xref: /dflybsd-src/sys/dev/netif/iwn/if_iwn.c (revision e19e5bbc20dd1d64f1833c5d0ac7a605c8e9bfa0)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  * $FreeBSD: head/sys/dev/iwn/if_iwn.c 258118 2013-11-14 07:27:00Z adrian $
22  */
23 
24 /*
25  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
26  * adapters.
27  */
28 
29 #include "opt_wlan.h"
30 #include "opt_iwn.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/stdbool.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/libkern.h>
50 
51 #include <sys/resource.h>
52 #include <machine/clock.h>
53 
54 #include <bus/pci/pcireg.h>
55 #include <bus/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ifq_var.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_regdomain.h>
76 #include <netproto/802_11/ieee80211_ratectl.h>
77 
78 #include "if_iwnreg.h"
79 #include "if_iwnvar.h"
80 #include "if_iwn_devid.h"
81 #include "if_iwn_chip_cfg.h"
82 #include "if_iwn_debug.h"
83 
84 #define nitems(ary)	(sizeof(ary) / sizeof((ary)[0]))
85 
86 struct iwn_ident {
87 	uint16_t	vendor;
88 	uint16_t	device;
89 	const char	*name;
90 };
91 
92 static const struct iwn_ident iwn_ident_table[] = {
93 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
94 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
95 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
96 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
97 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
98 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
99 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
100 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
101 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
102 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
103 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
104 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
105 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
106 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
107 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
108 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
109 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
110 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
111 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
112 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
113 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
114 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
116 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
117 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
119 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
120 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
122 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
123 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
124 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
125 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
126 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
127 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
128 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
129 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
130 	/*
131 	 * These currently don't function; the firmware crashes during
132 	 * the startup calibration request.
133 	 */
134 #if 0
135 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
136 	/* XXX TODO: figure out which ID this one is? */
137 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
138 #endif
139 	{ 0, 0, NULL }
140 };
141 
142 static int	iwn_pci_probe(device_t);
143 static int	iwn_pci_attach(device_t);
144 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
145 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
146 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
147 static void	iwn_radiotap_attach(struct iwn_softc *);
148 static void	iwn_sysctlattach(struct iwn_softc *);
149 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	iwn_vap_delete(struct ieee80211vap *);
154 static int	iwn_pci_detach(device_t);
155 static int	iwn_pci_shutdown(device_t);
156 static int	iwn_pci_suspend(device_t);
157 static int	iwn_pci_resume(device_t);
158 static int	iwn_nic_lock(struct iwn_softc *);
159 static int	iwn_eeprom_lock(struct iwn_softc *);
160 static int	iwn_init_otprom(struct iwn_softc *);
161 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
162 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
163 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
164 		    void **, bus_size_t, bus_size_t);
165 static void	iwn_dma_contig_free(struct iwn_dma_info *);
166 static int	iwn_alloc_sched(struct iwn_softc *);
167 static void	iwn_free_sched(struct iwn_softc *);
168 static int	iwn_alloc_kw(struct iwn_softc *);
169 static void	iwn_free_kw(struct iwn_softc *);
170 static int	iwn_alloc_ict(struct iwn_softc *);
171 static void	iwn_free_ict(struct iwn_softc *);
172 static int	iwn_alloc_fwmem(struct iwn_softc *);
173 static void	iwn_free_fwmem(struct iwn_softc *);
174 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
175 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
176 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
177 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
178 		    int);
179 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
180 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
181 static void	iwn5000_ict_reset(struct iwn_softc *);
182 static int	iwn_read_eeprom(struct iwn_softc *,
183 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
184 static void	iwn4965_read_eeprom(struct iwn_softc *);
185 #ifdef	IWN_DEBUG
186 static void	iwn4965_print_power_group(struct iwn_softc *, int);
187 #endif
188 static void	iwn5000_read_eeprom(struct iwn_softc *);
189 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
190 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
191 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
192 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
193 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
194 		    struct ieee80211_channel *);
195 static int	iwn_setregdomain(struct ieee80211com *,
196 		    struct ieee80211_regdomain *, int,
197 		    struct ieee80211_channel[]);
198 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
199 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
200 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
201 static void	iwn_newassoc(struct ieee80211_node *, int);
202 static int	iwn_media_change(struct ifnet *);
203 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
204 static void	iwn_calib_timeout(void *);
205 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
206 		    struct iwn_rx_data *);
207 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_rx_calib_results(struct iwn_softc *,
212 		    struct iwn_rx_desc *, struct iwn_rx_data *);
213 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
214 		    struct iwn_rx_data *);
215 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
216 		    struct iwn_rx_data *);
217 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
218 		    struct iwn_rx_data *);
219 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
220 		    uint8_t);
221 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
222 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
223 static void	iwn_notif_intr(struct iwn_softc *);
224 static void	iwn_wakeup_intr(struct iwn_softc *);
225 static void	iwn_rftoggle_intr(struct iwn_softc *);
226 static void	iwn_fatal_intr(struct iwn_softc *);
227 static void	iwn_intr(void *);
228 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
229 		    uint16_t);
230 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
231 		    uint16_t);
232 #ifdef notyet
233 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
234 #endif
235 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *);
237 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
238 		    struct ieee80211_node *,
239 		    const struct ieee80211_bpf_params *params);
240 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
241 		    const struct ieee80211_bpf_params *);
242 static void	iwn_start(struct ifnet *, struct ifaltq_subque *);
243 static void	iwn_start_locked(struct ifnet *);
244 static void	iwn_watchdog_timeout(void *);
245 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
246 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
247 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
248 		    int);
249 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
250 		    int);
251 static int	iwn_set_link_quality(struct iwn_softc *,
252 		    struct ieee80211_node *);
253 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
254 static int	iwn_updateedca(struct ieee80211com *);
255 static void	iwn_update_mcast(struct ifnet *);
256 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
257 static int	iwn_set_critical_temp(struct iwn_softc *);
258 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
259 static void	iwn4965_power_calibration(struct iwn_softc *, int);
260 static int	iwn4965_set_txpower(struct iwn_softc *,
261 		    struct ieee80211_channel *, int);
262 static int	iwn5000_set_txpower(struct iwn_softc *,
263 		    struct ieee80211_channel *, int);
264 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
265 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
266 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
267 static int	iwn4965_get_temperature(struct iwn_softc *);
268 static int	iwn5000_get_temperature(struct iwn_softc *);
269 static int	iwn_init_sensitivity(struct iwn_softc *);
270 static void	iwn_collect_noise(struct iwn_softc *,
271 		    const struct iwn_rx_general_stats *);
272 static int	iwn4965_init_gains(struct iwn_softc *);
273 static int	iwn5000_init_gains(struct iwn_softc *);
274 static int	iwn4965_set_gains(struct iwn_softc *);
275 static int	iwn5000_set_gains(struct iwn_softc *);
276 static void	iwn_tune_sensitivity(struct iwn_softc *,
277 		    const struct iwn_rx_stats *);
278 static int	iwn_send_sensitivity(struct iwn_softc *);
279 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
280 static int	iwn_send_btcoex(struct iwn_softc *);
281 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
282 static int	iwn5000_runtime_calib(struct iwn_softc *);
283 static int	iwn_config(struct iwn_softc *);
284 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
285 static int	iwn_scan(struct iwn_softc *);
286 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
287 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
288 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
289 		    struct ieee80211_rx_ampdu *, int, int, int);
290 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
291 		    struct ieee80211_rx_ampdu *);
292 static int	iwn_addba_request(struct ieee80211_node *,
293 		    struct ieee80211_tx_ampdu *, int, int, int);
294 static int	iwn_addba_response(struct ieee80211_node *,
295 		    struct ieee80211_tx_ampdu *, int, int, int);
296 static int	iwn_ampdu_tx_start(struct ieee80211com *,
297 		    struct ieee80211_node *, uint8_t);
298 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *);
300 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
301 		    struct ieee80211_node *, int, uint8_t, uint16_t);
302 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
303 		    uint8_t, uint16_t);
304 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
305 		    struct ieee80211_node *, int, uint8_t, uint16_t);
306 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
307 		    uint8_t, uint16_t);
308 static int	iwn5000_query_calibration(struct iwn_softc *);
309 static int	iwn5000_send_calibration(struct iwn_softc *);
310 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
311 static int	iwn5000_crystal_calib(struct iwn_softc *);
312 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
313 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
314 static int	iwn4965_post_alive(struct iwn_softc *);
315 static int	iwn5000_post_alive(struct iwn_softc *);
316 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
317 		    int);
318 static int	iwn4965_load_firmware(struct iwn_softc *);
319 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
320 		    const uint8_t *, int);
321 static int	iwn5000_load_firmware(struct iwn_softc *);
322 static int	iwn_read_firmware_leg(struct iwn_softc *,
323 		    struct iwn_fw_info *);
324 static int	iwn_read_firmware_tlv(struct iwn_softc *,
325 		    struct iwn_fw_info *, uint16_t);
326 static int	iwn_read_firmware(struct iwn_softc *);
327 static int	iwn_clock_wait(struct iwn_softc *);
328 static int	iwn_apm_init(struct iwn_softc *);
329 static void	iwn_apm_stop_master(struct iwn_softc *);
330 static void	iwn_apm_stop(struct iwn_softc *);
331 static int	iwn4965_nic_config(struct iwn_softc *);
332 static int	iwn5000_nic_config(struct iwn_softc *);
333 static int	iwn_hw_prepare(struct iwn_softc *);
334 static int	iwn_hw_init(struct iwn_softc *);
335 static void	iwn_hw_stop(struct iwn_softc *);
336 static void	iwn_radio_on_task(void *, int);
337 static void	iwn_radio_off_task(void *, int);
338 static void	iwn_init_locked(struct iwn_softc *);
339 static void	iwn_init(void *);
340 static void	iwn_stop_locked(struct iwn_softc *);
341 static void	iwn_scan_start(struct ieee80211com *);
342 static void	iwn_scan_end(struct ieee80211com *);
343 static void	iwn_set_channel(struct ieee80211com *);
344 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
345 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
346 static void	iwn_hw_reset_task(void *, int);
347 #ifdef	IWN_DEBUG
348 static char	*iwn_get_csr_string(int);
349 static void	iwn_debug_register(struct iwn_softc *);
350 #endif
351 
352 static device_method_t iwn_methods[] = {
353 	/* Device interface */
354 	DEVMETHOD(device_probe,		iwn_pci_probe),
355 	DEVMETHOD(device_attach,	iwn_pci_attach),
356 	DEVMETHOD(device_detach,	iwn_pci_detach),
357 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
358 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
359 	DEVMETHOD(device_resume,	iwn_pci_resume),
360 	{ 0, 0 }
361 };
362 
363 static driver_t iwn_driver = {
364 	"iwn",
365 	iwn_methods,
366 	sizeof(struct iwn_softc)
367 };
368 static devclass_t iwn_devclass;
369 
370 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
371 
372 MODULE_VERSION(iwn, 1);
373 
374 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
375 MODULE_DEPEND(iwn, pci, 1, 1, 1);
376 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
377 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
378 
379 static int
380 iwn_pci_probe(device_t dev)
381 {
382 	const struct iwn_ident *ident;
383 
384 	/* no wlan serializer needed */
385 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
386 		if (pci_get_vendor(dev) == ident->vendor &&
387 		    pci_get_device(dev) == ident->device) {
388 			device_set_desc(dev, ident->name);
389 			return 0;
390 		}
391 	}
392 	return ENXIO;
393 }
394 
395 static int
396 iwn_pci_attach(device_t dev)
397 {
398 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
399 	struct ieee80211com *ic;
400 	struct ifnet *ifp;
401 	uint32_t reg;
402 	int i, error;
403 #ifdef OLD_MSI
404 	int result;
405 #endif
406 	uint8_t macaddr[IEEE80211_ADDR_LEN];
407 	char ethstr[ETHER_ADDRSTRLEN + 1];
408 
409 	wlan_serialize_enter();
410 
411 	sc->sc_dev = dev;
412 	sc->sc_dmat = NULL;
413 
414 	if (bus_dma_tag_create(sc->sc_dmat,
415 		       1, 0,
416 		       BUS_SPACE_MAXADDR_32BIT,
417 		       BUS_SPACE_MAXADDR,
418 		       NULL, NULL,
419 		       BUS_SPACE_MAXSIZE,
420 		       IWN_MAX_SCATTER,
421 		       BUS_SPACE_MAXSIZE,
422 		       BUS_DMA_ALLOCNOW,
423 		       &sc->sc_dmat)) {
424 		device_printf(dev, "cannot allocate DMA tag\n");
425 		error = ENOMEM;
426 		goto fail;
427 	}
428 
429 	/* prepare sysctl tree for use in sub modules */
430 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
431 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
432 		SYSCTL_STATIC_CHILDREN(_hw),
433 		OID_AUTO,
434 		device_get_nameunit(sc->sc_dev),
435 		CTLFLAG_RD, 0, "");
436 
437 #ifdef	IWN_DEBUG
438 	error = resource_int_value(device_get_name(sc->sc_dev),
439 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
440 	if (error != 0)
441 		sc->sc_debug = 0;
442 #else
443 	sc->sc_debug = 0;
444 #endif
445 
446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
447 
448 	/*
449 	 * Get the offset of the PCI Express Capability Structure in PCI
450 	 * Configuration Space.
451 	 */
452 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
453 	if (error != 0) {
454 		device_printf(dev, "PCIe capability structure not found!\n");
455 		goto fail2;
456 	}
457 
458 	/* Clear device-specific "PCI retry timeout" register (41h). */
459 	pci_write_config(dev, 0x41, 0, 1);
460 
461 	/* Hardware bug workaround. */
462 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
463 	if (reg & PCIM_CMD_INTxDIS) {
464 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
465 		    __func__);
466 		reg &= ~PCIM_CMD_INTxDIS;
467 		pci_write_config(dev, PCIR_COMMAND, reg, 2);
468 	}
469 
470 	/* Enable bus-mastering. */
471 	pci_enable_busmaster(dev);
472 
473 	sc->mem_rid = PCIR_BAR(0);
474 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
475 	    RF_ACTIVE);
476 	if (sc->mem == NULL) {
477 		device_printf(dev, "can't map mem space\n");
478 		error = ENOMEM;
479 		goto fail2;
480 	}
481 	sc->sc_st = rman_get_bustag(sc->mem);
482 	sc->sc_sh = rman_get_bushandle(sc->mem);
483 
484 	sc->irq_rid = 0;
485 #ifdef OLD_MSI
486 	if ((result = pci_msi_count(dev)) == 1 &&
487 	    pci_alloc_msi(dev, &result) == 0)
488 		sc->irq_rid = 1;
489 #endif
490 	/* Install interrupt handler. */
491 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
492 	    RF_ACTIVE | RF_SHAREABLE);
493 	if (sc->irq == NULL) {
494 		device_printf(dev, "can't map interrupt\n");
495 		error = ENOMEM;
496 		goto fail;
497 	}
498 
499 	/* Read hardware revision and attach. */
500 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
501 	    & IWN_HW_REV_TYPE_MASK;
502 	sc->subdevice_id = pci_get_subdevice(dev);
503 
504 	/*
505 	 * 4965 versus 5000 and later have different methods.
506 	 * Let's set those up first.
507 	 */
508 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509 		error = iwn4965_attach(sc, pci_get_device(dev));
510 	else
511 		error = iwn5000_attach(sc, pci_get_device(dev));
512 	if (error != 0) {
513 		device_printf(dev, "could not attach device, error %d\n",
514 		    error);
515 		goto fail;
516 	}
517 
518 	/*
519 	 * Next, let's setup the various parameters of each NIC.
520 	 */
521 	error = iwn_config_specific(sc, pci_get_device(dev));
522 	if (error != 0) {
523 		device_printf(dev, "could not attach device, error %d\n",
524 		    error);
525 		goto fail;
526 	}
527 
528 	if ((error = iwn_hw_prepare(sc)) != 0) {
529 		device_printf(dev, "hardware not ready, error %d\n", error);
530 		goto fail;
531 	}
532 
533 	/* Allocate DMA memory for firmware transfers. */
534 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
535 		device_printf(dev,
536 		    "could not allocate memory for firmware, error %d\n",
537 		    error);
538 		goto fail;
539 	}
540 
541 	/* Allocate "Keep Warm" page. */
542 	if ((error = iwn_alloc_kw(sc)) != 0) {
543 		device_printf(dev,
544 		    "could not allocate keep warm page, error %d\n", error);
545 		goto fail;
546 	}
547 
548 	/* Allocate ICT table for 5000 Series. */
549 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
550 	    (error = iwn_alloc_ict(sc)) != 0) {
551 		device_printf(dev, "could not allocate ICT table, error %d\n",
552 		    error);
553 		goto fail;
554 	}
555 
556 	/* Allocate TX scheduler "rings". */
557 	if ((error = iwn_alloc_sched(sc)) != 0) {
558 		device_printf(dev,
559 		    "could not allocate TX scheduler rings, error %d\n", error);
560 		goto fail;
561 	}
562 
563 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564 	for (i = 0; i < sc->ntxqs; i++) {
565 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566 			device_printf(dev,
567 			    "could not allocate TX ring %d, error %d\n", i,
568 			    error);
569 			goto fail;
570 		}
571 	}
572 
573 	/* Allocate RX ring. */
574 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
575 		device_printf(dev, "could not allocate RX ring, error %d\n",
576 		    error);
577 		goto fail;
578 	}
579 
580 	/* Clear pending interrupts. */
581 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
582 
583 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
584 	if (ifp == NULL) {
585 		device_printf(dev, "can not allocate ifnet structure\n");
586 		goto fail;
587 	}
588 
589 	ic = ifp->if_l2com;
590 	ic->ic_ifp = ifp;
591 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
592 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
593 
594 	/* Set device capabilities. */
595 	ic->ic_caps =
596 		  IEEE80211_C_STA		/* station mode supported */
597 		| IEEE80211_C_MONITOR		/* monitor mode supported */
598 		| IEEE80211_C_BGSCAN		/* background scanning */
599 		| IEEE80211_C_TXPMGT		/* tx power management */
600 		| IEEE80211_C_SHSLOT		/* short slot time supported */
601 		| IEEE80211_C_WPA
602 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
603 #if 0
604 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
605 #endif
606 		| IEEE80211_C_WME		/* WME */
607 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
608 		;
609 
610 	/* Read MAC address, channels, etc from EEPROM. */
611 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
612 		device_printf(dev, "could not read EEPROM, error %d\n",
613 		    error);
614 		goto fail;
615 	}
616 
617 	/* Count the number of available chains. */
618 	sc->ntxchains =
619 	    ((sc->txchainmask >> 2) & 1) +
620 	    ((sc->txchainmask >> 1) & 1) +
621 	    ((sc->txchainmask >> 0) & 1);
622 	sc->nrxchains =
623 	    ((sc->rxchainmask >> 2) & 1) +
624 	    ((sc->rxchainmask >> 1) & 1) +
625 	    ((sc->rxchainmask >> 0) & 1);
626 	if (bootverbose) {
627 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
628 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
629 		    kether_ntoa(macaddr, ethstr));
630 	}
631 
632 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
633 #if notyet
634 		ic->ic_rxstream = sc->nrxchains;
635 		ic->ic_txstream = sc->ntxchains;
636 #endif
637 
638 		/*
639 		 * The NICs we currently support cap out at 2x2 support
640 		 * separate from the chains being used.
641 		 *
642 		 * This is a total hack to work around that until some
643 		 * per-device method is implemented to return the
644 		 * actual stream support.
645 		 *
646 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
647 		 * cap this!  But, anything that touches rates in the
648 		 * driver needs to be audited first before 3x3 is enabled.
649 		 */
650 #if notyet
651 		if (ic->ic_rxstream > 2)
652 			ic->ic_rxstream = 2;
653 		if (ic->ic_txstream > 2)
654 			ic->ic_txstream = 2;
655 #endif
656 
657 		ic->ic_htcaps =
658 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
659 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
660 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
661 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
662 #ifdef notyet
663 			| IEEE80211_HTCAP_GREENFIELD
664 #if IWN_RBUF_SIZE == 8192
665 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
666 #else
667 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
668 #endif
669 #endif
670 			/* s/w capabilities */
671 			| IEEE80211_HTC_HT		/* HT operation */
672 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
673 #ifdef notyet
674 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
675 #endif
676 			;
677 	}
678 
679 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
680 	ifp->if_softc = sc;
681 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
682 	ifp->if_init = iwn_init;
683 	ifp->if_ioctl = iwn_ioctl;
684 	ifp->if_start = iwn_start;
685 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
686 #ifdef notyet
687 	ifq_set_ready(&ifp->if_snd);
688 #endif
689 
690 	ieee80211_ifattach(ic, macaddr);
691 	ic->ic_vap_create = iwn_vap_create;
692 	ic->ic_vap_delete = iwn_vap_delete;
693 	ic->ic_raw_xmit = iwn_raw_xmit;
694 	ic->ic_node_alloc = iwn_node_alloc;
695 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
696 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
697 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
698 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
699 	sc->sc_addba_request = ic->ic_addba_request;
700 	ic->ic_addba_request = iwn_addba_request;
701 	sc->sc_addba_response = ic->ic_addba_response;
702 	ic->ic_addba_response = iwn_addba_response;
703 	sc->sc_addba_stop = ic->ic_addba_stop;
704 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
705 	ic->ic_newassoc = iwn_newassoc;
706 	ic->ic_wme.wme_update = iwn_updateedca;
707 	ic->ic_update_mcast = iwn_update_mcast;
708 	ic->ic_scan_start = iwn_scan_start;
709 	ic->ic_scan_end = iwn_scan_end;
710 	ic->ic_set_channel = iwn_set_channel;
711 	ic->ic_scan_curchan = iwn_scan_curchan;
712 	ic->ic_scan_mindwell = iwn_scan_mindwell;
713 	ic->ic_setregdomain = iwn_setregdomain;
714 
715 	iwn_radiotap_attach(sc);
716 
717 	callout_init(&sc->calib_to);
718 	callout_init(&sc->watchdog_to);
719 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc);
720 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc);
721 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc);
722 
723 	iwn_sysctlattach(sc);
724 
725 	/*
726 	 * Hook our interrupt after all initialization is complete.
727 	 */
728 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
729 			       iwn_intr, sc, &sc->sc_ih,
730 			       &wlan_global_serializer);
731 	if (error != 0) {
732 		device_printf(dev, "can't establish interrupt, error %d\n",
733 		    error);
734 		goto fail;
735 	}
736 
737 	if (bootverbose)
738 		ieee80211_announce(ic);
739 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
740 	wlan_serialize_exit();
741 	return 0;
742 fail:
743 	wlan_serialize_exit();
744 	iwn_pci_detach(dev);
745 	wlan_serialize_enter();
746 fail2:
747 	wlan_serialize_exit();
748 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
749 	return error;
750 }
751 
752 /*
753  * Define specific configuration based on device id and subdevice id
754  * pid : PCI device id
755  */
756 static int
757 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
758 {
759 
760 	switch (pid) {
761 /* 4965 series */
762 	case IWN_DID_4965_1:
763 	case IWN_DID_4965_2:
764 	case IWN_DID_4965_3:
765 	case IWN_DID_4965_4:
766 		sc->base_params = &iwn4965_base_params;
767 		sc->limits = &iwn4965_sensitivity_limits;
768 		sc->fwname = "iwn4965fw";
769 		/* Override chains masks, ROM is known to be broken. */
770 		sc->txchainmask = IWN_ANT_AB;
771 		sc->rxchainmask = IWN_ANT_ABC;
772 		/* Enable normal btcoex */
773 		sc->sc_flags |= IWN_FLAG_BTCOEX;
774 		break;
775 /* 1000 Series */
776 	case IWN_DID_1000_1:
777 	case IWN_DID_1000_2:
778 		switch(sc->subdevice_id) {
779 			case	IWN_SDID_1000_1:
780 			case	IWN_SDID_1000_2:
781 			case	IWN_SDID_1000_3:
782 			case	IWN_SDID_1000_4:
783 			case	IWN_SDID_1000_5:
784 			case	IWN_SDID_1000_6:
785 			case	IWN_SDID_1000_7:
786 			case	IWN_SDID_1000_8:
787 			case	IWN_SDID_1000_9:
788 			case	IWN_SDID_1000_10:
789 			case	IWN_SDID_1000_11:
790 			case	IWN_SDID_1000_12:
791 				sc->limits = &iwn1000_sensitivity_limits;
792 				sc->base_params = &iwn1000_base_params;
793 				sc->fwname = "iwn1000fw";
794 				break;
795 			default:
796 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
797 				    "0x%04x rev %d not supported (subdevice)\n", pid,
798 				    sc->subdevice_id,sc->hw_type);
799 				return ENOTSUP;
800 		}
801 		break;
802 /* 6x00 Series */
803 	case IWN_DID_6x00_2:
804 	case IWN_DID_6x00_4:
805 	case IWN_DID_6x00_1:
806 	case IWN_DID_6x00_3:
807 		sc->fwname = "iwn6000fw";
808 		sc->limits = &iwn6000_sensitivity_limits;
809 		switch(sc->subdevice_id) {
810 			case IWN_SDID_6x00_1:
811 			case IWN_SDID_6x00_2:
812 			case IWN_SDID_6x00_8:
813 				//iwl6000_3agn_cfg
814 				sc->base_params = &iwn_6000_base_params;
815 				break;
816 			case IWN_SDID_6x00_3:
817 			case IWN_SDID_6x00_6:
818 			case IWN_SDID_6x00_9:
819 				////iwl6000i_2agn
820 			case IWN_SDID_6x00_4:
821 			case IWN_SDID_6x00_7:
822 			case IWN_SDID_6x00_10:
823 				//iwl6000i_2abg_cfg
824 			case IWN_SDID_6x00_5:
825 				//iwl6000i_2bg_cfg
826 				sc->base_params = &iwn_6000i_base_params;
827 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
828 				sc->txchainmask = IWN_ANT_BC;
829 				sc->rxchainmask = IWN_ANT_BC;
830 				break;
831 			default:
832 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
833 				    "0x%04x rev %d not supported (subdevice)\n", pid,
834 				    sc->subdevice_id,sc->hw_type);
835 				return ENOTSUP;
836 		}
837 		break;
838 /* 6x05 Series */
839 	case IWN_DID_6x05_1:
840 	case IWN_DID_6x05_2:
841 		switch(sc->subdevice_id) {
842 			case IWN_SDID_6x05_1:
843 			case IWN_SDID_6x05_4:
844 			case IWN_SDID_6x05_6:
845 				//iwl6005_2agn_cfg
846 			case IWN_SDID_6x05_2:
847 			case IWN_SDID_6x05_5:
848 			case IWN_SDID_6x05_7:
849 				//iwl6005_2abg_cfg
850 			case IWN_SDID_6x05_3:
851 				//iwl6005_2bg_cfg
852 			case IWN_SDID_6x05_8:
853 			case IWN_SDID_6x05_9:
854 				//iwl6005_2agn_sff_cfg
855 			case IWN_SDID_6x05_10:
856 				//iwl6005_2agn_d_cfg
857 			case IWN_SDID_6x05_11:
858 				//iwl6005_2agn_mow1_cfg
859 			case IWN_SDID_6x05_12:
860 				//iwl6005_2agn_mow2_cfg
861 				sc->fwname = "iwn6000g2afw";
862 				sc->limits = &iwn6000_sensitivity_limits;
863 				sc->base_params = &iwn_6000g2_base_params;
864 				break;
865 			default:
866 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
867 				    "0x%04x rev %d not supported (subdevice)\n", pid,
868 				    sc->subdevice_id,sc->hw_type);
869 				return ENOTSUP;
870 		}
871 		break;
872 /* 6x35 Series */
873 	case IWN_DID_6035_1:
874 	case IWN_DID_6035_2:
875 		switch(sc->subdevice_id) {
876 			case IWN_SDID_6035_1:
877 			case IWN_SDID_6035_2:
878 			case IWN_SDID_6035_3:
879 			case IWN_SDID_6035_4:
880 				sc->fwname = "iwn6000g2bfw";
881 				sc->limits = &iwn6000_sensitivity_limits;
882 				sc->base_params = &iwn_6000g2b_base_params;
883 				break;
884 			default:
885 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
886 				    "0x%04x rev %d not supported (subdevice)\n", pid,
887 				    sc->subdevice_id,sc->hw_type);
888 				return ENOTSUP;
889 		}
890 		break;
891 /* 6x50 WiFi/WiMax Series */
892 	case IWN_DID_6050_1:
893 	case IWN_DID_6050_2:
894 		switch(sc->subdevice_id) {
895 			case IWN_SDID_6050_1:
896 			case IWN_SDID_6050_3:
897 			case IWN_SDID_6050_5:
898 				//iwl6050_2agn_cfg
899 			case IWN_SDID_6050_2:
900 			case IWN_SDID_6050_4:
901 			case IWN_SDID_6050_6:
902 				//iwl6050_2abg_cfg
903 				sc->fwname = "iwn6050fw";
904 				sc->txchainmask = IWN_ANT_AB;
905 				sc->rxchainmask = IWN_ANT_AB;
906 				sc->limits = &iwn6000_sensitivity_limits;
907 				sc->base_params = &iwn_6050_base_params;
908 				break;
909 			default:
910 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
911 				    "0x%04x rev %d not supported (subdevice)\n", pid,
912 				    sc->subdevice_id,sc->hw_type);
913 				return ENOTSUP;
914 		}
915 		break;
916 /* 6150 WiFi/WiMax Series */
917 	case IWN_DID_6150_1:
918 	case IWN_DID_6150_2:
919 		switch(sc->subdevice_id) {
920 			case IWN_SDID_6150_1:
921 			case IWN_SDID_6150_3:
922 			case IWN_SDID_6150_5:
923 				// iwl6150_bgn_cfg
924 			case IWN_SDID_6150_2:
925 			case IWN_SDID_6150_4:
926 			case IWN_SDID_6150_6:
927 				//iwl6150_bg_cfg
928 				sc->fwname = "iwn6050fw";
929 				sc->limits = &iwn6000_sensitivity_limits;
930 				sc->base_params = &iwn_6150_base_params;
931 				break;
932 			default:
933 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
934 				    "0x%04x rev %d not supported (subdevice)\n", pid,
935 				    sc->subdevice_id,sc->hw_type);
936 				return ENOTSUP;
937 		}
938 		break;
939 /* 6030 Series and 1030 Series */
940 	case IWN_DID_x030_1:
941 	case IWN_DID_x030_2:
942 	case IWN_DID_x030_3:
943 	case IWN_DID_x030_4:
944 		switch(sc->subdevice_id) {
945 			case IWN_SDID_x030_1:
946 			case IWN_SDID_x030_3:
947 			case IWN_SDID_x030_5:
948 			// iwl1030_bgn_cfg
949 			case IWN_SDID_x030_2:
950 			case IWN_SDID_x030_4:
951 			case IWN_SDID_x030_6:
952 			//iwl1030_bg_cfg
953 			case IWN_SDID_x030_7:
954 			case IWN_SDID_x030_10:
955 			case IWN_SDID_x030_14:
956 			//iwl6030_2agn_cfg
957 			case IWN_SDID_x030_8:
958 			case IWN_SDID_x030_11:
959 			case IWN_SDID_x030_15:
960 			// iwl6030_2bgn_cfg
961 			case IWN_SDID_x030_9:
962 			case IWN_SDID_x030_12:
963 			case IWN_SDID_x030_16:
964 			// iwl6030_2abg_cfg
965 			case IWN_SDID_x030_13:
966 			//iwl6030_2bg_cfg
967 				sc->fwname = "iwn6000g2bfw";
968 				sc->limits = &iwn6000_sensitivity_limits;
969 				sc->base_params = &iwn_6000g2b_base_params;
970 				break;
971 			default:
972 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
973 				    "0x%04x rev %d not supported (subdevice)\n", pid,
974 				    sc->subdevice_id,sc->hw_type);
975 				return ENOTSUP;
976 		}
977 		break;
978 /* 130 Series WiFi */
979 /* XXX: This series will need adjustment for rate.
