xref: /dflybsd-src/sys/dev/netif/iwn/if_iwn.c (revision 635ed9ba8ad51007f4196e5625a17e8f2e1a8d0f)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 /* $FreeBSD$ */
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 #include <sys/libkern.h>
45 
46 #include <sys/bus.h>
47 #include <sys/resource.h>
48 #include <machine/clock.h>
49 
50 #include <bus/pci/pcireg.h>
51 #include <bus/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ifq_var.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip.h>
67 
68 #include <netproto/802_11/ieee80211_var.h>
69 #include <netproto/802_11/ieee80211_radiotap.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #include <netproto/802_11/ieee80211_ratectl.h>
72 
73 #include "if_iwnreg.h"
74 #include "if_iwnvar.h"
75 
76 static int	iwn_probe(device_t);
77 static int	iwn_attach(device_t);
78 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
79 static void	iwn_radiotap_attach(struct iwn_softc *);
80 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
81 		    const char name[IFNAMSIZ], int unit, int opmode,
82 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
83 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
84 static void	iwn_vap_delete(struct ieee80211vap *);
85 static int	iwn_cleanup(device_t);
86 static int	iwn_detach(device_t);
87 static int	iwn_nic_lock(struct iwn_softc *);
88 static int	iwn_eeprom_lock(struct iwn_softc *);
89 static int	iwn_init_otprom(struct iwn_softc *);
90 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
91 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
92 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
93 		    void **, bus_size_t, bus_size_t, int);
94 static void	iwn_dma_contig_free(struct iwn_dma_info *);
95 static int	iwn_alloc_sched(struct iwn_softc *);
96 static void	iwn_free_sched(struct iwn_softc *);
97 static int	iwn_alloc_kw(struct iwn_softc *);
98 static void	iwn_free_kw(struct iwn_softc *);
99 static int	iwn_alloc_ict(struct iwn_softc *);
100 static void	iwn_free_ict(struct iwn_softc *);
101 static int	iwn_alloc_fwmem(struct iwn_softc *);
102 static void	iwn_free_fwmem(struct iwn_softc *);
103 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
106 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
107 		    int);
108 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
110 static void	iwn5000_ict_reset(struct iwn_softc *);
111 static int	iwn_read_eeprom(struct iwn_softc *,
112 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
113 static void	iwn4965_read_eeprom(struct iwn_softc *);
114 static void	iwn4965_print_power_group(struct iwn_softc *, int);
115 static void	iwn5000_read_eeprom(struct iwn_softc *);
116 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
117 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
118 #if 0	/* HT */
119 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
120 #endif
121 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
122 		    uint32_t);
123 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
124 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
125 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
126 static void	iwn_newassoc(struct ieee80211_node *, int);
127 static int	iwn_media_change(struct ifnet *);
128 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
130 		    struct iwn_rx_data *);
131 static void	iwn_timer_timeout(void *);
132 static void	iwn_calib_reset(struct iwn_softc *);
133 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
134 		    struct iwn_rx_data *);
135 #if 0	/* HT */
136 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
137 		    struct iwn_rx_data *);
138 #endif
139 static void	iwn5000_rx_calib_results(struct iwn_softc *,
140 		    struct iwn_rx_desc *, struct iwn_rx_data *);
141 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
142 		    struct iwn_rx_data *);
143 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
144 		    struct iwn_rx_data *);
145 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
146 		    struct iwn_rx_data *);
147 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
148 		    uint8_t);
149 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
150 static void	iwn_notif_intr(struct iwn_softc *);
151 static void	iwn_wakeup_intr(struct iwn_softc *);
152 static void	iwn_rftoggle_intr(struct iwn_softc *);
153 static void	iwn_fatal_intr(struct iwn_softc *);
154 static void	iwn_intr(void *);
155 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
156 		    uint16_t);
157 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
158 		    uint16_t);
159 #ifdef notyet
160 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
161 #endif
162 static uint8_t	iwn_plcp_signal(int);
163 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
164 		    struct ieee80211_node *, struct iwn_tx_ring *);
165 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
166 		    const struct ieee80211_bpf_params *);
167 static void	iwn_start(struct ifnet *);
168 static void	iwn_start_locked(struct ifnet *);
169 static void	iwn_watchdog(struct iwn_softc *sc);
170 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
171 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
172 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
173 		    int);
174 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
175 		    int);
176 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
177 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
178 static int	iwn_wme_update(struct ieee80211com *);
179 static void	iwn_update_mcast(struct ifnet *);
180 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
181 static int	iwn_set_critical_temp(struct iwn_softc *);
182 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
183 static void	iwn4965_power_calibration(struct iwn_softc *, int);
184 static int	iwn4965_set_txpower(struct iwn_softc *,
185 		    struct ieee80211_channel *, int);
186 static int	iwn5000_set_txpower(struct iwn_softc *,
187 		    struct ieee80211_channel *, int);
188 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
190 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
191 static int	iwn4965_get_temperature(struct iwn_softc *);
192 static int	iwn5000_get_temperature(struct iwn_softc *);
193 static int	iwn_init_sensitivity(struct iwn_softc *);
194 static void	iwn_collect_noise(struct iwn_softc *,
195 		    const struct iwn_rx_general_stats *);
196 static int	iwn4965_init_gains(struct iwn_softc *);
197 static int	iwn5000_init_gains(struct iwn_softc *);
198 static int	iwn4965_set_gains(struct iwn_softc *);
199 static int	iwn5000_set_gains(struct iwn_softc *);
200 static void	iwn_tune_sensitivity(struct iwn_softc *,
201 		    const struct iwn_rx_stats *);
202 static int	iwn_send_sensitivity(struct iwn_softc *);
203 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
204 static int	iwn_config(struct iwn_softc *);
205 static int	iwn_scan(struct iwn_softc *);
206 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
207 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
208 #if 0	/* HT */
209 static int	iwn_ampdu_rx_start(struct ieee80211com *,
210 		    struct ieee80211_node *, uint8_t);
211 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
212 		    struct ieee80211_node *, uint8_t);
213 static int	iwn_ampdu_tx_start(struct ieee80211com *,
214 		    struct ieee80211_node *, uint8_t);
215 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
216 		    struct ieee80211_node *, uint8_t);
217 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
218 		    struct ieee80211_node *, uint8_t, uint16_t);
219 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
