_txdesc = NULL;
1351 	}
1352 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1353 		rdata = &sc->jme_cdata.jme_rx_data[r];
1354 		if (rdata->jme_rxdesc != NULL) {
1355 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1356 			rdata->jme_rxdesc = NULL;
1357 		}
1358 	}
1359 }
1360 
1361 /*
1362  *	Make sure the interface is stopped at reboot time.
1363  */
1364 static int
1365 jme_shutdown(device_t dev)
1366 {
1367 	return jme_suspend(dev);
1368 }
1369 
1370 #ifdef notyet
1371 /*
1372  * Unlike other ethernet controllers, JMC250 requires
1373  * explicit resetting link speed to 10/100Mbps as gigabit
1374  * link will cunsume more power than 375mA.
1375  * Note, we reset the link speed to 10/100Mbps with
1376  * auto-negotiation but we don't know whether that operation
1377  * would succeed or not as we have no control after powering
1378  * off. If the renegotiation fail WOL may not work. Running
1379  * at 1Gbps draws more power than 375mA at 3.3V which is
1380  * specified in PCI specification and that would result in
1381  * complete shutdowning power to ethernet controller.
1382  *
1383  * TODO
1384  *  Save current negotiated media speed/duplex/flow-control
1385  *  to softc and restore the same link again after resuming.
1386  *  PHY handling such as power down/resetting to 100Mbps
1387  *  may be better handled in suspend method in phy driver.
1388  */
1389 static void
1390 jme_setlinkspeed(struct jme_softc *sc)
1391 {
1392 	struct mii_data *mii;
1393 	int aneg, i;
1394 
1395 	JME_LOCK_ASSERT(sc);
1396 
1397 	mii = device_get_softc(sc->jme_miibus);
1398 	mii_pollstat(mii);
1399 	aneg = 0;
1400 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1401 		switch IFM_SUBTYPE(mii->mii_media_active) {
1402 		case IFM_10_T:
1403 		case IFM_100_TX:
1404 			return;
1405 		case IFM_1000_T:
1406 			aneg++;
1407 		default:
1408 			break;
1409 		}
1410 	}
1411 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1412 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1413 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1414 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1415 	    BMCR_AUTOEN | BMCR_STARTNEG);
1416 	DELAY(1000);
1417 	if (aneg != 0) {
1418 		/* Poll link state until jme(4) get a 10/100 link. */
1419 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1420 			mii_pollstat(mii);
1421 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1422 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1423 				case IFM_10_T:
1424 				case IFM_100_TX:
1425 					jme_mac_config(sc);
1426 					return;
1427 				default:
1428 					break;
1429 				}
1430 			}
1431 			JME_UNLOCK(sc);
1432 			pause("jmelnk", hz);
1433 			JME_LOCK(sc);
1434 		}
1435 		if (i == MII_ANEGTICKS_GIGE)
1436 			device_printf(sc->jme_dev, "establishing link failed, "
1437 			    "WOL may not work!");
1438 	}
1439 	/*
1440 	 * No link, force MAC to have 100Mbps, full-duplex link.
1441 	 * This is the last resort and may/may not work.
1442 	 */
1443 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1444 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1445 	jme_mac_config(sc);
1446 }
1447 
1448 static void
1449 jme_setwol(struct jme_softc *sc)
1450 {
1451 	struct ifnet *ifp = &sc->arpcom.ac_if;
1452 	uint32_t gpr, pmcs;
1453 	uint16_t pmstat;
1454 	int pmc;
1455 
1456 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1457 		/* No PME capability, PHY power down. */
1458 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1459 		    MII_BMCR, BMCR_PDOWN);
1460 		return;
1461 	}
1462 
1463 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1464 	pmcs = CSR_READ_4(sc, JME_PMCS);
1465 	pmcs &= ~PMCS_WOL_ENB_MASK;
1466 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1467 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1468 		/* Enable PME message. */
1469 		gpr |= GPREG0_PME_ENB;
1470 		/* For gigabit controllers, reset link speed to 10/100. */
1471 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1472 			jme_setlinkspeed(sc);
1473 	}
1474 
1475 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1476 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1477 
1478 	/* Request PME. */
1479 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1480 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1481 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1482 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1483 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1484 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1485 		/* No WOL, PHY power down. */
1486 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1487 		    MII_BMCR, BMCR_PDOWN);
1488 	}
1489 }
1490 #endif
1491 
1492 static int
1493 jme_suspend(device_t dev)
1494 {
1495 	struct jme_softc *sc = device_get_softc(dev);
1496 	struct ifnet *ifp = &sc->arpcom.ac_if;
1497 
1498 	ifnet_serialize_all(ifp);
1499 	jme_stop(sc);
1500 #ifdef notyet
1501 	jme_setwol(sc);
1502 #endif
1503 	ifnet_deserialize_all(ifp);
1504 
1505 	return (0);
1506 }
1507 
1508 static int
1509 jme_resume(device_t dev)
1510 {
1511 	struct jme_softc *sc = device_get_softc(dev);
1512 	struct ifnet *ifp = &sc->arpcom.ac_if;
1513 #ifdef notyet
1514 	int pmc;
1515 #endif
1516 
1517 	ifnet_serialize_all(ifp);
1518 
1519 #ifdef notyet
1520 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1521 		uint16_t pmstat;
1522 
1523 		pmstat = pci_read_config(sc->jme_dev,
1524 		    pmc + PCIR_POWER_STATUS, 2);
1525 		/* Disable PME clear PME status. */
1526 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1527 		pci_write_config(sc->jme_dev,
1528 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1529 	}
1530 #endif
1531 
1532 	if (ifp->if_flags & IFF_UP)
1533 		jme_init(sc);
1534 
1535 	ifnet_deserialize_all(ifp);
1536 
1537 	return (0);
1538 }
1539 
1540 static __inline int
1541 jme_tso_pullup(struct mbuf **mp)
1542 {
1543 	int hoff, iphlen, thoff;
1544 	struct mbuf *m;
1545 
1546 	m = *mp;
1547 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1548 
1549 	iphlen = m->m_pkthdr.csum_iphlen;
1550 	thoff = m->m_pkthdr.csum_thlen;
1551 	hoff = m->m_pkthdr.csum_lhlen;
1552 
1553 	KASSERT(iphlen > 0, ("invalid ip hlen"));
1554 	KASSERT(thoff > 0, ("invalid tcp hlen"));
1555 	KASSERT(hoff > 0, ("invalid ether hlen"));
1556 
1557 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1558 		m = m_pullup(m, hoff + iphlen + thoff);
1559 		if (m == NULL) {
1560 			*mp = NULL;
1561 			return ENOBUFS;
1562 		}
1563 		*mp = m;
1564 	}
1565 	return 0;
1566 }
1567 
1568 static int
1569 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1570 {
1571 	struct jme_txdesc *txd;
1572 	struct jme_desc *desc;
1573 	struct mbuf *m;
1574 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1575 	int maxsegs, nsegs;
1576 	int error, i, prod, symbol_desc;
1577 	uint32_t cflags, flag64, mss;
1578 
1579 	M_ASSERTPKTHDR((*m_head));
1580 
1581 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1582 		/* XXX Is this necessary? */
1583 		error = jme_tso_pullup(m_head);
1584 		if (error)
1585 			return error;
1586 	}
1587 
1588 	prod = sc->jme_cdata.jme_tx_prod;
1589 	txd = &sc->jme_cdata.jme_txdesc[prod];
1590 
1591 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1592 		symbol_desc = 1;
1593 	else
1594 		symbol_desc = 0;
1595 
1596 	maxsegs = (sc->jme_cdata.jme_tx_desc_cnt - sc->jme_cdata.jme_tx_cnt) -
1597 		  (JME_TXD_RSVD + symbol_desc);
1598 	if (maxsegs > JME_MAXTXSEGS)
1599 		maxsegs = JME_MAXTXSEGS;
1600 	KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1601 		("not enough segments %d", maxsegs));
1602 
1603 	error = bus_dmamap_load_mbuf_defrag(sc->jme_cdata.jme_tx_tag,
1604 			txd->tx_dmamap, m_head,
1605 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1606 	if (error)
1607 		goto fail;
1608 
1609 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1610 			BUS_DMASYNC_PREWRITE);
1611 
1612 	m = *m_head;
1613 	cflags = 0;
1614 	mss = 0;
1615 
1616 	/* Configure checksum offload. */
1617 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1618 		mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1619 		cflags |= JME_TD_TSO;
1620 	} else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1621 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1622 			cflags |= JME_TD_IPCSUM;
1623 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1624 			cflags |= JME_TD_TCPCSUM;
1625 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1626 			cflags |= JME_TD_UDPCSUM;
1627 	}
1628 
1629 	/* Configure VLAN. */
1630 	if (m->m_flags & M_VLANTAG) {
1631 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1632 		cflags |= JME_TD_VLAN_TAG;
1633 	}
1634 
1635 	desc = &sc->jme_cdata.jme_tx_ring[prod];
1636 	desc->flags = htole32(cflags);
1637 	desc->addr_hi = htole32(m->m_pkthdr.len);
1638 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1639 		/*
1640 		 * Use 64bits TX desc chain format.
1641 		 *
1642 		 * The first TX desc of the chain, which is setup here,
1643 		 * is just a symbol TX desc carrying no payload.
1644 		 */
1645 		flag64 = JME_TD_64BIT;
1646 		desc->buflen = htole32(mss);
1647 		desc->addr_lo = 0;
1648 
1649 		/* No effective TX desc is consumed */
1650 		i = 0;
1651 	} else {
1652 		/*
1653 		 * Use 32bits TX desc chain format.
1654 		 *
1655 		 * The first TX desc of the chain, which is setup here,
1656 		 * is an effective TX desc carrying the first segment of
1657 		 * the mbuf chain.