980  * see rx_with_siso_diversity in linux kernel
981  */
982 	case IWN_DID_130_1:
983 	case IWN_DID_130_2:
984 		switch(sc->subdevice_id) {
985 			case IWN_SDID_130_1:
986 			case IWN_SDID_130_3:
987 			case IWN_SDID_130_5:
988 			//iwl130_bgn_cfg
989 			case IWN_SDID_130_2:
990 			case IWN_SDID_130_4:
991 			case IWN_SDID_130_6:
992 			//iwl130_bg_cfg
993 				sc->fwname = "iwn6000g2bfw";
994 				sc->limits = &iwn6000_sensitivity_limits;
995 				sc->base_params = &iwn_6000g2b_base_params;
996 				break;
997 			default:
998 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
999 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1000 				    sc->subdevice_id,sc->hw_type);
1001 				return ENOTSUP;
1002 		}
1003 		break;
1004 /* 100 Series WiFi */
1005 	case IWN_DID_100_1:
1006 	case IWN_DID_100_2:
1007 		switch(sc->subdevice_id) {
1008 			case IWN_SDID_100_1:
1009 			case IWN_SDID_100_2:
1010 			case IWN_SDID_100_3:
1011 			case IWN_SDID_100_4:
1012 			case IWN_SDID_100_5:
1013 			case IWN_SDID_100_6:
1014 				sc->limits = &iwn1000_sensitivity_limits;
1015 				sc->base_params = &iwn1000_base_params;
1016 				sc->fwname = "iwn100fw";
1017 				break;
1018 			default:
1019 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1020 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1021 				    sc->subdevice_id,sc->hw_type);
1022 				return ENOTSUP;
1023 		}
1024 		break;
1025 
1026 /* 2x00 Series */
1027 	case IWN_DID_2x00_1:
1028 	case IWN_DID_2x00_2:
1029 		switch(sc->subdevice_id) {
1030 			case IWN_SDID_2x00_1:
1031 			case IWN_SDID_2x00_2:
1032 			case IWN_SDID_2x00_3:
1033 			//iwl2000_2bgn_cfg
1034 			case IWN_SDID_2x00_4:
1035 			//iwl2000_2bgn_d_cfg
1036 				sc->limits = &iwn2030_sensitivity_limits;
1037 				sc->base_params = &iwn2000_base_params;
1038 				sc->fwname = "iwn2000fw";
1039 				break;
1040 			default:
1041 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1042 				    "0x%04x rev %d not supported (subdevice) \n",
1043 				    pid, sc->subdevice_id, sc->hw_type);
1044 				return ENOTSUP;
1045 		}
1046 		break;
1047 /* 2x30 Series */
1048 	case IWN_DID_2x30_1:
1049 	case IWN_DID_2x30_2:
1050 		switch(sc->subdevice_id) {
1051 			case IWN_SDID_2x30_1:
1052 			case IWN_SDID_2x30_3:
1053 			case IWN_SDID_2x30_5:
1054 			//iwl100_bgn_cfg
1055 			case IWN_SDID_2x30_2:
1056 			case IWN_SDID_2x30_4:
1057 			case IWN_SDID_2x30_6:
1058 			//iwl100_bg_cfg
1059 				sc->limits = &iwn2030_sensitivity_limits;
1060 				sc->base_params = &iwn2030_base_params;
1061 				sc->fwname = "iwn2030fw";
1062 				break;
1063 			default:
1064 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1065 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1066 				    sc->subdevice_id,sc->hw_type);
1067 				return ENOTSUP;
1068 		}
1069 		break;
1070 /* 5x00 Series */
1071 	case IWN_DID_5x00_1:
1072 	case IWN_DID_5x00_2:
1073 	case IWN_DID_5x00_3:
1074 	case IWN_DID_5x00_4:
1075 		sc->limits = &iwn5000_sensitivity_limits;
1076 		sc->base_params = &iwn5000_base_params;
1077 		sc->fwname = "iwn5000fw";
1078 		switch(sc->subdevice_id) {
1079 			case IWN_SDID_5x00_1:
1080 			case IWN_SDID_5x00_2:
1081 			case IWN_SDID_5x00_3:
1082 			case IWN_SDID_5x00_4:
1083 			case IWN_SDID_5x00_9:
1084 			case IWN_SDID_5x00_10:
1085 			case IWN_SDID_5x00_11:
1086 			case IWN_SDID_5x00_12:
1087 			case IWN_SDID_5x00_17:
1088 			case IWN_SDID_5x00_18:
1089 			case IWN_SDID_5x00_19:
1090 			case IWN_SDID_5x00_20:
1091 			//iwl5100_agn_cfg
1092 				sc->txchainmask = IWN_ANT_B;
1093 				sc->rxchainmask = IWN_ANT_AB;
1094 				break;
1095 			case IWN_SDID_5x00_5:
1096 			case IWN_SDID_5x00_6:
1097 			case IWN_SDID_5x00_13:
1098 			case IWN_SDID_5x00_14:
1099 			case IWN_SDID_5x00_21:
1100 			case IWN_SDID_5x00_22:
1101 			//iwl5100_bgn_cfg
1102 				sc->txchainmask = IWN_ANT_B;
1103 				sc->rxchainmask = IWN_ANT_AB;
1104 				break;
1105 			case IWN_SDID_5x00_7:
1106 			case IWN_SDID_5x00_8:
1107 			case IWN_SDID_5x00_15:
1108 			case IWN_SDID_5x00_16:
1109 			case IWN_SDID_5x00_23:
1110 			case IWN_SDID_5x00_24:
1111 			//iwl5100_abg_cfg
1112 				sc->txchainmask = IWN_ANT_B;
1113 				sc->rxchainmask = IWN_ANT_AB;
1114 				break;
1115 			case IWN_SDID_5x00_25:
1116 			case IWN_SDID_5x00_26:
1117 			case IWN_SDID_5x00_27:
1118 			case IWN_SDID_5x00_28:
1119 			case IWN_SDID_5x00_29:
1120 			case IWN_SDID_5x00_30:
1121 			case IWN_SDID_5x00_31:
1122 			case IWN_SDID_5x00_32:
1123 			case IWN_SDID_5x00_33:
1124 			case IWN_SDID_5x00_34:
1125 			case IWN_SDID_5x00_35:
1126 			case IWN_SDID_5x00_36:
1127 			//iwl5300_agn_cfg
1128 				sc->txchainmask = IWN_ANT_ABC;
1129 				sc->rxchainmask = IWN_ANT_ABC;
1130 				break;
1131 			default:
1132 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1133 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1134 				    sc->subdevice_id,sc->hw_type);
1135 				return ENOTSUP;
1136 		}
1137 		break;
1138 /* 5x50 Series */
1139 	case IWN_DID_5x50_1:
1140 	case IWN_DID_5x50_2:
1141 	case IWN_DID_5x50_3:
1142 	case IWN_DID_5x50_4:
1143 		sc->limits = &iwn5000_sensitivity_limits;
1144 		sc->base_params = &iwn5000_base_params;
1145 		sc->fwname = "iwn5000fw";
1146 		switch(sc->subdevice_id) {
1147 			case IWN_SDID_5x50_1:
1148 			case IWN_SDID_5x50_2:
1149 			case IWN_SDID_5x50_3:
1150 			//iwl5350_agn_cfg
1151 				sc->limits = &iwn5000_sensitivity_limits;
1152 				sc->base_params = &iwn5000_base_params;
1153 				sc->fwname = "iwn5000fw";
1154 				break;
1155 			case IWN_SDID_5x50_4:
1156 			case IWN_SDID_5x50_5:
1157 			case IWN_SDID_5x50_8:
1158 			case IWN_SDID_5x50_9:
1159 			case IWN_SDID_5x50_10:
1160 			case IWN_SDID_5x50_11:
1161 			//iwl5150_agn_cfg
1162 			case IWN_SDID_5x50_6:
1163 			case IWN_SDID_5x50_7:
1164 			case IWN_SDID_5x50_12:
1165 			case IWN_SDID_5x50_13:
1166 			//iwl5150_abg_cfg
1167 				sc->limits = &iwn5000_sensitivity_limits;
1168 				sc->fwname = "iwn5150fw";
1169 				sc->base_params = &iwn_5x50_base_params;
1170 				break;
1171 			default:
1172 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1173 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1174 				    sc->subdevice_id,sc->hw_type);
1175 				return ENOTSUP;
1176 		}
1177 		break;
1178 	default:
1179 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1180 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1181 		     sc->hw_type);
1182 		return ENOTSUP;
1183 	}
1184 	return 0;
1185 }
1186 
1187 static int
1188 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1189 {
1190 	struct iwn_ops *ops = &sc->ops;
1191 
1192 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1193 	ops->load_firmware = iwn4965_load_firmware;
1194 	ops->read_eeprom = iwn4965_read_eeprom;
1195 	ops->post_alive = iwn4965_post_alive;
1196 	ops->nic_config = iwn4965_nic_config;
1197 	ops->update_sched = iwn4965_update_sched;
1198 	ops->get_temperature = iwn4965_get_temperature;
1199 	ops->get_rssi = iwn4965_get_rssi;
1200 	ops->set_txpower = iwn4965_set_txpower;
1201 	ops->init_gains = iwn4965_init_gains;
1202 	ops->set_gains = iwn4965_set_gains;
1203 	ops->add_node = iwn4965_add_node;
1204 	ops->tx_done = iwn4965_tx_done;
1205 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1206 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1207 	sc->ntxqs = IWN4965_NTXQUEUES;
1208 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1209 	sc->ndmachnls = IWN4965_NDMACHNLS;
1210 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1211 	sc->rxonsz = IWN4965_RXONSZ;
1212 	sc->schedsz = IWN4965_SCHEDSZ;
1213 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1214 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1215 	sc->fwsz = IWN4965_FWSZ;
1216 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1217 	sc->limits = &iwn4965_sensitivity_limits;
1218 	sc->fwname = "iwn4965fw";
1219 	/* Override chains masks, ROM is known to be broken. */
1220 	sc->txchainmask = IWN_ANT_AB;
1221 	sc->rxchainmask = IWN_ANT_ABC;
1222 	/* Enable normal btcoex */
1223 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1224 
1225 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1226 
1227 	return 0;
1228 }
1229 
1230 static int
1231 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1232 {
1233 	struct iwn_ops *ops = &sc->ops;
1234 
1235 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1236 
1237 	ops->load_firmware = iwn5000_load_firmware;
1238 	ops->read_eeprom = iwn5000_read_eeprom;
1239 	ops->post_alive = iwn5000_post_alive;
1240 	ops->nic_config = iwn5000_nic_config;
1241 	ops->update_sched = iwn5000_update_sched;
1242 	ops->get_temperature = iwn5000_get_temperature;
1243 	ops->get_rssi = iwn5000_get_rssi;
1244 	ops->set_txpower = iwn5000_set_txpower;
1245 	ops->init_gains = iwn5000_init_gains;
1246 	ops->set_gains = iwn5000_set_gains;
1247 	ops->add_node = iwn5000_add_node;
1248 	ops->tx_done = iwn5000_tx_done;
1249 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1250 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1251 	sc->ntxqs = IWN5000_NTXQUEUES;
1252 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1253 	sc->ndmachnls = IWN5000_NDMACHNLS;
1254 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1255 	sc->rxonsz = IWN5000_RXONSZ;
1256 	sc->schedsz = IWN5000_SCHEDSZ;
1257 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1258 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1259 	sc->fwsz = IWN5000_FWSZ;
1260 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1261 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1262 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Attach the interface to 802.11 radiotap.
1269  */
1270 static void
1271 iwn_radiotap_attach(struct iwn_softc *sc)
1272 {
1273 	struct ifnet *ifp = sc->sc_ifp;
1274 	struct ieee80211com *ic = ifp->if_l2com;
1275 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1276 	ieee80211_radiotap_attach(ic,
1277 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1278 		IWN_TX_RADIOTAP_PRESENT,
1279 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1280 		IWN_RX_RADIOTAP_PRESENT);
1281 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1282 }
1283 
1284 static void
1285 iwn_sysctlattach(struct iwn_softc *sc)
1286 {
1287 #ifdef	IWN_DEBUG
1288 	struct sysctl_ctx_list *ctx;
1289 	struct sysctl_oid *tree;
1290 
1291 	ctx = &sc->sc_sysctl_ctx;
1292 	tree = sc->sc_sysctl_tree;
1293 
1294 	if (tree) {
1295 		device_printf(sc->sc_dev, "can't add sysctl node\n");
1296 		return;
1297 	}
1298 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1299 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1300 		"control debugging printfs");
1301 #endif
1302 }
1303 
1304 static struct ieee80211vap *
1305 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1306     enum ieee80211_opmode opmode, int flags,
1307     const uint8_t bssid[IEEE80211_ADDR_LEN],
1308     const uint8_t mac[IEEE80211_ADDR_LEN])
1309 {
1310 	struct iwn_vap *ivp;
1311 	struct ieee80211vap *vap;
1312 	uint8_t mac1[IEEE80211_ADDR_LEN];
1313 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1314 
1315 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1316 		return NULL;
1317 
1318 	IEEE80211_ADDR_COPY(mac1, mac);
1319 
1320 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1321 	vap = &ivp->iv_vap;
1322 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1323 	ivp->ctx = IWN_RXON_BSS_CTX;
1324 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1325 	vap->iv_bmissthreshold = 10;		/* override default */
1326 	/* Override with driver methods. */
1327 	ivp->iv_newstate = vap->iv_newstate;
1328 	vap->iv_newstate = iwn_newstate;
1329 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1330 
1331 	ieee80211_ratectl_init(vap);
1332 	/* Complete setup. */
1333 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1334 	ic->ic_opmode = opmode;
1335 	return vap;
1336 }
1337 
1338 static void
1339 iwn_vap_delete(struct ieee80211vap *vap)
1340 {
1341 	struct iwn_vap *ivp = IWN_VAP(vap);
1342 
1343 	ieee80211_ratectl_deinit(vap);
1344 	ieee80211_vap_detach(vap);
1345 	kfree(ivp, M_80211_VAP);
1346 }
1347 
1348 static int
1349 iwn_pci_detach(device_t dev)
1350 {
1351 	struct iwn_softc *sc = device_get_softc(dev);
1352 	struct ifnet *ifp = sc->sc_ifp;
1353 	struct ieee80211com *ic;
1354 	int qid;
1355 
1356 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1357 
1358 	wlan_serialize_enter();
1359 
1360 	if (ifp != NULL) {
1361 		ic = ifp->if_l2com;
1362 
1363 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1364 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1365 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1366 
1367 		iwn_stop_locked(sc);
1368 		callout_stop(&sc->watchdog_to);
1369 		callout_stop(&sc->calib_to);
1370 		ieee80211_ifdetach(ic);
1371 	}
1372 
1373 	/* cleanup sysctl nodes */
1374 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
1375 
1376 	/* Uninstall interrupt handler. */
1377 	if (sc->irq != NULL) {
1378 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1379 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
1380 		if (sc->irq_rid == 1)
1381 			pci_release_msi(dev);
1382 		sc->irq = NULL;
1383 	}
1384 
1385 	/* Free DMA resources. */
1386 	iwn_free_rx_ring(sc, &sc->rxq);
1387 	for (qid = 0; qid < sc->ntxqs; qid++)
1388 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1389 	iwn_free_sched(sc);
1390 	iwn_free_kw(sc);
1391 	if (sc->ict != NULL) {
1392 		iwn_free_ict(sc);
1393 		sc->ict = NULL;
1394 	}
1395 	iwn_free_fwmem(sc);
1396 
1397 	if (sc->mem != NULL) {
1398 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
1399 		sc->mem = NULL;
1400 	}
1401 
1402 	if (ifp != NULL) {
1403 		if_free(ifp);
1404 		sc->sc_ifp = NULL;
1405 	}
1406 
1407 	bus_dma_tag_destroy(sc->sc_dmat);
1408 
1409 	wlan_serialize_exit();
1410 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1411 	return 0;
1412 }
1413 
1414 static int
1415 iwn_pci_shutdown(device_t dev)
1416 {
1417 	struct iwn_softc *sc = device_get_softc(dev);
1418 
1419 	wlan_serialize_enter();
1420 	iwn_stop_locked(sc);
1421 	wlan_serialize_exit();
1422 
1423 	return 0;
1424 }
1425 
1426 static int
1427 iwn_pci_suspend(device_t dev)
1428 {
1429 	struct iwn_softc *sc = device_get_softc(dev);
1430 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1431 
1432 	ieee80211_suspend_all(ic);
1433 	return 0;
1434 }
1435 
1436 static int
1437 iwn_pci_resume(device_t dev)
1438 {
1439 	struct iwn_softc *sc = device_get_softc(dev);
1440 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1441 
1442 	/* Clear device-specific "PCI retry timeout" register (41h). */
1443 	pci_write_config(dev, 0x41, 0, 1);
1444 
1445 	ieee80211_resume_all(ic);
1446 	return 0;
1447 }
1448 
1449 static int
1450 iwn_nic_lock(struct iwn_softc *sc)
1451 {
1452 	int ntries;
1453 
1454 	/* Request exclusive access to NIC. */
1455 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1456 
1457 	/* Spin until we actually get the lock. */
1458 	for (ntries = 0; ntries < 1000; ntries++) {
1459 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1460 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1461 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1462 			return 0;
1463 		DELAY(10);
1464 	}
1465 	return ETIMEDOUT;
1466 }
1467 
1468 static __inline void
1469 iwn_nic_unlock(struct iwn_softc *sc)
1470 {
1471 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1472 }
1473 
1474 static __inline uint32_t
1475 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1476 {
1477 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1478 	IWN_BARRIER_READ_WRITE(sc);
1479 	return IWN_READ(sc, IWN_PRPH_RDATA);
1480 }
1481 
1482 static __inline void
1483 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1484 {
1485 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1486 	IWN_BARRIER_WRITE(sc);
1487 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1488 }
1489 
1490 static __inline void
1491 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1492 {
1493 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1494 }
1495 
1496 static __inline void
1497 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1498 {
1499 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1500 }
1501 
1502 static __inline void
1503 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1504     const uint32_t *data, int count)
1505 {
1506 	for (; count > 0; count--, data++, addr += 4)
1507 		iwn_prph_write(sc, addr, *data);
1508 }
1509 
1510 static __inline uint32_t
1511 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1512 {
1513 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1514 	IWN_BARRIER_READ_WRITE(sc);
1515 	return IWN_READ(sc, IWN_MEM_RDATA);
1516 }
1517 
1518 static __inline void
1519 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1520 {
1521 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1522 	IWN_BARRIER_WRITE(sc);
1523 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1524 }
1525 
1526 static __inline void
1527 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1528 {
1529 	uint32_t tmp;
1530 
1531 	tmp = iwn_mem_read(sc, addr & ~3);
1532 	if (addr & 3)
1533 		tmp = (tmp & 0x0000ffff) | data << 16;
1534 	else
1535 		tmp = (tmp & 0xffff0000) | data;
1536 	iwn_mem_write(sc, addr & ~3, tmp);
1537 }
1538 
1539 static __inline void
1540 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1541     int count)
1542 {
1543 	for (; count > 0; count--, addr += 4)
1544 		*data++ = iwn_mem_read(sc, addr);
1545 }
1546 
1547 static __inline void
1548 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1549     int count)
1550 {
1551 	for (; count > 0; count--, addr += 4)
1552 		iwn_mem_write(sc, addr, val);
1553 }
1554 
1555 static int
1556 iwn_eeprom_lock(struct iwn_softc *sc)
1557 {
1558 	int i, ntries;
1559 
1560 	for (i = 0; i < 100; i++) {
1561 		/* Request exclusive access to EEPROM. */
1562 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1563 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1564 
1565 		/* Spin until we actually get the lock. */
1566 		for (ntries = 0; ntries < 100; ntries++) {
1567 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1568 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1569 				return 0;
1570 			DELAY(10);
1571 		}
1572 	}
1573 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1574 	return ETIMEDOUT;
1575 }
1576 
1577 static __inline void
1578 iwn_eeprom_unlock(struct iwn_softc *sc)
1579 {
1580 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1581 }
1582 
1583 /*
1584  * Initialize access by host to One Time Programmable ROM.
1585  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1586  */
1587 static int
1588 iwn_init_otprom(struct iwn_softc *sc)
1589 {
1590 	uint16_t prev, base, next;
1591 	int count, error;
1592 
1593 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1594 
1595 	/* Wait for clock stabilization before accessing prph. */
1596 	if ((error = iwn_clock_wait(sc)) != 0)
1597 		return error;
1598 
1599 	if ((error = iwn_nic_lock(sc)) != 0)
1600 		return error;
1601 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1602 	DELAY(5);
1603 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1604 	iwn_nic_unlock(sc);
1605 
1606 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1607 	if (sc->base_params->shadow_ram_support) {
1608 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1609 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1610 	}
1611 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1612 	/* Clear ECC status. */
1613 	IWN_SETBITS(sc, IWN_OTP_GP,
1614 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1615 
1616 	/*
1617 	 * Find the block before last block (contains the EEPROM image)
1618 	 * for HW without OTP shadow RAM.
1619 	 */
1620 	if (! sc->base_params->shadow_ram_support) {
1621 		/* Switch to absolute addressing mode. */
1622 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1623 		base = prev = 0;
1624 		for (count = 0; count < sc->base_params->max_ll_items;
1625 		    count++) {
1626 			error = iwn_read_prom_data(sc, base, &next, 2);
1627 			if (error != 0)
1628 				return error;
1629 			if (next == 0)	/* End of linked-list. */
1630 				break;
1631 			prev = base;
1632 			base = le16toh(next);
1633 		}
1634 		if (count == 0 || count == sc->base_params->max_ll_items)
1635 			return EIO;
1636 		/* Skip "next" word. */
1637 		sc->prom_base = prev + 1;
1638 	}
1639 
1640 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1641 
1642 	return 0;
1643 }
1644 
1645 static int
1646 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1647 {
1648 	uint8_t *out = data;
1649 	uint32_t val, tmp;
1650 	int ntries;
1651 
1652 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1653 
1654 	addr += sc->prom_base;
1655 	for (; count > 0; count -= 2, addr++) {
1656 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1657 		for (ntries = 0; ntries < 10; ntries++) {
1658 			val = IWN_READ(sc, IWN_EEPROM);
1659 			if (val & IWN_EEPROM_READ_VALID)
1660 				break;
1661 			DELAY(5);
1662 		}
1663 		if (ntries == 10) {
1664 			device_printf(sc->sc_dev,
1665 			    "timeout reading ROM at 0x%x\n", addr);
1666 			return ETIMEDOUT;
1667 		}
1668 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1669 			/* OTPROM, check for ECC errors. */
1670 			tmp = IWN_READ(sc, IWN_OTP_GP);
1671 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1672 				device_printf(sc->sc_dev,
1673 				    "OTPROM ECC error at 0x%x\n", addr);
1674 				return EIO;
1675 			}
1676 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1677 				/* Correctable ECC error, clear bit. */
1678 				IWN_SETBITS(sc, IWN_OTP_GP,
1679 				    IWN_OTP_GP_ECC_CORR_STTS);
1680 			}
1681 		}
1682 		*out++ = val >> 16;
1683 		if (count > 1)
1684 			*out++ = val >> 24;
1685 	}
1686 
1687 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1688 
1689 	return 0;
1690 }
1691 
1692 static void
1693 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1694 {
1695 	if (error != 0)
1696 		return;
1697 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1698 	*(bus_addr_t *)arg = segs[0].ds_addr;
1699 }
1700 
1701 static int
1702 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1703     void **kvap, bus_size_t size, bus_size_t alignment)
1704 {
1705 	int error;
1706 
1707 	dma->tag = NULL;
1708 	dma->size = size;
1709 
1710 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1711 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1712 	    1, size, BUS_DMA_NOWAIT, &dma->tag);
1713 	if (error != 0)
1714 		goto fail;
1715 
1716 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1717 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1718 	if (error != 0)
1719 		goto fail;
1720 
1721 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1722 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1723 	if (error != 0)
1724 		goto fail;
1725 
1726 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1727 
1728 	if (kvap != NULL)
1729 		*kvap = dma->vaddr;
1730 
1731 	return 0;
1732 
1733 fail:	iwn_dma_contig_free(dma);
1734 	return error;
1735 }
1736 
1737 static void
1738 iwn_dma_contig_free(struct iwn_dma_info *dma)
1739 {
1740 	if (dma->map != NULL) {
1741 		if (dma->vaddr != NULL) {
1742 			bus_dmamap_sync(dma->tag, dma->map,
1743 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1744 			bus_dmamap_unload(dma->tag, dma->map);
1745 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1746 			dma->vaddr = NULL;
1747 		}
1748 		bus_dmamap_destroy(dma->tag, dma->map);
1749 		dma->map = NULL;
1750 	}
1751 	if (dma->tag != NULL) {
1752 		bus_dma_tag_destroy(dma->tag);
1753 		dma->tag = NULL;
1754 	}
1755 }
1756 
1757 static int
1758 iwn_alloc_sched(struct iwn_softc *sc)
1759 {
1760 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1761 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1762 	    sc->schedsz, 1024);
1763 }
1764 
1765 static void
1766 iwn_free_sched(struct iwn_softc *sc)
1767 {
1768 	iwn_dma_contig_free(&sc->sched_dma);
1769 }
1770 
1771 static int
1772 iwn_alloc_kw(struct iwn_softc *sc)
1773 {
1774 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1775 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1776 }
1777 
1778 static void
1779 iwn_free_kw(struct iwn_softc *sc)
1780 {
1781 	iwn_dma_contig_free(&sc->kw_dma);
1782 }
1783 
1784 static int
1785 iwn_alloc_ict(struct iwn_softc *sc)
1786 {
1787 	/* ICT table must be aligned on a 4KB boundary. */
1788 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1789 	    IWN_ICT_SIZE, 4096);
1790 }
1791 
1792 static void
1793 iwn_free_ict(struct iwn_softc *sc)
1794 {
1795 	iwn_dma_contig_free(&sc->ict_dma);
1796 }
1797 
1798 static int
1799 iwn_alloc_fwmem(struct iwn_softc *sc)
1800 {
1801 	/* Must be aligned on a 16-byte boundary. */
1802 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1803 }
1804 
1805 static void
1806 iwn_free_fwmem(struct iwn_softc *sc)
1807 {
1808 	iwn_dma_contig_free(&sc->fw_dma);
1809 }
1810 
1811 static int
1812 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1813 {
1814 	bus_size_t size;
1815 	int i, error;
1816 
1817 	ring->cur = 0;
1818 
1819 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1820 
1821 	/* Allocate RX descriptors (256-byte aligned). */
1822 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1823 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1824 	    size, 256);
1825 	if (error != 0) {
1826 		device_printf(sc->sc_dev,
1827 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1828 		    __func__, error);
1829 		goto fail;
1830 	}
1831 
1832 	/* Allocate RX status area (16-byte aligned). */
1833 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1834 	    sizeof (struct iwn_rx_status), 16);
1835 	if (error != 0) {
1836 		device_printf(sc->sc_dev,
1837 		    "%s: could not allocate RX status DMA memory, error %d\n",
1838 		    __func__, error);
1839 		goto fail;
1840 	}
1841 
1842 	/* Create RX buffer DMA tag. */
1843 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1844 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1845 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1846 	if (error != 0) {
1847 		device_printf(sc->sc_dev,
1848 		    "%s: could not create RX buf DMA tag, error %d\n",
1849 		    __func__, error);
1850 		goto fail;
1851 	}
1852 
1853 	/*
1854 	 * Allocate and map RX buffers.