220 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
221 		    struct ieee80211_node *, uint8_t, uint16_t);
222 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
223 #endif
224 static int	iwn5000_query_calibration(struct iwn_softc *);
225 static int	iwn5000_send_calibration(struct iwn_softc *);
226 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
227 static int	iwn4965_post_alive(struct iwn_softc *);
228 static int	iwn5000_post_alive(struct iwn_softc *);
229 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
230 		    int);
231 static int	iwn4965_load_firmware(struct iwn_softc *);
232 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
233 		    const uint8_t *, int);
234 static int	iwn5000_load_firmware(struct iwn_softc *);
235 static int	iwn_read_firmware(struct iwn_softc *);
236 static int	iwn_clock_wait(struct iwn_softc *);
237 static int	iwn_apm_init(struct iwn_softc *);
238 static void	iwn_apm_stop_master(struct iwn_softc *);
239 static void	iwn_apm_stop(struct iwn_softc *);
240 static int	iwn4965_nic_config(struct iwn_softc *);
241 static int	iwn5000_nic_config(struct iwn_softc *);
242 static int	iwn_hw_prepare(struct iwn_softc *);
243 static int	iwn_hw_init(struct iwn_softc *);
244 static void	iwn_hw_stop(struct iwn_softc *);
245 static void	iwn_init_locked(struct iwn_softc *);
246 static void	iwn_init(void *);
247 static void	iwn_stop_locked(struct iwn_softc *);
248 static void	iwn_stop(struct iwn_softc *);
249 static void 	iwn_scan_start(struct ieee80211com *);
250 static void 	iwn_scan_end(struct ieee80211com *);
251 static void 	iwn_set_channel(struct ieee80211com *);
252 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
253 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
254 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
255 		    struct ieee80211_channel *);
256 static int	iwn_setregdomain(struct ieee80211com *,
257 		    struct ieee80211_regdomain *, int,
258 		    struct ieee80211_channel []);
259 static void	iwn_hw_reset(void *, int);
260 static void	iwn_radio_on(void *, int);
261 static void	iwn_radio_off(void *, int);
262 static void	iwn_sysctlattach(struct iwn_softc *);
263 static int	iwn_shutdown(device_t);
264 static int	iwn_suspend(device_t);
265 static int	iwn_resume(device_t);
266 
267 #define IWN_DEBUG
268 #ifdef IWN_DEBUG
269 enum {
270 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
271 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
272 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
273 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
274 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
275 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
276 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
277 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
278 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
279 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
280 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
281 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
282 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
283 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
284 	IWN_DEBUG_ANY		= 0xffffffff
285 };
286 
287 #define DPRINTF(sc, m, fmt, ...) do {			\
288 	if (sc->sc_debug & (m))				\
289 		kprintf(fmt, __VA_ARGS__);		\
290 } while (0)
291 
292 static const char *iwn_intr_str(uint8_t);
293 #else
294 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
295 #endif
296 
297 struct iwn_ident {
298 	uint16_t	vendor;
299 	uint16_t	device;
300 	const char	*name;
301 };
302 
303 static const struct iwn_ident iwn_ident_table [] = {
304 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
305 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
306 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
307 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
308 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
309 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
310 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
311 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
312 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
313 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
314 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5350" },
315 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
316 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
317 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
318 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
319 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
320 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
321 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
325 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
326 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
327 	{ 0, 0, NULL }
328 };
329 
330 static const struct iwn_hal iwn4965_hal = {
331 	iwn4965_load_firmware,
332 	iwn4965_read_eeprom,
333 	iwn4965_post_alive,
334 	iwn4965_nic_config,
335 	iwn4965_update_sched,
336 	iwn4965_get_temperature,
337 	iwn4965_get_rssi,
338 	iwn4965_set_txpower,
339 	iwn4965_init_gains,
340 	iwn4965_set_gains,
341 	iwn4965_add_node,
342 	iwn4965_tx_done,
343 #if 0	/* HT */
344 	iwn4965_ampdu_tx_start,
345 	iwn4965_ampdu_tx_stop,
346 #endif
347 	IWN4965_NTXQUEUES,
348 	IWN4965_NDMACHNLS,
349 	IWN4965_ID_BROADCAST,
350 	IWN4965_RXONSZ,
351 	IWN4965_SCHEDSZ,
352 	IWN4965_FW_TEXT_MAXSZ,
353 	IWN4965_FW_DATA_MAXSZ,
354 	IWN4965_FWSZ,
355 	IWN4965_SCHED_TXFACT
356 };
357 
358 static const struct iwn_hal iwn5000_hal = {
359 	iwn5000_load_firmware,
360 	iwn5000_read_eeprom,
361 	iwn5000_post_alive,
362 	iwn5000_nic_config,
363 	iwn5000_update_sched,
364 	iwn5000_get_temperature,
365 	iwn5000_get_rssi,
366 	iwn5000_set_txpower,
367 	iwn5000_init_gains,
368 	iwn5000_set_gains,
369 	iwn5000_add_node,
370 	iwn5000_tx_done,
371 #if 0	/* HT */
372 	iwn5000_ampdu_tx_start,
373 	iwn5000_ampdu_tx_stop,
374 #endif
375 	IWN5000_NTXQUEUES,
376 	IWN5000_NDMACHNLS,
377 	IWN5000_ID_BROADCAST,
378 	IWN5000_RXONSZ,
379 	IWN5000_SCHEDSZ,
380 	IWN5000_FW_TEXT_MAXSZ,
381 	IWN5000_FW_DATA_MAXSZ,
382 	IWN5000_FWSZ,
383 	IWN5000_SCHED_TXFACT
384 };
385 
386 static int
387 iwn_probe(device_t dev)
388 {
389 	const struct iwn_ident *ident;
390 
391 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
392 		if (pci_get_vendor(dev) == ident->vendor &&
393 		    pci_get_device(dev) == ident->device) {
394 			device_set_desc(dev, ident->name);
395 			return 0;
396 		}
397 	}
398 	return ENXIO;
399 }
400 
401 static int
402 iwn_attach(device_t dev)
403 {
404 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
405 	struct ieee80211com *ic;
406 	struct ifnet *ifp;
407 	const struct iwn_hal *hal;
408 	uint32_t tmp;
409 	int i, error, result;
410 	uint8_t macaddr[IEEE80211_ADDR_LEN];
411 
412 	sc->sc_dev = dev;
413 	sc->sc_dmat = NULL;
414 
415 	if (bus_dma_tag_create(sc->sc_dmat,
416 			1, 0,
417 			BUS_SPACE_MAXADDR_32BIT,
418 			BUS_SPACE_MAXADDR,
419 			NULL, NULL,
420 			BUS_SPACE_MAXSIZE,
421 			IWN_MAX_SCATTER,
422 			BUS_SPACE_MAXSIZE,
423 			BUS_DMA_ALLOCNOW,
424 			&sc->sc_dmat)) {
425 		device_printf(dev, "cannot allocate DMA tag\n");
426 		error = ENOMEM;
427 		goto fail;
428 	}
429 
430 
431 
432 	/* prepare sysctl tree for use in sub modules */
433 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
434 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
435 		SYSCTL_STATIC_CHILDREN(_hw),
436 		OID_AUTO,
437 		device_get_nameunit(sc->sc_dev),
438 		CTLFLAG_RD, 0, "");
439 
440 	/*
441 	 * Get the offset of the PCI Express Capability Structure in PCI
442 	 * Configuration Space.
