xref: /dflybsd-src/sys/dev/netif/jme/if_jme.c (revision 4c77af2da1d56e9bf10a0f03e974dbbf6a967810)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_ifpoll.h"
31 #include "opt_jme.h"
32 
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_poll.h>
54 #include <net/ifq_var.h>
55 #include <net/toeplitz.h>
56 #include <net/toeplitz2.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/netif/mii_layer/miivar.h>
64 #include <dev/netif/mii_layer/jmphyreg.h>
65 
66 #include <bus/pci/pcireg.h>
67 #include <bus/pci/pcivar.h>
68 #include <bus/pci/pcidevs.h>
69 
70 #include <dev/netif/jme/if_jmereg.h>
71 #include <dev/netif/jme/if_jmevar.h>
72 
73 #include "miibus_if.h"
74 
75 #define JME_TICK_CPUID		0	/* DO NOT CHANGE THIS */
76 
77 #define JME_TX_SERIALIZE	1
78 #define JME_RX_SERIALIZE	2
79 
80 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81 
82 #ifdef JME_RSS_DEBUG
83 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
84 do { \
85 	if ((sc)->jme_rss_debug >= (lvl)) \
86 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
87 } while (0)
88 #else	/* !JME_RSS_DEBUG */
89 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
90 #endif	/* JME_RSS_DEBUG */
91 
92 static int	jme_probe(device_t);
93 static int	jme_attach(device_t);
94 static int	jme_detach(device_t);
95 static int	jme_shutdown(device_t);
96 static int	jme_suspend(device_t);
97 static int	jme_resume(device_t);
98 
99 static int	jme_miibus_readreg(device_t, int, int);
100 static int	jme_miibus_writereg(device_t, int, int, int);
101 static void	jme_miibus_statchg(device_t);
102 
103 static void	jme_init(void *);
104 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
105 static void	jme_start(struct ifnet *, struct ifaltq_subque *);
106 static void	jme_watchdog(struct ifnet *);
107 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
108 static int	jme_mediachange(struct ifnet *);
109 #ifdef IFPOLL_ENABLE
110 static void	jme_npoll(struct ifnet *, struct ifpoll_info *);
111 static void	jme_npoll_status(struct ifnet *);
112 static void	jme_npoll_rx(struct ifnet *, void *, int);
113 static void	jme_npoll_tx(struct ifnet *, void *, int);
114 #endif
115 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
116 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
117 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
118 #ifdef INVARIANTS
119 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
120 		    boolean_t);
121 #endif
122 
123 static void	jme_intr(void *);
124 static void	jme_msix_tx(void *);
125 static void	jme_msix_rx(void *);
126 static void	jme_msix_status(void *);
127 static void	jme_txeof(struct jme_txdata *);
128 static void	jme_rxeof(struct jme_rxdata *, int);
129 static void	jme_rx_intr(struct jme_softc *, uint32_t);
130 static void	jme_enable_intr(struct jme_softc *);
131 static void	jme_disable_intr(struct jme_softc *);
132 static void	jme_rx_restart(struct jme_softc *, uint32_t);
133 
134 static int	jme_msix_setup(device_t);
135 static void	jme_msix_teardown(device_t, int);
136 static int	jme_intr_setup(device_t);
137 static void	jme_intr_teardown(device_t);
138 static void	jme_msix_try_alloc(device_t);
139 static void	jme_msix_free(device_t);
140 static int	jme_intr_alloc(device_t);
141 static void	jme_intr_free(device_t);
142 static int	jme_dma_alloc(struct jme_softc *);
143 static void	jme_dma_free(struct jme_softc *);
144 static int	jme_init_rx_ring(struct jme_rxdata *);
145 static void	jme_init_tx_ring(struct jme_txdata *);
146 static void	jme_init_ssb(struct jme_softc *);
147 static int	jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
148 static int	jme_encap(struct jme_txdata *, struct mbuf **, int *);
149 static void	jme_rxpkt(struct jme_rxdata *);
150 static int	jme_rxring_dma_alloc(struct jme_rxdata *);
151 static int	jme_rxbuf_dma_alloc(struct jme_rxdata *);
152 static int	jme_rxbuf_dma_filter(void *, bus_addr_t);
153 
154 static void	jme_tick(void *);
155 static void	jme_stop(struct jme_softc *);
156 static void	jme_reset(struct jme_softc *);
157 static void	jme_set_msinum(struct jme_softc *);
158 static void	jme_set_vlan(struct jme_softc *);
159 static void	jme_set_filter(struct jme_softc *);
160 static void	jme_stop_tx(struct jme_softc *);
161 static void	jme_stop_rx(struct jme_softc *);
162 static void	jme_mac_config(struct jme_softc *);
163 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
164 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
165 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
166 #ifdef notyet
167 static void	jme_setwol(struct jme_softc *);
168 static void	jme_setlinkspeed(struct jme_softc *);
169 #endif
170 static void	jme_set_tx_coal(struct jme_softc *);
171 static void	jme_set_rx_coal(struct jme_softc *);
172 static void	jme_enable_rss(struct jme_softc *);
173 static void	jme_disable_rss(struct jme_softc *);
174 static void	jme_serialize_skipmain(struct jme_softc *);
175 static void	jme_deserialize_skipmain(struct jme_softc *);
176 
177 static void	jme_sysctl_node(struct jme_softc *);
178 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
179 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
180 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
181 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
182 #ifdef IFPOLL_ENABLE
183 static int	jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
184 static int	jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
185 #endif
186 
187 /*
188  * Devices supported by this driver.
189  */
190 static const struct jme_dev {
191 	uint16_t	jme_vendorid;
192 	uint16_t	jme_deviceid;
193 	uint32_t	jme_caps;
194 	const char	*jme_name;
195 } jme_devs[] = {
196 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
197 	    JME_CAP_JUMBO,
198 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
199 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
200 	    JME_CAP_FASTETH,
201 	    "JMicron Inc, JMC260 Fast Ethernet" },
202 	{ 0, 0, 0, NULL }
203 };
204 
205 static device_method_t jme_methods[] = {
206 	/* Device interface. */
207 	DEVMETHOD(device_probe,		jme_probe),
208 	DEVMETHOD(device_attach,	jme_attach),
209 	DEVMETHOD(device_detach,	jme_detach),
210 	DEVMETHOD(device_shutdown,	jme_shutdown),
211 	DEVMETHOD(device_suspend,	jme_suspend),
212 	DEVMETHOD(device_resume,	jme_resume),
213 
214 	/* Bus interface. */
215 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
216 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
217 
218 	/* MII interface. */
219 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
220 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
221 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
222 
223 	{ NULL, NULL }
224 };
225 
226 static driver_t jme_driver = {
227 	"jme",
228 	jme_methods,
229 	sizeof(struct jme_softc)
230 };
231 
232 static devclass_t jme_devclass;
233 
234 DECLARE_DUMMY_MODULE(if_jme);
235 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
236 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
237 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
238 
239 static const struct {
240 	uint32_t	jme_coal;
241 	uint32_t	jme_comp;
242 	uint32_t	jme_empty;
243 } jme_rx_status[JME_NRXRING_MAX] = {
244 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
245 	  INTR_RXQ0_DESC_EMPTY },
246 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
247 	  INTR_RXQ1_DESC_EMPTY },
248 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
249 	  INTR_RXQ2_DESC_EMPTY },
250 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
251 	  INTR_RXQ3_DESC_EMPTY }
252 };
253 
254 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
255 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
256 static int	jme_rx_ring_count = 0;
257 static int	jme_msi_enable = 1;
258 static int	jme_msix_enable = 1;
259 
260 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
261 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
262 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
263 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
264 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
265 
266 static __inline void
267 jme_setup_rxdesc(struct jme_rxdesc *rxd)
268 {
269 	struct jme_desc *desc;
270 
271 	desc = rxd->rx_desc;
272 	desc->buflen = htole32(MCLBYTES);
273 	desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
274 	desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
275 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
276 }
277 
278 /*
279  *	Read a PHY register on the MII of the JMC250.
280  */
281 static int
282 jme_miibus_readreg(device_t dev, int phy, int reg)
283 {
284 	struct jme_softc *sc = device_get_softc(dev);
285 	uint32_t val;
286 	int i;
287 
288 	/* For FPGA version, PHY address 0 should be ignored. */
289 	if (sc->jme_caps & JME_CAP_FPGA) {
290 		if (phy == 0)
291 			return (0);
292 	} else {
293 		if (sc->jme_phyaddr != phy)
294 			return (0);
295 	}
296 
297 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
298 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
299 
300 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
301 		DELAY(1);
302 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
303 			break;
304 	}
305 	if (i == 0) {
306 		device_printf(sc->jme_dev, "phy read timeout: "
307 			      "phy %d, reg %d\n", phy, reg);
308 		return (0);
309 	}
310 
311 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
312 }
313 
314 /*
315  *	Write a PHY register on the MII of the JMC250.
316  */
317 static int
318 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
319 {
320 	struct jme_softc *sc = device_get_softc(dev);
321 	int i;
322 
323 	/* For FPGA version, PHY address 0 should be ignored. */
324 	if (sc->jme_caps & JME_CAP_FPGA) {
325 		if (phy == 0)
326 			return (0);
327 	} else {
328 		if (sc->jme_phyaddr != phy)
329 			return (0);
330 	}
331 
332 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
333 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
334 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
335 
336 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
337 		DELAY(1);
338 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
339 			break;
340 	}
341 	if (i == 0) {
342 		device_printf(sc->jme_dev, "phy write timeout: "
343 			      "phy %d, reg %d\n", phy, reg);
344 	}
345 
346 	return (0);
347 }
348 
349 /*
350  *	Callback from MII layer when media changes.
351  */
352 static void
353 jme_miibus_statchg(device_t dev)
354 {
355 	struct jme_softc *sc = device_get_softc(dev);
356 	struct ifnet *ifp = &sc->arpcom.ac_if;
357 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
358 	struct mii_data *mii;
359 	struct jme_txdesc *txd;
360 	bus_addr_t paddr;
361 	int i, r;
362 
363 	if (sc->jme_in_tick)
364 		jme_serialize_skipmain(sc);
365 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
366 
367 	if ((ifp->if_flags & IFF_RUNNING) == 0)
368 		goto done;
369 
370 	mii = device_get_softc(sc->jme_miibus);
371 
372 	sc->jme_has_link = FALSE;
373 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
374 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
375 		case IFM_10_T:
376 		case IFM_100_TX:
377 			sc->jme_has_link = TRUE;
378 			break;
379 		case IFM_1000_T:
380 			if (sc->jme_caps & JME_CAP_FASTETH)
381 				break;
382 			sc->jme_has_link = TRUE;
383 			break;
384 		default:
385 			break;
386 		}
387 	}
388 
389 	/*
390 	 * Disabling Rx/Tx MACs have a side-effect of resetting
391 	 * JME_TXNDA/JME_RXNDA register to the first address of
392 	 * Tx/Rx descriptor address. So driver should reset its
393 	 * internal procucer/consumer pointer and reclaim any
394 	 * allocated resources.  Note, just saving the value of
395 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
396 	 * and restoring JME_TXNDA/JME_RXNDA register is not
397 	 * sufficient to make sure correct MAC state because
398 	 * stopping MAC operation can take a while and hardware
399 	 * might have updated JME_TXNDA/JME_RXNDA registers
400 	 * during the stop operation.
401 	 */
402 
403 	/* Disable interrupts */
404 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
405 
406 	/* Stop driver */
407 	ifp->if_flags &= ~IFF_RUNNING;
408 	ifq_clr_oactive(&ifp->if_snd);
409 	ifp->if_timer = 0;
410 	callout_stop(&sc->jme_tick_ch);
411 
412 	/* Stop receiver/transmitter. */
413 	jme_stop_rx(sc);
414 	jme_stop_tx(sc);
415 
416 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
417 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
418 
419 		jme_rxeof(rdata, -1);
420 		if (rdata->jme_rxhead != NULL)
421 			m_freem(rdata->jme_rxhead);
422 		JME_RXCHAIN_RESET(rdata);
423 
424 		/*
425 		 * Reuse configured Rx descriptors and reset
426 		 * procuder/consumer index.
427 		 */
428 		rdata->jme_rx_cons = 0;
429 	}
430 	if (JME_ENABLE_HWRSS(sc))
431 		jme_enable_rss(sc);
432 	else
433 		jme_disable_rss(sc);
434 
435 	jme_txeof(tdata);
436 	if (tdata->jme_tx_cnt != 0) {
437 		/* Remove queued packets for transmit. */
438 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
439 			txd = &tdata->jme_txdesc[i];
440 			if (txd->tx_m != NULL) {
441 				bus_dmamap_unload( tdata->jme_tx_tag,
442 				    txd->tx_dmamap);
443 				m_freem(txd->tx_m);
444 				txd->tx_m = NULL;
445 				txd->tx_ndesc = 0;
446 				IFNET_STAT_INC(ifp, oerrors, 1);
447 			}
448 		}
449 	}
450 	jme_init_tx_ring(tdata);
451 
452 	/* Initialize shadow status block. */
453 	jme_init_ssb(sc);
454 
455 	/* Program MAC with resolved speed/duplex/flow-control. */
456 	if (sc->jme_has_link) {
457 		jme_mac_config(sc);
458 
459 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
460 
461 		/* Set Tx ring address to the hardware. */
462 		paddr = tdata->jme_tx_ring_paddr;
463 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
464 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
465 
466 		for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
467 			CSR_WRITE_4(sc, JME_RXCSR,
468 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
469 
470 			/* Set Rx ring address to the hardware. */
471 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
472 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
473 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
474 		}
475 
476 		/* Restart receiver/transmitter. */
477 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
478 		    RXCSR_RXQ_START);
479 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
480 	}
481 
482 	ifp->if_flags |= IFF_RUNNING;
483 	ifq_clr_oactive(&ifp->if_snd);
484 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
485 	    JME_TICK_CPUID);
486 
487 #ifdef IFPOLL_ENABLE
488 	if (!(ifp->if_flags & IFF_NPOLLING))
489 #endif
490 	/* Reenable interrupts. */
491 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
492 
493 done:
494 	if (sc->jme_in_tick)
495 		jme_deserialize_skipmain(sc);
496 }
497 
498 /*
499  *	Get the current interface media status.
500  */
501 static void
502 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
503 {
504 	struct jme_softc *sc = ifp->if_softc;
505 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
506 
507 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
508 
509 	mii_pollstat(mii);
510 	ifmr->ifm_status = mii->mii_media_status;
511 	ifmr->ifm_active = mii->mii_media_active;
512 }
513 
514 /*
515  *	Set hardware to newly-selected media.
