xref: /dflybsd-src/sys/dev/netif/iwn/if_iwn.c (revision 9b9cf381ce6afc9eff34a6591ec00faa7aa03476)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 /* $FreeBSD$ */
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 #include <sys/libkern.h>
45 
46 #include <sys/bus.h>
47 #include <sys/resource.h>
48 #include <machine/clock.h>
49 
50 #include <bus/pci/pcireg.h>
51 #include <bus/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ifq_var.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip.h>
67 
68 #include <netproto/802_11/ieee80211_var.h>
69 #include <netproto/802_11/ieee80211_radiotap.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #include <netproto/802_11/ieee80211_ratectl.h>
72 
73 #include "if_iwnreg.h"
74 #include "if_iwnvar.h"
75 
76 static int	iwn_pci_probe(device_t);
77 static int	iwn_pci_attach(device_t);
78 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
79 static void	iwn_radiotap_attach(struct iwn_softc *);
80 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
81 		    const char name[IFNAMSIZ], int unit, int opmode,
82 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
83 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
84 static void	iwn_vap_delete(struct ieee80211vap *);
85 static int	iwn_cleanup(device_t);
86 static int	iwn_pci_detach(device_t);
87 static int	iwn_nic_lock(struct iwn_softc *);
88 static int	iwn_eeprom_lock(struct iwn_softc *);
89 static int	iwn_init_otprom(struct iwn_softc *);
90 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
91 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
92 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
93 		    void **, bus_size_t, bus_size_t, int);
94 static void	iwn_dma_contig_free(struct iwn_dma_info *);
95 static int	iwn_alloc_sched(struct iwn_softc *);
96 static void	iwn_free_sched(struct iwn_softc *);
97 static int	iwn_alloc_kw(struct iwn_softc *);
98 static void	iwn_free_kw(struct iwn_softc *);
99 static int	iwn_alloc_ict(struct iwn_softc *);
100 static void	iwn_free_ict(struct iwn_softc *);
101 static int	iwn_alloc_fwmem(struct iwn_softc *);
102 static void	iwn_free_fwmem(struct iwn_softc *);
103 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
106 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
107 		    int);
108 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
110 static void	iwn5000_ict_reset(struct iwn_softc *);
111 static int	iwn_read_eeprom(struct iwn_softc *,
112 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
113 static void	iwn4965_read_eeprom(struct iwn_softc *);
114 static void	iwn4965_print_power_group(struct iwn_softc *, int);
115 static void	iwn5000_read_eeprom(struct iwn_softc *);
116 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
117 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
118 #if 0	/* HT */
119 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
120 #endif
121 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
122 		    uint32_t);
123 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
124 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
125 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
126 static void	iwn_newassoc(struct ieee80211_node *, int);
127 static int	iwn_media_change(struct ifnet *);
128 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
130 		    struct iwn_rx_data *);
131 static void	iwn_timer_callout(void *);
132 static void	iwn_calib_reset(struct iwn_softc *);
133 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
134 		    struct iwn_rx_data *);
135 #if 0	/* HT */
136 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
137 		    struct iwn_rx_data *);
138 #endif
139 static void	iwn5000_rx_calib_results(struct iwn_softc *,
140 		    struct iwn_rx_desc *, struct iwn_rx_data *);
141 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
142 		    struct iwn_rx_data *);
143 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
144 		    struct iwn_rx_data *);
145 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
146 		    struct iwn_rx_data *);
147 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
148 		    uint8_t);
149 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
150 static void	iwn_notif_intr(struct iwn_softc *);
151 static void	iwn_wakeup_intr(struct iwn_softc *);
152 static void	iwn_rftoggle_intr(struct iwn_softc *);
153 static void	iwn_fatal_intr(struct iwn_softc *);
154 static void	iwn_intr(void *);
155 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
156 		    uint16_t);
157 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
158 		    uint16_t);
159 #ifdef notyet
160 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
161 #endif
162 static uint8_t	iwn_plcp_signal(int);
163 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
164 		    struct ieee80211_node *, struct iwn_tx_ring *);
165 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
166 		    const struct ieee80211_bpf_params *);
167 static void	iwn_start(struct ifnet *, struct ifaltq_subque *);
168 static void	iwn_start_locked(struct ifnet *);
169 static void	iwn_watchdog(struct iwn_softc *sc);
170 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
171 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
172 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
173 		    int);
174 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
175 		    int);
176 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
177 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
178 static int	iwn_wme_update(struct ieee80211com *);
179 static void	iwn_update_mcast(struct ifnet *);
180 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
181 static int	iwn_set_critical_temp(struct iwn_softc *);
182 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
183 static void	iwn4965_power_calibration(struct iwn_softc *, int);
184 static int	iwn4965_set_txpower(struct iwn_softc *,
185 		    struct ieee80211_channel *, int);
186 static int	iwn5000_set_txpower(struct iwn_softc *,
187 		    struct ieee80211_channel *, int);
188 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
190 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
191 static int	iwn4965_get_temperature(struct iwn_softc *);
192 static int	iwn5000_get_temperature(struct iwn_softc *);
193 static int	iwn_init_sensitivity(struct iwn_softc *);
194 static void	iwn_collect_noise(struct iwn_softc *,
195 		    const struct iwn_rx_general_stats *);
196 static int	iwn4965_init_gains(struct iwn_softc *);
197 static int	iwn5000_init_gains(struct iwn_softc *);
198 static int	iwn4965_set_gains(struct iwn_softc *);
199 static int	iwn5000_set_gains(struct iwn_softc *);
200 static void	iwn_tune_sensitivity(struct iwn_softc *,
201 		    const struct iwn_rx_stats *);
202 static int	iwn_send_sensitivity(struct iwn_softc *);
203 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
204 static int	iwn_config(struct iwn_softc *);
205 static int	iwn_scan(struct iwn_softc *);
206 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
207 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
208 #if 0	/* HT */
209 static int	iwn_ampdu_rx_start(struct ieee80211com *,
210 		    struct ieee80211_node *, uint8_t);
211 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
212 		    struct ieee80211_node *, uint8_t);
213 static int	iwn_ampdu_tx_start(struct ieee80211com *,
214 		    struct ieee80211_node *, uint8_t);
215 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
216 		    struct ieee80211_node *, uint8_t);
217 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
218 		    struct ieee80211_node *, uint8_t, uint16_t);
219 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
220 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
221 		    struct ieee80211_node *, uint8_t, uint16_t);
222 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
223 #endif
224 static int	iwn5000_query_calibration(struct iwn_softc *);
225 static int	iwn5000_send_calibration(struct iwn_softc *);
226 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
227 static int	iwn4965_post_alive(struct iwn_softc *);
228 static int	iwn5000_post_alive(struct iwn_softc *);
229 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
230 		    int);
231 static int	iwn4965_load_firmware(struct iwn_softc *);
232 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
233 		    const uint8_t *, int);
234 static int	iwn5000_load_firmware(struct iwn_softc *);
235 static int	iwn_read_firmware(struct iwn_softc *);
236 static int	iwn_clock_wait(struct iwn_softc *);
237 static int	iwn_apm_init(struct iwn_softc *);
238 static void	iwn_apm_stop_master(struct iwn_softc *);
239 static void	iwn_apm_stop(struct iwn_softc *);
240 static int	iwn4965_nic_config(struct iwn_softc *);
241 static int	iwn5000_nic_config(struct iwn_softc *);
242 static int	iwn_hw_prepare(struct iwn_softc *);
243 static int	iwn_hw_init(struct iwn_softc *);
244 static void	iwn_hw_stop(struct iwn_softc *);
245 static void	iwn_init_locked(struct iwn_softc *);
246 static void	iwn_init(void *);
247 static void	iwn_stop_locked(struct iwn_softc *);
248 static void	iwn_stop(struct iwn_softc *);
249 static void 	iwn_scan_start(struct ieee80211com *);
250 static void 	iwn_scan_end(struct ieee80211com *);
251 static void 	iwn_set_channel(struct ieee80211com *);
252 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
253 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
254 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
255 		    struct ieee80211_channel *);
256 static int	iwn_setregdomain(struct ieee80211com *,
257 		    struct ieee80211_regdomain *, int,
258 		    struct ieee80211_channel []);
259 static void	iwn_hw_reset_task(void *, int);
260 static void	iwn_radio_on_task(void *, int);
261 static void	iwn_radio_off_task(void *, int);
262 static void	iwn_sysctlattach(struct iwn_softc *);
263 static int	iwn_pci_shutdown(device_t);
264 static int	iwn_pci_suspend(device_t);
265 static int	iwn_pci_resume(device_t);
266 
267 #define IWN_DEBUG
268 #ifdef IWN_DEBUG
269 enum {
270 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
271 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
272 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
273 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
274 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
275 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
276 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
277 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
278 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
279 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
280 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
281 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
282 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
283 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
284 	IWN_DEBUG_ANY		= 0xffffffff
285 };
286 
287 #define DPRINTF(sc, m, fmt, ...) do {			\
288 	if (sc->sc_debug & (m))				\
289 		kprintf(fmt, __VA_ARGS__);		\
290 } while (0)
291 
292 static const char *iwn_intr_str(uint8_t);
293 #else
294 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
295 #endif
296 
297 struct iwn_ident {
298 	uint16_t	vendor;
299 	uint16_t	device;
300 	const char	*name;
301 };
302 
303 static const struct iwn_ident iwn_ident_table [] = {
304 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
305 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
306 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
307 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
308 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
309 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
310 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
311 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
312 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
313 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
314 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
315 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
316 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
317 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
318 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
319 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
320 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
321 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
325 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
326 	{ 0x8086, 0x08AE, "Intel(R) Centrino Wireless-N 100" },
327 	{ 0, 0, NULL }
328 };
329 
330 static const struct iwn_hal iwn4965_hal = {
331 	iwn4965_load_firmware,
332 	iwn4965_read_eeprom,
333 	iwn4965_post_alive,
334 	iwn4965_nic_config,
335 	iwn4965_update_sched,
336 	iwn4965_get_temperature,
337 	iwn4965_get_rssi,
338 	iwn4965_set_txpower,
339 	iwn4965_init_gains,
340 	iwn4965_set_gains,
341 	iwn4965_add_node,
342 	iwn4965_tx_done,
343 #if 0	/* HT */
344 	iwn4965_ampdu_tx_start,
345 	iwn4965_ampdu_tx_stop,
346 #endif
347 	IWN4965_NTXQUEUES,
348 	IWN4965_NDMACHNLS,
349 	IWN4965_ID_BROADCAST,
350 	IWN4965_RXONSZ,
351 	IWN4965_SCHEDSZ,
352 	IWN4965_FW_TEXT_MAXSZ,
353 	IWN4965_FW_DATA_MAXSZ,
354 	IWN4965_FWSZ,
355 	IWN4965_SCHED_TXFACT
356 };
357 
358 static const struct iwn_hal iwn5000_hal = {
359 	iwn5000_load_firmware,
360 	iwn5000_read_eeprom,
361 	iwn5000_post_alive,
362 	iwn5000_nic_config,
363 	iwn5000_update_sched,
364 	iwn5000_get_temperature,
365 	iwn5000_get_rssi,
366 	iwn5000_set_txpower,
367 	iwn5000_init_gains,
368 	iwn5000_set_gains,
369 	iwn5000_add_node,
370 	iwn5000_tx_done,
371 #if 0	/* HT */
372 	iwn5000_ampdu_tx_start,
373 	iwn5000_ampdu_tx_stop,
374 #endif
375 	IWN5000_NTXQUEUES,
376 	IWN5000_NDMACHNLS,
377 	IWN5000_ID_BROADCAST,
378 	IWN5000_RXONSZ,
379 	IWN5000_SCHEDSZ,
380 	IWN5000_FW_TEXT_MAXSZ,
381 	IWN5000_FW_DATA_MAXSZ,
382 	IWN5000_FWSZ,
383 	IWN5000_SCHED_TXFACT
384 };
385 
386 static int
387 iwn_pci_probe(device_t dev)
388 {
389 	const struct iwn_ident *ident;
390 
391 	/* no wlan serializer needed */
392 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
393 		if (pci_get_vendor(dev) == ident->vendor &&
394 		    pci_get_device(dev) == ident->device) {
395 			device_set_desc(dev, ident->name);
396 			return 0;
397 		}
398 	}
399 	return ENXIO;
400 }
401 
402 static int
403 iwn_pci_attach(device_t dev)
404 {
405 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
406 	struct ieee80211com *ic;
407 	struct ifnet *ifp;
408 	const struct iwn_hal *hal;
409 	uint32_t tmp;
410 	int i, error;
411 #ifdef OLD_MSI
412 	int result;
413 #endif
414 	uint8_t macaddr[IEEE80211_ADDR_LEN];
415 
416 	wlan_serialize_enter();
417 
418 	sc->sc_dev = dev;
419 	sc->sc_dmat = NULL;
420 
421 	if (bus_dma_tag_create(sc->sc_dmat,
422 			1, 0,
423 			BUS_SPACE_MAXADDR_32BIT,
424 			BUS_SPACE_MAXADDR,
425 			NULL, NULL,
426 			BUS_SPACE_MAXSIZE,
427 			IWN_MAX_SCATTER,
428 			BUS_SPACE_MAXSIZE,
429 			BUS_DMA_ALLOCNOW,
430 			&sc->sc_dmat)) {
431 		device_printf(dev, "cannot allocate DMA tag\n");
432 		error = ENOMEM;
433 		goto fail;
434 	}
435 
436 
437 
438 	/* prepare sysctl tree for use in sub modules */
439 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
440 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
441 		SYSCTL_STATIC_CHILDREN(_hw),
442 		OID_AUTO,
443 		device_get_nameunit(sc->sc_dev),
444 		CTLFLAG_RD, 0, "");
445 
446 	/*
447 	 * Get the offset of the PCI Express Capability Structure in PCI
448 	 * Configuration Space.
449 	 */
450 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
451 	if (error != 0) {
452 		device_printf(dev, "PCIe capability structure not found!\n");
453 		goto fail2;
454 	}
455 
456 	/* Clear device-specific "PCI retry timeout" register (41h). */
457 	pci_write_config(dev, 0x41, 0, 1);
458 
459 	/* Hardware bug workaround. */
460 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
461 	if (tmp & PCIM_CMD_INTxDIS) {
462 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
463 		    __func__);
464 		tmp &= ~PCIM_CMD_INTxDIS;
465 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
466 	}
467 
468 	/* Enable bus-mastering. */
469 	pci_enable_busmaster(dev);
470 
471 	sc->mem_rid = PCIR_BAR(0);
472 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
473 	    RF_ACTIVE);
474 	if (sc->mem == NULL ) {
475 		device_printf(dev, "could not allocate memory resources\n");
476 		error = ENOMEM;
477 		goto fail2;
478 	}
479 
480 	sc->sc_st = rman_get_bustag(sc->mem);
481 	sc->sc_sh = rman_get_bushandle(sc->mem);
482 	sc->irq_rid = 0;
483 #ifdef OLD_MSI
484 	if ((result = pci_msi_count(dev)) == 1 &&
485 	    pci_alloc_msi(dev, &result) == 0)
486 		sc->irq_rid = 1;
487 #endif
488 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
489 	    RF_ACTIVE | RF_SHAREABLE);
490 	if (sc->irq == NULL) {
491 		device_printf(dev, "could not allocate interrupt resource\n");
492 		error = ENOMEM;
493 		goto fail;
494 	}
495 
496 	callout_init(&sc->sc_timer_to);
497 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc );
498 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc );
499 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc );
500 
501 	/* Attach Hardware Abstraction Layer. */
502 	hal = iwn_hal_attach(sc);
503 	if (hal == NULL) {
504 		error = ENXIO;	/* XXX: Wrong error code? */
505 		goto fail;
506 	}
507 
508 	error = iwn_hw_prepare(sc);
509 	if (error != 0) {
510 		device_printf(dev, "hardware not ready, error %d\n", error);
511 		goto fail;
512 	}
513 
514 	/* Allocate DMA memory for firmware transfers. */
515 	error = iwn_alloc_fwmem(sc);
516 	if (error != 0) {
517 		device_printf(dev,
518 		    "could not allocate memory for firmware, error %d\n",
519 		    error);
520 		goto fail;
521 	}
522 
523 	/* Allocate "Keep Warm" page. */
524 	error = iwn_alloc_kw(sc);
525 	if (error != 0) {
526 		device_printf(dev,
527 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
528 		goto fail;
529 	}
530 
531 	/* Allocate ICT table for 5000 Series. */
532 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
533 	    (error = iwn_alloc_ict(sc)) != 0) {
534 		device_printf(dev,
535 		    "%s: could not allocate ICT table, error %d\n",
536 		    __func__, error);
537 		goto fail;
538 	}
539 
540 	/* Allocate TX scheduler "rings". */
541 	error = iwn_alloc_sched(sc);
542 	if (error != 0) {
543 		device_printf(dev,
544 		    "could not allocate TX scheduler rings, error %d\n",
545 		    error);
546 		goto fail;
547 	}
548 
549 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
550 	for (i = 0; i < hal->ntxqs; i++) {
551 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
552 		if (error != 0) {
553 			device_printf(dev,
554 			    "could not allocate Tx ring %d, error %d\n",
555 			    i, error);
556 			goto fail;
557 		}
558 	}
559 
560 	/* Allocate RX ring. */
561 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
562 	if (error != 0 ){
563 		device_printf(dev,
564 		    "could not allocate Rx ring, error %d\n", error);
565 		goto fail;
566 	}
567 
568 	/* Clear pending interrupts. */
569 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
570 
571 	/* Count the number of available chains. */
572 	sc->ntxchains =
573 	    ((sc->txchainmask >> 2) & 1) +
574 	    ((sc->txchainmask >> 1) & 1) +
575 	    ((sc->txchainmask >> 0) & 1);
576 	sc->nrxchains =
577 	    ((sc->rxchainmask >> 2) & 1) +
578 	    ((sc->rxchainmask >> 1) & 1) +
579 	    ((sc->rxchainmask >> 0) & 1);
580 
581 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
582 	if (ifp == NULL) {
583 		device_printf(dev, "can not allocate ifnet structure\n");
584 		goto fail;
585 	}
586 	ic = ifp->if_l2com;
587 
588 	ic->ic_ifp = ifp;
589 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
590 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
591 
592 	/* Set device capabilities. */
593 	ic->ic_caps =
594 		  IEEE80211_C_STA		/* station mode supported */
595 		| IEEE80211_C_MONITOR		/* monitor mode supported */
596 		| IEEE80211_C_TXPMGT		/* tx power management */
597 		| IEEE80211_C_SHSLOT		/* short slot time supported */
598 		| IEEE80211_C_WPA
599 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
600 		| IEEE80211_C_BGSCAN		/* background scanning */
601 #if 0
602 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
603 #endif
604 		| IEEE80211_C_WME		/* WME */
605 		;
606 #if 0	/* HT */
607 	/* XXX disable until HT channel setup works */
608 	ic->ic_htcaps =
609 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
610 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
611 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
612 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
613 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
614 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
615 		/* s/w capabilities */
616 		| IEEE80211_HTC_HT		/* HT operation */
617 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
618 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
619 		;
620 
621 	/* Set HT capabilities. */
622 	ic->ic_htcaps =
623 #if IWN_RBUF_SIZE == 8192
624 	    IEEE80211_HTCAP_AMSDU7935 |
625 #endif
626 	    IEEE80211_HTCAP_CBW20_40 |
627 	    IEEE80211_HTCAP_SGI20 |
628 	    IEEE80211_HTCAP_SGI40;
629 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
630 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
631 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
632 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
633 	else
634 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
635 #endif
636 
637 	/* Read MAC address, channels, etc from EEPROM. */
638 	error = iwn_read_eeprom(sc, macaddr);
639 	if (error != 0) {
640 		device_printf(dev, "could not read EEPROM, error %d\n",
641 		    error);
642 		goto fail;
643 	}
644 
645 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
646 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
647 	    macaddr, ":");
648 
649 #if 0	/* HT */
650 	/* Set supported HT rates. */
651 	ic->ic_sup_mcs[0] = 0xff;
652 	if (sc->nrxchains > 1)
653 		ic->ic_sup_mcs[1] = 0xff;
654 	if (sc->nrxchains > 2)
655 		ic->ic_sup_mcs[2] = 0xff;
656 #endif
657 
658 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659 	ifp->if_softc = sc;
660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661 	ifp->if_init = iwn_init;
662 	ifp->if_ioctl = iwn_ioctl;
663 	ifp->if_start = iwn_start;
664 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
665 	ifq_set_ready(&ifp->if_snd);
666 
667 	ieee80211_ifattach(ic, macaddr);
668 	ic->ic_vap_create = iwn_vap_create;
669 	ic->ic_vap_delete = iwn_vap_delete;
670 	ic->ic_raw_xmit = iwn_raw_xmit;
671 	ic->ic_node_alloc = iwn_node_alloc;
672 	ic->ic_newassoc = iwn_newassoc;
673 	ic->ic_wme.wme_update = iwn_wme_update;
674 	ic->ic_update_mcast = iwn_update_mcast;
675 	ic->ic_scan_start = iwn_scan_start;
676 	ic->ic_scan_end = iwn_scan_end;
677 	ic->ic_set_channel = iwn_set_channel;
678 	ic->ic_scan_curchan = iwn_scan_curchan;
679 	ic->ic_scan_mindwell = iwn_scan_mindwell;
680 	ic->ic_setregdomain = iwn_setregdomain;
681 #if 0	/* HT */
682 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
683 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
684 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
685 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
686 #endif
687 
688 	iwn_radiotap_attach(sc);
689 	iwn_sysctlattach(sc);
690 
691 	/*
692 	 * Hook our interrupt after all initialization is complete.
693 	 */
694 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
695 			       iwn_intr, sc, &sc->sc_ih,
696 			       &wlan_global_serializer);
697 	if (error != 0) {
698 		device_printf(dev, "could not set up interrupt, error %d\n",
699 		    error);
700 		goto fail;
701 	}
702 
703 	ieee80211_announce(ic);
704 	wlan_serialize_exit();
705 	return 0;
706 fail:
707 	iwn_cleanup(dev);
708 fail2:
709 	wlan_serialize_exit();
710 	return error;
711 }
712 
713 static const struct iwn_hal *
714 iwn_hal_attach(struct iwn_softc *sc)
715 {
716 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
717 
718 	switch (sc->hw_type) {
719 	case IWN_HW_REV_TYPE_4965:
720 		sc->sc_hal = &iwn4965_hal;
721 		sc->limits = &iwn4965_sensitivity_limits;
722 		sc->fwname = "iwn4965fw";
723 		sc->txchainmask = IWN_ANT_AB;
724 		sc->rxchainmask = IWN_ANT_ABC;
725 		break;
726 	case IWN_HW_REV_TYPE_5100:
727 		sc->sc_hal = &iwn5000_hal;
728 		sc->limits = &iwn5000_sensitivity_limits;
729 		sc->fwname = "iwn5000fw";
730 		sc->txchainmask = IWN_ANT_B;
731 		sc->rxchainmask = IWN_ANT_AB;
732 		break;
733 	case IWN_HW_REV_TYPE_5150:
734 		sc->sc_hal = &iwn5000_hal;
735 		sc->limits = &iwn5150_sensitivity_limits;
736 		sc->fwname = "iwn5150fw";
737 		sc->txchainmask = IWN_ANT_A;
738 		sc->rxchainmask = IWN_ANT_AB;
739 		break;
740 	case IWN_HW_REV_TYPE_5300:
741 	case IWN_HW_REV_TYPE_5350:
742 		sc->sc_hal = &iwn5000_hal;
743 		sc->limits = &iwn5000_sensitivity_limits;
744 		sc->fwname = "iwn5000fw";
745 		sc->txchainmask = IWN_ANT_ABC;
746 		sc->rxchainmask = IWN_ANT_ABC;
747 		break;
748 	case IWN_HW_REV_TYPE_1000:
749 		sc->sc_hal = &iwn5000_hal;
750 		sc->limits = &iwn1000_sensitivity_limits;
751 		sc->fwname = "iwn1000fw";
752 		sc->txchainmask = IWN_ANT_A;
753 		sc->rxchainmask = IWN_ANT_AB;
754 		break;
755 	case IWN_HW_REV_TYPE_6000:
756 		sc->sc_hal = &iwn5000_hal;
757 		sc->limits = &iwn6000_sensitivity_limits;
758 		sc->fwname = "iwn6000fw";
759 		switch (pci_get_device(sc->sc_dev)) {
760 		case 0x422C:
761 		case 0x4239:
762 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
763 			sc->txchainmask = IWN_ANT_BC;
764 			sc->rxchainmask = IWN_ANT_BC;
765 			break;
766 		default:
767 			sc->txchainmask = IWN_ANT_ABC;
768 			sc->rxchainmask = IWN_ANT_ABC;
769 			break;
770 		}
771 		break;
772 	case IWN_HW_REV_TYPE_6050:
773 		sc->sc_hal = &iwn5000_hal;
774 		sc->limits = &iwn6000_sensitivity_limits;
775 		sc->fwname = "iwn6000fw";
776 		sc->txchainmask = IWN_ANT_AB;
777 		sc->rxchainmask = IWN_ANT_AB;
778 		break;
779 	default:
780 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
781 		    sc->hw_type);
782 		return NULL;
783 	}
784 	return sc->sc_hal;
785 }
786 
787 /*
788  * Attach the interface to 802.11 radiotap.