443 	 */
444 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
445 	if (error != 0) {
446 		device_printf(dev, "PCIe capability structure not found!\n");
447 		return error;
448 	}
449 
450 	/* Clear device-specific "PCI retry timeout" register (41h). */
451 	pci_write_config(dev, 0x41, 0, 1);
452 
453 	/* Hardware bug workaround. */
454 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
455 	if (tmp & PCIM_CMD_INTxDIS) {
456 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
457 		    __func__);
458 		tmp &= ~PCIM_CMD_INTxDIS;
459 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
460 	}
461 
462 	/* Enable bus-mastering. */
463 	pci_enable_busmaster(dev);
464 
465 	sc->mem_rid = PCIR_BAR(0);
466 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
467 	    RF_ACTIVE);
468 	if (sc->mem == NULL ) {
469 		device_printf(dev, "could not allocate memory resources\n");
470 		error = ENOMEM;
471 		return error;
472 	}
473 
474 	sc->sc_st = rman_get_bustag(sc->mem);
475 	sc->sc_sh = rman_get_bushandle(sc->mem);
476 	sc->irq_rid = 0;
477 	if ((result = pci_msi_count(dev)) == 1 &&
478 	    pci_alloc_msi(dev, &result) == 0)
479 		sc->irq_rid = 1;
480 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
481 	    RF_ACTIVE | RF_SHAREABLE);
482 	if (sc->irq == NULL) {
483 		device_printf(dev, "could not allocate interrupt resource\n");
484 		error = ENOMEM;
485 		goto fail;
486 	}
487 
488 	IWN_LOCK_INIT(sc);
489 	callout_init(&sc->sc_timer_to);
490 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc );
491 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc );
492 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc );
493 
494 	/* Attach Hardware Abstraction Layer. */
495 	hal = iwn_hal_attach(sc);
496 	if (hal == NULL) {
497 		error = ENXIO;	/* XXX: Wrong error code? */
498 		goto fail;
499 	}
500 
501 	error = iwn_hw_prepare(sc);
502 	if (error != 0) {
503 		device_printf(dev, "hardware not ready, error %d\n", error);
504 		goto fail;
505 	}
506 
507 	/* Allocate DMA memory for firmware transfers. */
508 	error = iwn_alloc_fwmem(sc);
509 	if (error != 0) {
510 		device_printf(dev,
511 		    "could not allocate memory for firmware, error %d\n",
512 		    error);
513 		goto fail;
514 	}
515 
516 	/* Allocate "Keep Warm" page. */
517 	error = iwn_alloc_kw(sc);
518 	if (error != 0) {
519 		device_printf(dev,
520 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
521 		goto fail;
522 	}
523 
524 	/* Allocate ICT table for 5000 Series. */
525 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
526 	    (error = iwn_alloc_ict(sc)) != 0) {
527 		device_printf(dev,
528 		    "%s: could not allocate ICT table, error %d\n",
529 		    __func__, error);
530 		goto fail;
531 	}
532 
533 	/* Allocate TX scheduler "rings". */
534 	error = iwn_alloc_sched(sc);
535 	if (error != 0) {
536 		device_printf(dev,
537 		    "could not allocate TX scheduler rings, error %d\n",
538 		    error);
539 		goto fail;
540 	}
541 
542 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
543 	for (i = 0; i < hal->ntxqs; i++) {
544 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
545 		if (error != 0) {
546 			device_printf(dev,
547 			    "could not allocate Tx ring %d, error %d\n",
548 			    i, error);
549 			goto fail;
550 		}
551 	}
552 
553 	/* Allocate RX ring. */
554 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
555 	if (error != 0 ){
556 		device_printf(dev,
557 		    "could not allocate Rx ring, error %d\n", error);
558 		goto fail;
559 	}
560 
561 	/* Clear pending interrupts. */
562 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
563 
564 	/* Count the number of available chains. */
565 	sc->ntxchains =
566 	    ((sc->txchainmask >> 2) & 1) +
567 	    ((sc->txchainmask >> 1) & 1) +
568 	    ((sc->txchainmask >> 0) & 1);
569 	sc->nrxchains =
570 	    ((sc->rxchainmask >> 2) & 1) +
571 	    ((sc->rxchainmask >> 1) & 1) +
572 	    ((sc->rxchainmask >> 0) & 1);
573 
574 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
575 	if (ifp == NULL) {
576 		device_printf(dev, "can not allocate ifnet structure\n");
577 		goto fail;
578 	}
579 	ic = ifp->if_l2com;
580 
581 	ic->ic_ifp = ifp;
582 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
583 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
584 
585 	/* Set device capabilities. */
586 	ic->ic_caps =
587 		  IEEE80211_C_STA		/* station mode supported */
588 		| IEEE80211_C_MONITOR		/* monitor mode supported */
589 		| IEEE80211_C_TXPMGT		/* tx power management */
590 		| IEEE80211_C_SHSLOT		/* short slot time supported */
591 		| IEEE80211_C_WPA
592 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
593 		| IEEE80211_C_BGSCAN		/* background scanning */
594 #if 0
595 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
596 #endif
597 		| IEEE80211_C_WME		/* WME */
598 		;
599 #if 0	/* HT */
600 	/* XXX disable until HT channel setup works */
601 	ic->ic_htcaps =
602 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
603 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
604 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
605 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
606 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
607 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
608 		/* s/w capabilities */
609 		| IEEE80211_HTC_HT		/* HT operation */
610 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
611 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
612 		;
613 
614 	/* Set HT capabilities. */
615 	ic->ic_htcaps =
616 #if IWN_RBUF_SIZE == 8192
617 	    IEEE80211_HTCAP_AMSDU7935 |
618 #endif
619 	    IEEE80211_HTCAP_CBW20_40 |
620 	    IEEE80211_HTCAP_SGI20 |
621 	    IEEE80211_HTCAP_SGI40;
622 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
623 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
624 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
625 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
626 	else
627 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
628 #endif
629 
630 	/* Read MAC address, channels, etc from EEPROM. */
631 	error = iwn_read_eeprom(sc, macaddr);
632 	if (error != 0) {
633 		device_printf(dev, "could not read EEPROM, error %d\n",
634 		    error);
635 		goto fail;
636 	}
637 
638 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
639 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
640 	    macaddr, ":");
641 
642 #if 0	/* HT */
643 	/* Set supported HT rates. */
644 	ic->ic_sup_mcs[0] = 0xff;
645 	if (sc->nrxchains > 1)
646 		ic->ic_sup_mcs[1] = 0xff;
647 	if (sc->nrxchains > 2)
648 		ic->ic_sup_mcs[2] = 0xff;
649 #endif
650 
651 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
652 	ifp->if_softc = sc;
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_init = iwn_init;
655 	ifp->if_ioctl = iwn_ioctl;
656 	ifp->if_start = iwn_start;
657 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
658 	ifq_set_ready(&ifp->if_snd);
659 
660 	ieee80211_ifattach(ic, macaddr);
661 	ic->ic_vap_create = iwn_vap_create;
662 	ic->ic_vap_delete = iwn_vap_delete;
663 	ic->ic_raw_xmit = iwn_raw_xmit;
664 	ic->ic_node_alloc = iwn_node_alloc;
665 	ic->ic_newassoc = iwn_newassoc;
666 	ic->ic_wme.wme_update = iwn_wme_update;
667 	ic->ic_update_mcast = iwn_update_mcast;
668 	ic->ic_scan_start = iwn_scan_start;
669 	ic->ic_scan_end = iwn_scan_end;
670 	ic->ic_set_channel = iwn_set_channel;
671 	ic->ic_scan_curchan = iwn_scan_curchan;
672 	ic->ic_scan_mindwell = iwn_scan_mindwell;
673 	ic->ic_setregdomain = iwn_setregdomain;
674 #if 0	/* HT */
675 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
676 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
677 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
678 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
679 #endif
680 
681 	iwn_radiotap_attach(sc);
682 	iwn_sysctlattach(sc);
683 
684 	/*
685 	 * Hook our interrupt after all initialization is complete.