1855 	 */
1856 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1857 		struct iwn_rx_data *data = &ring->data[i];
1858 		bus_addr_t paddr;
1859 
1860 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1861 		if (error != 0) {
1862 			device_printf(sc->sc_dev,
1863 			    "%s: could not create RX buf DMA map, error %d\n",
1864 			    __func__, error);
1865 			goto fail;
1866 		}
1867 
1868 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA,
1869 				   M_PKTHDR, IWN_RBUF_SIZE);
1870 		if (data->m == NULL) {
1871 			device_printf(sc->sc_dev,
1872 			    "%s: could not allocate RX mbuf\n", __func__);
1873 			error = ENOBUFS;
1874 			goto fail;
1875 		}
1876 
1877 		error = bus_dmamap_load(ring->data_dmat, data->map,
1878 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1879 		    &paddr, BUS_DMA_NOWAIT);
1880 		if (error != 0 && error != EFBIG) {
1881 			device_printf(sc->sc_dev,
1882 			    "%s: can't not map mbuf, error %d\n", __func__,
1883 			    error);
1884 			goto fail;
1885 		}
1886 
1887 		/* Set physical address of RX buffer (256-byte aligned). */
1888 		ring->desc[i] = htole32(paddr >> 8);
1889 	}
1890 
1891 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1892 	    BUS_DMASYNC_PREWRITE);
1893 
1894 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1895 
1896 	return 0;
1897 
1898 fail:	iwn_free_rx_ring(sc, ring);
1899 
1900 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1901 
1902 	return error;
1903 }
1904 
1905 static void
1906 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1907 {
1908 	int ntries;
1909 
1910 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1911 
1912 	if (iwn_nic_lock(sc) == 0) {
1913 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1914 		for (ntries = 0; ntries < 1000; ntries++) {
1915 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1916 			    IWN_FH_RX_STATUS_IDLE)
1917 				break;
1918 			DELAY(10);
1919 		}
1920 		iwn_nic_unlock(sc);
1921 	}
1922 	ring->cur = 0;
1923 	sc->last_rx_valid = 0;
1924 }
1925 
1926 static void
1927 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1928 {
1929 	int i;
1930 
1931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1932 
1933 	iwn_dma_contig_free(&ring->desc_dma);
1934 	iwn_dma_contig_free(&ring->stat_dma);
1935 
1936 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1937 		struct iwn_rx_data *data = &ring->data[i];
1938 
1939 		if (data->m != NULL) {
1940 			bus_dmamap_sync(ring->data_dmat, data->map,
1941 			    BUS_DMASYNC_POSTREAD);
1942 			bus_dmamap_unload(ring->data_dmat, data->map);
1943 			m_freem(data->m);
1944 			data->m = NULL;
1945 		}
1946 		if (data->map != NULL)
1947 			bus_dmamap_destroy(ring->data_dmat, data->map);
1948 	}
1949 	if (ring->data_dmat != NULL) {
1950 		bus_dma_tag_destroy(ring->data_dmat);
1951 		ring->data_dmat = NULL;
1952 	}
1953 }
1954 
1955 static int
1956 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1957 {
1958 	bus_addr_t paddr;
1959 	bus_size_t size;
1960 	int i, error;
1961 
1962 	ring->qid = qid;
1963 	ring->queued = 0;
1964 	ring->cur = 0;
1965 
1966 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1967 
1968 	/* Allocate TX descriptors (256-byte aligned). */
1969 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1970 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1971 	    size, 256);
1972 	if (error != 0) {
1973 		device_printf(sc->sc_dev,
1974 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1975 		    __func__, error);
1976 		goto fail;
1977 	}
1978 
1979 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1980 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1981 	    size, 4);
1982 	if (error != 0) {
1983 		device_printf(sc->sc_dev,
1984 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1985 		    __func__, error);
1986 		goto fail;
1987 	}
1988 
1989 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1990 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1991 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1992 	if (error != 0) {
1993 		device_printf(sc->sc_dev,
1994 		    "%s: could not create TX buf DMA tag, error %d\n",
1995 		    __func__, error);
1996 		goto fail;
1997 	}
1998 
1999 	paddr = ring->cmd_dma.paddr;
2000 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2001 		struct iwn_tx_data *data = &ring->data[i];
2002 
2003 		data->cmd_paddr = paddr;
2004 		data->scratch_paddr = paddr + 12;
2005 		paddr += sizeof (struct iwn_tx_cmd);
2006 
2007 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2008 		if (error != 0) {
2009 			device_printf(sc->sc_dev,
2010 			    "%s: could not create TX buf DMA map, error %d\n",
2011 			    __func__, error);
2012 			goto fail;
2013 		}
2014 	}
2015 
2016 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2017 
2018 	return 0;
2019 
2020 fail:	iwn_free_tx_ring(sc, ring);
2021 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2022 	return error;
2023 }
2024 
2025 static void
2026 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2027 {
2028 	int i;
2029 
2030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2031 
2032 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2033 		struct iwn_tx_data *data = &ring->data[i];
2034 
2035 		if (data->m != NULL) {
2036 			bus_dmamap_sync(ring->data_dmat, data->map,
2037 			    BUS_DMASYNC_POSTWRITE);
2038 			bus_dmamap_unload(ring->data_dmat, data->map);
2039 			m_freem(data->m);
2040 			data->m = NULL;
2041 		}
2042 	}
2043 	/* Clear TX descriptors. */
2044 	memset(ring->desc, 0, ring->desc_dma.size);
2045 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2046 	    BUS_DMASYNC_PREWRITE);
2047 	sc->qfullmsk &= ~(1 << ring->qid);
2048 	ring->queued = 0;
2049 	ring->cur = 0;
2050 }
2051 
2052 static void
2053 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2054 {
2055 	int i;
2056 
2057 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2058 
2059 	iwn_dma_contig_free(&ring->desc_dma);
2060 	iwn_dma_contig_free(&ring->cmd_dma);
2061 
2062 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2063 		struct iwn_tx_data *data = &ring->data[i];
2064 
2065 		if (data->m != NULL) {
2066 			bus_dmamap_sync(ring->data_dmat, data->map,
2067 			    BUS_DMASYNC_POSTWRITE);
2068 			bus_dmamap_unload(ring->data_dmat, data->map);
2069 			m_freem(data->m);
2070 		}
2071 		if (data->map != NULL)
2072 			bus_dmamap_destroy(ring->data_dmat, data->map);
2073 	}
2074 	if (ring->data_dmat != NULL) {
2075 		bus_dma_tag_destroy(ring->data_dmat);
2076 		ring->data_dmat = NULL;
2077 	}
2078 }
2079 
2080 static void
2081 iwn5000_ict_reset(struct iwn_softc *sc)
2082 {
2083 	/* Disable interrupts. */
2084 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2085 
2086 	/* Reset ICT table. */
2087 	memset(sc->ict, 0, IWN_ICT_SIZE);
2088 	sc->ict_cur = 0;
2089 
2090 	/* Set physical address of ICT table (4KB aligned). */
2091 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2092 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2093 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2094 
2095 	/* Enable periodic RX interrupt. */
2096 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2097 	/* Switch to ICT interrupt mode in driver. */
2098 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2099 
2100 	/* Re-enable interrupts. */
2101 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2102 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2103 }
2104 
2105 static int
2106 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2107 {
2108 	struct iwn_ops *ops = &sc->ops;
2109 	uint16_t val;
2110 	int error;
2111 
2112 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2113 
2114 	/* Check whether adapter has an EEPROM or an OTPROM. */
2115 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2116 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2117 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2118 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2119 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2120 
2121 	/* Adapter has to be powered on for EEPROM access to work. */
2122 	if ((error = iwn_apm_init(sc)) != 0) {
2123 		device_printf(sc->sc_dev,
2124 		    "%s: could not power ON adapter, error %d\n", __func__,
2125 		    error);
2126 		return error;
2127 	}
2128 
2129 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2130 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2131 		return EIO;
2132 	}
2133 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2134 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2135 		    __func__, error);
2136 		return error;
2137 	}
2138 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2139 		if ((error = iwn_init_otprom(sc)) != 0) {
2140 			device_printf(sc->sc_dev,
2141 			    "%s: could not initialize OTPROM, error %d\n",
2142 			    __func__, error);
2143 			return error;
2144 		}
2145 	}
2146 
2147 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2148 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2149 	/* Check if HT support is bonded out. */
2150 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2151 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2152 
2153 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2154 	sc->rfcfg = le16toh(val);
2155 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2156 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2157 	if (sc->txchainmask == 0)
2158 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2159 	if (sc->rxchainmask == 0)
2160 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2161 
2162 	/* Read MAC address. */
2163 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2164 
2165 	/* Read adapter-specific information from EEPROM. */
2166 	ops->read_eeprom(sc);
2167 
2168 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2169 
2170 	iwn_eeprom_unlock(sc);
2171 
2172 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2173 
2174 	return 0;
2175 }
2176 
2177 static void
2178 iwn4965_read_eeprom(struct iwn_softc *sc)
2179 {
2180 	uint32_t addr;
2181 	uint16_t val;
2182 	int i;
2183 
2184 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2185 
2186 	/* Read regulatory domain (4 ASCII characters). */
2187 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2188 
2189 	/* Read the list of authorized channels (20MHz ones only). */
2190 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2191 		addr = iwn4965_regulatory_bands[i];
2192 		iwn_read_eeprom_channels(sc, i, addr);
2193 	}
2194 
2195 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2196 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2197 	sc->maxpwr2GHz = val & 0xff;
2198 	sc->maxpwr5GHz = val >> 8;
2199 	/* Check that EEPROM values are within valid range. */
2200 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2201 		sc->maxpwr5GHz = 38;
2202 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2203 		sc->maxpwr2GHz = 38;
2204 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2205 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2206 
2207 	/* Read samples for each TX power group. */
2208 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2209 	    sizeof sc->bands);
2210 
2211 	/* Read voltage at which samples were taken. */
2212 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2213 	sc->eeprom_voltage = (int16_t)le16toh(val);
2214 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2215 	    sc->eeprom_voltage);
2216 
2217 #ifdef IWN_DEBUG
2218 	/* Print samples. */
2219 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2220 		for (i = 0; i < IWN_NBANDS - 1; i++)
2221 			iwn4965_print_power_group(sc, i);
2222 	}
2223 #endif
2224 
2225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2226 }
2227 
2228 #ifdef IWN_DEBUG
2229 static void
2230 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2231 {
2232 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2233 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2234 	int j, c;
2235 
2236 	kprintf("===band %d===\n", i);
2237 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2238 	kprintf("chan1 num=%d\n", chans[0].num);
2239 	for (c = 0; c < 2; c++) {
2240 		for (j = 0; j < IWN_NSAMPLES; j++) {
2241 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2242 			    "power=%d pa_det=%d\n", c, j,
2243 			    chans[0].samples[c][j].temp,
2244 			    chans[0].samples[c][j].gain,
2245 			    chans[0].samples[c][j].power,
2246 			    chans[0].samples[c][j].pa_det);
2247 		}
2248 	}
2249 	kprintf("chan2 num=%d\n", chans[1].num);
2250 	for (c = 0; c < 2; c++) {
2251 		for (j = 0; j < IWN_NSAMPLES; j++) {
2252 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2253 			    "power=%d pa_det=%d\n", c, j,
2254 			    chans[1].samples[c][j].temp,
2255 			    chans[1].samples[c][j].gain,
2256 			    chans[1].samples[c][j].power,
2257 			    chans[1].samples[c][j].pa_det);
2258 		}
2259 	}
2260 }
2261 #endif
2262 
2263 static void
2264 iwn5000_read_eeprom(struct iwn_softc *sc)
2265 {
2266 	struct iwn5000_eeprom_calib_hdr hdr;
2267 	int32_t volt;
2268 	uint32_t base, addr;
2269 	uint16_t val;
2270 	int i;
2271 
2272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2273 
2274 	/* Read regulatory domain (4 ASCII characters). */
2275 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2276 	base = le16toh(val);
2277 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2278 	    sc->eeprom_domain, 4);
2279 
2280 	/* Read the list of authorized channels (20MHz ones only). */
2281 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2282 		addr =  base + sc->base_params->regulatory_bands[i];
2283 		iwn_read_eeprom_channels(sc, i, addr);
2284 	}
2285 
2286 	/* Read enhanced TX power information for 6000 Series. */
2287 	if (sc->base_params->enhanced_TX_power)
2288 		iwn_read_eeprom_enhinfo(sc);
2289 
2290 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2291 	base = le16toh(val);
2292 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2293 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2294 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2295 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2296 	sc->calib_ver = hdr.version;
2297 
2298 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2299 		sc->eeprom_voltage = le16toh(hdr.volt);
2300 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2301 		sc->eeprom_temp_high=le16toh(val);
2302 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2303 		sc->eeprom_temp = le16toh(val);
2304 	}
2305 
2306 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2307 		/* Compute temperature offset. */
2308 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2309 		sc->eeprom_temp = le16toh(val);
2310 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2311 		volt = le16toh(val);
2312 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2313 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2314 		    sc->eeprom_temp, volt, sc->temp_off);
2315 	} else {
2316 		/* Read crystal calibration. */
2317 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2318 		    &sc->eeprom_crystal, sizeof (uint32_t));
2319 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2320 		    le32toh(sc->eeprom_crystal));
2321 	}
2322 
2323 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2324 
2325 }
2326 
2327 /*
2328  * Translate EEPROM flags to net80211.
2329  */
2330 static uint32_t
2331 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2332 {
2333 	uint32_t nflags;
2334 
2335 	nflags = 0;
2336 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2337 		nflags |= IEEE80211_CHAN_PASSIVE;
2338 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2339 		nflags |= IEEE80211_CHAN_NOADHOC;
2340 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2341 		nflags |= IEEE80211_CHAN_DFS;
2342 		/* XXX apparently IBSS may still be marked */
2343 		nflags |= IEEE80211_CHAN_NOADHOC;
2344 	}
2345 
2346 	return nflags;
2347 }
2348 
2349 static void
2350 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2351 {
2352 	struct ifnet *ifp = sc->sc_ifp;
2353 	struct ieee80211com *ic = ifp->if_l2com;
2354 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2355 	const struct iwn_chan_band *band = &iwn_bands[n];
2356 	struct ieee80211_channel *c;
2357 	uint8_t chan;
2358 	int i, nflags;
2359 
2360 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2361 
2362 	for (i = 0; i < band->nchan; i++) {
2363 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2364 			DPRINTF(sc, IWN_DEBUG_RESET,
2365 			    "skip chan %d flags 0x%x maxpwr %d\n",
2366 			    band->chan[i], channels[i].flags,
2367 			    channels[i].maxpwr);
2368 			continue;
2369 		}
2370 		chan = band->chan[i];
2371 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2372 
2373 		c = &ic->ic_channels[ic->ic_nchans++];
2374 		c->ic_ieee = chan;
2375 		c->ic_maxregpower = channels[i].maxpwr;
2376 		c->ic_maxpower = 2*c->ic_maxregpower;
2377 
2378 		if (n == 0) {	/* 2GHz band */
2379 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2380 			/* G =>'s B is supported */
2381 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2382 			c = &ic->ic_channels[ic->ic_nchans++];
2383 			c[0] = c[-1];
2384 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2385 		} else {	/* 5GHz band */
2386 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2387 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2388 		}
2389 
2390 		/* Save maximum allowed TX power for this channel. */
2391 		sc->maxpwr[chan] = channels[i].maxpwr;
2392 
2393 		DPRINTF(sc, IWN_DEBUG_RESET,
2394 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2395 		    channels[i].flags, channels[i].maxpwr);
2396 
2397 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2398 			/* add HT20, HT40 added separately */
2399 			c = &ic->ic_channels[ic->ic_nchans++];
2400 			c[0] = c[-1];
2401 			c->ic_flags |= IEEE80211_CHAN_HT20;
2402 		}
2403 	}
2404 
2405 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2406 
2407 }
2408 
2409 static void
2410 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2411 {
2412 	struct ifnet *ifp = sc->sc_ifp;
2413 	struct ieee80211com *ic = ifp->if_l2com;
2414 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2415 	const struct iwn_chan_band *band = &iwn_bands[n];
2416 	struct ieee80211_channel *c, *cent, *extc;
2417 	uint8_t chan;
2418 	int i, nflags;
2419 
2420 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2421 
2422 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2423 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2424 		return;
2425 	}
2426 
2427 	for (i = 0; i < band->nchan; i++) {
2428 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2429 			DPRINTF(sc, IWN_DEBUG_RESET,
2430 			    "skip chan %d flags 0x%x maxpwr %d\n",
2431 			    band->chan[i], channels[i].flags,
2432 			    channels[i].maxpwr);
2433 			continue;
2434 		}
2435 		chan = band->chan[i];
2436 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2437 
2438 		/*
2439 		 * Each entry defines an HT40 channel pair; find the
2440 		 * center channel, then the extension channel above.
2441 		 */
2442 		cent = ieee80211_find_channel_byieee(ic, chan,
2443 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2444 		if (cent == NULL) {	/* XXX shouldn't happen */
2445 			device_printf(sc->sc_dev,
2446 			    "%s: no entry for channel %d\n", __func__, chan);
2447 			continue;
2448 		}
2449 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2450 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2451 		if (extc == NULL) {
2452 			DPRINTF(sc, IWN_DEBUG_RESET,
2453 			    "%s: skip chan %d, extension channel not found\n",
2454 			    __func__, chan);
2455 			continue;
2456 		}
2457 
2458 		DPRINTF(sc, IWN_DEBUG_RESET,
2459 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2460 		    chan, channels[i].flags, channels[i].maxpwr);
2461 
2462 		c = &ic->ic_channels[ic->ic_nchans++];
2463 		c[0] = cent[0];
2464 		c->ic_extieee = extc->ic_ieee;
2465 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2466 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2467 		c = &ic->ic_channels[ic->ic_nchans++];
2468 		c[0] = extc[0];
2469 		c->ic_extieee = cent->ic_ieee;
2470 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2471 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2472 	}
2473 
2474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2475 
2476 }
2477 
2478 static void
2479 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2480 {
2481 	struct ifnet *ifp = sc->sc_ifp;
2482 	struct ieee80211com *ic = ifp->if_l2com;
2483 
2484 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2485 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2486 
2487 	if (n < 5)
2488 		iwn_read_eeprom_band(sc, n);
2489 	else
2490 		iwn_read_eeprom_ht40(sc, n);
2491 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2492 }
2493 
2494 static struct iwn_eeprom_chan *
2495 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2496 {
2497 	int band, chan, i, j;
2498 
2499 	if (IEEE80211_IS_CHAN_HT40(c)) {
2500 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2501 		if (IEEE80211_IS_CHAN_HT40D(c))
2502 			chan = c->ic_extieee;
2503 		else
2504 			chan = c->ic_ieee;
2505 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2506 			if (iwn_bands[band].chan[i] == chan)
2507 				return &sc->eeprom_channels[band][i];
2508 		}
2509 	} else {
2510 		for (j = 0; j < 5; j++) {
2511 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2512 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2513 					return &sc->eeprom_channels[j][i];
2514 			}
2515 		}
2516 	}
2517 	return NULL;
2518 }
2519 
2520 /*
2521  * Enforce flags read from EEPROM.
2522  */
2523 static int
2524 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2525     int nchan, struct ieee80211_channel chans[])
2526 {
2527 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2528 	int i;
2529 
2530 	for (i = 0; i < nchan; i++) {
2531 		struct ieee80211_channel *c = &chans[i];
2532 		struct iwn_eeprom_chan *channel;
2533 
2534 		channel = iwn_find_eeprom_channel(sc, c);
2535 		if (channel == NULL) {
2536 			if_printf(ic->ic_ifp,
2537 			    "%s: invalid channel %u freq %u/0x%x\n",
2538 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2539 			return EINVAL;
2540 		}
2541 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static void
2548 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2549 {
2550 	struct iwn_eeprom_enhinfo enhinfo[35];
2551 	struct ifnet *ifp = sc->sc_ifp;
2552 	struct ieee80211com *ic = ifp->if_l2com;
2553 	struct ieee80211_channel *c;
2554 	uint16_t val, base;
2555 	int8_t maxpwr;
2556 	uint8_t flags;
2557 	int i, j;
2558 
2559 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2560 
2561 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2562 	base = le16toh(val);
2563 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2564 	    enhinfo, sizeof enhinfo);
2565 
2566 	for (i = 0; i < nitems(enhinfo); i++) {
2567 		flags = enhinfo[i].flags;
2568 		if (!(flags & IWN_ENHINFO_VALID))
2569 			continue;	/* Skip invalid entries. */
2570 
2571 		maxpwr = 0;
2572 		if (sc->txchainmask & IWN_ANT_A)
2573 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2574 		if (sc->txchainmask & IWN_ANT_B)
2575 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2576 		if (sc->txchainmask & IWN_ANT_C)
2577 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2578 		if (sc->ntxchains == 2)
2579 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2580 		else if (sc->ntxchains == 3)
2581 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2582 
2583 		for (j = 0; j < ic->ic_nchans; j++) {
2584 			c = &ic->ic_channels[j];
2585 			if ((flags & IWN_ENHINFO_5GHZ)) {
2586 				if (!IEEE80211_IS_CHAN_A(c))
2587 					continue;
2588 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2589 				if (!IEEE80211_IS_CHAN_G(c))
2590 					continue;
2591 			} else if (!IEEE80211_IS_CHAN_B(c))
2592 				continue;
2593 			if ((flags & IWN_ENHINFO_HT40)) {
2594 				if (!IEEE80211_IS_CHAN_HT40(c))
2595 					continue;
2596 			} else {
2597 				if (IEEE80211_IS_CHAN_HT40(c))
2598 					continue;
2599 			}
2600 			if (enhinfo[i].chan != 0 &&
2601 			    enhinfo[i].chan != c->ic_ieee)
2602 				continue;
2603 
2604 			DPRINTF(sc, IWN_DEBUG_RESET,
2605 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2606 			    c->ic_flags, maxpwr / 2);
2607 			c->ic_maxregpower = maxpwr / 2;
2608 			c->ic_maxpower = maxpwr;
2609 		}
2610 	}
2611 
2612 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2613 
2614 }
2615 
2616 static struct ieee80211_node *
2617 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2618 {
2619 	return kmalloc(sizeof(struct iwn_node), M_80211_NODE,
2620 		       M_INTWAIT | M_ZERO);
2621 }
2622 
2623 static __inline int
2624 rate2plcp(int rate)
2625 {
2626 	switch (rate & 0xff) {
2627 	case 12:	return 0xd;
2628 	case 18:	return 0xf;
2629 	case 24:	return 0x5;
2630 	case 36:	return 0x7;
2631 	case 48:	return 0x9;
2632 	case 72:	return 0xb;
2633 	case 96:	return 0x1;
2634 	case 108:	return 0x3;
2635 	case 2:		return 10;
2636 	case 4:		return 20;
2637 	case 11:	return 55;
2638 	case 22:	return 110;
2639 	}
2640 	return 0;
2641 }
2642 
2643 /*
2644  * Calculate the required PLCP value from the given rate,
2645  * to the given node.
2646  *
2647  * This will take the node configuration (eg 11n, rate table
2648  * setup, etc) into consideration.
2649  */
2650 static uint32_t
2651 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2652     uint8_t rate)
2653 {
2654 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2655 	struct ieee80211com *ic = ni->ni_ic;
2656 	uint8_t txant1, txant2;
2657 	uint32_t plcp = 0;
2658 	int ridx;
2659 
2660 	/* Use the first valid TX antenna. */
2661 	txant1 = IWN_LSB(sc->txchainmask);
2662 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2663 
2664 	/*
2665 	 * If it's an MCS rate, let's set the plcp correctly
2666 	 * and set the relevant flags based on the node config.
2667 	 */
2668 	if (rate & IEEE80211_RATE_MCS) {
2669 		/*
2670 		 * Set the initial PLCP value to be between 0->31 for
2671 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2672 		 * flag.
2673 		 */
2674 		plcp = RV(rate) | IWN_RFLAG_MCS;
2675 
2676 		/*
2677 		 * XXX the following should only occur if both
2678 		 * the local configuration _and_ the remote node
2679 		 * advertise these capabilities.  Thus this code
2680 		 * may need fixing!
2681 		 */
2682 
2683 		/*
2684 		 * Set the channel width and guard interval.
2685 		 */
2686 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2687 			plcp |= IWN_RFLAG_HT40;
2688 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2689 				plcp |= IWN_RFLAG_SGI;
2690 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2691 			plcp |= IWN_RFLAG_SGI;
2692 		}
2693 
2694 		/*
2695 		 * If it's a two stream rate, enable TX on both
2696 		 * antennas.
2697 		 *
2698 		 * XXX three stream rates?
2699 		 */
2700 		if (rate > 0x87)
2701 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2702 		else
2703 			plcp |= IWN_RFLAG_ANT(txant1);
2704 	} else {
2705 		/*
2706 		 * Set the initial PLCP - fine for both
2707 		 * OFDM and CCK rates.
2708 		 */
2709 		plcp = rate2plcp(rate);
2710 
2711 		/* Set CCK flag if it's CCK */
2712 
2713 		/* XXX It would be nice to have a method
2714 		 * to map the ridx -> phy table entry
2715 		 * so we could just query that, rather than
2716 		 * this hack to check against IWN_RIDX_OFDM6.
2717 		 */
2718 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2719 		    rate & IEEE80211_RATE_VAL);
2720 		if (ridx < IWN_RIDX_OFDM6 &&
2721 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2722 			plcp |= IWN_RFLAG_CCK;
2723 
2724 		/* Set antenna configuration */
2725 		plcp |= IWN_RFLAG_ANT(txant1);
2726 	}
2727 
2728 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2729 	    __func__,
2730 	    rate,
2731 	    plcp);
2732 
2733 	return (htole32(plcp));
2734 #undef	RV
2735 }
2736 
2737 static void
2738 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2739 {
2740 	/* Doesn't do anything at the moment */
2741 }
2742 
2743 static int
2744 iwn_media_change(struct ifnet *ifp)
2745 {
2746 	int error;
2747 
2748 	error = ieee80211_media_change(ifp);
2749 	/* NB: only the fixed rate can change and that doesn't need a reset */
2750 	return (error == ENETRESET ? 0 : error);
2751 }
2752 
2753 static int
2754 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2755 {
2756 	struct iwn_vap *ivp = IWN_VAP(vap);
2757 	struct ieee80211com *ic = vap->iv_ic;
2758 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2759 	int error = 0;
2760 
2761 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2762 
2763 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2764 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2765 
2766 	callout_stop(&sc->calib_to);
2767 
2768 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2769 
2770 	switch (nstate) {
2771 	case IEEE80211_S_ASSOC:
2772 		if (vap->iv_state != IEEE80211_S_RUN)
2773 			break;
2774 		/* FALLTHROUGH */
2775 	case IEEE80211_S_AUTH:
2776 		if (vap->iv_state == IEEE80211_S_AUTH)
2777 			break;
2778 
2779 		/*
2780 		 * !AUTH -> AUTH transition requires state reset to handle
2781 		 * reassociations correctly.
2782 		 */
2783 		sc->rxon->associd = 0;
2784 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2785 		sc->calib.state = IWN_CALIB_STATE_INIT;
2786 
2787 		if ((error = iwn_auth(sc, vap)) != 0) {
2788 			device_printf(sc->sc_dev,
2789 			    "%s: could not move to auth state\n", __func__);
2790 		}
2791 		break;
2792 
2793 	case IEEE80211_S_RUN:
2794 		/*
2795 		 * RUN -> RUN transition; Just restart the timers.
2796 		 */
2797 		if (vap->iv_state == IEEE80211_S_RUN) {
2798 			sc->calib_cnt = 0;
2799 			break;
2800 		}
2801 
2802 		/*
2803 		 * !RUN -> RUN requires setting the association id
2804 		 * which is done with a firmware cmd.  We also defer
2805 		 * starting the timers until that work is done.
2806 		 */
2807 		if ((error = iwn_run(sc, vap)) != 0) {
2808 			device_printf(sc->sc_dev,
2809 			    "%s: could not move to run state\n", __func__);
2810 		}
2811 		break;
2812 
2813 	case IEEE80211_S_INIT:
2814 		sc->calib.state = IWN_CALIB_STATE_INIT;
2815 		break;
2816 
2817 	default:
2818 		break;
2819 	}
2820 	if (error != 0){
2821 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2822 		return error;
2823 	}
2824 
2825 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2826 
2827 	return ivp->iv_newstate(vap, nstate, arg);
2828 }
2829 
2830 static void
2831 iwn_calib_timeout(void *arg)
2832 {
2833 	struct iwn_softc *sc = arg;
2834 
2835 	wlan_serialize_enter();
2836 
2837 	/* Force automatic TX power calibration every 60 secs. */
2838 	if (++sc->calib_cnt >= 120) {
2839 		uint32_t flags = 0;
2840 
2841 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2842 		    "sending request for statistics");
2843 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2844 		    sizeof flags, 1);
2845 		sc->calib_cnt = 0;
2846 	}
2847 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2848 	    sc);
2849 	wlan_serialize_exit();
2850 }
2851 
2852 /*
2853  * Process an RX_PHY firmware notification.  This is usually immediately
2854  * followed by an MPDU_RX_DONE notification.
2855  */
2856 static void
2857 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2858     struct iwn_rx_data *data)
2859 {
2860 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2861 
2862 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2863 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2864 
2865 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2866 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2867 	sc->last_rx_valid = 1;
2868 }
2869 
2870 /*
2871  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2872  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2873  */
2874 static void
2875 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2876     struct iwn_rx_data *data)
2877 {
2878 	struct iwn_ops *ops = &sc->ops;
2879 	struct ifnet *ifp = sc->sc_ifp;
2880 	struct ieee80211com *ic = ifp->if_l2com;
2881 	struct iwn_rx_ring *ring = &sc->rxq;
2882 	struct ieee80211_frame *wh;
2883 	struct ieee80211_node *ni;
2884 	struct mbuf *m, *m1;
2885 	struct iwn_rx_stat *stat;
2886 	caddr_t head;
2887 	bus_addr_t paddr;
2888 	uint32_t flags;
2889 	int error, len, rssi, nf;
2890 
2891 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2892 
2893 	if (desc->type == IWN_MPDU_RX_DONE) {
2894 		/* Check for prior RX_PHY notification. */
2895 		if (!sc->last_rx_valid) {
2896 			DPRINTF(sc, IWN_DEBUG_ANY,
2897 			    "%s: missing RX_PHY\n", __func__);
2898 			return;
2899 		}
2900 		stat = &sc->last_rx_stat;
2901 	} else
2902 		stat = (struct iwn_rx_stat *)(desc + 1);
2903 
2904 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2905 
2906 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2907 		device_printf(sc->sc_dev,
2908 		    "%s: invalid RX statistic header, len %d\n", __func__,
2909 		    stat->cfg_phy_len);
2910 		return;
2911 	}
2912 	if (desc->type == IWN_MPDU_RX_DONE) {
2913 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2914 		head = (caddr_t)(mpdu + 1);
2915 		len = le16toh(mpdu->len);
2916 	} else {
2917 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2918 		len = le16toh(stat->len);
2919 	}
2920 
2921 	flags = le32toh(*(uint32_t *)(head + len));
2922 
2923 	/* Discard frames with a bad FCS early. */
2924 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2925 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2926 		    __func__, flags);
2927 		IFNET_STAT_INC(ifp, ierrors, 1);
2928 		return;
2929 	}
2930 	/* Discard frames that are too short. */
2931 	if (len < sizeof (*wh)) {
2932 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2933 		    __func__, len);
2934 		IFNET_STAT_INC(ifp, ierrors, 1);
2935 		return;
2936 	}
2937 
2938 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2939 	if (m1 == NULL) {
2940 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2941 		    __func__);
2942 		IFNET_STAT_INC(ifp, ierrors, 1);
2943 		return;
2944 	}
2945 	bus_dmamap_unload(ring->data_dmat, data->map);
2946 
2947 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2948 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2949 	if (error != 0 && error != EFBIG) {
2950 		device_printf(sc->sc_dev,
2951 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2952 		m_freem(m1);
2953 
2954 		/* Try to reload the old mbuf. */
2955 		error = bus_dmamap_load(ring->data_dmat, data->map,
2956 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2957 		    &paddr, BUS_DMA_NOWAIT);
2958 		if (error != 0 && error != EFBIG) {
2959 			panic("%s: could not load old RX mbuf", __func__);
2960 		}
2961 		/* Physical address may have changed. */
2962 		ring->desc[ring->cur] = htole32(paddr >> 8);
2963 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2964 		    BUS_DMASYNC_PREWRITE);
2965 		IFNET_STAT_INC(ifp, ierrors, 1);
2966 		return;
2967 	}
2968 
2969 	m = data->m;
2970 	data->m = m1;
2971 	/* Update RX descriptor. */
2972 	ring->desc[ring->cur] = htole32(paddr >> 8);
2973 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2974 	    BUS_DMASYNC_PREWRITE);
2975 
2976 	/* Finalize mbuf. */
2977 	m->m_pkthdr.rcvif = ifp;
2978 	m->m_data = head;
2979 	m->m_pkthdr.len = m->m_len = len;
2980 
2981 	/* Grab a reference to the source node. */
2982 	wh = mtod(m, struct ieee80211_frame *);
2983 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2984 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2985 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2986 
2987 	rssi = ops->get_rssi(sc, stat);
2988 
2989 	if (ieee80211_radiotap_active(ic)) {
2990 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2991 
2992 		tap->wr_flags = 0;
2993 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2994 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2995 		tap->wr_dbm_antsignal = (int8_t)rssi;
2996 		tap->wr_dbm_antnoise = (int8_t)nf;
2997 		tap->wr_tsft = stat->tstamp;
2998 		switch (stat->rate) {
2999 		/* CCK rates. */
3000 		case  10: tap->wr_rate =   2; break;
3001 		case  20: tap->wr_rate =   4; break;
3002 		case  55: tap->wr_rate =  11; break;
3003 		case 110: tap->wr_rate =  22; break;
3004 		/* OFDM rates. */
3005 		case 0xd: tap->wr_rate =  12; break;
3006 		case 0xf: tap->wr_rate =  18; break;
3007 		case 0x5: tap->wr_rate =  24; break;
3008 		case 0x7: tap->wr_rate =  36; break;
3009 		case 0x9: tap->wr_rate =  48; break;
3010 		case 0xb: tap->wr_rate =  72; break;
3011 		case 0x1: tap->wr_rate =  96; break;
3012 		case 0x3: tap->wr_rate = 108; break;
3013 		/* Unknown rate: should not happen. */
3014 		default:  tap->wr_rate =   0;
3015 		}
3016 	}
3017 
3018 	/* Send the frame to the 802.11 layer. */
3019 	if (ni != NULL) {
3020 		if (ni->ni_flags & IEEE80211_NODE_HT)
3021 			m->m_flags |= M_AMPDU;
3022 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3023 		/* Node is no longer needed. */
3024 		ieee80211_free_node(ni);
3025 	} else {
3026 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3027 	}
3028 
3029 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3030 
3031 }
3032 
3033 /* Process an incoming Compressed BlockAck. */
3034 static void
3035 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3036     struct iwn_rx_data *data)
3037 {
3038 	struct iwn_ops *ops = &sc->ops;
3039 	struct ifnet *ifp = sc->sc_ifp;
3040 	struct iwn_node *wn;
3041 	struct ieee80211_node *ni;
3042 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3043 	struct iwn_tx_ring *txq;
3044 	struct iwn_tx_data *txdata;
3045 	struct ieee80211_tx_ampdu *tap;
3046 	struct mbuf *m;
3047 	uint64_t bitmap;
3048 	uint16_t ssn;
3049 	uint8_t tid;
3050 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3051 
3052 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3053 
3054 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3055 
3056 	qid = le16toh(ba->qid);
3057 	txq = &sc->txq[ba->qid];
3058 	tap = sc->qid2tap[ba->qid];
3059 	tid = tap->txa_ac;
3060 	wn = (void *)tap->txa_ni;
3061 
3062 	res = NULL;
3063 	ssn = 0;
3064 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3065 		res = tap->txa_private;
3066 		ssn = tap->txa_start & 0xfff;
3067 	}
3068 
3069 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3070 		txdata = &txq->data[txq->read];
3071 
3072 		/* Unmap and free mbuf. */
3073 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3074 		    BUS_DMASYNC_POSTWRITE);
3075 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3076 		m = txdata->m, txdata->m = NULL;
3077 		ni = txdata->ni, txdata->ni = NULL;
3078 
3079 		KASSERT(ni != NULL, ("no node"));
3080 		KASSERT(m != NULL, ("no mbuf"));
3081 
3082 		ieee80211_tx_complete(ni, m, 1);
3083 
3084 		txq->queued--;
3085 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3086 	}
3087 
3088 	if (txq->queued == 0 && res != NULL) {
3089 		iwn_nic_lock(sc);
3090 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3091 		iwn_nic_unlock(sc);
3092 		sc->qid2tap[qid] = NULL;
3093 		kfree(res, M_DEVBUF);
3094 		return;
3095 	}
3096 
3097 	if (wn->agg[tid].bitmap == 0)
3098 		return;
3099 
3100 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3101 	if (shift < 0)
3102 		shift += 0x100;
3103 
3104 	if (wn->agg[tid].nframes > (64 - shift))
3105 		return;
3106 
3107 	ni = tap->txa_ni;
3108 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3109 	for (i = 0; bitmap; i++) {
3110 		if ((bitmap & 1) == 0) {
3111 			IFNET_STAT_INC(ifp, oerrors, 1);
3112 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3113 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3114 		} else {
3115 			IFNET_STAT_INC(ifp, opackets, 1);
3116 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3117 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3118 		}
3119 		bitmap >>= 1;
3120 	}
3121 
3122 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3123 
3124 }
3125 
3126 /*
3127  * Process a CALIBRATION_RESULT notification sent by the initialization
3128  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3129  */
3130 static void
3131 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3132     struct iwn_rx_data *data)
3133 {
3134 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3135 	int len, idx = -1;
3136 
3137 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3138 
3139 	/* Runtime firmware should not send such a notification. */
3140 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3141 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3142 	    __func__);
3143 		return;
3144 	}
3145 	len = (le32toh(desc->len) & 0x3fff) - 4;
3146 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3147 
3148 	switch (calib->code) {
3149 	case IWN5000_PHY_CALIB_DC:
3150 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3151 			idx = 0;
3152 		break;
3153 	case IWN5000_PHY_CALIB_LO:
3154 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3155 			idx = 1;
3156 		break;
3157 	case IWN5000_PHY_CALIB_TX_IQ:
3158 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3159 			idx = 2;
3160 		break;
3161 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3162 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3163 			idx = 3;
3164 		break;
3165 	case IWN5000_PHY_CALIB_BASE_BAND:
3166 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3167 			idx = 4;
3168 		break;
3169 	}
3170 	if (idx == -1)	/* Ignore other results. */
3171 		return;
3172 
3173 	/* Save calibration result. */
3174 	if (sc->calibcmd[idx].buf != NULL)
3175 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3176 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3177 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3178 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3179 	sc->calibcmd[idx].len = len;
3180 	memcpy(sc->calibcmd[idx].buf, calib, len);
3181 }
3182 
3183 /*
3184  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3185  * The latter is sent by the firmware after each received beacon.