789  */
790 static void
791 iwn_radiotap_attach(struct iwn_softc *sc)
792 {
793 	struct ifnet *ifp = sc->sc_ifp;
794 	struct ieee80211com *ic = ifp->if_l2com;
795 
796 	ieee80211_radiotap_attach(ic,
797 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
798 		IWN_TX_RADIOTAP_PRESENT,
799 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
800 		IWN_RX_RADIOTAP_PRESENT);
801 }
802 
803 static struct ieee80211vap *
804 iwn_vap_create(struct ieee80211com *ic,
805 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
806 	const uint8_t bssid[IEEE80211_ADDR_LEN],
807 	const uint8_t mac[IEEE80211_ADDR_LEN])
808 {
809 	struct iwn_vap *ivp;
810 	struct ieee80211vap *vap;
811 
812 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
813 		return NULL;
814 	ivp = (struct iwn_vap *) kmalloc(sizeof(struct iwn_vap),
815 	    M_80211_VAP, M_INTWAIT | M_ZERO);
816 	if (ivp == NULL)
817 		return NULL;
818 	vap = &ivp->iv_vap;
819 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
820 	vap->iv_bmissthreshold = 10;		/* override default */
821 	/* Override with driver methods. */
822 	ivp->iv_newstate = vap->iv_newstate;
823 	vap->iv_newstate = iwn_newstate;
824 
825 	ieee80211_ratectl_init(vap);
826 	/* Complete setup. */
827 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
828 	ic->ic_opmode = opmode;
829 	return vap;
830 }
831 
832 static void
833 iwn_vap_delete(struct ieee80211vap *vap)
834 {
835 	struct iwn_vap *ivp = IWN_VAP(vap);
836 
837 	ieee80211_ratectl_deinit(vap);
838 	ieee80211_vap_detach(vap);
839 	kfree(ivp, M_80211_VAP);
840 }
841 
842 static int
843 iwn_cleanup(device_t dev)
844 {
845 	struct iwn_softc *sc = device_get_softc(dev);
846 	struct ifnet *ifp = sc->sc_ifp;
847 	struct ieee80211com *ic;
848 	int i;
849 
850 	if (ifp != NULL) {
851 		ic = ifp->if_l2com;
852 
853 		ieee80211_draintask(ic, &sc->sc_reinit_task);
854 		ieee80211_draintask(ic, &sc->sc_radioon_task);
855 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
856 
857 		iwn_stop(sc);
858 		callout_stop(&sc->sc_timer_to);
859 		ieee80211_ifdetach(ic);
860 	}
861 
862 	/* cleanup sysctl nodes */
863 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
864 
865 	/* Free DMA resources. */
866 	iwn_free_rx_ring(sc, &sc->rxq);
867 	if (sc->sc_hal != NULL)
868 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
869 			iwn_free_tx_ring(sc, &sc->txq[i]);
870 	iwn_free_sched(sc);
871 	iwn_free_kw(sc);
872 	if (sc->ict != NULL) {
873 		iwn_free_ict(sc);
874 		sc->ict = NULL;
875 	}
876 	iwn_free_fwmem(sc);
877 
878 	if (sc->irq != NULL) {
879 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
880 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
881 		if (sc->irq_rid == 1)
882 			pci_release_msi(dev);
883 		sc->irq = NULL;
884 	}
885 
886 	if (sc->mem != NULL) {
887 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
888 		sc->mem = NULL;
889 	}
890 
891 	if (ifp != NULL) {
892 		if_free(ifp);
893 		sc->sc_ifp = NULL;
894 	}
895 
896 	return 0;
897 }
898 
899 static int
900 iwn_pci_detach(device_t dev)
901 {
902 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
903 
904 	wlan_serialize_enter();
905 	iwn_cleanup(dev);
906 	bus_dma_tag_destroy(sc->sc_dmat);
907 	wlan_serialize_exit();
908 
909 	return 0;
910 }
911 
912 static int
913 iwn_nic_lock(struct iwn_softc *sc)
914 {
915 	int ntries;
916 
917 	/* Request exclusive access to NIC. */
918 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
919 
920 	/* Spin until we actually get the lock. */
921 	for (ntries = 0; ntries < 1000; ntries++) {
922 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
923 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
924 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
925 			return 0;
926 		DELAY(10);
927 	}
928 	return ETIMEDOUT;
929 }
930 
931 static __inline void
932 iwn_nic_unlock(struct iwn_softc *sc)
933 {
934 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
935 }
936 
937 static __inline uint32_t
938 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
939 {
940 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
941 	IWN_BARRIER_READ_WRITE(sc);
942 	return IWN_READ(sc, IWN_PRPH_RDATA);
943 }
944 
945 static __inline void
946 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
947 {
948 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
949 	IWN_BARRIER_WRITE(sc);
950 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
951 }
952 
953 static __inline void
954 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
955 {
956 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
957 }
958 
959 static __inline void
960 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
961 {
962 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
963 }
964 
965 static __inline void
966 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
967     const uint32_t *data, int count)
968 {
969 	for (; count > 0; count--, data++, addr += 4)
970 		iwn_prph_write(sc, addr, *data);
971 }
972 
973 static __inline uint32_t
974 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
975 {
976 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
977 	IWN_BARRIER_READ_WRITE(sc);
978 	return IWN_READ(sc, IWN_MEM_RDATA);
979 }
980 
981 static __inline void
982 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
983 {
984 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
985 	IWN_BARRIER_WRITE(sc);
986 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
987 }
988 
989 static __inline void
990 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
991 {
992 	uint32_t tmp;
993 
994 	tmp = iwn_mem_read(sc, addr & ~3);
995 	if (addr & 3)
996 		tmp = (tmp & 0x0000ffff) | data << 16;
997 	else
998 		tmp = (tmp & 0xffff0000) | data;
999 	iwn_mem_write(sc, addr & ~3, tmp);
1000 }
1001 
1002 static __inline void
1003 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1004     int count)
1005 {
1006 	for (; count > 0; count--, addr += 4)
1007 		*data++ = iwn_mem_read(sc, addr);
1008 }
1009 
1010 static __inline void
1011 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1012     int count)
1013 {
1014 	for (; count > 0; count--, addr += 4)
1015 		iwn_mem_write(sc, addr, val);
1016 }
1017 
1018 static int
1019 iwn_eeprom_lock(struct iwn_softc *sc)
1020 {
1021 	int i, ntries;
1022 
1023 	for (i = 0; i < 100; i++) {
1024 		/* Request exclusive access to EEPROM. */
1025 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1026 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1027 
1028 		/* Spin until we actually get the lock. */
1029 		for (ntries = 0; ntries < 100; ntries++) {
1030 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1031 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1032 				return 0;
1033 			DELAY(10);
1034 		}
1035 	}
1036 	return ETIMEDOUT;
1037 }
1038 
1039 static __inline void
1040 iwn_eeprom_unlock(struct iwn_softc *sc)
1041 {
1042 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1043 }
1044 
1045 /*
1046  * Initialize access by host to One Time Programmable ROM.
1047  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1048  */
1049 static int
1050 iwn_init_otprom(struct iwn_softc *sc)
1051 {
1052 	uint16_t prev, base, next;
1053 	int count, error;
1054 
1055 	/* Wait for clock stabilization before accessing prph. */
1056 	error = iwn_clock_wait(sc);
1057 	if (error != 0)
1058 		return error;
1059 
1060 	error = iwn_nic_lock(sc);
1061 	if (error != 0)
1062 		return error;
1063 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1064 	DELAY(5);
1065 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1066 	iwn_nic_unlock(sc);
1067 
1068 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1069 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1070 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1071 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1072 	}
1073 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1074 	/* Clear ECC status. */
1075 	IWN_SETBITS(sc, IWN_OTP_GP,
1076 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1077 
1078 	/*
1079 	 * Find the block before last block (contains the EEPROM image)
1080 	 * for HW without OTP shadow RAM.
1081 	 */
1082 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1083 		/* Switch to absolute addressing mode. */
1084 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1085 		base = prev = 0;
1086 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1087 			error = iwn_read_prom_data(sc, base, &next, 2);
1088 			if (error != 0)
1089 				return error;
1090 			if (next == 0)	/* End of linked-list. */
1091 				break;
1092 			prev = base;
1093 			base = le16toh(next);
1094 		}
1095 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1096 			return EIO;
1097 		/* Skip "next" word. */
1098 		sc->prom_base = prev + 1;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static int
1104 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1105 {
1106 	uint32_t val, tmp;
1107 	int ntries;
1108 	uint8_t *out = data;
1109 
1110 	addr += sc->prom_base;
1111 	for (; count > 0; count -= 2, addr++) {
1112 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1113 		for (ntries = 0; ntries < 10; ntries++) {
1114 			val = IWN_READ(sc, IWN_EEPROM);
1115 			if (val & IWN_EEPROM_READ_VALID)
1116 				break;
1117 			DELAY(5);
1118 		}
1119 		if (ntries == 10) {
1120 			device_printf(sc->sc_dev,
1121 			    "timeout reading ROM at 0x%x\n", addr);
1122 			return ETIMEDOUT;
1123 		}
1124 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1125 			/* OTPROM, check for ECC errors. */
1126 			tmp = IWN_READ(sc, IWN_OTP_GP);
1127 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1128 				device_printf(sc->sc_dev,
1129 				    "OTPROM ECC error at 0x%x\n", addr);
1130 				return EIO;
1131 			}
1132 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1133 				/* Correctable ECC error, clear bit. */
1134 				IWN_SETBITS(sc, IWN_OTP_GP,
1135 				    IWN_OTP_GP_ECC_CORR_STTS);
1136 			}
1137 		}
1138 		*out++ = val >> 16;
1139 		if (count > 1)
1140 			*out++ = val >> 24;
1141 	}
1142 	return 0;
1143 }
1144 
1145 static void
1146 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1147 {
1148 	if (error != 0)
1149 		return;
1150 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1151 	*(bus_addr_t *)arg = segs[0].ds_addr;
1152 }
1153 
1154 static int
1155 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1156 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1157 {
1158 	int error;
1159 
1160 	dma->size = size;
1161 	dma->tag = NULL;
1162 
1163 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1164 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1165 	    1, size, flags, &dma->tag);
1166 	if (error != 0) {
1167 		device_printf(sc->sc_dev,
1168 		    "%s: bus_dma_tag_create failed, error %d\n",
1169 		    __func__, error);
1170 		goto fail;
1171 	}
1172 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1173 	    flags | BUS_DMA_ZERO, &dma->map);
1174 	if (error != 0) {
1175 		device_printf(sc->sc_dev,
1176 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1177 		goto fail;
1178 	}
1179 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1180 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1181 	if (error != 0) {
1182 		device_printf(sc->sc_dev,
1183 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1184 		goto fail;
1185 	}
1186 
1187 	if (kvap != NULL)
1188 		*kvap = dma->vaddr;
1189 	return 0;
1190 fail:
1191 	iwn_dma_contig_free(dma);
1192 	return error;
1193 }
1194 
1195 static void
1196 iwn_dma_contig_free(struct iwn_dma_info *dma)
1197 {
1198 	if (dma->tag != NULL) {
1199 		if (dma->map != NULL) {
1200 			if (dma->paddr == 0) {
1201 				bus_dmamap_sync(dma->tag, dma->map,
1202 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1203 				bus_dmamap_unload(dma->tag, dma->map);
1204 			}
1205 			bus_dmamap_destroy(dma->tag, dma->map);
1206 		}
1207 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1208 		bus_dma_tag_destroy(dma->tag);
1209 	}
1210 }
1211 
1212 static int
1213 iwn_alloc_sched(struct iwn_softc *sc)
1214 {
1215 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1216 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1217 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1218 }
1219 
1220 static void
1221 iwn_free_sched(struct iwn_softc *sc)
1222 {
1223 	iwn_dma_contig_free(&sc->sched_dma);
1224 }
1225 
1226 static int
1227 iwn_alloc_kw(struct iwn_softc *sc)
1228 {
1229 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1230 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1231 	    BUS_DMA_NOWAIT);
1232 }
1233 
1234 static void
1235 iwn_free_kw(struct iwn_softc *sc)
1236 {
1237 	iwn_dma_contig_free(&sc->kw_dma);
1238 }
1239 
1240 static int
1241 iwn_alloc_ict(struct iwn_softc *sc)
1242 {
1243 	/* ICT table must be aligned on a 4KB boundary. */
1244 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1245 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1246 }
1247 
1248 static void
1249 iwn_free_ict(struct iwn_softc *sc)
1250 {
1251 	iwn_dma_contig_free(&sc->ict_dma);
1252 }
1253 
1254 static int
1255 iwn_alloc_fwmem(struct iwn_softc *sc)
1256 {
1257 	/* Must be aligned on a 16-byte boundary. */
1258 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1259 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1260 }
1261 
1262 static void
1263 iwn_free_fwmem(struct iwn_softc *sc)
1264 {
1265 	iwn_dma_contig_free(&sc->fw_dma);
1266 }
1267 
1268 static int
1269 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1270 {
1271 	bus_size_t size;
1272 	int i, error;
1273 
1274 	ring->cur = 0;
1275 
1276 	/* Allocate RX descriptors (256-byte aligned). */
1277 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1278 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1279 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1280 	if (error != 0) {
1281 		device_printf(sc->sc_dev,
1282 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1283 		    __func__, error);
1284 		goto fail;
1285 	}
1286 
1287 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1288 	    BUS_SPACE_MAXADDR_32BIT,
1289 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1290 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1291 	if (error != 0) {
1292 		device_printf(sc->sc_dev,
1293 		    "%s: bus_dma_tag_create_failed, error %d\n",
1294 		    __func__, error);
1295 		goto fail;
1296 	}
1297 
1298 	/* Allocate RX status area (16-byte aligned). */
1299 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1300 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1301 	    16, BUS_DMA_NOWAIT);
1302 	if (error != 0) {
1303 		device_printf(sc->sc_dev,
1304 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1305 		    __func__, error);
1306 		goto fail;
1307 	}
1308 
1309 	/*
1310 	 * Allocate and map RX buffers.
1311 	 */
1312 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1313 		struct iwn_rx_data *data = &ring->data[i];
1314 		bus_addr_t paddr;
1315 
1316 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1317 		if (error != 0) {
1318 			device_printf(sc->sc_dev,
1319 			    "%s: bus_dmamap_create failed, error %d\n",
1320 			    __func__, error);
1321 			goto fail;
1322 		}
1323 
1324 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
1325 				   MJUMPAGESIZE);
1326 		if (data->m == NULL) {
1327 			device_printf(sc->sc_dev,
1328 			    "%s: could not allocate rx mbuf\n", __func__);
1329 			error = ENOMEM;
1330 			goto fail;
1331 		}
1332 
1333 		/* Map page. */
1334 		error = bus_dmamap_load(ring->data_dmat, data->map,
1335 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1336 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1337 		if (error != 0 && error != EFBIG) {
1338 			device_printf(sc->sc_dev,
1339 			    "%s: bus_dmamap_load failed, error %d\n",
1340 			    __func__, error);
1341 			m_freem(data->m);
1342 			error = ENOMEM;	/* XXX unique code */
1343 			goto fail;
1344 		}
1345 		bus_dmamap_sync(ring->data_dmat, data->map,
1346 		    BUS_DMASYNC_PREWRITE);
1347 
1348 		/* Set physical address of RX buffer (256-byte aligned). */
1349 		ring->desc[i] = htole32(paddr >> 8);
1350 	}
1351 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1352 	    BUS_DMASYNC_PREWRITE);
1353 	return 0;
1354 fail:
1355 	iwn_free_rx_ring(sc, ring);
1356 	return error;
1357 }
1358 
1359 static void
1360 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1361 {
1362 	int ntries;
1363 
1364 	if (iwn_nic_lock(sc) == 0) {
1365 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1366 		for (ntries = 0; ntries < 1000; ntries++) {
1367 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1368 			    IWN_FH_RX_STATUS_IDLE)
1369 				break;
1370 			DELAY(10);
1371 		}
1372 		iwn_nic_unlock(sc);
1373 #ifdef IWN_DEBUG
1374 		if (ntries == 1000)
1375 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1376 			    "timeout resetting Rx ring");
1377 #endif
1378 	}
1379 	ring->cur = 0;
1380 	sc->last_rx_valid = 0;
1381 }
1382 
1383 static void
1384 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1385 {
1386 	int i;
1387 
1388 	iwn_dma_contig_free(&ring->desc_dma);
1389 	iwn_dma_contig_free(&ring->stat_dma);
1390 
1391 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1392 		struct iwn_rx_data *data = &ring->data[i];
1393 
1394 		if (data->m != NULL) {
1395 			bus_dmamap_sync(ring->data_dmat, data->map,
1396 			    BUS_DMASYNC_POSTREAD);
1397 			bus_dmamap_unload(ring->data_dmat, data->map);
1398 			m_freem(data->m);
1399 		}
1400 		if (data->map != NULL)
1401 			bus_dmamap_destroy(ring->data_dmat, data->map);
1402 	}
1403 }
1404 
1405 static int
1406 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1407 {
1408 	bus_size_t size;
1409 	bus_addr_t paddr;
1410 	int i, error;
1411 
1412 	ring->qid = qid;
1413 	ring->queued = 0;
1414 	ring->cur = 0;
1415 
1416 	/* Allocate TX descriptors (256-byte aligned.) */
1417 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1418 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1419 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1420 	if (error != 0) {
1421 		device_printf(sc->sc_dev,
1422 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1423 		    __func__, error);
1424 		goto fail;
1425 	}
1426 
1427 	/*
1428 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1429 	 * to allocate commands space for other rings.
1430 	 */
1431 	if (qid > 4)
1432 		return 0;
1433 
1434 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1435 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1436 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1437 	if (error != 0) {
1438 		device_printf(sc->sc_dev,
1439 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1440 		    __func__, error);
1441 		goto fail;
1442 	}
1443 
1444 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1445 	    BUS_SPACE_MAXADDR_32BIT,
1446 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, IWN_MAX_SCATTER - 1,
1447 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1448 	if (error != 0) {
1449 		device_printf(sc->sc_dev,
1450 		    "%s: bus_dma_tag_create_failed, error %d\n",
1451 		    __func__, error);
1452 		goto fail;
1453 	}
1454 
1455 	paddr = ring->cmd_dma.paddr;
1456 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1457 		struct iwn_tx_data *data = &ring->data[i];
1458 
1459 		data->cmd_paddr = paddr;
1460 		data->scratch_paddr = paddr + 12;
1461 		paddr += sizeof (struct iwn_tx_cmd);
1462 
1463 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1464 		if (error != 0) {
1465 			device_printf(sc->sc_dev,
1466 			    "%s: bus_dmamap_create failed, error %d\n",
1467 			    __func__, error);
1468 			goto fail;
1469 		}
1470 		bus_dmamap_sync(ring->data_dmat, data->map,
1471 		    BUS_DMASYNC_PREWRITE);
1472 	}
1473 	return 0;
1474 fail:
1475 	iwn_free_tx_ring(sc, ring);
1476 	return error;
1477 }
1478 
1479 static void
1480 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1481 {
1482 	int i;
1483 
1484 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1485 		struct iwn_tx_data *data = &ring->data[i];
1486 
1487 		if (data->m != NULL) {
1488 			bus_dmamap_unload(ring->data_dmat, data->map);
1489 			m_freem(data->m);
1490 			data->m = NULL;
1491 		}
1492 	}
1493 	/* Clear TX descriptors. */
1494 	memset(ring->desc, 0, ring->desc_dma.size);
1495 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1496 	    BUS_DMASYNC_PREWRITE);
1497 	sc->qfullmsk &= ~(1 << ring->qid);
1498 	ring->queued = 0;
1499 	ring->cur = 0;
1500 }
1501 
1502 static void
1503 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1504 {
1505 	int i;
1506 
1507 	iwn_dma_contig_free(&ring->desc_dma);
1508 	iwn_dma_contig_free(&ring->cmd_dma);
1509 
1510 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1511 		struct iwn_tx_data *data = &ring->data[i];
1512 
1513 		if (data->m != NULL) {
1514 			bus_dmamap_sync(ring->data_dmat, data->map,
1515 			    BUS_DMASYNC_POSTWRITE);
1516 			bus_dmamap_unload(ring->data_dmat, data->map);
1517 			m_freem(data->m);
1518 		}
1519 		if (data->map != NULL)
1520 			bus_dmamap_destroy(ring->data_dmat, data->map);
1521 	}
1522 }
1523 
1524 static void
1525 iwn5000_ict_reset(struct iwn_softc *sc)
1526 {
1527 	/* Disable interrupts. */
1528 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1529 
1530 	/* Reset ICT table. */
1531 	memset(sc->ict, 0, IWN_ICT_SIZE);
1532 	sc->ict_cur = 0;
1533 
1534 	/* Set physical address of ICT table (4KB aligned.) */
1535 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1536 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1537 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1538 
1539 	/* Enable periodic RX interrupt. */
1540 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1541 	/* Switch to ICT interrupt mode in driver. */
1542 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1543 
1544 	/* Re-enable interrupts. */
1545 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1546 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1547 }
1548 
1549 static int
1550 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1551 {
1552 	const struct iwn_hal *hal = sc->sc_hal;
1553 	int error;
1554 	uint16_t val;
1555 
1556 	/* Check whether adapter has an EEPROM or an OTPROM. */
1557 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1558 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1559 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1560 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1561 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1562 
1563 	/* Adapter has to be powered on for EEPROM access to work. */
1564 	error = iwn_apm_init(sc);
1565 	if (error != 0) {
1566 		device_printf(sc->sc_dev,
1567 		    "%s: could not power ON adapter, error %d\n",
1568 		    __func__, error);
1569 		return error;
1570 	}
1571 
1572 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1573 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1574 		return EIO;
1575 	}
1576 	error = iwn_eeprom_lock(sc);
1577 	if (error != 0) {
1578 		device_printf(sc->sc_dev,
1579 		    "%s: could not lock ROM, error %d\n",
1580 		    __func__, error);
1581 		return error;
1582 	}
1583 
1584 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1585 		error = iwn_init_otprom(sc);
1586 		if (error != 0) {
1587 			device_printf(sc->sc_dev,
1588 			    "%s: could not initialize OTPROM, error %d\n",
1589 			    __func__, error);
1590 			return error;
1591 		}
1592 	}
1593 
1594 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1595 	sc->rfcfg = le16toh(val);
1596 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1597 
1598 	/* Read MAC address. */
1599 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1600 
1601 	/* Read adapter-specific information from EEPROM. */
1602 	hal->read_eeprom(sc);
1603 
1604 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1605 
1606 	iwn_eeprom_unlock(sc);
1607 	return 0;
1608 }
1609 
1610 static void
1611 iwn4965_read_eeprom(struct iwn_softc *sc)
1612 {
1613 	uint32_t addr;
1614 	int i;
1615 	uint16_t val;
1616 
1617 	/* Read regulatory domain (4 ASCII characters.) */
1618 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1619 
1620 	/* Read the list of authorized channels (20MHz ones only.) */
1621 	for (i = 0; i < 5; i++) {
1622 		addr = iwn4965_regulatory_bands[i];
1623 		iwn_read_eeprom_channels(sc, i, addr);
1624 	}
1625 
1626 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1627 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1628 	sc->maxpwr2GHz = val & 0xff;
1629 	sc->maxpwr5GHz = val >> 8;
1630 	/* Check that EEPROM values are within valid range. */
1631 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1632 		sc->maxpwr5GHz = 38;
1633 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1634 		sc->maxpwr2GHz = 38;
1635 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1636 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1637 
1638 	/* Read samples for each TX power group. */
1639 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1640 	    sizeof sc->bands);
1641 
1642 	/* Read voltage at which samples were taken. */
1643 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1644 	sc->eeprom_voltage = (int16_t)le16toh(val);
1645 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1646 	    sc->eeprom_voltage);
1647 
1648 #ifdef IWN_DEBUG
1649 	/* Print samples. */
1650 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1651 		for (i = 0; i < IWN_NBANDS; i++)
1652 			iwn4965_print_power_group(sc, i);
1653 	}
1654 #endif
1655 }
1656 
1657 #ifdef IWN_DEBUG
1658 static void
1659 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1660 {
1661 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1662 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1663 	int j, c;
1664 
1665 	kprintf("===band %d===\n", i);
1666 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1667 	kprintf("chan1 num=%d\n", chans[0].num);
1668 	for (c = 0; c < 2; c++) {
1669 		for (j = 0; j < IWN_NSAMPLES; j++) {
1670 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1671 			    "power=%d pa_det=%d\n", c, j,
1672 			    chans[0].samples[c][j].temp,
1673 			    chans[0].samples[c][j].gain,
1674 			    chans[0].samples[c][j].power,
1675 			    chans[0].samples[c][j].pa_det);
1676 		}
1677 	}
1678 	kprintf("chan2 num=%d\n", chans[1].num);
1679 	for (c = 0; c < 2; c++) {
1680 		for (j = 0; j < IWN_NSAMPLES; j++) {
1681 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1682 			    "power=%d pa_det=%d\n", c, j,
1683 			    chans[1].samples[c][j].temp,
1684 			    chans[1].samples[c][j].gain,
1685 			    chans[1].samples[c][j].power,
1686 			    chans[1].samples[c][j].pa_det);
1687 		}
1688 	}
1689 }
1690 #endif
1691 
1692 static void
1693 iwn5000_read_eeprom(struct iwn_softc *sc)
1694 {
1695 	struct iwn5000_eeprom_calib_hdr hdr;
1696 	int32_t temp, volt;
1697 	uint32_t addr, base;
1698 	int i;
1699 	uint16_t val;
1700 
1701 	/* Read regulatory domain (4 ASCII characters.) */
1702 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1703 	base = le16toh(val);
1704 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1705 	    sc->eeprom_domain, 4);
1706 
1707 	/* Read the list of authorized channels (20MHz ones only.) */
1708 	for (i = 0; i < 5; i++) {
1709 		addr = base + iwn5000_regulatory_bands[i];
1710 		iwn_read_eeprom_channels(sc, i, addr);
1711 	}
1712 
1713 	/* Read enhanced TX power information for 6000 Series. */
1714 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1715 		iwn_read_eeprom_enhinfo(sc);
1716 
1717 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1718 	base = le16toh(val);
1719 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1720 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1721 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1722 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1723 	    sc->calib_ver = hdr.version;
1724 
1725 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1726 		/* Compute temperature offset. */
1727 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1728 		temp = le16toh(val);
1729 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1730 		volt = le16toh(val);
1731 		sc->temp_off = temp - (volt / -5);
1732 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1733 		    temp, volt, sc->temp_off);
1734 	} else {
1735 		/* Read crystal calibration. */
1736 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1737 		    &sc->eeprom_crystal, sizeof (uint32_t));
1738 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1739 		le32toh(sc->eeprom_crystal));
1740 	}
1741 }
1742 
1743 /*
1744  * Translate EEPROM flags to net80211.