1658 		 */
1659 		flag64 = 0;
1660 		desc->buflen = htole32(mss | txsegs[0].ds_len);
1661 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1662 
1663 		/* One effective TX desc is consumed */
1664 		i = 1;
1665 	}
1666 	sc->jme_cdata.jme_tx_cnt++;
1667 	KKASSERT(sc->jme_cdata.jme_tx_cnt - i <
1668 		 sc->jme_cdata.jme_tx_desc_cnt - JME_TXD_RSVD);
1669 	JME_DESC_INC(prod, sc->jme_cdata.jme_tx_desc_cnt);
1670 
1671 	txd->tx_ndesc = 1 - i;
1672 	for (; i < nsegs; i++) {
1673 		desc = &sc->jme_cdata.jme_tx_ring[prod];
1674 		desc->buflen = htole32(txsegs[i].ds_len);
1675 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1676 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1677 		desc->flags = htole32(JME_TD_OWN | flag64);
1678 
1679 		sc->jme_cdata.jme_tx_cnt++;
1680 		KKASSERT(sc->jme_cdata.jme_tx_cnt <=
1681 			 sc->jme_cdata.jme_tx_desc_cnt - JME_TXD_RSVD);
1682 		JME_DESC_INC(prod, sc->jme_cdata.jme_tx_desc_cnt);
1683 	}
1684 
1685 	/* Update producer index. */
1686 	sc->jme_cdata.jme_tx_prod = prod;
1687 	/*
1688 	 * Finally request interrupt and give the first descriptor
1689 	 * owenership to hardware.
1690 	 */
1691 	desc = txd->tx_desc;
1692 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1693 
1694 	txd->tx_m = m;
1695 	txd->tx_ndesc += nsegs;
1696 
1697 	return 0;
1698 fail:
1699 	m_freem(*m_head);
1700 	*m_head = NULL;
1701 	return error;
1702 }
1703 
1704 static void
1705 jme_start(struct ifnet *ifp)
1706 {
1707 	struct jme_softc *sc = ifp->if_softc;
1708 	struct mbuf *m_head;
1709 	int enq = 0;
1710 
1711 	ASSERT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
1712 
1713 	if (!sc->jme_has_link) {
1714 		ifq_purge(&ifp->if_snd);
1715 		return;
1716 	}
1717 
1718 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1719 		return;
1720 
1721 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT(sc))
1722 		jme_txeof(sc);
1723 
1724 	while (!ifq_is_empty(&ifp->if_snd)) {
1725 		/*
1726 		 * Check number of available TX descs, always
1727 		 * leave JME_TXD_RSVD free TX descs.
1728 		 */
1729 		if (sc->jme_cdata.jme_tx_cnt + JME_TXD_SPARE >
1730 		    sc->jme_cdata.jme_tx_desc_cnt - JME_TXD_RSVD) {
1731 			ifp->if_flags |= IFF_OACTIVE;
1732 			break;
1733 		}
1734 
1735 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1736 		if (m_head == NULL)
1737 			break;
1738 
1739 		/*
1740 		 * Pack the data into the transmit ring. If we
1741 		 * don't have room, set the OACTIVE flag and wait
1742 		 * for the NIC to drain the ring.
1743 		 */
1744 		if (jme_encap(sc, &m_head)) {
1745 			KKASSERT(m_head == NULL);
1746 			ifp->if_oerrors++;
1747 			ifp->if_flags |= IFF_OACTIVE;
1748 			break;
1749 		}
1750 		enq++;
1751 
1752 		/*
1753 		 * If there's a BPF listener, bounce a copy of this frame
1754 		 * to him.
1755 		 */
1756 		ETHER_BPF_MTAP(ifp, m_head);
1757 	}
1758 
1759 	if (enq > 0) {
1760 		/*
1761 		 * Reading TXCSR takes very long time under heavy load
1762 		 * so cache TXCSR value and writes the ORed value with
1763 		 * the kick command to the TXCSR. This saves one register
1764 		 * access cycle.
1765 		 */
1766 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1767 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1768 		/* Set a timeout in case the chip goes out to lunch. */
1769 		ifp->if_timer = JME_TX_TIMEOUT;
1770 	}
1771 }
1772 
1773 static void
1774 jme_watchdog(struct ifnet *ifp)
1775 {
1776 	struct jme_softc *sc = ifp->if_softc;
1777 
1778 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1779 
1780 	if (!sc->jme_has_link) {
1781 		if_printf(ifp, "watchdog timeout (missed link)\n");
1782 		ifp->if_oerrors++;
1783 		jme_init(sc);
1784 		return;
1785 	}
1786 
1787 	jme_txeof(sc);
1788 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1789 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1790 			  "-- recovering\n");
1791 		if (!ifq_is_empty(&ifp->if_snd))
1792 			if_devstart(ifp);
1793 		return;
1794 	}
1795 
1796 	if_printf(ifp, "watchdog timeout\n");
1797 	ifp->if_oerrors++;
1798 	jme_init(sc);
1799 	if (!ifq_is_empty(&ifp->if_snd))
1800 		if_devstart(ifp);
1801 }
1802 
1803 static int
1804 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1805 {
1806 	struct jme_softc *sc = ifp->if_softc;
1807 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1808 	struct ifreq *ifr = (struct ifreq *)data;
1809 	int error = 0, mask;
1810 
1811 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1812 
1813 	switch (cmd) {
1814 	case SIOCSIFMTU:
1815 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1816 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1817 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1818 			error = EINVAL;
1819 			break;
1820 		}
1821 
1822 		if (ifp->if_mtu != ifr->ifr_mtu) {
1823 			/*
1824 			 * No special configuration is required when interface
1825 			 * MTU is changed but availability of Tx checksum
1826 			 * offload should be chcked against new MTU size as
1827 			 * FIFO size is just 2K.
1828 			 */
1829 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1830 				ifp->if_capenable &=
1831 				    ~(IFCAP_TXCSUM | IFCAP_TSO);
1832 				ifp->if_hwassist &=
1833 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1834 			}
1835 			ifp->if_mtu = ifr->ifr_mtu;
1836 			if (ifp->if_flags & IFF_RUNNING)
1837 				jme_init(sc);
1838 		}
1839 		break;
1840 
1841 	case SIOCSIFFLAGS:
1842 		if (ifp->if_flags & IFF_UP) {
1843 			if (ifp->if_flags & IFF_RUNNING) {
1844 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1845 				    (IFF_PROMISC | IFF_ALLMULTI))
1846 					jme_set_filter(sc);
1847 			} else {
1848 				jme_init(sc);
1849 			}
1850 		} else {
1851 			if (ifp->if_flags & IFF_RUNNING)
1852 				jme_stop(sc);
1853 		}
1854 		sc->jme_if_flags = ifp->if_flags;
1855 		break;
1856 
1857 	case SIOCADDMULTI:
1858 	case SIOCDELMULTI:
1859 		if (ifp->if_flags & IFF_RUNNING)
1860 			jme_set_filter(sc);
1861 		break;
1862 
1863 	case SIOCSIFMEDIA:
1864 	case SIOCGIFMEDIA:
1865 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1866 		break;
1867 
1868 	case SIOCSIFCAP:
1869 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1870 
1871 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1872 			ifp->if_capenable ^= IFCAP_TXCSUM;
1873 			if (ifp->if_capenable & IFCAP_TXCSUM)
1874 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1875 			else
1876 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1877 		}
1878 		if (mask & IFCAP_RXCSUM) {
1879 			uint32_t reg;
1880 
1881 			ifp->if_capenable ^= IFCAP_RXCSUM;
1882 			reg = CSR_READ_4(sc, JME_RXMAC);
1883 			reg &= ~RXMAC_CSUM_ENB;
1884 			if (ifp->if_capenable & IFCAP_RXCSUM)
1885 				reg |= RXMAC_CSUM_ENB;
1886 			CSR_WRITE_4(sc, JME_RXMAC, reg);
1887 		}
1888 
1889 		if (mask & IFCAP_VLAN_HWTAGGING) {
1890 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1891 			jme_set_vlan(sc);
1892 		}
1893 
1894 		if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1895 			ifp->if_capenable ^= IFCAP_TSO;
1896 			if (ifp->if_capenable & IFCAP_TSO)
1897 				ifp->if_hwassist |= CSUM_TSO;
1898 			else
1899 				ifp->if_hwassist &= ~CSUM_TSO;
1900 		}
1901 
1902 		if (mask & IFCAP_RSS)
1903 			ifp->if_capenable ^= IFCAP_RSS;
1904 		break;
1905 
1906 	default:
1907 		error = ether_ioctl(ifp, cmd, data);
1908 		break;
1909 	}
1910 	return (error);
1911 }
1912 
1913 static void
1914 jme_mac_config(struct jme_softc *sc)
1915 {
1916 	struct mii_data *mii;
1917 	uint32_t ghc, rxmac, txmac, txpause, gp1;
1918 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
1919 
1920 	mii = device_get_softc(sc->jme_miibus);
1921 
1922 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
1923 	DELAY(10);
1924 	CSR_WRITE_4(sc, JME_GHC, 0);
1925 	ghc = 0;
1926 	rxmac = CSR_READ_4(sc, JME_RXMAC);
1927 	rxmac &= ~RXMAC_FC_ENB;
1928 	txmac = CSR_READ_4(sc, JME_TXMAC);
1929 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1930 	txpause = CSR_READ_4(sc, JME_TXPFC);
1931 	txpause &= ~TXPFC_PAUSE_ENB;
1932 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1933 		ghc |= GHC_FULL_DUPLEX;
1934 		rxmac &= ~RXMAC_COLL_DET_ENB;
1935 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1936 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1937 		    TXMAC_FRAME_BURST);
1938 #ifdef notyet
1939 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1940 			txpause |= TXPFC_PAUSE_ENB;
1941 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1942 			rxmac |= RXMAC_FC_ENB;
1943 #endif
1944 		/* Disable retry transmit timer/retry limit. */
1945 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
1946 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1947 	} else {
1948 		rxmac |= RXMAC_COLL_DET_ENB;
1949 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1950 		/* Enable retry transmit timer/retry limit. */
1951 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
1952 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1953 	}
1954 
1955 	/*
1956 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
1957 	 */
1958 	gp1 = CSR_READ_4(sc, JME_GPREG1);
1959 	gp1 &= ~GPREG1_WA_HDX;
1960 
1961 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1962 		hdx = 1;
1963 
1964 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1965 	case IFM_10_T:
1966 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
1967 		if (hdx)
1968 			gp1 |= GPREG1_WA_HDX;
1969 		break;
1970 
1971 	case IFM_100_TX:
1972 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
1973 		if (hdx)
1974 			gp1 |= GPREG1_WA_HDX;
1975 
1976 		/*
1977 		 * Use extended FIFO depth to workaround CRC errors
1978 		 * emitted by chips before JMC250B
1979 		 */
1980 		phyconf = JMPHY_CONF_EXTFIFO;
1981 		break;
1982 
1983 	case IFM_1000_T:
1984 		if (sc->jme_caps & JME_CAP_FASTETH)
1985 			break;
1986 
1987 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
1988 		if (hdx)
1989 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1990 		break;
1991 
1992 	default:
1993 		break;
1994 	}
1995 	CSR_WRITE_4(sc, JME_GHC, ghc);
1996 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
1997 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
1998 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
1999 
2000 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
2001 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2002 				    JMPHY_CONF, phyconf);
2003 	}
2004 	if (sc->jme_workaround & JME_WA_HDX)
2005 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
2006 }
2007 
2008 static void
2009 jme_intr(void *xsc)
2010 {
2011 	struct jme_softc *sc = xsc;
2012 	struct ifnet *ifp = &sc->arpcom.ac_if;
2013 	uint32_t status;
2014 	int r;
2015 
2016 	ASSERT_SERIALIZED(&sc->jme_serialize);
2017 
2018 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2019 	if (status == 0 || status == 0xFFFFFFFF)
2020 		return;
2021 
2022 	/* Disable interrupts. */
2023 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2024 
2025 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2026 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2027 		goto back;
2028 
2029 	/* Reset PCC counter/timer and Ack interrupts. */
2030 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2031 
2032 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2033 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2034 
2035 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2036 		if (status & jme_rx_status[r].jme_coal) {
2037 			status |= jme_rx_status[r].jme_coal |
2038 				  jme_rx_status[r].jme_comp;
2039 		}
2040 	}
2041 
2042 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2043 
2044 	if (ifp->if_flags & IFF_RUNNING) {
2045 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2046 			jme_rx_intr(sc, status);
2047 
2048 		if (status & INTR_RXQ_DESC_EMPTY) {
2049 			/*
2050 			 * Notify hardware availability of new Rx buffers.