686 	 */
687 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
688 	    iwn_intr, sc, &sc->sc_ih, NULL);
689 	if (error != 0) {
690 		device_printf(dev, "could not set up interrupt, error %d\n",
691 		    error);
692 		goto fail;
693 	}
694 
695 	ieee80211_announce(ic);
696 	return 0;
697 fail:
698 	iwn_cleanup(dev);
699 	return error;
700 }
701 
702 static const struct iwn_hal *
703 iwn_hal_attach(struct iwn_softc *sc)
704 {
705 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
706 
707 	switch (sc->hw_type) {
708 	case IWN_HW_REV_TYPE_4965:
709 		sc->sc_hal = &iwn4965_hal;
710 		sc->limits = &iwn4965_sensitivity_limits;
711 		sc->fwname = "iwn4965fw";
712 		sc->txchainmask = IWN_ANT_AB;
713 		sc->rxchainmask = IWN_ANT_ABC;
714 		break;
715 	case IWN_HW_REV_TYPE_5100:
716 		sc->sc_hal = &iwn5000_hal;
717 		sc->limits = &iwn5000_sensitivity_limits;
718 		sc->fwname = "iwn5000fw";
719 		sc->txchainmask = IWN_ANT_B;
720 		sc->rxchainmask = IWN_ANT_AB;
721 		break;
722 	case IWN_HW_REV_TYPE_5150:
723 		sc->sc_hal = &iwn5000_hal;
724 		sc->limits = &iwn5150_sensitivity_limits;
725 		sc->fwname = "iwn5150fw";
726 		sc->txchainmask = IWN_ANT_A;
727 		sc->rxchainmask = IWN_ANT_AB;
728 		break;
729 	case IWN_HW_REV_TYPE_5300:
730 	case IWN_HW_REV_TYPE_5350:
731 		sc->sc_hal = &iwn5000_hal;
732 		sc->limits = &iwn5000_sensitivity_limits;
733 		sc->fwname = "iwn5000fw";
734 		sc->txchainmask = IWN_ANT_ABC;
735 		sc->rxchainmask = IWN_ANT_ABC;
736 		break;
737 	case IWN_HW_REV_TYPE_1000:
738 		sc->sc_hal = &iwn5000_hal;
739 		sc->limits = &iwn1000_sensitivity_limits;
740 		sc->fwname = "iwn1000fw";
741 		sc->txchainmask = IWN_ANT_A;
742 		sc->rxchainmask = IWN_ANT_AB;
743 		break;
744 	case IWN_HW_REV_TYPE_6000:
745 		sc->sc_hal = &iwn5000_hal;
746 		sc->limits = &iwn6000_sensitivity_limits;
747 		sc->fwname = "iwn6000fw";
748 		switch (pci_get_device(sc->sc_dev)) {
749 		case 0x422C:
750 		case 0x4239:
751 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
752 			sc->txchainmask = IWN_ANT_BC;
753 			sc->rxchainmask = IWN_ANT_BC;
754 			break;
755 		default:
756 			sc->txchainmask = IWN_ANT_ABC;
757 			sc->rxchainmask = IWN_ANT_ABC;
758 			break;
759 		}
760 		break;
761 	case IWN_HW_REV_TYPE_6050:
762 		sc->sc_hal = &iwn5000_hal;
763 		sc->limits = &iwn6000_sensitivity_limits;
764 		sc->fwname = "iwn6000fw";
765 		sc->txchainmask = IWN_ANT_AB;
766 		sc->rxchainmask = IWN_ANT_AB;
767 		break;
768 	default:
769 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
770 		    sc->hw_type);
771 		return NULL;
772 	}
773 	return sc->sc_hal;
774 }
775 
776 /*
777  * Attach the interface to 802.11 radiotap.