3186  */
3187 static void
3188 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3189     struct iwn_rx_data *data)
3190 {
3191 	struct iwn_ops *ops = &sc->ops;
3192 	struct ifnet *ifp = sc->sc_ifp;
3193 	struct ieee80211com *ic = ifp->if_l2com;
3194 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3195 	struct iwn_calib_state *calib = &sc->calib;
3196 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3197 	int temp;
3198 
3199 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3200 
3201 	/* Ignore statistics received during a scan. */
3202 	if (vap->iv_state != IEEE80211_S_RUN ||
3203 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3204 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3205 	    __func__);
3206 		return;
3207 	}
3208 
3209 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3210 
3211 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
3212 	    __func__, desc->type);
3213 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3214 
3215 	/* Test if temperature has changed. */
3216 	if (stats->general.temp != sc->rawtemp) {
3217 		/* Convert "raw" temperature to degC. */
3218 		sc->rawtemp = stats->general.temp;
3219 		temp = ops->get_temperature(sc);
3220 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3221 		    __func__, temp);
3222 
3223 		/* Update TX power if need be (4965AGN only). */
3224 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3225 			iwn4965_power_calibration(sc, temp);
3226 	}
3227 
3228 	if (desc->type != IWN_BEACON_STATISTICS)
3229 		return;	/* Reply to a statistics request. */
3230 
3231 	sc->noise = iwn_get_noise(&stats->rx.general);
3232 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3233 
3234 	/* Test that RSSI and noise are present in stats report. */
3235 	if (le32toh(stats->rx.general.flags) != 1) {
3236 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3237 		    "received statistics without RSSI");
3238 		return;
3239 	}
3240 
3241 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3242 		iwn_collect_noise(sc, &stats->rx.general);
3243 	else if (calib->state == IWN_CALIB_STATE_RUN)
3244 		iwn_tune_sensitivity(sc, &stats->rx);
3245 
3246 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3247 }
3248 
3249 /*
3250  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3251  * and 5000 adapters have different incompatible TX status formats.
3252  */
3253 static void
3254 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3255     struct iwn_rx_data *data)
3256 {
3257 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3258 	struct iwn_tx_ring *ring;
3259 	int qid;
3260 
3261 	qid = desc->qid & 0xf;
3262 	ring = &sc->txq[qid];
3263 
3264 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3265 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3266 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3267 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3268 	    le32toh(stat->status));
3269 
3270 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3271 	if (qid >= sc->firstaggqueue) {
3272 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3273 		    &stat->status);
3274 	} else {
3275 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3276 		    le32toh(stat->status) & 0xff);
3277 	}
3278 }
3279 
3280 static void
3281 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3282     struct iwn_rx_data *data)
3283 {
3284 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3285 	struct iwn_tx_ring *ring;
3286 	int qid;
3287 
3288 	qid = desc->qid & 0xf;
3289 	ring = &sc->txq[qid];
3290 
3291 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3292 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3293 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3294 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3295 	    le32toh(stat->status));
3296 
3297 #ifdef notyet
3298 	/* Reset TX scheduler slot. */
3299 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3300 #endif
3301 
3302 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3303 	if (qid >= sc->firstaggqueue) {
3304 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3305 		    &stat->status);
3306 	} else {
3307 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3308 		    le16toh(stat->status) & 0xff);
3309 	}
3310 }
3311 
3312 /*
3313  * Adapter-independent backend for TX_DONE firmware notifications.
3314  */
3315 static void
3316 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3317     uint8_t status)
3318 {
3319 	struct ifnet *ifp = sc->sc_ifp;
3320 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3321 	struct iwn_tx_data *data = &ring->data[desc->idx];
3322 	struct mbuf *m;
3323 	struct ieee80211_node *ni;
3324 	struct ieee80211vap *vap;
3325 
3326 	KASSERT(data->ni != NULL, ("no node"));
3327 
3328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3329 
3330 	/* Unmap and free mbuf. */
3331 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3332 	bus_dmamap_unload(ring->data_dmat, data->map);
3333 	m = data->m, data->m = NULL;
3334 	ni = data->ni, data->ni = NULL;
3335 	vap = ni->ni_vap;
3336 
3337 	/*
3338 	 * Update rate control statistics for the node.
3339 	 */
3340 	if (status & IWN_TX_FAIL) {
3341 		IFNET_STAT_INC(ifp, oerrors, 1);
3342 		ieee80211_ratectl_tx_complete(vap, ni,
3343 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3344 	} else {
3345 		IFNET_STAT_INC(ifp, opackets, 1);
3346 		ieee80211_ratectl_tx_complete(vap, ni,
3347 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3348 	}
3349 
3350 	/*
3351 	 * Channels marked for "radar" require traffic to be received
3352 	 * to unlock before we can transmit.  Until traffic is seen
3353 	 * any attempt to transmit is returned immediately with status
3354 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3355 	 * happen on first authenticate after scanning.  To workaround
3356 	 * this we ignore a failure of this sort in AUTH state so the
3357 	 * 802.11 layer will fall back to using a timeout to wait for
3358 	 * the AUTH reply.  This allows the firmware time to see
3359 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3360 	 * unclear why the firmware does not maintain state for
3361 	 * channels recently visited as this would allow immediate
3362 	 * use of the channel after a scan (where we see traffic).
3363 	 */
3364 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3365 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3366 		ieee80211_tx_complete(ni, m, 0);
3367 	else
3368 		ieee80211_tx_complete(ni, m,
3369 		    (status & IWN_TX_FAIL) != 0);
3370 
3371 	sc->sc_tx_timer = 0;
3372 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3373 		sc->qfullmsk &= ~(1 << ring->qid);
3374 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3375 			ifq_clr_oactive(&ifp->if_snd);
3376 			iwn_start_locked(ifp);
3377 		}
3378 	}
3379 
3380 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3381 
3382 }
3383 
3384 /*
3385  * Process a "command done" firmware notification.  This is where we wakeup
3386  * processes waiting for a synchronous command completion.
3387  */
3388 static void
3389 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3390 {
3391 	struct iwn_tx_ring *ring;
3392 	struct iwn_tx_data *data;
3393 	int cmd_queue_num;
3394 
3395 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3396 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3397 	else
3398 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3399 
3400 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3401 		return;	/* Not a command ack. */
3402 
3403 	ring = &sc->txq[cmd_queue_num];
3404 	data = &ring->data[desc->idx];
3405 
3406 	/* If the command was mapped in an mbuf, free it. */
3407 	if (data->m != NULL) {
3408 		bus_dmamap_sync(ring->data_dmat, data->map,
3409 		    BUS_DMASYNC_POSTWRITE);
3410 		bus_dmamap_unload(ring->data_dmat, data->map);
3411 		m_freem(data->m);
3412 		data->m = NULL;
3413 	}
3414 	wakeup(&ring->desc[desc->idx]);
3415 }
3416 
3417 static void
3418 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3419     void *stat)
3420 {
3421 	struct iwn_ops *ops = &sc->ops;
3422 	struct ifnet *ifp = sc->sc_ifp;
3423 	struct iwn_tx_ring *ring = &sc->txq[qid];
3424 	struct iwn_tx_data *data;
3425 	struct mbuf *m;
3426 	struct iwn_node *wn;
3427 	struct ieee80211_node *ni;
3428 	struct ieee80211_tx_ampdu *tap;
3429 	uint64_t bitmap;
3430 	uint32_t *status = stat;
3431 	uint16_t *aggstatus = stat;
3432 	uint16_t ssn;
3433 	uint8_t tid;
3434 	int bit, i, lastidx, *res, seqno, shift, start;
3435 
3436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3437 
3438 	if (nframes == 1) {
3439 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3440 #ifdef	NOT_YET
3441 			kprintf("ieee80211_send_bar()\n");
3442 #endif
3443 			/*
3444 			 * If we completely fail a transmit, make sure a
3445 			 * notification is pushed up to the rate control
3446 			 * layer.
3447 			 */
3448 			tap = sc->qid2tap[qid];
3449 			tid = tap->txa_ac;
3450 			wn = (void *)tap->txa_ni;
3451 			ni = tap->txa_ni;
3452 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3453 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3454 		}
3455 	}
3456 
3457 	bitmap = 0;
3458 	start = idx;
3459 	for (i = 0; i < nframes; i++) {
3460 		if (le16toh(aggstatus[i * 2]) & 0xc)
3461 			continue;
3462 
3463 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3464 		bit = idx - start;
3465 		shift = 0;
3466 		if (bit >= 64) {
3467 			shift = 0x100 - idx + start;
3468 			bit = 0;
3469 			start = idx;
3470 		} else if (bit <= -64)
3471 			bit = 0x100 - start + idx;
3472 		else if (bit < 0) {
3473 			shift = start - idx;
3474 			start = idx;
3475 			bit = 0;
3476 		}
3477 		bitmap = bitmap << shift;
3478 		bitmap |= 1ULL << bit;
3479 	}
3480 	tap = sc->qid2tap[qid];
3481 	tid = tap->txa_ac;
3482 	wn = (void *)tap->txa_ni;
3483 	wn->agg[tid].bitmap = bitmap;
3484 	wn->agg[tid].startidx = start;
3485 	wn->agg[tid].nframes = nframes;
3486 
3487 	res = NULL;
3488 	ssn = 0;
3489 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3490 		res = tap->txa_private;
3491 		ssn = tap->txa_start & 0xfff;
3492 	}
3493 
3494 	seqno = le32toh(*(status + nframes)) & 0xfff;
3495 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3496 		data = &ring->data[ring->read];
3497 
3498 		/* Unmap and free mbuf. */
3499 		bus_dmamap_sync(ring->data_dmat, data->map,
3500 		    BUS_DMASYNC_POSTWRITE);
3501 		bus_dmamap_unload(ring->data_dmat, data->map);
3502 		m = data->m, data->m = NULL;
3503 		ni = data->ni, data->ni = NULL;
3504 
3505 		KASSERT(ni != NULL, ("no node"));
3506 		KASSERT(m != NULL, ("no mbuf"));
3507 
3508 		ieee80211_tx_complete(ni, m, 1);
3509 
3510 		ring->queued--;
3511 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3512 	}
3513 
3514 	if (ring->queued == 0 && res != NULL) {
3515 		iwn_nic_lock(sc);
3516 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3517 		iwn_nic_unlock(sc);
3518 		sc->qid2tap[qid] = NULL;
3519 		kfree(res, M_DEVBUF);
3520 		return;
3521 	}
3522 
3523 	sc->sc_tx_timer = 0;
3524 	if (ring->queued < IWN_TX_RING_LOMARK) {
3525 		sc->qfullmsk &= ~(1 << ring->qid);
3526 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3527 			ifq_clr_oactive(&ifp->if_snd);
3528 			iwn_start_locked(ifp);
3529 		}
3530 	}
3531 
3532 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3533 
3534 }
3535 
3536 /*
3537  * Process an INT_FH_RX or INT_SW_RX interrupt.
3538  */
3539 static void
3540 iwn_notif_intr(struct iwn_softc *sc)
3541 {
3542 	struct iwn_ops *ops = &sc->ops;
3543 	struct ifnet *ifp = sc->sc_ifp;
3544 	struct ieee80211com *ic = ifp->if_l2com;
3545 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3546 	uint16_t hw;
3547 
3548 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3549 	    BUS_DMASYNC_POSTREAD);
3550 
3551 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3552 	while (sc->rxq.cur != hw) {
3553 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3554 		struct iwn_rx_desc *desc;
3555 
3556 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3557 		    BUS_DMASYNC_POSTREAD);
3558 		desc = mtod(data->m, struct iwn_rx_desc *);
3559 
3560 		DPRINTF(sc, IWN_DEBUG_RECV,
3561 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3562 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3563 		    desc->type, iwn_intr_str(desc->type),
3564 		    le16toh(desc->len));
3565 
3566 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3567 			iwn_cmd_done(sc, desc);
3568 
3569 		switch (desc->type) {
3570 		case IWN_RX_PHY:
3571 			iwn_rx_phy(sc, desc, data);
3572 			break;
3573 
3574 		case IWN_RX_DONE:		/* 4965AGN only. */
3575 		case IWN_MPDU_RX_DONE:
3576 			/* An 802.11 frame has been received. */
3577 			iwn_rx_done(sc, desc, data);
3578 			break;
3579 
3580 		case IWN_RX_COMPRESSED_BA:
3581 			/* A Compressed BlockAck has been received. */
3582 			iwn_rx_compressed_ba(sc, desc, data);
3583 			break;
3584 
3585 		case IWN_TX_DONE:
3586 			/* An 802.11 frame has been transmitted. */
3587 			ops->tx_done(sc, desc, data);
3588 			break;
3589 
3590 		case IWN_RX_STATISTICS:
3591 		case IWN_BEACON_STATISTICS:
3592 			iwn_rx_statistics(sc, desc, data);
3593 			break;
3594 
3595 		case IWN_BEACON_MISSED:
3596 		{
3597 			struct iwn_beacon_missed *miss =
3598 			    (struct iwn_beacon_missed *)(desc + 1);
3599 			int misses;
3600 
3601 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3602 			    BUS_DMASYNC_POSTREAD);
3603 			misses = le32toh(miss->consecutive);
3604 
3605 			DPRINTF(sc, IWN_DEBUG_STATE,
3606 			    "%s: beacons missed %d/%d\n", __func__,
3607 			    misses, le32toh(miss->total));
3608 			/*
3609 			 * If more than 5 consecutive beacons are missed,
3610 			 * reinitialize the sensitivity state machine.
3611 			 */
3612 			if (vap->iv_state == IEEE80211_S_RUN &&
3613 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3614 				if (misses > 5)
3615 					(void)iwn_init_sensitivity(sc);
3616 				if (misses >= vap->iv_bmissthreshold) {
3617 					ieee80211_beacon_miss(ic);
3618 				}
3619 			}
3620 			break;
3621 		}
3622 		case IWN_UC_READY:
3623 		{
3624 			struct iwn_ucode_info *uc =
3625 			    (struct iwn_ucode_info *)(desc + 1);
3626 
3627 			/* The microcontroller is ready. */
3628 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3629 			    BUS_DMASYNC_POSTREAD);
3630 			DPRINTF(sc, IWN_DEBUG_RESET,
3631 			    "microcode alive notification version=%d.%d "
3632 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3633 			    uc->subtype, le32toh(uc->valid));
3634 
3635 			if (le32toh(uc->valid) != 1) {
3636 				device_printf(sc->sc_dev,
3637 				    "microcontroller initialization failed");
3638 				break;
3639 			}
3640 			if (uc->subtype == IWN_UCODE_INIT) {
3641 				/* Save microcontroller report. */
3642 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3643 			}
3644 			/* Save the address of the error log in SRAM. */
3645 			sc->errptr = le32toh(uc->errptr);
3646 			break;
3647 		}
3648 		case IWN_STATE_CHANGED:
3649 		{
3650 			/*
3651 			 * State change allows hardware switch change to be
3652 			 * noted. However, we handle this in iwn_intr as we
3653 			 * get both the enable/disble intr.
3654 			 */
3655 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3656 			    BUS_DMASYNC_POSTREAD);
3657 #ifdef	IWN_DEBUG
3658 			uint32_t *status = (uint32_t *)(desc + 1);
3659 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3660 			    "state changed to %x\n",
3661 			    le32toh(*status));
3662 #endif
3663 			break;
3664 		}
3665 		case IWN_START_SCAN:
3666 		{
3667 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3668 			    BUS_DMASYNC_POSTREAD);
3669 #ifdef	IWN_DEBUG
3670 			struct iwn_start_scan *scan =
3671 			    (struct iwn_start_scan *)(desc + 1);
3672 			DPRINTF(sc, IWN_DEBUG_ANY,
3673 			    "%s: scanning channel %d status %x\n",
3674 			    __func__, scan->chan, le32toh(scan->status));
3675 #endif
3676 			break;
3677 		}
3678 		case IWN_STOP_SCAN:
3679 		{
3680 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3681 			    BUS_DMASYNC_POSTREAD);
3682 #ifdef	IWN_DEBUG
3683 			struct iwn_stop_scan *scan =
3684 			    (struct iwn_stop_scan *)(desc + 1);
3685 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3686 			    "scan finished nchan=%d status=%d chan=%d\n",
3687 			    scan->nchan, scan->status, scan->chan);
3688 #endif
3689 			sc->sc_is_scanning = 0;
3690 			ieee80211_scan_next(vap);
3691 			break;
3692 		}
3693 		case IWN5000_CALIBRATION_RESULT:
3694 			iwn5000_rx_calib_results(sc, desc, data);
3695 			break;
3696 
3697 		case IWN5000_CALIBRATION_DONE:
3698 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3699 			wakeup(sc);
3700 			break;
3701 		}
3702 
3703 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3704 	}
3705 
3706 	/* Tell the firmware what we have processed. */
3707 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3708 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3709 }
3710 
3711 /*
3712  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3713  * from power-down sleep mode.
3714  */
3715 static void
3716 iwn_wakeup_intr(struct iwn_softc *sc)
3717 {
3718 	int qid;
3719 
3720 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3721 	    __func__);
3722 
3723 	/* Wakeup RX and TX rings. */
3724 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3725 	for (qid = 0; qid < sc->ntxqs; qid++) {
3726 		struct iwn_tx_ring *ring = &sc->txq[qid];
3727 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3728 	}
3729 }
3730 
3731 static void
3732 iwn_rftoggle_intr(struct iwn_softc *sc)
3733 {
3734 	struct ifnet *ifp = sc->sc_ifp;
3735 	struct ieee80211com *ic = ifp->if_l2com;
3736 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3737 
3738 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3739 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3740 	if (tmp & IWN_GP_CNTRL_RFKILL)
3741 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3742 	else
3743 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3744 }
3745 
3746 /*
3747  * Dump the error log of the firmware when a firmware panic occurs.  Although
3748  * we can't debug the firmware because it is neither open source nor free, it
3749  * can help us to identify certain classes of problems.
3750  */
3751 static void
3752 iwn_fatal_intr(struct iwn_softc *sc)
3753 {
3754 	struct iwn_fw_dump dump;
3755 	int i;
3756 
3757 	/* Force a complete recalibration on next init. */
3758 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3759 
3760 	/* Check that the error log address is valid. */
3761 	if (sc->errptr < IWN_FW_DATA_BASE ||
3762 	    sc->errptr + sizeof (dump) >
3763 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3764 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
3765 		    sc->errptr);
3766 		return;
3767 	}
3768 	if (iwn_nic_lock(sc) != 0) {
3769 		kprintf("%s: could not read firmware error log\n", __func__);
3770 		return;
3771 	}
3772 	/* Read firmware error log from SRAM. */
3773 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3774 	    sizeof (dump) / sizeof (uint32_t));
3775 	iwn_nic_unlock(sc);
3776 
3777 	if (dump.valid == 0) {
3778 		kprintf("%s: firmware error log is empty\n", __func__);
3779 		return;
3780 	}
3781 	kprintf("firmware error log:\n");
3782 	kprintf("  error type      = \"%s\" (0x%08X)\n",
3783 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3784 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3785 	    dump.id);
3786 	kprintf("  program counter = 0x%08X\n", dump.pc);
3787 	kprintf("  source line     = 0x%08X\n", dump.src_line);
3788 	kprintf("  error data      = 0x%08X%08X\n",
3789 	    dump.error_data[0], dump.error_data[1]);
3790 	kprintf("  branch link     = 0x%08X%08X\n",
3791 	    dump.branch_link[0], dump.branch_link[1]);
3792 	kprintf("  interrupt link  = 0x%08X%08X\n",
3793 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3794 	kprintf("  time            = %u\n", dump.time[0]);
3795 
3796 	/* Dump driver status (TX and RX rings) while we're here. */
3797 	kprintf("driver status:\n");
3798 	for (i = 0; i < sc->ntxqs; i++) {
3799 		struct iwn_tx_ring *ring = &sc->txq[i];
3800 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3801 		    i, ring->qid, ring->cur, ring->queued);
3802 	}
3803 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
3804 }
3805 
3806 static void
3807 iwn_intr(void *arg)
3808 {
3809 	struct iwn_softc *sc = arg;
3810 	struct ifnet *ifp = sc->sc_ifp;
3811 	uint32_t r1, r2, tmp;
3812 
3813 	/* Disable interrupts. */
3814 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3815 
3816 	/* Read interrupts from ICT (fast) or from registers (slow). */
3817 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3818 		tmp = 0;
3819 		while (sc->ict[sc->ict_cur] != 0) {
3820 			tmp |= sc->ict[sc->ict_cur];
3821 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3822 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3823 		}
3824 		tmp = le32toh(tmp);
3825 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3826 			tmp = 0;
3827 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3828 			tmp |= 0x8000;
3829 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3830 		r2 = 0;	/* Unused. */
3831 	} else {
3832 		r1 = IWN_READ(sc, IWN_INT);
3833 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3834 			return;	/* Hardware gone! */
3835 		r2 = IWN_READ(sc, IWN_FH_INT);
3836 	}
3837 
3838 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3839     , r1, r2);
3840 
3841 	if (r1 == 0 && r2 == 0)
3842 		goto done;	/* Interrupt not for us. */
3843 
3844 	/* Acknowledge interrupts. */
3845 	IWN_WRITE(sc, IWN_INT, r1);
3846 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3847 		IWN_WRITE(sc, IWN_FH_INT, r2);
3848 
3849 	if (r1 & IWN_INT_RF_TOGGLED) {
3850 		iwn_rftoggle_intr(sc);
3851 		goto done;
3852 	}
3853 	if (r1 & IWN_INT_CT_REACHED) {
3854 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3855 		    __func__);
3856 	}
3857 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3858 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3859 		    __func__);
3860 #ifdef	IWN_DEBUG
3861 		iwn_debug_register(sc);
3862 #endif
3863 		/* Dump firmware error log and stop. */
3864 		iwn_fatal_intr(sc);
3865 		ifp->if_flags &= ~IFF_UP;
3866 		iwn_stop_locked(sc);
3867 		goto done;
3868 	}
3869 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3870 	    (r2 & IWN_FH_INT_RX)) {
3871 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3872 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3873 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3874 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3875 			    IWN_INT_PERIODIC_DIS);
3876 			iwn_notif_intr(sc);
3877 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3878 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3879 				    IWN_INT_PERIODIC_ENA);
3880 			}
3881 		} else
3882 			iwn_notif_intr(sc);
3883 	}
3884 
3885 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3886 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3887 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3888 		wakeup(sc);	/* FH DMA transfer completed. */
3889 	}
3890 
3891 	if (r1 & IWN_INT_ALIVE)
3892 		wakeup(sc);	/* Firmware is alive. */
3893 
3894 	if (r1 & IWN_INT_WAKEUP)
3895 		iwn_wakeup_intr(sc);
3896 
3897 done:
3898 	/* Re-enable interrupts. */
3899 	if (ifp->if_flags & IFF_UP)
3900 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3901 }
3902 
3903 /*
3904  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3905  * 5000 adapters use a slightly different format).
3906  */
3907 static void
3908 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3909     uint16_t len)
3910 {
3911 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3912 
3913 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3914 
3915 	*w = htole16(len + 8);
3916 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3917 	    BUS_DMASYNC_PREWRITE);
3918 	if (idx < IWN_SCHED_WINSZ) {
3919 		*(w + IWN_TX_RING_COUNT) = *w;
3920 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3921 		    BUS_DMASYNC_PREWRITE);
3922 	}
3923 }
3924 
3925 static void
3926 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3927     uint16_t len)
3928 {
3929 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3930 
3931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3932 
3933 	*w = htole16(id << 12 | (len + 8));
3934 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3935 	    BUS_DMASYNC_PREWRITE);
3936 	if (idx < IWN_SCHED_WINSZ) {
3937 		*(w + IWN_TX_RING_COUNT) = *w;
3938 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3939 		    BUS_DMASYNC_PREWRITE);
3940 	}
3941 }
3942 
3943 #ifdef notyet
3944 static void
3945 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3946 {
3947 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3948 
3949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3950 
3951 	*w = (*w & htole16(0xf000)) | htole16(1);
3952 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3953 	    BUS_DMASYNC_PREWRITE);
3954 	if (idx < IWN_SCHED_WINSZ) {
3955 		*(w + IWN_TX_RING_COUNT) = *w;
3956 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3957 		    BUS_DMASYNC_PREWRITE);
3958 	}
3959 }
3960 #endif
3961 
3962 /*
3963  * Check whether OFDM 11g protection will be enabled for the given rate.
3964  *
3965  * The original driver code only enabled protection for OFDM rates.
3966  * It didn't check to see whether it was operating in 11a or 11bg mode.
3967  */
3968 static int
3969 iwn_check_rate_needs_protection(struct iwn_softc *sc,
3970     struct ieee80211vap *vap, uint8_t rate)
3971 {
3972 	struct ieee80211com *ic = vap->iv_ic;
3973 
3974 	/*
3975 	 * Not in 2GHz mode? Then there's no need to enable OFDM
3976 	 * 11bg protection.
3977 	 */
3978 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3979 		return (0);
3980 	}
3981 
3982 	/*
3983 	 * 11bg protection not enabled? Then don't use it.
3984 	 */
3985 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
3986 		return (0);
3987 
3988 	/*
3989 	 * If it's an 11n rate, then for now we enable
3990 	 * protection.
3991 	 */
3992 	if (rate & IEEE80211_RATE_MCS) {
3993 		return (1);
3994 	}
3995 
3996 	/*
3997 	 * Do a rate table lookup.  If the PHY is CCK,
3998 	 * don't do protection.
3999 	 */
4000 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4001 		return (0);
4002 
4003 	/*
4004 	 * Yup, enable protection.
4005 	 */
4006 	return (1);
4007 }
4008 
4009 /*
4010  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4011  * the link quality table that reflects this particular entry.
4012  */
4013 static int
4014 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4015     uint8_t rate)
4016 {
4017 	struct ieee80211_rateset *rs;
4018 	int is_11n;
4019 	int nr;
4020 	int i;
4021 	uint8_t cmp_rate;
4022 
4023 	/*
4024 	 * Figure out if we're using 11n or not here.
4025 	 */
4026 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4027 		is_11n = 1;
4028 	else
4029 		is_11n = 0;
4030 
4031 	/*
4032 	 * Use the correct rate table.
4033 	 */
4034 	if (is_11n) {
4035 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4036 		nr = ni->ni_htrates.rs_nrates;
4037 	} else {
4038 		rs = &ni->ni_rates;
4039 		nr = rs->rs_nrates;
4040 	}
4041 
4042 	/*
4043 	 * Find the relevant link quality entry in the table.
4044 	 */
4045 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4046 		/*
4047 		 * The link quality table index starts at 0 == highest
4048 		 * rate, so we walk the rate table backwards.
4049 		 */
4050 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4051 		if (rate & IEEE80211_RATE_MCS)
4052 			cmp_rate |= IEEE80211_RATE_MCS;
4053 
4054 #if 0
4055 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4056 		    __func__,
4057 		    i,
4058 		    nr,
4059 		    rate,
4060 		    cmp_rate);
4061 #endif
4062 
4063 		if (cmp_rate == rate)
4064 			return (i);
4065 	}
4066 
4067 	/* Failed? Start at the end */
4068 	return (IWN_MAX_TX_RETRIES - 1);
4069 }
4070 
4071 static int
4072 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4073 {
4074 	struct iwn_ops *ops = &sc->ops;
4075 	const struct ieee80211_txparam *tp;
4076 	struct ieee80211vap *vap = ni->ni_vap;
4077 	struct ieee80211com *ic = ni->ni_ic;
4078 	struct iwn_node *wn = (void *)ni;
4079 	struct iwn_tx_ring *ring;
4080 	struct iwn_tx_desc *desc;
4081 	struct iwn_tx_data *data;
4082 	struct iwn_tx_cmd *cmd;
4083 	struct iwn_cmd_data *tx;
4084 	struct ieee80211_frame *wh;
4085 	struct ieee80211_key *k = NULL;
4086 	struct mbuf *m1;
4087 	uint32_t flags;
4088 	uint16_t qos;
4089 	u_int hdrlen;
4090 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4091 	uint8_t tid, type;
4092 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4093 
4094 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4095 
4096 	wh = mtod(m, struct ieee80211_frame *);
4097 	hdrlen = ieee80211_anyhdrsize(wh);
4098 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4099 
4100 	/* Select EDCA Access Category and TX ring for this frame. */
4101 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4102 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4103 		tid = qos & IEEE80211_QOS_TID;
4104 	} else {
4105 		qos = 0;
4106 		tid = 0;
4107 	}
4108 	ac = M_WME_GETAC(m);
4109 	if (m->m_flags & M_AMPDU_MPDU) {
4110 		uint16_t seqno;
4111 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4112 
4113 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4114 			m_freem(m);
4115 			return EINVAL;
4116 		}
4117 
4118 		/*
4119 		 * Queue this frame to the hardware ring that we've
4120 		 * negotiated AMPDU TX on.
4121 		 *
4122 		 * Note that the sequence number must match the TX slot
4123 		 * being used!