1745  */
1746 static uint32_t
1747 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1748 {
1749 	uint32_t nflags;
1750 
1751 	nflags = 0;
1752 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1753 		nflags |= IEEE80211_CHAN_PASSIVE;
1754 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1755 		nflags |= IEEE80211_CHAN_NOADHOC;
1756 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1757 		nflags |= IEEE80211_CHAN_DFS;
1758 		/* XXX apparently IBSS may still be marked */
1759 		nflags |= IEEE80211_CHAN_NOADHOC;
1760 	}
1761 
1762 	return nflags;
1763 }
1764 
1765 static void
1766 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1767 {
1768 	struct ifnet *ifp = sc->sc_ifp;
1769 	struct ieee80211com *ic = ifp->if_l2com;
1770 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1771 	const struct iwn_chan_band *band = &iwn_bands[n];
1772 	struct ieee80211_channel *c;
1773 	int i, chan, nflags;
1774 
1775 	for (i = 0; i < band->nchan; i++) {
1776 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1777 			DPRINTF(sc, IWN_DEBUG_RESET,
1778 			    "skip chan %d flags 0x%x maxpwr %d\n",
1779 			    band->chan[i], channels[i].flags,
1780 			    channels[i].maxpwr);
1781 			continue;
1782 		}
1783 		chan = band->chan[i];
1784 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1785 
1786 		DPRINTF(sc, IWN_DEBUG_RESET,
1787 		    "add chan %d flags 0x%x maxpwr %d\n",
1788 		    chan, channels[i].flags, channels[i].maxpwr);
1789 
1790 		c = &ic->ic_channels[ic->ic_nchans++];
1791 		c->ic_ieee = chan;
1792 		c->ic_maxregpower = channels[i].maxpwr;
1793 		c->ic_maxpower = 2*c->ic_maxregpower;
1794 
1795 		/* Save maximum allowed TX power for this channel. */
1796 		sc->maxpwr[chan] = channels[i].maxpwr;
1797 
1798 		if (n == 0) {	/* 2GHz band */
1799 			c->ic_freq = ieee80211_ieee2mhz(chan,
1800 			    IEEE80211_CHAN_G);
1801 
1802 			/* G =>'s B is supported */
1803 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1804 
1805 			c = &ic->ic_channels[ic->ic_nchans++];
1806 			c[0] = c[-1];
1807 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1808 		} else {	/* 5GHz band */
1809 			c->ic_freq = ieee80211_ieee2mhz(chan,
1810 			    IEEE80211_CHAN_A);
1811 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1812 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1813 		}
1814 #if 0	/* HT */
1815 		/* XXX no constraints on using HT20 */
1816 		/* add HT20, HT40 added separately */
1817 		c = &ic->ic_channels[ic->ic_nchans++];
1818 		c[0] = c[-1];
1819 		c->ic_flags |= IEEE80211_CHAN_HT20;
1820 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1821 #endif
1822 	}
1823 }
1824 
1825 #if 0	/* HT */
1826 static void
1827 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1828 {
1829 	struct ifnet *ifp = sc->sc_ifp;
1830 	struct ieee80211com *ic = ifp->if_l2com;
1831 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1832 	const struct iwn_chan_band *band = &iwn_bands[n];
1833 	struct ieee80211_channel *c, *cent, *extc;
1834 	int i;
1835 
1836 	for (i = 0; i < band->nchan; i++) {
1837 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1838 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1839 			DPRINTF(sc, IWN_DEBUG_RESET,
1840 			    "skip chan %d flags 0x%x maxpwr %d\n",
1841 			    band->chan[i], channels[i].flags,
1842 			    channels[i].maxpwr);
1843 			continue;
1844 		}
1845 		/*
1846 		 * Each entry defines an HT40 channel pair; find the
1847 		 * center channel, then the extension channel above.
1848 		 */
1849 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1850 		    band->flags & ~IEEE80211_CHAN_HT);
1851 		if (cent == NULL) {	/* XXX shouldn't happen */
1852 			device_printf(sc->sc_dev,
1853 			    "%s: no entry for channel %d\n",
1854 			    __func__, band->chan[i]);
1855 			continue;
1856 		}
1857 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1858 		    band->flags & ~IEEE80211_CHAN_HT);
1859 		if (extc == NULL) {
1860 			DPRINTF(sc, IWN_DEBUG_RESET,
1861 			    "skip chan %d, extension channel not found\n",
1862 			    band->chan[i]);
1863 			continue;
1864 		}
1865 
1866 		DPRINTF(sc, IWN_DEBUG_RESET,
1867 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1868 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1869 
1870 		c = &ic->ic_channels[ic->ic_nchans++];
1871 		c[0] = cent[0];
1872 		c->ic_extieee = extc->ic_ieee;
1873 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1874 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1875 		c = &ic->ic_channels[ic->ic_nchans++];
1876 		c[0] = extc[0];
1877 		c->ic_extieee = cent->ic_ieee;
1878 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1879 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1880 	}
1881 }
1882 #endif
1883 
1884 static void
1885 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1886 {
1887 	struct ifnet *ifp = sc->sc_ifp;
1888 	struct ieee80211com *ic = ifp->if_l2com;
1889 
1890 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1891 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1892 
1893 	if (n < 5)
1894 		iwn_read_eeprom_band(sc, n);
1895 #if 0	/* HT */
1896 	else
1897 		iwn_read_eeprom_ht40(sc, n);
1898 #endif
1899 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1900 }
1901 
1902 static void
1903 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1904 {
1905 	struct iwn_eeprom_enhinfo enhinfo[35];
1906 	uint16_t val, base;
1907 	int8_t maxpwr;
1908 	int i;
1909 
1910 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1911 	base = le16toh(val);
1912 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1913 	    enhinfo, sizeof enhinfo);
1914 
1915 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1916 	for (i = 0; i < NELEM(enhinfo); i++) {
1917 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1918 			continue;	/* Skip invalid entries. */
1919 
1920 		maxpwr = 0;
1921 		if (sc->txchainmask & IWN_ANT_A)
1922 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1923 		if (sc->txchainmask & IWN_ANT_B)
1924 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1925 		if (sc->txchainmask & IWN_ANT_C)
1926 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1927 		if (sc->ntxchains == 2)
1928 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1929 		else if (sc->ntxchains == 3)
1930 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1931 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1932 
1933 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1934 		    maxpwr);
1935 		sc->enh_maxpwr[i] = maxpwr;
1936 	}
1937 }
1938 
1939 static struct ieee80211_node *
1940 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1941 {
1942 	return kmalloc(sizeof (struct iwn_node), M_80211_NODE,M_INTWAIT | M_ZERO);
1943 }
1944 
1945 static void
1946 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1947 {
1948 	/* XXX move */
1949 	//if (!isnew) {
1950 		ieee80211_ratectl_node_deinit(ni);
1951 	//}
1952 
1953 	ieee80211_ratectl_node_init(ni);
1954 }
1955 
1956 static int
1957 iwn_media_change(struct ifnet *ifp)
1958 {
1959 	int error = ieee80211_media_change(ifp);
1960 	/* NB: only the fixed rate can change and that doesn't need a reset */
1961 	return (error == ENETRESET ? 0 : error);
1962 }
1963 
1964 static int
1965 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1966 {
1967 	struct iwn_vap *ivp = IWN_VAP(vap);
1968 	struct ieee80211com *ic = vap->iv_ic;
1969 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1970 	int error;
1971 
1972 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1973 		ieee80211_state_name[vap->iv_state],
1974 		ieee80211_state_name[nstate]);
1975 
1976 	callout_stop(&sc->sc_timer_to);
1977 
1978 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1979 		/* !AUTH -> AUTH requires adapter config */
1980 		/* Reset state to handle reassociations correctly. */
1981 		sc->rxon.associd = 0;
1982 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1983 		iwn_calib_reset(sc);
1984 		error = iwn_auth(sc, vap);
1985 	}
1986 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1987 		/*
1988 		 * !RUN -> RUN requires setting the association id
1989 		 * which is done with a firmware cmd.  We also defer
1990 		 * starting the timers until that work is done.
1991 		 */
1992 		error = iwn_run(sc, vap);
1993 	}
1994 	if (nstate == IEEE80211_S_RUN) {
1995 		/*
1996 		 * RUN -> RUN transition; just restart the timers.
1997 		 */
1998 		iwn_calib_reset(sc);
1999 	}
2000 	return ivp->iv_newstate(vap, nstate, arg);
2001 }
2002 
2003 /*
2004  * Process an RX_PHY firmware notification.  This is usually immediately
2005  * followed by an MPDU_RX_DONE notification.
2006  */
2007 static void
2008 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2009     struct iwn_rx_data *data)
2010 {
2011 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2012 
2013 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2014 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2015 
2016 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2017 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2018 	sc->last_rx_valid = 1;
2019 }
2020 
2021 static void
2022 iwn_timer_callout(void *arg)
2023 {
2024 	struct iwn_softc *sc = arg;
2025 	uint32_t flags = 0;
2026 
2027 	wlan_serialize_enter();
2028 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
2029 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2030 		    "send statistics request");
2031 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2032 		    sizeof flags, 1);
2033 		sc->calib_cnt = 60;	/* do calibration every 60s */
2034 	}
2035 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2036 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2037 	wlan_serialize_exit();
2038 }
2039 
2040 static void
2041 iwn_calib_reset(struct iwn_softc *sc)
2042 {
2043 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2044 	sc->calib_cnt = 60;		/* do calibration every 60s */
2045 }
2046 
2047 /*
2048  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2049  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2050  */
2051 static void
2052 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2053     struct iwn_rx_data *data)
2054 {
2055 	const struct iwn_hal *hal = sc->sc_hal;
2056 	struct ifnet *ifp = sc->sc_ifp;
2057 	struct ieee80211com *ic = ifp->if_l2com;
2058 	struct iwn_rx_ring *ring = &sc->rxq;
2059 	struct ieee80211_frame *wh;
2060 	struct ieee80211_node *ni;
2061 	struct mbuf *m, *m1;
2062 	struct iwn_rx_stat *stat;
2063 	caddr_t head;
2064 	bus_addr_t paddr;
2065 	uint32_t flags;
2066 	int error, len, rssi, nf;
2067 
2068 	if (desc->type == IWN_MPDU_RX_DONE) {
2069 		/* Check for prior RX_PHY notification. */
2070 		if (!sc->last_rx_valid) {
2071 			DPRINTF(sc, IWN_DEBUG_ANY,
2072 			    "%s: missing RX_PHY\n", __func__);
2073 			ifp->if_ierrors++;
2074 			return;
2075 		}
2076 		sc->last_rx_valid = 0;
2077 		stat = &sc->last_rx_stat;
2078 	} else
2079 		stat = (struct iwn_rx_stat *)(desc + 1);
2080 
2081 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2082 
2083 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2084 		device_printf(sc->sc_dev,
2085 		    "%s: invalid rx statistic header, len %d\n",
2086 		    __func__, stat->cfg_phy_len);
2087 		ifp->if_ierrors++;
2088 		return;
2089 	}
2090 	if (desc->type == IWN_MPDU_RX_DONE) {
2091 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2092 		head = (caddr_t)(mpdu + 1);
2093 		len = le16toh(mpdu->len);
2094 	} else {
2095 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2096 		len = le16toh(stat->len);
2097 	}
2098 
2099 	flags = le32toh(*(uint32_t *)(head + len));
2100 
2101 	/* Discard frames with a bad FCS early. */
2102 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2103 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2104 		    __func__, flags);
2105 		ifp->if_ierrors++;
2106 		return;
2107 	}
2108 	/* Discard frames that are too short. */
2109 	if (len < sizeof (*wh)) {
2110 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2111 		    __func__, len);
2112 		ifp->if_ierrors++;
2113 		return;
2114 	}
2115 
2116 	/* XXX don't need mbuf, just dma buffer */
2117 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2118 	if (m1 == NULL) {
2119 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2120 		    __func__);
2121 		ifp->if_ierrors++;
2122 		return;
2123 	}
2124 	bus_dmamap_unload(ring->data_dmat, data->map);
2125 
2126 	error = bus_dmamap_load(ring->data_dmat, data->map,
2127 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2128 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2129 	if (error != 0 && error != EFBIG) {
2130 		device_printf(sc->sc_dev,
2131 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2132 		m_freem(m1);
2133 		ifp->if_ierrors++;
2134 		return;
2135 	}
2136 
2137 	m = data->m;
2138 	data->m = m1;
2139 	/* Update RX descriptor. */
2140 	ring->desc[ring->cur] = htole32(paddr >> 8);
2141 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2142 	    BUS_DMASYNC_PREWRITE);
2143 
2144 	/* Finalize mbuf. */
2145 	m->m_pkthdr.rcvif = ifp;
2146 	m->m_data = head;
2147 	m->m_pkthdr.len = m->m_len = len;
2148 
2149 	rssi = hal->get_rssi(sc, stat);
2150 
2151 	/* Grab a reference to the source node. */
2152 	wh = mtod(m, struct ieee80211_frame *);
2153 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2154 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2155 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2156 
2157 	if (ieee80211_radiotap_active(ic)) {
2158 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2159 
2160 		tap->wr_tsft = htole64(stat->tstamp);
2161 		tap->wr_flags = 0;
2162 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2163 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2164 		switch (stat->rate) {
2165 		/* CCK rates. */
2166 		case  10: tap->wr_rate =   2; break;
2167 		case  20: tap->wr_rate =   4; break;
2168 		case  55: tap->wr_rate =  11; break;
2169 		case 110: tap->wr_rate =  22; break;
2170 		/* OFDM rates. */
2171 		case 0xd: tap->wr_rate =  12; break;
2172 		case 0xf: tap->wr_rate =  18; break;
2173 		case 0x5: tap->wr_rate =  24; break;
2174 		case 0x7: tap->wr_rate =  36; break;
2175 		case 0x9: tap->wr_rate =  48; break;
2176 		case 0xb: tap->wr_rate =  72; break;
2177 		case 0x1: tap->wr_rate =  96; break;
2178 		case 0x3: tap->wr_rate = 108; break;
2179 		/* Unknown rate: should not happen. */
2180 		default:  tap->wr_rate =   0;
2181 		}
2182 		tap->wr_dbm_antsignal = rssi;
2183 		tap->wr_dbm_antnoise = nf;
2184 	}
2185 
2186 	/* Send the frame to the 802.11 layer. */
2187 	if (ni != NULL) {
2188 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2189 		/* Node is no longer needed. */
2190 		ieee80211_free_node(ni);
2191 	} else {
2192 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2193 	}
2194 }
2195 
2196 #if 0	/* HT */
2197 /* Process an incoming Compressed BlockAck. */
2198 static void
2199 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2200     struct iwn_rx_data *data)
2201 {
2202 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2203 	struct iwn_tx_ring *txq;
2204 
2205 	txq = &sc->txq[letoh16(ba->qid)];
2206 	/* XXX TBD */
2207 }
2208 #endif
2209 
2210 /*
2211  * Process a CALIBRATION_RESULT notification sent by the initialization
2212  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2213  */
2214 static void
2215 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2216     struct iwn_rx_data *data)
2217 {
2218 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2219 	int len, idx = -1;
2220 
2221 	/* Runtime firmware should not send such a notification. */
2222 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2223 		return;
2224 
2225 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2226 	len = (le32toh(desc->len) & 0x3fff) - 4;
2227 
2228 	switch (calib->code) {
2229 	case IWN5000_PHY_CALIB_DC:
2230 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2231 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2232 			idx = 0;
2233 		break;
2234 	case IWN5000_PHY_CALIB_LO:
2235 		idx = 1;
2236 		break;
2237 	case IWN5000_PHY_CALIB_TX_IQ:
2238 		idx = 2;
2239 		break;
2240 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2241 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2242 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2243 			idx = 3;
2244 		break;
2245 	case IWN5000_PHY_CALIB_BASE_BAND:
2246 		idx = 4;
2247 		break;
2248 	}
2249 	if (idx == -1)	/* Ignore other results. */
2250 		return;
2251 
2252 	/* Save calibration result. */
2253 	if (sc->calibcmd[idx].buf != NULL)
2254 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
2255 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
2256 	if (sc->calibcmd[idx].buf == NULL) {
2257 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2258 		    "not enough memory for calibration result %d\n",
2259 		    calib->code);
2260 		return;
2261 	}
2262 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2263 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2264 	sc->calibcmd[idx].len = len;
2265 	memcpy(sc->calibcmd[idx].buf, calib, len);
2266 }
2267 
2268 /*
2269  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2270  * The latter is sent by the firmware after each received beacon.
2271  */
2272 static void
2273 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2274     struct iwn_rx_data *data)
2275 {
2276 	const struct iwn_hal *hal = sc->sc_hal;
2277 	struct ifnet *ifp = sc->sc_ifp;
2278 	struct ieee80211com *ic = ifp->if_l2com;
2279 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2280 	struct iwn_calib_state *calib = &sc->calib;
2281 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2282 	int temp;
2283 
2284 	/* Beacon stats are meaningful only when associated and not scanning. */
2285 	if (vap->iv_state != IEEE80211_S_RUN ||
2286 	    (ic->ic_flags & IEEE80211_F_SCAN))
2287 		return;
2288 
2289 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2290 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2291 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2292 
2293 	/* Test if temperature has changed. */
2294 	if (stats->general.temp != sc->rawtemp) {
2295 		/* Convert "raw" temperature to degC. */
2296 		sc->rawtemp = stats->general.temp;
2297 		temp = hal->get_temperature(sc);
2298 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2299 		    __func__, temp);
2300 
2301 		/* Update TX power if need be (4965AGN only.) */
2302 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2303 			iwn4965_power_calibration(sc, temp);
2304 	}
2305 
2306 	if (desc->type != IWN_BEACON_STATISTICS)
2307 		return;	/* Reply to a statistics request. */
2308 
2309 	sc->noise = iwn_get_noise(&stats->rx.general);
2310 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2311 
2312 	/* Test that RSSI and noise are present in stats report. */
2313 	if (le32toh(stats->rx.general.flags) != 1) {
2314 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2315 		    "received statistics without RSSI");
2316 		return;
2317 	}
2318 
2319 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2320 		iwn_collect_noise(sc, &stats->rx.general);
2321 	else if (calib->state == IWN_CALIB_STATE_RUN)
2322 		iwn_tune_sensitivity(sc, &stats->rx);
2323 }
2324 
2325 /*
2326  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2327  * and 5000 adapters have different incompatible TX status formats.
2328  */
2329 static void
2330 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2331     struct iwn_rx_data *data)
2332 {
2333 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2334 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2335 
2336 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2337 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2338 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2339 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2340 	    le32toh(stat->status));
2341 
2342 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2343 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2344 }
2345 
2346 static void
2347 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2348     struct iwn_rx_data *data)
2349 {
2350 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2351 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2352 
2353 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2354 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2355 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2356 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2357 	    le32toh(stat->status));
2358 
2359 #ifdef notyet
2360 	/* Reset TX scheduler slot. */
2361 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2362 #endif
2363 
2364 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2365 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2366 }
2367 
2368 /*
2369  * Adapter-independent backend for TX_DONE firmware notifications.
2370  */
2371 static void
2372 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2373     uint8_t status)
2374 {
2375 	struct ifnet *ifp = sc->sc_ifp;
2376 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2377 	struct iwn_tx_data *data = &ring->data[desc->idx];
2378 	struct mbuf *m;
2379 	struct ieee80211_node *ni;
2380 	struct ieee80211vap *vap;
2381 
2382 	KASSERT(data->ni != NULL, ("no node"));
2383 
2384 	/* Unmap and free mbuf. */
2385 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2386 	bus_dmamap_unload(ring->data_dmat, data->map);
2387 	m = data->m, data->m = NULL;
2388 	ni = data->ni, data->ni = NULL;
2389 	vap = ni->ni_vap;
2390 
2391 	if (m->m_flags & M_TXCB) {
2392 		/*
2393 		 * Channels marked for "radar" require traffic to be received
2394 		 * to unlock before we can transmit.  Until traffic is seen
2395 		 * any attempt to transmit is returned immediately with status
2396 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2397 		 * happen on first authenticate after scanning.  To workaround
2398 		 * this we ignore a failure of this sort in AUTH state so the
2399 		 * 802.11 layer will fall back to using a timeout to wait for
2400 		 * the AUTH reply.  This allows the firmware time to see
2401 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2402 		 * unclear why the firmware does not maintain state for
2403 		 * channels recently visited as this would allow immediate
2404 		 * use of the channel after a scan (where we see traffic).
2405 		 */
2406 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2407 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2408 			ieee80211_process_callback(ni, m, 0);
2409 		else
2410 			ieee80211_process_callback(ni, m,
2411 			    (status & IWN_TX_FAIL) != 0);
2412 	}
2413 
2414 	/*
2415 	 * Update rate control statistics for the node.
2416 	 */
2417 	if (status & 0x80) {
2418 		ifp->if_oerrors++;
2419 		ieee80211_ratectl_tx_complete(vap, ni,
2420 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2421 	} else {
2422 		ieee80211_ratectl_tx_complete(vap, ni,
2423 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2424 	}
2425 	m_freem(m);
2426 	ieee80211_free_node(ni);
2427 
2428 	sc->sc_tx_timer = 0;
2429 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2430 		sc->qfullmsk &= ~(1 << ring->qid);
2431 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
2432 			ifq_clr_oactive(&ifp->if_snd);
2433 			iwn_start_locked(ifp);
2434 		}
2435 	}
2436 }
2437 
2438 /*
2439  * Process a "command done" firmware notification.  This is where we wakeup
2440  * processes waiting for a synchronous command completion.