778  */
779 static void
780 iwn_radiotap_attach(struct iwn_softc *sc)
781 {
782 	struct ifnet *ifp = sc->sc_ifp;
783 	struct ieee80211com *ic = ifp->if_l2com;
784 
785 	ieee80211_radiotap_attach(ic,
786 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
787 		IWN_TX_RADIOTAP_PRESENT,
788 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
789 		IWN_RX_RADIOTAP_PRESENT);
790 }
791 
792 static struct ieee80211vap *
793 iwn_vap_create(struct ieee80211com *ic,
794 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
795 	const uint8_t bssid[IEEE80211_ADDR_LEN],
796 	const uint8_t mac[IEEE80211_ADDR_LEN])
797 {
798 	struct iwn_vap *ivp;
799 	struct ieee80211vap *vap;
800 
801 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
802 		return NULL;
803 	ivp = (struct iwn_vap *) kmalloc(sizeof(struct iwn_vap),
804 	    M_80211_VAP, M_INTWAIT | M_ZERO);
805 	if (ivp == NULL)
806 		return NULL;
807 	vap = &ivp->iv_vap;
808 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
809 	vap->iv_bmissthreshold = 10;		/* override default */
810 	/* Override with driver methods. */
811 	ivp->iv_newstate = vap->iv_newstate;
812 	vap->iv_newstate = iwn_newstate;
813 
814 	ieee80211_ratectl_init(vap);
815 	/* Complete setup. */
816 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
817 	ic->ic_opmode = opmode;
818 	return vap;
819 }
820 
821 static void
822 iwn_vap_delete(struct ieee80211vap *vap)
823 {
824 	struct iwn_vap *ivp = IWN_VAP(vap);
825 
826 	ieee80211_ratectl_deinit(vap);
827 	ieee80211_vap_detach(vap);
828 	kfree(ivp, M_80211_VAP);
829 }
830 
831 static int
832 iwn_cleanup(device_t dev)
833 {
834 	struct iwn_softc *sc = device_get_softc(dev);
835 	struct ifnet *ifp = sc->sc_ifp;
836 	struct ieee80211com *ic;
837 	int i;
838 
839 	if (ifp != NULL) {
840 		ic = ifp->if_l2com;
841 
842 		ieee80211_draintask(ic, &sc->sc_reinit_task);
843 		ieee80211_draintask(ic, &sc->sc_radioon_task);
844 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
845 
846 		iwn_stop(sc);
847 		callout_stop(&sc->sc_timer_to);
848 		ieee80211_ifdetach(ic);
849 	}
850 
851 	/* Free DMA resources. */
852 	iwn_free_rx_ring(sc, &sc->rxq);
853 	if (sc->sc_hal != NULL)
854 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
855 			iwn_free_tx_ring(sc, &sc->txq[i]);
856 	iwn_free_sched(sc);
857 	iwn_free_kw(sc);
858 	if (sc->ict != NULL)
859 		iwn_free_ict(sc);
860 	iwn_free_fwmem(sc);
861 
862 	if (sc->irq != NULL) {
863 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
864 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
865 		if (sc->irq_rid == 1)
866 			pci_release_msi(dev);
867 	}
868 
869 	if (sc->mem != NULL)
870 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
871 
872 	if (ifp != NULL)
873 		if_free(ifp);
874 
875 	IWN_LOCK_DESTROY(sc);
876 	return 0;
877 }
878 
879 static int
880 iwn_detach(device_t dev)
881 {
882 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
883 
884 	iwn_cleanup(dev);
885 	bus_dma_tag_destroy(sc->sc_dmat);
886 	return 0;
887 }
888 
889 static int
890 iwn_nic_lock(struct iwn_softc *sc)
891 {
892 	int ntries;
893 
894 	/* Request exclusive access to NIC. */
895 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
896 
897 	/* Spin until we actually get the lock. */
898 	for (ntries = 0; ntries < 1000; ntries++) {
899 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
900 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
901 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
902 			return 0;
903 		DELAY(10);
904 	}
905 	return ETIMEDOUT;
906 }
907 
908 static __inline void
909 iwn_nic_unlock(struct iwn_softc *sc)
910 {
911 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
912 }
913 
914 static __inline uint32_t
915 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
916 {
917 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
918 	IWN_BARRIER_READ_WRITE(sc);
919 	return IWN_READ(sc, IWN_PRPH_RDATA);
920 }
921 
922 static __inline void
923 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
924 {
925 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
926 	IWN_BARRIER_WRITE(sc);
927 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
928 }
929 
930 static __inline void
931 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
932 {
933 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
934 }
935 
936 static __inline void
937 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
938 {
939 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
940 }
941 
942 static __inline void
943 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
944     const uint32_t *data, int count)
945 {
946 	for (; count > 0; count--, data++, addr += 4)
947 		iwn_prph_write(sc, addr, *data);
948 }
949 
950 static __inline uint32_t
951 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
952 {
953 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
954 	IWN_BARRIER_READ_WRITE(sc);
955 	return IWN_READ(sc, IWN_MEM_RDATA);
956 }
957 
958 static __inline void
959 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
960 {
961 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
962 	IWN_BARRIER_WRITE(sc);
963 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
964 }
965 
966 static __inline void
967 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
968 {
969 	uint32_t tmp;
970 
971 	tmp = iwn_mem_read(sc, addr & ~3);
972 	if (addr & 3)
973 		tmp = (tmp & 0x0000ffff) | data << 16;
974 	else
975 		tmp = (tmp & 0xffff0000) | data;
976 	iwn_mem_write(sc, addr & ~3, tmp);
977 }
978 
979 static __inline void
980 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
981     int count)
982 {
983 	for (; count > 0; count--, addr += 4)
984 		*data++ = iwn_mem_read(sc, addr);
985 }
986 
987 static __inline void
988 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
989     int count)
990 {
991 	for (; count > 0; count--, addr += 4)
992 		iwn_mem_write(sc, addr, val);
993 }
994 
995 static int
996 iwn_eeprom_lock(struct iwn_softc *sc)
997 {
998 	int i, ntries;
999 
1000 	for (i = 0; i < 100; i++) {
1001 		/* Request exclusive access to EEPROM. */
1002 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1003 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1004 
1005 		/* Spin until we actually get the lock. */
1006 		for (ntries = 0; ntries < 100; ntries++) {
1007 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1008 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1009 				return 0;
1010 			DELAY(10);
1011 		}
1012 	}
1013 	return ETIMEDOUT;
1014 }
1015 
1016 static __inline void
1017 iwn_eeprom_unlock(struct iwn_softc *sc)
1018 {
1019 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1020 }
1021 
1022 /*
1023  * Initialize access by host to One Time Programmable ROM.
1024  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1025  */
1026 static int
1027 iwn_init_otprom(struct iwn_softc *sc)
1028 {
1029 	uint16_t prev, base, next;
1030 	int count, error;
1031 
1032 	/* Wait for clock stabilization before accessing prph. */
1033 	error = iwn_clock_wait(sc);
1034 	if (error != 0)
1035 		return error;
1036 
1037 	error = iwn_nic_lock(sc);
1038 	if (error != 0)
1039 		return error;
1040 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1041 	DELAY(5);
1042 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1043 	iwn_nic_unlock(sc);
1044 
1045 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1046 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1047 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1048 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1049 	}
1050 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1051 	/* Clear ECC status. */
1052 	IWN_SETBITS(sc, IWN_OTP_GP,
1053 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1054 
1055 	/*
1056 	 * Find the block before last block (contains the EEPROM image)
1057 	 * for HW without OTP shadow RAM.