4124 		 */
4125 		ac = *(int *)tap->txa_private;
4126 		seqno = ni->ni_txseqs[tid];
4127 		*(uint16_t *)wh->i_seq =
4128 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4129 		ring = &sc->txq[ac];
4130 		if ((seqno % 256) != ring->cur) {
4131 			device_printf(sc->sc_dev,
4132 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4133 			    __func__,
4134 			    m,
4135 			    seqno,
4136 			    seqno % 256,
4137 			    ring->cur);
4138 		}
4139 		ni->ni_txseqs[tid]++;
4140 	}
4141 	ring = &sc->txq[ac];
4142 	desc = &ring->desc[ring->cur];
4143 	data = &ring->data[ring->cur];
4144 
4145 	/* Choose a TX rate index. */
4146 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4147 	if (type == IEEE80211_FC0_TYPE_MGT)
4148 		rate = tp->mgmtrate;
4149 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4150 		rate = tp->mcastrate;
4151 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4152 		rate = tp->ucastrate;
4153 	else if (m->m_flags & M_EAPOL)
4154 		rate = tp->mgmtrate;
4155 	else {
4156 		/* XXX pass pktlen */
4157 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4158 		rate = ni->ni_txrate;
4159 	}
4160 
4161 	/* Encrypt the frame if need be. */
4162 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
4163 		/* Retrieve key for TX. */
4164 		k = ieee80211_crypto_encap(ni, m);
4165 		if (k == NULL) {
4166 			m_freem(m);
4167 			return ENOBUFS;
4168 		}
4169 		/* 802.11 header may have moved. */
4170 		wh = mtod(m, struct ieee80211_frame *);
4171 	}
4172 	totlen = m->m_pkthdr.len;
4173 
4174 	if (ieee80211_radiotap_active_vap(vap)) {
4175 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4176 
4177 		tap->wt_flags = 0;
4178 		tap->wt_rate = rate;
4179 		if (k != NULL)
4180 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4181 
4182 		ieee80211_radiotap_tx(vap, m);
4183 	}
4184 
4185 	/* Prepare TX firmware command. */
4186 	cmd = &ring->cmd[ring->cur];
4187 	cmd->code = IWN_CMD_TX_DATA;
4188 	cmd->flags = 0;
4189 	cmd->qid = ring->qid;
4190 	cmd->idx = ring->cur;
4191 
4192 	tx = (struct iwn_cmd_data *)cmd->data;
4193 	/* NB: No need to clear tx, all fields are reinitialized here. */
4194 	tx->scratch = 0;	/* clear "scratch" area */
4195 
4196 	flags = 0;
4197 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4198 		/* Unicast frame, check if an ACK is expected. */
4199 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4200 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4201 			flags |= IWN_TX_NEED_ACK;
4202 	}
4203 	if ((wh->i_fc[0] &
4204 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4205 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4206 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4207 
4208 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4209 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4210 
4211 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4212 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4213 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4214 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4215 			flags |= IWN_TX_NEED_RTS;
4216 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4217 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4218 				flags |= IWN_TX_NEED_CTS;
4219 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4220 				flags |= IWN_TX_NEED_RTS;
4221 		}
4222 
4223 		/* XXX HT protection? */
4224 
4225 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4226 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4227 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4228 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4229 				flags |= IWN_TX_NEED_PROTECTION;
4230 			} else
4231 				flags |= IWN_TX_FULL_TXOP;
4232 		}
4233 	}
4234 
4235 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4236 	    type != IEEE80211_FC0_TYPE_DATA)
4237 		tx->id = sc->broadcast_id;
4238 	else
4239 		tx->id = wn->id;
4240 
4241 	if (type == IEEE80211_FC0_TYPE_MGT) {
4242 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4243 
4244 		/* Tell HW to set timestamp in probe responses. */
4245 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4246 			flags |= IWN_TX_INSERT_TSTAMP;
4247 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4248 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4249 			tx->timeout = htole16(3);
4250 		else
4251 			tx->timeout = htole16(2);
4252 	} else
4253 		tx->timeout = htole16(0);
4254 
4255 	if (hdrlen & 3) {
4256 		/* First segment length must be a multiple of 4. */
4257 		flags |= IWN_TX_NEED_PADDING;
4258 		pad = 4 - (hdrlen & 3);
4259 	} else
4260 		pad = 0;
4261 
4262 	tx->len = htole16(totlen);
4263 	tx->tid = tid;
4264 	tx->rts_ntries = 60;
4265 	tx->data_ntries = 15;
4266 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4267 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4268 	if (tx->id == sc->broadcast_id) {
4269 		/* Group or management frame. */
4270 		tx->linkq = 0;
4271 	} else {
4272 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4273 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4274 	}
4275 
4276 	/* Set physical address of "scratch area". */
4277 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4278 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4279 
4280 	/* Copy 802.11 header in TX command. */
4281 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4282 
4283 	/* Trim 802.11 header. */
4284 	m_adj(m, hdrlen);
4285 	tx->security = 0;
4286 	tx->flags = htole32(flags);
4287 
4288 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4289 					     m, segs, IWN_MAX_SCATTER - 1,
4290 					     &nsegs, BUS_DMA_NOWAIT);
4291 	if (error != 0) {
4292 		if (error != EFBIG) {
4293 			device_printf(sc->sc_dev,
4294 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4295 			m_freem(m);
4296 			return error;
4297 		}
4298 		/* Too many DMA segments, linearize mbuf. */
4299 		m1 = m_defrag(m, MB_DONTWAIT);
4300 		if (m1 == NULL) {
4301 			device_printf(sc->sc_dev,
4302 			    "%s: could not defrag mbuf\n", __func__);
4303 			m_freem(m);
4304 			return ENOBUFS;
4305 		}
4306 		m = m1;
4307 
4308 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4309 						      data->map, m, segs,
4310 						      IWN_MAX_SCATTER - 1,
4311 						      &nsegs, BUS_DMA_NOWAIT);
4312 		if (error != 0) {
4313 			device_printf(sc->sc_dev,
4314 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4315 			m_freem(m);
4316 			return error;
4317 		}
4318 	}
4319 
4320 	data->m = m;
4321 	data->ni = ni;
4322 
4323 	DPRINTF(sc, IWN_DEBUG_XMIT,
4324 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4325 	    __func__,
4326 	    ring->qid,
4327 	    ring->cur,
4328 	    m->m_pkthdr.len,
4329 	    nsegs,
4330 	    rate,
4331 	    tx->rate);
4332 
4333 	/* Fill TX descriptor. */
4334 	desc->nsegs = 1;
4335 	if (m->m_len != 0)
4336 		desc->nsegs += nsegs;
4337 	/* First DMA segment is used by the TX command. */
4338 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4339 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4340 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4341 	/* Other DMA segments are for data payload. */
4342 	seg = &segs[0];
4343 	for (i = 1; i <= nsegs; i++) {
4344 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4345 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4346 		    seg->ds_len << 4);
4347 		seg++;
4348 	}
4349 
4350 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4351 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4352 	    BUS_DMASYNC_PREWRITE);
4353 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4354 	    BUS_DMASYNC_PREWRITE);
4355 
4356 	/* Update TX scheduler. */
4357 	if (ring->qid >= sc->firstaggqueue)
4358 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4359 
4360 	/* Kick TX ring. */
4361 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4362 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4363 
4364 	/* Mark TX ring as full if we reach a certain threshold. */
4365 	if (++ring->queued > IWN_TX_RING_HIMARK)
4366 		sc->qfullmsk |= 1 << ring->qid;
4367 
4368 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4369 
4370 	return 0;
4371 }
4372 
4373 static int
4374 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4375     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4376 {
4377 	struct iwn_ops *ops = &sc->ops;
4378 //	struct ifnet *ifp = sc->sc_ifp;
4379 	struct ieee80211vap *vap = ni->ni_vap;
4380 //	struct ieee80211com *ic = ifp->if_l2com;
4381 	struct iwn_tx_cmd *cmd;
4382 	struct iwn_cmd_data *tx;
4383 	struct ieee80211_frame *wh;
4384 	struct iwn_tx_ring *ring;
4385 	struct iwn_tx_desc *desc;
4386 	struct iwn_tx_data *data;
4387 	struct mbuf *m1;
4388 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4389 	uint32_t flags;
4390 	u_int hdrlen;
4391 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4392 	uint8_t type;
4393 
4394 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4395 
4396 	wh = mtod(m, struct ieee80211_frame *);
4397 	hdrlen = ieee80211_anyhdrsize(wh);
4398 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4399 
4400 	ac = params->ibp_pri & 3;
4401 
4402 	ring = &sc->txq[ac];
4403 	desc = &ring->desc[ring->cur];
4404 	data = &ring->data[ring->cur];
4405 
4406 	/* Choose a TX rate. */
4407 	rate = params->ibp_rate0;
4408 	totlen = m->m_pkthdr.len;
4409 
4410 	/* Prepare TX firmware command. */
4411 	cmd = &ring->cmd[ring->cur];
4412 	cmd->code = IWN_CMD_TX_DATA;
4413 	cmd->flags = 0;
4414 	cmd->qid = ring->qid;
4415 	cmd->idx = ring->cur;
4416 
4417 	tx = (struct iwn_cmd_data *)cmd->data;
4418 	/* NB: No need to clear tx, all fields are reinitialized here. */
4419 	tx->scratch = 0;	/* clear "scratch" area */
4420 
4421 	flags = 0;
4422 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4423 		flags |= IWN_TX_NEED_ACK;
4424 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4425 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4426 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4427 			flags &= ~IWN_TX_NEED_RTS;
4428 			flags |= IWN_TX_NEED_PROTECTION;
4429 		} else
4430 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4431 	}
4432 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4433 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4434 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4435 			flags &= ~IWN_TX_NEED_CTS;
4436 			flags |= IWN_TX_NEED_PROTECTION;
4437 		} else
4438 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4439 	}
4440 	if (type == IEEE80211_FC0_TYPE_MGT) {
4441 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4442 
4443 		/* Tell HW to set timestamp in probe responses. */
4444 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4445 			flags |= IWN_TX_INSERT_TSTAMP;
4446 
4447 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4448 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4449 			tx->timeout = htole16(3);
4450 		else
4451 			tx->timeout = htole16(2);
4452 	} else
4453 		tx->timeout = htole16(0);
4454 
4455 	if (hdrlen & 3) {
4456 		/* First segment length must be a multiple of 4. */
4457 		flags |= IWN_TX_NEED_PADDING;
4458 		pad = 4 - (hdrlen & 3);
4459 	} else
4460 		pad = 0;
4461 
4462 	if (ieee80211_radiotap_active_vap(vap)) {
4463 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4464 
4465 		tap->wt_flags = 0;
4466 		tap->wt_rate = rate;
4467 
4468 		ieee80211_radiotap_tx(vap, m);
4469 	}
4470 
4471 	tx->len = htole16(totlen);
4472 	tx->tid = 0;
4473 	tx->id = sc->broadcast_id;
4474 	tx->rts_ntries = params->ibp_try1;
4475 	tx->data_ntries = params->ibp_try0;
4476 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4477 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4478 
4479 	/* Group or management frame. */
4480 	tx->linkq = 0;
4481 
4482 	/* Set physical address of "scratch area". */
4483 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4484 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4485 
4486 	/* Copy 802.11 header in TX command. */
4487 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4488 
4489 	/* Trim 802.11 header. */
4490 	m_adj(m, hdrlen);
4491 	tx->security = 0;
4492 	tx->flags = htole32(flags);
4493 
4494 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4495 					     m, segs,
4496 					     IWN_MAX_SCATTER - 1,
4497 					     &nsegs, BUS_DMA_NOWAIT);
4498 	if (error != 0) {
4499 		if (error != EFBIG) {
4500 			device_printf(sc->sc_dev,
4501 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4502 			m_freem(m);
4503 			return error;
4504 		}
4505 		/* Too many DMA segments, linearize mbuf. */
4506 		m1 = m_defrag(m, M_NOWAIT);
4507 		if (m1 == NULL) {
4508 			device_printf(sc->sc_dev,
4509 			    "%s: could not defrag mbuf\n", __func__);
4510 			m_freem(m);
4511 			return ENOBUFS;
4512 		}
4513 		m = m1;
4514 
4515 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4516 						     data->map, m, segs,
4517 						     IWN_MAX_SCATTER - 1,
4518 						     &nsegs, BUS_DMA_NOWAIT);
4519 		if (error != 0) {
4520 			device_printf(sc->sc_dev,
4521 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4522 			m_freem(m);
4523 			return error;
4524 		}
4525 	}
4526 
4527 	data->m = m;
4528 	data->ni = ni;
4529 
4530 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4531 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4532 
4533 	/* Fill TX descriptor. */
4534 	desc->nsegs = 1;
4535 	if (m->m_len != 0)
4536 		desc->nsegs += nsegs;
4537 	/* First DMA segment is used by the TX command. */
4538 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4539 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4540 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4541 	/* Other DMA segments are for data payload. */
4542 	seg = &segs[0];
4543 	for (i = 1; i <= nsegs; i++) {
4544 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4545 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4546 		    seg->ds_len << 4);
4547 		seg++;
4548 	}
4549 
4550 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4551 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4552 	    BUS_DMASYNC_PREWRITE);
4553 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4554 	    BUS_DMASYNC_PREWRITE);
4555 
4556 	/* Update TX scheduler. */
4557 	if (ring->qid >= sc->firstaggqueue)
4558 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4559 
4560 	/* Kick TX ring. */
4561 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4562 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4563 
4564 	/* Mark TX ring as full if we reach a certain threshold. */
4565 	if (++ring->queued > IWN_TX_RING_HIMARK)
4566 		sc->qfullmsk |= 1 << ring->qid;
4567 
4568 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4569 
4570 	return 0;
4571 }
4572 
4573 static int
4574 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4575     const struct ieee80211_bpf_params *params)
4576 {
4577 	struct ieee80211com *ic = ni->ni_ic;
4578 	struct ifnet *ifp = ic->ic_ifp;
4579 	struct iwn_softc *sc = ifp->if_softc;
4580 	int error = 0;
4581 
4582 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4583 
4584 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
4585 		ieee80211_free_node(ni);
4586 		m_freem(m);
4587 		return ENETDOWN;
4588 	}
4589 
4590 	if (params == NULL) {
4591 		/*
4592 		 * Legacy path; interpret frame contents to decide
4593 		 * precisely how to send the frame.
4594 		 */
4595 		error = iwn_tx_data(sc, m, ni);
4596 	} else {
4597 		/*
4598 		 * Caller supplied explicit parameters to use in
4599 		 * sending the frame.
4600 		 */
4601 		error = iwn_tx_data_raw(sc, m, ni, params);
4602 	}
4603 	if (error != 0) {
4604 		/* NB: m is reclaimed on tx failure */
4605 		ieee80211_free_node(ni);
4606 		IFNET_STAT_INC(ifp, oerrors, 1);
4607 	}
4608 	sc->sc_tx_timer = 5;
4609 
4610 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4611 
4612 	return error;
4613 }
4614 
4615 static void
4616 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4617 {
4618 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
4619 	iwn_start_locked(ifp);
4620 }
4621 
4622 static void
4623 iwn_start_locked(struct ifnet *ifp)
4624 {
4625 	struct iwn_softc *sc = ifp->if_softc;
4626 	struct ieee80211_node *ni;
4627 	struct mbuf *m;
4628 
4629 	wlan_assert_serialized();
4630 
4631 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
4632 	    ifq_is_oactive(&ifp->if_snd))
4633 		return;
4634 
4635 	for (;;) {
4636 		if (sc->qfullmsk != 0) {
4637 			ifq_set_oactive(&ifp->if_snd);
4638 			break;
4639 		}
4640 		m = ifq_dequeue(&ifp->if_snd);
4641 		if (m == NULL)
4642 			break;
4643 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
4644 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4645 		if (iwn_tx_data(sc, m, ni) != 0) {
4646 			ieee80211_free_node(ni);
4647 			IFNET_STAT_INC(ifp, oerrors, 1);
4648 			continue;
4649 		}
4650 		sc->sc_tx_timer = 5;
4651 	}
4652 }
4653 
4654 static void
4655 iwn_watchdog_timeout(void *arg)
4656 {
4657 	struct iwn_softc *sc = arg;
4658 	struct ifnet *ifp = sc->sc_ifp;
4659 	struct ieee80211com *ic = ifp->if_l2com;
4660 
4661 	wlan_serialize_enter();
4662 
4663 	KASSERT(ifp->if_flags & IFF_RUNNING, ("not running"));
4664 
4665 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4666 
4667 	if (sc->sc_tx_timer > 0) {
4668 		if (--sc->sc_tx_timer == 0) {
4669 			if_printf(ifp, "device timeout\n");
4670 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4671 			return;
4672 		}
4673 	}
4674 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
4675 	wlan_serialize_exit();
4676 }
4677 
4678 static int
4679 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
4680 {
4681 	struct iwn_softc *sc = ifp->if_softc;
4682 	struct ieee80211com *ic = ifp->if_l2com;
4683 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4684 	struct ifreq *ifr = (struct ifreq *) data;
4685 	int error = 0, startall = 0, stop = 0;
4686 
4687 	wlan_assert_serialized();
4688 
4689 	switch (cmd) {
4690 	case SIOCGIFADDR:
4691 		error = ether_ioctl(ifp, cmd, data);
4692 		break;
4693 	case SIOCSIFFLAGS:
4694 		if (ifp->if_flags & IFF_UP) {
4695 			if (!(ifp->if_flags & IFF_RUNNING)) {
4696 				iwn_init_locked(sc);
4697 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4698 					startall = 1;
4699 				else
4700 					stop = 1;
4701 			}
4702 		} else {
4703 			if (ifp->if_flags & IFF_RUNNING)
4704 				iwn_stop_locked(sc);
4705 		}
4706 		if (startall)
4707 			ieee80211_start_all(ic);
4708 		else if (vap != NULL && stop)
4709 			ieee80211_stop(vap);
4710 		break;
4711 	case SIOCGIFMEDIA:
4712 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4713 		break;
4714 	default:
4715 		error = EINVAL;
4716 		break;
4717 	}
4718 	return error;
4719 }
4720 
4721 /*
4722  * Send a command to the firmware.
4723  */
4724 static int
4725 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4726 {
4727 	struct iwn_tx_ring *ring;
4728 	struct iwn_tx_desc *desc;
4729 	struct iwn_tx_data *data;
4730 	struct iwn_tx_cmd *cmd;
4731 	struct mbuf *m;
4732 	bus_addr_t paddr;
4733 	int totlen, error;
4734 	int cmd_queue_num;
4735 
4736 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4737 
4738 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4739 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4740 	else
4741 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4742 
4743 	ring = &sc->txq[cmd_queue_num];
4744 	desc = &ring->desc[ring->cur];
4745 	data = &ring->data[ring->cur];
4746 	totlen = 4 + size;
4747 
4748 	if (size > sizeof cmd->data) {
4749 		/* Command is too large to fit in a descriptor. */
4750 		if (totlen > MJUMPAGESIZE)
4751 			return EINVAL;
4752 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4753 		if (m == NULL)
4754 			return ENOMEM;
4755 		cmd = mtod(m, struct iwn_tx_cmd *);
4756 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4757 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4758 		if (error != 0) {
4759 			m_freem(m);
4760 			return error;
4761 		}
4762 		data->m = m;
4763 	} else {
4764 		cmd = &ring->cmd[ring->cur];
4765 		paddr = data->cmd_paddr;
4766 	}
4767 
4768 	cmd->code = code;
4769 	cmd->flags = 0;
4770 	cmd->qid = ring->qid;
4771 	cmd->idx = ring->cur;
4772 	memcpy(cmd->data, buf, size);
4773 
4774 	desc->nsegs = 1;
4775 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4776 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4777 
4778 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4779 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4780 	    cmd->flags, cmd->qid, cmd->idx);
4781 
4782 	if (size > sizeof cmd->data) {
4783 		bus_dmamap_sync(ring->data_dmat, data->map,
4784 		    BUS_DMASYNC_PREWRITE);
4785 	} else {
4786 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4787 		    BUS_DMASYNC_PREWRITE);
4788 	}
4789 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4790 	    BUS_DMASYNC_PREWRITE);
4791 
4792 	/* Kick command ring. */
4793 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4794 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4795 
4796 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4797 
4798 	return async ? 0 : zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
4799 }
4800 
4801 static int
4802 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4803 {
4804 	struct iwn4965_node_info hnode;
4805 	caddr_t src, dst;
4806 
4807 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4808 
4809 	/*
4810 	 * We use the node structure for 5000 Series internally (it is
4811 	 * a superset of the one for 4965AGN). We thus copy the common
4812 	 * fields before sending the command.
4813 	 */
4814 	src = (caddr_t)node;
4815 	dst = (caddr_t)&hnode;
4816 	memcpy(dst, src, 48);
4817 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4818 	memcpy(dst + 48, src + 72, 20);
4819 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4820 }
4821 
4822 static int
4823 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4824 {
4825 
4826 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4827 
4828 	/* Direct mapping. */
4829 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4830 }
4831 
4832 static int
4833 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4834 {
4835 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4836 	struct iwn_node *wn = (void *)ni;
4837 	struct ieee80211_rateset *rs;
4838 	struct iwn_cmd_link_quality linkq;
4839 	uint8_t txant;
4840 	int i, rate, txrate;
4841 	int is_11n;
4842 
4843 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4844 
4845 	/* Use the first valid TX antenna. */
4846 	txant = IWN_LSB(sc->txchainmask);
4847 
4848 	memset(&linkq, 0, sizeof linkq);
4849 	linkq.id = wn->id;
4850 	linkq.antmsk_1stream = txant;
4851 
4852 	/*
4853 	 * The '2 stream' setup is a bit .. odd.
4854 	 *
4855 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
4856 	 * the firmware panics (eg Intel 5100.)
4857 	 *
4858 	 * For NICs that support two antennas, we use ANT_AB.
4859 	 *
4860 	 * For NICs that support three antennas, we use the two that
4861 	 * wasn't the default one.
4862 	 *
4863 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
4864 	 * this to only one antenna.
4865 	 */
4866 
4867 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
4868 
4869 	/* Default - transmit on the other antennas */
4870 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
4871 
4872 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
4873 	if (linkq.antmsk_2stream == 0)
4874 		linkq.antmsk_2stream = IWN_ANT_AB;
4875 
4876 	/*
4877 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
4878 	 * the default chainmask
4879 	 */
4880 	else if (sc->ntxchains == 2)
4881 		linkq.antmsk_2stream = sc->txchainmask;
4882 
4883 	linkq.ampdu_max = 32;		/* XXX negotiated? */
4884 	linkq.ampdu_threshold = 3;
4885 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4886 
4887 	DPRINTF(sc, IWN_DEBUG_XMIT,
4888 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
4889 	    __func__,
4890 	    linkq.antmsk_1stream,
4891 	    linkq.antmsk_2stream,
4892 	    sc->ntxchains);
4893 
4894 	/*
4895 	 * Are we using 11n rates? Ensure the channel is
4896 	 * 11n _and_ we have some 11n rates, or don't
4897 	 * try.
4898 	 */
4899 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
4900 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4901 		is_11n = 1;
4902 	} else {
4903 		rs = &ni->ni_rates;
4904 		is_11n = 0;
4905 	}
4906 
4907 	/* Start at highest available bit-rate. */
4908 	/*
4909 	 * XXX this is all very dirty!
4910 	 */
4911 	if (is_11n)
4912 		txrate = ni->ni_htrates.rs_nrates - 1;
4913 	else
4914 		txrate = rs->rs_nrates - 1;
4915 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4916 		uint32_t plcp;
4917 
4918 		if (is_11n)
4919 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
4920 		else
4921 			rate = RV(rs->rs_rates[txrate]);
4922 
4923 		DPRINTF(sc, IWN_DEBUG_XMIT,
4924 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
4925 		    __func__,
4926 		    i,
4927 		    txrate,
4928 		    rate);
4929 
4930 		/* Do rate -> PLCP config mapping */
4931 		plcp = iwn_rate_to_plcp(sc, ni, rate);
4932 		linkq.retry[i] = plcp;
4933 
4934 		/*
4935 		 * The mimo field is an index into the table which
4936 		 * indicates the first index where it and subsequent entries
4937 		 * will not be using MIMO.
4938 		 *
4939 		 * Since we're filling linkq from 0..15 and we're filling
4940 		 * from the higest MCS rates to the lowest rates, if we
4941 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
4942 		 * the next entry.)  That way if the next entry is a non-MIMO
4943 		 * entry, we're already pointing at it.
4944 		 */
4945 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
4946 		    RV(le32toh(plcp)) > 7)
4947 			linkq.mimo = i + 1;
4948 
4949 		/* Next retry at immediate lower bit-rate. */
4950 		if (txrate > 0)
4951 			txrate--;
4952 	}
4953 
4954 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4955 
4956 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4957 #undef	RV
4958 }
4959 
4960 /*
4961  * Broadcast node is used to send group-addressed and management frames.
4962  */
4963 static int
4964 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4965 {
4966 	struct iwn_ops *ops = &sc->ops;
4967 	struct ifnet *ifp = sc->sc_ifp;
4968 	struct ieee80211com *ic = ifp->if_l2com;
4969 	struct iwn_node_info node;
4970 	struct iwn_cmd_link_quality linkq;
4971 	uint8_t txant;
4972 	int i, error;
4973 
4974 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4975 
4976 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
4977 
4978 	memset(&node, 0, sizeof node);
4979 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4980 	node.id = sc->broadcast_id;
4981 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4982 	if ((error = ops->add_node(sc, &node, async)) != 0)
4983 		return error;
4984 
4985 	/* Use the first valid TX antenna. */
4986 	txant = IWN_LSB(sc->txchainmask);
4987 
4988 	memset(&linkq, 0, sizeof linkq);
4989 	linkq.id = sc->broadcast_id;
4990 	linkq.antmsk_1stream = txant;
4991 	linkq.antmsk_2stream = IWN_ANT_AB;
4992 	linkq.ampdu_max = 64;
4993 	linkq.ampdu_threshold = 3;
4994 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4995 
4996 	/* Use lowest mandatory bit-rate. */
4997 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4998 		linkq.retry[0] = htole32(0xd);
4999 	else
5000 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5001 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5002 	/* Use same bit-rate for all TX retries. */
5003 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5004 		linkq.retry[i] = linkq.retry[0];
5005 	}
5006 
5007 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5008 
5009 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5010 }
5011 
5012 static int
5013 iwn_updateedca(struct ieee80211com *ic)
5014 {
5015 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5016 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5017 	struct iwn_edca_params cmd;
5018 	int aci;
5019 
5020 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5021 
5022 	memset(&cmd, 0, sizeof cmd);
5023 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5024 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5025 		const struct wmeParams *ac =
5026 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5027 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5028 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5029 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5030 		cmd.ac[aci].txoplimit =
5031 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5032 	}
5033 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5034 
5035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5036 
5037 	return 0;
5038 #undef IWN_EXP2
5039 }
5040 
5041 static void
5042 iwn_update_mcast(struct ifnet *ifp)
5043 {
5044 	/* Ignore */
5045 }
5046 
5047 static void
5048 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5049 {
5050 	struct iwn_cmd_led led;
5051 
5052 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5053 
5054 #if 0
5055 	/* XXX don't set LEDs during scan? */
5056 	if (sc->sc_is_scanning)
5057 		return;
5058 #endif
5059 
5060 	/* Clear microcode LED ownership. */
5061 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5062 
5063 	led.which = which;
5064 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5065 	led.off = off;
5066 	led.on = on;
5067 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5068 }
5069 
5070 /*
5071  * Set the critical temperature at which the firmware will stop the radio
5072  * and notify us.
5073  */
5074 static int
5075 iwn_set_critical_temp(struct iwn_softc *sc)
5076 {
5077 	struct iwn_critical_temp crit;
5078 	int32_t temp;
5079 
5080 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5081 
5082 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5083 
5084 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5085 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5086 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5087 		temp = IWN_CTOK(110);
5088 	else
5089 		temp = 110;
5090 	memset(&crit, 0, sizeof crit);
5091 	crit.tempR = htole32(temp);
5092 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5093 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5094 }
5095 
5096 static int
5097 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5098 {
5099 	struct iwn_cmd_timing cmd;
5100 	uint64_t val, mod;
5101 
5102 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5103 
5104 	memset(&cmd, 0, sizeof cmd);
5105 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5106 	cmd.bintval = htole16(ni->ni_intval);
5107 	cmd.lintval = htole16(10);
5108 
5109 	/* Compute remaining time until next beacon. */
5110 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5111 	mod = le64toh(cmd.tstamp) % val;
5112 	cmd.binitval = htole32((uint32_t)(val - mod));
5113 
5114 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5115 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5116 
5117 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5118 }
5119 
5120 static void
5121 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5122 {
5123 	struct ifnet *ifp = sc->sc_ifp;
5124 	struct ieee80211com *ic = ifp->if_l2com;
5125 
5126 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5127 
5128 	/* Adjust TX power if need be (delta >= 3 degC). */
5129 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5130 	    __func__, sc->temp, temp);
5131 	if (abs(temp - sc->temp) >= 3) {
5132 		/* Record temperature of last calibration. */
5133 		sc->temp = temp;
5134 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5135 	}
5136 }
5137 
5138 /*
5139  * Set TX power for current channel (each rate has its own power settings).
5140  * This function takes into account the regulatory information from EEPROM,
5141  * the current temperature and the current voltage.
5142  */
5143 static int
5144 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5145     int async)
5146 {
5147 /* Fixed-point arithmetic division using a n-bit fractional part. */
5148 #define fdivround(a, b, n)	\
5149 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5150 /* Linear interpolation. */
5151 #define interpolate(x, x1, y1, x2, y2, n)	\
5152 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5153 
5154 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5155 	struct iwn_ucode_info *uc = &sc->ucode_info;
5156 	struct iwn4965_cmd_txpower cmd;
5157 	struct iwn4965_eeprom_chan_samples *chans;
5158 	const uint8_t *rf_gain, *dsp_gain;
5159 	int32_t vdiff, tdiff;
5160 	int i, c, grp, maxpwr;
5161 	uint8_t chan;
5162 
5163 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5164 	/* Retrieve current channel from last RXON. */
5165 	chan = sc->rxon->chan;
5166 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5167 	    chan);
5168 
5169 	memset(&cmd, 0, sizeof cmd);
5170 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5171 	cmd.chan = chan;
5172 
5173 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5174 		maxpwr   = sc->maxpwr5GHz;
5175 		rf_gain  = iwn4965_rf_gain_5ghz;
5176 		dsp_gain = iwn4965_dsp_gain_5ghz;
5177 	} else {
5178 		maxpwr   = sc->maxpwr2GHz;
5179 		rf_gain  = iwn4965_rf_gain_2ghz;
5180 		dsp_gain = iwn4965_dsp_gain_2ghz;
5181 	}
5182 
5183 	/* Compute voltage compensation. */
5184 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5185 	if (vdiff > 0)
5186 		vdiff *= 2;
5187 	if (abs(vdiff) > 2)
5188 		vdiff = 0;
5189 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5190 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5191 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5192 
5193 	/* Get channel attenuation group. */
5194 	if (chan <= 20)		/* 1-20 */
5195 		grp = 4;
5196 	else if (chan <= 43)	/* 34-43 */
5197 		grp = 0;
5198 	else if (chan <= 70)	/* 44-70 */
5199 		grp = 1;
5200 	else if (chan <= 124)	/* 71-124 */
5201 		grp = 2;
5202 	else			/* 125-200 */
5203 		grp = 3;
5204 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5205 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5206 
5207 	/* Get channel sub-band. */
5208 	for (i = 0; i < IWN_NBANDS; i++)
5209 		if (sc->bands[i].lo != 0 &&
5210 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5211 			break;
5212 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5213 		return EINVAL;
5214 	chans = sc->bands[i].chans;
5215 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5216 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5217 
5218 	for (c = 0; c < 2; c++) {
5219 		uint8_t power, gain, temp;
5220 		int maxchpwr, pwr, ridx, idx;
5221 
5222 		power = interpolate(chan,
5223 		    chans[0].num, chans[0].samples[c][1].power,
5224 		    chans[1].num, chans[1].samples[c][1].power, 1);
5225 		gain  = interpolate(chan,
5226 		    chans[0].num, chans[0].samples[c][1].gain,
5227 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5228 		temp  = interpolate(chan,
5229 		    chans[0].num, chans[0].samples[c][1].temp,
5230 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5231 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5232 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5233 		    __func__, c, power, gain, temp);
5234 
5235 		/* Compute temperature compensation. */
5236 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5237 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5238 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5239 		    __func__, tdiff, sc->temp, temp);
5240 
5241 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5242 			/* Convert dBm to half-dBm. */
5243 			maxchpwr = sc->maxpwr[chan] * 2;
5244 			if ((ridx / 8) & 1)
5245 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5246 
5247 			pwr = maxpwr;
5248 
5249 			/* Adjust TX power based on rate. */
5250 			if ((ridx % 8) == 5)
5251 				pwr -= 15;	/* OFDM48: -7.5dB */
5252 			else if ((ridx % 8) == 6)
5253 				pwr -= 17;	/* OFDM54: -8.5dB */
5254 			else if ((ridx % 8) == 7)
5255 				pwr -= 20;	/* OFDM60: -10dB */
5256 			else
5257 				pwr -= 10;	/* Others: -5dB */
5258 
5259 			/* Do not exceed channel max TX power. */
5260 			if (pwr > maxchpwr)
5261 				pwr = maxchpwr;
5262 
5263 			idx = gain - (pwr - power) - tdiff - vdiff;
5264 			if ((ridx / 8) & 1)	/* MIMO */
5265 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5266 
5267 			if (cmd.band == 0)
5268 				idx += 9;	/* 5GHz */
5269 			if (ridx == IWN_RIDX_MAX)
5270 				idx += 5;	/* CCK */
5271 
5272 			/* Make sure idx stays in a valid range. */
5273 			if (idx < 0)
5274 				idx = 0;
5275 			else if (idx > IWN4965_MAX_PWR_INDEX)
5276 				idx = IWN4965_MAX_PWR_INDEX;
5277 
5278 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5279 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5280 			    __func__, c, ridx, idx);
5281 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5282 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5283 		}
5284 	}
5285 
5286 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5287 	    "%s: set tx power for chan %d\n", __func__, chan);
5288 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5289 
5290 #undef interpolate
5291 #undef fdivround
5292 }
5293 
5294 static int
5295 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5296     int async)
5297 {
5298 	struct iwn5000_cmd_txpower cmd;
5299 
5300 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5301 
5302 	/*
5303 	 * TX power calibration is handled automatically by the firmware
5304 	 * for 5000 Series.