2051 			 * Reading RXCSR takes very long time under heavy
2052 			 * load so cache RXCSR value and writes the ORed
2053 			 * value with the kick command to the RXCSR. This
2054 			 * saves one register access cycle.
2055 			 */
2056 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2057 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2058 		}
2059 
2060 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2061 			lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
2062 			jme_txeof(sc);
2063 			if (!ifq_is_empty(&ifp->if_snd))
2064 				if_devstart(ifp);
2065 			lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
2066 		}
2067 	}
2068 back:
2069 	/* Reenable interrupts. */
2070 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2071 }
2072 
2073 static void
2074 jme_txeof(struct jme_softc *sc)
2075 {
2076 	struct ifnet *ifp = &sc->arpcom.ac_if;
2077 	int cons;
2078 
2079 	cons = sc->jme_cdata.jme_tx_cons;
2080 	if (cons == sc->jme_cdata.jme_tx_prod)
2081 		return;
2082 
2083 	/*
2084 	 * Go through our Tx list and free mbufs for those
2085 	 * frames which have been transmitted.
2086 	 */
2087 	while (cons != sc->jme_cdata.jme_tx_prod) {
2088 		struct jme_txdesc *txd, *next_txd;
2089 		uint32_t status, next_status;
2090 		int next_cons, nsegs;
2091 
2092 		txd = &sc->jme_cdata.jme_txdesc[cons];
2093 		KASSERT(txd->tx_m != NULL,
2094 			("%s: freeing NULL mbuf!", __func__));
2095 
2096 		status = le32toh(txd->tx_desc->flags);
2097 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2098 			break;
2099 
2100 		/*
2101 		 * NOTE:
2102 		 * This chip will always update the TX descriptor's
2103 		 * buflen field and this updating always happens
2104 		 * after clearing the OWN bit, so even if the OWN
2105 		 * bit is cleared by the chip, we still don't sure
2106 		 * about whether the buflen field has been updated
2107 		 * by the chip or not.  To avoid this race, we wait
2108 		 * for the next TX descriptor's OWN bit to be cleared
2109 		 * by the chip before reusing this TX descriptor.
2110 		 */
2111 		next_cons = cons;
2112 		JME_DESC_ADD(next_cons, txd->tx_ndesc,
2113 		    sc->jme_cdata.jme_tx_desc_cnt);
2114 		next_txd = &sc->jme_cdata.jme_txdesc[next_cons];
2115 		if (next_txd->tx_m == NULL)
2116 			break;
2117 		next_status = le32toh(next_txd->tx_desc->flags);
2118 		if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2119 			break;
2120 
2121 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2122 			ifp->if_oerrors++;
2123 		} else {
2124 			ifp->if_opackets++;
2125 			if (status & JME_TD_COLLISION) {
2126 				ifp->if_collisions +=
2127 				    le32toh(txd->tx_desc->buflen) &
2128 				    JME_TD_BUF_LEN_MASK;
2129 			}
2130 		}
2131 
2132 		/*
2133 		 * Only the first descriptor of multi-descriptor
2134 		 * transmission is updated so driver have to skip entire
2135 		 * chained buffers for the transmiited frame. In other
2136 		 * words, JME_TD_OWN bit is valid only at the first
2137 		 * descriptor of a multi-descriptor transmission.
2138 		 */
2139 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2140 			sc->jme_cdata.jme_tx_ring[cons].flags = 0;
2141 			JME_DESC_INC(cons, sc->jme_cdata.jme_tx_desc_cnt);
2142 		}
2143 
2144 		/* Reclaim transferred mbufs. */
2145 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2146 		m_freem(txd->tx_m);
2147 		txd->tx_m = NULL;
2148 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2149 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2150 			("%s: Active Tx desc counter was garbled", __func__));
2151 		txd->tx_ndesc = 0;
2152 	}
2153 	sc->jme_cdata.jme_tx_cons = cons;
2154 
2155 	/* 1 for symbol TX descriptor */
2156 	if (sc->jme_cdata.jme_tx_cnt <= JME_MAXTXSEGS + 1)
2157 		ifp->if_timer = 0;
2158 
2159 	if (sc->jme_cdata.jme_tx_cnt + JME_TXD_SPARE <=
2160 	    sc->jme_cdata.jme_tx_desc_cnt - JME_TXD_RSVD)
2161 		ifp->if_flags &= ~IFF_OACTIVE;
2162 }
2163 
2164 static __inline void
2165 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2166 {
2167 	int i;
2168 
2169 	for (i = 0; i < count; ++i) {
2170 		jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2171 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2172 	}
2173 }
2174 
2175 static __inline struct pktinfo *
2176 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2177 {
2178 	if (flags & JME_RD_IPV4)
2179 		pi->pi_netisr = NETISR_IP;
2180 	else if (flags & JME_RD_IPV6)
2181 		pi->pi_netisr = NETISR_IPV6;
2182 	else
2183 		return NULL;
2184 
2185 	pi->pi_flags = 0;
2186 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2187 
2188 	if (flags & JME_RD_MORE_FRAG)
2189 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2190 	else if (flags & JME_RD_TCP)
2191 		pi->pi_l3proto = IPPROTO_TCP;
2192 	else if (flags & JME_RD_UDP)
2193 		pi->pi_l3proto = IPPROTO_UDP;
2194 	else
2195 		pi = NULL;
2196 	return pi;
2197 }
2198 
2199 /* Receive a frame. */
2200 static void
2201 jme_rxpkt(struct jme_rxdata *rdata)
2202 {
2203 	struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2204 	struct jme_desc *desc;
2205 	struct jme_rxdesc *rxd;
2206 	struct mbuf *mp, *m;
2207 	uint32_t flags, status, hash, hashinfo;
2208 	int cons, count, nsegs;
2209 
2210 	cons = rdata->jme_rx_cons;
2211 	desc = &rdata->jme_rx_ring[cons];
2212 
2213 	flags = le32toh(desc->flags);
2214 	status = le32toh(desc->buflen);
2215 	hash = le32toh(desc->addr_hi);
2216 	hashinfo = le32toh(desc->addr_lo);
2217 	nsegs = JME_RX_NSEGS(status);
2218 
2219 	if (nsegs > 1) {
2220 		/* Skip the first descriptor. */
2221 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2222 
2223 		/*
2224 		 * Clear the OWN bit of the following RX descriptors;
2225 		 * hardware will not clear the OWN bit except the first
2226 		 * RX descriptor.
2227 		 *
2228 		 * Since the first RX descriptor is setup, i.e. OWN bit
2229 		 * on, before its followins RX descriptors, leaving the
2230 		 * OWN bit on the following RX descriptors will trick
2231 		 * the hardware into thinking that the following RX
2232 		 * descriptors are ready to be used too.
2233 		 */
2234 		for (count = 1; count < nsegs; count++,
2235 		     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2236 			rdata->jme_rx_ring[cons].flags = 0;
2237 
2238 		cons = rdata->jme_rx_cons;
2239 	}
2240 
2241 	JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2242 			"hash 0x%08x, hash info 0x%08x\n",
2243 			rdata->jme_rx_idx, flags, hash, hashinfo);
2244 
2245 	if (status & JME_RX_ERR_STAT) {
2246 		ifp->if_ierrors++;
2247 		jme_discard_rxbufs(rdata, cons, nsegs);
2248 #ifdef JME_SHOW_ERRORS
2249 		if_printf(ifp, "%s : receive error = 0x%b\n",
2250 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2251 #endif
2252 		rdata->jme_rx_cons += nsegs;
2253 		rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2254 		return;
2255 	}
2256 
2257 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2258 	for (count = 0; count < nsegs; count++,
2259 	     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2260 		rxd = &rdata->jme_rxdesc[cons];
2261 		mp = rxd->rx_m;
2262 
2263 		/* Add a new receive buffer to the ring. */
2264 		if (jme_newbuf(rdata, rxd, 0) != 0) {
2265 			ifp->if_iqdrops++;
2266 			/* Reuse buffer. */
2267 			jme_discard_rxbufs(rdata, cons, nsegs - count);
2268 			if (rdata->jme_rxhead != NULL) {
2269 				m_freem(rdata->jme_rxhead);
2270 				JME_RXCHAIN_RESET(rdata);
2271 			}
2272 			break;
2273 		}
2274 
2275 		/*
2276 		 * Assume we've received a full sized frame.