1058 	 */
1059 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1060 		/* Switch to absolute addressing mode. */
1061 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1062 		base = prev = 0;
1063 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1064 			error = iwn_read_prom_data(sc, base, &next, 2);
1065 			if (error != 0)
1066 				return error;
1067 			if (next == 0)	/* End of linked-list. */
1068 				break;
1069 			prev = base;
1070 			base = le16toh(next);
1071 		}
1072 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1073 			return EIO;
1074 		/* Skip "next" word. */
1075 		sc->prom_base = prev + 1;
1076 	}
1077 	return 0;
1078 }
1079 
1080 static int
1081 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1082 {
1083 	uint32_t val, tmp;
1084 	int ntries;
1085 	uint8_t *out = data;
1086 
1087 	addr += sc->prom_base;
1088 	for (; count > 0; count -= 2, addr++) {
1089 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1090 		for (ntries = 0; ntries < 10; ntries++) {
1091 			val = IWN_READ(sc, IWN_EEPROM);
1092 			if (val & IWN_EEPROM_READ_VALID)
1093 				break;
1094 			DELAY(5);
1095 		}
1096 		if (ntries == 10) {
1097 			device_printf(sc->sc_dev,
1098 			    "timeout reading ROM at 0x%x\n", addr);
1099 			return ETIMEDOUT;
1100 		}
1101 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1102 			/* OTPROM, check for ECC errors. */
1103 			tmp = IWN_READ(sc, IWN_OTP_GP);
1104 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1105 				device_printf(sc->sc_dev,
1106 				    "OTPROM ECC error at 0x%x\n", addr);
1107 				return EIO;
1108 			}
1109 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1110 				/* Correctable ECC error, clear bit. */
1111 				IWN_SETBITS(sc, IWN_OTP_GP,
1112 				    IWN_OTP_GP_ECC_CORR_STTS);
1113 			}
1114 		}
1115 		*out++ = val >> 16;
1116 		if (count > 1)
1117 			*out++ = val >> 24;
1118 	}
1119 	return 0;
1120 }
1121 
1122 static void
1123 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1124 {
1125 	if (error != 0)
1126 		return;
1127 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1128 	*(bus_addr_t *)arg = segs[0].ds_addr;
1129 }
1130 
1131 static int
1132 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1133 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1134 {
1135 	int error;
1136 
1137 	dma->size = size;
1138 	dma->tag = NULL;
1139 
1140 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1141 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1142 	    1, size, flags, &dma->tag);
1143 	if (error != 0) {
1144 		device_printf(sc->sc_dev,
1145 		    "%s: bus_dma_tag_create failed, error %d\n",
1146 		    __func__, error);
1147 		goto fail;
1148 	}
1149 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1150 	    flags | BUS_DMA_ZERO, &dma->map);
1151 	if (error != 0) {
1152 		device_printf(sc->sc_dev,
1153 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1154 		goto fail;
1155 	}
1156 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1157 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1158 	if (error != 0) {
1159 		device_printf(sc->sc_dev,
1160 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1161 		goto fail;
1162 	}
1163 
1164 	if (kvap != NULL)
1165 		*kvap = dma->vaddr;
1166 	return 0;
1167 fail:
1168 	iwn_dma_contig_free(dma);
1169 	return error;
1170 }
1171 
1172 static void
1173 iwn_dma_contig_free(struct iwn_dma_info *dma)
1174 {
1175 	if (dma->tag != NULL) {
1176 		if (dma->map != NULL) {
1177 			if (dma->paddr == 0) {
1178 				bus_dmamap_sync(dma->tag, dma->map,
1179 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1180 				bus_dmamap_unload(dma->tag, dma->map);
1181 			}
1182 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1183 		}
1184 		bus_dma_tag_destroy(dma->tag);
1185 	}
1186 }
1187 
1188 static int
1189 iwn_alloc_sched(struct iwn_softc *sc)
1190 {
1191 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1192 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1193 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1194 }
1195 
1196 static void
1197 iwn_free_sched(struct iwn_softc *sc)
1198 {
1199 	iwn_dma_contig_free(&sc->sched_dma);
1200 }
1201 
1202 static int
1203 iwn_alloc_kw(struct iwn_softc *sc)
1204 {
1205 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1206 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1207 	    BUS_DMA_NOWAIT);
1208 }
1209 
1210 static void
1211 iwn_free_kw(struct iwn_softc *sc)
1212 {
1213 	iwn_dma_contig_free(&sc->kw_dma);
1214 }
1215 
1216 static int
1217 iwn_alloc_ict(struct iwn_softc *sc)
1218 {
1219 	/* ICT table must be aligned on a 4KB boundary. */
1220 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1221 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1222 }
1223 
1224 static void
1225 iwn_free_ict(struct iwn_softc *sc)
1226 {
1227 	iwn_dma_contig_free(&sc->ict_dma);
1228 }
1229 
1230 static int
1231 iwn_alloc_fwmem(struct iwn_softc *sc)
1232 {
1233 	/* Must be aligned on a 16-byte boundary. */
1234 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1235 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1236 }
1237 
1238 static void
1239 iwn_free_fwmem(struct iwn_softc *sc)
1240 {
1241 	iwn_dma_contig_free(&sc->fw_dma);
1242 }
1243 
1244 static int
1245 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1246 {
1247 	bus_size_t size;
1248 	int i, error;
1249 
1250 	ring->cur = 0;
1251 
1252 	/* Allocate RX descriptors (256-byte aligned). */
1253 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1254 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1255 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1256 	if (error != 0) {
1257 		device_printf(sc->sc_dev,
1258 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1259 		    __func__, error);
1260 		goto fail;
1261 	}
1262 
1263 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1264 	    BUS_SPACE_MAXADDR_32BIT,
1265 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1266 	    MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1267 	if (error != 0) {
1268 		device_printf(sc->sc_dev,
1269 		    "%s: bus_dma_tag_create_failed, error %d\n",
1270 		    __func__, error);
1271 		goto fail;
1272 	}
1273 
1274 	/* Allocate RX status area (16-byte aligned). */
1275 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1276 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1277 	    16, BUS_DMA_NOWAIT);
1278 	if (error != 0) {
1279 		device_printf(sc->sc_dev,
1280 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1281 		    __func__, error);
1282 		goto fail;
1283 	}
1284 
1285 	/*
1286 	 * Allocate and map RX buffers.