5305 	 */
5306 	memset(&cmd, 0, sizeof cmd);
5307 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5308 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5309 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5310 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5311 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5312 }
5313 
5314 /*
5315  * Retrieve the maximum RSSI (in dBm) among receivers.
5316  */
5317 static int
5318 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5319 {
5320 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5321 	uint8_t mask, agc;
5322 	int rssi;
5323 
5324 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5325 
5326 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5327 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5328 
5329 	rssi = 0;
5330 	if (mask & IWN_ANT_A)
5331 		rssi = MAX(rssi, phy->rssi[0]);
5332 	if (mask & IWN_ANT_B)
5333 		rssi = MAX(rssi, phy->rssi[2]);
5334 	if (mask & IWN_ANT_C)
5335 		rssi = MAX(rssi, phy->rssi[4]);
5336 
5337 	DPRINTF(sc, IWN_DEBUG_RECV,
5338 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5339 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5340 	    rssi - agc - IWN_RSSI_TO_DBM);
5341 	return rssi - agc - IWN_RSSI_TO_DBM;
5342 }
5343 
5344 static int
5345 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5346 {
5347 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5348 	uint8_t agc;
5349 	int rssi;
5350 
5351 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5352 
5353 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5354 
5355 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5356 		   le16toh(phy->rssi[1]) & 0xff);
5357 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5358 
5359 	DPRINTF(sc, IWN_DEBUG_RECV,
5360 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5361 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5362 	    rssi - agc - IWN_RSSI_TO_DBM);
5363 	return rssi - agc - IWN_RSSI_TO_DBM;
5364 }
5365 
5366 /*
5367  * Retrieve the average noise (in dBm) among receivers.
5368  */
5369 static int
5370 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5371 {
5372 	int i, total, nbant, noise;
5373 
5374 	total = nbant = 0;
5375 	for (i = 0; i < 3; i++) {
5376 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5377 			continue;
5378 		total += noise;
5379 		nbant++;
5380 	}
5381 	/* There should be at least one antenna but check anyway. */
5382 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5383 }
5384 
5385 /*
5386  * Compute temperature (in degC) from last received statistics.
5387  */
5388 static int
5389 iwn4965_get_temperature(struct iwn_softc *sc)
5390 {
5391 	struct iwn_ucode_info *uc = &sc->ucode_info;
5392 	int32_t r1, r2, r3, r4, temp;
5393 
5394 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5395 
5396 	r1 = le32toh(uc->temp[0].chan20MHz);
5397 	r2 = le32toh(uc->temp[1].chan20MHz);
5398 	r3 = le32toh(uc->temp[2].chan20MHz);
5399 	r4 = le32toh(sc->rawtemp);
5400 
5401 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5402 		return 0;
5403 
5404 	/* Sign-extend 23-bit R4 value to 32-bit. */
5405 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5406 	/* Compute temperature in Kelvin. */
5407 	temp = (259 * (r4 - r2)) / (r3 - r1);
5408 	temp = (temp * 97) / 100 + 8;
5409 
5410 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5411 	    IWN_KTOC(temp));
5412 	return IWN_KTOC(temp);
5413 }
5414 
5415 static int
5416 iwn5000_get_temperature(struct iwn_softc *sc)
5417 {
5418 	int32_t temp;
5419 
5420 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5421 
5422 	/*
5423 	 * Temperature is not used by the driver for 5000 Series because
5424 	 * TX power calibration is handled by firmware.
5425 	 */
5426 	temp = le32toh(sc->rawtemp);
5427 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5428 		temp = (temp / -5) + sc->temp_off;
5429 		temp = IWN_KTOC(temp);
5430 	}
5431 	return temp;
5432 }
5433 
5434 /*
5435  * Initialize sensitivity calibration state machine.
5436  */
5437 static int
5438 iwn_init_sensitivity(struct iwn_softc *sc)
5439 {
5440 	struct iwn_ops *ops = &sc->ops;
5441 	struct iwn_calib_state *calib = &sc->calib;
5442 	uint32_t flags;
5443 	int error;
5444 
5445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5446 
5447 	/* Reset calibration state machine. */
5448 	memset(calib, 0, sizeof (*calib));
5449 	calib->state = IWN_CALIB_STATE_INIT;
5450 	calib->cck_state = IWN_CCK_STATE_HIFA;
5451 	/* Set initial correlation values. */
5452 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5453 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5454 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5455 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5456 	calib->cck_x4      = 125;
5457 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5458 	calib->energy_cck  = sc->limits->energy_cck;
5459 
5460 	/* Write initial sensitivity. */
5461 	if ((error = iwn_send_sensitivity(sc)) != 0)
5462 		return error;
5463 
5464 	/* Write initial gains. */
5465 	if ((error = ops->init_gains(sc)) != 0)
5466 		return error;
5467 
5468 	/* Request statistics at each beacon interval. */
5469 	flags = 0;
5470 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5471 	    __func__);
5472 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5473 }
5474 
5475 /*
5476  * Collect noise and RSSI statistics for the first 20 beacons received
5477  * after association and use them to determine connected antennas and
5478  * to set differential gains.
5479  */
5480 static void
5481 iwn_collect_noise(struct iwn_softc *sc,
5482     const struct iwn_rx_general_stats *stats)
5483 {
5484 	struct iwn_ops *ops = &sc->ops;
5485 	struct iwn_calib_state *calib = &sc->calib;
5486 	struct ifnet *ifp = sc->sc_ifp;
5487 	struct ieee80211com *ic = ifp->if_l2com;
5488 	uint32_t val;
5489 	int i;
5490 
5491 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5492 
5493 	/* Accumulate RSSI and noise for all 3 antennas. */
5494 	for (i = 0; i < 3; i++) {
5495 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5496 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5497 	}
5498 	/* NB: We update differential gains only once after 20 beacons. */
5499 	if (++calib->nbeacons < 20)
5500 		return;
5501 
5502 	/* Determine highest average RSSI. */
5503 	val = MAX(calib->rssi[0], calib->rssi[1]);
5504 	val = MAX(calib->rssi[2], val);
5505 
5506 	/* Determine which antennas are connected. */
5507 	sc->chainmask = sc->rxchainmask;
5508 	for (i = 0; i < 3; i++)
5509 		if (val - calib->rssi[i] > 15 * 20)
5510 			sc->chainmask &= ~(1 << i);
5511 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5512 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5513 	    __func__, sc->rxchainmask, sc->chainmask);
5514 
5515 	/* If none of the TX antennas are connected, keep at least one. */
5516 	if ((sc->chainmask & sc->txchainmask) == 0)
5517 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5518 
5519 	(void)ops->set_gains(sc);
5520 	calib->state = IWN_CALIB_STATE_RUN;
5521 
5522 #ifdef notyet
5523 	/* XXX Disable RX chains with no antennas connected. */
5524 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5525 	if (sc->sc_is_scanning)
5526 		device_printf(sc->sc_dev,
5527 		    "%s: is_scanning set, before RXON\n",
5528 		    __func__);
5529 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5530 #endif
5531 
5532 	/* Enable power-saving mode if requested by user. */
5533 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5534 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5535 
5536 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5537 
5538 }
5539 
5540 static int
5541 iwn4965_init_gains(struct iwn_softc *sc)
5542 {
5543 	struct iwn_phy_calib_gain cmd;
5544 
5545 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5546 
5547 	memset(&cmd, 0, sizeof cmd);
5548 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5549 	/* Differential gains initially set to 0 for all 3 antennas. */
5550 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5551 	    "%s: setting initial differential gains\n", __func__);
5552 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5553 }
5554 
5555 static int
5556 iwn5000_init_gains(struct iwn_softc *sc)
5557 {
5558 	struct iwn_phy_calib cmd;
5559 
5560 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5561 
5562 	memset(&cmd, 0, sizeof cmd);
5563 	cmd.code = sc->reset_noise_gain;
5564 	cmd.ngroups = 1;
5565 	cmd.isvalid = 1;
5566 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5567 	    "%s: setting initial differential gains\n", __func__);
5568 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5569 }
5570 
5571 static int
5572 iwn4965_set_gains(struct iwn_softc *sc)
5573 {
5574 	struct iwn_calib_state *calib = &sc->calib;
5575 	struct iwn_phy_calib_gain cmd;
5576 	int i, delta, noise;
5577 
5578 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5579 
5580 	/* Get minimal noise among connected antennas. */
5581 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5582 	for (i = 0; i < 3; i++)
5583 		if (sc->chainmask & (1 << i))
5584 			noise = MIN(calib->noise[i], noise);
5585 
5586 	memset(&cmd, 0, sizeof cmd);
5587 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5588 	/* Set differential gains for connected antennas. */
5589 	for (i = 0; i < 3; i++) {
5590 		if (sc->chainmask & (1 << i)) {
5591 			/* Compute attenuation (in unit of 1.5dB). */
5592 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5593 			/* NB: delta <= 0 */
5594 			/* Limit to [-4.5dB,0]. */
5595 			cmd.gain[i] = MIN(abs(delta), 3);
5596 			if (delta < 0)
5597 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5598 		}
5599 	}
5600 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5601 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5602 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5603 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5604 }
5605 
5606 static int
5607 iwn5000_set_gains(struct iwn_softc *sc)
5608 {
5609 	struct iwn_calib_state *calib = &sc->calib;
5610 	struct iwn_phy_calib_gain cmd;
5611 	int i, ant, div, delta;
5612 
5613 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5614 
5615 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5616 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5617 
5618 	memset(&cmd, 0, sizeof cmd);
5619 	cmd.code = sc->noise_gain;
5620 	cmd.ngroups = 1;
5621 	cmd.isvalid = 1;
5622 	/* Get first available RX antenna as referential. */
5623 	ant = IWN_LSB(sc->rxchainmask);
5624 	/* Set differential gains for other antennas. */
5625 	for (i = ant + 1; i < 3; i++) {
5626 		if (sc->chainmask & (1 << i)) {
5627 			/* The delta is relative to antenna "ant". */
5628 			delta = ((int32_t)calib->noise[ant] -
5629 			    (int32_t)calib->noise[i]) / div;
5630 			/* Limit to [-4.5dB,+4.5dB]. */
5631 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5632 			if (delta < 0)
5633 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5634 		}
5635 	}
5636 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5637 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5638 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5639 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5640 }
5641 
5642 /*
5643  * Tune RF RX sensitivity based on the number of false alarms detected
5644  * during the last beacon period.
5645  */
5646 static void
5647 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5648 {
5649 #define inc(val, inc, max)			\
5650 	if ((val) < (max)) {			\
5651 		if ((val) < (max) - (inc))	\
5652 			(val) += (inc);		\
5653 		else				\
5654 			(val) = (max);		\
5655 		needs_update = 1;		\
5656 	}
5657 #define dec(val, dec, min)			\
5658 	if ((val) > (min)) {			\
5659 		if ((val) > (min) + (dec))	\
5660 			(val) -= (dec);		\
5661 		else				\
5662 			(val) = (min);		\
5663 		needs_update = 1;		\
5664 	}
5665 
5666 	const struct iwn_sensitivity_limits *limits = sc->limits;
5667 	struct iwn_calib_state *calib = &sc->calib;
5668 	uint32_t val, rxena, fa;
5669 	uint32_t energy[3], energy_min;
5670 	uint8_t noise[3], noise_ref;
5671 	int i, needs_update = 0;
5672 
5673 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5674 
5675 	/* Check that we've been enabled long enough. */
5676 	if ((rxena = le32toh(stats->general.load)) == 0){
5677 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5678 		return;
5679 	}
5680 
5681 	/* Compute number of false alarms since last call for OFDM. */
5682 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5683 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5684 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5685 
5686 	/* Save counters values for next call. */
5687 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
5688 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
5689 
5690 	if (fa > 50 * rxena) {
5691 		/* High false alarm count, decrease sensitivity. */
5692 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5693 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5694 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5695 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5696 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5697 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5698 
5699 	} else if (fa < 5 * rxena) {
5700 		/* Low false alarm count, increase sensitivity. */
5701 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5702 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5703 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5704 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5705 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5706 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5707 	}
5708 
5709 	/* Compute maximum noise among 3 receivers. */
5710 	for (i = 0; i < 3; i++)
5711 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5712 	val = MAX(noise[0], noise[1]);
5713 	val = MAX(noise[2], val);
5714 	/* Insert it into our samples table. */
5715 	calib->noise_samples[calib->cur_noise_sample] = val;
5716 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5717 
5718 	/* Compute maximum noise among last 20 samples. */
5719 	noise_ref = calib->noise_samples[0];
5720 	for (i = 1; i < 20; i++)
5721 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5722 
5723 	/* Compute maximum energy among 3 receivers. */
5724 	for (i = 0; i < 3; i++)
5725 		energy[i] = le32toh(stats->general.energy[i]);
5726 	val = MIN(energy[0], energy[1]);
5727 	val = MIN(energy[2], val);
5728 	/* Insert it into our samples table. */
5729 	calib->energy_samples[calib->cur_energy_sample] = val;
5730 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5731 
5732 	/* Compute minimum energy among last 10 samples. */
5733 	energy_min = calib->energy_samples[0];
5734 	for (i = 1; i < 10; i++)
5735 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5736 	energy_min += 6;
5737 
5738 	/* Compute number of false alarms since last call for CCK. */
5739 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5740 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5741 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5742 
5743 	/* Save counters values for next call. */
5744 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
5745 	calib->fa_cck = le32toh(stats->cck.fa);
5746 
5747 	if (fa > 50 * rxena) {
5748 		/* High false alarm count, decrease sensitivity. */
5749 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5750 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5751 		calib->cck_state = IWN_CCK_STATE_HIFA;
5752 		calib->low_fa = 0;
5753 
5754 		if (calib->cck_x4 > 160) {
5755 			calib->noise_ref = noise_ref;
5756 			if (calib->energy_cck > 2)
5757 				dec(calib->energy_cck, 2, energy_min);
5758 		}
5759 		if (calib->cck_x4 < 160) {
5760 			calib->cck_x4 = 161;
5761 			needs_update = 1;
5762 		} else
5763 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5764 
5765 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5766 
5767 	} else if (fa < 5 * rxena) {
5768 		/* Low false alarm count, increase sensitivity. */
5769 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5770 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5771 		calib->cck_state = IWN_CCK_STATE_LOFA;
5772 		calib->low_fa++;
5773 
5774 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5775 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5776 		     calib->low_fa > 100)) {
5777 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5778 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5779 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5780 		}
5781 	} else {
5782 		/* Not worth to increase or decrease sensitivity. */
5783 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5784 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5785 		calib->low_fa = 0;
5786 		calib->noise_ref = noise_ref;
5787 
5788 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5789 			/* Previous interval had many false alarms. */
5790 			dec(calib->energy_cck, 8, energy_min);
5791 		}
5792 		calib->cck_state = IWN_CCK_STATE_INIT;
5793 	}
5794 
5795 	if (needs_update)
5796 		(void)iwn_send_sensitivity(sc);
5797 
5798 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5799 
5800 #undef dec
5801 #undef inc
5802 }
5803 
5804 static int
5805 iwn_send_sensitivity(struct iwn_softc *sc)
5806 {
5807 	struct iwn_calib_state *calib = &sc->calib;
5808 	struct iwn_enhanced_sensitivity_cmd cmd;
5809 	int len;
5810 
5811 	memset(&cmd, 0, sizeof cmd);
5812 	len = sizeof (struct iwn_sensitivity_cmd);
5813 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5814 	/* OFDM modulation. */
5815 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5816 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5817 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5818 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5819 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5820 	cmd.energy_ofdm_th     = htole16(62);
5821 	/* CCK modulation. */
5822 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5823 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5824 	cmd.energy_cck         = htole16(calib->energy_cck);
5825 	/* Barker modulation: use default values. */
5826 	cmd.corr_barker        = htole16(190);
5827 	cmd.corr_barker_mrc    = htole16(390);
5828 
5829 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5830 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5831 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5832 	    calib->ofdm_mrc_x4, calib->cck_x4,
5833 	    calib->cck_mrc_x4, calib->energy_cck);
5834 
5835 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5836 		goto send;
5837 	/* Enhanced sensitivity settings. */
5838 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5839 	cmd.ofdm_det_slope_mrc = htole16(668);
5840 	cmd.ofdm_det_icept_mrc = htole16(4);
5841 	cmd.ofdm_det_slope     = htole16(486);
5842 	cmd.ofdm_det_icept     = htole16(37);
5843 	cmd.cck_det_slope_mrc  = htole16(853);
5844 	cmd.cck_det_icept_mrc  = htole16(4);
5845 	cmd.cck_det_slope      = htole16(476);
5846 	cmd.cck_det_icept      = htole16(99);
5847 send:
5848 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5849 }
5850 
5851 /*
5852  * Set STA mode power saving level (between 0 and 5).
5853  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
5854  */
5855 static int
5856 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5857 {
5858 	struct iwn_pmgt_cmd cmd;
5859 	const struct iwn_pmgt *pmgt;
5860 	uint32_t max, skip_dtim;
5861 	uint32_t reg;
5862 	int i;
5863 
5864 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
5865 	    "%s: dtim=%d, level=%d, async=%d\n",
5866 	    __func__,
5867 	    dtim,
5868 	    level,
5869 	    async);
5870 
5871 	/* Select which PS parameters to use. */
5872 	if (dtim <= 2)
5873 		pmgt = &iwn_pmgt[0][level];
5874 	else if (dtim <= 10)
5875 		pmgt = &iwn_pmgt[1][level];
5876 	else
5877 		pmgt = &iwn_pmgt[2][level];
5878 
5879 	memset(&cmd, 0, sizeof cmd);
5880 	if (level != 0)	/* not CAM */
5881 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5882 	if (level == 5)
5883 		cmd.flags |= htole16(IWN_PS_FAST_PD);
5884 	/* Retrieve PCIe Active State Power Management (ASPM). */
5885 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5886 	if (!(reg & 0x1))	/* L0s Entry disabled. */
5887 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5888 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5889 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5890 
5891 	if (dtim == 0) {
5892 		dtim = 1;
5893 		skip_dtim = 0;
5894 	} else
5895 		skip_dtim = pmgt->skip_dtim;
5896 	if (skip_dtim != 0) {
5897 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5898 		max = pmgt->intval[4];
5899 		if (max == (uint32_t)-1)
5900 			max = dtim * (skip_dtim + 1);
5901 		else if (max > dtim)
5902 			max = (max / dtim) * dtim;
5903 	} else
5904 		max = dtim;
5905 	for (i = 0; i < 5; i++)
5906 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
5907 
5908 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
5909 	    level);
5910 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5911 }
5912 
5913 static int
5914 iwn_send_btcoex(struct iwn_softc *sc)
5915 {
5916 	struct iwn_bluetooth cmd;
5917 
5918 	memset(&cmd, 0, sizeof cmd);
5919 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
5920 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
5921 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
5922 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
5923 	    __func__);
5924 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
5925 }
5926 
5927 static int
5928 iwn_send_advanced_btcoex(struct iwn_softc *sc)
5929 {
5930 	static const uint32_t btcoex_3wire[12] = {
5931 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5932 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5933 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5934 	};
5935 	struct iwn6000_btcoex_config btconfig;
5936 	struct iwn2000_btcoex_config btconfig2k;
5937 	struct iwn_btcoex_priotable btprio;
5938 	struct iwn_btcoex_prot btprot;
5939 	int error, i;
5940 	uint8_t flags;
5941 
5942 	memset(&btconfig, 0, sizeof btconfig);
5943 	memset(&btconfig2k, 0, sizeof btconfig2k);
5944 
5945 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
5946 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
5947 
5948 	if (sc->base_params->bt_sco_disable)
5949 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
5950 	else
5951 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
5952 
5953 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
5954 
5955 	/* Default flags result is 145 as old value */
5956 
5957 	/*
5958 	 * Flags value has to be review. Values must change if we
5959 	 * which to disable it
5960 	 */
5961 	if (sc->base_params->bt_session_2) {
5962 		btconfig2k.flags = flags;
5963 		btconfig2k.max_kill = 5;
5964 		btconfig2k.bt3_t7_timer = 1;
5965 		btconfig2k.kill_ack = htole32(0xffff0000);
5966 		btconfig2k.kill_cts = htole32(0xffff0000);
5967 		btconfig2k.sample_time = 2;
5968 		btconfig2k.bt3_t2_timer = 0xc;
5969 
5970 		for (i = 0; i < 12; i++)
5971 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
5972 		btconfig2k.valid = htole16(0xff);
5973 		btconfig2k.prio_boost = htole32(0xf0);
5974 		DPRINTF(sc, IWN_DEBUG_RESET,
5975 		    "%s: configuring advanced bluetooth coexistence"
5976 		    " session 2, flags : 0x%x\n",
5977 		    __func__,
5978 		    flags);
5979 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
5980 		    sizeof(btconfig2k), 1);
5981 	} else {
5982 		btconfig.flags = flags;
5983 		btconfig.max_kill = 5;
5984 		btconfig.bt3_t7_timer = 1;
5985 		btconfig.kill_ack = htole32(0xffff0000);
5986 		btconfig.kill_cts = htole32(0xffff0000);
5987 		btconfig.sample_time = 2;
5988 		btconfig.bt3_t2_timer = 0xc;
5989 
5990 		for (i = 0; i < 12; i++)
5991 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5992 		btconfig.valid = htole16(0xff);
5993 		btconfig.prio_boost = 0xf0;
5994 		DPRINTF(sc, IWN_DEBUG_RESET,
5995 		    "%s: configuring advanced bluetooth coexistence,"
5996 		    " flags : 0x%x\n",
5997 		    __func__,
5998 		    flags);
5999 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6000 		    sizeof(btconfig), 1);
6001 	}
6002 
6003 
6004 	if (error != 0)
6005 		return error;
6006 
6007 	memset(&btprio, 0, sizeof btprio);
6008 	btprio.calib_init1 = 0x6;
6009 	btprio.calib_init2 = 0x7;
6010 	btprio.calib_periodic_low1 = 0x2;
6011 	btprio.calib_periodic_low2 = 0x3;
6012 	btprio.calib_periodic_high1 = 0x4;
6013 	btprio.calib_periodic_high2 = 0x5;
6014 	btprio.dtim = 0x6;
6015 	btprio.scan52 = 0x8;
6016 	btprio.scan24 = 0xa;
6017 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6018 	    1);
6019 	if (error != 0)
6020 		return error;
6021 
6022 	/* Force BT state machine change. */
6023 	memset(&btprot, 0, sizeof btprot);
6024 	btprot.open = 1;
6025 	btprot.type = 1;
6026 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6027 	if (error != 0)
6028 		return error;
6029 	btprot.open = 0;
6030 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6031 }
6032 
6033 static int
6034 iwn5000_runtime_calib(struct iwn_softc *sc)
6035 {
6036 	struct iwn5000_calib_config cmd;
6037 
6038 	memset(&cmd, 0, sizeof cmd);
6039 	cmd.ucode.once.enable = 0xffffffff;
6040 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6041 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6042 	    "%s: configuring runtime calibration\n", __func__);
6043 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6044 }
6045 
6046 static int
6047 iwn_config(struct iwn_softc *sc)
6048 {
6049 	struct iwn_ops *ops = &sc->ops;
6050 	struct ifnet *ifp = sc->sc_ifp;
6051 	struct ieee80211com *ic = ifp->if_l2com;
6052 	uint32_t txmask;
6053 	uint16_t rxchain;
6054 	int error;
6055 
6056 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6057 
6058 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6059 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6060 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6061 		    " exclusive each together. Review NIC config file. Conf"
6062 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6063 		    sc->base_params->calib_need,
6064 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6065 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6066 		return (EINVAL);
6067 	}
6068 
6069 	/* Compute temperature calib if needed. Will be send by send calib */
6070 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6071 		error = iwn5000_temp_offset_calib(sc);
6072 		if (error != 0) {
6073 			device_printf(sc->sc_dev,
6074 			    "%s: could not set temperature offset\n", __func__);
6075 			return (error);
6076 		}
6077 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6078 		error = iwn5000_temp_offset_calibv2(sc);
6079 		if (error != 0) {
6080 			device_printf(sc->sc_dev,
6081 			    "%s: could not compute temperature offset v2\n",
6082 			    __func__);
6083 			return (error);
6084 		}
6085 	}
6086 
6087 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6088 		/* Configure runtime DC calibration. */
6089 		error = iwn5000_runtime_calib(sc);
6090 		if (error != 0) {
6091 			device_printf(sc->sc_dev,
6092 			    "%s: could not configure runtime calibration\n",
6093 			    __func__);
6094 			return error;
6095 		}
6096 	}
6097 
6098 	/* Configure valid TX chains for >=5000 Series. */
6099 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6100 		txmask = htole32(sc->txchainmask);
6101 		DPRINTF(sc, IWN_DEBUG_RESET,
6102 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6103 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6104 		    sizeof txmask, 0);
6105 		if (error != 0) {
6106 			device_printf(sc->sc_dev,
6107 			    "%s: could not configure valid TX chains, "
6108 			    "error %d\n", __func__, error);
6109 			return error;
6110 		}
6111 	}
6112 
6113 	/* Configure bluetooth coexistence. */
6114 	error = 0;
6115 
6116 	/* Configure bluetooth coexistence if needed. */
6117 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6118 		error = iwn_send_advanced_btcoex(sc);
6119 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6120 		error = iwn_send_btcoex(sc);
6121 
6122 	if (error != 0) {
6123 		device_printf(sc->sc_dev,
6124 		    "%s: could not configure bluetooth coexistence, error %d\n",
6125 		    __func__, error);
6126 		return error;
6127 	}
6128 
6129 	/* Set mode, channel, RX filter and enable RX. */
6130 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6131 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6132 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6133 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6134 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6135 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6136 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6137 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6138 	switch (ic->ic_opmode) {
6139 	case IEEE80211_M_STA:
6140 		sc->rxon->mode = IWN_MODE_STA;
6141 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6142 		break;
6143 	case IEEE80211_M_MONITOR:
6144 		sc->rxon->mode = IWN_MODE_MONITOR;
6145 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6146 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6147 		break;
6148 	default:
6149 		/* Should not get there. */
6150 		break;
6151 	}
6152 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6153 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6154 	sc->rxon->ht_single_mask = 0xff;
6155 	sc->rxon->ht_dual_mask = 0xff;
6156 	sc->rxon->ht_triple_mask = 0xff;
6157 	rxchain =
6158 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6159 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6160 	    IWN_RXCHAIN_IDLE_COUNT(2);
6161 	sc->rxon->rxchain = htole16(rxchain);
6162 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6163 	if (sc->sc_is_scanning)
6164 		device_printf(sc->sc_dev,
6165 		    "%s: is_scanning set, before RXON\n",
6166 		    __func__);
6167 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6168 	if (error != 0) {
6169 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6170 		    __func__);
6171 		return error;
6172 	}
6173 
6174 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6175 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6176 		    __func__);
6177 		return error;
6178 	}
6179 
6180 	/* Configuration has changed, set TX power accordingly. */
6181 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6182 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6183 		    __func__);
6184 		return error;
6185 	}
6186 
6187 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6188 		device_printf(sc->sc_dev,
6189 		    "%s: could not set critical temperature\n", __func__);
6190 		return error;
6191 	}
6192 
6193 	/* Set power saving level to CAM during initialization. */
6194 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6195 		device_printf(sc->sc_dev,
6196 		    "%s: could not set power saving level\n", __func__);
6197 		return error;
6198 	}
6199 
6200 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6201 
6202 	return 0;
6203 }
6204 
6205 /*
6206  * Add an ssid element to a frame.
6207  */
6208 static uint8_t *
6209 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6210 {
6211 	*frm++ = IEEE80211_ELEMID_SSID;
6212 	*frm++ = len;
6213 	memcpy(frm, ssid, len);
6214 	return frm + len;
6215 }
6216 
6217 static uint16_t
6218 iwn_get_active_dwell_time(struct iwn_softc *sc,
6219     struct ieee80211_channel *c, uint8_t n_probes)
6220 {
6221 	/* No channel? Default to 2GHz settings */
6222 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6223 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6224 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6225 	}
6226 
6227 	/* 5GHz dwell time */
6228 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6229 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6230 }
6231 
6232 /*
6233  * Limit the total dwell time to 85% of the beacon interval.
6234  *
6235  * Returns the dwell time in milliseconds.
6236  */
6237 static uint16_t
6238 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6239 {
6240 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6241 	struct ieee80211vap *vap = NULL;
6242 	int bintval = 0;
6243 
6244 	/* bintval is in TU (1.024mS) */
6245 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6246 		vap = TAILQ_FIRST(&ic->ic_vaps);
6247 		bintval = vap->iv_bss->ni_intval;
6248 	}
6249 
6250 	/*
6251 	 * If it's non-zero, we should calculate the minimum of
6252 	 * it and the DWELL_BASE.
6253 	 *
6254 	 * XXX Yes, the math should take into account that bintval
6255 	 * is 1.024mS, not 1mS..
6256 	 */
6257 	if (bintval > 0) {
6258 		DPRINTF(sc, IWN_DEBUG_SCAN,
6259 		    "%s: bintval=%d\n",
6260 		    __func__,
6261 		    bintval);
6262 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6263 	}
6264 
6265 	/* No association context? Default */
6266 	return (IWN_PASSIVE_DWELL_BASE);
6267 }
6268 
6269 static uint16_t
6270 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6271 {
6272 	uint16_t passive;
6273 
6274 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6275 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6276 	} else {
6277 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6278 	}
6279 
6280 	/* Clamp to the beacon interval if we're associated */
6281 	return (iwn_limit_dwell(sc, passive));
6282 }
6283 
6284 static int
6285 iwn_scan(struct iwn_softc *sc)
6286 {
6287 	struct ifnet *ifp = sc->sc_ifp;
6288 	struct ieee80211com *ic = ifp->if_l2com;
6289 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
6290 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
6291 	struct iwn_scan_hdr *hdr;
6292 	struct iwn_cmd_data *tx;
6293 	struct iwn_scan_essid *essid;
6294 	struct iwn_scan_chan *chan;
6295 	struct ieee80211_frame *wh;
6296 	struct ieee80211_rateset *rs;
6297 	struct ieee80211_channel *c;
6298 	uint8_t *buf, *frm;
6299 	uint16_t rxchain;
6300 	uint8_t txant;
6301 	int buflen, error;
6302 	int is_active;
6303 	uint16_t dwell_active, dwell_passive;
6304 	uint32_t extra, scan_service_time;
6305 
6306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6307 
6308 	/*
6309 	 * We are absolutely not allowed to send a scan command when another
6310 	 * scan command is pending.