2277 		 * Actual size is fixed when we encounter the end of
2278 		 * multi-segmented frame.
2279 		 */
2280 		mp->m_len = MCLBYTES;
2281 
2282 		/* Chain received mbufs. */
2283 		if (rdata->jme_rxhead == NULL) {
2284 			rdata->jme_rxhead = mp;
2285 			rdata->jme_rxtail = mp;
2286 		} else {
2287 			/*
2288 			 * Receive processor can receive a maximum frame
2289 			 * size of 65535 bytes.
2290 			 */
2291 			rdata->jme_rxtail->m_next = mp;
2292 			rdata->jme_rxtail = mp;
2293 		}
2294 
2295 		if (count == nsegs - 1) {
2296 			struct pktinfo pi0, *pi;
2297 
2298 			/* Last desc. for this frame. */
2299 			m = rdata->jme_rxhead;
2300 			m->m_pkthdr.len = rdata->jme_rxlen;
2301 			if (nsegs > 1) {
2302 				/* Set first mbuf size. */
2303 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2304 				/* Set last mbuf size. */
2305 				mp->m_len = rdata->jme_rxlen -
2306 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2307 				    (MCLBYTES * (nsegs - 2)));
2308 			} else {
2309 				m->m_len = rdata->jme_rxlen;
2310 			}
2311 			m->m_pkthdr.rcvif = ifp;
2312 
2313 			/*
2314 			 * Account for 10bytes auto padding which is used
2315 			 * to align IP header on 32bit boundary. Also note,
2316 			 * CRC bytes is automatically removed by the
2317 			 * hardware.
2318 			 */
2319 			m->m_data += JME_RX_PAD_BYTES;
2320 
2321 			/* Set checksum information. */
2322 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2323 			    (flags & JME_RD_IPV4)) {
2324 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2325 				if (flags & JME_RD_IPCSUM)
2326 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2327 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2328 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2329 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2330 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2331 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2332 					m->m_pkthdr.csum_flags |=
2333 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2334 					m->m_pkthdr.csum_data = 0xffff;
2335 				}
2336 			}
2337 
2338 			/* Check for VLAN tagged packets. */
2339 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2340 			    (flags & JME_RD_VLAN_TAG)) {
2341 				m->m_pkthdr.ether_vlantag =
2342 				    flags & JME_RD_VLAN_MASK;
2343 				m->m_flags |= M_VLANTAG;
2344 			}
2345 
2346 			ifp->if_ipackets++;
2347 
2348 			if (ifp->if_capenable & IFCAP_RSS)
2349 				pi = jme_pktinfo(&pi0, flags);
2350 			else
2351 				pi = NULL;
2352 
2353 			if (pi != NULL &&
2354 			    (hashinfo & JME_RD_HASH_FN_MASK) ==
2355 			    JME_RD_HASH_FN_TOEPLITZ) {
2356 				m->m_flags |= (M_HASH | M_CKHASH);
2357 				m->m_pkthdr.hash = toeplitz_hash(hash);
2358 			}
2359 
2360 #ifdef JME_RSS_DEBUG
2361 			if (pi != NULL) {
2362 				JME_RSS_DPRINTF(rdata->jme_sc, 10,
2363 				    "isr %d flags %08x, l3 %d %s\n",
2364 				    pi->pi_netisr, pi->pi_flags,
2365 				    pi->pi_l3proto,
2366 				    (m->m_flags & M_HASH) ? "hash" : "");
2367 			}
2368 #endif
2369 
2370 			/* Pass it on. */
2371 			ether_input_pkt(ifp, m, pi);
2372 
2373 			/* Reset mbuf chains. */
2374 			JME_RXCHAIN_RESET(rdata);
2375 #ifdef JME_RSS_DEBUG
2376 			rdata->jme_rx_pkt++;
2377 #endif
2378 		}
2379 	}
2380 
2381 	rdata->jme_rx_cons += nsegs;
2382 	rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2383 }
2384 
2385 static void
2386 jme_rxeof(struct jme_rxdata *rdata, int count)
2387 {
2388 	struct jme_desc *desc;
2389 	int nsegs, pktlen;
2390 
2391 	for (;;) {
2392 #ifdef DEVICE_POLLING
2393 		if (count >= 0 && count-- == 0)
2394 			break;
2395 #endif
2396 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2397 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2398 			break;
2399 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2400 			break;
2401 
2402 		/*
2403 		 * Check number of segments against received bytes.
2404 		 * Non-matching value would indicate that hardware
2405 		 * is still trying to update Rx descriptors. I'm not
2406 		 * sure whether this check is needed.
2407 		 */
2408 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2409 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2410 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2411 			if_printf(&rdata->jme_sc->arpcom.ac_if,
2412 			    "RX fragment count(%d) and "
2413 			    "packet size(%d) mismach\n", nsegs, pktlen);
2414 			break;
2415 		}
2416 
2417 		/*
2418 		 * NOTE:
2419 		 * RSS hash and hash information may _not_ be set by the
2420 		 * hardware even if the OWN bit is cleared and VALID bit
2421 		 * is set.
2422 		 *
2423 		 * If the RSS information is not delivered by the hardware
2424 		 * yet, we MUST NOT accept this packet, let alone reusing
2425 		 * its RX descriptor.  If this packet was accepted and its
2426 		 * RX descriptor was reused before hardware delivering the
2427 		 * RSS information, the RX buffer's address would be trashed
2428 		 * by the RSS information delivered by the hardware.
2429 		 */
2430 		if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2431 			struct jme_rxdesc *rxd;
2432 			uint32_t hashinfo;
2433 
2434 			hashinfo = le32toh(desc->addr_lo);
2435 			rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2436 
2437 			/*
2438 			 * This test should be enough to detect the pending
2439 			 * RSS information delivery, given:
2440 			 * - If RSS hash is not calculated, the hashinfo
2441 			 *   will be 0.  Howvever, the lower 32bits of RX
2442 			 *   buffers' physical address will never be 0.
2443 			 *   (see jme_rxbuf_dma_filter)
2444 			 * - If RSS hash is calculated, the lowest 4 bits
2445 			 *   of hashinfo will be set, while the RX buffers
2446 			 *   are at least 2K aligned.
2447 			 */
2448 			if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2449 #ifdef JME_SHOW_RSSWB
2450 				if_printf(&rdata->jme_sc->arpcom.ac_if,
2451 				    "RSS is not written back yet\n");
2452 #endif
2453 				break;
2454 			}
2455 		}
2456 
2457 		/* Received a frame. */
2458 		jme_rxpkt(rdata);
2459 	}
2460 }
2461 
2462 static void
2463 jme_tick(void *xsc)
2464 {
2465 	struct jme_softc *sc = xsc;
2466 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2467 
2468 	lwkt_serialize_enter(&sc->jme_serialize);
2469 
2470 	sc->jme_in_tick = TRUE;
2471 	mii_tick(mii);
2472 	sc->jme_in_tick = FALSE;
2473 
2474 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2475 
2476 	lwkt_serialize_exit(&sc->jme_serialize);
2477 }
2478 
2479 static void
2480 jme_reset(struct jme_softc *sc)
2481 {
2482 	uint32_t val;
2483 
2484 	/* Make sure that TX and RX are stopped */
2485 	jme_stop_tx(sc);
2486 	jme_stop_rx(sc);
2487 
2488 	/* Start reset */
2489 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2490 	DELAY(20);
2491 
2492 	/*
2493 	 * Hold reset bit before stop reset
2494 	 */
2495 
2496 	/* Disable TXMAC and TXOFL clock sources */
2497 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2498 	/* Disable RXMAC clock source */
2499 	val = CSR_READ_4(sc, JME_GPREG1);
2500 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2501 	/* Flush */
2502 	CSR_READ_4(sc, JME_GHC);
2503 
2504 	/* Stop reset */
2505 	CSR_WRITE_4(sc, JME_GHC, 0);
2506 	/* Flush */
2507 	CSR_READ_4(sc, JME_GHC);
2508 
2509 	/*
2510 	 * Clear reset bit after stop reset
2511 	 */
2512 
2513 	/* Enable TXMAC and TXOFL clock sources */
2514 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2515 	/* Enable RXMAC clock source */
2516 	val = CSR_READ_4(sc, JME_GPREG1);
2517 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2518 	/* Flush */
2519 	CSR_READ_4(sc, JME_GHC);
2520 
2521 	/* Disable TXMAC and TXOFL clock sources */
2522 	CSR_WRITE_4(sc, JME_GHC, 0);
2523 	/* Disable RXMAC clock source */
2524 	val = CSR_READ_4(sc, JME_GPREG1);
2525 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2526 	/* Flush */
2527 	CSR_READ_4(sc, JME_GHC);
2528 
2529 	/* Enable TX and RX */
2530 	val = CSR_READ_4(sc, JME_TXCSR);
2531 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2532 	val = CSR_READ_4(sc, JME_RXCSR);
2533 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2534 	/* Flush */
2535 	CSR_READ_4(sc, JME_TXCSR);
2536 	CSR_READ_4(sc, JME_RXCSR);
2537 
2538 	/* Enable TXMAC and TXOFL clock sources */
2539 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2540 	/* Eisable RXMAC clock source */
2541 	val = CSR_READ_4(sc, JME_GPREG1);
2542 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2543 	/* Flush */
2544 	CSR_READ_4(sc, JME_GHC);
2545 
2546 	/* Stop TX and RX */
2547 	jme_stop_tx(sc);
2548 	jme_stop_rx(sc);
2549 }
2550 
2551 static void
2552 jme_init(void *xsc)
2553 {
2554 	struct jme_softc *sc = xsc;
2555 	struct ifnet *ifp = &sc->arpcom.ac_if;
2556 	struct mii_data *mii;
2557 	uint8_t eaddr[ETHER_ADDR_LEN];
2558 	bus_addr_t paddr;
2559 	uint32_t reg;
2560 	int error, r;
2561 
2562 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2563 
2564 	/*
2565 	 * Cancel any pending I/O.