516  */
517 static int
518 jme_mediachange(struct ifnet *ifp)
519 {
520 	struct jme_softc *sc = ifp->if_softc;
521 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
522 	int error;
523 
524 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
525 
526 	if (mii->mii_instance != 0) {
527 		struct mii_softc *miisc;
528 
529 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
530 			mii_phy_reset(miisc);
531 	}
532 	error = mii_mediachg(mii);
533 
534 	return (error);
535 }
536 
537 static int
538 jme_probe(device_t dev)
539 {
540 	const struct jme_dev *sp;
541 	uint16_t vid, did;
542 
543 	vid = pci_get_vendor(dev);
544 	did = pci_get_device(dev);
545 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
546 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
547 			struct jme_softc *sc = device_get_softc(dev);
548 
549 			sc->jme_caps = sp->jme_caps;
550 			device_set_desc(dev, sp->jme_name);
551 			return (0);
552 		}
553 	}
554 	return (ENXIO);
555 }
556 
557 static int
558 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
559 {
560 	uint32_t reg;
561 	int i;
562 
563 	*val = 0;
564 	for (i = JME_TIMEOUT; i > 0; i--) {
565 		reg = CSR_READ_4(sc, JME_SMBCSR);
566 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
567 			break;
568 		DELAY(1);
569 	}
570 
571 	if (i == 0) {
572 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
573 		return (ETIMEDOUT);
574 	}
575 
576 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
577 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
578 	for (i = JME_TIMEOUT; i > 0; i--) {
579 		DELAY(1);
580 		reg = CSR_READ_4(sc, JME_SMBINTF);
581 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
582 			break;
583 	}
584 
585 	if (i == 0) {
586 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
587 		return (ETIMEDOUT);
588 	}
589 
590 	reg = CSR_READ_4(sc, JME_SMBINTF);
591 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
592 
593 	return (0);
594 }
595 
596 static int
597 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
598 {
599 	uint8_t fup, reg, val;
600 	uint32_t offset;
601 	int match;
602 
603 	offset = 0;
604 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
605 	    fup != JME_EEPROM_SIG0)
606 		return (ENOENT);
607 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
608 	    fup != JME_EEPROM_SIG1)
609 		return (ENOENT);
610 	match = 0;
611 	do {
612 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
613 			break;
614 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
615 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
616 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
617 				break;
618 			if (reg >= JME_PAR0 &&
619 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
620 				if (jme_eeprom_read_byte(sc, offset + 2,
621 				    &val) != 0)
622 					break;
623 				eaddr[reg - JME_PAR0] = val;
624 				match++;
625 			}
626 		}
627 		/* Check for the end of EEPROM descriptor. */
628 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
629 			break;
630 		/* Try next eeprom descriptor. */
631 		offset += JME_EEPROM_DESC_BYTES;
632 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
633 
634 	if (match == ETHER_ADDR_LEN)
635 		return (0);
636 
637 	return (ENOENT);
638 }
639 
640 static void
641 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
642 {
643 	uint32_t par0, par1;
644 
645 	/* Read station address. */
646 	par0 = CSR_READ_4(sc, JME_PAR0);
647 	par1 = CSR_READ_4(sc, JME_PAR1);
648 	par1 &= 0xFFFF;
649 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
650 		device_printf(sc->jme_dev,
651 		    "generating fake ethernet address.\n");
652 		par0 = karc4random();
653 		/* Set OUI to JMicron. */
654 		eaddr[0] = 0x00;
655 		eaddr[1] = 0x1B;
656 		eaddr[2] = 0x8C;
657 		eaddr[3] = (par0 >> 16) & 0xff;
658 		eaddr[4] = (par0 >> 8) & 0xff;
659 		eaddr[5] = par0 & 0xff;
660 	} else {
661 		eaddr[0] = (par0 >> 0) & 0xFF;
662 		eaddr[1] = (par0 >> 8) & 0xFF;
663 		eaddr[2] = (par0 >> 16) & 0xFF;
664 		eaddr[3] = (par0 >> 24) & 0xFF;
665 		eaddr[4] = (par1 >> 0) & 0xFF;
666 		eaddr[5] = (par1 >> 8) & 0xFF;
667 	}
668 }
669 
670 static int
671 jme_attach(device_t dev)
672 {
673 	struct jme_softc *sc = device_get_softc(dev);
674 	struct ifnet *ifp = &sc->arpcom.ac_if;
675 	uint32_t reg;
676 	uint16_t did;
677 	uint8_t pcie_ptr, rev;
678 	int error = 0, i, j, rx_desc_cnt, coal_max;
679 	uint8_t eaddr[ETHER_ADDR_LEN];
680 #ifdef IFPOLL_ENABLE
681 	int offset, offset_def;
682 #endif
683 
684 	/*
685 	 * Initialize serializers
686 	 */
687 	lwkt_serialize_init(&sc->jme_serialize);
688 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_data.jme_tx_serialize);
689 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
690 		lwkt_serialize_init(
691 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
692 	}
693 
694 	/*
695 	 * Get # of RX ring descriptors
696 	 */
697 	rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
698 	    jme_rx_desc_count);
699 	rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
700 	if (rx_desc_cnt > JME_NDESC_MAX)
701 		rx_desc_cnt = JME_NDESC_MAX;
702 
703 	/*
704 	 * Get # of TX ring descriptors
705 	 */
706 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
707 	    device_getenv_int(dev, "tx_desc_count", jme_tx_desc_count);
708 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
709 	    roundup(sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt, JME_NDESC_ALIGN);
710 	if (sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt > JME_NDESC_MAX)
711 		sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt = JME_NDESC_MAX;
712 
713 	/*
714 	 * Get # of RX rings
715 	 */
716 	sc->jme_cdata.jme_rx_ring_cnt = device_getenv_int(dev, "rx_ring_count",
717 	    jme_rx_ring_count);
718 	sc->jme_cdata.jme_rx_ring_cnt =
719 	    if_ring_count2(sc->jme_cdata.jme_rx_ring_cnt, JME_NRXRING_MAX);
720 
721 	/*
722 	 * Initialize serializer array
723 	 */
724 	i = 0;
725 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
726 
727 	KKASSERT(i == JME_TX_SERIALIZE);
728 	sc->jme_serialize_arr[i++] =
729 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
730 
731 	KKASSERT(i == JME_RX_SERIALIZE);
732 	for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
733 		sc->jme_serialize_arr[i++] =
734 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
735 	}
736 	KKASSERT(i <= JME_NSERIALIZE);
737 	sc->jme_serialize_cnt = i;
738 
739 	/*
740 	 * Setup TX ring specific data
741 	 */
742 	sc->jme_cdata.jme_tx_data.jme_sc = sc;
743 
744 	/*
745 	 * Setup RX rings specific data
746 	 */
747 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
748 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
749 
750 		rdata->jme_sc = sc;
751 		rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
752 		rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
753 		rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
754 		rdata->jme_rx_idx = i;
755 		rdata->jme_rx_desc_cnt = rx_desc_cnt;
756 	}
757 
758 	sc->jme_dev = dev;
759 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
760 
761 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
762 
763 	callout_init(&sc->jme_tick_ch);
764 
765 #ifndef BURN_BRIDGES
766 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
767 		uint32_t irq, mem;
768 
769 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
770 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
771 
772 		device_printf(dev, "chip is in D%d power mode "
773 		    "-- setting to D0\n", pci_get_powerstate(dev));
774 
775 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
776 
777 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
778 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
779 	}
780 #endif	/* !BURN_BRIDGE */
781 
782 	/* Enable bus mastering */
783 	pci_enable_busmaster(dev);
784 
785 	/*
786 	 * Allocate IO memory
787 	 *
788 	 * JMC250 supports both memory mapped and I/O register space
789 	 * access.  Because I/O register access should use different
790 	 * BARs to access registers it's waste of time to use I/O
791 	 * register spce access.  JMC250 uses 16K to map entire memory
792 	 * space.
793 	 */
794 	sc->jme_mem_rid = JME_PCIR_BAR;
795 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
796 						 &sc->jme_mem_rid, RF_ACTIVE);
797 	if (sc->jme_mem_res == NULL) {
798 		device_printf(dev, "can't allocate IO memory\n");
799 		return ENXIO;
800 	}
801 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
802 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
803 
804 	/*
805 	 * Allocate IRQ
806 	 */
807 	error = jme_intr_alloc(dev);
808 	if (error)
809 		goto fail;
810 
811 	/*
812 	 * Extract revisions
813 	 */
814 	reg = CSR_READ_4(sc, JME_CHIPMODE);
815 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
816 	    CHIPMODE_NOT_FPGA) {
817 		sc->jme_caps |= JME_CAP_FPGA;
818 		if (bootverbose) {
819 			device_printf(dev, "FPGA revision: 0x%04x\n",
820 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
821 				      CHIPMODE_FPGA_REV_SHIFT);
822 		}
823 	}
824 
825 	/* NOTE: FM revision is put in the upper 4 bits */
826 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
827 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
828 	if (bootverbose)
829 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
830 
831 	did = pci_get_device(dev);
832 	switch (did) {
833 	case PCI_PRODUCT_JMICRON_JMC250:
834 		if (rev == JME_REV1_A2)
835 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
836 		break;
837 
838 	case PCI_PRODUCT_JMICRON_JMC260:
839 		if (rev == JME_REV2)
840 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
841 		break;
842 
843 	default:
844 		panic("unknown device id 0x%04x", did);
845 	}
846 	if (rev >= JME_REV2) {
847 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
848 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
849 				      GHC_TXMAC_CLKSRC_1000;
850 	}
851 
852 	/* Reset the ethernet controller. */
853 	jme_reset(sc);
854 
855 	/* Map MSI/MSI-X vectors */
856 	jme_set_msinum(sc);
857 
858 	/* Get station address. */
859 	reg = CSR_READ_4(sc, JME_SMBCSR);
860 	if (reg & SMBCSR_EEPROM_PRESENT)
861 		error = jme_eeprom_macaddr(sc, eaddr);
862 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
863 		if (error != 0 && (bootverbose)) {
864 			device_printf(dev, "ethernet hardware address "
865 				      "not found in EEPROM.\n");
866 		}
867 		jme_reg_macaddr(sc, eaddr);
868 	}
869 
870 	/*
871 	 * Save PHY address.
872 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
873 	 * requires PHY probing to get correct PHY address.
874 	 */
875 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
876 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
877 		    GPREG0_PHY_ADDR_MASK;
878 		if (bootverbose) {
879 			device_printf(dev, "PHY is at address %d.\n",
880 			    sc->jme_phyaddr);
881 		}
882 	} else {
883 		sc->jme_phyaddr = 0;
884 	}
885 
886 	/* Set max allowable DMA size. */
887 	pcie_ptr = pci_get_pciecap_ptr(dev);
888 	if (pcie_ptr != 0) {
889 		uint16_t ctrl;
890 
891 		sc->jme_caps |= JME_CAP_PCIE;
892 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
893 		if (bootverbose) {
894 			device_printf(dev, "Read request size : %d bytes.\n",
895 			    128 << ((ctrl >> 12) & 0x07));
896 			device_printf(dev, "TLP payload size : %d bytes.\n",
897 			    128 << ((ctrl >> 5) & 0x07));
898 		}
899 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
900 		case PCIEM_DEVCTL_MAX_READRQ_128:
901 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
902 			break;
903 		case PCIEM_DEVCTL_MAX_READRQ_256:
904 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
905 			break;
906 		default:
907 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
908 			break;
909 		}
910 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
911 	} else {
912 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
913 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
914 	}
915 
916 #ifdef notyet
917 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
918 		sc->jme_caps |= JME_CAP_PMCAP;
919 #endif
920 
921 #ifdef IFPOLL_ENABLE
922 	/*
923 	 * NPOLLING RX CPU offset
924 	 */
925 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
926 		offset = 0;
927 	} else {
928 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
929 		    device_get_unit(dev)) % ncpus2;
930 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
931 		if (offset >= ncpus2 ||
932 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
933 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
934 			    offset, offset_def);
935 			offset = offset_def;
936 		}
937 	}
938 	sc->jme_npoll_rxoff = offset;
939 
940 	/*
941 	 * NPOLLING TX CPU offset
942 	 */
943 	offset_def = sc->jme_npoll_rxoff;
944 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
945 	if (offset >= ncpus2) {
946 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
947 		    offset, offset_def);
948 		offset = offset_def;
949 	}
950 	sc->jme_npoll_txoff = offset;
951 #endif
952 
953 	/*
954 	 * Set default coalesce valves
955 	 */
956 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
957 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
958 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
959 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
960 
961 	/*
962 	 * Adjust coalesce valves, in case that the number of TX/RX
963 	 * descs are set to small values by users.
964 	 *
965 	 * NOTE: coal_max will not be zero, since number of descs
966 	 * must aligned by JME_NDESC_ALIGN (16 currently)
967 	 */
968 	coal_max = sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt / 2;
969 	if (coal_max < sc->jme_tx_coal_pkt)
970 		sc->jme_tx_coal_pkt = coal_max;
971 
972 	coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
973 	if (coal_max < sc->jme_rx_coal_pkt)
974 		sc->jme_rx_coal_pkt = coal_max;
975 
976 	sc->jme_cdata.jme_tx_data.jme_tx_wreg = JME_TXWREG_NSEGS;
977 
978 	/*
979 	 * Create sysctl tree
980 	 */
981 	jme_sysctl_node(sc);
982 
983 	/* Allocate DMA stuffs */
984 	error = jme_dma_alloc(sc);
985 	if (error)
986 		goto fail;
987 
988 	ifp->if_softc = sc;
989 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
990 	ifp->if_init = jme_init;
991 	ifp->if_ioctl = jme_ioctl;
992 	ifp->if_start = jme_start;
993 #ifdef IFPOLL_ENABLE
994 	ifp->if_npoll = jme_npoll;
995 #endif
996 	ifp->if_watchdog = jme_watchdog;
997 	ifp->if_serialize = jme_serialize;
998 	ifp->if_deserialize = jme_deserialize;
999 	ifp->if_tryserialize = jme_tryserialize;
1000 #ifdef INVARIANTS
1001 	ifp->if_serialize_assert = jme_serialize_assert;
1002 #endif
1003 	ifq_set_maxlen(&ifp->if_snd,
1004 	    sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt - JME_TXD_RSVD);
1005 	ifq_set_ready(&ifp->if_snd);
1006 
1007 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
1008 	ifp->if_capabilities = IFCAP_HWCSUM |
1009 			       IFCAP_TSO |
1010 			       IFCAP_VLAN_MTU |
1011 			       IFCAP_VLAN_HWTAGGING;
1012 	if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
1013 		ifp->if_capabilities |= IFCAP_RSS;
1014 	ifp->if_capenable = ifp->if_capabilities;
1015 
1016 	/*
1017 	 * Disable TXCSUM by default to improve bulk data
1018 	 * transmit performance (+20Mbps improvement).
1019 	 */
1020 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1021 
1022 	if (ifp->if_capenable & IFCAP_TXCSUM)
1023 		ifp->if_hwassist |= JME_CSUM_FEATURES;
1024 	ifp->if_hwassist |= CSUM_TSO;
1025 
1026 	/* Set up MII bus. */
1027 	error = mii_phy_probe(dev, &sc->jme_miibus,
1028 			      jme_mediachange, jme_mediastatus);
1029 	if (error) {
1030 		device_printf(dev, "no PHY found!\n");
1031 		goto fail;
1032 	}
1033 
1034 	/*
1035 	 * Save PHYADDR for FPGA mode PHY.