1287 	 */
1288 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1289 		struct iwn_rx_data *data = &ring->data[i];
1290 		bus_addr_t paddr;
1291 
1292 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1293 		if (error != 0) {
1294 			device_printf(sc->sc_dev,
1295 			    "%s: bus_dmamap_create failed, error %d\n",
1296 			    __func__, error);
1297 			goto fail;
1298 		}
1299 
1300 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1301 		if (data->m == NULL) {
1302 			device_printf(sc->sc_dev,
1303 			    "%s: could not allocate rx mbuf\n", __func__);
1304 			error = ENOMEM;
1305 			goto fail;
1306 		}
1307 
1308 		/* Map page. */
1309 		error = bus_dmamap_load(ring->data_dmat, data->map,
1310 		    mtod(data->m, caddr_t), MCLBYTES,
1311 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1312 		if (error != 0 && error != EFBIG) {
1313 			device_printf(sc->sc_dev,
1314 			    "%s: bus_dmamap_load failed, error %d\n",
1315 			    __func__, error);
1316 			m_freem(data->m);
1317 			error = ENOMEM;	/* XXX unique code */
1318 			goto fail;
1319 		}
1320 		bus_dmamap_sync(ring->data_dmat, data->map,
1321 		    BUS_DMASYNC_PREWRITE);
1322 
1323 		/* Set physical address of RX buffer (256-byte aligned). */
1324 		ring->desc[i] = htole32(paddr >> 8);
1325 	}
1326 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1327 	    BUS_DMASYNC_PREWRITE);
1328 	return 0;
1329 fail:
1330 	iwn_free_rx_ring(sc, ring);
1331 	return error;
1332 }
1333 
1334 static void
1335 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1336 {
1337 	int ntries;
1338 
1339 	if (iwn_nic_lock(sc) == 0) {
1340 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1341 		for (ntries = 0; ntries < 1000; ntries++) {
1342 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1343 			    IWN_FH_RX_STATUS_IDLE)
1344 				break;
1345 			DELAY(10);
1346 		}
1347 		iwn_nic_unlock(sc);
1348 #ifdef IWN_DEBUG
1349 		if (ntries == 1000)
1350 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1351 			    "timeout resetting Rx ring");
1352 #endif
1353 	}
1354 	ring->cur = 0;
1355 	sc->last_rx_valid = 0;
1356 }
1357 
1358 static void
1359 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1360 {
1361 	int i;
1362 
1363 	iwn_dma_contig_free(&ring->desc_dma);
1364 	iwn_dma_contig_free(&ring->stat_dma);
1365 
1366 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1367 		struct iwn_rx_data *data = &ring->data[i];
1368 
1369 		if (data->m != NULL) {
1370 			bus_dmamap_sync(ring->data_dmat, data->map,
1371 			    BUS_DMASYNC_POSTREAD);
1372 			bus_dmamap_unload(ring->data_dmat, data->map);
1373 			m_freem(data->m);
1374 		}
1375 		if (data->map != NULL)
1376 			bus_dmamap_destroy(ring->data_dmat, data->map);
1377 	}
1378 }
1379 
1380 static int
1381 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1382 {
1383 	bus_size_t size;
1384 	bus_addr_t paddr;
1385 	int i, error;
1386 
1387 	ring->qid = qid;
1388 	ring->queued = 0;
1389 	ring->cur = 0;
1390 
1391 	/* Allocate TX descriptors (256-byte aligned.) */
1392 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1393 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1394 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1395 	if (error != 0) {
1396 		device_printf(sc->sc_dev,
1397 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1398 		    __func__, error);
1399 		goto fail;
1400 	}
1401 
1402 	/*
1403 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1404 	 * to allocate commands space for other rings.
1405 	 */
1406 	if (qid > 4)
1407 		return 0;
1408 
1409 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1410 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1411 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1412 	if (error != 0) {
1413 		device_printf(sc->sc_dev,
1414 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1415 		    __func__, error);
1416 		goto fail;
1417 	}
1418 
1419 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1420 	    BUS_SPACE_MAXADDR_32BIT,
1421 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
1422 	    MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1423 	if (error != 0) {
1424 		device_printf(sc->sc_dev,
1425 		    "%s: bus_dma_tag_create_failed, error %d\n",
1426 		    __func__, error);
1427 		goto fail;
1428 	}
1429 
1430 	paddr = ring->cmd_dma.paddr;
1431 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1432 		struct iwn_tx_data *data = &ring->data[i];
1433 
1434 		data->cmd_paddr = paddr;
1435 		data->scratch_paddr = paddr + 12;
1436 		paddr += sizeof (struct iwn_tx_cmd);
1437 
1438 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1439 		if (error != 0) {
1440 			device_printf(sc->sc_dev,
1441 			    "%s: bus_dmamap_create failed, error %d\n",
1442 			    __func__, error);
1443 			goto fail;
1444 		}
1445 		bus_dmamap_sync(ring->data_dmat, data->map,
1446 		    BUS_DMASYNC_PREWRITE);
1447 	}
1448 	return 0;
1449 fail:
1450 	iwn_free_tx_ring(sc, ring);
1451 	return error;
1452 }
1453 
1454 static void
1455 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1456 {
1457 	int i;
1458 
1459 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1460 		struct iwn_tx_data *data = &ring->data[i];
1461 
1462 		if (data->m != NULL) {
1463 			bus_dmamap_unload(ring->data_dmat, data->map);
1464 			m_freem(data->m);
1465 			data->m = NULL;
1466 		}
1467 	}
1468 	/* Clear TX descriptors. */
1469 	memset(ring->desc, 0, ring->desc_dma.size);
1470 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1471 	    BUS_DMASYNC_PREWRITE);
1472 	sc->qfullmsk &= ~(1 << ring->qid);
1473 	ring->queued = 0;
1474 	ring->cur = 0;
1475 }
1476 
1477 static void
1478 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1479 {
1480 	int i;
1481 
1482 	iwn_dma_contig_free(&ring->desc_dma);
1483 	iwn_dma_contig_free(&ring->cmd_dma);
1484 
1485 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1486 		struct iwn_tx_data *data = &ring->data[i];
1487 
1488 		if (data->m != NULL) {
1489 			bus_dmamap_sync(ring->data_dmat, data->map,
1490 			    BUS_DMASYNC_POSTWRITE);
1491 			bus_dmamap_unload(ring->data_dmat, data->map);
1492 			m_freem(data->m);
1493 		}
1494 		if (data->map != NULL)
1495 			bus_dmamap_destroy(ring->data_dmat, data->map);
1496 	}
1497 }
1498 
1499 static void
1500 iwn5000_ict_reset(struct iwn_softc *sc)
1501 {
1502 	/* Disable interrupts. */
1503 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1504 
1505 	/* Reset ICT table. */
1506 	memset(sc->ict, 0, IWN_ICT_SIZE);
1507 	sc->ict_cur = 0;
1508 
1509 	/* Set physical address of ICT table (4KB aligned.) */
1510 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1511 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1512 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1513 
1514 	/* Enable periodic RX interrupt. */
1515 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1516 	/* Switch to ICT interrupt mode in driver. */
1517 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1518 
1519 	/* Re-enable interrupts. */
1520 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1521 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1522 }
1523 
1524 static int
1525 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1526 {
1527 	const struct iwn_hal *hal = sc->sc_hal;
1528 	int error;
1529 	uint16_t val;
1530 
1531 	/* Check whether adapter has an EEPROM or an OTPROM. */