2566 	 */
2567 	jme_stop(sc);
2568 
2569 	/*
2570 	 * Reset the chip to a known state.
2571 	 */
2572 	jme_reset(sc);
2573 
2574 	/*
2575 	 * Setup MSI/MSI-X vectors to interrupts mapping
2576 	 */
2577 	jme_set_msinum(sc);
2578 
2579 	if (JME_ENABLE_HWRSS(sc))
2580 		jme_enable_rss(sc);
2581 	else
2582 		jme_disable_rss(sc);
2583 
2584 	/* Init RX descriptors */
2585 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2586 		error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2587 		if (error) {
2588 			if_printf(ifp, "initialization failed: "
2589 				  "no memory for %dth RX ring.\n", r);
2590 			jme_stop(sc);
2591 			return;
2592 		}
2593 	}
2594 
2595 	/* Init TX descriptors */
2596 	jme_init_tx_ring(sc);
2597 
2598 	/* Initialize shadow status block. */
2599 	jme_init_ssb(sc);
2600 
2601 	/* Reprogram the station address. */
2602 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2603 	CSR_WRITE_4(sc, JME_PAR0,
2604 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2605 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2606 
2607 	/*
2608 	 * Configure Tx queue.
2609 	 *  Tx priority queue weight value : 0
2610 	 *  Tx FIFO threshold for processing next packet : 16QW
2611 	 *  Maximum Tx DMA length : 512
2612 	 *  Allow Tx DMA burst.
2613 	 */
2614 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2615 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2616 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2617 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2618 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2619 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2620 
2621 	/* Set Tx descriptor counter. */
2622 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_desc_cnt);
2623 
2624 	/* Set Tx ring address to the hardware. */
2625 	paddr = sc->jme_cdata.jme_tx_ring_paddr;
2626 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2627 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2628 
2629 	/* Configure TxMAC parameters. */
2630 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2631 	reg |= TXMAC_THRESH_1_PKT;
2632 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2633 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2634 
2635 	/*
2636 	 * Configure Rx queue.
2637 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2638 	 *  FIFO threshold for processing next packet : 128QW
2639 	 *  Rx queue 0 select
2640 	 *  Max Rx DMA length : 128
2641 	 *  Rx descriptor retry : 32
2642 	 *  Rx descriptor retry time gap : 256ns
2643 	 *  Don't receive runt/bad frame.
2644 	 */
2645 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2646 #if 0
2647 	/*
2648 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2649 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2650 	 * decrease FIFO threshold to reduce the FIFO overruns for
2651 	 * frames larger than 4000 bytes.
2652 	 * For best performance of standard MTU sized frames use
2653 	 * maximum allowable FIFO threshold, 128QW.
2654 	 */
2655 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2656 	    JME_RX_FIFO_SIZE)
2657 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2658 	else
2659 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2660 #else
2661 	/* Improve PCI Express compatibility */
2662 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2663 #endif
2664 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2665 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2666 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2667 	/* XXX TODO DROP_BAD */
2668 
2669 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2670 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2671 
2672 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2673 
2674 		/* Set Rx descriptor counter. */
2675 		CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2676 
2677 		/* Set Rx ring address to the hardware. */
2678 		paddr = rdata->jme_rx_ring_paddr;
2679 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2680 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2681 	}
2682 
2683 	/* Clear receive filter. */
2684 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2685 
2686 	/* Set up the receive filter. */
2687 	jme_set_filter(sc);
2688 	jme_set_vlan(sc);
2689 
2690 	/*
2691 	 * Disable all WOL bits as WOL can interfere normal Rx
2692 	 * operation. Also clear WOL detection status bits.
2693 	 */
2694 	reg = CSR_READ_4(sc, JME_PMCS);
2695 	reg &= ~PMCS_WOL_ENB_MASK;
2696 	CSR_WRITE_4(sc, JME_PMCS, reg);
2697 
2698 	/*
2699 	 * Pad 10bytes right before received frame. This will greatly
2700 	 * help Rx performance on strict-alignment architectures as
2701 	 * it does not need to copy the frame to align the payload.
2702 	 */
2703 	reg = CSR_READ_4(sc, JME_RXMAC);
2704 	reg |= RXMAC_PAD_10BYTES;
2705 
2706 	if (ifp->if_capenable & IFCAP_RXCSUM)
2707 		reg |= RXMAC_CSUM_ENB;
2708 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2709 
2710 	/* Configure general purpose reg0 */
2711 	reg = CSR_READ_4(sc, JME_GPREG0);
2712 	reg &= ~GPREG0_PCC_UNIT_MASK;
2713 	/* Set PCC timer resolution to micro-seconds unit. */
2714 	reg |= GPREG0_PCC_UNIT_US;
2715 	/*
2716 	 * Disable all shadow register posting as we have to read
2717 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2718 	 * that it's hard to synchronize interrupt status between
2719 	 * hardware and software with shadow posting due to
2720 	 * requirements of bus_dmamap_sync(9).
2721 	 */
2722 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2723 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2724 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2725 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2726 	/* Disable posting of DW0. */
2727 	reg &= ~GPREG0_POST_DW0_ENB;
2728 	/* Clear PME message. */
2729 	reg &= ~GPREG0_PME_ENB;
2730 	/* Set PHY address. */
2731 	reg &= ~GPREG0_PHY_ADDR_MASK;
2732 	reg |= sc->jme_phyaddr;
2733 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2734 
2735 	/* Configure Tx queue 0 packet completion coalescing. */
2736 	jme_set_tx_coal(sc);
2737 
2738 	/* Configure Rx queues packet completion coalescing. */
2739 	jme_set_rx_coal(sc);
2740 
2741 	/* Configure shadow status block but don't enable posting. */
2742 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2743 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2744 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2745 
2746 	/* Disable Timer 1 and Timer 2. */
2747 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2748 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2749 
2750 	/* Configure retry transmit period, retry limit value. */
2751 	CSR_WRITE_4(sc, JME_TXTRHD,
2752 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2753 	    TXTRHD_RT_PERIOD_MASK) |
2754 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2755 	    TXTRHD_RT_LIMIT_SHIFT));
2756 
2757 #ifdef DEVICE_POLLING
2758 	if (!(ifp->if_flags & IFF_POLLING))
2759 #endif
2760 	/* Initialize the interrupt mask. */
2761 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2762 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2763 
2764 	/*
2765 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2766 	 * done after detection of valid link in jme_miibus_statchg.
2767 	 */
2768 	sc->jme_has_link = FALSE;
2769 
2770 	/* Set the current media. */
2771 	mii = device_get_softc(sc->jme_miibus);
2772 	mii_mediachg(mii);
2773 
2774 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2775 
2776 	ifp->if_flags |= IFF_RUNNING;
2777 	ifp->if_flags &= ~IFF_OACTIVE;
2778 }
2779 
2780 static void
2781 jme_stop(struct jme_softc *sc)
2782 {
2783 	struct ifnet *ifp = &sc->arpcom.ac_if;
2784 	struct jme_txdesc *txd;
2785 	struct jme_rxdesc *rxd;
2786 	struct jme_rxdata *rdata;
2787 	int i, r;
2788 
2789 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2790 
2791 	/*
2792 	 * Mark the interface down and cancel the watchdog timer.
2793 	 */
2794 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2795 	ifp->if_timer = 0;
2796 
2797 	callout_stop(&sc->jme_tick_ch);
2798 	sc->jme_has_link = FALSE;
2799 
2800 	/*
2801 	 * Disable interrupts.
2802 	 */
2803 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2804 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2805 
2806 	/* Disable updating shadow status block. */
2807 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2808 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2809 
2810 	/* Stop receiver, transmitter. */
2811 	jme_stop_rx(sc);
2812 	jme_stop_tx(sc);
2813 
2814 	/*
2815 	 * Free partial finished RX segments
2816 	 */
2817 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2818 		rdata = &sc->jme_cdata.jme_rx_data[r];
2819 		if (rdata->jme_rxhead != NULL)
2820 			m_freem(rdata->jme_rxhead);
2821 		JME_RXCHAIN_RESET(rdata);
2822 	}
2823 
2824 	/*
2825 	 * Free RX and TX mbufs still in the queues.