1036 	 */
1037 	if (sc->jme_caps & JME_CAP_FPGA) {
1038 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
1039 
1040 		if (mii->mii_instance != 0) {
1041 			struct mii_softc *miisc;
1042 
1043 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1044 				if (miisc->mii_phy != 0) {
1045 					sc->jme_phyaddr = miisc->mii_phy;
1046 					break;
1047 				}
1048 			}
1049 			if (sc->jme_phyaddr != 0) {
1050 				device_printf(sc->jme_dev,
1051 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
1052 				/* vendor magic. */
1053 				jme_miibus_writereg(dev, sc->jme_phyaddr,
1054 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
1055 
1056 				/* XXX should we clear JME_WA_EXTFIFO */
1057 			}
1058 		}
1059 	}
1060 
1061 	ether_ifattach(ifp, eaddr, NULL);
1062 
1063 	/* Tell the upper layer(s) we support long frames. */
1064 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1065 
1066 	/* Setup the TX ring's CPUID */
1067 	ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
1068 
1069 	error = jme_intr_setup(dev);
1070 	if (error) {
1071 		ether_ifdetach(ifp);
1072 		goto fail;
1073 	}
1074 
1075 	return 0;
1076 fail:
1077 	jme_detach(dev);
1078 	return (error);
1079 }
1080 
1081 static int
1082 jme_detach(device_t dev)
1083 {
1084 	struct jme_softc *sc = device_get_softc(dev);
1085 
1086 	if (device_is_attached(dev)) {
1087 		struct ifnet *ifp = &sc->arpcom.ac_if;
1088 
1089 		ifnet_serialize_all(ifp);
1090 		jme_stop(sc);
1091 		jme_intr_teardown(dev);
1092 		ifnet_deserialize_all(ifp);
1093 
1094 		ether_ifdetach(ifp);
1095 	}
1096 
1097 	if (sc->jme_sysctl_tree != NULL)
1098 		sysctl_ctx_free(&sc->jme_sysctl_ctx);
1099 
1100 	if (sc->jme_miibus != NULL)
1101 		device_delete_child(dev, sc->jme_miibus);
1102 	bus_generic_detach(dev);
1103 
1104 	jme_intr_free(dev);
1105 
1106 	if (sc->jme_mem_res != NULL) {
1107 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1108 				     sc->jme_mem_res);
1109 	}
1110 
1111 	jme_dma_free(sc);
1112 
1113 	return (0);
1114 }
1115 
1116 static void
1117 jme_sysctl_node(struct jme_softc *sc)
1118 {
1119 #ifdef JME_RSS_DEBUG
1120 	int r;
1121 #endif
1122 
1123 	sysctl_ctx_init(&sc->jme_sysctl_ctx);
1124 	sc->jme_sysctl_tree = SYSCTL_ADD_NODE(&sc->jme_sysctl_ctx,
1125 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1126 				device_get_nameunit(sc->jme_dev),
1127 				CTLFLAG_RD, 0, "");
1128 	if (sc->jme_sysctl_tree == NULL) {
1129 		device_printf(sc->jme_dev, "can't add sysctl node\n");
1130 		return;
1131 	}
1132 
1133 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1134 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1135 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1136 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1137 
1138 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1139 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1140 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1141 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1142 
1143 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1144 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1145 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1146 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1147 
1148 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1149 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1150 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1151 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1152 
1153 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1154 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1155 		       "rx_desc_count", CTLFLAG_RD,
1156 		       &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1157 		       0, "RX desc count");
1158 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1159 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1160 		       "tx_desc_count", CTLFLAG_RD,
1161 		       &sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt,
1162 		       0, "TX desc count");
1163 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1164 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1165 		       "rx_ring_count", CTLFLAG_RD,
1166 		       &sc->jme_cdata.jme_rx_ring_cnt,
1167 		       0, "RX ring count");
1168 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1169 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1170 		       "tx_wreg", CTLFLAG_RW,
1171 		       &sc->jme_cdata.jme_tx_data.jme_tx_wreg, 0,
1172 		       "# of segments before writing to hardware register");
1173 
1174 #ifdef JME_RSS_DEBUG
1175 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1176 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1177 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1178 		       0, "RSS debug level");
1179 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1180 		char rx_ring_desc[32];
1181 
1182 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1183 		    "rx_ring%d_pkt", r);
1184 		SYSCTL_ADD_ULONG(&sc->jme_sysctl_ctx,
1185 		    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1186 		    rx_ring_desc, CTLFLAG_RW,
1187 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1188 
1189 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1190 		    "rx_ring%d_emp", r);
1191 		SYSCTL_ADD_ULONG(&sc->jme_sysctl_ctx,
1192 		    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1193 		    rx_ring_desc, CTLFLAG_RW,
1194 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1195 		    "# of time RX ring empty");
1196 	}
1197 #endif
1198 
1199 #ifdef IFPOLL_ENABLE
1200 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1201 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1202 	    "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1203 	    jme_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1204 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1205 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1206 	    "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1207 	    jme_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1208 #endif
1209 }
1210 
1211 static int
1212 jme_dma_alloc(struct jme_softc *sc)
1213 {
1214 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1215 	struct jme_txdesc *txd;
1216 	bus_dmamem_t dmem;
1217 	int error, i, asize;
1218 
1219 	asize = __VM_CACHELINE_ALIGN(
1220 	    tdata->jme_tx_desc_cnt * sizeof(struct jme_txdesc));
1221 	tdata->jme_txdesc = kmalloc_cachealign(asize, M_DEVBUF,
1222 	    M_WAITOK | M_ZERO);
1223 
1224 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1225 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1226 
1227 		asize = __VM_CACHELINE_ALIGN(
1228 		    rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc));
1229 		rdata->jme_rxdesc = kmalloc_cachealign(asize, M_DEVBUF,
1230 		    M_WAITOK | M_ZERO);
1231 	}
1232 
1233 	/* Create parent ring tag. */
1234 	error = bus_dma_tag_create(NULL,/* parent */
1235 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1236 	    sc->jme_lowaddr,		/* lowaddr */
1237 	    BUS_SPACE_MAXADDR,		/* highaddr */
1238 	    NULL, NULL,			/* filter, filterarg */
1239 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1240 	    0,				/* nsegments */
1241 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1242 	    0,				/* flags */
1243 	    &sc->jme_cdata.jme_ring_tag);
1244 	if (error) {
1245 		device_printf(sc->jme_dev,
1246 		    "could not create parent ring DMA tag.\n");
1247 		return error;
1248 	}
1249 
1250 	/*
1251 	 * Create DMA stuffs for TX ring
1252 	 */
1253 	asize = roundup2(JME_TX_RING_SIZE(tdata), JME_TX_RING_ALIGN);
1254 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1255 			JME_TX_RING_ALIGN, 0,
1256 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1257 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1258 	if (error) {
1259 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1260 		return error;
1261 	}
1262 	tdata->jme_tx_ring_tag = dmem.dmem_tag;
1263 	tdata->jme_tx_ring_map = dmem.dmem_map;
1264 	tdata->jme_tx_ring = dmem.dmem_addr;
1265 	tdata->jme_tx_ring_paddr = dmem.dmem_busaddr;
1266 
1267 	/*
1268 	 * Create DMA stuffs for RX rings
1269 	 */
1270 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1271 		error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1272 		if (error)
1273 			return error;
1274 	}
1275 
1276 	/* Create parent buffer tag. */
1277 	error = bus_dma_tag_create(NULL,/* parent */
1278 	    1, 0,			/* algnmnt, boundary */
1279 	    sc->jme_lowaddr,		/* lowaddr */
1280 	    BUS_SPACE_MAXADDR,		/* highaddr */
1281 	    NULL, NULL,			/* filter, filterarg */
1282 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1283 	    0,				/* nsegments */
1284 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1285 	    0,				/* flags */
1286 	    &sc->jme_cdata.jme_buffer_tag);
1287 	if (error) {
1288 		device_printf(sc->jme_dev,
1289 		    "could not create parent buffer DMA tag.\n");
1290 		return error;
1291 	}
1292 
1293 	/*
1294 	 * Create DMA stuffs for shadow status block
1295 	 */
1296 	asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1297 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1298 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1299 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1300 	if (error) {
1301 		device_printf(sc->jme_dev,
1302 		    "could not create shadow status block.\n");
1303 		return error;
1304 	}
1305 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1306 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1307 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1308 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1309 
1310 	/*
1311 	 * Create DMA stuffs for TX buffers
1312 	 */
1313 
1314 	/* Create tag for Tx buffers. */
1315 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1316 	    1, 0,			/* algnmnt, boundary */
1317 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1318 	    BUS_SPACE_MAXADDR,		/* highaddr */
1319 	    NULL, NULL,			/* filter, filterarg */
1320 	    JME_TSO_MAXSIZE,		/* maxsize */
1321 	    JME_MAXTXSEGS,		/* nsegments */
1322 	    JME_MAXSEGSIZE,		/* maxsegsize */
1323 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1324 	    &tdata->jme_tx_tag);
1325 	if (error != 0) {
1326 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1327 		return error;
1328 	}
1329 
1330 	/* Create DMA maps for Tx buffers. */
1331 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1332 		txd = &tdata->jme_txdesc[i];
1333 		error = bus_dmamap_create(tdata->jme_tx_tag,
1334 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1335 				&txd->tx_dmamap);
1336 		if (error) {
1337 			int j;
1338 
1339 			device_printf(sc->jme_dev,
1340 			    "could not create %dth Tx dmamap.\n", i);
1341 
1342 			for (j = 0; j < i; ++j) {
1343 				txd = &tdata->jme_txdesc[j];
1344 				bus_dmamap_destroy(tdata->jme_tx_tag,
1345 						   txd->tx_dmamap);
1346 			}
1347 			bus_dma_tag_destroy(tdata->jme_tx_tag);
1348 			tdata->jme_tx_tag = NULL;
1349 			return error;
1350 		}
1351 	}
1352 
1353 	/*
1354 	 * Create DMA stuffs for RX buffers
1355 	 */
1356 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1357 		error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1358 		if (error)
1359 			return error;
1360 	}
1361 	return 0;
1362 }
1363 
1364 static void
1365 jme_dma_free(struct jme_softc *sc)
1366 {
1367 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1368 	struct jme_txdesc *txd;
1369 	struct jme_rxdesc *rxd;
1370 	struct jme_rxdata *rdata;
1371 	int i, r;
1372 
1373 	/* Tx ring */
1374 	if (tdata->jme_tx_ring_tag != NULL) {
1375 		bus_dmamap_unload(tdata->jme_tx_ring_tag,
1376 		    tdata->jme_tx_ring_map);
1377 		bus_dmamem_free(tdata->jme_tx_ring_tag,
1378 		    tdata->jme_tx_ring, tdata->jme_tx_ring_map);
1379 		bus_dma_tag_destroy(tdata->jme_tx_ring_tag);
1380 		tdata->jme_tx_ring_tag = NULL;
1381 	}
1382 
1383 	/* Rx ring */
1384 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1385 		rdata = &sc->jme_cdata.jme_rx_data[r];
1386 		if (rdata->jme_rx_ring_tag != NULL) {
1387 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1388 					  rdata->jme_rx_ring_map);
1389 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1390 					rdata->jme_rx_ring,
1391 					rdata->jme_rx_ring_map);
1392 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1393 			rdata->jme_rx_ring_tag = NULL;
1394 		}
1395 	}
1396 
1397 	/* Tx buffers */
1398 	if (tdata->jme_tx_tag != NULL) {
1399 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1400 			txd = &tdata->jme_txdesc[i];
1401 			bus_dmamap_destroy(tdata->jme_tx_tag, txd->tx_dmamap);
1402 		}
1403 		bus_dma_tag_destroy(tdata->jme_tx_tag);
1404 		tdata->jme_tx_tag = NULL;
1405 	}
1406 
1407 	/* Rx buffers */
1408 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1409 		rdata = &sc->jme_cdata.jme_rx_data[r];
1410 		if (rdata->jme_rx_tag != NULL) {
1411 			for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1412 				rxd = &rdata->jme_rxdesc[i];
1413 				bus_dmamap_destroy(rdata->jme_rx_tag,
1414 						   rxd->rx_dmamap);
1415 			}
1416 			bus_dmamap_destroy(rdata->jme_rx_tag,
1417 					   rdata->jme_rx_sparemap);
1418 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1419 			rdata->jme_rx_tag = NULL;
1420 		}
1421 	}
1422 
1423 	/* Shadow status block. */
1424 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1425 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1426 		    sc->jme_cdata.jme_ssb_map);
1427 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1428 		    sc->jme_cdata.jme_ssb_block,
1429 		    sc->jme_cdata.jme_ssb_map);
1430 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1431 		sc->jme_cdata.jme_ssb_tag = NULL;
1432 	}
1433 
1434 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1435 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1436 		sc->jme_cdata.jme_buffer_tag = NULL;
1437 	}
1438 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1439 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1440 		sc->jme_cdata.jme_ring_tag = NULL;
1441 	}
1442 
1443 	if (tdata->jme_txdesc != NULL) {
1444 		kfree(tdata->jme_txdesc, M_DEVBUF);
1445 		tdata->jme_txdesc = NULL;
1446 	}
1447 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1448 		rdata = &sc->jme_cdata.jme_rx_data[r];
1449 		if (rdata->jme_rxdesc != NULL) {
1450 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1451 			rdata->jme_rxdesc = NULL;
1452 		}
1453 	}
1454 }
1455 
1456 /*
1457  *	Make sure the interface is stopped at reboot time.
1458  */
1459 static int
1460 jme_shutdown(device_t dev)
1461 {
1462 	return jme_suspend(dev);
1463 }
1464 
1465 #ifdef notyet
1466 /*
1467  * Unlike other ethernet controllers, JMC250 requires
1468  * explicit resetting link speed to 10/100Mbps as gigabit
1469  * link will cunsume more power than 375mA.
1470  * Note, we reset the link speed to 10/100Mbps with
1471  * auto-negotiation but we don't know whether that operation
1472  * would succeed or not as we have no control after powering
1473  * off. If the renegotiation fail WOL may not work. Running
1474  * at 1Gbps draws more power than 375mA at 3.3V which is
1475  * specified in PCI specification and that would result in
1476  * complete shutdowning power to ethernet controller.
1477  *
1478  * TODO
1479  *  Save current negotiated media speed/duplex/flow-control
1480  *  to softc and restore the same link again after resuming.
1481  *  PHY handling such as power down/resetting to 100Mbps
1482  *  may be better handled in suspend method in phy driver.
1483  */
1484 static void
1485 jme_setlinkspeed(struct jme_softc *sc)
1486 {
1487 	struct mii_data *mii;
1488 	int aneg, i;
1489 
1490 	JME_LOCK_ASSERT(sc);
1491 
1492 	mii = device_get_softc(sc->jme_miibus);
1493 	mii_pollstat(mii);
1494 	aneg = 0;
1495 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1496 		switch IFM_SUBTYPE(mii->mii_media_active) {
1497 		case IFM_10_T:
1498 		case IFM_100_TX:
1499 			return;
1500 		case IFM_1000_T:
1501 			aneg++;
1502 		default:
1503 			break;
1504 		}
1505 	}
1506 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1507 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1508 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1509 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1510 	    BMCR_AUTOEN | BMCR_STARTNEG);
1511 	DELAY(1000);
1512 	if (aneg != 0) {
1513 		/* Poll link state until jme(4) get a 10/100 link. */
1514 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1515 			mii_pollstat(mii);
1516 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1517 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1518 				case IFM_10_T:
1519 				case IFM_100_TX:
1520 					jme_mac_config(sc);
1521 					return;
1522 				default:
1523 					break;
1524 				}
1525 			}
1526 			JME_UNLOCK(sc);
1527 			pause("jmelnk", hz);
1528 			JME_LOCK(sc);
1529 		}
1530 		if (i == MII_ANEGTICKS_GIGE)
1531 			device_printf(sc->jme_dev, "establishing link failed, "
1532 			    "WOL may not work!");
1533 	}
1534 	/*
1535 	 * No link, force MAC to have 100Mbps, full-duplex link.
1536 	 * This is the last resort and may/may not work.