2441  */
2442 static void
2443 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2444 {
2445 	struct iwn_tx_ring *ring = &sc->txq[4];
2446 	struct iwn_tx_data *data;
2447 
2448 	if ((desc->qid & 0xf) != 4)
2449 		return;	/* Not a command ack. */
2450 
2451 	data = &ring->data[desc->idx];
2452 
2453 	/* If the command was mapped in an mbuf, free it. */
2454 	if (data->m != NULL) {
2455 		bus_dmamap_unload(ring->data_dmat, data->map);
2456 		m_freem(data->m);
2457 		data->m = NULL;
2458 	}
2459 	wakeup(&ring->desc[desc->idx]);
2460 }
2461 
2462 /*
2463  * Process an INT_FH_RX or INT_SW_RX interrupt.
2464  */
2465 static void
2466 iwn_notif_intr(struct iwn_softc *sc)
2467 {
2468 	struct ifnet *ifp = sc->sc_ifp;
2469 	struct ieee80211com *ic = ifp->if_l2com;
2470 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2471 	uint16_t hw;
2472 
2473 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2474 	    BUS_DMASYNC_POSTREAD);
2475 
2476 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2477 	while (sc->rxq.cur != hw) {
2478 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2479 		struct iwn_rx_desc *desc;
2480 
2481 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2482 		    BUS_DMASYNC_POSTREAD);
2483 		desc = mtod(data->m, struct iwn_rx_desc *);
2484 
2485 		DPRINTF(sc, IWN_DEBUG_RECV,
2486 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2487 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2488 		    desc->type, iwn_intr_str(desc->type),
2489 		    le16toh(desc->len));
2490 
2491 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2492 			iwn_cmd_done(sc, desc);
2493 
2494 		switch (desc->type) {
2495 		case IWN_RX_PHY:
2496 			iwn_rx_phy(sc, desc, data);
2497 			break;
2498 
2499 		case IWN_RX_DONE:		/* 4965AGN only. */
2500 		case IWN_MPDU_RX_DONE:
2501 			/* An 802.11 frame has been received. */
2502 			iwn_rx_done(sc, desc, data);
2503 			break;
2504 
2505 #if 0	/* HT */
2506 		case IWN_RX_COMPRESSED_BA:
2507 			/* A Compressed BlockAck has been received. */
2508 			iwn_rx_compressed_ba(sc, desc, data);
2509 			break;
2510 #endif
2511 
2512 		case IWN_TX_DONE:
2513 			/* An 802.11 frame has been transmitted. */
2514 			sc->sc_hal->tx_done(sc, desc, data);
2515 			break;
2516 
2517 		case IWN_RX_STATISTICS:
2518 		case IWN_BEACON_STATISTICS:
2519 			iwn_rx_statistics(sc, desc, data);
2520 			break;
2521 
2522 		case IWN_BEACON_MISSED:
2523 		{
2524 			struct iwn_beacon_missed *miss =
2525 			    (struct iwn_beacon_missed *)(desc + 1);
2526 			int misses;
2527 
2528 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2529 			    BUS_DMASYNC_POSTREAD);
2530 			misses = le32toh(miss->consecutive);
2531 
2532 			/* XXX not sure why we're notified w/ zero */
2533 			if (misses == 0)
2534 				break;
2535 			DPRINTF(sc, IWN_DEBUG_STATE,
2536 			    "%s: beacons missed %d/%d\n", __func__,
2537 			    misses, le32toh(miss->total));
2538 
2539 			/*
2540 			 * If more than 5 consecutive beacons are missed,
2541 			 * reinitialize the sensitivity state machine.
2542 			 */
2543 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2544 				(void) iwn_init_sensitivity(sc);
2545 			if (misses >= vap->iv_bmissthreshold)
2546 				ieee80211_beacon_miss(ic);
2547 			break;
2548 		}
2549 		case IWN_UC_READY:
2550 		{
2551 			struct iwn_ucode_info *uc =
2552 			    (struct iwn_ucode_info *)(desc + 1);
2553 
2554 			/* The microcontroller is ready. */
2555 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2556 			    BUS_DMASYNC_POSTREAD);
2557 			DPRINTF(sc, IWN_DEBUG_RESET,
2558 			    "microcode alive notification version=%d.%d "
2559 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2560 			    uc->subtype, le32toh(uc->valid));
2561 
2562 			if (le32toh(uc->valid) != 1) {
2563 				device_printf(sc->sc_dev,
2564 				    "microcontroller initialization failed");
2565 				break;
2566 			}
2567 			if (uc->subtype == IWN_UCODE_INIT) {
2568 				/* Save microcontroller report. */
2569 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2570 			}
2571 			/* Save the address of the error log in SRAM. */
2572 			sc->errptr = le32toh(uc->errptr);
2573 			break;
2574 		}
2575 		case IWN_STATE_CHANGED:
2576 		{
2577 			uint32_t *status = (uint32_t *)(desc + 1);
2578 
2579 			/*
2580 			 * State change allows hardware switch change to be
2581 			 * noted. However, we handle this in iwn_intr as we
2582 			 * get both the enable/disble intr.
2583 			 */
2584 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2585 			    BUS_DMASYNC_POSTREAD);
2586 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2587 			    le32toh(*status));
2588 			break;
2589 		}
2590 		case IWN_START_SCAN:
2591 		{
2592 			struct iwn_start_scan *scan =
2593 			    (struct iwn_start_scan *)(desc + 1);
2594 
2595 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2596 			    BUS_DMASYNC_POSTREAD);
2597 			DPRINTF(sc, IWN_DEBUG_ANY,
2598 			    "%s: scanning channel %d status %x\n",
2599 			    __func__, scan->chan, le32toh(scan->status));
2600 			break;
2601 		}
2602 		case IWN_STOP_SCAN:
2603 		{
2604 			struct iwn_stop_scan *scan =
2605 			    (struct iwn_stop_scan *)(desc + 1);
2606 
2607 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2608 			    BUS_DMASYNC_POSTREAD);
2609 			DPRINTF(sc, IWN_DEBUG_STATE,
2610 			    "scan finished nchan=%d status=%d chan=%d\n",
2611 			    scan->nchan, scan->status, scan->chan);
2612 
2613 			ieee80211_scan_next(vap);
2614 			break;
2615 		}
2616 		case IWN5000_CALIBRATION_RESULT:
2617 			iwn5000_rx_calib_results(sc, desc, data);
2618 			break;
2619 
2620 		case IWN5000_CALIBRATION_DONE:
2621 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2622 			wakeup(sc);
2623 			break;
2624 		}
2625 
2626 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2627 	}
2628 
2629 	/* Tell the firmware what we have processed. */
2630 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2631 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2632 }
2633 
2634 /*
2635  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2636  * from power-down sleep mode.
2637  */
2638 static void
2639 iwn_wakeup_intr(struct iwn_softc *sc)
2640 {
2641 	int qid;
2642 
2643 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2644 	    __func__);
2645 
2646 	/* Wakeup RX and TX rings. */
2647 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2648 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2649 		struct iwn_tx_ring *ring = &sc->txq[qid];
2650 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2651 	}
2652 }
2653 
2654 static void
2655 iwn_rftoggle_intr(struct iwn_softc *sc)
2656 {
2657 	struct ifnet *ifp = sc->sc_ifp;
2658 	struct ieee80211com *ic = ifp->if_l2com;
2659 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2660 
2661 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2662 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2663 	if (tmp & IWN_GP_CNTRL_RFKILL)
2664 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2665 	else
2666 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2667 }
2668 
2669 /*
2670  * Dump the error log of the firmware when a firmware panic occurs.  Although
2671  * we can't debug the firmware because it is neither open source nor free, it
2672  * can help us to identify certain classes of problems.
2673  */
2674 static void
2675 iwn_fatal_intr(struct iwn_softc *sc)
2676 {
2677 	const struct iwn_hal *hal = sc->sc_hal;
2678 	struct iwn_fw_dump dump;
2679 	int i;
2680 
2681 	/* Force a complete recalibration on next init. */
2682 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2683 
2684 	/* Check that the error log address is valid. */
2685 	if (sc->errptr < IWN_FW_DATA_BASE ||
2686 	    sc->errptr + sizeof (dump) >
2687 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2688 		kprintf("%s: bad firmware error log address 0x%08x\n",
2689 		    __func__, sc->errptr);
2690 		return;
2691 	}
2692 	if (iwn_nic_lock(sc) != 0) {
2693 		kprintf("%s: could not read firmware error log\n",
2694 		    __func__);
2695 		return;
2696 	}
2697 	/* Read firmware error log from SRAM. */
2698 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2699 	    sizeof (dump) / sizeof (uint32_t));
2700 	iwn_nic_unlock(sc);
2701 
2702 	if (dump.valid == 0) {
2703 		kprintf("%s: firmware error log is empty\n",
2704 		    __func__);
2705 		return;
2706 	}
2707 	kprintf("firmware error log:\n");
2708 	kprintf("  error type      = \"%s\" (0x%08X)\n",
2709 	    (dump.id < NELEM(iwn_fw_errmsg)) ?
2710 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2711 	    dump.id);
2712 	kprintf("  program counter = 0x%08X\n", dump.pc);
2713 	kprintf("  source line     = 0x%08X\n", dump.src_line);
2714 	kprintf("  error data      = 0x%08X%08X\n",
2715 	    dump.error_data[0], dump.error_data[1]);
2716 	kprintf("  branch link     = 0x%08X%08X\n",
2717 	    dump.branch_link[0], dump.branch_link[1]);
2718 	kprintf("  interrupt link  = 0x%08X%08X\n",
2719 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2720 	kprintf("  time            = %u\n", dump.time[0]);
2721 
2722 	/* Dump driver status (TX and RX rings) while we're here. */
2723 	kprintf("driver status:\n");
2724 	for (i = 0; i < hal->ntxqs; i++) {
2725 		struct iwn_tx_ring *ring = &sc->txq[i];
2726 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2727 		    i, ring->qid, ring->cur, ring->queued);
2728 	}
2729 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
2730 }
2731 
2732 static void
2733 iwn_intr(void *arg)
2734 {
2735 	struct iwn_softc *sc = arg;
2736 	struct ifnet *ifp = sc->sc_ifp;
2737 	uint32_t r1, r2, tmp;
2738 
2739 	/* Disable interrupts. */
2740 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2741 
2742 	/* Read interrupts from ICT (fast) or from registers (slow). */
2743 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2744 		tmp = 0;
2745 		while (sc->ict[sc->ict_cur] != 0) {
2746 			tmp |= sc->ict[sc->ict_cur];
2747 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2748 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2749 		}
2750 		tmp = le32toh(tmp);
2751 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2752 			tmp = 0;
2753 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2754 			tmp |= 0x8000;
2755 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2756 		r2 = 0;	/* Unused. */
2757 	} else {
2758 		r1 = IWN_READ(sc, IWN_INT);
2759 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2760 			return;	/* Hardware gone! */
2761 		r2 = IWN_READ(sc, IWN_FH_INT);
2762 	}
2763 
2764 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2765 
2766 	if (r1 == 0 && r2 == 0)
2767 		goto done;	/* Interrupt not for us. */
2768 
2769 	/* Acknowledge interrupts. */
2770 	IWN_WRITE(sc, IWN_INT, r1);
2771 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2772 		IWN_WRITE(sc, IWN_FH_INT, r2);
2773 
2774 	if (r1 & IWN_INT_RF_TOGGLED) {
2775 		iwn_rftoggle_intr(sc);
2776 		goto done;
2777 	}
2778 	if (r1 & IWN_INT_CT_REACHED) {
2779 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2780 		    __func__);
2781 	}
2782 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2783 		iwn_fatal_intr(sc);
2784 		ifp->if_flags &= ~IFF_UP;
2785 		iwn_stop_locked(sc);
2786 		goto done;
2787 	}
2788 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2789 	    (r2 & IWN_FH_INT_RX)) {
2790 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2791 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2792 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2793 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2794 			    IWN_INT_PERIODIC_DIS);
2795 			iwn_notif_intr(sc);
2796 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2797 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2798 				    IWN_INT_PERIODIC_ENA);
2799 			}
2800 		} else
2801 			iwn_notif_intr(sc);
2802 	}
2803 
2804 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2805 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2806 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2807 		wakeup(sc);	/* FH DMA transfer completed. */
2808 	}
2809 
2810 	if (r1 & IWN_INT_ALIVE)
2811 		wakeup(sc);	/* Firmware is alive. */
2812 
2813 	if (r1 & IWN_INT_WAKEUP)
2814 		iwn_wakeup_intr(sc);
2815 
2816 done:
2817 	/* Re-enable interrupts. */
2818 	if (ifp->if_flags & IFF_UP)
2819 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2820 }
2821 
2822 /*
2823  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2824  * 5000 adapters use a slightly different format.)
2825  */
2826 static void
2827 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2828     uint16_t len)
2829 {
2830 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2831 
2832 	*w = htole16(len + 8);
2833 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2834 	    BUS_DMASYNC_PREWRITE);
2835 	if (idx < IWN_SCHED_WINSZ) {
2836 		*(w + IWN_TX_RING_COUNT) = *w;
2837 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2838 		    BUS_DMASYNC_PREWRITE);
2839 	}
2840 }
2841 
2842 static void
2843 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2844     uint16_t len)
2845 {
2846 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2847 
2848 	*w = htole16(id << 12 | (len + 8));
2849 
2850 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2851 	    BUS_DMASYNC_PREWRITE);
2852 	if (idx < IWN_SCHED_WINSZ) {
2853 		*(w + IWN_TX_RING_COUNT) = *w;
2854 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2855 		    BUS_DMASYNC_PREWRITE);
2856 	}
2857 }
2858 
2859 #ifdef notyet
2860 static void
2861 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2862 {
2863 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2864 
2865 	*w = (*w & htole16(0xf000)) | htole16(1);
2866 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2867 	    BUS_DMASYNC_PREWRITE);
2868 	if (idx < IWN_SCHED_WINSZ) {
2869 		*(w + IWN_TX_RING_COUNT) = *w;
2870 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2871 		    BUS_DMASYNC_PREWRITE);
2872 	}
2873 }
2874 #endif
2875 
2876 static uint8_t
2877 iwn_plcp_signal(int rate) {
2878 	int i;
2879 
2880 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2881 		if (rate == iwn_rates[i].rate)
2882 			return i;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 static int
2889 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2890     struct iwn_tx_ring *ring)
2891 {
2892 	const struct iwn_hal *hal = sc->sc_hal;
2893 	const struct ieee80211_txparam *tp;
2894 	const struct iwn_rate *rinfo;
2895 	struct ieee80211vap *vap = ni->ni_vap;
2896 	struct ieee80211com *ic = ni->ni_ic;
2897 	struct iwn_node *wn = (void *)ni;
2898 	struct iwn_tx_desc *desc;
2899 	struct iwn_tx_data *data;
2900 	struct iwn_tx_cmd *cmd;
2901 	struct iwn_cmd_data *tx;
2902 	struct ieee80211_frame *wh;
2903 	struct ieee80211_key *k = NULL;
2904 	struct mbuf *mnew;
2905 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2906 	uint32_t flags;
2907 	u_int hdrlen;
2908 	int totlen, error, pad, nsegs = 0, i, rate;
2909 	uint8_t ridx, type, txant;
2910 
2911 	wh = mtod(m, struct ieee80211_frame *);
2912 	hdrlen = ieee80211_anyhdrsize(wh);
2913 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2914 
2915 	desc = &ring->desc[ring->cur];
2916 	data = &ring->data[ring->cur];
2917 
2918 	/* Choose a TX rate index. */
2919 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2920 	if (type == IEEE80211_FC0_TYPE_MGT)
2921 		rate = tp->mgmtrate;
2922 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2923 		rate = tp->mcastrate;
2924 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2925 		rate = tp->ucastrate;
2926 	else {
2927 		/* XXX pass pktlen */
2928 		ieee80211_ratectl_rate(ni, NULL, 0);
2929 
2930 		rate = ni->ni_txrate;
2931 	}
2932 	ridx = iwn_plcp_signal(rate);
2933 	rinfo = &iwn_rates[ridx];
2934 
2935 	/* Encrypt the frame if need be. */
2936 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2937 		k = ieee80211_crypto_encap(ni, m);
2938 		if (k == NULL) {
2939 			m_freem(m);
2940 			return ENOBUFS;
2941 		}
2942 		/* Packet header may have moved, reset our local pointer. */
2943 		wh = mtod(m, struct ieee80211_frame *);
2944 	}
2945 	totlen = m->m_pkthdr.len;
2946 
2947 	if (ieee80211_radiotap_active_vap(vap)) {
2948 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2949 
2950 		tap->wt_flags = 0;
2951 		tap->wt_rate = rinfo->rate;
2952 		if (k != NULL)
2953 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2954 
2955 		ieee80211_radiotap_tx(vap, m);
2956 	}
2957 
2958 	/* Prepare TX firmware command. */
2959 	cmd = &ring->cmd[ring->cur];
2960 	cmd->code = IWN_CMD_TX_DATA;
2961 	cmd->flags = 0;
2962 	cmd->qid = ring->qid;
2963 	cmd->idx = ring->cur;
2964 
2965 	tx = (struct iwn_cmd_data *)cmd->data;
2966 	/* NB: No need to clear tx, all fields are reinitialized here. */
2967 	tx->scratch = 0;	/* clear "scratch" area */
2968 
2969 	flags = 0;
2970 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2971 		flags |= IWN_TX_NEED_ACK;
2972 	if ((wh->i_fc[0] &
2973 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2974 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2975 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2976 
2977 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2978 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2979 
2980 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2981 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2982 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2983 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2984 			flags |= IWN_TX_NEED_RTS;
2985 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2986 		    ridx >= IWN_RIDX_OFDM6) {
2987 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2988 				flags |= IWN_TX_NEED_CTS;
2989 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2990 				flags |= IWN_TX_NEED_RTS;
2991 		}
2992 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2993 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2994 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2995 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2996 				flags |= IWN_TX_NEED_PROTECTION;
2997 			} else
2998 				flags |= IWN_TX_FULL_TXOP;
2999 		}
3000 	}
3001 
3002 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3003 	    type != IEEE80211_FC0_TYPE_DATA)
3004 		tx->id = hal->broadcast_id;
3005 	else
3006 		tx->id = wn->id;
3007 
3008 	if (type == IEEE80211_FC0_TYPE_MGT) {
3009 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3010 
3011 		/* Tell HW to set timestamp in probe responses. */
3012 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3013 			flags |= IWN_TX_INSERT_TSTAMP;
3014 
3015 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3016 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3017 			tx->timeout = htole16(3);
3018 		else
3019 			tx->timeout = htole16(2);
3020 	} else
3021 		tx->timeout = htole16(0);
3022 
3023 	if (hdrlen & 3) {
3024 		/* First segment length must be a multiple of 4. */
3025 		flags |= IWN_TX_NEED_PADDING;
3026 		pad = 4 - (hdrlen & 3);
3027 	} else
3028 		pad = 0;
3029 
3030 	tx->len = htole16(totlen);
3031 	tx->tid = 0;
3032 	tx->rts_ntries = 60;
3033 	tx->data_ntries = 15;
3034 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3035 	tx->plcp = rinfo->plcp;
3036 	tx->rflags = rinfo->flags;
3037 	if (tx->id == hal->broadcast_id) {
3038 		/* Group or management frame. */
3039 		tx->linkq = 0;
3040 		/* XXX Alternate between antenna A and B? */
3041 		txant = IWN_LSB(sc->txchainmask);
3042 		tx->rflags |= IWN_RFLAG_ANT(txant);
3043 	} else {
3044 		tx->linkq = IWN_RIDX_OFDM54 - ridx;
3045 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3046 	}
3047 
3048 	/* Set physical address of "scratch area". */
3049 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3050 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3051 
3052 	/* Copy 802.11 header in TX command. */
3053 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3054 
3055 	/* Trim 802.11 header. */
3056 	m_adj(m, hdrlen);
3057 	tx->security = 0;
3058 	tx->flags = htole32(flags);
3059 
3060 	if (m->m_len > 0) {
3061 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3062 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3063 		if (error == EFBIG) {
3064 			/* too many fragments, linearize */
3065 			mnew = m_defrag(m, MB_DONTWAIT);
3066 			if (mnew == NULL) {
3067 				device_printf(sc->sc_dev,
3068 				    "%s: could not defrag mbuf\n", __func__);
3069 				m_freem(m);
3070 				return ENOBUFS;
3071 			}
3072 			m = mnew;
3073 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3074 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3075 		}
3076 		if (error != 0) {
3077 			device_printf(sc->sc_dev,
3078 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3079 			    __func__, error);
3080 			m_freem(m);
3081 			return error;
3082 		}
3083 	}
3084 
3085 	data->m = m;
3086 	data->ni = ni;
3087 
3088 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3089 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3090 
3091 	/* Fill TX descriptor. */
3092 	desc->nsegs = 1 + nsegs;
3093 	/* First DMA segment is used by the TX command. */
3094 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3095 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3096 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3097 	/* Other DMA segments are for data payload. */
3098 	for (i = 1; i <= nsegs; i++) {
3099 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3100 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3101 		    segs[i - 1].ds_len << 4);
3102 	}
3103 
3104 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3105 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3106 	    BUS_DMASYNC_PREWRITE);
3107 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3108 	    BUS_DMASYNC_PREWRITE);
3109 
3110 #ifdef notyet
3111 	/* Update TX scheduler. */
3112 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3113 #endif
3114 
3115 	/* Kick TX ring. */
3116 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3117 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3118 
3119 	/* Mark TX ring as full if we reach a certain threshold. */
3120 	if (++ring->queued > IWN_TX_RING_HIMARK)
3121 		sc->qfullmsk |= 1 << ring->qid;
3122 
3123 	return 0;
3124 }
3125 
3126 static int
3127 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3128     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3129     const struct ieee80211_bpf_params *params)
3130 {
3131 	const struct iwn_hal *hal = sc->sc_hal;
3132 	const struct iwn_rate *rinfo;
3133 	struct ifnet *ifp = sc->sc_ifp;
3134 	struct ieee80211vap *vap = ni->ni_vap;
3135 	struct ieee80211com *ic = ifp->if_l2com;
3136 	struct iwn_tx_cmd *cmd;
3137 	struct iwn_cmd_data *tx;
3138 	struct ieee80211_frame *wh;
3139 	struct iwn_tx_desc *desc;
3140 	struct iwn_tx_data *data;
3141 	struct mbuf *mnew;
3142 	bus_addr_t paddr;
3143 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3144 	uint32_t flags;
3145 	u_int hdrlen;
3146 	int totlen, error, pad, nsegs = 0, i, rate;
3147 	uint8_t ridx, type, txant;
3148 
3149 	wh = mtod(m, struct ieee80211_frame *);
3150 	hdrlen = ieee80211_anyhdrsize(wh);
3151 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3152 
3153 	desc = &ring->desc[ring->cur];
3154 	data = &ring->data[ring->cur];
3155 
3156 	/* Choose a TX rate index. */
3157 	rate = params->ibp_rate0;
3158 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3159 		/* XXX fall back to mcast/mgmt rate? */
3160 		m_freem(m);
3161 		return EINVAL;
3162 	}
3163 	ridx = iwn_plcp_signal(rate);
3164 	rinfo = &iwn_rates[ridx];
3165 
3166 	totlen = m->m_pkthdr.len;
3167 
3168 	/* Prepare TX firmware command. */
3169 	cmd = &ring->cmd[ring->cur];
3170 	cmd->code = IWN_CMD_TX_DATA;
3171 	cmd->flags = 0;
3172 	cmd->qid = ring->qid;
3173 	cmd->idx = ring->cur;
3174 
3175 	tx = (struct iwn_cmd_data *)cmd->data;
3176 	/* NB: No need to clear tx, all fields are reinitialized here. */
3177 	tx->scratch = 0;	/* clear "scratch" area */
3178 
3179 	flags = 0;
3180 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3181 		flags |= IWN_TX_NEED_ACK;
3182 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3183 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3184 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3185 			flags &= ~IWN_TX_NEED_RTS;
3186 			flags |= IWN_TX_NEED_PROTECTION;
3187 		} else
3188 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3189 	}
3190 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3191 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3192 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3193 			flags &= ~IWN_TX_NEED_CTS;
3194 			flags |= IWN_TX_NEED_PROTECTION;
3195 		} else
3196 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3197 	}
3198 	if (type == IEEE80211_FC0_TYPE_MGT) {
3199 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3200 
3201 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3202 			flags |= IWN_TX_INSERT_TSTAMP;
3203 
3204 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3205 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3206 			tx->timeout = htole16(3);
3207 		else
3208 			tx->timeout = htole16(2);
3209 	} else
3210 		tx->timeout = htole16(0);
3211 
3212 	if (hdrlen & 3) {
3213 		/* First segment length must be a multiple of 4. */
3214 		flags |= IWN_TX_NEED_PADDING;
3215 		pad = 4 - (hdrlen & 3);
3216 	} else
3217 		pad = 0;
3218 
3219 	if (ieee80211_radiotap_active_vap(vap)) {
3220 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3221 
3222 		tap->wt_flags = 0;
3223 		tap->wt_rate = rate;
3224 
3225 		ieee80211_radiotap_tx(vap, m);
3226 	}
3227 
3228 	tx->len = htole16(totlen);
3229 	tx->tid = 0;
3230 	tx->id = hal->broadcast_id;
3231 	tx->rts_ntries = params->ibp_try1;
3232 	tx->data_ntries = params->ibp_try0;
3233 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3234 	tx->plcp = rinfo->plcp;
3235 	tx->rflags = rinfo->flags;
3236 	/* Group or management frame. */
3237 	tx->linkq = 0;
3238 	txant = IWN_LSB(sc->txchainmask);
3239 	tx->rflags |= IWN_RFLAG_ANT(txant);
3240 	/* Set physical address of "scratch area". */
3241 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3242 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3243 	tx->hiaddr = IWN_HIADDR(paddr);
3244 
3245 	/* Copy 802.11 header in TX command. */
3246 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3247 
3248 	/* Trim 802.11 header. */
3249 	m_adj(m, hdrlen);
3250 	tx->security = 0;
3251 	tx->flags = htole32(flags);
3252 
3253 	if (m->m_len > 0) {
3254 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3255 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3256 		if (error == EFBIG) {
3257 			/* Too many fragments, linearize. */
3258 			mnew = m_defrag(m, MB_DONTWAIT);
3259 			if (mnew == NULL) {
3260 				device_printf(sc->sc_dev,
3261 				    "%s: could not defrag mbuf\n", __func__);
3262 				m_freem(m);
3263 				return ENOBUFS;
3264 			}
3265 			m = mnew;
3266 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3267 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3268 		}
3269 		if (error != 0) {
3270 			device_printf(sc->sc_dev,
3271 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3272 			    __func__, error);
3273 			m_freem(m);
3274 			return error;
3275 		}
3276 	}
3277 
3278 	data->m = m;
3279 	data->ni = ni;
3280 
3281 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3282 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3283 
3284 	/* Fill TX descriptor. */
3285 	desc->nsegs = 1 + nsegs;
3286 	/* First DMA segment is used by the TX command. */
3287 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3288 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3289 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3290 	/* Other DMA segments are for data payload. */
3291 	for (i = 1; i <= nsegs; i++) {
3292 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3293 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3294 		    segs[i - 1].ds_len << 4);
3295 	}
3296 
3297 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3298 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3299 	    BUS_DMASYNC_PREWRITE);
3300 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3301 	    BUS_DMASYNC_PREWRITE);
3302 
3303 #ifdef notyet
3304 	/* Update TX scheduler. */
3305 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3306 #endif
3307 
3308 	/* Kick TX ring. */
3309 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3310 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3311 
3312 	/* Mark TX ring as full if we reach a certain threshold. */
3313 	if (++ring->queued > IWN_TX_RING_HIMARK)
3314 		sc->qfullmsk |= 1 << ring->qid;
3315 
3316 	return 0;
3317 }
3318 
3319 static int
3320 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3321 	const struct ieee80211_bpf_params *params)
3322 {
3323 	struct ieee80211com *ic = ni->ni_ic;
3324 	struct ifnet *ifp = ic->ic_ifp;
3325 	struct iwn_softc *sc = ifp->if_softc;
3326 	struct iwn_tx_ring *txq;
3327 	int error = 0;
3328 
3329 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
3330 		ieee80211_free_node(ni);
3331 		m_freem(m);
3332 		return ENETDOWN;
3333 	}
3334 
3335 	if (params == NULL)
3336 		txq = &sc->txq[M_WME_GETAC(m)];
3337 	else
3338 		txq = &sc->txq[params->ibp_pri & 3];
3339 
3340 	if (params == NULL) {
3341 		/*
3342 		 * Legacy path; interpret frame contents to decide
3343 		 * precisely how to send the frame.