2826 	 */
2827 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2828 		rdata = &sc->jme_cdata.jme_rx_data[r];
2829 		for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2830 			rxd = &rdata->jme_rxdesc[i];
2831 			if (rxd->rx_m != NULL) {
2832 				bus_dmamap_unload(rdata->jme_rx_tag,
2833 						  rxd->rx_dmamap);
2834 				m_freem(rxd->rx_m);
2835 				rxd->rx_m = NULL;
2836 			}
2837 		}
2838 	}
2839 	for (i = 0; i < sc->jme_cdata.jme_tx_desc_cnt; i++) {
2840 		txd = &sc->jme_cdata.jme_txdesc[i];
2841 		if (txd->tx_m != NULL) {
2842 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
2843 			    txd->tx_dmamap);
2844 			m_freem(txd->tx_m);
2845 			txd->tx_m = NULL;
2846 			txd->tx_ndesc = 0;
2847 		}
2848         }
2849 }
2850 
2851 static void
2852 jme_stop_tx(struct jme_softc *sc)
2853 {
2854 	uint32_t reg;
2855 	int i;
2856 
2857 	reg = CSR_READ_4(sc, JME_TXCSR);
2858 	if ((reg & TXCSR_TX_ENB) == 0)
2859 		return;
2860 	reg &= ~TXCSR_TX_ENB;
2861 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2862 	for (i = JME_TIMEOUT; i > 0; i--) {
2863 		DELAY(1);
2864 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2865 			break;
2866 	}
2867 	if (i == 0)
2868 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2869 }
2870 
2871 static void
2872 jme_stop_rx(struct jme_softc *sc)
2873 {
2874 	uint32_t reg;
2875 	int i;
2876 
2877 	reg = CSR_READ_4(sc, JME_RXCSR);
2878 	if ((reg & RXCSR_RX_ENB) == 0)
2879 		return;
2880 	reg &= ~RXCSR_RX_ENB;
2881 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2882 	for (i = JME_TIMEOUT; i > 0; i--) {
2883 		DELAY(1);
2884 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2885 			break;
2886 	}
2887 	if (i == 0)
2888 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
2889 }
2890 
2891 static void
2892 jme_init_tx_ring(struct jme_softc *sc)
2893 {
2894 	struct jme_chain_data *cd;
2895 	struct jme_txdesc *txd;
2896 	int i;
2897 
2898 	sc->jme_cdata.jme_tx_prod = 0;
2899 	sc->jme_cdata.jme_tx_cons = 0;
2900 	sc->jme_cdata.jme_tx_cnt = 0;
2901 
2902 	cd = &sc->jme_cdata;
2903 	bzero(cd->jme_tx_ring, JME_TX_RING_SIZE(sc));
2904 	for (i = 0; i < sc->jme_cdata.jme_tx_desc_cnt; i++) {
2905 		txd = &sc->jme_cdata.jme_txdesc[i];
2906 		txd->tx_m = NULL;
2907 		txd->tx_desc = &cd->jme_tx_ring[i];
2908 		txd->tx_ndesc = 0;
2909 	}
2910 }
2911 
2912 static void
2913 jme_init_ssb(struct jme_softc *sc)
2914 {
2915 	struct jme_chain_data *cd;
2916 
2917 	cd = &sc->jme_cdata;
2918 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
2919 }
2920 
2921 static int
2922 jme_init_rx_ring(struct jme_rxdata *rdata)
2923 {
2924 	struct jme_rxdesc *rxd;
2925 	int i;
2926 
2927 	KKASSERT(rdata->jme_rxhead == NULL &&
2928 		 rdata->jme_rxtail == NULL &&
2929 		 rdata->jme_rxlen == 0);
2930 	rdata->jme_rx_cons = 0;
2931 
2932 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
2933 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2934 		int error;
2935 
2936 		rxd = &rdata->jme_rxdesc[i];
2937 		rxd->rx_m = NULL;
2938 		rxd->rx_desc = &rdata->jme_rx_ring[i];
2939 		error = jme_newbuf(rdata, rxd, 1);
2940 		if (error)
2941 			return error;
2942 	}
2943 	return 0;
2944 }
2945 
2946 static int
2947 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
2948 {
2949 	struct mbuf *m;
2950 	bus_dma_segment_t segs;
2951 	bus_dmamap_t map;
2952 	int error, nsegs;
2953 
2954 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2955 	if (m == NULL)
2956 		return ENOBUFS;
2957 	/*
2958 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
2959 	 * takes advantage of 10 bytes padding feature of hardware
2960 	 * in order not to copy entire frame to align IP header on
2961 	 * 32bit boundary.
2962 	 */
2963 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2964 
2965 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
2966 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
2967 			BUS_DMA_NOWAIT);
2968 	if (error) {
2969 		m_freem(m);
2970 		if (init) {
2971 			if_printf(&rdata->jme_sc->arpcom.ac_if,
2972 			    "can't load RX mbuf\n");
2973 		}
2974 		return error;
2975 	}
2976 
2977 	if (rxd->rx_m != NULL) {
2978 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
2979 				BUS_DMASYNC_POSTREAD);
2980 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
2981 	}
2982 	map = rxd->rx_dmamap;
2983 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
2984 	rdata->jme_rx_sparemap = map;
2985 	rxd->rx_m = m;
2986 	rxd->rx_paddr = segs.ds_addr;
2987 
2988 	jme_setup_rxdesc(rxd);
2989 	return 0;
2990 }
2991 
2992 static void
2993 jme_set_vlan(struct jme_softc *sc)
2994 {
2995 	struct ifnet *ifp = &sc->arpcom.ac_if;
2996 	uint32_t reg;
2997 
2998 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2999 
3000 	reg = CSR_READ_4(sc, JME_RXMAC);
3001 	reg &= ~RXMAC_VLAN_ENB;
3002 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3003 		reg |= RXMAC_VLAN_ENB;
3004 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3005 }
3006 
3007 static void
3008 jme_set_filter(struct jme_softc *sc)
3009 {
3010 	struct ifnet *ifp = &sc->arpcom.ac_if;
3011 	struct ifmultiaddr *ifma;
3012 	uint32_t crc;
3013 	uint32_t mchash[2];
3014 	uint32_t rxcfg;
3015 
3016 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3017 
3018 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3019 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3020 	    RXMAC_ALLMULTI);
3021 
3022 	/*
3023 	 * Always accept frames destined to our station address.
3024 	 * Always accept broadcast frames.
3025 	 */
3026 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3027 
3028 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3029 		if (ifp->if_flags & IFF_PROMISC)
3030 			rxcfg |= RXMAC_PROMISC;
3031 		if (ifp->if_flags & IFF_ALLMULTI)
3032 			rxcfg |= RXMAC_ALLMULTI;
3033 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3034 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3035 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3036 		return;
3037 	}
3038 
3039 	/*
3040 	 * Set up the multicast address filter by passing all multicast
3041 	 * addresses through a CRC generator, and then using the low-order
3042 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3043 	 * high order bits select the register, while the rest of the bits
3044 	 * select the bit within the register.
3045 	 */
3046 	rxcfg |= RXMAC_MULTICAST;
3047 	bzero(mchash, sizeof(mchash));
3048 
3049 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3050 		if (ifma->ifma_addr->sa_family != AF_LINK)
3051 			continue;
3052 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3053 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3054 
3055 		/* Just want the 6 least significant bits. */
3056 		crc &= 0x3f;
3057 
3058 		/* Set the corresponding bit in the hash table. */
3059 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3060 	}
3061 
3062 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3063 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3064 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3065 }
3066 
3067 static int
3068 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3069 {
3070 	struct jme_softc *sc = arg1;
3071 	struct ifnet *ifp = &sc->arpcom.ac_if;
3072 	int error, v;
3073 
3074 	ifnet_serialize_all(ifp);
3075 
3076 	v = sc->jme_tx_coal_to;
3077 	error = sysctl_handle_int(oidp, &v, 0, req);
3078 	if (error || req->newptr == NULL)
3079 		goto back;
3080 
3081 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3082 		error = EINVAL;
3083 		goto back;
3084 	}
3085 
3086 	if (v != sc->jme_tx_coal_to) {
3087 		sc->jme_tx_coal_to = v;
3088 		if (ifp->if_flags & IFF_RUNNING)
3089 			jme_set_tx_coal(sc);
3090 	}
3091 back:
3092 	ifnet_deserialize_all(ifp);
3093 	return error;
3094 }
3095 
3096 static int
3097 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3098 {
3099 	struct jme_softc *sc = arg1;
3100 	struct ifnet *ifp = &sc->arpcom.ac_if;
3101 	int error, v;
3102 
3103 	ifnet_serialize_all(ifp);
3104 
3105 	v = sc->jme_tx_coal_pkt;
3106 	error = sysctl_handle_int(oidp, &v, 0, req);
3107 	if (error || req->newptr == NULL)
3108 		goto back;
3109 
3110 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3111 		error = EINVAL;
3112 		goto back;
3113 	}
3114 
3115 	if (v != sc->jme_tx_coal_pkt) {
3116 		sc->jme_tx_coal_pkt = v;
3117 		if (ifp->if_flags & IFF_RUNNING)
3118 			jme_set_tx_coal(sc);
3119 	}
3120 back:
3121 	ifnet_deserialize_all(ifp);
3122 	return error;
3123 }
3124 
3125 static int
3126 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3127 {
3128 	struct jme_softc *sc = arg1;
3129 	struct ifnet *ifp = &sc->arpcom.ac_if;
3130 	int error, v;
3131 
3132 	ifnet_serialize_all(ifp);
3133 
3134 	v = sc->jme_rx_coal_to;
3135 	error = sysctl_handle_int(oidp, &v, 0, req);
3136 	if (error || req->newptr == NULL)
3137 		goto back;
3138 
3139 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3140 		error = EINVAL;
3141 		goto back;
3142 	}
3143 
3144 	if (v != sc->jme_rx_coal_to) {
3145 		sc->jme_rx_coal_to = v;
3146 		if (ifp->if_flags & IFF_RUNNING)
3147 			jme_set_rx_coal(sc);
3148 	}
3149 back:
3150 	ifnet_deserialize_all(ifp);
3151 	return error;
3152 }
3153 
3154 static int
3155 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3156 {
3157 	struct jme_softc *sc = arg1;
3158 	struct ifnet *ifp = &sc->arpcom.ac_if;
3159 	int error, v;
3160 
3161 	ifnet_serialize_all(ifp);
3162 
3163 	v = sc->jme_rx_coal_pkt;
3164 	error = sysctl_handle_int(oidp, &v, 0, req);
3165 	if (error || req->newptr == NULL)
3166 		goto back;
3167 
3168 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3169 		error = EINVAL;
3170 		goto back;
3171 	}
3172 
3173 	if (v != sc->jme_rx_coal_pkt) {
3174 		sc->jme_rx_coal_pkt = v;
3175 		if (ifp->if_flags & IFF_RUNNING)
3176 			jme_set_rx_coal(sc);
3177 	}
3178 back:
3179 	ifnet_deserialize_all(ifp);
3180 	return error;
3181 }
3182 
3183 static void
3184 jme_set_tx_coal(struct jme_softc *sc)
3185 {
3186 	uint32_t reg;
3187 
3188 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3189 	    PCCTX_COAL_TO_MASK;
3190 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3191 	    PCCTX_COAL_PKT_MASK;
3192 	reg |= PCCTX_COAL_TXQ0;
3193 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3194 }
3195 
3196 static void
3197 jme_set_rx_coal(struct jme_softc *sc)
3198 {
3199 	uint32_t reg;
3200 	int r;
3201 
3202 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3203 	    PCCRX_COAL_TO_MASK;
3204 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3205 	    PCCRX_COAL_PKT_MASK;
3206 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3207 		CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3208 }
3209 
3210 #ifdef DEVICE_POLLING
3211 
3212 static void
3213 jme_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3214 {
3215 	struct jme_softc *sc = ifp->if_softc;
3216 	uint32_t status;
3217 	int r;
3218 
3219 	ASSERT_SERIALIZED(&sc->jme_serialize);
3220 
3221 	switch (cmd) {
3222 	case POLL_REGISTER:
3223 		CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3224 		break;
3225 
3226 	case POLL_DEREGISTER:
3227 		CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
3228 		break;
3229 
3230 	case POLL_AND_CHECK_STATUS:
3231 	case POLL_ONLY:
3232 		status = CSR_READ_4(sc, JME_INTR_STATUS);
3233 
3234 		for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3235 			struct jme_rxdata *rdata =
3236 			    &sc->jme_cdata.jme_rx_data[r];
3237 
3238 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3239 			jme_rxeof(rdata, count);
3240 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3241 		}
3242 
3243 		if (status & INTR_RXQ_DESC_EMPTY) {
3244 			CSR_WRITE_4(sc, JME_INTR_STATUS, status);
3245 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
3246 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
3247 		}
3248 
3249 		lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
3250 		jme_txeof(sc);
3251 		if (!ifq_is_empty(&ifp->if_snd))
3252 			if_devstart(ifp);
3253 		lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
3254 		break;
3255 	}
3256 }
3257 
3258 #endif	/* DEVICE_POLLING */
3259 
3260 static int
3261 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3262 {
3263 	bus_dmamem_t dmem;
3264 	int error, asize;
3265 
3266 	asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3267 	error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3268 			JME_RX_RING_ALIGN, 0,
3269 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3270 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3271 	if (error) {
3272 		device_printf(rdata->jme_sc->jme_dev,
3273 		    "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3274 		return error;
3275 	}
3276 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3277 	rdata->jme_rx_ring_map = dmem.dmem_map;
3278 	rdata->jme_rx_ring = dmem.dmem_addr;
3279 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3280 
3281 	return 0;
3282 }
3283 
3284 static int
3285 jme_rxbuf_dma_filter(void *arg __unused, bus_addr_t paddr)
3286 {
3287 	if ((paddr & 0xffffffff) == 0) {
3288 		/*
3289 		 * Don't allow lower 32bits of the RX buffer's
3290 		 * physical address to be 0, else it will break
3291 		 * hardware pending RSS information delivery
3292 		 * detection on RX path.