1537 	 */
1538 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1539 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1540 	jme_mac_config(sc);
1541 }
1542 
1543 static void
1544 jme_setwol(struct jme_softc *sc)
1545 {
1546 	struct ifnet *ifp = &sc->arpcom.ac_if;
1547 	uint32_t gpr, pmcs;
1548 	uint16_t pmstat;
1549 	int pmc;
1550 
1551 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1552 		/* No PME capability, PHY power down. */
1553 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1554 		    MII_BMCR, BMCR_PDOWN);
1555 		return;
1556 	}
1557 
1558 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1559 	pmcs = CSR_READ_4(sc, JME_PMCS);
1560 	pmcs &= ~PMCS_WOL_ENB_MASK;
1561 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1562 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1563 		/* Enable PME message. */
1564 		gpr |= GPREG0_PME_ENB;
1565 		/* For gigabit controllers, reset link speed to 10/100. */
1566 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1567 			jme_setlinkspeed(sc);
1568 	}
1569 
1570 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1571 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1572 
1573 	/* Request PME. */
1574 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1575 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1576 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1577 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1578 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1579 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1580 		/* No WOL, PHY power down. */
1581 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1582 		    MII_BMCR, BMCR_PDOWN);
1583 	}
1584 }
1585 #endif
1586 
1587 static int
1588 jme_suspend(device_t dev)
1589 {
1590 	struct jme_softc *sc = device_get_softc(dev);
1591 	struct ifnet *ifp = &sc->arpcom.ac_if;
1592 
1593 	ifnet_serialize_all(ifp);
1594 	jme_stop(sc);
1595 #ifdef notyet
1596 	jme_setwol(sc);
1597 #endif
1598 	ifnet_deserialize_all(ifp);
1599 
1600 	return (0);
1601 }
1602 
1603 static int
1604 jme_resume(device_t dev)
1605 {
1606 	struct jme_softc *sc = device_get_softc(dev);
1607 	struct ifnet *ifp = &sc->arpcom.ac_if;
1608 #ifdef notyet
1609 	int pmc;
1610 #endif
1611 
1612 	ifnet_serialize_all(ifp);
1613 
1614 #ifdef notyet
1615 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1616 		uint16_t pmstat;
1617 
1618 		pmstat = pci_read_config(sc->jme_dev,
1619 		    pmc + PCIR_POWER_STATUS, 2);
1620 		/* Disable PME clear PME status. */
1621 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1622 		pci_write_config(sc->jme_dev,
1623 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1624 	}
1625 #endif
1626 
1627 	if (ifp->if_flags & IFF_UP)
1628 		jme_init(sc);
1629 
1630 	ifnet_deserialize_all(ifp);
1631 
1632 	return (0);
1633 }
1634 
1635 static __inline int
1636 jme_tso_pullup(struct mbuf **mp)
1637 {
1638 	int hoff, iphlen, thoff;
1639 	struct mbuf *m;
1640 
1641 	m = *mp;
1642 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1643 
1644 	iphlen = m->m_pkthdr.csum_iphlen;
1645 	thoff = m->m_pkthdr.csum_thlen;
1646 	hoff = m->m_pkthdr.csum_lhlen;
1647 
1648 	KASSERT(iphlen > 0, ("invalid ip hlen"));
1649 	KASSERT(thoff > 0, ("invalid tcp hlen"));
1650 	KASSERT(hoff > 0, ("invalid ether hlen"));
1651 
1652 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1653 		m = m_pullup(m, hoff + iphlen + thoff);
1654 		if (m == NULL) {
1655 			*mp = NULL;
1656 			return ENOBUFS;
1657 		}
1658 		*mp = m;
1659 	}
1660 	return 0;
1661 }
1662 
1663 static int
1664 jme_encap(struct jme_txdata *tdata, struct mbuf **m_head, int *segs_used)
1665 {
1666 	struct jme_txdesc *txd;
1667 	struct jme_desc *desc;
1668 	struct mbuf *m;
1669 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1670 	int maxsegs, nsegs;
1671 	int error, i, prod, symbol_desc;
1672 	uint32_t cflags, flag64, mss;
1673 
1674 	M_ASSERTPKTHDR((*m_head));
1675 
1676 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1677 		/* XXX Is this necessary? */
1678 		error = jme_tso_pullup(m_head);
1679 		if (error)
1680 			return error;
1681 	}
1682 
1683 	prod = tdata->jme_tx_prod;
1684 	txd = &tdata->jme_txdesc[prod];
1685 
1686 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1687 		symbol_desc = 1;
1688 	else
1689 		symbol_desc = 0;
1690 
1691 	maxsegs = (tdata->jme_tx_desc_cnt - tdata->jme_tx_cnt) -
1692 		  (JME_TXD_RSVD + symbol_desc);
1693 	if (maxsegs > JME_MAXTXSEGS)
1694 		maxsegs = JME_MAXTXSEGS;
1695 	KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1696 		("not enough segments %d", maxsegs));
1697 
1698 	error = bus_dmamap_load_mbuf_defrag(tdata->jme_tx_tag,
1699 			txd->tx_dmamap, m_head,
1700 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1701 	if (error)
1702 		goto fail;
1703 	*segs_used += nsegs;
1704 
1705 	bus_dmamap_sync(tdata->jme_tx_tag, txd->tx_dmamap,
1706 			BUS_DMASYNC_PREWRITE);
1707 
1708 	m = *m_head;
1709 	cflags = 0;
1710 	mss = 0;
1711 
1712 	/* Configure checksum offload. */
1713 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1714 		mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1715 		cflags |= JME_TD_TSO;
1716 	} else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1717 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1718 			cflags |= JME_TD_IPCSUM;
1719 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1720 			cflags |= JME_TD_TCPCSUM;
1721 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1722 			cflags |= JME_TD_UDPCSUM;
1723 	}
1724 
1725 	/* Configure VLAN. */
1726 	if (m->m_flags & M_VLANTAG) {
1727 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1728 		cflags |= JME_TD_VLAN_TAG;
1729 	}
1730 
1731 	desc = &tdata->jme_tx_ring[prod];
1732 	desc->flags = htole32(cflags);
1733 	desc->addr_hi = htole32(m->m_pkthdr.len);
1734 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1735 		/*
1736 		 * Use 64bits TX desc chain format.
1737 		 *
1738 		 * The first TX desc of the chain, which is setup here,
1739 		 * is just a symbol TX desc carrying no payload.
1740 		 */
1741 		flag64 = JME_TD_64BIT;
1742 		desc->buflen = htole32(mss);
1743 		desc->addr_lo = 0;
1744 
1745 		*segs_used += 1;
1746 
1747 		/* No effective TX desc is consumed */
1748 		i = 0;
1749 	} else {
1750 		/*
1751 		 * Use 32bits TX desc chain format.
1752 		 *
1753 		 * The first TX desc of the chain, which is setup here,
1754 		 * is an effective TX desc carrying the first segment of
1755 		 * the mbuf chain.
1756 		 */
1757 		flag64 = 0;
1758 		desc->buflen = htole32(mss | txsegs[0].ds_len);
1759 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1760 
1761 		/* One effective TX desc is consumed */
1762 		i = 1;
1763 	}
1764 	tdata->jme_tx_cnt++;
1765 	KKASSERT(tdata->jme_tx_cnt - i < tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1766 	JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1767 
1768 	txd->tx_ndesc = 1 - i;
1769 	for (; i < nsegs; i++) {
1770 		desc = &tdata->jme_tx_ring[prod];
1771 		desc->buflen = htole32(txsegs[i].ds_len);
1772 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1773 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1774 		desc->flags = htole32(JME_TD_OWN | flag64);
1775 
1776 		tdata->jme_tx_cnt++;
1777 		KKASSERT(tdata->jme_tx_cnt <=
1778 			 tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1779 		JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1780 	}
1781 
1782 	/* Update producer index. */
1783 	tdata->jme_tx_prod = prod;
1784 	/*
1785 	 * Finally request interrupt and give the first descriptor
1786 	 * owenership to hardware.
1787 	 */
1788 	desc = txd->tx_desc;
1789 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1790 
1791 	txd->tx_m = m;
1792 	txd->tx_ndesc += nsegs;
1793 
1794 	return 0;
1795 fail:
1796 	m_freem(*m_head);
1797 	*m_head = NULL;
1798 	return error;
1799 }
1800 
1801 static void
1802 jme_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1803 {
1804 	struct jme_softc *sc = ifp->if_softc;
1805 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1806 	struct mbuf *m_head;
1807 	int enq = 0;
1808 
1809 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1810 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
1811 
1812 	if (!sc->jme_has_link) {
1813 		ifq_purge(&ifp->if_snd);
1814 		return;
1815 	}
1816 
1817 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1818 		return;
1819 
1820 	if (tdata->jme_tx_cnt >= JME_TX_DESC_HIWAT(tdata))
1821 		jme_txeof(tdata);
1822 
1823 	while (!ifq_is_empty(&ifp->if_snd)) {
1824 		/*
1825 		 * Check number of available TX descs, always
1826 		 * leave JME_TXD_RSVD free TX descs.
1827 		 */
1828 		if (tdata->jme_tx_cnt + JME_TXD_SPARE >
1829 		    tdata->jme_tx_desc_cnt - JME_TXD_RSVD) {
1830 			ifq_set_oactive(&ifp->if_snd);
1831 			break;
1832 		}
1833 
1834 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1835 		if (m_head == NULL)
1836 			break;
1837 
1838 		/*
1839 		 * Pack the data into the transmit ring. If we
1840 		 * don't have room, set the OACTIVE flag and wait
1841 		 * for the NIC to drain the ring.
1842 		 */
1843 		if (jme_encap(tdata, &m_head, &enq)) {
1844 			KKASSERT(m_head == NULL);
1845 			IFNET_STAT_INC(ifp, oerrors, 1);
1846 			ifq_set_oactive(&ifp->if_snd);
1847 			break;
1848 		}
1849 
1850 		if (enq >= tdata->jme_tx_wreg) {
1851 			CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr |
1852 			    TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1853 			enq = 0;
1854 		}
1855 
1856 		/*
1857 		 * If there's a BPF listener, bounce a copy of this frame
1858 		 * to him.
1859 		 */
1860 		ETHER_BPF_MTAP(ifp, m_head);
1861 
1862 		/* Set a timeout in case the chip goes out to lunch. */
1863 		ifp->if_timer = JME_TX_TIMEOUT;
1864 	}
1865 
1866 	if (enq > 0) {
1867 		/*
1868 		 * Reading TXCSR takes very long time under heavy load
1869 		 * so cache TXCSR value and writes the ORed value with
1870 		 * the kick command to the TXCSR. This saves one register
1871 		 * access cycle.
1872 		 */
1873 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1874 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1875 	}
1876 }
1877 
1878 static void
1879 jme_watchdog(struct ifnet *ifp)
1880 {
1881 	struct jme_softc *sc = ifp->if_softc;
1882 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1883 
1884 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1885 
1886 	if (!sc->jme_has_link) {
1887 		if_printf(ifp, "watchdog timeout (missed link)\n");
1888 		IFNET_STAT_INC(ifp, oerrors, 1);
1889 		jme_init(sc);
1890 		return;
1891 	}
1892 
1893 	jme_txeof(tdata);
1894 	if (tdata->jme_tx_cnt == 0) {
1895 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1896 			  "-- recovering\n");
1897 		if (!ifq_is_empty(&ifp->if_snd))
1898 			if_devstart(ifp);
1899 		return;
1900 	}
1901 
1902 	if_printf(ifp, "watchdog timeout\n");
1903 	IFNET_STAT_INC(ifp, oerrors, 1);
1904 	jme_init(sc);
1905 	if (!ifq_is_empty(&ifp->if_snd))
1906 		if_devstart(ifp);
1907 }
1908 
1909 static int
1910 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1911 {
1912 	struct jme_softc *sc = ifp->if_softc;
1913 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1914 	struct ifreq *ifr = (struct ifreq *)data;
1915 	int error = 0, mask;
1916 
1917 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1918 
1919 	switch (cmd) {
1920 	case SIOCSIFMTU:
1921 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1922 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1923 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1924 			error = EINVAL;
1925 			break;
1926 		}
1927 
1928 		if (ifp->if_mtu != ifr->ifr_mtu) {
1929 			/*
1930 			 * No special configuration is required when interface
1931 			 * MTU is changed but availability of Tx checksum
1932 			 * offload should be chcked against new MTU size as
1933 			 * FIFO size is just 2K.
1934 			 */
1935 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1936 				ifp->if_capenable &=
1937 				    ~(IFCAP_TXCSUM | IFCAP_TSO);
1938 				ifp->if_hwassist &=
1939 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1940 			}
1941 			ifp->if_mtu = ifr->ifr_mtu;
1942 			if (ifp->if_flags & IFF_RUNNING)
1943 				jme_init(sc);
1944 		}
1945 		break;
1946 
1947 	case SIOCSIFFLAGS:
1948 		if (ifp->if_flags & IFF_UP) {
1949 			if (ifp->if_flags & IFF_RUNNING) {
1950 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1951 				    (IFF_PROMISC | IFF_ALLMULTI))
1952 					jme_set_filter(sc);
1953 			} else {
1954 				jme_init(sc);
1955 			}
1956 		} else {
1957 			if (ifp->if_flags & IFF_RUNNING)
1958 				jme_stop(sc);
1959 		}
1960 		sc->jme_if_flags = ifp->if_flags;
1961 		break;
1962 
1963 	case SIOCADDMULTI:
1964 	case SIOCDELMULTI:
1965 		if (ifp->if_flags & IFF_RUNNING)
1966 			jme_set_filter(sc);
1967 		break;
1968 
1969 	case SIOCSIFMEDIA:
1970 	case SIOCGIFMEDIA:
1971 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1972 		break;
1973 
1974 	case SIOCSIFCAP:
1975 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1976 
1977 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1978 			ifp->if_capenable ^= IFCAP_TXCSUM;
1979 			if (ifp->if_capenable & IFCAP_TXCSUM)
1980 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1981 			else
1982 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1983 		}
1984 		if (mask & IFCAP_RXCSUM) {
1985 			uint32_t reg;
1986 
1987 			ifp->if_capenable ^= IFCAP_RXCSUM;
1988 			reg = CSR_READ_4(sc, JME_RXMAC);
1989 			reg &= ~RXMAC_CSUM_ENB;
1990 			if (ifp->if_capenable & IFCAP_RXCSUM)
1991 				reg |= RXMAC_CSUM_ENB;
1992 			CSR_WRITE_4(sc, JME_RXMAC, reg);
1993 		}
1994 
1995 		if (mask & IFCAP_VLAN_HWTAGGING) {
1996 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1997 			jme_set_vlan(sc);
1998 		}
1999 
2000 		if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
2001 			ifp->if_capenable ^= IFCAP_TSO;
2002 			if (ifp->if_capenable & IFCAP_TSO)
2003 				ifp->if_hwassist |= CSUM_TSO;
2004 			else
2005 				ifp->if_hwassist &= ~CSUM_TSO;
2006 		}
2007 
2008 		if (mask & IFCAP_RSS)
2009 			ifp->if_capenable ^= IFCAP_RSS;
2010 		break;
2011 
2012 	default:
2013 		error = ether_ioctl(ifp, cmd, data);
2014 		break;
2015 	}
2016 	return (error);
2017 }
2018 
2019 static void
2020 jme_mac_config(struct jme_softc *sc)
2021 {
2022 	struct mii_data *mii;
2023 	uint32_t ghc, rxmac, txmac, txpause, gp1;
2024 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
2025 
2026 	mii = device_get_softc(sc->jme_miibus);
2027 
2028 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2029 	DELAY(10);
2030 	CSR_WRITE_4(sc, JME_GHC, 0);
2031 	ghc = 0;
2032 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2033 	rxmac &= ~RXMAC_FC_ENB;
2034 	txmac = CSR_READ_4(sc, JME_TXMAC);
2035 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2036 	txpause = CSR_READ_4(sc, JME_TXPFC);
2037 	txpause &= ~TXPFC_PAUSE_ENB;
2038 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2039 		ghc |= GHC_FULL_DUPLEX;
2040 		rxmac &= ~RXMAC_COLL_DET_ENB;
2041 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2042 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2043 		    TXMAC_FRAME_BURST);
2044 #ifdef notyet
2045 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2046 			txpause |= TXPFC_PAUSE_ENB;
2047 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2048 			rxmac |= RXMAC_FC_ENB;
2049 #endif
2050 		/* Disable retry transmit timer/retry limit. */
2051 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2052 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2053 	} else {
2054 		rxmac |= RXMAC_COLL_DET_ENB;
2055 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2056 		/* Enable retry transmit timer/retry limit. */
2057 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2058 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2059 	}
2060 
2061 	/*
2062 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
2063 	 */
2064 	gp1 = CSR_READ_4(sc, JME_GPREG1);
2065 	gp1 &= ~GPREG1_WA_HDX;
2066 
2067 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2068 		hdx = 1;
2069 
2070 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2071 	case IFM_10_T:
2072 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
2073 		if (hdx)
2074 			gp1 |= GPREG1_WA_HDX;
2075 		break;
2076 
2077 	case IFM_100_TX:
2078 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
2079 		if (hdx)
2080 			gp1 |= GPREG1_WA_HDX;
2081 
2082 		/*
2083 		 * Use extended FIFO depth to workaround CRC errors
2084 		 * emitted by chips before JMC250B
2085 		 */
2086 		phyconf = JMPHY_CONF_EXTFIFO;
2087 		break;
2088 
2089 	case IFM_1000_T:
2090 		if (sc->jme_caps & JME_CAP_FASTETH)
2091 			break;
2092 
2093 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
2094 		if (hdx)
2095 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2096 		break;
2097 
2098 	default:
2099 		break;
2100 	}
2101 	CSR_WRITE_4(sc, JME_GHC, ghc);
2102 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2103 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2104 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2105 
2106 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
2107 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2108 				    JMPHY_CONF, phyconf);
2109 	}
2110 	if (sc->jme_workaround & JME_WA_HDX)
2111 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
2112 }
2113 
2114 static void
2115 jme_intr(void *xsc)
2116 {
2117 	struct jme_softc *sc = xsc;
2118 	struct ifnet *ifp = &sc->arpcom.ac_if;
2119 	uint32_t status;
2120 	int r;
2121 
2122 	ASSERT_SERIALIZED(&sc->jme_serialize);
2123 
2124 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2125 	if (status == 0 || status == 0xFFFFFFFF)
2126 		return;
2127 
2128 	/* Disable interrupts. */
2129 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2130 
2131 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2132 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2133 		goto back;
2134 
2135 	/* Reset PCC counter/timer and Ack interrupts. */
2136 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2137 
2138 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2139 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2140 
2141 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2142 		if (status & jme_rx_status[r].jme_coal) {
2143 			status |= jme_rx_status[r].jme_coal |
2144 				  jme_rx_status[r].jme_comp;
2145 		}
2146 	}
2147 
2148 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2149 
2150 	if (ifp->if_flags & IFF_RUNNING) {
2151 		struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2152 
2153 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2154 			jme_rx_intr(sc, status);
2155 
2156 		if (status & INTR_RXQ_DESC_EMPTY) {
2157 			/*
2158 			 * Notify hardware availability of new Rx buffers.