6311 	 */
6312 	if (sc->sc_is_scanning) {
6313 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6314 		    __func__);
6315 		return (EAGAIN);
6316 	}
6317 
6318 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6319 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6320 	hdr = (struct iwn_scan_hdr *)buf;
6321 	/*
6322 	 * Move to the next channel if no frames are received within 10ms
6323 	 * after sending the probe request.
6324 	 */
6325 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6326 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6327 	/*
6328 	 * Max needs to be greater than active and passive and quiet!
6329 	 * It's also in microseconds!
6330 	 */
6331 	hdr->max_svc = htole32(250 * 1024);
6332 
6333 	/*
6334 	 * Reset scan: interval=100
6335 	 * Normal scan: interval=becaon interval
6336 	 * suspend_time: 100 (TU)
6337 	 *
6338 	 */
6339 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6340 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6341 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6342 	hdr->pause_svc = htole32(scan_service_time);
6343 
6344 	/* Select antennas for scanning. */
6345 	rxchain =
6346 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6347 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6348 	    IWN_RXCHAIN_DRIVER_FORCE;
6349 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
6350 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6351 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6352 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6353 	} else	/* Use all available RX antennas. */
6354 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6355 	hdr->rxchain = htole16(rxchain);
6356 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6357 
6358 	tx = (struct iwn_cmd_data *)(hdr + 1);
6359 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6360 	tx->id = sc->broadcast_id;
6361 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6362 
6363 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
6364 		/* Send probe requests at 6Mbps. */
6365 		tx->rate = htole32(0xd);
6366 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6367 	} else {
6368 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6369 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6370 		    sc->rxon->associd && sc->rxon->chan > 14)
6371 			tx->rate = htole32(0xd);
6372 		else {
6373 			/* Send probe requests at 1Mbps. */
6374 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6375 		}
6376 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6377 	}
6378 	/* Use the first valid TX antenna. */
6379 	txant = IWN_LSB(sc->txchainmask);
6380 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6381 
6382 	/*
6383 	 * Only do active scanning if we're announcing a probe request
6384 	 * for a given SSID (or more, if we ever add it to the driver.)
6385 	 */
6386 	is_active = 0;
6387 
6388 	/*
6389 	 * If we're scanning for a specific SSID, add it to the command.
6390 	 */
6391 	essid = (struct iwn_scan_essid *)(tx + 1);
6392 	if (ss->ss_ssid[0].len != 0) {
6393 		essid[0].id = IEEE80211_ELEMID_SSID;
6394 		essid[0].len = ss->ss_ssid[0].len;
6395 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6396 	}
6397 
6398 	DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6399 	    __func__,
6400 	    ss->ss_ssid[0].len,
6401 	    ss->ss_ssid[0].len,
6402 	    ss->ss_ssid[0].ssid);
6403 
6404 	if (ss->ss_nssid > 0)
6405 		is_active = 1;
6406 
6407 	/*
6408 	 * Build a probe request frame.  Most of the following code is a
6409 	 * copy & paste of what is done in net80211.
6410 	 */
6411 	wh = (struct ieee80211_frame *)(essid + 20);
6412 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6413 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6414 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6415 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6416 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6417 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6418 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6419 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6420 
6421 	frm = (uint8_t *)(wh + 1);
6422 	frm = ieee80211_add_ssid(frm, NULL, 0);
6423 	frm = ieee80211_add_rates(frm, rs);
6424 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6425 		frm = ieee80211_add_xrates(frm, rs);
6426 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6427 		frm = ieee80211_add_htcap(frm, ni);
6428 
6429 	/* Set length of probe request. */
6430 	tx->len = htole16(frm - (uint8_t *)wh);
6431 
6432 	/*
6433 	 * If active scanning is requested but a certain channel is
6434 	 * marked passive, we can do active scanning if we detect
6435 	 * transmissions.
6436 	 *
6437 	 * There is an issue with some firmware versions that triggers
6438 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6439 	 * on a radar channel even though this means that we should NOT
6440 	 * send probes.
6441 	 *
6442 	 * The "good CRC threshold" is the number of frames that we
6443 	 * need to receive during our dwell time on a channel before
6444 	 * sending out probes -- setting this to a huge value will
6445 	 * mean we never reach it, but at the same time work around
6446 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6447 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6448 	 *
6449 	 * This was fixed in later versions along with some other
6450 	 * scan changes, and the threshold behaves as a flag in those
6451 	 * versions.
6452 	 */
6453 
6454 	/*
6455 	 * If we're doing active scanning, set the crc_threshold
6456 	 * to a suitable value.  This is different to active veruss
6457 	 * passive scanning depending upon the channel flags; the
6458 	 * firmware will obey that particular check for us.
6459 	 */
6460 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6461 		hdr->crc_threshold = is_active ?
6462 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6463 	else
6464 		hdr->crc_threshold = is_active ?
6465 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6466 
6467 	c = ic->ic_curchan;
6468 	chan = (struct iwn_scan_chan *)frm;
6469 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6470 	chan->flags = 0;
6471 	if (ss->ss_nssid > 0)
6472 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6473 	chan->dsp_gain = 0x6e;
6474 
6475 	/*
6476 	 * Set the passive/active flag depending upon the channel mode.
6477 	 * XXX TODO: take the is_active flag into account as well?
6478 	 */
6479 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6480 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6481 	else
6482 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6483 
6484 	/*
6485 	 * Calculate the active/passive dwell times.
6486 	 */
6487 
6488 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6489 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6490 
6491 	/* Make sure they're valid */
6492 	if (dwell_passive <= dwell_active)
6493 		dwell_passive = dwell_active + 1;
6494 
6495 	chan->active = htole16(dwell_active);
6496 	chan->passive = htole16(dwell_passive);
6497 
6498 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6499 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6500 		chan->rf_gain = 0x3b;
6501 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6502 		chan->rf_gain = 0x3b;
6503 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6504 		chan->rf_gain = 0x28;
6505 	} else {
6506 		chan->rf_gain = 0x28;
6507 	}
6508 
6509 	DPRINTF(sc, IWN_DEBUG_STATE,
6510 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6511 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6512 	    "isactive=%d numssid=%d\n", __func__,
6513 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6514 	    dwell_active, dwell_passive, scan_service_time,
6515 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6516 
6517 	hdr->nchan++;
6518 	chan++;
6519 	buflen = (uint8_t *)chan - buf;
6520 	hdr->len = htole16(buflen);
6521 
6522 	if (sc->sc_is_scanning) {
6523 		device_printf(sc->sc_dev,
6524 		    "%s: called with is_scanning set!\n",
6525 		    __func__);
6526 	}
6527 	sc->sc_is_scanning = 1;
6528 
6529 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6530 	    hdr->nchan);
6531 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6532 	kfree(buf, M_DEVBUF);
6533 
6534 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6535 
6536 	return error;
6537 }
6538 
6539 static int
6540 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6541 {
6542 	struct iwn_ops *ops = &sc->ops;
6543 	struct ifnet *ifp = sc->sc_ifp;
6544 	struct ieee80211com *ic = ifp->if_l2com;
6545 	struct ieee80211_node *ni = vap->iv_bss;
6546 	int error;
6547 
6548 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6549 
6550 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6551 	/* Update adapter configuration. */
6552 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6553 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6554 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6555 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6556 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6557 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6558 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6559 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6560 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6561 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6562 		sc->rxon->cck_mask  = 0;
6563 		sc->rxon->ofdm_mask = 0x15;
6564 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6565 		sc->rxon->cck_mask  = 0x03;
6566 		sc->rxon->ofdm_mask = 0;
6567 	} else {
6568 		/* Assume 802.11b/g. */
6569 		sc->rxon->cck_mask  = 0x0f;
6570 		sc->rxon->ofdm_mask = 0x15;
6571 	}
6572 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6573 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6574 	    sc->rxon->ofdm_mask);
6575 	if (sc->sc_is_scanning)
6576 		device_printf(sc->sc_dev,
6577 		    "%s: is_scanning set, before RXON\n",
6578 		    __func__);
6579 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6580 	if (error != 0) {
6581 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6582 		    __func__, error);
6583 		return error;
6584 	}
6585 
6586 	/* Configuration has changed, set TX power accordingly. */
6587 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6588 		device_printf(sc->sc_dev,
6589 		    "%s: could not set TX power, error %d\n", __func__, error);
6590 		return error;
6591 	}
6592 	/*
6593 	 * Reconfiguring RXON clears the firmware nodes table so we must
6594 	 * add the broadcast node again.
6595 	 */
6596 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6597 		device_printf(sc->sc_dev,
6598 		    "%s: could not add broadcast node, error %d\n", __func__,
6599 		    error);
6600 		return error;
6601 	}
6602 
6603 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6604 
6605 	return 0;
6606 }
6607 
6608 static int
6609 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6610 {
6611 	struct iwn_ops *ops = &sc->ops;
6612 	struct ifnet *ifp = sc->sc_ifp;
6613 	struct ieee80211com *ic = ifp->if_l2com;
6614 	struct ieee80211_node *ni = vap->iv_bss;
6615 	struct iwn_node_info node;
6616 	uint32_t htflags = 0;
6617 	int error;
6618 
6619 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6620 
6621 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6622 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6623 		/* Link LED blinks while monitoring. */
6624 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6625 		return 0;
6626 	}
6627 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6628 		device_printf(sc->sc_dev,
6629 		    "%s: could not set timing, error %d\n", __func__, error);
6630 		return error;
6631 	}
6632 
6633 	/* Update adapter configuration. */
6634 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6635 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6636 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6637 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6638 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6639 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6640 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6641 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6642 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6643 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6644 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6645 		sc->rxon->cck_mask  = 0;
6646 		sc->rxon->ofdm_mask = 0x15;
6647 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6648 		sc->rxon->cck_mask  = 0x03;
6649 		sc->rxon->ofdm_mask = 0;
6650 	} else {
6651 		/* Assume 802.11b/g. */
6652 		sc->rxon->cck_mask  = 0x0f;
6653 		sc->rxon->ofdm_mask = 0x15;
6654 	}
6655 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6656 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6657 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6658 			switch (ic->ic_curhtprotmode) {
6659 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6660 				htflags |= IWN_RXON_HT_MODEPURE40;
6661 				break;
6662 			default:
6663 				htflags |= IWN_RXON_HT_MODEMIXED;
6664 				break;
6665 			}
6666 		}
6667 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6668 			htflags |= IWN_RXON_HT_HT40MINUS;
6669 	}
6670 	sc->rxon->flags |= htole32(htflags);
6671 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6672 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6673 	    sc->rxon->chan, sc->rxon->flags);
6674 	if (sc->sc_is_scanning)
6675 		device_printf(sc->sc_dev,
6676 		    "%s: is_scanning set, before RXON\n",
6677 		    __func__);
6678 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6679 	if (error != 0) {
6680 		device_printf(sc->sc_dev,
6681 		    "%s: could not update configuration, error %d\n", __func__,
6682 		    error);
6683 		return error;
6684 	}
6685 
6686 	/* Configuration has changed, set TX power accordingly. */
6687 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6688 		device_printf(sc->sc_dev,
6689 		    "%s: could not set TX power, error %d\n", __func__, error);
6690 		return error;
6691 	}
6692 
6693 	/* Fake a join to initialize the TX rate. */
6694 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6695 	iwn_newassoc(ni, 1);
6696 
6697 	/* Add BSS node. */
6698 	memset(&node, 0, sizeof node);
6699 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6700 	node.id = IWN_ID_BSS;
6701 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6702 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6703 		case IEEE80211_HTCAP_SMPS_ENA:
6704 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6705 			break;
6706 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6707 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6708 			break;
6709 		}
6710 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6711 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6712 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6713 			node.htflags |= htole32(IWN_NODE_HT40);
6714 	}
6715 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6716 	error = ops->add_node(sc, &node, 1);
6717 	if (error != 0) {
6718 		device_printf(sc->sc_dev,
6719 		    "%s: could not add BSS node, error %d\n", __func__, error);
6720 		return error;
6721 	}
6722 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6723 	    __func__, node.id);
6724 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6725 		device_printf(sc->sc_dev,
6726 		    "%s: could not setup link quality for node %d, error %d\n",
6727 		    __func__, node.id, error);
6728 		return error;
6729 	}
6730 
6731 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6732 		device_printf(sc->sc_dev,
6733 		    "%s: could not set sensitivity, error %d\n", __func__,
6734 		    error);
6735 		return error;
6736 	}
6737 	/* Start periodic calibration timer. */
6738 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6739 	sc->calib_cnt = 0;
6740 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6741 	    sc);
6742 
6743 	/* Link LED always on while associated. */
6744 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6745 
6746 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6747 
6748 	return 0;
6749 }
6750 
6751 /*
6752  * This function is called by upper layer when an ADDBA request is received
6753  * from another STA and before the ADDBA response is sent.
6754  */
6755 static int
6756 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
6757     int baparamset, int batimeout, int baseqctl)
6758 {
6759 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
6760 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6761 	struct iwn_ops *ops = &sc->ops;
6762 	struct iwn_node *wn = (void *)ni;
6763 	struct iwn_node_info node;
6764 	uint16_t ssn;
6765 	uint8_t tid;
6766 	int error;
6767 
6768 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6769 
6770 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
6771 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
6772 
6773 	memset(&node, 0, sizeof node);
6774 	node.id = wn->id;
6775 	node.control = IWN_NODE_UPDATE;
6776 	node.flags = IWN_FLAG_SET_ADDBA;
6777 	node.addba_tid = tid;
6778 	node.addba_ssn = htole16(ssn);
6779 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
6780 	    wn->id, tid, ssn);
6781 	error = ops->add_node(sc, &node, 1);
6782 	if (error != 0)
6783 		return error;
6784 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
6785 #undef MS
6786 }
6787 
6788 /*
6789  * This function is called by upper layer on teardown of an HT-immediate
6790  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
6791  */
6792 static void
6793 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
6794 {
6795 	struct ieee80211com *ic = ni->ni_ic;
6796 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6797 	struct iwn_ops *ops = &sc->ops;
6798 	struct iwn_node *wn = (void *)ni;
6799 	struct iwn_node_info node;
6800 	uint8_t tid;
6801 
6802 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6803 
6804 	/* XXX: tid as an argument */
6805 	for (tid = 0; tid < WME_NUM_TID; tid++) {
6806 		if (&ni->ni_rx_ampdu[tid] == rap)
6807 			break;
6808 	}
6809 
6810 	memset(&node, 0, sizeof node);
6811 	node.id = wn->id;
6812 	node.control = IWN_NODE_UPDATE;
6813 	node.flags = IWN_FLAG_SET_DELBA;
6814 	node.delba_tid = tid;
6815 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
6816 	(void)ops->add_node(sc, &node, 1);
6817 	sc->sc_ampdu_rx_stop(ni, rap);
6818 }
6819 
6820 static int
6821 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6822     int dialogtoken, int baparamset, int batimeout)
6823 {
6824 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6825 	int qid;
6826 
6827 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6828 
6829 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
6830 		if (sc->qid2tap[qid] == NULL)
6831 			break;
6832 	}
6833 	if (qid == sc->ntxqs) {
6834 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
6835 		    __func__);
6836 		return 0;
6837 	}
6838 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
6839 	sc->qid2tap[qid] = tap;
6840 	*(int *)tap->txa_private = qid;
6841 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
6842 	    batimeout);
6843 }
6844 
6845 static int
6846 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6847     int code, int baparamset, int batimeout)
6848 {
6849 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6850 	int qid = *(int *)tap->txa_private;
6851 	uint8_t tid = tap->txa_ac;
6852 	int ret;
6853 
6854 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6855 
6856 	if (code == IEEE80211_STATUS_SUCCESS) {
6857 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
6858 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
6859 		if (ret != 1)
6860 			return ret;
6861 	} else {
6862 		sc->qid2tap[qid] = NULL;
6863 		kfree(tap->txa_private, M_DEVBUF);
6864 		tap->txa_private = NULL;
6865 	}
6866 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
6867 }
6868 
6869 /*
6870  * This function is called by upper layer when an ADDBA response is received
6871  * from another STA.
6872  */
6873 static int
6874 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
6875     uint8_t tid)
6876 {
6877 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
6878 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6879 	struct iwn_ops *ops = &sc->ops;
6880 	struct iwn_node *wn = (void *)ni;
6881 	struct iwn_node_info node;
6882 	int error, qid;
6883 
6884 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6885 
6886 	/* Enable TX for the specified RA/TID. */
6887 	wn->disable_tid &= ~(1 << tid);
6888 	memset(&node, 0, sizeof node);
6889 	node.id = wn->id;
6890 	node.control = IWN_NODE_UPDATE;
6891 	node.flags = IWN_FLAG_SET_DISABLE_TID;
6892 	node.disable_tid = htole16(wn->disable_tid);
6893 	error = ops->add_node(sc, &node, 1);
6894 	if (error != 0)
6895 		return 0;
6896 
6897 	if ((error = iwn_nic_lock(sc)) != 0)
6898 		return 0;
6899 	qid = *(int *)tap->txa_private;
6900 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
6901 	    __func__, wn->id, tid, tap->txa_start, qid);
6902 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
6903 	iwn_nic_unlock(sc);
6904 
6905 	iwn_set_link_quality(sc, ni);
6906 	return 1;
6907 }
6908 
6909 static void
6910 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
6911 {
6912 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6913 	struct iwn_ops *ops = &sc->ops;
6914 	uint8_t tid = tap->txa_ac;
6915 	int qid;
6916 
6917 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6918 
6919 	sc->sc_addba_stop(ni, tap);
6920 
6921 	if (tap->txa_private == NULL)
6922 		return;
6923 
6924 	qid = *(int *)tap->txa_private;
6925 	if (sc->txq[qid].queued != 0)
6926 		return;
6927 	if (iwn_nic_lock(sc) != 0)
6928 		return;
6929 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
6930 	iwn_nic_unlock(sc);
6931 	sc->qid2tap[qid] = NULL;
6932 	kfree(tap->txa_private, M_DEVBUF);
6933 	tap->txa_private = NULL;
6934 }
6935 
6936 static void
6937 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6938     int qid, uint8_t tid, uint16_t ssn)
6939 {
6940 	struct iwn_node *wn = (void *)ni;
6941 
6942 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6943 
6944 	/* Stop TX scheduler while we're changing its configuration. */
6945 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6946 	    IWN4965_TXQ_STATUS_CHGACT);
6947 
6948 	/* Assign RA/TID translation to the queue. */
6949 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
6950 	    wn->id << 4 | tid);
6951 
6952 	/* Enable chain-building mode for the queue. */
6953 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
6954 
6955 	/* Set starting sequence number from the ADDBA request. */
6956 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
6957 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6958 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6959 
6960 	/* Set scheduler window size. */
6961 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6962 	    IWN_SCHED_WINSZ);
6963 	/* Set scheduler frame limit. */
6964 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6965 	    IWN_SCHED_LIMIT << 16);
6966 
6967 	/* Enable interrupts for the queue. */
6968 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6969 
6970 	/* Mark the queue as active. */
6971 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6972 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6973 	    iwn_tid2fifo[tid] << 1);
6974 }
6975 
6976 static void
6977 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
6978 {
6979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6980 
6981 	/* Stop TX scheduler while we're changing its configuration. */
6982 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6983 	    IWN4965_TXQ_STATUS_CHGACT);
6984 
6985 	/* Set starting sequence number from the ADDBA request. */
6986 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6987 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6988 
6989 	/* Disable interrupts for the queue. */
6990 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6991 
6992 	/* Mark the queue as inactive. */
6993 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6994 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6995 }
6996 
6997 static void
6998 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6999     int qid, uint8_t tid, uint16_t ssn)
7000 {
7001 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7002 
7003 	struct iwn_node *wn = (void *)ni;
7004 
7005 	/* Stop TX scheduler while we're changing its configuration. */
7006 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7007 	    IWN5000_TXQ_STATUS_CHGACT);
7008 
7009 	/* Assign RA/TID translation to the queue. */
7010 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7011 	    wn->id << 4 | tid);
7012 
7013 	/* Enable chain-building mode for the queue. */
7014 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7015 
7016 	/* Enable aggregation for the queue. */
7017 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7018 
7019 	/* Set starting sequence number from the ADDBA request. */
7020 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7021 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7022 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7023 
7024 	/* Set scheduler window size and frame limit. */
7025 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7026 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7027 
7028 	/* Enable interrupts for the queue. */
7029 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7030 
7031 	/* Mark the queue as active. */
7032 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7033 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7034 }
7035 
7036 static void
7037 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7038 {
7039 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7040 
7041 	/* Stop TX scheduler while we're changing its configuration. */
7042 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7043 	    IWN5000_TXQ_STATUS_CHGACT);
7044 
7045 	/* Disable aggregation for the queue. */
7046 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7047 
7048 	/* Set starting sequence number from the ADDBA request. */
7049 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7050 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7051 
7052 	/* Disable interrupts for the queue. */
7053 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7054 
7055 	/* Mark the queue as inactive. */
7056 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7057 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7058 }
7059 
7060 /*
7061  * Query calibration tables from the initialization firmware.  We do this
7062  * only once at first boot.  Called from a process context.
7063  */
7064 static int
7065 iwn5000_query_calibration(struct iwn_softc *sc)
7066 {
7067 	struct iwn5000_calib_config cmd;
7068 	int error;
7069 
7070 	memset(&cmd, 0, sizeof cmd);
7071 	cmd.ucode.once.enable = 0xffffffff;
7072 	cmd.ucode.once.start  = 0xffffffff;
7073 	cmd.ucode.once.send   = 0xffffffff;
7074 	cmd.ucode.flags       = 0xffffffff;
7075 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7076 	    __func__);
7077 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7078 	if (error != 0)
7079 		return error;
7080 
7081 	/* Wait at most two seconds for calibration to complete. */
7082 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7083 		error = zsleep(sc, &wlan_global_serializer, 0, "iwncal", 2 * hz);
7084 	return error;
7085 }
7086 
7087 /*
7088  * Send calibration results to the runtime firmware.  These results were
7089  * obtained on first boot from the initialization firmware.
7090  */
7091 static int
7092 iwn5000_send_calibration(struct iwn_softc *sc)
7093 {
7094 	int idx, error;
7095 
7096 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7097 		if (!(sc->base_params->calib_need & (1<<idx))) {
7098 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7099 			    "No need of calib %d\n",
7100 			    idx);
7101 			continue; /* no need for this calib */
7102 		}
7103 		if (sc->calibcmd[idx].buf == NULL) {
7104 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7105 			    "Need calib idx : %d but no available data\n",
7106 			    idx);
7107 			continue;
7108 		}
7109 
7110 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7111 		    "send calibration result idx=%d len=%d\n", idx,
7112 		    sc->calibcmd[idx].len);
7113 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7114 		    sc->calibcmd[idx].len, 0);
7115 		if (error != 0) {
7116 			device_printf(sc->sc_dev,
7117 			    "%s: could not send calibration result, error %d\n",
7118 			    __func__, error);
7119 			return error;
7120 		}
7121 	}
7122 	return 0;
7123 }
7124 
7125 static int
7126 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7127 {
7128 	struct iwn5000_wimax_coex wimax;
7129 
7130 #ifdef notyet
7131 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7132 		/* Enable WiMAX coexistence for combo adapters. */
7133 		wimax.flags =
7134 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7135 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7136 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7137 		    IWN_WIMAX_COEX_ENABLE;
7138 		memcpy(wimax.events, iwn6050_wimax_events,
7139 		    sizeof iwn6050_wimax_events);
7140 	} else
7141 #endif
7142 	{
7143 		/* Disable WiMAX coexistence. */
7144 		wimax.flags = 0;
7145 		memset(wimax.events, 0, sizeof wimax.events);
7146 	}
7147 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7148 	    __func__);
7149 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7150 }
7151 
7152 static int
7153 iwn5000_crystal_calib(struct iwn_softc *sc)
7154 {
7155 	struct iwn5000_phy_calib_crystal cmd;
7156 
7157 	memset(&cmd, 0, sizeof cmd);
7158 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7159 	cmd.ngroups = 1;
7160 	cmd.isvalid = 1;
7161 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7162 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7163 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7164 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7165 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7166 }
7167 
7168 static int
7169 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7170 {
7171 	struct iwn5000_phy_calib_temp_offset cmd;
7172 
7173 	memset(&cmd, 0, sizeof cmd);
7174 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7175 	cmd.ngroups = 1;
7176 	cmd.isvalid = 1;
7177 	if (sc->eeprom_temp != 0)
7178 		cmd.offset = htole16(sc->eeprom_temp);
7179 	else
7180 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7181 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7182 	    le16toh(cmd.offset));
7183 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7184 }
7185 
7186 static int
7187 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7188 {
7189 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7190 
7191 	memset(&cmd, 0, sizeof cmd);
7192 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7193 	cmd.ngroups = 1;
7194 	cmd.isvalid = 1;
7195 	if (sc->eeprom_temp != 0) {
7196 		cmd.offset_low = htole16(sc->eeprom_temp);
7197 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7198 	} else {
7199 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7200 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7201 	}
7202 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7203 
7204 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7205 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7206 	    le16toh(cmd.offset_low),
7207 	    le16toh(cmd.offset_high),
7208 	    le16toh(cmd.burnt_voltage_ref));
7209 
7210 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7211 }
7212 
7213 /*
7214  * This function is called after the runtime firmware notifies us of its
7215  * readiness (called in a process context).
7216  */
7217 static int
7218 iwn4965_post_alive(struct iwn_softc *sc)
7219 {
7220 	int error, qid;
7221 
7222 	if ((error = iwn_nic_lock(sc)) != 0)
7223 		return error;
7224 
7225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7226 
7227 	/* Clear TX scheduler state in SRAM. */
7228 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7229 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7230 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7231 
7232 	/* Set physical address of TX scheduler rings (1KB aligned). */
7233 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7234 
7235 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7236 
7237 	/* Disable chain mode for all our 16 queues. */
7238 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7239 
7240 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7241 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7242 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7243 
7244 		/* Set scheduler window size. */
7245 		iwn_mem_write(sc, sc->sched_base +
7246 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7247 		/* Set scheduler frame limit. */
7248 		iwn_mem_write(sc, sc->sched_base +
7249 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7250 		    IWN_SCHED_LIMIT << 16);
7251 	}
7252 
7253 	/* Enable interrupts for all our 16 queues. */
7254 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7255 	/* Identify TX FIFO rings (0-7). */
7256 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7257 
7258 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7259 	for (qid = 0; qid < 7; qid++) {
7260 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7261 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7262 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7263 	}
7264 	iwn_nic_unlock(sc);
7265 	return 0;
7266 }
7267 
7268 /*
7269  * This function is called after the initialization or runtime firmware
7270  * notifies us of its readiness (called in a process context).
7271  */
7272 static int
7273 iwn5000_post_alive(struct iwn_softc *sc)
7274 {
7275 	int error, qid;
7276 
7277 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7278 
7279 	/* Switch to using ICT interrupt mode. */
7280 	iwn5000_ict_reset(sc);
7281 
7282 	if ((error = iwn_nic_lock(sc)) != 0){
7283 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7284 		return error;
7285 	}
7286 
7287 	/* Clear TX scheduler state in SRAM. */
7288 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7289 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7290 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7291 
7292 	/* Set physical address of TX scheduler rings (1KB aligned). */
7293 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7294 
7295 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7296 
7297 	/* Enable chain mode for all queues, except command queue. */
7298 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7299 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7300 	else
7301 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7302 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7303 
7304 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7305 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7306 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7307 
7308 		iwn_mem_write(sc, sc->sched_base +
7309 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7310 		/* Set scheduler window size and frame limit. */
7311 		iwn_mem_write(sc, sc->sched_base +
7312 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7313 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7314 	}
7315 
7316 	/* Enable interrupts for all our 20 queues. */
7317 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7318 	/* Identify TX FIFO rings (0-7). */
7319 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7320 
7321 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7322 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7323 		/* Mark TX rings as active. */
7324 		for (qid = 0; qid < 11; qid++) {
7325 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7326 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7327 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7328 		}
7329 	} else {
7330 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7331 		for (qid = 0; qid < 7; qid++) {
7332 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7333 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7334 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7335 		}
7336 	}
7337 	iwn_nic_unlock(sc);
7338 
7339 	/* Configure WiMAX coexistence for combo adapters. */
7340 	error = iwn5000_send_wimax_coex(sc);
7341 	if (error != 0) {
7342 		device_printf(sc->sc_dev,
7343 		    "%s: could not configure WiMAX coexistence, error %d\n",
7344 		    __func__, error);
7345 		return error;
7346 	}
7347 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7348 		/* Perform crystal calibration. */
7349 		error = iwn5000_crystal_calib(sc);
7350 		if (error != 0) {
7351 			device_printf(sc->sc_dev,
7352 			    "%s: crystal calibration failed, error %d\n",
7353 			    __func__, error);
7354 			return error;
7355 		}
7356 	}
7357 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7358 		/* Query calibration from the initialization firmware. */
7359 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7360 			device_printf(sc->sc_dev,
7361 			    "%s: could not query calibration, error %d\n",
7362 			    __func__, error);
7363 			return error;
7364 		}
7365 		/*
7366 		 * We have the calibration results now, reboot with the
7367 		 * runtime firmware (call ourselves recursively!)
7368 		 */
7369 		iwn_hw_stop(sc);
7370 		error = iwn_hw_init(sc);
7371 	} else {
7372 		/* Send calibration results to runtime firmware. */
7373 		error = iwn5000_send_calibration(sc);
7374 	}
7375 
7376 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7377 
7378 	return error;
7379 }
7380 
7381 /*
7382  * The firmware boot code is small and is intended to be copied directly into
7383  * the NIC internal memory (no DMA transfer).