3344 		 */
3345 		error = iwn_tx_data(sc, m, ni, txq);
3346 	} else {
3347 		/*
3348 		 * Caller supplied explicit parameters to use in
3349 		 * sending the frame.
3350 		 */
3351 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3352 	}
3353 	if (error != 0) {
3354 		/* NB: m is reclaimed on tx failure */
3355 		ieee80211_free_node(ni);
3356 		ifp->if_oerrors++;
3357 	}
3358 	return error;
3359 }
3360 
3361 static void
3362 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3363 {
3364 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3365 	wlan_serialize_enter();
3366 	iwn_start_locked(ifp);
3367 	wlan_serialize_exit();
3368 }
3369 
3370 static void
3371 iwn_start_locked(struct ifnet *ifp)
3372 {
3373 	struct iwn_softc *sc = ifp->if_softc;
3374 	struct ieee80211_node *ni;
3375 	struct iwn_tx_ring *txq;
3376 	struct mbuf *m;
3377 	int pri;
3378 
3379 	for (;;) {
3380 		if (sc->qfullmsk != 0) {
3381 			ifq_set_oactive(&ifp->if_snd);
3382 			break;
3383 		}
3384 		m = ifq_dequeue(&ifp->if_snd, NULL);
3385 		if (m == NULL)
3386 			break;
3387 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
3388 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3389 		pri = M_WME_GETAC(m);
3390 		txq = &sc->txq[pri];
3391 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3392 			ifp->if_oerrors++;
3393 			ieee80211_free_node(ni);
3394 			break;
3395 		}
3396 		sc->sc_tx_timer = 5;
3397 	}
3398 }
3399 
3400 static void
3401 iwn_watchdog(struct iwn_softc *sc)
3402 {
3403 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3404 		struct ifnet *ifp = sc->sc_ifp;
3405 		struct ieee80211com *ic = ifp->if_l2com;
3406 
3407 		if_printf(ifp, "device timeout\n");
3408 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3409 	}
3410 }
3411 
3412 static int
3413 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
3414 {
3415 	struct iwn_softc *sc = ifp->if_softc;
3416 	struct ieee80211com *ic = ifp->if_l2com;
3417 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3418 	struct ifreq *ifr = (struct ifreq *) data;
3419 	int error = 0, startall = 0, stop = 0;
3420 
3421 	switch (cmd) {
3422 	case SIOCSIFFLAGS:
3423 		if (ifp->if_flags & IFF_UP) {
3424 			if (!(ifp->if_flags & IFF_RUNNING)) {
3425 				iwn_init_locked(sc);
3426 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3427 					startall = 1;
3428 				else
3429 					stop = 1;
3430 			}
3431 		} else {
3432 			if (ifp->if_flags & IFF_RUNNING)
3433 				iwn_stop_locked(sc);
3434 		}
3435 		if (startall)
3436 			ieee80211_start_all(ic);
3437 		else if (vap != NULL && stop)
3438 			ieee80211_stop(vap);
3439 		break;
3440 	case SIOCGIFMEDIA:
3441 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3442 		break;
3443 	case SIOCGIFADDR:
3444 		error = ether_ioctl(ifp, cmd, data);
3445 		break;
3446 	default:
3447 		error = EINVAL;
3448 		break;
3449 	}
3450 	return error;
3451 }
3452 
3453 /*
3454  * Send a command to the firmware.
3455  */
3456 static int
3457 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3458 {
3459 	struct iwn_tx_ring *ring = &sc->txq[4];
3460 	struct iwn_tx_desc *desc;
3461 	struct iwn_tx_data *data;
3462 	struct iwn_tx_cmd *cmd;
3463 	struct mbuf *m;
3464 	bus_addr_t paddr;
3465 	int totlen, error;
3466 
3467 	desc = &ring->desc[ring->cur];
3468 	data = &ring->data[ring->cur];
3469 	totlen = 4 + size;
3470 
3471 	if (size > sizeof cmd->data) {
3472 		/* Command is too large to fit in a descriptor. */
3473 		if (totlen > MJUMPAGESIZE)
3474 			return EINVAL;
3475 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3476 		if (m == NULL)
3477 			return ENOMEM;
3478 		cmd = mtod(m, struct iwn_tx_cmd *);
3479 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3480 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3481 		if (error != 0) {
3482 			m_freem(m);
3483 			return error;
3484 		}
3485 		data->m = m;
3486 	} else {
3487 		cmd = &ring->cmd[ring->cur];
3488 		paddr = data->cmd_paddr;
3489 	}
3490 
3491 	cmd->code = code;
3492 	cmd->flags = 0;
3493 	cmd->qid = ring->qid;
3494 	cmd->idx = ring->cur;
3495 	memcpy(cmd->data, buf, size);
3496 
3497 	desc->nsegs = 1;
3498 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3499 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3500 
3501 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3502 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3503 	    cmd->flags, cmd->qid, cmd->idx);
3504 
3505 	if (size > sizeof cmd->data) {
3506 		bus_dmamap_sync(ring->data_dmat, data->map,
3507 		    BUS_DMASYNC_PREWRITE);
3508 	} else {
3509 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3510 		    BUS_DMASYNC_PREWRITE);
3511 	}
3512 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3513 	    BUS_DMASYNC_PREWRITE);
3514 
3515 #ifdef notyet
3516 	/* Update TX scheduler. */
3517 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3518 #endif
3519 
3520 	/* Kick command ring. */
3521 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3522 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3523 
3524 	if (async)
3525 		error = 0;
3526 	else
3527 		error = zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
3528 	return error;
3529 }
3530 
3531 static int
3532 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3533 {
3534 	struct iwn4965_node_info hnode;
3535 	caddr_t src, dst;
3536 
3537 	/*
3538 	 * We use the node structure for 5000 Series internally (it is
3539 	 * a superset of the one for 4965AGN). We thus copy the common
3540 	 * fields before sending the command.
3541 	 */
3542 	src = (caddr_t)node;
3543 	dst = (caddr_t)&hnode;
3544 	memcpy(dst, src, 48);
3545 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3546 	memcpy(dst + 48, src + 72, 20);
3547 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3548 }
3549 
3550 static int
3551 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3552 {
3553 	/* Direct mapping. */
3554 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3555 }
3556 
3557 #if 0	/* HT */
3558 static const uint8_t iwn_ridx_to_plcp[] = {
3559 	10, 20, 55, 110, /* CCK */
3560 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3561 };
3562 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3563 	0, 0, 0, 0, 			/* CCK */
3564 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3565 };
3566 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3567 	0, 0, 0, 0, 			/* CCK */
3568 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3569 };
3570 #endif
3571 static const uint8_t iwn_prev_ridx[] = {
3572 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3573 	0, 0, 1, 5,			/* CCK */
3574 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3575 };
3576 
3577 /*
3578  * Configure hardware link parameters for the specified
3579  * node operating on the specified channel.
3580  */
3581 static int
3582 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3583 {
3584 	struct ifnet *ifp = sc->sc_ifp;
3585 	struct ieee80211com *ic = ifp->if_l2com;
3586 	struct iwn_cmd_link_quality linkq;
3587 	const struct iwn_rate *rinfo;
3588 	int i;
3589 	uint8_t txant, ridx;
3590 
3591 	/* Use the first valid TX antenna. */
3592 	txant = IWN_LSB(sc->txchainmask);
3593 
3594 	memset(&linkq, 0, sizeof linkq);
3595 	linkq.id = id;
3596 	linkq.antmsk_1stream = txant;
3597 	linkq.antmsk_2stream = IWN_ANT_AB;
3598 	linkq.ampdu_max = 31;
3599 	linkq.ampdu_threshold = 3;
3600 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3601 
3602 #if 0	/* HT */
3603 	if (IEEE80211_IS_CHAN_HT(c))
3604 		linkq.mimo = 1;
3605 #endif
3606 
3607 	if (id == IWN_ID_BSS)
3608 		ridx = IWN_RIDX_OFDM54;
3609 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3610 		ridx = IWN_RIDX_OFDM6;
3611 	else
3612 		ridx = IWN_RIDX_CCK1;
3613 
3614 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3615 		rinfo = &iwn_rates[ridx];
3616 #if 0	/* HT */
3617 		if (IEEE80211_IS_CHAN_HT40(c)) {
3618 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3619 					 | IWN_RIDX_MCS;
3620 			linkq.retry[i].rflags = IWN_RFLAG_HT
3621 					 | IWN_RFLAG_HT40;
3622 			/* XXX shortGI */
3623 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3624 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3625 					 | IWN_RIDX_MCS;
3626 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3627 			/* XXX shortGI */
3628 		} else
3629 #endif
3630 		{
3631 			linkq.retry[i].plcp = rinfo->plcp;
3632 			linkq.retry[i].rflags = rinfo->flags;
3633 		}
3634 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3635 		ridx = iwn_prev_ridx[ridx];
3636 	}
3637 #ifdef IWN_DEBUG
3638 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3639 		kprintf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3640 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3641 		kprintf("%s:", __func__);
3642 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3643 			kprintf(" %d:%x", linkq.retry[i].plcp,
3644 			    linkq.retry[i].rflags);
3645 		kprintf("\n");
3646 	}
3647 #endif
3648 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3649 }
3650 
3651 /*
3652  * Broadcast node is used to send group-addressed and management frames.
3653  */
3654 static int
3655 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3656 {
3657 	const struct iwn_hal *hal = sc->sc_hal;
3658 	struct ifnet *ifp = sc->sc_ifp;
3659 	struct iwn_node_info node;
3660 	int error;
3661 
3662 	memset(&node, 0, sizeof node);
3663 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3664 	node.id = hal->broadcast_id;
3665 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3666 	error = hal->add_node(sc, &node, async);
3667 	if (error != 0)
3668 		return error;
3669 
3670 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3671 	return error;
3672 }
3673 
3674 static int
3675 iwn_wme_update(struct ieee80211com *ic)
3676 {
3677 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3678 #define	IWN_TXOP_TO_US(v)		(v<<5)
3679 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3680 	struct iwn_edca_params cmd;
3681 	int i;
3682 
3683 	memset(&cmd, 0, sizeof cmd);
3684 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3685 	for (i = 0; i < WME_NUM_AC; i++) {
3686 		const struct wmeParams *wmep =
3687 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3688 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3689 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3690 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3691 		cmd.ac[i].txoplimit =
3692 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3693 	}
3694 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3695 	return 0;
3696 #undef IWN_TXOP_TO_US
3697 #undef IWN_EXP2
3698 }
3699 
3700 static void
3701 iwn_update_mcast(struct ifnet *ifp)
3702 {
3703 	/* Ignore */
3704 }
3705 
3706 static void
3707 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3708 {
3709 	struct iwn_cmd_led led;
3710 
3711 	/* Clear microcode LED ownership. */
3712 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3713 
3714 	led.which = which;
3715 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3716 	led.off = off;
3717 	led.on = on;
3718 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3719 }
3720 
3721 /*
3722  * Set the critical temperature at which the firmware will stop the radio
3723  * and notify us.
3724  */
3725 static int
3726 iwn_set_critical_temp(struct iwn_softc *sc)
3727 {
3728 	struct iwn_critical_temp crit;
3729 	int32_t temp;
3730 
3731 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3732 
3733 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3734 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3735 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3736 		temp = IWN_CTOK(110);
3737 	else
3738 		temp = 110;
3739 	memset(&crit, 0, sizeof crit);
3740 	crit.tempR = htole32(temp);
3741 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3742 	    temp);
3743 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3744 }
3745 
3746 static int
3747 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3748 {
3749 	struct iwn_cmd_timing cmd;
3750 	uint64_t val, mod;
3751 
3752 	memset(&cmd, 0, sizeof cmd);
3753 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3754 	cmd.bintval = htole16(ni->ni_intval);
3755 	cmd.lintval = htole16(10);
3756 
3757 	/* Compute remaining time until next beacon. */
3758 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3759 	mod = le64toh(cmd.tstamp) % val;
3760 	cmd.binitval = htole32((uint32_t)(val - mod));
3761 
3762 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3763 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3764 
3765 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3766 }
3767 
3768 static void
3769 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3770 {
3771 	struct ifnet *ifp = sc->sc_ifp;
3772 	struct ieee80211com *ic = ifp->if_l2com;
3773 
3774 	/* Adjust TX power if need be (delta >= 3 degC.) */
3775 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3776 	    __func__, sc->temp, temp);
3777 	if (abs(temp - sc->temp) >= 3) {
3778 		/* Record temperature of last calibration. */
3779 		sc->temp = temp;
3780 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3781 	}
3782 }
3783 
3784 /*
3785  * Set TX power for current channel (each rate has its own power settings).
3786  * This function takes into account the regulatory information from EEPROM,
3787  * the current temperature and the current voltage.
3788  */
3789 static int
3790 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3791     int async)
3792 {
3793 /* Fixed-point arithmetic division using a n-bit fractional part. */
3794 #define fdivround(a, b, n)	\
3795 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3796 /* Linear interpolation. */
3797 #define interpolate(x, x1, y1, x2, y2, n)	\
3798 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3799 
3800 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3801 	struct ifnet *ifp = sc->sc_ifp;
3802 	struct ieee80211com *ic = ifp->if_l2com;
3803 	struct iwn_ucode_info *uc = &sc->ucode_info;
3804 	struct iwn4965_cmd_txpower cmd;
3805 	struct iwn4965_eeprom_chan_samples *chans;
3806 	int32_t vdiff, tdiff;
3807 	int i, c, grp, maxpwr;
3808 	const uint8_t *rf_gain, *dsp_gain;
3809 	uint8_t chan;
3810 
3811 	/* Retrieve channel number. */
3812 	chan = ieee80211_chan2ieee(ic, ch);
3813 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3814 	    chan);
3815 
3816 	memset(&cmd, 0, sizeof cmd);
3817 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3818 	cmd.chan = chan;
3819 
3820 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3821 		maxpwr   = sc->maxpwr5GHz;
3822 		rf_gain  = iwn4965_rf_gain_5ghz;
3823 		dsp_gain = iwn4965_dsp_gain_5ghz;
3824 	} else {
3825 		maxpwr   = sc->maxpwr2GHz;
3826 		rf_gain  = iwn4965_rf_gain_2ghz;
3827 		dsp_gain = iwn4965_dsp_gain_2ghz;
3828 	}
3829 
3830 	/* Compute voltage compensation. */
3831 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3832 	if (vdiff > 0)
3833 		vdiff *= 2;
3834 	if (abs(vdiff) > 2)
3835 		vdiff = 0;
3836 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3837 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3838 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3839 
3840 	/* Get channel attenuation group. */
3841 	if (chan <= 20)		/* 1-20 */
3842 		grp = 4;
3843 	else if (chan <= 43)	/* 34-43 */
3844 		grp = 0;
3845 	else if (chan <= 70)	/* 44-70 */
3846 		grp = 1;
3847 	else if (chan <= 124)	/* 71-124 */
3848 		grp = 2;
3849 	else			/* 125-200 */
3850 		grp = 3;
3851 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3852 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3853 
3854 	/* Get channel sub-band. */
3855 	for (i = 0; i < IWN_NBANDS; i++)
3856 		if (sc->bands[i].lo != 0 &&
3857 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3858 			break;
3859 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3860 		return EINVAL;
3861 	chans = sc->bands[i].chans;
3862 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3863 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3864 
3865 	for (c = 0; c < 2; c++) {
3866 		uint8_t power, gain, temp;
3867 		int maxchpwr, pwr, ridx, idx;
3868 
3869 		power = interpolate(chan,
3870 		    chans[0].num, chans[0].samples[c][1].power,
3871 		    chans[1].num, chans[1].samples[c][1].power, 1);
3872 		gain  = interpolate(chan,
3873 		    chans[0].num, chans[0].samples[c][1].gain,
3874 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3875 		temp  = interpolate(chan,
3876 		    chans[0].num, chans[0].samples[c][1].temp,
3877 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3878 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3879 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3880 		    __func__, c, power, gain, temp);
3881 
3882 		/* Compute temperature compensation. */
3883 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3884 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3885 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3886 		    __func__, tdiff, sc->temp, temp);
3887 
3888 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3889 			/* Convert dBm to half-dBm. */
3890 			maxchpwr = sc->maxpwr[chan] * 2;
3891 			if ((ridx / 8) & 1)
3892 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3893 
3894 			pwr = maxpwr;
3895 
3896 			/* Adjust TX power based on rate. */
3897 			if ((ridx % 8) == 5)
3898 				pwr -= 15;	/* OFDM48: -7.5dB */
3899 			else if ((ridx % 8) == 6)
3900 				pwr -= 17;	/* OFDM54: -8.5dB */
3901 			else if ((ridx % 8) == 7)
3902 				pwr -= 20;	/* OFDM60: -10dB */
3903 			else
3904 				pwr -= 10;	/* Others: -5dB */
3905 
3906 			/* Do not exceed channel max TX power. */
3907 			if (pwr > maxchpwr)
3908 				pwr = maxchpwr;
3909 
3910 			idx = gain - (pwr - power) - tdiff - vdiff;
3911 			if ((ridx / 8) & 1)	/* MIMO */
3912 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3913 
3914 			if (cmd.band == 0)
3915 				idx += 9;	/* 5GHz */
3916 			if (ridx == IWN_RIDX_MAX)
3917 				idx += 5;	/* CCK */
3918 
3919 			/* Make sure idx stays in a valid range. */
3920 			if (idx < 0)
3921 				idx = 0;
3922 			else if (idx > IWN4965_MAX_PWR_INDEX)
3923 				idx = IWN4965_MAX_PWR_INDEX;
3924 
3925 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3926 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3927 			    __func__, c, ridx, idx);
3928 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3929 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3930 		}
3931 	}
3932 
3933 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3934 	    "%s: set tx power for chan %d\n", __func__, chan);
3935 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3936 
3937 #undef interpolate
3938 #undef fdivround
3939 }
3940 
3941 static int
3942 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3943     int async)
3944 {
3945 	struct iwn5000_cmd_txpower cmd;
3946 
3947 	/*
3948 	 * TX power calibration is handled automatically by the firmware
3949 	 * for 5000 Series.
3950 	 */
3951 	memset(&cmd, 0, sizeof cmd);
3952 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3953 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3954 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3955 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3956 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3957 }
3958 
3959 /*
3960  * Retrieve the maximum RSSI (in dBm) among receivers.
3961  */
3962 static int
3963 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3964 {
3965 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3966 	uint8_t mask, agc;
3967 	int rssi;
3968 
3969 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3970 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3971 
3972 	rssi = 0;
3973 #if 0
3974 	if (mask & IWN_ANT_A)	/* Ant A */
3975 		rssi = max(rssi, phy->rssi[0]);
3976 	if (mask & IWN_ATH_B)	/* Ant B */
3977 		rssi = max(rssi, phy->rssi[2]);
3978 	if (mask & IWN_ANT_C)	/* Ant C */
3979 		rssi = max(rssi, phy->rssi[4]);
3980 #else
3981 	rssi = max(rssi, phy->rssi[0]);
3982 	rssi = max(rssi, phy->rssi[2]);
3983 	rssi = max(rssi, phy->rssi[4]);
3984 #endif
3985 
3986 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3987 	    "result %d\n", __func__, agc, mask,
3988 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3989 	    rssi - agc - IWN_RSSI_TO_DBM);
3990 	return rssi - agc - IWN_RSSI_TO_DBM;
3991 }
3992 
3993 static int
3994 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3995 {
3996 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3997 	int rssi;
3998 	uint8_t agc;
3999 
4000 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4001 
4002 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4003 		   le16toh(phy->rssi[1]) & 0xff);
4004 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4005 
4006 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
4007 	    "result %d\n", __func__, agc,
4008 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4009 	    rssi - agc - IWN_RSSI_TO_DBM);
4010 	return rssi - agc - IWN_RSSI_TO_DBM;
4011 }
4012 
4013 /*
4014  * Retrieve the average noise (in dBm) among receivers.
4015  */
4016 static int
4017 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4018 {
4019 	int i, total, nbant, noise;
4020 
4021 	total = nbant = 0;
4022 	for (i = 0; i < 3; i++) {
4023 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4024 			continue;
4025 		total += noise;
4026 		nbant++;
4027 	}
4028 	/* There should be at least one antenna but check anyway. */
4029 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4030 }
4031 
4032 /*
4033  * Compute temperature (in degC) from last received statistics.