2159 			 * Reading RXCSR takes very long time under heavy
2160 			 * load so cache RXCSR value and writes the ORed
2161 			 * value with the kick command to the RXCSR. This
2162 			 * saves one register access cycle.
2163 			 */
2164 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2165 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2166 		}
2167 
2168 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2169 			lwkt_serialize_enter(&tdata->jme_tx_serialize);
2170 			jme_txeof(tdata);
2171 			if (!ifq_is_empty(&ifp->if_snd))
2172 				if_devstart(ifp);
2173 			lwkt_serialize_exit(&tdata->jme_tx_serialize);
2174 		}
2175 	}
2176 back:
2177 	/* Reenable interrupts. */
2178 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2179 }
2180 
2181 static void
2182 jme_txeof(struct jme_txdata *tdata)
2183 {
2184 	struct ifnet *ifp = &tdata->jme_sc->arpcom.ac_if;
2185 	int cons;
2186 
2187 	cons = tdata->jme_tx_cons;
2188 	if (cons == tdata->jme_tx_prod)
2189 		return;
2190 
2191 	/*
2192 	 * Go through our Tx list and free mbufs for those
2193 	 * frames which have been transmitted.
2194 	 */
2195 	while (cons != tdata->jme_tx_prod) {
2196 		struct jme_txdesc *txd, *next_txd;
2197 		uint32_t status, next_status;
2198 		int next_cons, nsegs;
2199 
2200 		txd = &tdata->jme_txdesc[cons];
2201 		KASSERT(txd->tx_m != NULL,
2202 			("%s: freeing NULL mbuf!", __func__));
2203 
2204 		status = le32toh(txd->tx_desc->flags);
2205 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2206 			break;
2207 
2208 		/*
2209 		 * NOTE:
2210 		 * This chip will always update the TX descriptor's
2211 		 * buflen field and this updating always happens
2212 		 * after clearing the OWN bit, so even if the OWN
2213 		 * bit is cleared by the chip, we still don't sure
2214 		 * about whether the buflen field has been updated
2215 		 * by the chip or not.  To avoid this race, we wait
2216 		 * for the next TX descriptor's OWN bit to be cleared
2217 		 * by the chip before reusing this TX descriptor.
2218 		 */
2219 		next_cons = cons;
2220 		JME_DESC_ADD(next_cons, txd->tx_ndesc, tdata->jme_tx_desc_cnt);
2221 		next_txd = &tdata->jme_txdesc[next_cons];
2222 		if (next_txd->tx_m == NULL)
2223 			break;
2224 		next_status = le32toh(next_txd->tx_desc->flags);
2225 		if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2226 			break;
2227 
2228 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2229 			IFNET_STAT_INC(ifp, oerrors, 1);
2230 		} else {
2231 			IFNET_STAT_INC(ifp, opackets, 1);
2232 			if (status & JME_TD_COLLISION) {
2233 				IFNET_STAT_INC(ifp, collisions,
2234 				    le32toh(txd->tx_desc->buflen) &
2235 				    JME_TD_BUF_LEN_MASK);
2236 			}
2237 		}
2238 
2239 		/*
2240 		 * Only the first descriptor of multi-descriptor
2241 		 * transmission is updated so driver have to skip entire
2242 		 * chained buffers for the transmiited frame. In other
2243 		 * words, JME_TD_OWN bit is valid only at the first
2244 		 * descriptor of a multi-descriptor transmission.
2245 		 */
2246 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2247 			tdata->jme_tx_ring[cons].flags = 0;
2248 			JME_DESC_INC(cons, tdata->jme_tx_desc_cnt);
2249 		}
2250 
2251 		/* Reclaim transferred mbufs. */
2252 		bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2253 		m_freem(txd->tx_m);
2254 		txd->tx_m = NULL;
2255 		tdata->jme_tx_cnt -= txd->tx_ndesc;
2256 		KASSERT(tdata->jme_tx_cnt >= 0,
2257 			("%s: Active Tx desc counter was garbled", __func__));
2258 		txd->tx_ndesc = 0;
2259 	}
2260 	tdata->jme_tx_cons = cons;
2261 
2262 	/* 1 for symbol TX descriptor */
2263 	if (tdata->jme_tx_cnt <= JME_MAXTXSEGS + 1)
2264 		ifp->if_timer = 0;
2265 
2266 	if (tdata->jme_tx_cnt + JME_TXD_SPARE <=
2267 	    tdata->jme_tx_desc_cnt - JME_TXD_RSVD)
2268 		ifq_clr_oactive(&ifp->if_snd);
2269 }
2270 
2271 static __inline void
2272 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2273 {
2274 	int i;
2275 
2276 	for (i = 0; i < count; ++i) {
2277 		jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2278 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2279 	}
2280 }
2281 
2282 static __inline struct pktinfo *
2283 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2284 {
2285 	if (flags & JME_RD_IPV4)
2286 		pi->pi_netisr = NETISR_IP;
2287 	else if (flags & JME_RD_IPV6)
2288 		pi->pi_netisr = NETISR_IPV6;
2289 	else
2290 		return NULL;
2291 
2292 	pi->pi_flags = 0;
2293 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2294 
2295 	if (flags & JME_RD_MORE_FRAG)
2296 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2297 	else if (flags & JME_RD_TCP)
2298 		pi->pi_l3proto = IPPROTO_TCP;
2299 	else if (flags & JME_RD_UDP)
2300 		pi->pi_l3proto = IPPROTO_UDP;
2301 	else
2302 		pi = NULL;
2303 	return pi;
2304 }
2305 
2306 /* Receive a frame. */
2307 static void
2308 jme_rxpkt(struct jme_rxdata *rdata)
2309 {
2310 	struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2311 	struct jme_desc *desc;
2312 	struct jme_rxdesc *rxd;
2313 	struct mbuf *mp, *m;
2314 	uint32_t flags, status, hash, hashinfo;
2315 	int cons, count, nsegs;
2316 
2317 	cons = rdata->jme_rx_cons;
2318 	desc = &rdata->jme_rx_ring[cons];
2319 
2320 	flags = le32toh(desc->flags);
2321 	status = le32toh(desc->buflen);
2322 	hash = le32toh(desc->addr_hi);
2323 	hashinfo = le32toh(desc->addr_lo);
2324 	nsegs = JME_RX_NSEGS(status);
2325 
2326 	if (nsegs > 1) {
2327 		/* Skip the first descriptor. */
2328 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2329 
2330 		/*
2331 		 * Clear the OWN bit of the following RX descriptors;
2332 		 * hardware will not clear the OWN bit except the first
2333 		 * RX descriptor.
2334 		 *
2335 		 * Since the first RX descriptor is setup, i.e. OWN bit
2336 		 * on, before its followins RX descriptors, leaving the
2337 		 * OWN bit on the following RX descriptors will trick
2338 		 * the hardware into thinking that the following RX
2339 		 * descriptors are ready to be used too.
2340 		 */
2341 		for (count = 1; count < nsegs; count++,
2342 		     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2343 			rdata->jme_rx_ring[cons].flags = 0;
2344 
2345 		cons = rdata->jme_rx_cons;
2346 	}
2347 
2348 	JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2349 			"hash 0x%08x, hash info 0x%08x\n",
2350 			rdata->jme_rx_idx, flags, hash, hashinfo);
2351 
2352 	if (status & JME_RX_ERR_STAT) {
2353 		IFNET_STAT_INC(ifp, ierrors, 1);
2354 		jme_discard_rxbufs(rdata, cons, nsegs);
2355 #ifdef JME_SHOW_ERRORS
2356 		if_printf(ifp, "%s : receive error = 0x%b\n",
2357 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2358 #endif
2359 		rdata->jme_rx_cons += nsegs;
2360 		rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2361 		return;
2362 	}
2363 
2364 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2365 	for (count = 0; count < nsegs; count++,
2366 	     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2367 		rxd = &rdata->jme_rxdesc[cons];
2368 		mp = rxd->rx_m;
2369 
2370 		/* Add a new receive buffer to the ring. */
2371 		if (jme_newbuf(rdata, rxd, 0) != 0) {
2372 			IFNET_STAT_INC(ifp, iqdrops, 1);
2373 			/* Reuse buffer. */
2374 			jme_discard_rxbufs(rdata, cons, nsegs - count);
2375 			if (rdata->jme_rxhead != NULL) {
2376 				m_freem(rdata->jme_rxhead);
2377 				JME_RXCHAIN_RESET(rdata);
2378 			}
2379 			break;
2380 		}
2381 
2382 		/*
2383 		 * Assume we've received a full sized frame.
2384 		 * Actual size is fixed when we encounter the end of
2385 		 * multi-segmented frame.
2386 		 */
2387 		mp->m_len = MCLBYTES;
2388 
2389 		/* Chain received mbufs. */
2390 		if (rdata->jme_rxhead == NULL) {
2391 			rdata->jme_rxhead = mp;
2392 			rdata->jme_rxtail = mp;
2393 		} else {
2394 			/*
2395 			 * Receive processor can receive a maximum frame
2396 			 * size of 65535 bytes.
2397 			 */
2398 			rdata->jme_rxtail->m_next = mp;
2399 			rdata->jme_rxtail = mp;
2400 		}
2401 
2402 		if (count == nsegs - 1) {
2403 			struct pktinfo pi0, *pi;
2404 
2405 			/* Last desc. for this frame. */
2406 			m = rdata->jme_rxhead;
2407 			m->m_pkthdr.len = rdata->jme_rxlen;
2408 			if (nsegs > 1) {
2409 				/* Set first mbuf size. */
2410 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2411 				/* Set last mbuf size. */
2412 				mp->m_len = rdata->jme_rxlen -
2413 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2414 				    (MCLBYTES * (nsegs - 2)));
2415 			} else {
2416 				m->m_len = rdata->jme_rxlen;
2417 			}
2418 			m->m_pkthdr.rcvif = ifp;
2419 
2420 			/*
2421 			 * Account for 10bytes auto padding which is used
2422 			 * to align IP header on 32bit boundary. Also note,
2423 			 * CRC bytes is automatically removed by the
2424 			 * hardware.
2425 			 */
2426 			m->m_data += JME_RX_PAD_BYTES;
2427 
2428 			/* Set checksum information. */
2429 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2430 			    (flags & JME_RD_IPV4)) {
2431 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2432 				if (flags & JME_RD_IPCSUM)
2433 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2434 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2435 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2436 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2437 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2438 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2439 					m->m_pkthdr.csum_flags |=
2440 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2441 					m->m_pkthdr.csum_data = 0xffff;
2442 				}
2443 			}
2444 
2445 			/* Check for VLAN tagged packets. */
2446 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2447 			    (flags & JME_RD_VLAN_TAG)) {
2448 				m->m_pkthdr.ether_vlantag =
2449 				    flags & JME_RD_VLAN_MASK;
2450 				m->m_flags |= M_VLANTAG;
2451 			}
2452 
2453 			IFNET_STAT_INC(ifp, ipackets, 1);
2454 
2455 			if (ifp->if_capenable & IFCAP_RSS)
2456 				pi = jme_pktinfo(&pi0, flags);
2457 			else
2458 				pi = NULL;
2459 
2460 			if (pi != NULL &&
2461 			    (hashinfo & JME_RD_HASH_FN_MASK) ==
2462 			    JME_RD_HASH_FN_TOEPLITZ) {
2463 				m->m_flags |= (M_HASH | M_CKHASH);
2464 				m->m_pkthdr.hash = toeplitz_hash(hash);
2465 			}
2466 
2467 #ifdef JME_RSS_DEBUG
2468 			if (pi != NULL) {
2469 				JME_RSS_DPRINTF(rdata->jme_sc, 10,
2470 				    "isr %d flags %08x, l3 %d %s\n",
2471 				    pi->pi_netisr, pi->pi_flags,
2472 				    pi->pi_l3proto,
2473 				    (m->m_flags & M_HASH) ? "hash" : "");
2474 			}
2475 #endif
2476 
2477 			/* Pass it on. */
2478 			ether_input_pkt(ifp, m, pi);
2479 
2480 			/* Reset mbuf chains. */
2481 			JME_RXCHAIN_RESET(rdata);
2482 #ifdef JME_RSS_DEBUG
2483 			rdata->jme_rx_pkt++;
2484 #endif
2485 		}
2486 	}
2487 
2488 	rdata->jme_rx_cons += nsegs;
2489 	rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2490 }
2491 
2492 static void
2493 jme_rxeof(struct jme_rxdata *rdata, int count)
2494 {
2495 	struct jme_desc *desc;
2496 	int nsegs, pktlen;
2497 
2498 	for (;;) {
2499 #ifdef IFPOLL_ENABLE
2500 		if (count >= 0 && count-- == 0)
2501 			break;
2502 #endif
2503 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2504 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2505 			break;
2506 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2507 			break;
2508 
2509 		/*
2510 		 * Check number of segments against received bytes.
2511 		 * Non-matching value would indicate that hardware
2512 		 * is still trying to update Rx descriptors. I'm not
2513 		 * sure whether this check is needed.
2514 		 */
2515 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2516 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2517 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2518 			if_printf(&rdata->jme_sc->arpcom.ac_if,
2519 			    "RX fragment count(%d) and "
2520 			    "packet size(%d) mismach\n", nsegs, pktlen);
2521 			break;
2522 		}
2523 
2524 		/*
2525 		 * NOTE:
2526 		 * RSS hash and hash information may _not_ be set by the
2527 		 * hardware even if the OWN bit is cleared and VALID bit
2528 		 * is set.
2529 		 *
2530 		 * If the RSS information is not delivered by the hardware
2531 		 * yet, we MUST NOT accept this packet, let alone reusing
2532 		 * its RX descriptor.  If this packet was accepted and its
2533 		 * RX descriptor was reused before hardware delivering the
2534 		 * RSS information, the RX buffer's address would be trashed
2535 		 * by the RSS information delivered by the hardware.
2536 		 */
2537 		if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2538 			struct jme_rxdesc *rxd;
2539 			uint32_t hashinfo;
2540 
2541 			hashinfo = le32toh(desc->addr_lo);
2542 			rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2543 
2544 			/*
2545 			 * This test should be enough to detect the pending
2546 			 * RSS information delivery, given:
2547 			 * - If RSS hash is not calculated, the hashinfo
2548 			 *   will be 0.  Howvever, the lower 32bits of RX
2549 			 *   buffers' physical address will never be 0.