3293 		 */
3294 		return 1;
3295 	}
3296 	return 0;
3297 }
3298 
3299 static int
3300 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3301 {
3302 	bus_addr_t lowaddr;
3303 	int i, error;
3304 
3305 	lowaddr = BUS_SPACE_MAXADDR;
3306 	if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3307 		/* jme_rxbuf_dma_filter will be called */
3308 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
3309 	}
3310 
3311 	/* Create tag for Rx buffers. */
3312 	error = bus_dma_tag_create(
3313 	    rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3314 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3315 	    lowaddr,			/* lowaddr */
3316 	    BUS_SPACE_MAXADDR,		/* highaddr */
3317 	    jme_rxbuf_dma_filter, NULL,	/* filter, filterarg */
3318 	    MCLBYTES,			/* maxsize */
3319 	    1,				/* nsegments */
3320 	    MCLBYTES,			/* maxsegsize */
3321 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3322 	    &rdata->jme_rx_tag);
3323 	if (error) {
3324 		device_printf(rdata->jme_sc->jme_dev,
3325 		    "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3326 		return error;
3327 	}
3328 
3329 	/* Create DMA maps for Rx buffers. */
3330 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3331 				  &rdata->jme_rx_sparemap);
3332 	if (error) {
3333 		device_printf(rdata->jme_sc->jme_dev,
3334 		    "could not create %dth spare Rx dmamap.\n",
3335 		    rdata->jme_rx_idx);
3336 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3337 		rdata->jme_rx_tag = NULL;
3338 		return error;
3339 	}
3340 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3341 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3342 
3343 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3344 					  &rxd->rx_dmamap);
3345 		if (error) {
3346 			int j;
3347 
3348 			device_printf(rdata->jme_sc->jme_dev,
3349 			    "could not create %dth Rx dmamap "
3350 			    "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3351 
3352 			for (j = 0; j < i; ++j) {
3353 				rxd = &rdata->jme_rxdesc[j];
3354 				bus_dmamap_destroy(rdata->jme_rx_tag,
3355 						   rxd->rx_dmamap);
3356 			}
3357 			bus_dmamap_destroy(rdata->jme_rx_tag,
3358 					   rdata->jme_rx_sparemap);
3359 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3360 			rdata->jme_rx_tag = NULL;
3361 			return error;
3362 		}
3363 	}
3364 	return 0;
3365 }
3366 
3367 static void
3368 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3369 {
3370 	int r;
3371 
3372 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3373 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3374 
3375 		if (status & rdata->jme_rx_coal) {
3376 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3377 			jme_rxeof(rdata, -1);
3378 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3379 		}
3380 	}
3381 }
3382 
3383 static void
3384 jme_enable_rss(struct jme_softc *sc)
3385 {
3386 	uint32_t rssc, ind;
3387 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3388 	int i;
3389 
3390 	KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3391 		sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3392 		("%s: invalid # of RX rings (%d)",
3393 		 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3394 
3395 	rssc = RSSC_HASH_64_ENTRY;
3396 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3397 	rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3398 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3399 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3400 
3401 	toeplitz_get_key(key, sizeof(key));
3402 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3403 		uint32_t keyreg;
3404 
3405 		keyreg = RSSKEY_REGVAL(key, i);
3406 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x\n", i, keyreg);
3407 
3408 		CSR_WRITE_4(sc, RSSKEY_REG(i), keyreg);
3409 	}
3410 
3411 	/*
3412 	 * Create redirect table in following fashion:
3413 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3414 	 */
3415 	ind = 0;
3416 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3417 		int q;
3418 
3419 		q = i % sc->jme_cdata.jme_rx_ring_cnt;
3420 		ind |= q << (i * 8);
3421 	}
3422 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3423 
3424 	for (i = 0; i < RSSTBL_NREGS; ++i)
3425 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3426 }
3427 
3428 static void
3429 jme_disable_rss(struct jme_softc *sc)
3430 {
3431 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3432 }
3433 
3434 static void
3435 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3436 {
3437 	struct jme_softc *sc = ifp->if_softc;
3438 
3439 	ifnet_serialize_array_enter(sc->jme_serialize_arr,
3440 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE, slz);
3441 }
3442 
3443 static void
3444 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3445 {
3446 	struct jme_softc *sc = ifp->if_softc;
3447 
3448 	ifnet_serialize_array_exit(sc->jme_serialize_arr,
3449 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE, slz);
3450 }
3451 
3452 static int
3453 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3454 {
3455 	struct jme_softc *sc = ifp->if_softc;
3456 
3457 	return ifnet_serialize_array_try(sc->jme_serialize_arr,
3458 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE, slz);
3459 }
3460 
3461 #ifdef INVARIANTS
3462 
3463 static void
3464 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3465     boolean_t serialized)
3466 {
3467 	struct jme_softc *sc = ifp->if_softc;
3468 
3469 	ifnet_serialize_array_assert(sc->jme_serialize_arr,
3470 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE,
3471 	    slz, serialized);
3472 }
3473 
3474 #endif	/* INVARIANTS */
3475 
3476 static void
3477 jme_msix_try_alloc(device_t dev)
3478 {
3479 	struct jme_softc *sc = device_get_softc(dev);
3480 	struct jme_msix_data *msix;
3481 	int error, i, r, msix_enable, msix_count;
3482 	int offset, offset_def;
3483 
3484 	msix_count = 1 + sc->jme_cdata.jme_rx_ring_cnt;
3485 	KKASSERT(msix_count <= JME_NMSIX);
3486 
3487 	msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3488 
3489 	/*
3490 	 * We leave the 1st MSI-X vector unused, so we
3491 	 * actually need msix_count + 1 MSI-X vectors.