4034  */
4035 static int
4036 iwn4965_get_temperature(struct iwn_softc *sc)
4037 {
4038 	struct iwn_ucode_info *uc = &sc->ucode_info;
4039 	int32_t r1, r2, r3, r4, temp;
4040 
4041 	r1 = le32toh(uc->temp[0].chan20MHz);
4042 	r2 = le32toh(uc->temp[1].chan20MHz);
4043 	r3 = le32toh(uc->temp[2].chan20MHz);
4044 	r4 = le32toh(sc->rawtemp);
4045 
4046 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4047 		return 0;
4048 
4049 	/* Sign-extend 23-bit R4 value to 32-bit. */
4050 	r4 = (r4 << 8) >> 8;
4051 	/* Compute temperature in Kelvin. */
4052 	temp = (259 * (r4 - r2)) / (r3 - r1);
4053 	temp = (temp * 97) / 100 + 8;
4054 
4055 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4056 	    IWN_KTOC(temp));
4057 	return IWN_KTOC(temp);
4058 }
4059 
4060 static int
4061 iwn5000_get_temperature(struct iwn_softc *sc)
4062 {
4063 	int32_t temp;
4064 
4065 	/*
4066 	 * Temperature is not used by the driver for 5000 Series because
4067 	 * TX power calibration is handled by firmware.  We export it to
4068 	 * users through the sensor framework though.
4069 	 */
4070 	temp = le32toh(sc->rawtemp);
4071 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4072 		temp = (temp / -5) + sc->temp_off;
4073 		temp = IWN_KTOC(temp);
4074 	}
4075 	return temp;
4076 }
4077 
4078 /*
4079  * Initialize sensitivity calibration state machine.
4080  */
4081 static int
4082 iwn_init_sensitivity(struct iwn_softc *sc)
4083 {
4084 	const struct iwn_hal *hal = sc->sc_hal;
4085 	struct iwn_calib_state *calib = &sc->calib;
4086 	uint32_t flags;
4087 	int error;
4088 
4089 	/* Reset calibration state machine. */
4090 	memset(calib, 0, sizeof (*calib));
4091 	calib->state = IWN_CALIB_STATE_INIT;
4092 	calib->cck_state = IWN_CCK_STATE_HIFA;
4093 	/* Set initial correlation values. */
4094 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4095 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4096 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4097 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4098 	calib->cck_x4      = 125;
4099 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4100 	calib->energy_cck  = sc->limits->energy_cck;
4101 
4102 	/* Write initial sensitivity. */
4103 	error = iwn_send_sensitivity(sc);
4104 	if (error != 0)
4105 		return error;
4106 
4107 	/* Write initial gains. */
4108 	error = hal->init_gains(sc);
4109 	if (error != 0)
4110 		return error;
4111 
4112 	/* Request statistics at each beacon interval. */
4113 	flags = 0;
4114 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4115 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4116 }
4117 
4118 /*
4119  * Collect noise and RSSI statistics for the first 20 beacons received
4120  * after association and use them to determine connected antennas and
4121  * to set differential gains.
4122  */
4123 static void
4124 iwn_collect_noise(struct iwn_softc *sc,
4125     const struct iwn_rx_general_stats *stats)
4126 {
4127 	const struct iwn_hal *hal = sc->sc_hal;
4128 	struct iwn_calib_state *calib = &sc->calib;
4129 	uint32_t val;
4130 	int i;
4131 
4132 	/* Accumulate RSSI and noise for all 3 antennas. */
4133 	for (i = 0; i < 3; i++) {
4134 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4135 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4136 	}
4137 	/* NB: We update differential gains only once after 20 beacons. */
4138 	if (++calib->nbeacons < 20)
4139 		return;
4140 
4141 	/* Determine highest average RSSI. */
4142 	val = MAX(calib->rssi[0], calib->rssi[1]);
4143 	val = MAX(calib->rssi[2], val);
4144 
4145 	/* Determine which antennas are connected. */
4146 	sc->chainmask = sc->rxchainmask;
4147 	for (i = 0; i < 3; i++)
4148 		if (val - calib->rssi[i] > 15 * 20)
4149 			sc->chainmask &= ~(1 << i);
4150 
4151 	/* If none of the TX antennas are connected, keep at least one. */
4152 	if ((sc->chainmask & sc->txchainmask) == 0)
4153 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4154 
4155 	(void)hal->set_gains(sc);
4156 	calib->state = IWN_CALIB_STATE_RUN;
4157 
4158 #ifdef notyet
4159 	/* XXX Disable RX chains with no antennas connected. */
4160 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4161 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4162 #endif
4163 
4164 #if 0
4165 	/* XXX: not yet */
4166 	/* Enable power-saving mode if requested by user. */
4167 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4168 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4169 #endif
4170 }
4171 
4172 static int
4173 iwn4965_init_gains(struct iwn_softc *sc)
4174 {
4175 	struct iwn_phy_calib_gain cmd;
4176 
4177 	memset(&cmd, 0, sizeof cmd);
4178 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4179 	/* Differential gains initially set to 0 for all 3 antennas. */
4180 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4181 	    "%s: setting initial differential gains\n", __func__);
4182 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4183 }
4184 
4185 static int
4186 iwn5000_init_gains(struct iwn_softc *sc)
4187 {
4188 	struct iwn_phy_calib cmd;
4189 
4190 	memset(&cmd, 0, sizeof cmd);
4191 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4192 	cmd.ngroups = 1;
4193 	cmd.isvalid = 1;
4194 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4195 	    "%s: setting initial differential gains\n", __func__);
4196 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4197 }
4198 
4199 static int
4200 iwn4965_set_gains(struct iwn_softc *sc)
4201 {
4202 	struct iwn_calib_state *calib = &sc->calib;
4203 	struct iwn_phy_calib_gain cmd;
4204 	int i, delta, noise;
4205 
4206 	/* Get minimal noise among connected antennas. */
4207 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4208 	for (i = 0; i < 3; i++)
4209 		if (sc->chainmask & (1 << i))
4210 			noise = MIN(calib->noise[i], noise);
4211 
4212 	memset(&cmd, 0, sizeof cmd);
4213 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4214 	/* Set differential gains for connected antennas. */
4215 	for (i = 0; i < 3; i++) {
4216 		if (sc->chainmask & (1 << i)) {
4217 			/* Compute attenuation (in unit of 1.5dB). */
4218 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4219 			/* NB: delta <= 0 */
4220 			/* Limit to [-4.5dB,0]. */
4221 			cmd.gain[i] = MIN(abs(delta), 3);
4222 			if (delta < 0)
4223 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4224 		}
4225 	}
4226 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4227 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4228 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4229 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4230 }
4231 
4232 static int
4233 iwn5000_set_gains(struct iwn_softc *sc)
4234 {
4235 	struct iwn_calib_state *calib = &sc->calib;
4236 	struct iwn_phy_calib_gain cmd;
4237 	int i, ant, delta, div;
4238 
4239 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4240 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4241 
4242 	memset(&cmd, 0, sizeof cmd);
4243 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4244 	cmd.ngroups = 1;
4245 	cmd.isvalid = 1;
4246 	/* Get first available RX antenna as referential. */
4247 	ant = IWN_LSB(sc->rxchainmask);
4248 	/* Set differential gains for other antennas. */
4249 	for (i = ant + 1; i < 3; i++) {
4250 		if (sc->chainmask & (1 << i)) {
4251 			/* The delta is relative to antenna "ant". */
4252 			delta = ((int32_t)calib->noise[ant] -
4253 			    (int32_t)calib->noise[i]) / div;
4254 			/* Limit to [-4.5dB,+4.5dB]. */
4255 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4256 			if (delta < 0)
4257 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4258 		}
4259 	}
4260 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4261 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4262 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4263 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4264 }
4265 
4266 /*
4267  * Tune RF RX sensitivity based on the number of false alarms detected
4268  * during the last beacon period.
4269  */
4270 static void
4271 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4272 {
4273 #define inc(val, inc, max)			\
4274 	if ((val) < (max)) {			\
4275 		if ((val) < (max) - (inc))	\
4276 			(val) += (inc);		\
4277 		else				\
4278 			(val) = (max);		\
4279 		needs_update = 1;		\
4280 	}
4281 #define dec(val, dec, min)			\
4282 	if ((val) > (min)) {			\
4283 		if ((val) > (min) + (dec))	\
4284 			(val) -= (dec);		\
4285 		else				\
4286 			(val) = (min);		\
4287 		needs_update = 1;		\
4288 	}
4289 
4290 	const struct iwn_sensitivity_limits *limits = sc->limits;
4291 	struct iwn_calib_state *calib = &sc->calib;
4292 	uint32_t val, rxena, fa;
4293 	uint32_t energy[3], energy_min;
4294 	uint8_t noise[3], noise_ref;
4295 	int i, needs_update = 0;
4296 
4297 	/* Check that we've been enabled long enough. */
4298 	rxena = le32toh(stats->general.load);
4299 	if (rxena == 0)
4300 		return;
4301 
4302 	/* Compute number of false alarms since last call for OFDM. */
4303 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4304 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4305 	fa *= 200 * 1024;	/* 200TU */
4306 
4307 	/* Save counters values for next call. */
4308 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4309 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4310 
4311 	if (fa > 50 * rxena) {
4312 		/* High false alarm count, decrease sensitivity. */
4313 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4314 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4315 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4316 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4317 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4318 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4319 
4320 	} else if (fa < 5 * rxena) {
4321 		/* Low false alarm count, increase sensitivity. */
4322 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4323 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4324 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4325 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4326 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4327 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4328 	}
4329 
4330 	/* Compute maximum noise among 3 receivers. */
4331 	for (i = 0; i < 3; i++)
4332 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4333 	val = MAX(noise[0], noise[1]);
4334 	val = MAX(noise[2], val);
4335 	/* Insert it into our samples table. */
4336 	calib->noise_samples[calib->cur_noise_sample] = val;
4337 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4338 
4339 	/* Compute maximum noise among last 20 samples. */
4340 	noise_ref = calib->noise_samples[0];
4341 	for (i = 1; i < 20; i++)
4342 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4343 
4344 	/* Compute maximum energy among 3 receivers. */
4345 	for (i = 0; i < 3; i++)
4346 		energy[i] = le32toh(stats->general.energy[i]);
4347 	val = MIN(energy[0], energy[1]);
4348 	val = MIN(energy[2], val);
4349 	/* Insert it into our samples table. */
4350 	calib->energy_samples[calib->cur_energy_sample] = val;
4351 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4352 
4353 	/* Compute minimum energy among last 10 samples. */
4354 	energy_min = calib->energy_samples[0];
4355 	for (i = 1; i < 10; i++)
4356 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4357 	energy_min += 6;
4358 
4359 	/* Compute number of false alarms since last call for CCK. */
4360 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4361 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4362 	fa *= 200 * 1024;	/* 200TU */
4363 
4364 	/* Save counters values for next call. */
4365 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4366 	calib->fa_cck = le32toh(stats->cck.fa);
4367 
4368 	if (fa > 50 * rxena) {
4369 		/* High false alarm count, decrease sensitivity. */
4370 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4371 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4372 		calib->cck_state = IWN_CCK_STATE_HIFA;
4373 		calib->low_fa = 0;
4374 
4375 		if (calib->cck_x4 > 160) {
4376 			calib->noise_ref = noise_ref;
4377 			if (calib->energy_cck > 2)
4378 				dec(calib->energy_cck, 2, energy_min);
4379 		}
4380 		if (calib->cck_x4 < 160) {
4381 			calib->cck_x4 = 161;
4382 			needs_update = 1;
4383 		} else
4384 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4385 
4386 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4387 
4388 	} else if (fa < 5 * rxena) {
4389 		/* Low false alarm count, increase sensitivity. */
4390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4391 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4392 		calib->cck_state = IWN_CCK_STATE_LOFA;
4393 		calib->low_fa++;
4394 
4395 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4396 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4397 		    calib->low_fa > 100)) {
4398 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4399 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4400 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4401 		}
4402 	} else {
4403 		/* Not worth to increase or decrease sensitivity. */
4404 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4405 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4406 		calib->low_fa = 0;
4407 		calib->noise_ref = noise_ref;
4408 
4409 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4410 			/* Previous interval had many false alarms. */
4411 			dec(calib->energy_cck, 8, energy_min);
4412 		}
4413 		calib->cck_state = IWN_CCK_STATE_INIT;
4414 	}
4415 
4416 	if (needs_update)
4417 		(void)iwn_send_sensitivity(sc);
4418 #undef dec
4419 #undef inc
4420 }
4421 
4422 static int
4423 iwn_send_sensitivity(struct iwn_softc *sc)
4424 {
4425 	struct iwn_calib_state *calib = &sc->calib;
4426 	struct iwn_sensitivity_cmd cmd;
4427 
4428 	memset(&cmd, 0, sizeof cmd);
4429 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4430 	/* OFDM modulation. */
4431 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4432 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4433 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4434 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4435 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4436 	cmd.energy_ofdm_th   = htole16(62);
4437 	/* CCK modulation. */
4438 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4439 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4440 	cmd.energy_cck       = htole16(calib->energy_cck);
4441 	/* Barker modulation: use default values. */
4442 	cmd.corr_barker      = htole16(190);
4443 	cmd.corr_barker_mrc  = htole16(390);
4444 
4445 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4446 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4447 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4448 	    calib->ofdm_mrc_x4, calib->cck_x4,
4449 	    calib->cck_mrc_x4, calib->energy_cck);
4450 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4451 }
4452 
4453 /*
4454  * Set STA mode power saving level (between 0 and 5).
4455  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4456  */
4457 static int
4458 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4459 {
4460 	const struct iwn_pmgt *pmgt;
4461 	struct iwn_pmgt_cmd cmd;
4462 	uint32_t max, skip_dtim;
4463 	uint32_t tmp;
4464 	int i;
4465 
4466 	/* Select which PS parameters to use. */
4467 	if (dtim <= 2)
4468 		pmgt = &iwn_pmgt[0][level];
4469 	else if (dtim <= 10)
4470 		pmgt = &iwn_pmgt[1][level];
4471 	else
4472 		pmgt = &iwn_pmgt[2][level];
4473 
4474 	memset(&cmd, 0, sizeof cmd);
4475 	if (level != 0)	/* not CAM */
4476 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4477 	if (level == 5)
4478 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4479 	/* Retrieve PCIe Active State Power Management (ASPM). */
4480 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4481 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4482 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4483 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4484 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4485 
4486 	if (dtim == 0) {
4487 		dtim = 1;
4488 		skip_dtim = 0;
4489 	} else
4490 		skip_dtim = pmgt->skip_dtim;
4491 	if (skip_dtim != 0) {
4492 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4493 		max = pmgt->intval[4];
4494 		if (max == (uint32_t)-1)
4495 			max = dtim * (skip_dtim + 1);
4496 		else if (max > dtim)
4497 			max = (max / dtim) * dtim;
4498 	} else
4499 		max = dtim;
4500 	for (i = 0; i < 5; i++)
4501 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4502 
4503 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4504 	    level);
4505 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4506 }
4507 
4508 static int
4509 iwn_config(struct iwn_softc *sc)
4510 {
4511 	const struct iwn_hal *hal = sc->sc_hal;
4512 	struct ifnet *ifp = sc->sc_ifp;
4513 	struct ieee80211com *ic = ifp->if_l2com;
4514 	struct iwn_bluetooth bluetooth;
4515 	uint32_t txmask;
4516 	int error;
4517 	uint16_t rxchain;
4518 
4519 	/* Configure valid TX chains for 5000 Series. */
4520 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4521 		txmask = htole32(sc->txchainmask);
4522 		DPRINTF(sc, IWN_DEBUG_RESET,
4523 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4524 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4525 		    sizeof txmask, 0);
4526 		if (error != 0) {
4527 			device_printf(sc->sc_dev,
4528 			    "%s: could not configure valid TX chains, "
4529 			    "error %d\n", __func__, error);
4530 			return error;
4531 		}
4532 	}
4533 
4534 	/* Configure bluetooth coexistence. */
4535 	memset(&bluetooth, 0, sizeof bluetooth);
4536 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4537 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4538 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4539 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4540 	    __func__);
4541 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4542 	if (error != 0) {
4543 		device_printf(sc->sc_dev,
4544 		    "%s: could not configure bluetooth coexistence, error %d\n",
4545 		    __func__, error);
4546 		return error;
4547 	}
4548 
4549 	/* Set mode, channel, RX filter and enable RX. */
4550 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4551 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4552 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4553 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4554 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4555 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4556 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4557 	switch (ic->ic_opmode) {
4558 	case IEEE80211_M_STA:
4559 		sc->rxon.mode = IWN_MODE_STA;
4560 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4561 		break;
4562 	case IEEE80211_M_MONITOR:
4563 		sc->rxon.mode = IWN_MODE_MONITOR;
4564 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4565 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4566 		break;
4567 	default:
4568 		/* Should not get there. */
4569 		break;
4570 	}
4571 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4572 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4573 	sc->rxon.ht_single_mask = 0xff;
4574 	sc->rxon.ht_dual_mask = 0xff;
4575 	sc->rxon.ht_triple_mask = 0xff;
4576 	rxchain =
4577 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4578 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4579 	    IWN_RXCHAIN_IDLE_COUNT(2);
4580 	sc->rxon.rxchain = htole16(rxchain);
4581 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4582 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4583 	if (error != 0) {
4584 		device_printf(sc->sc_dev,
4585 		    "%s: RXON command failed\n", __func__);
4586 		return error;
4587 	}
4588 
4589 	error = iwn_add_broadcast_node(sc, 0);
4590 	if (error != 0) {
4591 		device_printf(sc->sc_dev,
4592 		    "%s: could not add broadcast node\n", __func__);
4593 		return error;
4594 	}
4595 
4596 	/* Configuration has changed, set TX power accordingly. */
4597 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4598 	if (error != 0) {
4599 		device_printf(sc->sc_dev,
4600 		    "%s: could not set TX power\n", __func__);
4601 		return error;
4602 	}
4603 
4604 	error = iwn_set_critical_temp(sc);
4605 	if (error != 0) {
4606 		device_printf(sc->sc_dev,
4607 		    "%s: ccould not set critical temperature\n", __func__);
4608 		return error;
4609 	}
4610 
4611 	/* Set power saving level to CAM during initialization. */
4612 	error = iwn_set_pslevel(sc, 0, 0, 0);
4613 	if (error != 0) {
4614 		device_printf(sc->sc_dev,
4615 		    "%s: could not set power saving level\n", __func__);
4616 		return error;
4617 	}
4618 	return 0;
4619 }
4620 
4621 static int
4622 iwn_scan(struct iwn_softc *sc)
4623 {
4624 	struct ifnet *ifp = sc->sc_ifp;
4625 	struct ieee80211com *ic = ifp->if_l2com;
4626 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4627 	struct iwn_scan_hdr *hdr;
4628 	struct iwn_cmd_data *tx;
4629 	struct iwn_scan_essid *essid;
4630 	struct iwn_scan_chan *chan;
4631 	struct ieee80211_frame *wh;
4632 	struct ieee80211_rateset *rs;
4633 	struct ieee80211_channel *c;
4634 	int buflen, error, nrates;
4635 	uint16_t rxchain;
4636 	uint8_t *buf, *frm, txant;
4637 
4638 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
4639 	hdr = (struct iwn_scan_hdr *)buf;
4640 
4641 	/*
4642 	 * Move to the next channel if no frames are received within 10ms
4643 	 * after sending the probe request.
4644 	 */
4645 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4646 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4647 
4648 	/* Select antennas for scanning. */
4649 	rxchain =
4650 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4651 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4652 	    IWN_RXCHAIN_DRIVER_FORCE;
4653 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4654 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4655 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4656 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4657 	} else	/* Use all available RX antennas. */
4658 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4659 	hdr->rxchain = htole16(rxchain);
4660 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4661 
4662 	tx = (struct iwn_cmd_data *)(hdr + 1);
4663 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4664 	tx->id = sc->sc_hal->broadcast_id;
4665 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4666 
4667 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4668 		/* Send probe requests at 6Mbps. */
4669 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4670 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4671 	} else {
4672 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4673 		/* Send probe requests at 1Mbps. */
4674 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4675 		tx->rflags = IWN_RFLAG_CCK;
4676 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4677 	}
4678 	/* Use the first valid TX antenna. */
4679 	txant = IWN_LSB(sc->txchainmask);
4680 	tx->rflags |= IWN_RFLAG_ANT(txant);
4681 
4682 	essid = (struct iwn_scan_essid *)(tx + 1);
4683 	if (ss->ss_ssid[0].len != 0) {
4684 		essid[0].id = IEEE80211_ELEMID_SSID;
4685 		essid[0].len = ss->ss_ssid[0].len;
4686 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4687 	}
4688 
4689 	/*
4690 	 * Build a probe request frame.  Most of the following code is a
4691 	 * copy & paste of what is done in net80211.
4692 	 */
4693 	wh = (struct ieee80211_frame *)(essid + 20);
4694 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4695 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4696 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4697 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4698 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4699 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4700 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4701 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4702 
4703 	frm = (uint8_t *)(wh + 1);
4704 
4705 	/* Add SSID IE. */
4706 	*frm++ = IEEE80211_ELEMID_SSID;
4707 	*frm++ = ss->ss_ssid[0].len;
4708 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4709 	frm += ss->ss_ssid[0].len;
4710 
4711 	/* Add supported rates IE. */
4712 	*frm++ = IEEE80211_ELEMID_RATES;
4713 	nrates = rs->rs_nrates;
4714 	if (nrates > IEEE80211_RATE_SIZE)
4715 		nrates = IEEE80211_RATE_SIZE;
4716 	*frm++ = nrates;
4717 	memcpy(frm, rs->rs_rates, nrates);
4718 	frm += nrates;
4719 
4720 	/* Add supported xrates IE. */
4721 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4722 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4723 		*frm++ = IEEE80211_ELEMID_XRATES;
4724 		*frm++ = (uint8_t)nrates;
4725 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4726 		frm += nrates;
4727 	}
4728 
4729 	/* Set length of probe request. */
4730 	tx->len = htole16(frm - (uint8_t *)wh);
4731 
4732 	c = ic->ic_curchan;
4733 	chan = (struct iwn_scan_chan *)frm;
4734 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4735 	chan->flags = 0;
4736 	if (ss->ss_nssid > 0)
4737 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4738 	chan->dsp_gain = 0x6e;
4739 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4740 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4741 		chan->rf_gain = 0x3b;
4742 		chan->active  = htole16(24);
4743 		chan->passive = htole16(110);
4744 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4745 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4746 		chan->rf_gain = 0x3b;
4747 		chan->active  = htole16(24);
4748 		if (sc->rxon.associd)
4749 			chan->passive = htole16(78);
4750 		else
4751 			chan->passive = htole16(110);
4752 		hdr->crc_threshold = 0xffff;
4753 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4754 		chan->rf_gain = 0x28;
4755 		chan->active  = htole16(36);
4756 		chan->passive = htole16(120);
4757 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4758 	} else {
4759 		chan->rf_gain = 0x28;
4760 		chan->active  = htole16(36);
4761 		if (sc->rxon.associd)
4762 			chan->passive = htole16(88);
4763 		else
4764 			chan->passive = htole16(120);
4765 		hdr->crc_threshold = 0xffff;
4766 	}
4767 
4768 	DPRINTF(sc, IWN_DEBUG_STATE,
4769 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4770 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4771 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4772 	    chan->active, chan->passive);
4773 
4774 	hdr->nchan++;
4775 	chan++;
4776 	buflen = (uint8_t *)chan - buf;
4777 	hdr->len = htole16(buflen);
4778 
4779 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4780 	    hdr->nchan);
4781 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4782 	kfree(buf, M_DEVBUF);
4783 	return error;
4784 }
4785 
4786 static int
4787 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4788 {
4789 	const struct iwn_hal *hal = sc->sc_hal;
4790 	struct ifnet *ifp = sc->sc_ifp;
4791 	struct ieee80211com *ic = ifp->if_l2com;
4792 	struct ieee80211_node *ni = vap->iv_bss;
4793 	int error;
4794 
4795 	sc->calib.state = IWN_CALIB_STATE_INIT;
4796 
4797 	/* Update adapter configuration. */
4798 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4799 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4800 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4801 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4802 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4803 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4804 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4805 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4806 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4807 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4808 		sc->rxon.cck_mask  = 0;
4809 		sc->rxon.ofdm_mask = 0x15;
4810 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4811 		sc->rxon.cck_mask  = 0x03;
4812 		sc->rxon.ofdm_mask = 0;
4813 	} else {
4814 		/* XXX assume 802.11b/g */
4815 		sc->rxon.cck_mask  = 0x0f;
4816 		sc->rxon.ofdm_mask = 0x15;
4817 	}
4818 	DPRINTF(sc, IWN_DEBUG_STATE,
4819 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4820 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4821 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4822 	    __func__,
4823 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4824 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4825 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4826 	    le16toh(sc->rxon.rxchain),
4827 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4828 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4829 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4830 	if (error != 0) {
4831 		device_printf(sc->sc_dev,
4832 		    "%s: RXON command failed, error %d\n", __func__, error);
4833 		return error;
4834 	}
4835 
4836 	/* Configuration has changed, set TX power accordingly. */
4837 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4838 	if (error != 0) {
4839 		device_printf(sc->sc_dev,
4840 		    "%s: could not set Tx power, error %d\n", __func__, error);
4841 		return error;
4842 	}
4843 	/*
4844 	 * Reconfiguring RXON clears the firmware nodes table so we must
4845 	 * add the broadcast node again.