2550 			 *   (see jme_rxbuf_dma_filter)
2551 			 * - If RSS hash is calculated, the lowest 4 bits
2552 			 *   of hashinfo will be set, while the RX buffers
2553 			 *   are at least 2K aligned.
2554 			 */
2555 			if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2556 #ifdef JME_SHOW_RSSWB
2557 				if_printf(&rdata->jme_sc->arpcom.ac_if,
2558 				    "RSS is not written back yet\n");
2559 #endif
2560 				break;
2561 			}
2562 		}
2563 
2564 		/* Received a frame. */
2565 		jme_rxpkt(rdata);
2566 	}
2567 }
2568 
2569 static void
2570 jme_tick(void *xsc)
2571 {
2572 	struct jme_softc *sc = xsc;
2573 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2574 
2575 	lwkt_serialize_enter(&sc->jme_serialize);
2576 
2577 	KKASSERT(mycpuid == JME_TICK_CPUID);
2578 
2579 	sc->jme_in_tick = TRUE;
2580 	mii_tick(mii);
2581 	sc->jme_in_tick = FALSE;
2582 
2583 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2584 
2585 	lwkt_serialize_exit(&sc->jme_serialize);
2586 }
2587 
2588 static void
2589 jme_reset(struct jme_softc *sc)
2590 {
2591 	uint32_t val;
2592 
2593 	/* Make sure that TX and RX are stopped */
2594 	jme_stop_tx(sc);
2595 	jme_stop_rx(sc);
2596 
2597 	/* Start reset */
2598 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2599 	DELAY(20);
2600 
2601 	/*
2602 	 * Hold reset bit before stop reset
2603 	 */
2604 
2605 	/* Disable TXMAC and TXOFL clock sources */
2606 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2607 	/* Disable RXMAC clock source */
2608 	val = CSR_READ_4(sc, JME_GPREG1);
2609 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2610 	/* Flush */
2611 	CSR_READ_4(sc, JME_GHC);
2612 
2613 	/* Stop reset */
2614 	CSR_WRITE_4(sc, JME_GHC, 0);
2615 	/* Flush */
2616 	CSR_READ_4(sc, JME_GHC);
2617 
2618 	/*
2619 	 * Clear reset bit after stop reset
2620 	 */
2621 
2622 	/* Enable TXMAC and TXOFL clock sources */
2623 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2624 	/* Enable RXMAC clock source */
2625 	val = CSR_READ_4(sc, JME_GPREG1);
2626 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2627 	/* Flush */
2628 	CSR_READ_4(sc, JME_GHC);
2629 
2630 	/* Disable TXMAC and TXOFL clock sources */
2631 	CSR_WRITE_4(sc, JME_GHC, 0);
2632 	/* Disable RXMAC clock source */
2633 	val = CSR_READ_4(sc, JME_GPREG1);
2634 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2635 	/* Flush */
2636 	CSR_READ_4(sc, JME_GHC);
2637 
2638 	/* Enable TX and RX */
2639 	val = CSR_READ_4(sc, JME_TXCSR);
2640 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2641 	val = CSR_READ_4(sc, JME_RXCSR);
2642 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2643 	/* Flush */
2644 	CSR_READ_4(sc, JME_TXCSR);
2645 	CSR_READ_4(sc, JME_RXCSR);
2646 
2647 	/* Enable TXMAC and TXOFL clock sources */
2648 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2649 	/* Eisable RXMAC clock source */
2650 	val = CSR_READ_4(sc, JME_GPREG1);
2651 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2652 	/* Flush */
2653 	CSR_READ_4(sc, JME_GHC);
2654 
2655 	/* Stop TX and RX */
2656 	jme_stop_tx(sc);
2657 	jme_stop_rx(sc);
2658 }
2659 
2660 static void
2661 jme_init(void *xsc)
2662 {
2663 	struct jme_softc *sc = xsc;
2664 	struct ifnet *ifp = &sc->arpcom.ac_if;
2665 	struct mii_data *mii;
2666 	uint8_t eaddr[ETHER_ADDR_LEN];
2667 	bus_addr_t paddr;
2668 	uint32_t reg;
2669 	int error, r;
2670 
2671 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2672 
2673 	/*
2674 	 * Cancel any pending I/O.
2675 	 */
2676 	jme_stop(sc);
2677 
2678 	/*
2679 	 * Reset the chip to a known state.
2680 	 */
2681 	jme_reset(sc);
2682 
2683 	/*
2684 	 * Setup MSI/MSI-X vectors to interrupts mapping
2685 	 */
2686 	jme_set_msinum(sc);
2687 
2688 	if (JME_ENABLE_HWRSS(sc))
2689 		jme_enable_rss(sc);
2690 	else
2691 		jme_disable_rss(sc);
2692 
2693 	/* Init RX descriptors */
2694 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2695 		error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2696 		if (error) {
2697 			if_printf(ifp, "initialization failed: "
2698 				  "no memory for %dth RX ring.\n", r);
2699 			jme_stop(sc);
2700 			return;
2701 		}
2702 	}
2703 
2704 	/* Init TX descriptors */
2705 	jme_init_tx_ring(&sc->jme_cdata.jme_tx_data);
2706 
2707 	/* Initialize shadow status block. */
2708 	jme_init_ssb(sc);
2709 
2710 	/* Reprogram the station address. */
2711 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2712 	CSR_WRITE_4(sc, JME_PAR0,
2713 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2714 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2715 
2716 	/*
2717 	 * Configure Tx queue.
2718 	 *  Tx priority queue weight value : 0
2719 	 *  Tx FIFO threshold for processing next packet : 16QW
2720 	 *  Maximum Tx DMA length : 512
2721 	 *  Allow Tx DMA burst.
2722 	 */
2723 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2724 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2725 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2726 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2727 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2728 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2729 
2730 	/* Set Tx descriptor counter. */
2731 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt);
2732 
2733 	/* Set Tx ring address to the hardware. */
2734 	paddr = sc->jme_cdata.jme_tx_data.jme_tx_ring_paddr;
2735 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2736 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2737 
2738 	/* Configure TxMAC parameters. */
2739 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2740 	reg |= TXMAC_THRESH_1_PKT;
2741 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2742 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2743 
2744 	/*
2745 	 * Configure Rx queue.
2746 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2747 	 *  FIFO threshold for processing next packet : 128QW
2748 	 *  Rx queue 0 select
2749 	 *  Max Rx DMA length : 128
2750 	 *  Rx descriptor retry : 32
2751 	 *  Rx descriptor retry time gap : 256ns
2752 	 *  Don't receive runt/bad frame.
2753 	 */
2754 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2755 #if 0
2756 	/*
2757 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2758 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2759 	 * decrease FIFO threshold to reduce the FIFO overruns for
2760 	 * frames larger than 4000 bytes.
2761 	 * For best performance of standard MTU sized frames use
2762 	 * maximum allowable FIFO threshold, 128QW.
2763 	 */
2764 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2765 	    JME_RX_FIFO_SIZE)
2766 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2767 	else
2768 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2769 #else
2770 	/* Improve PCI Express compatibility */
2771 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2772 #endif
2773 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2774 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2775 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2776 	/* XXX TODO DROP_BAD */
2777 
2778 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2779 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2780 
2781 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2782 
2783 		/* Set Rx descriptor counter. */
2784 		CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2785 
2786 		/* Set Rx ring address to the hardware. */
2787 		paddr = rdata->jme_rx_ring_paddr;
2788 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2789 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2790 	}
2791 
2792 	/* Clear receive filter. */
2793 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2794 
2795 	/* Set up the receive filter. */
2796 	jme_set_filter(sc);
2797 	jme_set_vlan(sc);
2798 
2799 	/*
2800 	 * Disable all WOL bits as WOL can interfere normal Rx
2801 	 * operation. Also clear WOL detection status bits.
2802 	 */
2803 	reg = CSR_READ_4(sc, JME_PMCS);
2804 	reg &= ~PMCS_WOL_ENB_MASK;
2805 	CSR_WRITE_4(sc, JME_PMCS, reg);
2806 
2807 	/*
2808 	 * Pad 10bytes right before received frame. This will greatly
2809 	 * help Rx performance on strict-alignment architectures as
2810 	 * it does not need to copy the frame to align the payload.
2811 	 */
2812 	reg = CSR_READ_4(sc, JME_RXMAC);
2813 	reg |= RXMAC_PAD_10BYTES;
2814 
2815 	if (ifp->if_capenable & IFCAP_RXCSUM)
2816 		reg |= RXMAC_CSUM_ENB;
2817 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2818 
2819 	/* Configure general purpose reg0 */
2820 	reg = CSR_READ_4(sc, JME_GPREG0);
2821 	reg &= ~GPREG0_PCC_UNIT_MASK;
2822 	/* Set PCC timer resolution to micro-seconds unit. */
2823 	reg |= GPREG0_PCC_UNIT_US;
2824 	/*
2825 	 * Disable all shadow register posting as we have to read
2826 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2827 	 * that it's hard to synchronize interrupt status between
2828 	 * hardware and software with shadow posting due to
2829 	 * requirements of bus_dmamap_sync(9).
2830 	 */
2831 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2832 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2833 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2834 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2835 	/* Disable posting of DW0. */
2836 	reg &= ~GPREG0_POST_DW0_ENB;
2837 	/* Clear PME message. */
2838 	reg &= ~GPREG0_PME_ENB;
2839 	/* Set PHY address. */
2840 	reg &= ~GPREG0_PHY_ADDR_MASK;
2841 	reg |= sc->jme_phyaddr;
2842 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2843 
2844 	/* Configure Tx queue 0 packet completion coalescing. */
2845 	jme_set_tx_coal(sc);
2846 
2847 	/* Configure Rx queues packet completion coalescing. */
2848 	jme_set_rx_coal(sc);
2849 
2850 	/* Configure shadow status block but don't enable posting. */
2851 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2852 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2853 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2854 
2855 	/* Disable Timer 1 and Timer 2. */
2856 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2857 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2858 
2859 	/* Configure retry transmit period, retry limit value. */
2860 	CSR_WRITE_4(sc, JME_TXTRHD,
2861 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2862 	    TXTRHD_RT_PERIOD_MASK) |
2863 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2864 	    TXTRHD_RT_LIMIT_SHIFT));
2865 
2866 #ifdef IFPOLL_ENABLE
2867 	if (!(ifp->if_flags & IFF_NPOLLING))
2868 #endif
2869 	/* Initialize the interrupt mask. */
2870 	jme_enable_intr(sc);
2871 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2872 
2873 	/*
2874 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2875 	 * done after detection of valid link in jme_miibus_statchg.
2876 	 */
2877 	sc->jme_has_link = FALSE;
2878 
2879 	/* Set the current media. */
2880 	mii = device_get_softc(sc->jme_miibus);
2881 	mii_mediachg(mii);
2882 
2883 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
2884 	    JME_TICK_CPUID);
2885 
2886 	ifp->if_flags |= IFF_RUNNING;
2887 	ifq_clr_oactive(&ifp->if_snd);
2888 }
2889 
2890 static void
2891 jme_stop(struct jme_softc *sc)
2892 {
2893 	struct ifnet *ifp = &sc->arpcom.ac_if;
2894 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2895 	struct jme_txdesc *txd;
2896 	struct jme_rxdesc *rxd;
2897 	struct jme_rxdata *rdata;
2898 	int i, r;
2899 
2900 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2901 
2902 	/*
2903 	 * Mark the interface down and cancel the watchdog timer.
2904 	 */
2905 	ifp->if_flags &= ~IFF_RUNNING;
2906 	ifq_clr_oactive(&ifp->if_snd);
2907 	ifp->if_timer = 0;
2908 
2909 	callout_stop(&sc->jme_tick_ch);
2910 	sc->jme_has_link = FALSE;
2911 
2912 	/*
2913 	 * Disable interrupts.
2914 	 */
2915 	jme_disable_intr(sc);
2916 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2917 
2918 	/* Disable updating shadow status block. */
2919 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2920 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2921 
2922 	/* Stop receiver, transmitter. */
2923 	jme_stop_rx(sc);
2924 	jme_stop_tx(sc);
2925 
2926 	/*
2927 	 * Free partial finished RX segments
2928 	 */
2929 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2930 		rdata = &sc->jme_cdata.jme_rx_data[r];
2931 		if (rdata->jme_rxhead != NULL)
2932 			m_freem(rdata->jme_rxhead);
2933 		JME_RXCHAIN_RESET(rdata);
2934 	}
2935 
2936 	/*
2937 	 * Free RX and TX mbufs still in the queues.
2938 	 */
2939 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2940 		rdata = &sc->jme_cdata.jme_rx_data[r];
2941 		for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2942 			rxd = &rdata->jme_rxdesc[i];
2943 			if (rxd->rx_m != NULL) {
2944 				bus_dmamap_unload(rdata->jme_rx_tag,
2945 						  rxd->rx_dmamap);
2946 				m_freem(rxd->rx_m);
2947 				rxd->rx_m = NULL;
2948 			}
2949 		}
2950 	}
2951 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
2952 		txd = &tdata->jme_txdesc[i];
2953 		if (txd->tx_m != NULL) {
2954 			bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2955 			m_freem(txd->tx_m);
2956 			txd->tx_m = NULL;
2957 			txd->tx_ndesc = 0;
2958 		}
2959         }
2960 }
2961 
2962 static void
2963 jme_stop_tx(struct jme_softc *sc)
2964 {
2965 	uint32_t reg;
2966 	int i;
2967 
2968 	reg = CSR_READ_4(sc, JME_TXCSR);
2969 	if ((reg & TXCSR_TX_ENB) == 0)
2970 		return;
2971 	reg &= ~TXCSR_TX_ENB;
2972 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2973 	for (i = JME_TIMEOUT; i > 0; i--) {
2974 		DELAY(1);
2975 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2976 			break;
2977 	}
2978 	if (i == 0)
2979 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2980 }
2981 
2982 static void
2983 jme_stop_rx(struct jme_softc *sc)
2984 {
2985 	uint32_t reg;
2986 	int i;
2987 
2988 	reg = CSR_READ_4(sc, JME_RXCSR);
2989 	if ((reg & RXCSR_RX_ENB) == 0)
2990 		return;
2991 	reg &= ~RXCSR_RX_ENB;
2992 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2993 	for (i = JME_TIMEOUT; i > 0; i--) {
2994 		DELAY(1);
2995 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2996 			break;
2997 	}
2998 	if (i == 0)
2999 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3000 }
3001 
3002 static void
3003 jme_init_tx_ring(struct jme_txdata *tdata)
3004 {
3005 	struct jme_txdesc *txd;
3006 	int i;
3007 
3008 	tdata->jme_tx_prod = 0;
3009 	tdata->jme_tx_cons = 0;
3010 	tdata->jme_tx_cnt = 0;
3011 
3012 	bzero(tdata->jme_tx_ring, JME_TX_RING_SIZE(tdata));
3013 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
3014 		txd = &tdata->jme_txdesc[i];
3015 		txd->tx_m = NULL;
3016 		txd->tx_desc = &tdata->jme_tx_ring[i];
3017 		txd->tx_ndesc = 0;
3018 	}
3019 }
3020 
3021 static void
3022 jme_init_ssb(struct jme_softc *sc)
3023 {
3024 	struct jme_chain_data *cd;
3025 
3026 	cd = &sc->jme_cdata;
3027 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
3028 }
3029 
3030 static int
3031 jme_init_rx_ring(struct jme_rxdata *rdata)
3032 {
3033 	struct jme_rxdesc *rxd;
3034 	int i;
3035 
3036 	KKASSERT(rdata->jme_rxhead == NULL &&
3037 		 rdata->jme_rxtail == NULL &&
3038 		 rdata->jme_rxlen == 0);
3039 	rdata->jme_rx_cons = 0;
3040 
3041 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
3042 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3043 		int error;
3044 
3045 		rxd = &rdata->jme_rxdesc[i];
3046 		rxd->rx_m = NULL;
3047 		rxd->rx_desc = &rdata->jme_rx_ring[i];
3048 		error = jme_newbuf(rdata, rxd, 1);
3049 		if (error)
3050 			return error;
3051 	}
3052 	return 0;
3053 }
3054 
3055 static int
3056 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
3057 {
3058 	struct mbuf *m;
3059 	bus_dma_segment_t segs;
3060 	bus_dmamap_t map;
3061 	int error, nsegs;
3062 
3063 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3064 	if (m == NULL)
3065 		return ENOBUFS;
3066 	/*
3067 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3068 	 * takes advantage of 10 bytes padding feature of hardware
3069 	 * in order not to copy entire frame to align IP header on
3070 	 * 32bit boundary.