7384  */
7385 static int
7386 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7387 {
7388 	int error, ntries;
7389 
7390 	size /= sizeof (uint32_t);
7391 
7392 	if ((error = iwn_nic_lock(sc)) != 0)
7393 		return error;
7394 
7395 	/* Copy microcode image into NIC memory. */
7396 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7397 	    (const uint32_t *)ucode, size);
7398 
7399 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7400 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7401 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7402 
7403 	/* Start boot load now. */
7404 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7405 
7406 	/* Wait for transfer to complete. */
7407 	for (ntries = 0; ntries < 1000; ntries++) {
7408 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7409 		    IWN_BSM_WR_CTRL_START))
7410 			break;
7411 		DELAY(10);
7412 	}
7413 	if (ntries == 1000) {
7414 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7415 		    __func__);
7416 		iwn_nic_unlock(sc);
7417 		return ETIMEDOUT;
7418 	}
7419 
7420 	/* Enable boot after power up. */
7421 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7422 
7423 	iwn_nic_unlock(sc);
7424 	return 0;
7425 }
7426 
7427 static int
7428 iwn4965_load_firmware(struct iwn_softc *sc)
7429 {
7430 	struct iwn_fw_info *fw = &sc->fw;
7431 	struct iwn_dma_info *dma = &sc->fw_dma;
7432 	int error;
7433 
7434 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7435 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7436 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7437 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7438 	    fw->init.text, fw->init.textsz);
7439 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7440 
7441 	/* Tell adapter where to find initialization sections. */
7442 	if ((error = iwn_nic_lock(sc)) != 0)
7443 		return error;
7444 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7445 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7446 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7447 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7448 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7449 	iwn_nic_unlock(sc);
7450 
7451 	/* Load firmware boot code. */
7452 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7453 	if (error != 0) {
7454 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7455 		    __func__);
7456 		return error;
7457 	}
7458 	/* Now press "execute". */
7459 	IWN_WRITE(sc, IWN_RESET, 0);
7460 
7461 	/* Wait at most one second for first alive notification. */
7462 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
7463 		device_printf(sc->sc_dev,
7464 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7465 		    __func__, error);
7466 		return error;
7467 	}
7468 
7469 	/* Retrieve current temperature for initial TX power calibration. */
7470 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7471 	sc->temp = iwn4965_get_temperature(sc);
7472 
7473 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7474 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7475 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7476 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7477 	    fw->main.text, fw->main.textsz);
7478 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7479 
7480 	/* Tell adapter where to find runtime sections. */
7481 	if ((error = iwn_nic_lock(sc)) != 0)
7482 		return error;
7483 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7484 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7485 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7486 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7487 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7488 	    IWN_FW_UPDATED | fw->main.textsz);
7489 	iwn_nic_unlock(sc);
7490 
7491 	return 0;
7492 }
7493 
7494 static int
7495 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7496     const uint8_t *section, int size)
7497 {
7498 	struct iwn_dma_info *dma = &sc->fw_dma;
7499 	int error;
7500 
7501 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7502 
7503 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7504 	memcpy(dma->vaddr, section, size);
7505 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7506 
7507 	if ((error = iwn_nic_lock(sc)) != 0)
7508 		return error;
7509 
7510 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7511 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7512 
7513 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7514 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7515 	    IWN_LOADDR(dma->paddr));
7516 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7517 	    IWN_HIADDR(dma->paddr) << 28 | size);
7518 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7519 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7520 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7521 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7522 
7523 	/* Kick Flow Handler to start DMA transfer. */
7524 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7525 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7526 
7527 	iwn_nic_unlock(sc);
7528 
7529 	/* Wait at most five seconds for FH DMA transfer to complete. */
7530 	return zsleep(sc, &wlan_global_serializer, 0, "iwninit", 5 * hz);
7531 }
7532 
7533 static int
7534 iwn5000_load_firmware(struct iwn_softc *sc)
7535 {
7536 	struct iwn_fw_part *fw;
7537 	int error;
7538 
7539 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7540 
7541 	/* Load the initialization firmware on first boot only. */
7542 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7543 	    &sc->fw.main : &sc->fw.init;
7544 
7545 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7546 	    fw->text, fw->textsz);
7547 	if (error != 0) {
7548 		device_printf(sc->sc_dev,
7549 		    "%s: could not load firmware %s section, error %d\n",
7550 		    __func__, ".text", error);
7551 		return error;
7552 	}
7553 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7554 	    fw->data, fw->datasz);
7555 	if (error != 0) {
7556 		device_printf(sc->sc_dev,
7557 		    "%s: could not load firmware %s section, error %d\n",
7558 		    __func__, ".data", error);
7559 		return error;
7560 	}
7561 
7562 	/* Now press "execute". */
7563 	IWN_WRITE(sc, IWN_RESET, 0);
7564 	return 0;
7565 }
7566 
7567 /*
7568  * Extract text and data sections from a legacy firmware image.
7569  */
7570 static int
7571 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7572 {
7573 	const uint32_t *ptr;
7574 	size_t hdrlen = 24;
7575 	uint32_t rev;
7576 
7577 	ptr = (const uint32_t *)fw->data;
7578 	rev = le32toh(*ptr++);
7579 
7580 	/* Check firmware API version. */
7581 	if (IWN_FW_API(rev) <= 1) {
7582 		device_printf(sc->sc_dev,
7583 		    "%s: bad firmware, need API version >=2\n", __func__);
7584 		return EINVAL;
7585 	}
7586 	if (IWN_FW_API(rev) >= 3) {
7587 		/* Skip build number (version 2 header). */
7588 		hdrlen += 4;
7589 		ptr++;
7590 	}
7591 	if (fw->size < hdrlen) {
7592 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7593 		    __func__, fw->size);
7594 		return EINVAL;
7595 	}
7596 	fw->main.textsz = le32toh(*ptr++);
7597 	fw->main.datasz = le32toh(*ptr++);
7598 	fw->init.textsz = le32toh(*ptr++);
7599 	fw->init.datasz = le32toh(*ptr++);
7600 	fw->boot.textsz = le32toh(*ptr++);
7601 
7602 	/* Check that all firmware sections fit. */
7603 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7604 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7605 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7606 		    __func__, fw->size);
7607 		return EINVAL;
7608 	}
7609 
7610 	/* Get pointers to firmware sections. */
7611 	fw->main.text = (const uint8_t *)ptr;
7612 	fw->main.data = fw->main.text + fw->main.textsz;
7613 	fw->init.text = fw->main.data + fw->main.datasz;
7614 	fw->init.data = fw->init.text + fw->init.textsz;
7615 	fw->boot.text = fw->init.data + fw->init.datasz;
7616 	return 0;
7617 }
7618 
7619 /*
7620  * Extract text and data sections from a TLV firmware image.
7621  */
7622 static int
7623 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7624     uint16_t alt)
7625 {
7626 	const struct iwn_fw_tlv_hdr *hdr;
7627 	const struct iwn_fw_tlv *tlv;
7628 	const uint8_t *ptr, *end;
7629 	uint64_t altmask;
7630 	uint32_t len, tmp;
7631 
7632 	if (fw->size < sizeof (*hdr)) {
7633 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7634 		    __func__, fw->size);
7635 		return EINVAL;
7636 	}
7637 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7638 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7639 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7640 		    __func__, le32toh(hdr->signature));
7641 		return EINVAL;
7642 	}
7643 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7644 	    le32toh(hdr->build));
7645 
7646 	/*
7647 	 * Select the closest supported alternative that is less than
7648 	 * or equal to the specified one.
7649 	 */
7650 	altmask = le64toh(hdr->altmask);
7651 	while (alt > 0 && !(altmask & (1ULL << alt)))
7652 		alt--;	/* Downgrade. */
7653 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7654 
7655 	ptr = (const uint8_t *)(hdr + 1);
7656 	end = (const uint8_t *)(fw->data + fw->size);
7657 
7658 	/* Parse type-length-value fields. */
7659 	while (ptr + sizeof (*tlv) <= end) {
7660 		tlv = (const struct iwn_fw_tlv *)ptr;
7661 		len = le32toh(tlv->len);
7662 
7663 		ptr += sizeof (*tlv);
7664 		if (ptr + len > end) {
7665 			device_printf(sc->sc_dev,
7666 			    "%s: firmware too short: %zu bytes\n", __func__,
7667 			    fw->size);
7668 			return EINVAL;
7669 		}
7670 		/* Skip other alternatives. */
7671 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7672 			goto next;
7673 
7674 		switch (le16toh(tlv->type)) {
7675 		case IWN_FW_TLV_MAIN_TEXT:
7676 			fw->main.text = ptr;
7677 			fw->main.textsz = len;
7678 			break;
7679 		case IWN_FW_TLV_MAIN_DATA:
7680 			fw->main.data = ptr;
7681 			fw->main.datasz = len;
7682 			break;
7683 		case IWN_FW_TLV_INIT_TEXT:
7684 			fw->init.text = ptr;
7685 			fw->init.textsz = len;
7686 			break;
7687 		case IWN_FW_TLV_INIT_DATA:
7688 			fw->init.data = ptr;
7689 			fw->init.datasz = len;
7690 			break;
7691 		case IWN_FW_TLV_BOOT_TEXT:
7692 			fw->boot.text = ptr;
7693 			fw->boot.textsz = len;
7694 			break;
7695 		case IWN_FW_TLV_ENH_SENS:
7696 			if (!len)
7697 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7698 			break;
7699 		case IWN_FW_TLV_PHY_CALIB:
7700 			tmp = le32toh(*ptr);
7701 			if (tmp < 253) {
7702 				sc->reset_noise_gain = tmp;
7703 				sc->noise_gain = tmp + 1;
7704 			}
7705 			break;
7706 		case IWN_FW_TLV_PAN:
7707 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7708 			DPRINTF(sc, IWN_DEBUG_RESET,
7709 			    "PAN Support found: %d\n", 1);
7710 			break;
7711 		case IWN_FW_TLV_FLAGS:
7712 			if (len < sizeof(uint32_t))
7713 				break;
7714 			if (len % sizeof(uint32_t))
7715 				break;
7716 			sc->tlv_feature_flags = le32toh(*ptr);
7717 			DPRINTF(sc, IWN_DEBUG_RESET,
7718 			    "%s: feature: 0x%08x\n",
7719 			    __func__,
7720 			    sc->tlv_feature_flags);
7721 			break;
7722 		case IWN_FW_TLV_PBREQ_MAXLEN:
7723 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7724 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7725 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7726 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7727 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7728 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7729 		case IWN_FW_TLV_WOWLAN_INST:
7730 		case IWN_FW_TLV_WOWLAN_DATA:
7731 			DPRINTF(sc, IWN_DEBUG_RESET,
7732 			    "TLV type %d recognized but not handled\n",
7733 			    le16toh(tlv->type));
7734 			break;
7735 		default:
7736 			DPRINTF(sc, IWN_DEBUG_RESET,
7737 			    "TLV type %d not handled\n", le16toh(tlv->type));
7738 			break;
7739 		}
7740  next:		/* TLV fields are 32-bit aligned. */
7741 		ptr += (len + 3) & ~3;
7742 	}
7743 	return 0;
7744 }
7745 
7746 static int
7747 iwn_read_firmware(struct iwn_softc *sc)
7748 {
7749 	struct iwn_fw_info *fw = &sc->fw;
7750 	int error;
7751 
7752 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7753 
7754 	wlan_assert_serialized();
7755 	memset(fw, 0, sizeof (*fw));
7756 
7757 	/*
7758 	 * Read firmware image from filesystem.  The firmware can block
7759 	 * in a taskq and deadlock against our serializer so unlock
7760 	 * while we do tihs.
7761 	 */
7762 	wlan_serialize_exit();
7763 	sc->fw_fp = firmware_get(sc->fwname);
7764 	wlan_serialize_enter();
7765 	if (sc->fw_fp == NULL) {
7766 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
7767 		    __func__, sc->fwname);
7768 		return EINVAL;
7769 	}
7770 
7771 	fw->size = sc->fw_fp->datasize;
7772 	fw->data = (const uint8_t *)sc->fw_fp->data;
7773 	if (fw->size < sizeof (uint32_t)) {
7774 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7775 		    __func__, fw->size);
7776 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7777 		sc->fw_fp = NULL;
7778 		return EINVAL;
7779 	}
7780 
7781 	/* Retrieve text and data sections. */
7782 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
7783 		error = iwn_read_firmware_leg(sc, fw);
7784 	else
7785 		error = iwn_read_firmware_tlv(sc, fw, 1);
7786 	if (error != 0) {
7787 		device_printf(sc->sc_dev,
7788 		    "%s: could not read firmware sections, error %d\n",
7789 		    __func__, error);
7790 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7791 		sc->fw_fp = NULL;
7792 		return error;
7793 	}
7794 
7795 	/* Make sure text and data sections fit in hardware memory. */
7796 	if (fw->main.textsz > sc->fw_text_maxsz ||
7797 	    fw->main.datasz > sc->fw_data_maxsz ||
7798 	    fw->init.textsz > sc->fw_text_maxsz ||
7799 	    fw->init.datasz > sc->fw_data_maxsz ||
7800 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
7801 	    (fw->boot.textsz & 3) != 0) {
7802 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
7803 		    __func__);
7804 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7805 		sc->fw_fp = NULL;
7806 		return EINVAL;
7807 	}
7808 
7809 	/* We can proceed with loading the firmware. */
7810 	return 0;
7811 }
7812 
7813 static int
7814 iwn_clock_wait(struct iwn_softc *sc)
7815 {
7816 	int ntries;
7817 
7818 	/* Set "initialization complete" bit. */
7819 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7820 
7821 	/* Wait for clock stabilization. */
7822 	for (ntries = 0; ntries < 2500; ntries++) {
7823 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
7824 			return 0;
7825 		DELAY(10);
7826 	}
7827 	device_printf(sc->sc_dev,
7828 	    "%s: timeout waiting for clock stabilization\n", __func__);
7829 	return ETIMEDOUT;
7830 }
7831 
7832 static int
7833 iwn_apm_init(struct iwn_softc *sc)
7834 {
7835 	uint32_t reg;
7836 	int error;
7837 
7838 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7839 
7840 	/* Disable L0s exit timer (NMI bug workaround). */
7841 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
7842 	/* Don't wait for ICH L0s (ICH bug workaround). */
7843 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
7844 
7845 	/* Set FH wait threshold to max (HW bug under stress workaround). */
7846 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
7847 
7848 	/* Enable HAP INTA to move adapter from L1a to L0s. */
7849 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
7850 
7851 	/* Retrieve PCIe Active State Power Management (ASPM). */
7852 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
7853 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
7854 	if (reg & 0x02)	/* L1 Entry enabled. */
7855 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7856 	else
7857 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7858 
7859 	if (sc->base_params->pll_cfg_val)
7860 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
7861 
7862 	/* Wait for clock stabilization before accessing prph. */
7863 	if ((error = iwn_clock_wait(sc)) != 0)
7864 		return error;
7865 
7866 	if ((error = iwn_nic_lock(sc)) != 0)
7867 		return error;
7868 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
7869 		/* Enable DMA and BSM (Bootstrap State Machine). */
7870 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
7871 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
7872 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
7873 	} else {
7874 		/* Enable DMA. */
7875 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
7876 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7877 	}
7878 	DELAY(20);
7879 	/* Disable L1-Active. */
7880 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
7881 	iwn_nic_unlock(sc);
7882 
7883 	return 0;
7884 }
7885 
7886 static void
7887 iwn_apm_stop_master(struct iwn_softc *sc)
7888 {
7889 	int ntries;
7890 
7891 	/* Stop busmaster DMA activity. */
7892 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
7893 	for (ntries = 0; ntries < 100; ntries++) {
7894 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
7895 			return;
7896 		DELAY(10);
7897 	}
7898 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
7899 }
7900 
7901 static void
7902 iwn_apm_stop(struct iwn_softc *sc)
7903 {
7904 	iwn_apm_stop_master(sc);
7905 
7906 	/* Reset the entire device. */
7907 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
7908 	DELAY(10);
7909 	/* Clear "initialization complete" bit. */
7910 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7911 }
7912 
7913 static int
7914 iwn4965_nic_config(struct iwn_softc *sc)
7915 {
7916 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7917 
7918 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
7919 		/*
7920 		 * I don't believe this to be correct but this is what the
7921 		 * vendor driver is doing. Probably the bits should not be
7922 		 * shifted in IWN_RFCFG_*.
7923 		 */
7924 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7925 		    IWN_RFCFG_TYPE(sc->rfcfg) |
7926 		    IWN_RFCFG_STEP(sc->rfcfg) |
7927 		    IWN_RFCFG_DASH(sc->rfcfg));
7928 	}
7929 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7930 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7931 	return 0;
7932 }
7933 
7934 static int
7935 iwn5000_nic_config(struct iwn_softc *sc)
7936 {
7937 	uint32_t tmp;
7938 	int error;
7939 
7940 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7941 
7942 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
7943 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7944 		    IWN_RFCFG_TYPE(sc->rfcfg) |
7945 		    IWN_RFCFG_STEP(sc->rfcfg) |
7946 		    IWN_RFCFG_DASH(sc->rfcfg));
7947 	}
7948 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7949 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7950 
7951 	if ((error = iwn_nic_lock(sc)) != 0)
7952 		return error;
7953 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
7954 
7955 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
7956 		/*
7957 		 * Select first Switching Voltage Regulator (1.32V) to
7958 		 * solve a stability issue related to noisy DC2DC line
7959 		 * in the silicon of 1000 Series.
7960 		 */
7961 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
7962 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
7963 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
7964 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
7965 	}
7966 	iwn_nic_unlock(sc);
7967 
7968 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
7969 		/* Use internal power amplifier only. */
7970 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
7971 	}
7972 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
7973 		/* Indicate that ROM calibration version is >=6. */
7974 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
7975 	}
7976 	if (sc->base_params->additional_gp_drv_bit)
7977 		IWN_SETBITS(sc, IWN_GP_DRIVER,
7978 		    sc->base_params->additional_gp_drv_bit);
7979 	return 0;
7980 }
7981 
7982 /*
7983  * Take NIC ownership over Intel Active Management Technology (AMT).
7984  */
7985 static int
7986 iwn_hw_prepare(struct iwn_softc *sc)
7987 {
7988 	int ntries;
7989 
7990 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7991 
7992 	/* Check if hardware is ready. */
7993 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7994 	for (ntries = 0; ntries < 5; ntries++) {
7995 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7996 		    IWN_HW_IF_CONFIG_NIC_READY)
7997 			return 0;
7998 		DELAY(10);
7999 	}
8000 
8001 	/* Hardware not ready, force into ready state. */
8002 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8003 	for (ntries = 0; ntries < 15000; ntries++) {
8004 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8005 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8006 			break;
8007 		DELAY(10);
8008 	}
8009 	if (ntries == 15000)
8010 		return ETIMEDOUT;
8011 
8012 	/* Hardware should be ready now. */
8013 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8014 	for (ntries = 0; ntries < 5; ntries++) {
8015 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8016 		    IWN_HW_IF_CONFIG_NIC_READY)
8017 			return 0;
8018 		DELAY(10);
8019 	}
8020 	return ETIMEDOUT;
8021 }
8022 
8023 static int
8024 iwn_hw_init(struct iwn_softc *sc)
8025 {
8026 	struct iwn_ops *ops = &sc->ops;
8027 	int error, chnl, qid;
8028 
8029 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8030 
8031 	/* Clear pending interrupts. */
8032 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8033 
8034 	if ((error = iwn_apm_init(sc)) != 0) {
8035 		device_printf(sc->sc_dev,
8036 		    "%s: could not power ON adapter, error %d\n", __func__,
8037 		    error);
8038 		return error;
8039 	}
8040 
8041 	/* Select VMAIN power source. */
8042 	if ((error = iwn_nic_lock(sc)) != 0)
8043 		return error;
8044 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8045 	iwn_nic_unlock(sc);
8046 
8047 	/* Perform adapter-specific initialization. */
8048 	if ((error = ops->nic_config(sc)) != 0)
8049 		return error;
8050 
8051 	/* Initialize RX ring. */
8052 	if ((error = iwn_nic_lock(sc)) != 0)
8053 		return error;
8054 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8055 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8056 	/* Set physical address of RX ring (256-byte aligned). */
8057 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8058 	/* Set physical address of RX status (16-byte aligned). */
8059 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8060 	/* Enable RX. */
8061 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8062 	    IWN_FH_RX_CONFIG_ENA           |
8063 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8064 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8065 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8066 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8067 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8068 	iwn_nic_unlock(sc);
8069 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8070 
8071 	if ((error = iwn_nic_lock(sc)) != 0)
8072 		return error;
8073 
8074 	/* Initialize TX scheduler. */
8075 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8076 
8077 	/* Set physical address of "keep warm" page (16-byte aligned). */
8078 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8079 
8080 	/* Initialize TX rings. */
8081 	for (qid = 0; qid < sc->ntxqs; qid++) {
8082 		struct iwn_tx_ring *txq = &sc->txq[qid];
8083 
8084 		/* Set physical address of TX ring (256-byte aligned). */
8085 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8086 		    txq->desc_dma.paddr >> 8);
8087 	}
8088 	iwn_nic_unlock(sc);
8089 
8090 	/* Enable DMA channels. */
8091 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8092 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8093 		    IWN_FH_TX_CONFIG_DMA_ENA |
8094 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8095 	}
8096 
8097 	/* Clear "radio off" and "commands blocked" bits. */
8098 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8099 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8100 
8101 	/* Clear pending interrupts. */
8102 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8103 	/* Enable interrupt coalescing. */
8104 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8105 	/* Enable interrupts. */
8106 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8107 
8108 	/* _Really_ make sure "radio off" bit is cleared! */
8109 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8110 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8111 
8112 	/* Enable shadow registers. */
8113 	if (sc->base_params->shadow_reg_enable)
8114 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8115 
8116 	if ((error = ops->load_firmware(sc)) != 0) {
8117 		device_printf(sc->sc_dev,
8118 		    "%s: could not load firmware, error %d\n", __func__,
8119 		    error);
8120 		return error;
8121 	}
8122 	/* Wait at most one second for firmware alive notification. */
8123 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
8124 		device_printf(sc->sc_dev,
8125 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8126 		    __func__, error);
8127 		return error;
8128 	}
8129 	/* Do post-firmware initialization. */
8130 
8131 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8132 
8133 	return ops->post_alive(sc);
8134 }
8135 
8136 static void
8137 iwn_hw_stop(struct iwn_softc *sc)
8138 {
8139 	int chnl, qid, ntries;
8140 
8141 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8142 
8143 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8144 
8145 	/* Disable interrupts. */
8146 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8147 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8148 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8149 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8150 
8151 	/* Make sure we no longer hold the NIC lock. */
8152 	iwn_nic_unlock(sc);
8153 
8154 	/* Stop TX scheduler. */
8155 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8156 
8157 	/* Stop all DMA channels. */
8158 	if (iwn_nic_lock(sc) == 0) {
8159 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8160 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8161 			for (ntries = 0; ntries < 200; ntries++) {
8162 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8163 				    IWN_FH_TX_STATUS_IDLE(chnl))
8164 					break;
8165 				DELAY(10);
8166 			}
8167 		}
8168 		iwn_nic_unlock(sc);
8169 	}
8170 
8171 	/* Stop RX ring. */
8172 	iwn_reset_rx_ring(sc, &sc->rxq);
8173 
8174 	/* Reset all TX rings. */
8175 	for (qid = 0; qid < sc->ntxqs; qid++)
8176 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8177 
8178 	if (iwn_nic_lock(sc) == 0) {
8179 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8180 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8181 		iwn_nic_unlock(sc);
8182 	}
8183 	DELAY(5);
8184 	/* Power OFF adapter. */
8185 	iwn_apm_stop(sc);
8186 }
8187 
8188 static void
8189 iwn_radio_on_task(void *arg0, int pending)
8190 {
8191 	struct iwn_softc *sc = arg0;
8192 	struct ifnet *ifp;
8193 	struct ieee80211com *ic;
8194 	struct ieee80211vap *vap;
8195 
8196 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8197 
8198 	wlan_serialize_enter();
8199 	ifp = sc->sc_ifp;
8200 	ic = ifp->if_l2com;
8201 	vap = TAILQ_FIRST(&ic->ic_vaps);
8202 	if (vap != NULL) {
8203 		iwn_init_locked(sc);
8204 		ieee80211_init(vap);
8205 	}
8206 	wlan_serialize_exit();
8207 }
8208 
8209 static void
8210 iwn_radio_off_task(void *arg0, int pending)
8211 {
8212 	struct iwn_softc *sc = arg0;
8213 	struct ifnet *ifp;
8214 	struct ieee80211com *ic;
8215 	struct ieee80211vap *vap;
8216 
8217 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8218 
8219 	wlan_serialize_enter();
8220 	ifp = sc->sc_ifp;
8221 	ic = ifp->if_l2com;
8222 	vap = TAILQ_FIRST(&ic->ic_vaps);
8223 	iwn_stop_locked(sc);
8224 	if (vap != NULL)
8225 		ieee80211_stop(vap);
8226 
8227 	/* Enable interrupts to get RF toggle notification. */
8228 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8229 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8230 	wlan_serialize_exit();
8231 }
8232 
8233 static void
8234 iwn_init_locked(struct iwn_softc *sc)
8235 {
8236 	struct ifnet *ifp = sc->sc_ifp;
8237 	int error;
8238 
8239 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8240 
8241 	/*
8242 	 * Make sure we hold the serializer or we will have timing issues
8243 	 * with the wlan subsystem.
8244 	 */
8245 	wlan_assert_serialized();
8246 	if ((error = iwn_hw_prepare(sc)) != 0) {
8247 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8248 		    __func__, error);
8249 		goto fail;
8250 	}
8251 
8252 	/* Initialize interrupt mask to default value. */
8253 	sc->int_mask = IWN_INT_MASK_DEF;
8254 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8255 
8256 	/* Check that the radio is not disabled by hardware switch. */
8257 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8258 		device_printf(sc->sc_dev,
8259 		    "radio is disabled by hardware switch\n");
8260 		/* Enable interrupts to get RF toggle notifications. */
8261 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8262 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8263 		return;
8264 	}
8265 
8266 	/* Read firmware images from the filesystem. */
8267 	if ((error = iwn_read_firmware(sc)) != 0) {
8268 		device_printf(sc->sc_dev,
8269 		    "%s: could not read firmware, error %d\n", __func__,
8270 		    error);
8271 		goto fail;
8272 	}
8273 
8274 	/* Initialize hardware and upload firmware. */
8275 	error = iwn_hw_init(sc);
8276 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8277 	sc->fw_fp = NULL;
8278 	if (error != 0) {
8279 		device_printf(sc->sc_dev,
8280 		    "%s: could not initialize hardware, error %d\n", __func__,
8281 		    error);
8282 		goto fail;
8283 	}
8284 
8285 	/* Configure adapter now that it is ready. */
8286 	if ((error = iwn_config(sc)) != 0) {
8287 		device_printf(sc->sc_dev,
8288 		    "%s: could not configure device, error %d\n", __func__,
8289 		    error);
8290 		goto fail;
8291 	}
8292 
8293 	ifq_clr_oactive(&ifp->if_snd);
8294 	ifp->if_flags |= IFF_RUNNING;
8295 
8296 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
8297 
8298 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8299 
8300 	return;
8301 
8302 fail:	iwn_stop_locked(sc);
8303 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8304 }
8305 
8306 static void
8307 iwn_init(void *arg)
8308 {
8309 	struct iwn_softc *sc = arg;
8310 	struct ifnet *ifp = sc->sc_ifp;
8311 	struct ieee80211com *ic = ifp->if_l2com;
8312 
8313 	wlan_assert_serialized();
8314 	iwn_init_locked(sc);
8315 
8316 	if (ifp->if_flags & IFF_RUNNING)
8317 		ieee80211_start_all(ic);
8318 }
8319 
8320 static void
8321 iwn_stop_locked(struct iwn_softc *sc)
8322 {
8323 	struct ifnet *ifp = sc->sc_ifp;
8324 
8325 	sc->sc_is_scanning = 0;
8326 	sc->sc_tx_timer = 0;
8327 	callout_stop(&sc->watchdog_to);
8328 	callout_stop(&sc->calib_to);
8329 	ifp->if_flags &= ~IFF_RUNNING;
8330 	ifq_clr_oactive(&ifp->if_snd);
8331 
8332 	/* Power OFF hardware. */
8333 	iwn_hw_stop(sc);
8334 }
8335 
8336 /*
8337  * Callback from net80211 to start a scan.
8338  */
8339 static void
8340 iwn_scan_start(struct ieee80211com *ic)
8341 {
8342 	struct ifnet *ifp = ic->ic_ifp;
8343 	struct iwn_softc *sc = ifp->if_softc;
8344 
8345 	/* make the link LED blink while we're scanning */
8346 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8347 }
8348 
8349 /*
8350  * Callback from net80211 to terminate a scan.
8351  */
8352 static void
8353 iwn_scan_end(struct ieee80211com *ic)
8354 {
8355 	struct ifnet *ifp = ic->ic_ifp;
8356 	struct iwn_softc *sc = ifp->if_softc;
8357 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8358 
8359 	if (vap->iv_state == IEEE80211_S_RUN) {
8360 		/* Set link LED to ON status if we are associated */
8361 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8362 	}
8363 }
8364 
8365 /*
8366  * Callback from net80211 to force a channel change.
8367  */
8368 static void
8369 iwn_set_channel(struct ieee80211com *ic)
8370 {
8371 	const struct ieee80211_channel *c = ic->ic_curchan;
8372 	struct ifnet *ifp = ic->ic_ifp;
8373 	struct iwn_softc *sc = ifp->if_softc;
8374 	int error;
8375 
8376 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8377 
8378 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8379 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8380 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8381 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8382 
8383 	/*
8384 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8385 	 * are already taken care of by their respective firmware commands.
8386 	 */
8387 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8388 		error = iwn_config(sc);
8389 		if (error != 0)
8390 		device_printf(sc->sc_dev,
8391 		    "%s: error %d settting channel\n", __func__, error);
8392 	}
8393 }
8394 
8395 /*
8396  * Callback from net80211 to start scanning of the current channel.
8397  */
8398 static void
8399 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8400 {
8401 	struct ieee80211vap *vap = ss->ss_vap;
8402 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8403 	int error;
8404 
8405 	error = iwn_scan(sc);
8406 	if (error != 0)
8407 		ieee80211_cancel_scan(vap);
8408 }
8409 
8410 /*
8411  * Callback from net80211 to handle the minimum dwell time being met.
8412  * The intent is to terminate the scan but we just let the firmware
8413  * notify us when it's finished as we have no safe way to abort it.
8414  */
8415 static void
8416 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8417 {
8418 	/* NB: don't try to abort scan; wait for firmware to finish */
8419 }
8420 
8421 static void
8422 iwn_hw_reset_task(void *arg0, int pending)
8423 {
8424 	struct iwn_softc *sc = arg0;
8425 	struct ifnet *ifp;
8426 	struct ieee80211com *ic;
8427 
8428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8429 
8430 	wlan_serialize_enter();
8431 	ifp = sc->sc_ifp;
8432 	ic = ifp->if_l2com;
8433 	iwn_stop_locked(sc);
8434 	iwn_init_locked(sc);
8435 	ieee80211_notify_radio(ic, 1);
8436 	wlan_serialize_exit();
8437 }
8438 #ifdef	IWN_DEBUG
8439 #define	IWN_DESC(x) case x:	return #x
8440 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8441 
8442 /*
8443  * Translate CSR code to string
8444  */
8445 static char *iwn_get_csr_string(int csr)
8446 {
8447 	switch (csr) {
8448 		IWN_DESC(IWN_HW_IF_CONFIG);
8449 		IWN_DESC(IWN_INT_COALESCING);
8450 		IWN_DESC(IWN_INT);
8451 		IWN_DESC(IWN_INT_MASK);
8452 		IWN_DESC(IWN_FH_INT);
8453 		IWN_DESC(IWN_GPIO_IN);
8454 		IWN_DESC(IWN_RESET);
8455 		IWN_DESC(IWN_GP_CNTRL);
8456 		IWN_DESC(IWN_HW_REV);
8457 		IWN_DESC(IWN_EEPROM);
8458 		IWN_DESC(IWN_EEPROM_GP);
8459 		IWN_DESC(IWN_OTP_GP);
8460 		IWN_DESC(IWN_GIO);
8461 		IWN_DESC(IWN_GP_UCODE);
8462 		IWN_DESC(IWN_GP_DRIVER);
8463 		IWN_DESC(IWN_UCODE_GP1);
8464 		IWN_DESC(IWN_UCODE_GP2);
8465 		IWN_DESC(IWN_LED);
8466 		IWN_DESC(IWN_DRAM_INT_TBL);
8467 		IWN_DESC(IWN_GIO_CHICKEN);
8468 		IWN_DESC(IWN_ANA_PLL);
8469 		IWN_DESC(IWN_HW_REV_WA);
8470 		IWN_DESC(IWN_DBG_HPET_MEM);
8471 	default:
8472 		return "UNKNOWN CSR";
8473 	}
8474 }
8475 
8476 /*
8477  * This function print firmware register
8478  */
8479 static void
8480 iwn_debug_register(struct iwn_softc *sc)
8481 {
8482 	int i;
8483 	static const uint32_t csr_tbl[] = {
8484 		IWN_HW_IF_CONFIG,
8485 		IWN_INT_COALESCING,
8486 		IWN_INT,
8487 		IWN_INT_MASK,
8488 		IWN_FH_INT,
8489 		IWN_GPIO_IN,
8490 		IWN_RESET,
8491 		IWN_GP_CNTRL,
8492 		IWN_HW_REV,
8493 		IWN_EEPROM,
8494 		IWN_EEPROM_GP,
8495 		IWN_OTP_GP,
8496 		IWN_GIO,
8497 		IWN_GP_UCODE,
8498 		IWN_GP_DRIVER,
8499 		IWN_UCODE_GP1,
8500 		IWN_UCODE_GP2,
8501 		IWN_LED,
8502 		IWN_DRAM_INT_TBL,
8503 		IWN_GIO_CHICKEN,
8504 		IWN_ANA_PLL,
8505 		IWN_HW_REV_WA,
8506 		IWN_DBG_HPET_MEM,
8507 	};
8508 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8509 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8510 	    "\n");
8511 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8512 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8513 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8514 		if ((i+1) % 3 == 0)
8515 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8516 	}
8517 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8518 }
8519 #endif
8520