4846 	 */
4847 	error = iwn_add_broadcast_node(sc, 1);
4848 	if (error != 0) {
4849 		device_printf(sc->sc_dev,
4850 		    "%s: could not add broadcast node, error %d\n",
4851 		    __func__, error);
4852 		return error;
4853 	}
4854 	return 0;
4855 }
4856 
4857 /*
4858  * Configure the adapter for associated state.
4859  */
4860 static int
4861 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4862 {
4863 #define	MS(v,x)	(((v) & x) >> x##_S)
4864 	const struct iwn_hal *hal = sc->sc_hal;
4865 	struct ifnet *ifp = sc->sc_ifp;
4866 	struct ieee80211com *ic = ifp->if_l2com;
4867 	struct ieee80211_node *ni = vap->iv_bss;
4868 	struct iwn_node_info node;
4869 	int error;
4870 
4871 	sc->calib.state = IWN_CALIB_STATE_INIT;
4872 
4873 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4874 		/* Link LED blinks while monitoring. */
4875 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4876 		return 0;
4877 	}
4878 	error = iwn_set_timing(sc, ni);
4879 	if (error != 0) {
4880 		device_printf(sc->sc_dev,
4881 		    "%s: could not set timing, error %d\n", __func__, error);
4882 		return error;
4883 	}
4884 
4885 	/* Update adapter configuration. */
4886 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4887 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4888 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4889 	/* Short preamble and slot time are negotiated when associating. */
4890 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4891 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4892 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4893 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4894 	else
4895 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4896 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4897 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4898 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4899 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4900 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4901 		sc->rxon.cck_mask  = 0;
4902 		sc->rxon.ofdm_mask = 0x15;
4903 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4904 		sc->rxon.cck_mask  = 0x03;
4905 		sc->rxon.ofdm_mask = 0;
4906 	} else {
4907 		/* XXX assume 802.11b/g */
4908 		sc->rxon.cck_mask  = 0x0f;
4909 		sc->rxon.ofdm_mask = 0x15;
4910 	}
4911 #if 0	/* HT */
4912 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4913 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4914 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4915 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4916 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4917 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4918 		else
4919 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4920 		sc->rxon.rxchain = htole16(
4921 			  IWN_RXCHAIN_VALID(3)
4922 			| IWN_RXCHAIN_MIMO_COUNT(3)
4923 			| IWN_RXCHAIN_IDLE_COUNT(1)
4924 			| IWN_RXCHAIN_MIMO_FORCE);
4925 
4926 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4927 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4928 	} else
4929 		maxrxampdu = ampdudensity = 0;
4930 #endif
4931 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4932 
4933 	DPRINTF(sc, IWN_DEBUG_STATE,
4934 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4935 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4936 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4937 	    __func__,
4938 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4939 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4940 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4941 	    le16toh(sc->rxon.rxchain),
4942 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4943 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4944 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4945 	if (error != 0) {
4946 		device_printf(sc->sc_dev,
4947 		    "%s: could not update configuration, error %d\n",
4948 		    __func__, error);
4949 		return error;
4950 	}
4951 
4952 	/* Configuration has changed, set TX power accordingly. */
4953 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4954 	if (error != 0) {
4955 		device_printf(sc->sc_dev,
4956 		    "%s: could not set Tx power, error %d\n", __func__, error);
4957 		return error;
4958 	}
4959 
4960 	/* Add BSS node. */
4961 	memset(&node, 0, sizeof node);
4962 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4963 	node.id = IWN_ID_BSS;
4964 #ifdef notyet
4965 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4966 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4967 #endif
4968 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4969 	    __func__, node.id, le32toh(node.htflags));
4970 	error = hal->add_node(sc, &node, 1);
4971 	if (error != 0) {
4972 		device_printf(sc->sc_dev, "could not add BSS node\n");
4973 		return error;
4974 	}
4975 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4976 	    node.id);
4977 	error = iwn_set_link_quality(sc, node.id, 1);
4978 	if (error != 0) {
4979 		device_printf(sc->sc_dev,
4980 		    "%s: could not setup MRR for node %d, error %d\n",
4981 		    __func__, node.id, error);
4982 		return error;
4983 	}
4984 
4985 	error = iwn_init_sensitivity(sc);
4986 	if (error != 0) {
4987 		device_printf(sc->sc_dev,
4988 		    "%s: could not set sensitivity, error %d\n",
4989 		    __func__, error);
4990 		return error;
4991 	}
4992 
4993 	/* Start periodic calibration timer. */
4994 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4995 	iwn_calib_reset(sc);
4996 
4997 	/* Link LED always on while associated. */
4998 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4999 
5000 	return 0;
5001 #undef MS
5002 }
5003 
5004 #if 0	/* HT */
5005 /*
5006  * This function is called by upper layer when an ADDBA request is received
5007  * from another STA and before the ADDBA response is sent.
5008  */
5009 static int
5010 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5011     uint8_t tid)
5012 {
5013 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5014 	struct iwn_softc *sc = ic->ic_softc;
5015 	struct iwn_node *wn = (void *)ni;
5016 	struct iwn_node_info node;
5017 
5018 	memset(&node, 0, sizeof node);
5019 	node.id = wn->id;
5020 	node.control = IWN_NODE_UPDATE;
5021 	node.flags = IWN_FLAG_SET_ADDBA;
5022 	node.addba_tid = tid;
5023 	node.addba_ssn = htole16(ba->ba_winstart);
5024 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5025 	    wn->id, tid, ba->ba_winstart));
5026 	return sc->sc_hal->add_node(sc, &node, 1);
5027 }
5028 
5029 /*
5030  * This function is called by upper layer on teardown of an HT-immediate
5031  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5032  */
5033 static void
5034 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5035     uint8_t tid)
5036 {
5037 	struct iwn_softc *sc = ic->ic_softc;
5038 	struct iwn_node *wn = (void *)ni;
5039 	struct iwn_node_info node;
5040 
5041 	memset(&node, 0, sizeof node);
5042 	node.id = wn->id;
5043 	node.control = IWN_NODE_UPDATE;
5044 	node.flags = IWN_FLAG_SET_DELBA;
5045 	node.delba_tid = tid;
5046 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5047 	(void)sc->sc_hal->add_node(sc, &node, 1);
5048 }
5049 
5050 /*
5051  * This function is called by upper layer when an ADDBA response is received
5052  * from another STA.
5053  */
5054 static int
5055 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5056     uint8_t tid)
5057 {
5058 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5059 	struct iwn_softc *sc = ic->ic_softc;
5060 	const struct iwn_hal *hal = sc->sc_hal;
5061 	struct iwn_node *wn = (void *)ni;
5062 	struct iwn_node_info node;
5063 	int error;
5064 
5065 	/* Enable TX for the specified RA/TID. */
5066 	wn->disable_tid &= ~(1 << tid);
5067 	memset(&node, 0, sizeof node);
5068 	node.id = wn->id;
5069 	node.control = IWN_NODE_UPDATE;
5070 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5071 	node.disable_tid = htole16(wn->disable_tid);
5072 	error = hal->add_node(sc, &node, 1);
5073 	if (error != 0)
5074 		return error;
5075 
5076 	if ((error = iwn_nic_lock(sc)) != 0)
5077 		return error;
5078 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5079 	iwn_nic_unlock(sc);
5080 	return 0;
5081 }
5082 
5083 static void
5084 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5085     uint8_t tid)
5086 {
5087 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5088 	struct iwn_softc *sc = ic->ic_softc;
5089 	int error;
5090 
5091 	error = iwn_nic_lock(sc);
5092 	if (error != 0)
5093 		return;
5094 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5095 	iwn_nic_unlock(sc);
5096 }
5097 
5098 static void
5099 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5100     uint8_t tid, uint16_t ssn)
5101 {
5102 	struct iwn_node *wn = (void *)ni;
5103 	int qid = 7 + tid;
5104 
5105 	/* Stop TX scheduler while we're changing its configuration. */
5106 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5107 	    IWN4965_TXQ_STATUS_CHGACT);
5108 
5109 	/* Assign RA/TID translation to the queue. */
5110 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5111 	    wn->id << 4 | tid);
5112 
5113 	/* Enable chain-building mode for the queue. */
5114 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5115 
5116 	/* Set starting sequence number from the ADDBA request. */
5117 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5118 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5119 
5120 	/* Set scheduler window size. */
5121 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5122 	    IWN_SCHED_WINSZ);
5123 	/* Set scheduler frame limit. */
5124 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5125 	    IWN_SCHED_LIMIT << 16);
5126 
5127 	/* Enable interrupts for the queue. */
5128 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5129 
5130 	/* Mark the queue as active. */
5131 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5132 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5133 	    iwn_tid2fifo[tid] << 1);
5134 }
5135 
5136 static void
5137 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5138 {
5139 	int qid = 7 + tid;
5140 
5141 	/* Stop TX scheduler while we're changing its configuration. */
5142 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5143 	    IWN4965_TXQ_STATUS_CHGACT);
5144 
5145 	/* Set starting sequence number from the ADDBA request. */
5146 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5147 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5148 
5149 	/* Disable interrupts for the queue. */
5150 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5151 
5152 	/* Mark the queue as inactive. */
5153 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5154 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5155 }
5156 
5157 static void
5158 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5159     uint8_t tid, uint16_t ssn)
5160 {
5161 	struct iwn_node *wn = (void *)ni;
5162 	int qid = 10 + tid;
5163 
5164 	/* Stop TX scheduler while we're changing its configuration. */
5165 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5166 	    IWN5000_TXQ_STATUS_CHGACT);
5167 
5168 	/* Assign RA/TID translation to the queue. */
5169 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5170 	    wn->id << 4 | tid);
5171 
5172 	/* Enable chain-building mode for the queue. */
5173 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5174 
5175 	/* Enable aggregation for the queue. */
5176 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5177 
5178 	/* Set starting sequence number from the ADDBA request. */
5179 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5180 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5181 
5182 	/* Set scheduler window size and frame limit. */
5183 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5184 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5185 
5186 	/* Enable interrupts for the queue. */
5187 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5188 
5189 	/* Mark the queue as active. */
5190 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5191 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5192 }
5193 
5194 static void
5195 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5196 {
5197 	int qid = 10 + tid;
5198 
5199 	/* Stop TX scheduler while we're changing its configuration. */
5200 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5201 	    IWN5000_TXQ_STATUS_CHGACT);
5202 
5203 	/* Disable aggregation for the queue. */
5204 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5205 
5206 	/* Set starting sequence number from the ADDBA request. */
5207 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5208 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5209 
5210 	/* Disable interrupts for the queue. */
5211 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5212 
5213 	/* Mark the queue as inactive. */
5214 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5215 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5216 }
5217 #endif
5218 
5219 /*
5220  * Query calibration tables from the initialization firmware.  We do this
5221  * only once at first boot.  Called from a process context.
5222  */
5223 static int
5224 iwn5000_query_calibration(struct iwn_softc *sc)
5225 {
5226 	struct iwn5000_calib_config cmd;
5227 	int error;
5228 
5229 	memset(&cmd, 0, sizeof cmd);
5230 	cmd.ucode.once.enable = 0xffffffff;
5231 	cmd.ucode.once.start  = 0xffffffff;
5232 	cmd.ucode.once.send   = 0xffffffff;
5233 	cmd.ucode.flags       = 0xffffffff;
5234 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5235 	    __func__);
5236 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5237 	if (error != 0)
5238 		return error;
5239 
5240 	/* Wait at most two seconds for calibration to complete. */
5241 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5242 		error = zsleep(sc, &wlan_global_serializer,
5243 			       0, "iwninit", 2 * hz);
5244 	}
5245 	return error;
5246 }
5247 
5248 /*
5249  * Send calibration results to the runtime firmware.  These results were
5250  * obtained on first boot from the initialization firmware.
5251  */
5252 static int
5253 iwn5000_send_calibration(struct iwn_softc *sc)
5254 {
5255 	int idx, error;
5256 
5257 	for (idx = 0; idx < 5; idx++) {
5258 		if (sc->calibcmd[idx].buf == NULL)
5259 			continue;	/* No results available. */
5260 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5261 		    "send calibration result idx=%d len=%d\n",
5262 		    idx, sc->calibcmd[idx].len);
5263 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5264 		    sc->calibcmd[idx].len, 0);
5265 		if (error != 0) {
5266 			device_printf(sc->sc_dev,
5267 			    "%s: could not send calibration result, error %d\n",
5268 			    __func__, error);
5269 			return error;
5270 		}
5271 	}
5272 	return 0;
5273 }
5274 
5275 static int
5276 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5277 {
5278 	struct iwn5000_wimax_coex wimax;
5279 
5280 #ifdef notyet
5281 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5282 		/* Enable WiMAX coexistence for combo adapters. */
5283 		wimax.flags =
5284 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5285 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5286 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5287 		    IWN_WIMAX_COEX_ENABLE;
5288 		memcpy(wimax.events, iwn6050_wimax_events,
5289 		    sizeof iwn6050_wimax_events);
5290 	} else
5291 #endif
5292 	{
5293 		/* Disable WiMAX coexistence. */
5294 		wimax.flags = 0;
5295 		memset(wimax.events, 0, sizeof wimax.events);
5296 	}
5297 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5298 	    __func__);
5299 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5300 }
5301 
5302 /*
5303  * This function is called after the runtime firmware notifies us of its
5304  * readiness (called in a process context.)
5305  */
5306 static int
5307 iwn4965_post_alive(struct iwn_softc *sc)
5308 {
5309 	int error, qid;
5310 
5311 	if ((error = iwn_nic_lock(sc)) != 0)
5312 		return error;
5313 
5314 	/* Clear TX scheduler state in SRAM. */
5315 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5316 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5317 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5318 
5319 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5320 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5321 
5322 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5323 
5324 	/* Disable chain mode for all our 16 queues. */
5325 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5326 
5327 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5328 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5329 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5330 
5331 		/* Set scheduler window size. */
5332 		iwn_mem_write(sc, sc->sched_base +
5333 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5334 		/* Set scheduler frame limit. */
5335 		iwn_mem_write(sc, sc->sched_base +
5336 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5337 		    IWN_SCHED_LIMIT << 16);
5338 	}
5339 
5340 	/* Enable interrupts for all our 16 queues. */
5341 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5342 	/* Identify TX FIFO rings (0-7). */
5343 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5344 
5345 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5346 	for (qid = 0; qid < 7; qid++) {
5347 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5348 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5349 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5350 	}
5351 	iwn_nic_unlock(sc);
5352 	return 0;
5353 }
5354 
5355 /*
5356  * This function is called after the initialization or runtime firmware
5357  * notifies us of its readiness (called in a process context.)
5358  */
5359 static int
5360 iwn5000_post_alive(struct iwn_softc *sc)
5361 {
5362 	int error, qid;
5363 
5364 	/* Switch to using ICT interrupt mode. */
5365 	iwn5000_ict_reset(sc);
5366 
5367 	error = iwn_nic_lock(sc);
5368 	if (error != 0)
5369 		return error;
5370 
5371 	/* Clear TX scheduler state in SRAM. */
5372 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5373 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5374 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5375 
5376 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5377 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5378 
5379 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5380 
5381 	/* Enable chain mode for all queues, except command queue. */
5382 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5383 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5384 
5385 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5386 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5387 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5388 
5389 		iwn_mem_write(sc, sc->sched_base +
5390 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5391 		/* Set scheduler window size and frame limit. */
5392 		iwn_mem_write(sc, sc->sched_base +
5393 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5394 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5395 	}
5396 
5397 	/* Enable interrupts for all our 20 queues. */
5398 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5399 	/* Identify TX FIFO rings (0-7). */
5400 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5401 
5402 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5403 	for (qid = 0; qid < 7; qid++) {
5404 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5405 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5406 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5407 	}
5408 	iwn_nic_unlock(sc);
5409 
5410 	/* Configure WiMAX coexistence for combo adapters. */
5411 	error = iwn5000_send_wimax_coex(sc);
5412 	if (error != 0) {
5413 		device_printf(sc->sc_dev,
5414 		    "%s: could not configure WiMAX coexistence, error %d\n",
5415 		    __func__, error);
5416 		return error;
5417 	}
5418 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5419 		struct iwn5000_phy_calib_crystal cmd;
5420 
5421 		/* Perform crystal calibration. */
5422 		memset(&cmd, 0, sizeof cmd);
5423 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5424 		cmd.ngroups = 1;
5425 		cmd.isvalid = 1;
5426 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5427 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5428 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5429 		    "sending crystal calibration %d, %d\n",
5430 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5431 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5432 		if (error != 0) {
5433 			device_printf(sc->sc_dev,
5434 			    "%s: crystal calibration failed, error %d\n",
5435 			    __func__, error);
5436 			return error;
5437 		}
5438 	}
5439 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5440 		/* Query calibration from the initialization firmware. */
5441 		error = iwn5000_query_calibration(sc);
5442 		if (error != 0) {
5443 			device_printf(sc->sc_dev,
5444 			    "%s: could not query calibration, error %d\n",
5445 			    __func__, error);
5446 			return error;
5447 		}
5448 		/*
5449 		 * We have the calibration results now, reboot with the
5450 		 * runtime firmware (call ourselves recursively!)
5451 		 */
5452 		iwn_hw_stop(sc);
5453 		error = iwn_hw_init(sc);
5454 	} else {
5455 		/* Send calibration results to runtime firmware. */
5456 		error = iwn5000_send_calibration(sc);
5457 	}
5458 	return error;
5459 }
5460 
5461 /*
5462  * The firmware boot code is small and is intended to be copied directly into
5463  * the NIC internal memory (no DMA transfer.)
5464  */
5465 static int
5466 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5467 {
5468 	int error, ntries;
5469 
5470 	size /= sizeof (uint32_t);
5471 
5472 	error = iwn_nic_lock(sc);
5473 	if (error != 0)
5474 		return error;
5475 
5476 	/* Copy microcode image into NIC memory. */
5477 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5478 	    (const uint32_t *)ucode, size);
5479 
5480 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5481 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5482 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5483 
5484 	/* Start boot load now. */
5485 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5486 
5487 	/* Wait for transfer to complete. */
5488 	for (ntries = 0; ntries < 1000; ntries++) {
5489 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5490 		    IWN_BSM_WR_CTRL_START))
5491 			break;
5492 		DELAY(10);
5493 	}
5494 	if (ntries == 1000) {
5495 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5496 		    __func__);
5497 		iwn_nic_unlock(sc);
5498 		return ETIMEDOUT;
5499 	}
5500 
5501 	/* Enable boot after power up. */
5502 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5503 
5504 	iwn_nic_unlock(sc);
5505 	return 0;
5506 }
5507 
5508 static int
5509 iwn4965_load_firmware(struct iwn_softc *sc)
5510 {
5511 	struct iwn_fw_info *fw = &sc->fw;
5512 	struct iwn_dma_info *dma = &sc->fw_dma;
5513 	int error;
5514 
5515 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5516 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5517 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5518 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5519 	    fw->init.text, fw->init.textsz);
5520 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5521 
5522 	/* Tell adapter where to find initialization sections. */
5523 	error = iwn_nic_lock(sc);
5524 	if (error != 0)
5525 		return error;
5526 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5527 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5528 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5529 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5530 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5531 	iwn_nic_unlock(sc);
5532 
5533 	/* Load firmware boot code. */
5534 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5535 	if (error != 0) {
5536 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5537 		    __func__);
5538 		return error;
5539 	}
5540 	/* Now press "execute". */
5541 	IWN_WRITE(sc, IWN_RESET, 0);
5542 
5543 	/* Wait at most one second for first alive notification. */
5544 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5545 	if (error) {
5546 		device_printf(sc->sc_dev,
5547 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5548 		    __func__, error);
5549 		return error;
5550 	}
5551 
5552 	/* Retrieve current temperature for initial TX power calibration. */
5553 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5554 	sc->temp = iwn4965_get_temperature(sc);
5555 
5556 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5557 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5558 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5559 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5560 	    fw->main.text, fw->main.textsz);
5561 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5562 
5563 	/* Tell adapter where to find runtime sections. */
5564 	error = iwn_nic_lock(sc);
5565 	if (error != 0)
5566 		return error;
5567 
5568 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5569 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5570 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5571 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5572 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5573 	    IWN_FW_UPDATED | fw->main.textsz);
5574 	iwn_nic_unlock(sc);
5575 
5576 	return 0;
5577 }
5578 
5579 static int
5580 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5581     const uint8_t *section, int size)
5582 {
5583 	struct iwn_dma_info *dma = &sc->fw_dma;
5584 	int error;
5585 
5586 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5587 	memcpy(dma->vaddr, section, size);
5588 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5589 
5590 	error = iwn_nic_lock(sc);
5591 	if (error != 0)
5592 		return error;
5593 
5594 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5595 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5596 
5597 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5598 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5599 	    IWN_LOADDR(dma->paddr));
5600 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5601 	    IWN_HIADDR(dma->paddr) << 28 | size);
5602 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5603 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5604 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5605 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5606 
5607 	/* Kick Flow Handler to start DMA transfer. */
5608 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5609 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5610 
5611 	iwn_nic_unlock(sc);
5612 
5613 	/*
5614 	 * Wait at most five seconds for FH DMA transfer to complete.
5615 	 */
5616 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5617 	return (error);
5618 }
5619 
5620 static int
5621 iwn5000_load_firmware(struct iwn_softc *sc)
5622 {
5623 	struct iwn_fw_part *fw;
5624 	int error;
5625 
5626 	/* Load the initialization firmware on first boot only. */
5627 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5628 	    &sc->fw.main : &sc->fw.init;
5629 
5630 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5631 	    fw->text, fw->textsz);
5632 	if (error != 0) {
5633 		device_printf(sc->sc_dev,
5634 		    "%s: could not load firmware %s section, error %d\n",
5635 		    __func__, ".text", error);
5636 		return error;
5637 	}
5638 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5639 	    fw->data, fw->datasz);
5640 	if (error != 0) {
5641 		device_printf(sc->sc_dev,
5642 		    "%s: could not load firmware %s section, error %d\n",
5643 		    __func__, ".data", error);
5644 		return error;
5645 	}
5646 
5647 	/* Now press "execute". */
5648 	IWN_WRITE(sc, IWN_RESET, 0);
5649 	return 0;
5650 }
5651 
5652 static int
5653 iwn_read_firmware(struct iwn_softc *sc)
5654 {
5655 	const struct iwn_hal *hal = sc->sc_hal;
5656 	struct iwn_fw_info *fw = &sc->fw;
5657 	const uint32_t *ptr;
5658 	uint32_t rev;
5659 	size_t size;
5660 	int wlan_serialized;
5661 
5662 	/*
5663 	 * Read firmware image from filesystem.  The firmware can block
5664 	 * in a taskq and deadlock against our serializer so unlock
5665 	 * while we do tihs.