3071 	 */
3072 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3073 
3074 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
3075 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
3076 			BUS_DMA_NOWAIT);
3077 	if (error) {
3078 		m_freem(m);
3079 		if (init) {
3080 			if_printf(&rdata->jme_sc->arpcom.ac_if,
3081 			    "can't load RX mbuf\n");
3082 		}
3083 		return error;
3084 	}
3085 
3086 	if (rxd->rx_m != NULL) {
3087 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
3088 				BUS_DMASYNC_POSTREAD);
3089 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
3090 	}
3091 	map = rxd->rx_dmamap;
3092 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
3093 	rdata->jme_rx_sparemap = map;
3094 	rxd->rx_m = m;
3095 	rxd->rx_paddr = segs.ds_addr;
3096 
3097 	jme_setup_rxdesc(rxd);
3098 	return 0;
3099 }
3100 
3101 static void
3102 jme_set_vlan(struct jme_softc *sc)
3103 {
3104 	struct ifnet *ifp = &sc->arpcom.ac_if;
3105 	uint32_t reg;
3106 
3107 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3108 
3109 	reg = CSR_READ_4(sc, JME_RXMAC);
3110 	reg &= ~RXMAC_VLAN_ENB;
3111 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3112 		reg |= RXMAC_VLAN_ENB;
3113 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3114 }
3115 
3116 static void
3117 jme_set_filter(struct jme_softc *sc)
3118 {
3119 	struct ifnet *ifp = &sc->arpcom.ac_if;
3120 	struct ifmultiaddr *ifma;
3121 	uint32_t crc;
3122 	uint32_t mchash[2];
3123 	uint32_t rxcfg;
3124 
3125 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3126 
3127 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3128 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3129 	    RXMAC_ALLMULTI);
3130 
3131 	/*
3132 	 * Always accept frames destined to our station address.
3133 	 * Always accept broadcast frames.
3134 	 */
3135 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3136 
3137 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3138 		if (ifp->if_flags & IFF_PROMISC)
3139 			rxcfg |= RXMAC_PROMISC;
3140 		if (ifp->if_flags & IFF_ALLMULTI)
3141 			rxcfg |= RXMAC_ALLMULTI;
3142 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3143 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3144 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3145 		return;
3146 	}
3147 
3148 	/*
3149 	 * Set up the multicast address filter by passing all multicast
3150 	 * addresses through a CRC generator, and then using the low-order
3151 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3152 	 * high order bits select the register, while the rest of the bits
3153 	 * select the bit within the register.
3154 	 */
3155 	rxcfg |= RXMAC_MULTICAST;
3156 	bzero(mchash, sizeof(mchash));
3157 
3158 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3159 		if (ifma->ifma_addr->sa_family != AF_LINK)
3160 			continue;
3161 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3162 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3163 
3164 		/* Just want the 6 least significant bits. */
3165 		crc &= 0x3f;
3166 
3167 		/* Set the corresponding bit in the hash table. */
3168 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3169 	}
3170 
3171 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3172 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3173 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3174 }
3175 
3176 static int
3177 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3178 {
3179 	struct jme_softc *sc = arg1;
3180 	struct ifnet *ifp = &sc->arpcom.ac_if;
3181 	int error, v;
3182 
3183 	ifnet_serialize_all(ifp);
3184 
3185 	v = sc->jme_tx_coal_to;
3186 	error = sysctl_handle_int(oidp, &v, 0, req);
3187 	if (error || req->newptr == NULL)
3188 		goto back;
3189 
3190 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3191 		error = EINVAL;
3192 		goto back;
3193 	}
3194 
3195 	if (v != sc->jme_tx_coal_to) {
3196 		sc->jme_tx_coal_to = v;
3197 		if (ifp->if_flags & IFF_RUNNING)
3198 			jme_set_tx_coal(sc);
3199 	}
3200 back:
3201 	ifnet_deserialize_all(ifp);
3202 	return error;
3203 }
3204 
3205 static int
3206 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3207 {
3208 	struct jme_softc *sc = arg1;
3209 	struct ifnet *ifp = &sc->arpcom.ac_if;
3210 	int error, v;
3211 
3212 	ifnet_serialize_all(ifp);
3213 
3214 	v = sc->jme_tx_coal_pkt;
3215 	error = sysctl_handle_int(oidp, &v, 0, req);
3216 	if (error || req->newptr == NULL)
3217 		goto back;
3218 
3219 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3220 		error = EINVAL;
3221 		goto back;
3222 	}
3223 
3224 	if (v != sc->jme_tx_coal_pkt) {
3225 		sc->jme_tx_coal_pkt = v;
3226 		if (ifp->if_flags & IFF_RUNNING)
3227 			jme_set_tx_coal(sc);
3228 	}
3229 back:
3230 	ifnet_deserialize_all(ifp);
3231 	return error;
3232 }
3233 
3234 static int
3235 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3236 {
3237 	struct jme_softc *sc = arg1;
3238 	struct ifnet *ifp = &sc->arpcom.ac_if;
3239 	int error, v;
3240 
3241 	ifnet_serialize_all(ifp);
3242 
3243 	v = sc->jme_rx_coal_to;
3244 	error = sysctl_handle_int(oidp, &v, 0, req);
3245 	if (error || req->newptr == NULL)
3246 		goto back;
3247 
3248 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3249 		error = EINVAL;
3250 		goto back;
3251 	}
3252 
3253 	if (v != sc->jme_rx_coal_to) {
3254 		sc->jme_rx_coal_to = v;
3255 		if (ifp->if_flags & IFF_RUNNING)
3256 			jme_set_rx_coal(sc);
3257 	}
3258 back:
3259 	ifnet_deserialize_all(ifp);
3260 	return error;
3261 }
3262 
3263 static int
3264 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3265 {
3266 	struct jme_softc *sc = arg1;
3267 	struct ifnet *ifp = &sc->arpcom.ac_if;
3268 	int error, v;
3269 
3270 	ifnet_serialize_all(ifp);
3271 
3272 	v = sc->jme_rx_coal_pkt;
3273 	error = sysctl_handle_int(oidp, &v, 0, req);
3274 	if (error || req->newptr == NULL)
3275 		goto back;
3276 
3277 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3278 		error = EINVAL;
3279 		goto back;
3280 	}
3281 
3282 	if (v != sc->jme_rx_coal_pkt) {
3283 		sc->jme_rx_coal_pkt = v;
3284 		if (ifp->if_flags & IFF_RUNNING)
3285 			jme_set_rx_coal(sc);
3286 	}
3287 back:
3288 	ifnet_deserialize_all(ifp);
3289 	return error;
3290 }
3291 
3292 static void
3293 jme_set_tx_coal(struct jme_softc *sc)
3294 {
3295 	uint32_t reg;
3296 
3297 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3298 	    PCCTX_COAL_TO_MASK;
3299 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3300 	    PCCTX_COAL_PKT_MASK;
3301 	reg |= PCCTX_COAL_TXQ0;
3302 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3303 }
3304 
3305 static void
3306 jme_set_rx_coal(struct jme_softc *sc)
3307 {
3308 	uint32_t reg;
3309 	int r;
3310 
3311 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3312 	    PCCRX_COAL_TO_MASK;
3313 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3314 	    PCCRX_COAL_PKT_MASK;
3315 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3316 		CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3317 }
3318 
3319 #ifdef IFPOLL_ENABLE
3320 
3321 static void
3322 jme_npoll_status(struct ifnet *ifp)
3323 {
3324 	struct jme_softc *sc = ifp->if_softc;
3325 	uint32_t status;
3326 
3327 	ASSERT_SERIALIZED(&sc->jme_serialize);
3328 
3329 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3330 	if (status & INTR_RXQ_DESC_EMPTY) {
3331 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3332 		jme_rx_restart(sc, status);
3333 	}
3334 }
3335 
3336 static void
3337 jme_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3338 {
3339 	struct jme_rxdata *rdata = arg;
3340 
3341 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3342 
3343 	jme_rxeof(rdata, cycle);
3344 }
3345 
3346 static void
3347 jme_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3348 {
3349 	struct jme_txdata *tdata = arg;
3350 
3351 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3352 
3353 	jme_txeof(tdata);
3354 	if (!ifq_is_empty(&ifp->if_snd))
3355 		if_devstart(ifp);
3356 }
3357 
3358 static void
3359 jme_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3360 {
3361 	struct jme_softc *sc = ifp->if_softc;
3362 
3363 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3364 
3365 	if (info) {
3366 		int i, off;
3367 
3368 		info->ifpi_status.status_func = jme_npoll_status;
3369 		info->ifpi_status.serializer = &sc->jme_serialize;
3370 
3371 		off = sc->jme_npoll_txoff;
3372 		KKASSERT(off <= ncpus2);
3373 		info->ifpi_tx[off].poll_func = jme_npoll_tx;
3374 		info->ifpi_tx[off].arg = &sc->jme_cdata.jme_tx_data;
3375 		info->ifpi_tx[off].serializer =
3376 		    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3377 		ifq_set_cpuid(&ifp->if_snd, sc->jme_npoll_txoff);
3378 
3379 		off = sc->jme_npoll_rxoff;
3380 		for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3381 			struct jme_rxdata *rdata =
3382 			    &sc->jme_cdata.jme_rx_data[i];
3383 			int idx = i + off;
3384 
3385 			info->ifpi_rx[idx].poll_func = jme_npoll_rx;
3386 			info->ifpi_rx[idx].arg = rdata;
3387 			info->ifpi_rx[idx].serializer =
3388 			    &rdata->jme_rx_serialize;
3389 		}
3390 
3391 		if (ifp->if_flags & IFF_RUNNING)
3392 			jme_disable_intr(sc);
3393 	} else {
3394 		ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
3395 		if (ifp->if_flags & IFF_RUNNING)
3396 			jme_enable_intr(sc);
3397 	}
3398 }
3399 
3400 static int
3401 jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3402 {
3403 	struct jme_softc *sc = (void *)arg1;
3404 	struct ifnet *ifp = &sc->arpcom.ac_if;
3405 	int error, off;
3406 
3407 	off = sc->jme_npoll_rxoff;
3408 	error = sysctl_handle_int(oidp, &off, 0, req);
3409 	if (error || req->newptr == NULL)
3410 		return error;
3411 	if (off < 0)
3412 		return EINVAL;
3413 
3414 	ifnet_serialize_all(ifp);
3415 	if (off >= ncpus2 || off % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3416 		error = EINVAL;
3417 	} else {
3418 		error = 0;
3419 		sc->jme_npoll_rxoff = off;
3420 	}
3421 	ifnet_deserialize_all(ifp);
3422 
3423 	return error;
3424 }
3425 
3426 static int
3427 jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3428 {
3429 	struct jme_softc *sc = (void *)arg1;
3430 	struct ifnet *ifp = &sc->arpcom.ac_if;
3431 	int error, off;
3432 
3433 	off = sc->jme_npoll_txoff;
3434 	error = sysctl_handle_int(oidp, &off, 0, req);
3435 	if (error || req->newptr == NULL)
3436 		return error;
3437 	if (off < 0)
3438 		return EINVAL;
3439 
3440 	ifnet_serialize_all(ifp);
3441 	if (off >= ncpus2) {
3442 		error = EINVAL;
3443 	} else {
3444 		error = 0;
3445 		sc->jme_npoll_txoff = off;
3446 	}
3447 	ifnet_deserialize_all(ifp);
3448 
3449 	return error;
3450 }
3451 
3452 #endif	/* IFPOLL_ENABLE */
3453 
3454 static int
3455 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3456 {
3457 	bus_dmamem_t dmem;
3458 	int error, asize;
3459 
3460 	asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3461 	error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3462 			JME_RX_RING_ALIGN, 0,
3463 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3464 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3465 	if (error) {
3466 		device_printf(rdata->jme_sc->jme_dev,
3467 		    "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3468 		return error;
3469 	}
3470 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3471 	rdata->jme_rx_ring_map = dmem.dmem_map;
3472 	rdata->jme_rx_ring = dmem.dmem_addr;
3473 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3474 
3475 	return 0;
3476 }
3477 
3478 static int
3479 jme_rxbuf_dma_filter(void *arg __unused, bus_addr_t paddr)
3480 {
3481 	if ((paddr & 0xffffffff) == 0) {
3482 		/*
3483 		 * Don't allow lower 32bits of the RX buffer's
3484 		 * physical address to be 0, else it will break
3485 		 * hardware pending RSS information delivery
3486 		 * detection on RX path.