3492 	 */
3493 	if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3494 		return;
3495 
3496 	for (i = 0; i < msix_count; ++i)
3497 		sc->jme_msix[i].jme_msix_rid = -1;
3498 
3499 	i = 0;
3500 
3501 	/*
3502 	 * Setup TX MSI-X
3503 	 */
3504 
3505 	offset_def = device_get_unit(dev) % ncpus2;
3506 	offset = device_getenv_int(dev, "msix.txoff", offset_def);
3507 	if (offset >= ncpus2) {
3508 		device_printf(dev, "invalid msix.txoff %d, use %d\n",
3509 		    offset, offset_def);
3510 		offset = offset_def;
3511 	}
3512 
3513 	msix = &sc->jme_msix[i++];
3514 	msix->jme_msix_cpuid = offset;
3515 	sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3516 	msix->jme_msix_arg = &sc->jme_cdata;
3517 	msix->jme_msix_func = jme_msix_tx;
3518 	msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3519 	msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_serialize;
3520 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3521 	    device_get_nameunit(dev));
3522 
3523 	/*
3524 	 * Setup RX MSI-X
3525 	 */
3526 
3527 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
3528 		offset = 0;
3529 	} else {
3530 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
3531 		    device_get_unit(dev)) % ncpus2;
3532 
3533 		offset = device_getenv_int(dev, "msix.rxoff", offset_def);
3534 		if (offset >= ncpus2 ||
3535 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3536 			device_printf(dev, "invalid msix.rxoff %d, use %d\n",
3537 			    offset, offset_def);
3538 			offset = offset_def;
3539 		}
3540 	}
3541 
3542 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3543 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3544 
3545 		msix = &sc->jme_msix[i++];
3546 		msix->jme_msix_cpuid = r + offset;
3547 		KKASSERT(msix->jme_msix_cpuid < ncpus2);
3548 		msix->jme_msix_arg = rdata;
3549 		msix->jme_msix_func = jme_msix_rx;
3550 		msix->jme_msix_intrs = rdata->jme_rx_coal | rdata->jme_rx_empty;
3551 		msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3552 		ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3553 		    "%s rx%d", device_get_nameunit(dev), r);
3554 	}
3555 
3556 	KKASSERT(i == msix_count);
3557 
3558 	error = pci_setup_msix(dev);
3559 	if (error)
3560 		return;
3561 
3562 	/* Setup jme_msix_cnt early, so we could cleanup */
3563 	sc->jme_msix_cnt = msix_count;
3564 
3565 	for (i = 0; i < msix_count; ++i) {
3566 		msix = &sc->jme_msix[i];
3567 
3568 		msix->jme_msix_vector = i + 1;
3569 		error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3570 		    &msix->jme_msix_rid, msix->jme_msix_cpuid);
3571 		if (error)
3572 			goto back;
3573 
3574 		msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3575 		    &msix->jme_msix_rid, RF_ACTIVE);
3576 		if (msix->jme_msix_res == NULL) {
3577 			error = ENOMEM;
3578 			goto back;
3579 		}
3580 	}
3581 
3582 	for (i = 0; i < JME_INTR_CNT; ++i) {
3583 		uint32_t intr_mask = (1 << i);
3584 		int x;
3585 
3586 		if ((JME_INTRS & intr_mask) == 0)
3587 			continue;
3588 
3589 		for (x = 0; x < msix_count; ++x) {
3590 			msix = &sc->jme_msix[x];
3591 			if (msix->jme_msix_intrs & intr_mask) {
3592 				int reg, shift;
3593 
3594 				reg = i / JME_MSINUM_FACTOR;
3595 				KKASSERT(reg < JME_MSINUM_CNT);
3596 
3597 				shift = (i % JME_MSINUM_FACTOR) * 4;
3598 
3599 				sc->jme_msinum[reg] |=
3600 				    (msix->jme_msix_vector << shift);
3601 
3602 				break;
3603 			}
3604 		}
3605 	}
3606 
3607 	if (bootverbose) {
3608 		for (i = 0; i < JME_MSINUM_CNT; ++i) {
3609 			device_printf(dev, "MSINUM%d: %#x\n", i,
3610 			    sc->jme_msinum[i]);
3611 		}
3612 	}
3613 
3614 	pci_enable_msix(dev);
3615 	sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3616 
3617 back:
3618 	if (error)
3619 		jme_msix_free(dev);
3620 }
3621 
3622 static int
3623 jme_intr_alloc(device_t dev)
3624 {
3625 	struct jme_softc *sc = device_get_softc(dev);
3626 	u_int irq_flags;
3627 
3628 	jme_msix_try_alloc(dev);
3629 
3630 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3631 		sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3632 		    &sc->jme_irq_rid, &irq_flags);
3633 
3634 		sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3635 		    &sc->jme_irq_rid, irq_flags);
3636 		if (sc->jme_irq_res == NULL) {
3637 			device_printf(dev, "can't allocate irq\n");
3638 			return ENXIO;
3639 		}
3640 	}
3641 	return 0;
3642 }
3643 
3644 static void
3645 jme_msix_free(device_t dev)
3646 {
3647 	struct jme_softc *sc = device_get_softc(dev);
3648 	int i;
3649 
3650 	KKASSERT(sc->jme_msix_cnt > 1);
3651 
3652 	for (i = 0; i < sc->jme_msix_cnt; ++i) {
3653 		struct jme_msix_data *msix = &sc->jme_msix[i];
3654 
3655 		if (msix->jme_msix_res != NULL) {
3656 			bus_release_resource(dev, SYS_RES_IRQ,
3657 			    msix->jme_msix_rid, msix->jme_msix_res);
3658 			msix->jme_msix_res = NULL;
3659 		}
3660 		if (msix->jme_msix_rid >= 0) {
3661 			pci_release_msix_vector(dev, msix->jme_msix_rid);
3662 			msix->jme_msix_rid = -1;
3663 		}
3664 	}
3665 	pci_teardown_msix(dev);
3666 }
3667 
3668 static void
3669 jme_intr_free(device_t dev)
3670 {
3671 	struct jme_softc *sc = device_get_softc(dev);
3672 
3673 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3674 		if (sc->jme_irq_res != NULL) {
3675 			bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3676 					     sc->jme_irq_res);
3677 		}
3678 		if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3679 			pci_release_msi(dev);
3680 	} else {
3681 		jme_msix_free(dev);
3682 	}
3683 }
3684 
3685 static void
3686 jme_msix_tx(void *xcd)
3687 {
3688 	struct jme_chain_data *cd = xcd;
3689 	struct jme_softc *sc = cd->jme_sc;
3690 	struct ifnet *ifp = &sc->arpcom.ac_if;
3691 
3692 	ASSERT_SERIALIZED(&cd->jme_tx_serialize);
3693 
3694 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3695 
3696 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3697 	    INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3698 
3699 	if (ifp->if_flags & IFF_RUNNING) {
3700 		jme_txeof(sc);
3701 		if (!ifq_is_empty(&ifp->if_snd))
3702 			if_devstart(ifp);
3703 	}
3704 
3705 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3706 }
3707 
3708 static void
3709 jme_msix_rx(void *xrdata)
3710 {
3711 	struct jme_rxdata *rdata = xrdata;
3712 	struct jme_softc *sc = rdata->jme_sc;
3713 	struct ifnet *ifp = &sc->arpcom.ac_if;
3714 	uint32_t status;
3715 
3716 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3717 
3718 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR,
3719 	    (rdata->jme_rx_coal | rdata->jme_rx_empty));
3720 
3721 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3722 	status &= (rdata->jme_rx_coal | rdata->jme_rx_empty);
3723 
3724 	if (status & rdata->jme_rx_coal)
3725 		status |= (rdata->jme_rx_coal | rdata->jme_rx_comp);
3726 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
3727 
3728 	if (ifp->if_flags & IFF_RUNNING) {
3729 		if (status & rdata->jme_rx_coal)
3730 			jme_rxeof(rdata, -1);
3731 
3732 		if (status & rdata->jme_rx_empty) {
3733 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
3734 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
3735 			rdata->jme_rx_emp++;
3736 		}
3737 	}
3738 
3739 	CSR_WRITE_4(sc, JME_INTR_MASK_SET,
3740 	    (rdata->jme_rx_coal | rdata->jme_rx_empty));
3741 }
3742 
3743 static void
3744 jme_set_msinum(struct jme_softc *sc)
3745 {
3746 	int i;
3747 
3748 	for (i = 0; i < JME_MSINUM_CNT; ++i)
3749 		CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3750 }
3751 
3752 static int
3753 jme_intr_setup(device_t dev)
3754 {
3755 	struct jme_softc *sc = device_get_softc(dev);
3756 	struct ifnet *ifp = &sc->arpcom.ac_if;
3757 	int error;
3758 
3759 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3760 		return jme_msix_setup(dev);
3761 
3762 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
3763 	    jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
3764 	if (error) {
3765 		device_printf(dev, "could not set up interrupt handler.\n");
3766 		return error;
3767 	}
3768 
3769 	ifp->if_cpuid = rman_get_cpuid(sc->jme_irq_res);
3770 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3771 	return 0;
3772 }
3773 
3774 static void
3775 jme_intr_teardown(device_t dev)
3776 {
3777 	struct jme_softc *sc = device_get_softc(dev);
3778 
3779 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3780 		jme_msix_teardown(dev, sc->jme_msix_cnt);
3781 	else
3782 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
3783 }
3784 
3785 static int
3786 jme_msix_setup(device_t dev)
3787 {
3788 	struct jme_softc *sc = device_get_softc(dev);
3789 	struct ifnet *ifp = &sc->arpcom.ac_if;
3790 	int x;
3791 
3792 	for (x = 0; x < sc->jme_msix_cnt; ++x) {
3793 		struct jme_msix_data *msix = &sc->jme_msix[x];
3794 		int error;
3795 
3796 		error = bus_setup_intr_descr(dev, msix->jme_msix_res,
3797 		    INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
3798 		    &msix->jme_msix_handle, msix->jme_msix_serialize,
3799 		    msix->jme_msix_desc);
3800 		if (error) {
3801 			device_printf(dev, "could not set up %s "
3802 			    "interrupt handler.\n", msix->jme_msix_desc);
3803 			jme_msix_teardown(dev, x);
3804 			return error;
3805 		}
3806 	}
3807 	ifp->if_cpuid = sc->jme_tx_cpuid;
3808 	return 0;
3809 }
3810 
3811 static void
3812 jme_msix_teardown(device_t dev, int msix_count)
3813 {
3814 	struct jme_softc *sc = device_get_softc(dev);
3815 	int x;
3816 
3817 	for (x = 0; x < msix_count; ++x) {
3818 		struct jme_msix_data *msix = &sc->jme_msix[x];
3819 
3820 		bus_teardown_intr(dev, msix->jme_msix_res,
3821 		    msix->jme_msix_handle);
3822 	}
3823 }
3824 
3825 static void
3826 jme_serialize_skipmain(struct jme_softc *sc)
3827 {
3828 	lwkt_serialize_array_enter(sc->jme_serialize_arr,
3829 	    sc->jme_serialize_cnt, 1);
3830 }
3831 
3832 static void
3833 jme_deserialize_skipmain(struct jme_softc *sc)
3834 {
3835 	lwkt_serialize_array_exit(sc->jme_serialize_arr,
3836 	    sc->jme_serialize_cnt, 1);
3837 }
3838