5666 	 */
5667 	wlan_serialized = IS_SERIALIZED(&wlan_global_serializer);
5668 	if (wlan_serialized)
5669 		wlan_serialize_exit();
5670 	sc->fw_fp = firmware_get(sc->fwname);
5671 	if (wlan_serialized)
5672 		wlan_serialize_enter();
5673 	if (sc->fw_fp == NULL) {
5674 		device_printf(sc->sc_dev,
5675 		    "%s: could not load firmare image \"%s\"\n", __func__,
5676 		    sc->fwname);
5677 		return EINVAL;
5678 	}
5679 
5680 	size = sc->fw_fp->datasize;
5681 	if (size < 28) {
5682 		device_printf(sc->sc_dev,
5683 		    "%s: truncated firmware header: %zu bytes\n",
5684 		    __func__, size);
5685 		return EINVAL;
5686 	}
5687 
5688 	/* Process firmware header. */
5689 	ptr = (const uint32_t *)sc->fw_fp->data;
5690 	rev = le32toh(*ptr++);
5691 	/* Check firmware API version. */
5692 	if (IWN_FW_API(rev) <= 1) {
5693 		device_printf(sc->sc_dev,
5694 		    "%s: bad firmware, need API version >=2\n", __func__);
5695 		return EINVAL;
5696 	}
5697 	if (IWN_FW_API(rev) >= 3) {
5698 		/* Skip build number (version 2 header). */
5699 		size -= 4;
5700 		ptr++;
5701 	}
5702 	fw->main.textsz = le32toh(*ptr++);
5703 	fw->main.datasz = le32toh(*ptr++);
5704 	fw->init.textsz = le32toh(*ptr++);
5705 	fw->init.datasz = le32toh(*ptr++);
5706 	fw->boot.textsz = le32toh(*ptr++);
5707 	size -= 24;
5708 
5709 	/* Sanity-check firmware header. */
5710 	if (fw->main.textsz > hal->fw_text_maxsz ||
5711 	    fw->main.datasz > hal->fw_data_maxsz ||
5712 	    fw->init.textsz > hal->fw_text_maxsz ||
5713 	    fw->init.datasz > hal->fw_data_maxsz ||
5714 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5715 	    (fw->boot.textsz & 3) != 0) {
5716 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5717 		    __func__);
5718 		return EINVAL;
5719 	}
5720 
5721 	/* Check that all firmware sections fit. */
5722 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5723 	    fw->init.datasz + fw->boot.textsz > size) {
5724 		device_printf(sc->sc_dev,
5725 		    "%s: firmware file too short: %zu bytes\n",
5726 		    __func__, size);
5727 		return EINVAL;
5728 	}
5729 
5730 	/* Get pointers to firmware sections. */
5731 	fw->main.text = (const uint8_t *)ptr;
5732 	fw->main.data = fw->main.text + fw->main.textsz;
5733 	fw->init.text = fw->main.data + fw->main.datasz;
5734 	fw->init.data = fw->init.text + fw->init.textsz;
5735 	fw->boot.text = fw->init.data + fw->init.datasz;
5736 
5737 	return 0;
5738 }
5739 
5740 static int
5741 iwn_clock_wait(struct iwn_softc *sc)
5742 {
5743 	int ntries;
5744 
5745 	/* Set "initialization complete" bit. */
5746 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5747 
5748 	/* Wait for clock stabilization. */
5749 	for (ntries = 0; ntries < 2500; ntries++) {
5750 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5751 			return 0;
5752 		DELAY(10);
5753 	}
5754 	device_printf(sc->sc_dev,
5755 	    "%s: timeout waiting for clock stabilization\n", __func__);
5756 	return ETIMEDOUT;
5757 }
5758 
5759 static int
5760 iwn_apm_init(struct iwn_softc *sc)
5761 {
5762 	uint32_t tmp;
5763 	int error;
5764 
5765 	/* Disable L0s exit timer (NMI bug workaround.) */
5766 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5767 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5768 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5769 
5770 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5771 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5772 
5773 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5774 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5775 
5776 	/* Retrieve PCIe Active State Power Management (ASPM). */
5777 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5778 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5779 	if (tmp & 0x02)	/* L1 Entry enabled. */
5780 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5781 	else
5782 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5783 
5784 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5785 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5786 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5787 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5788 
5789 	/* Wait for clock stabilization before accessing prph. */
5790 	error = iwn_clock_wait(sc);
5791 	if (error != 0)
5792 		return error;
5793 
5794 	error = iwn_nic_lock(sc);
5795 	if (error != 0)
5796 		return error;
5797 
5798 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5799 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5800 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5801 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5802 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5803 	} else {
5804 		/* Enable DMA. */
5805 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5806 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5807 	}
5808 	DELAY(20);
5809 
5810 	/* Disable L1-Active. */
5811 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5812 	iwn_nic_unlock(sc);
5813 
5814 	return 0;
5815 }
5816 
5817 static void
5818 iwn_apm_stop_master(struct iwn_softc *sc)
5819 {
5820 	int ntries;
5821 
5822 	/* Stop busmaster DMA activity. */
5823 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5824 	for (ntries = 0; ntries < 100; ntries++) {
5825 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5826 			return;
5827 		DELAY(10);
5828 	}
5829 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5830 	    __func__);
5831 }
5832 
5833 static void
5834 iwn_apm_stop(struct iwn_softc *sc)
5835 {
5836 	iwn_apm_stop_master(sc);
5837 
5838 	/* Reset the entire device. */
5839 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5840 	DELAY(10);
5841 	/* Clear "initialization complete" bit. */
5842 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5843 }
5844 
5845 static int
5846 iwn4965_nic_config(struct iwn_softc *sc)
5847 {
5848 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5849 		/*
5850 		 * I don't believe this to be correct but this is what the
5851 		 * vendor driver is doing. Probably the bits should not be
5852 		 * shifted in IWN_RFCFG_*.
5853 		 */
5854 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5855 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5856 		    IWN_RFCFG_STEP(sc->rfcfg) |
5857 		    IWN_RFCFG_DASH(sc->rfcfg));
5858 	}
5859 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5860 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5861 	return 0;
5862 }
5863 
5864 static int
5865 iwn5000_nic_config(struct iwn_softc *sc)
5866 {
5867 	uint32_t tmp;
5868 	int error;
5869 
5870 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5871 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5872 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5873 		    IWN_RFCFG_STEP(sc->rfcfg) |
5874 		    IWN_RFCFG_DASH(sc->rfcfg));
5875 	}
5876 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5877 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5878 
5879 	error = iwn_nic_lock(sc);
5880 	if (error != 0)
5881 		return error;
5882 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5883 
5884 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5885 		/*
5886 		 * Select first Switching Voltage Regulator (1.32V) to
5887 		 * solve a stability issue related to noisy DC2DC line
5888 		 * in the silicon of 1000 Series.
5889 		 */
5890 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5891 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5892 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5893 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5894 	}
5895 	iwn_nic_unlock(sc);
5896 
5897 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5898 		/* Use internal power amplifier only. */
5899 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5900 	}
5901 	 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5902 		 /* Indicate that ROM calibration version is >=6. */
5903 		 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5904 	}
5905 	return 0;
5906 }
5907 
5908 /*
5909  * Take NIC ownership over Intel Active Management Technology (AMT).
5910  */
5911 static int
5912 iwn_hw_prepare(struct iwn_softc *sc)
5913 {
5914 	int ntries;
5915 
5916 	/* Check if hardware is ready. */
5917 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5918 	for (ntries = 0; ntries < 5; ntries++) {
5919 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5920 		    IWN_HW_IF_CONFIG_NIC_READY)
5921 			return 0;
5922 		DELAY(10);
5923 	}
5924 
5925 	/* Hardware not ready, force into ready state. */
5926 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5927 	for (ntries = 0; ntries < 15000; ntries++) {
5928 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5929 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5930 			break;
5931 		DELAY(10);
5932 	}
5933 	if (ntries == 15000)
5934 		return ETIMEDOUT;
5935 
5936 	/* Hardware should be ready now. */
5937 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5938 	for (ntries = 0; ntries < 5; ntries++) {
5939 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5940 		    IWN_HW_IF_CONFIG_NIC_READY)
5941 			return 0;
5942 		DELAY(10);
5943 	}
5944 	return ETIMEDOUT;
5945 }
5946 
5947 static int
5948 iwn_hw_init(struct iwn_softc *sc)
5949 {
5950 	const struct iwn_hal *hal = sc->sc_hal;
5951 	int error, chnl, qid;
5952 
5953 	/* Clear pending interrupts. */
5954 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5955 
5956 	error = iwn_apm_init(sc);
5957 	if (error != 0) {
5958 		device_printf(sc->sc_dev,
5959 		    "%s: could not power ON adapter, error %d\n",
5960 		    __func__, error);
5961 		goto done;
5962 	}
5963 
5964 	/* Select VMAIN power source. */
5965 	error = iwn_nic_lock(sc);
5966 	if (error != 0)
5967 		goto done;
5968 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5969 	iwn_nic_unlock(sc);
5970 
5971 	/* Perform adapter-specific initialization. */
5972 	error = hal->nic_config(sc);
5973 	if (error != 0)
5974 		goto done;
5975 
5976 	/* Initialize RX ring. */
5977 	error = iwn_nic_lock(sc);
5978 	if (error != 0)
5979 		goto done;
5980 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5981 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5982 	/* Set physical address of RX ring (256-byte aligned.) */
5983 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5984 	/* Set physical address of RX status (16-byte aligned.) */
5985 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5986 	/* Enable RX. */
5987 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5988 	    IWN_FH_RX_CONFIG_ENA           |
5989 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5990 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5991 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5992 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5993 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5994 	iwn_nic_unlock(sc);
5995 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5996 
5997 	error = iwn_nic_lock(sc);
5998 	if (error != 0)
5999 		goto done;
6000 
6001 	/* Initialize TX scheduler. */
6002 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6003 
6004 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6005 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6006 
6007 	/* Initialize TX rings. */
6008 	for (qid = 0; qid < hal->ntxqs; qid++) {
6009 		struct iwn_tx_ring *txq = &sc->txq[qid];
6010 
6011 		/* Set physical address of TX ring (256-byte aligned.) */
6012 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6013 		    txq->desc_dma.paddr >> 8);
6014 	}
6015 	iwn_nic_unlock(sc);
6016 
6017 	/* Enable DMA channels. */
6018 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6019 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6020 		    IWN_FH_TX_CONFIG_DMA_ENA |
6021 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6022 	}
6023 
6024 	/* Clear "radio off" and "commands blocked" bits. */
6025 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6026 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6027 
6028 	/* Clear pending interrupts. */
6029 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6030 	/* Enable interrupt coalescing. */
6031 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6032 	/* Enable interrupts. */
6033 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6034 
6035 	/* _Really_ make sure "radio off" bit is cleared! */
6036 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6037 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6038 
6039 	error = hal->load_firmware(sc);
6040 	if (error != 0) {
6041 		device_printf(sc->sc_dev,
6042 		    "%s: could not load firmware, error %d\n",
6043 		    __func__, error);
6044 		goto done;
6045 	}
6046 	/* Wait at most one second for firmware alive notification. */
6047 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
6048 	if (error != 0) {
6049 		device_printf(sc->sc_dev,
6050 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6051 		    __func__, error);
6052 		goto done;
6053 	}
6054 	/* Do post-firmware initialization. */
6055 	error = hal->post_alive(sc);
6056 done:
6057 	return error;
6058 }
6059 
6060 static void
6061 iwn_hw_stop(struct iwn_softc *sc)
6062 {
6063 	const struct iwn_hal *hal = sc->sc_hal;
6064 	uint32_t tmp;
6065 	int chnl, qid, ntries;
6066 
6067 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6068 
6069 	/* Disable interrupts. */
6070 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6071 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6072 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6073 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6074 
6075 	/* Make sure we no longer hold the NIC lock. */
6076 	iwn_nic_unlock(sc);
6077 
6078 	/* Stop TX scheduler. */
6079 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6080 
6081 	/* Stop all DMA channels. */
6082 	if (iwn_nic_lock(sc) == 0) {
6083 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6084 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6085 			for (ntries = 0; ntries < 200; ntries++) {
6086 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6087 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6088 				    IWN_FH_TX_STATUS_IDLE(chnl))
6089 					break;
6090 				DELAY(10);
6091 			}
6092 		}
6093 		iwn_nic_unlock(sc);
6094 	}
6095 
6096 	/* Stop RX ring. */
6097 	iwn_reset_rx_ring(sc, &sc->rxq);
6098 
6099 	/* Reset all TX rings. */
6100 	for (qid = 0; qid < hal->ntxqs; qid++)
6101 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6102 
6103 	if (iwn_nic_lock(sc) == 0) {
6104 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6105 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6106 		iwn_nic_unlock(sc);
6107 	}
6108 	DELAY(5);
6109 
6110 	/* Power OFF adapter. */
6111 	iwn_apm_stop(sc);
6112 }
6113 
6114 static void
6115 iwn_init_locked(struct iwn_softc *sc)
6116 {
6117 	struct ifnet *ifp = sc->sc_ifp;
6118 	int error;
6119 	int wlan_serializer_needed;
6120 
6121 	/*
6122 	 * The kernel generic firmware loader can wind up calling this
6123 	 * without the wlan serializer, while the wlan subsystem will
6124 	 * call it with the serializer.
6125 	 *
6126 	 * Make sure we hold the serializer or we will have timing issues
6127 	 * with the wlan subsystem.
6128 	 */
6129 	wlan_serializer_needed = !IS_SERIALIZED(&wlan_global_serializer);
6130 	if (wlan_serializer_needed)
6131 		wlan_serialize_enter();
6132 
6133 	error = iwn_hw_prepare(sc);
6134 	if (error != 0) {
6135 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6136 		    __func__, error);
6137 		goto fail;
6138 	}
6139 
6140 	/* Initialize interrupt mask to default value. */
6141 	sc->int_mask = IWN_INT_MASK_DEF;
6142 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6143 
6144 	/* Check that the radio is not disabled by hardware switch. */
6145 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6146 		device_printf(sc->sc_dev,
6147 		    "radio is disabled by hardware switch\n");
6148 
6149 		/* Enable interrupts to get RF toggle notifications. */
6150 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6151 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6152 		if (wlan_serializer_needed)
6153 			wlan_serialize_exit();
6154 		return;
6155 	}
6156 
6157 	/* Read firmware images from the filesystem. */
6158 	error = iwn_read_firmware(sc);
6159 	if (error != 0) {
6160 		device_printf(sc->sc_dev,
6161 		    "%s: could not read firmware, error %d\n",
6162 		    __func__, error);
6163 		goto fail;
6164 	}
6165 
6166 	/* Initialize hardware and upload firmware. */
6167 	error = iwn_hw_init(sc);
6168 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6169 	sc->fw_fp = NULL;
6170 	if (error != 0) {
6171 		device_printf(sc->sc_dev,
6172 		    "%s: could not initialize hardware, error %d\n",
6173 		    __func__, error);
6174 		goto fail;
6175 	}
6176 
6177 	/* Configure adapter now that it is ready. */
6178 	error = iwn_config(sc);
6179 	if (error != 0) {
6180 		device_printf(sc->sc_dev,
6181 		    "%s: could not configure device, error %d\n",
6182 		    __func__, error);
6183 		goto fail;
6184 	}
6185 
6186 	ifq_clr_oactive(&ifp->if_snd);
6187 	ifp->if_flags |= IFF_RUNNING;
6188 	if (wlan_serializer_needed)
6189 		wlan_serialize_exit();
6190 	return;
6191 
6192 fail:
6193 	iwn_stop_locked(sc);
6194 	if (wlan_serializer_needed)
6195 		wlan_serialize_exit();
6196 }
6197 
6198 static void
6199 iwn_init(void *arg)
6200 {
6201 	struct iwn_softc *sc = arg;
6202 	struct ifnet *ifp = sc->sc_ifp;
6203 	struct ieee80211com *ic = ifp->if_l2com;
6204 
6205 	wlan_serialize_enter();
6206 	iwn_init_locked(sc);
6207 	wlan_serialize_exit();
6208 
6209 	if (ifp->if_flags & IFF_RUNNING)
6210 		ieee80211_start_all(ic);
6211 }
6212 
6213 static void
6214 iwn_stop_locked(struct iwn_softc *sc)
6215 {
6216 	struct ifnet *ifp = sc->sc_ifp;
6217 
6218 	sc->sc_tx_timer = 0;
6219 	callout_stop(&sc->sc_timer_to);
6220 	ifp->if_flags &= ~IFF_RUNNING;
6221 	ifq_clr_oactive(&ifp->if_snd);
6222 
6223 	/* Power OFF hardware. */
6224 	iwn_hw_stop(sc);
6225 }
6226 
6227 static void
6228 iwn_stop(struct iwn_softc *sc)
6229 {
6230 	wlan_serialize_enter();
6231 	iwn_stop_locked(sc);
6232 	wlan_serialize_exit();
6233 }
6234 
6235 /*
6236  * Callback from net80211 to start a scan.
6237  */
6238 static void
6239 iwn_scan_start(struct ieee80211com *ic)
6240 {
6241 	struct ifnet *ifp = ic->ic_ifp;
6242 	struct iwn_softc *sc = ifp->if_softc;
6243 
6244 	/* make the link LED blink while we're scanning */
6245 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6246 }
6247 
6248 /*
6249  * Callback from net80211 to terminate a scan.
6250  */
6251 static void
6252 iwn_scan_end(struct ieee80211com *ic)
6253 {
6254 	struct ifnet *ifp = ic->ic_ifp;
6255 	struct iwn_softc *sc = ifp->if_softc;
6256 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6257 
6258 	if (vap->iv_state == IEEE80211_S_RUN) {
6259 		/* Set link LED to ON status if we are associated */
6260 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6261 	}
6262 }
6263 
6264 /*
6265  * Callback from net80211 to force a channel change.
6266  */
6267 static void
6268 iwn_set_channel(struct ieee80211com *ic)
6269 {
6270 	const struct ieee80211_channel *c = ic->ic_curchan;
6271 	struct ifnet *ifp = ic->ic_ifp;
6272 	struct iwn_softc *sc = ifp->if_softc;
6273 
6274 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6275 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6276 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6277 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6278 }
6279 
6280 /*
6281  * Callback from net80211 to start scanning of the current channel.
6282  */
6283 static void
6284 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6285 {
6286 	struct ieee80211vap *vap = ss->ss_vap;
6287 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6288 	int error;
6289 
6290 	error = iwn_scan(sc);
6291 	if (error != 0)
6292 		ieee80211_cancel_scan(vap);
6293 }
6294 
6295 /*
6296  * Callback from net80211 to handle the minimum dwell time being met.
6297  * The intent is to terminate the scan but we just let the firmware
6298  * notify us when it's finished as we have no safe way to abort it.
6299  */
6300 static void
6301 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6302 {
6303 	/* NB: don't try to abort scan; wait for firmware to finish */
6304 }
6305 
6306 static struct iwn_eeprom_chan *
6307 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6308 {
6309 	int i, j;
6310 
6311 	for (j = 0; j < 7; j++) {
6312 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6313 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6314 				return &sc->eeprom_channels[j][i];
6315 		}
6316 	}
6317 
6318 	return NULL;
6319 }
6320 
6321 /*
6322  * Enforce flags read from EEPROM.
6323  */
6324 static int
6325 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6326     int nchan, struct ieee80211_channel chans[])
6327 {
6328 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6329 	int i;
6330 
6331 	for (i = 0; i < nchan; i++) {
6332 		struct ieee80211_channel *c = &chans[i];
6333 		struct iwn_eeprom_chan *channel;
6334 
6335 		channel = iwn_find_eeprom_channel(sc, c);
6336 		if (channel == NULL) {
6337 			if_printf(ic->ic_ifp,
6338 			    "%s: invalid channel %u freq %u/0x%x\n",
6339 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6340 			return EINVAL;
6341 		}
6342 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6343 	}
6344 
6345 	return 0;
6346 }
6347 
6348 static void
6349 iwn_hw_reset_task(void *arg0, int pending)
6350 {
6351 	struct iwn_softc *sc = arg0;
6352 	struct ifnet *ifp;
6353 	struct ieee80211com *ic;
6354 
6355 	wlan_serialize_enter();
6356 	ifp = sc->sc_ifp;
6357 	ic = ifp->if_l2com;
6358 	iwn_stop_locked(sc);
6359 	iwn_init_locked(sc);
6360 	ieee80211_notify_radio(ic, 1);
6361 	wlan_serialize_exit();
6362 }
6363 
6364 static void
6365 iwn_radio_on_task(void *arg0, int pending)
6366 {
6367 	struct iwn_softc *sc = arg0;
6368 	struct ifnet *ifp;
6369 	struct ieee80211com *ic;
6370 	struct ieee80211vap *vap;
6371 
6372 	wlan_serialize_enter();
6373 	ifp = sc->sc_ifp;
6374 	ic = ifp->if_l2com;
6375 	vap = TAILQ_FIRST(&ic->ic_vaps);
6376 	if (vap != NULL) {
6377 		iwn_init_locked(sc);
6378 		ieee80211_init(vap);
6379 	}
6380 	wlan_serialize_exit();
6381 }
6382 
6383 static void
6384 iwn_radio_off_task(void *arg0, int pending)
6385 {
6386 	struct iwn_softc *sc = arg0;
6387 	struct ifnet *ifp;
6388 	struct ieee80211com *ic;
6389 	struct ieee80211vap *vap;
6390 
6391 	wlan_serialize_enter();
6392 	ifp = sc->sc_ifp;
6393 	ic = ifp->if_l2com;
6394 	vap = TAILQ_FIRST(&ic->ic_vaps);
6395 	iwn_stop_locked(sc);
6396 	if (vap != NULL)
6397 		ieee80211_stop(vap);
6398 
6399 	/* Enable interrupts to get RF toggle notification. */
6400 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6401 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6402 	wlan_serialize_exit();
6403 }
6404 
6405 static void
6406 iwn_sysctlattach(struct iwn_softc *sc)
6407 {
6408 	struct sysctl_ctx_list *ctx;
6409 	struct sysctl_oid *tree;
6410 
6411 	ctx = &sc->sc_sysctl_ctx;
6412 	tree = sc->sc_sysctl_tree;
6413 	if (tree == NULL) {
6414 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6415 		return;
6416 	}
6417 
6418 #ifdef IWN_DEBUG
6419 	sc->sc_debug = 0;
6420 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6421 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6422 #endif
6423 }
6424 
6425 static int
6426 iwn_pci_shutdown(device_t dev)
6427 {
6428 	struct iwn_softc *sc = device_get_softc(dev);
6429 
6430 	wlan_serialize_enter();
6431 	iwn_stop_locked(sc);
6432 	wlan_serialize_exit();
6433 
6434 	return 0;
6435 }
6436 
6437 static int
6438 iwn_pci_suspend(device_t dev)
6439 {
6440 	struct iwn_softc *sc = device_get_softc(dev);
6441 	struct ifnet *ifp = sc->sc_ifp;
6442 	struct ieee80211com *ic = ifp->if_l2com;
6443 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6444 
6445 	wlan_serialize_enter();
6446 	iwn_stop_locked(sc);
6447 	if (vap != NULL)
6448 		ieee80211_stop(vap);
6449 	wlan_serialize_exit();
6450 
6451 	return 0;
6452 }
6453 
6454 static int
6455 iwn_pci_resume(device_t dev)
6456 {
6457 	struct iwn_softc *sc = device_get_softc(dev);
6458 	struct ifnet *ifp;
6459 	struct ieee80211com *ic;
6460 	struct ieee80211vap *vap;
6461 
6462 	wlan_serialize_enter();
6463 	ifp = sc->sc_ifp;
6464 	ic = ifp->if_l2com;
6465 	vap = TAILQ_FIRST(&ic->ic_vaps);
6466 	/* Clear device-specific "PCI retry timeout" register (41h). */
6467 	pci_write_config(dev, 0x41, 0, 1);
6468 
6469 	if (ifp->if_flags & IFF_UP) {
6470 		iwn_init_locked(sc);
6471 		if (vap != NULL)
6472 			ieee80211_init(vap);
6473 		if (ifp->if_flags & IFF_RUNNING)
6474 			iwn_start_locked(ifp);
6475 	}
6476 	wlan_serialize_exit();
6477 
6478 	return 0;
6479 }
6480 
6481 #ifdef IWN_DEBUG
6482 static const char *
6483 iwn_intr_str(uint8_t cmd)
6484 {
6485 	switch (cmd) {
6486 	/* Notifications */
6487 	case IWN_UC_READY:		return "UC_READY";
6488 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6489 	case IWN_TX_DONE:		return "TX_DONE";
6490 	case IWN_START_SCAN:		return "START_SCAN";
6491 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6492 	case IWN_RX_STATISTICS:		return "RX_STATS";
6493 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6494 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6495 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6496 	case IWN_RX_PHY:		return "RX_PHY";
6497 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6498 	case IWN_RX_DONE:		return "RX_DONE";
6499 
6500 	/* Command Notifications */
6501 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6502 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6503 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6504 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6505 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6506 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6507 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6508 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6509 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6510 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6511 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6512 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6513 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6514 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6515 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6516 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6517 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6518 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6519 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6520 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6521 	}
6522 	return "UNKNOWN INTR NOTIF/CMD";
6523 }
6524 #endif /* IWN_DEBUG */
6525 
6526 static device_method_t iwn_methods[] = {
6527 	/* Device interface */
6528 	DEVMETHOD(device_probe,		iwn_pci_probe),
6529 	DEVMETHOD(device_attach,	iwn_pci_attach),
6530 	DEVMETHOD(device_detach,	iwn_pci_detach),
6531 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
6532 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
6533 	DEVMETHOD(device_resume,	iwn_pci_resume),
6534 	{ 0, 0 }
6535 };
6536 
6537 static driver_t iwn_driver = {
6538 	"iwn",
6539 	iwn_methods,
6540 	sizeof (struct iwn_softc)
6541 };
6542 static devclass_t iwn_devclass;
6543 
6544 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
6545 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6546 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6547 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6548 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
6549