3487 		 */
3488 		return 1;
3489 	}
3490 	return 0;
3491 }
3492 
3493 static int
3494 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3495 {
3496 	bus_addr_t lowaddr;
3497 	int i, error;
3498 
3499 	lowaddr = BUS_SPACE_MAXADDR;
3500 	if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3501 		/* jme_rxbuf_dma_filter will be called */
3502 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
3503 	}
3504 
3505 	/* Create tag for Rx buffers. */
3506 	error = bus_dma_tag_create(
3507 	    rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3508 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3509 	    lowaddr,			/* lowaddr */
3510 	    BUS_SPACE_MAXADDR,		/* highaddr */
3511 	    jme_rxbuf_dma_filter, NULL,	/* filter, filterarg */
3512 	    MCLBYTES,			/* maxsize */
3513 	    1,				/* nsegments */
3514 	    MCLBYTES,			/* maxsegsize */
3515 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3516 	    &rdata->jme_rx_tag);
3517 	if (error) {
3518 		device_printf(rdata->jme_sc->jme_dev,
3519 		    "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3520 		return error;
3521 	}
3522 
3523 	/* Create DMA maps for Rx buffers. */
3524 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3525 				  &rdata->jme_rx_sparemap);
3526 	if (error) {
3527 		device_printf(rdata->jme_sc->jme_dev,
3528 		    "could not create %dth spare Rx dmamap.\n",
3529 		    rdata->jme_rx_idx);
3530 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3531 		rdata->jme_rx_tag = NULL;
3532 		return error;
3533 	}
3534 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3535 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3536 
3537 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3538 					  &rxd->rx_dmamap);
3539 		if (error) {
3540 			int j;
3541 
3542 			device_printf(rdata->jme_sc->jme_dev,
3543 			    "could not create %dth Rx dmamap "
3544 			    "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3545 
3546 			for (j = 0; j < i; ++j) {
3547 				rxd = &rdata->jme_rxdesc[j];
3548 				bus_dmamap_destroy(rdata->jme_rx_tag,
3549 						   rxd->rx_dmamap);
3550 			}
3551 			bus_dmamap_destroy(rdata->jme_rx_tag,
3552 					   rdata->jme_rx_sparemap);
3553 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3554 			rdata->jme_rx_tag = NULL;
3555 			return error;
3556 		}
3557 	}
3558 	return 0;
3559 }
3560 
3561 static void
3562 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3563 {
3564 	int r;
3565 
3566 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3567 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3568 
3569 		if (status & rdata->jme_rx_coal) {
3570 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3571 			jme_rxeof(rdata, -1);
3572 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3573 		}
3574 	}
3575 }
3576 
3577 static void
3578 jme_enable_rss(struct jme_softc *sc)
3579 {
3580 	uint32_t rssc, ind;
3581 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3582 	int i;
3583 
3584 	KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3585 		sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3586 		("%s: invalid # of RX rings (%d)",
3587 		 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3588 
3589 	rssc = RSSC_HASH_64_ENTRY;
3590 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3591 	rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3592 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3593 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3594 
3595 	toeplitz_get_key(key, sizeof(key));
3596 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3597 		uint32_t keyreg;
3598 
3599 		keyreg = RSSKEY_REGVAL(key, i);
3600 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x, reg 0x%08x\n",
3601 		    i, keyreg, RSSKEY_REG(RSSKEY_NREGS - 1 - i));
3602 
3603 		CSR_WRITE_4(sc, RSSKEY_REG(RSSKEY_NREGS - 1 - i), keyreg);
3604 	}
3605 
3606 	/*
3607 	 * Create redirect table in following fashion:
3608 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3609 	 */
3610 	ind = 0;
3611 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3612 		int q;
3613 
3614 		q = i % sc->jme_cdata.jme_rx_ring_cnt;
3615 		ind |= q << (i * 8);
3616 	}
3617 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3618 
3619 	for (i = 0; i < RSSTBL_NREGS; ++i)
3620 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3621 }
3622 
3623 static void
3624 jme_disable_rss(struct jme_softc *sc)
3625 {
3626 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3627 }
3628 
3629 static void
3630 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3631 {
3632 	struct jme_softc *sc = ifp->if_softc;
3633 
3634 	ifnet_serialize_array_enter(sc->jme_serialize_arr,
3635 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE, slz);
3636 }
3637 
3638 static void
3639 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3640 {
3641 	struct jme_softc *sc = ifp->if_softc;
3642 
3643 	ifnet_serialize_array_exit(sc->jme_serialize_arr,
3644 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE, slz);
3645 }
3646 
3647 static int
3648 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3649 {
3650 	struct jme_softc *sc = ifp->if_softc;
3651 
3652 	return ifnet_serialize_array_try(sc->jme_serialize_arr,
3653 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE, slz);
3654 }
3655 
3656 #ifdef INVARIANTS
3657 
3658 static void
3659 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3660     boolean_t serialized)
3661 {
3662 	struct jme_softc *sc = ifp->if_softc;
3663 
3664 	ifnet_serialize_array_assert(sc->jme_serialize_arr,
3665 	    sc->jme_serialize_cnt, JME_TX_SERIALIZE, JME_RX_SERIALIZE,
3666 	    slz, serialized);
3667 }
3668 
3669 #endif	/* INVARIANTS */
3670 
3671 static void
3672 jme_msix_try_alloc(device_t dev)
3673 {
3674 	struct jme_softc *sc = device_get_softc(dev);
3675 	struct jme_msix_data *msix;
3676 	int error, i, r, msix_enable, msix_count;
3677 	int offset, offset_def;
3678 
3679 	msix_count = JME_MSIXCNT(sc->jme_cdata.jme_rx_ring_cnt);
3680 	KKASSERT(msix_count <= JME_NMSIX);
3681 
3682 	msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3683 
3684 	/*
3685 	 * We leave the 1st MSI-X vector unused, so we
3686 	 * actually need msix_count + 1 MSI-X vectors.
3687 	 */
3688 	if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3689 		return;
3690 
3691 	for (i = 0; i < msix_count; ++i)
3692 		sc->jme_msix[i].jme_msix_rid = -1;
3693 
3694 	i = 0;
3695 
3696 	/*
3697 	 * Setup status MSI-X
3698 	 */
3699 
3700 	msix = &sc->jme_msix[i++];
3701 	msix->jme_msix_cpuid = 0;
3702 	msix->jme_msix_arg = sc;
3703 	msix->jme_msix_func = jme_msix_status;
3704 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3705 		msix->jme_msix_intrs |=
3706 		    sc->jme_cdata.jme_rx_data[r].jme_rx_empty;
3707 	}
3708 	msix->jme_msix_serialize = &sc->jme_serialize;
3709 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s sts",
3710 	    device_get_nameunit(dev));
3711 
3712 	/*
3713 	 * Setup TX MSI-X
3714 	 */
3715 
3716 	offset_def = device_get_unit(dev) % ncpus2;
3717 	offset = device_getenv_int(dev, "msix.txoff", offset_def);
3718 	if (offset >= ncpus2) {
3719 		device_printf(dev, "invalid msix.txoff %d, use %d\n",
3720 		    offset, offset_def);
3721 		offset = offset_def;
3722 	}
3723 
3724 	msix = &sc->jme_msix[i++];
3725 	msix->jme_msix_cpuid = offset;
3726 	sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3727 	msix->jme_msix_arg = &sc->jme_cdata.jme_tx_data;
3728 	msix->jme_msix_func = jme_msix_tx;
3729 	msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3730 	msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3731 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3732 	    device_get_nameunit(dev));
3733 
3734 	/*
3735 	 * Setup RX MSI-X
3736 	 */
3737 
3738 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
3739 		offset = 0;
3740 	} else {
3741 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
3742 		    device_get_unit(dev)) % ncpus2;
3743 
3744 		offset = device_getenv_int(dev, "msix.rxoff", offset_def);
3745 		if (offset >= ncpus2 ||
3746 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3747 			device_printf(dev, "invalid msix.rxoff %d, use %d\n",
3748 			    offset, offset_def);
3749 			offset = offset_def;
3750 		}
3751 	}
3752 
3753 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3754 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3755 
3756 		msix = &sc->jme_msix[i++];
3757 		msix->jme_msix_cpuid = r + offset;
3758 		KKASSERT(msix->jme_msix_cpuid < ncpus2);
3759 		msix->jme_msix_arg = rdata;
3760 		msix->jme_msix_func = jme_msix_rx;
3761 		msix->jme_msix_intrs = rdata->jme_rx_coal;
3762 		msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3763 		ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3764 		    "%s rx%d", device_get_nameunit(dev), r);
3765 	}
3766 
3767 	KKASSERT(i == msix_count);
3768 
3769 	error = pci_setup_msix(dev);
3770 	if (error)
3771 		return;
3772 
3773 	/* Setup jme_msix_cnt early, so we could cleanup */
3774 	sc->jme_msix_cnt = msix_count;
3775 
3776 	for (i = 0; i < msix_count; ++i) {
3777 		msix = &sc->jme_msix[i];
3778 
3779 		msix->jme_msix_vector = i + 1;
3780 		error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3781 		    &msix->jme_msix_rid, msix->jme_msix_cpuid);
3782 		if (error)
3783 			goto back;
3784 
3785 		msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3786 		    &msix->jme_msix_rid, RF_ACTIVE);
3787 		if (msix->jme_msix_res == NULL) {
3788 			error = ENOMEM;
3789 			goto back;
3790 		}
3791 	}
3792 
3793 	for (i = 0; i < JME_INTR_CNT; ++i) {
3794 		uint32_t intr_mask = (1 << i);
3795 		int x;
3796 
3797 		if ((JME_INTRS & intr_mask) == 0)
3798 			continue;
3799 
3800 		for (x = 0; x < msix_count; ++x) {
3801 			msix = &sc->jme_msix[x];
3802 			if (msix->jme_msix_intrs & intr_mask) {
3803 				int reg, shift;
3804 
3805 				reg = i / JME_MSINUM_FACTOR;
3806 				KKASSERT(reg < JME_MSINUM_CNT);
3807 
3808 				shift = (i % JME_MSINUM_FACTOR) * 4;
3809 
3810 				sc->jme_msinum[reg] |=
3811 				    (msix->jme_msix_vector << shift);
3812 
3813 				break;
3814 			}
3815 		}
3816 	}
3817 
3818 	if (bootverbose) {
3819 		for (i = 0; i < JME_MSINUM_CNT; ++i) {
3820 			device_printf(dev, "MSINUM%d: %#x\n", i,
3821 			    sc->jme_msinum[i]);
3822 		}
3823 	}
3824 
3825 	pci_enable_msix(dev);
3826 	sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3827 
3828 back:
3829 	if (error)
3830 		jme_msix_free(dev);
3831 }
3832 
3833 static int
3834 jme_intr_alloc(device_t dev)
3835 {
3836 	struct jme_softc *sc = device_get_softc(dev);
3837 	u_int irq_flags;
3838 
3839 	jme_msix_try_alloc(dev);
3840 
3841 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3842 		sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3843 		    &sc->jme_irq_rid, &irq_flags);
3844 
3845 		sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3846 		    &sc->jme_irq_rid, irq_flags);
3847 		if (sc->jme_irq_res == NULL) {
3848 			device_printf(dev, "can't allocate irq\n");
3849 			return ENXIO;
3850 		}
3851 		sc->jme_tx_cpuid = rman_get_cpuid(sc->jme_irq_res);
3852 	}
3853 	return 0;
3854 }
3855 
3856 static void
3857 jme_msix_free(device_t dev)
3858 {
3859 	struct jme_softc *sc = device_get_softc(dev);
3860 	int i;
3861 
3862 	KKASSERT(sc->jme_msix_cnt > 1);
3863 
3864 	for (i = 0; i < sc->jme_msix_cnt; ++i) {
3865 		struct jme_msix_data *msix = &sc->jme_msix[i];
3866 
3867 		if (msix->jme_msix_res != NULL) {
3868 			bus_release_resource(dev, SYS_RES_IRQ,
3869 			    msix->jme_msix_rid, msix->jme_msix_res);
3870 			msix->jme_msix_res = NULL;
3871 		}
3872 		if (msix->jme_msix_rid >= 0) {
3873 			pci_release_msix_vector(dev, msix->jme_msix_rid);
3874 			msix->jme_msix_rid = -1;
3875 		}
3876 	}
3877 	pci_teardown_msix(dev);
3878 }
3879 
3880 static void
3881 jme_intr_free(device_t dev)
3882 {
3883 	struct jme_softc *sc = device_get_softc(dev);
3884 
3885 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3886 		if (sc->jme_irq_res != NULL) {
3887 			bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3888 					     sc->jme_irq_res);
3889 		}
3890 		if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3891 			pci_release_msi(dev);
3892 	} else {
3893 		jme_msix_free(dev);
3894 	}
3895 }
3896 
3897 static void
3898 jme_msix_tx(void *xtdata)
3899 {
3900 	struct jme_txdata *tdata = xtdata;
3901 	struct jme_softc *sc = tdata->jme_sc;
3902 	struct ifnet *ifp = &sc->arpcom.ac_if;
3903 
3904 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3905 
3906 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3907 
3908 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3909 	    INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3910 
3911 	if (ifp->if_flags & IFF_RUNNING) {
3912 		jme_txeof(tdata);
3913 		if (!ifq_is_empty(&ifp->if_snd))
3914 			if_devstart(ifp);
3915 	}
3916 
3917 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3918 }
3919 
3920 static void
3921 jme_msix_rx(void *xrdata)
3922 {
3923 	struct jme_rxdata *rdata = xrdata;
3924 	struct jme_softc *sc = rdata->jme_sc;
3925 	struct ifnet *ifp = &sc->arpcom.ac_if;
3926 
3927 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3928 
3929 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, rdata->jme_rx_coal);
3930 
3931 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3932 	    rdata->jme_rx_coal | rdata->jme_rx_comp);
3933 
3934 	if (ifp->if_flags & IFF_RUNNING)
3935 		jme_rxeof(rdata, -1);
3936 
3937 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, rdata->jme_rx_coal);
3938 }
3939 
3940 static void
3941 jme_msix_status(void *xsc)
3942 {
3943 	struct jme_softc *sc = xsc;
3944 	struct ifnet *ifp = &sc->arpcom.ac_if;
3945 	uint32_t status;
3946 
3947 	ASSERT_SERIALIZED(&sc->jme_serialize);
3948 
3949 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_RXQ_DESC_EMPTY);
3950 
3951 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3952 
3953 	if (status & INTR_RXQ_DESC_EMPTY) {
3954 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3955 		if (ifp->if_flags & IFF_RUNNING)
3956 			jme_rx_restart(sc, status);
3957 	}
3958 
3959 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_RXQ_DESC_EMPTY);
3960 }
3961 
3962 static void
3963 jme_rx_restart(struct jme_softc *sc, uint32_t status)
3964 {
3965 	int i;
3966 
3967 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3968 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
3969 
3970 		if (status & rdata->jme_rx_empty) {
3971 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3972 			jme_rxeof(rdata, -1);
3973 #ifdef JME_RSS_DEBUG
3974 			rdata->jme_rx_emp++;
3975 #endif
3976 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3977 		}
3978 	}
3979 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
3980 	    RXCSR_RXQ_START);
3981 }
3982 
3983 static void
3984 jme_set_msinum(struct jme_softc *sc)
3985 {
3986 	int i;
3987 
3988 	for (i = 0; i < JME_MSINUM_CNT; ++i)
3989 		CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3990 }
3991 
3992 static int
3993 jme_intr_setup(device_t dev)
3994 {
3995 	struct jme_softc *sc = device_get_softc(dev);
3996 	int error;
3997 
3998 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
3999 		return jme_msix_setup(dev);
4000 
4001 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
4002 	    jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
4003 	if (error) {
4004 		device_printf(dev, "could not set up interrupt handler.\n");
4005 		return error;
4006 	}
4007 
4008 	return 0;
4009 }
4010 
4011 static void
4012 jme_intr_teardown(device_t dev)
4013 {
4014 	struct jme_softc *sc = device_get_softc(dev);
4015 
4016 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4017 		jme_msix_teardown(dev, sc->jme_msix_cnt);
4018 	else
4019 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
4020 }
4021 
4022 static int
4023 jme_msix_setup(device_t dev)
4024 {
4025 	struct jme_softc *sc = device_get_softc(dev);
4026 	int x;
4027 
4028 	for (x = 0; x < sc->jme_msix_cnt; ++x) {
4029 		struct jme_msix_data *msix = &sc->jme_msix[x];
4030 		int error;
4031 
4032 		error = bus_setup_intr_descr(dev, msix->jme_msix_res,
4033 		    INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
4034 		    &msix->jme_msix_handle, msix->jme_msix_serialize,
4035 		    msix->jme_msix_desc);
4036 		if (error) {
4037 			device_printf(dev, "could not set up %s "
4038 			    "interrupt handler.\n", msix->jme_msix_desc);
4039 			jme_msix_teardown(dev, x);
4040 			return error;
4041 		}
4042 	}
4043 	return 0;
4044 }
4045 
4046 static void
4047 jme_msix_teardown(device_t dev, int msix_count)
4048 {
4049 	struct jme_softc *sc = device_get_softc(dev);
4050 	int x;
4051 
4052 	for (x = 0; x < msix_count; ++x) {
4053 		struct jme_msix_data *msix = &sc->jme_msix[x];
4054 
4055 		bus_teardown_intr(dev, msix->jme_msix_res,
4056 		    msix->jme_msix_handle);
4057 	}
4058 }
4059 
4060 static void
4061 jme_serialize_skipmain(struct jme_softc *sc)
4062 {
4063 	lwkt_serialize_array_enter(sc->jme_serialize_arr,
4064 	    sc->jme_serialize_cnt, 1);
4065 }
4066 
4067 static void
4068 jme_deserialize_skipmain(struct jme_softc *sc)
4069 {
4070 	lwkt_serialize_array_exit(sc->jme_serialize_arr,
4071 	    sc->jme_serialize_cnt, 1);
4072 }
4073 
4074 static void
4075 jme_enable_intr(struct jme_softc *sc)
4076 {
4077 	int i;
4078 
4079 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4080 		lwkt_serialize_handler_enable(sc->jme_serialize_arr[i]);
4081 
4082 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
4083 }
4084 
4085 static void
4086 jme_disable_intr(struct jme_softc *sc)
4087 {
4088 	int i;
4089 
4090 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
4091 
4092 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4093 		lwkt_serialize_handler_disable(sc->jme_serialize_arr[i]);
4094 }
4095