1532 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1533 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1534 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1535 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1536 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1537 
1538 	/* Adapter has to be powered on for EEPROM access to work. */
1539 	error = iwn_apm_init(sc);
1540 	if (error != 0) {
1541 		device_printf(sc->sc_dev,
1542 		    "%s: could not power ON adapter, error %d\n",
1543 		    __func__, error);
1544 		return error;
1545 	}
1546 
1547 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1548 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1549 		return EIO;
1550 	}
1551 	error = iwn_eeprom_lock(sc);
1552 	if (error != 0) {
1553 		device_printf(sc->sc_dev,
1554 		    "%s: could not lock ROM, error %d\n",
1555 		    __func__, error);
1556 		return error;
1557 	}
1558 
1559 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1560 		error = iwn_init_otprom(sc);
1561 		if (error != 0) {
1562 			device_printf(sc->sc_dev,
1563 			    "%s: could not initialize OTPROM, error %d\n",
1564 			    __func__, error);
1565 			return error;
1566 		}
1567 	}
1568 
1569 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1570 	sc->rfcfg = le16toh(val);
1571 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1572 
1573 	/* Read MAC address. */
1574 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1575 
1576 	/* Read adapter-specific information from EEPROM. */
1577 	hal->read_eeprom(sc);
1578 
1579 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1580 
1581 	iwn_eeprom_unlock(sc);
1582 	return 0;
1583 }
1584 
1585 static void
1586 iwn4965_read_eeprom(struct iwn_softc *sc)
1587 {
1588 	uint32_t addr;
1589 	int i;
1590 	uint16_t val;
1591 
1592 	/* Read regulatory domain (4 ASCII characters.) */
1593 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1594 
1595 	/* Read the list of authorized channels (20MHz ones only.) */
1596 	for (i = 0; i < 5; i++) {
1597 		addr = iwn4965_regulatory_bands[i];
1598 		iwn_read_eeprom_channels(sc, i, addr);
1599 	}
1600 
1601 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1602 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1603 	sc->maxpwr2GHz = val & 0xff;
1604 	sc->maxpwr5GHz = val >> 8;
1605 	/* Check that EEPROM values are within valid range. */
1606 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1607 		sc->maxpwr5GHz = 38;
1608 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1609 		sc->maxpwr2GHz = 38;
1610 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1611 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1612 
1613 	/* Read samples for each TX power group. */
1614 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1615 	    sizeof sc->bands);
1616 
1617 	/* Read voltage at which samples were taken. */
1618 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1619 	sc->eeprom_voltage = (int16_t)le16toh(val);
1620 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1621 	    sc->eeprom_voltage);
1622 
1623 #ifdef IWN_DEBUG
1624 	/* Print samples. */
1625 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1626 		for (i = 0; i < IWN_NBANDS; i++)
1627 			iwn4965_print_power_group(sc, i);
1628 	}
1629 #endif
1630 }
1631 
1632 #ifdef IWN_DEBUG
1633 static void
1634 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1635 {
1636 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1637 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1638 	int j, c;
1639 
1640 	kprintf("===band %d===\n", i);
1641 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1642 	kprintf("chan1 num=%d\n", chans[0].num);
1643 	for (c = 0; c < 2; c++) {
1644 		for (j = 0; j < IWN_NSAMPLES; j++) {
1645 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1646 			    "power=%d pa_det=%d\n", c, j,
1647 			    chans[0].samples[c][j].temp,
1648 			    chans[0].samples[c][j].gain,
1649 			    chans[0].samples[c][j].power,
1650 			    chans[0].samples[c][j].pa_det);
1651 		}
1652 	}
1653 	kprintf("chan2 num=%d\n", chans[1].num);
1654 	for (c = 0; c < 2; c++) {
1655 		for (j = 0; j < IWN_NSAMPLES; j++) {
1656 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1657 			    "power=%d pa_det=%d\n", c, j,
1658 			    chans[1].samples[c][j].temp,
1659 			    chans[1].samples[c][j].gain,
1660 			    chans[1].samples[c][j].power,
1661 			    chans[1].samples[c][j].pa_det);
1662 		}
1663 	}
1664 }
1665 #endif
1666 
1667 static void
1668 iwn5000_read_eeprom(struct iwn_softc *sc)
1669 {
1670 	struct iwn5000_eeprom_calib_hdr hdr;
1671 	int32_t temp, volt;
1672 	uint32_t addr, base;
1673 	int i;
1674 	uint16_t val;
1675 
1676 	/* Read regulatory domain (4 ASCII characters.) */
1677 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1678 	base = le16toh(val);
1679 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1680 	    sc->eeprom_domain, 4);
1681 
1682 	/* Read the list of authorized channels (20MHz ones only.) */
1683 	for (i = 0; i < 5; i++) {
1684 		addr = base + iwn5000_regulatory_bands[i];
1685 		iwn_read_eeprom_channels(sc, i, addr);
1686 	}
1687 
1688 	/* Read enhanced TX power information for 6000 Series. */
1689 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1690 		iwn_read_eeprom_enhinfo(sc);
1691 
1692 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1693 	base = le16toh(val);
1694 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1695 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1696 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1697 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1698 	    sc->calib_ver = hdr.version;
1699 
1700 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1701 		/* Compute temperature offset. */
1702 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1703 		temp = le16toh(val);
1704 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1705 		volt = le16toh(val);
1706 		sc->temp_off = temp - (volt / -5);
1707 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1708 		    temp, volt, sc->temp_off);
1709 	} else {
1710 		/* Read crystal calibration. */
1711 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1712 		    &sc->eeprom_crystal, sizeof (uint32_t));
1713 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1714 		le32toh(sc->eeprom_crystal));
1715 	}
1716 }
1717 
1718 /*
1719  * Translate EEPROM flags to net80211.
1720  */
1721 static uint32_t
1722 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1723 {
1724 	uint32_t nflags;
1725 
1726 	nflags = 0;
1727 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1728 		nflags |= IEEE80211_CHAN_PASSIVE;
1729 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1730 		nflags |= IEEE80211_CHAN_NOADHOC;
1731 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1732 		nflags |= IEEE80211_CHAN_DFS;
1733 		/* XXX apparently IBSS may still be marked */
1734 		nflags |= IEEE80211_CHAN_NOADHOC;
1735 	}
1736 
1737 	return nflags;
1738 }
1739 
1740 static void
1741 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1742 {
1743 	struct ifnet *ifp = sc->sc_ifp;
1744 	struct ieee80211com *ic = ifp->if_l2com;
1745 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1746 	const struct iwn_chan_band *band = &iwn_bands[n];
1747 	struct ieee80211_channel *c;
1748 	int i, chan, nflags;
1749 
1750 	for (i = 0; i < band->nchan; i++) {
1751 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1752 			DPRINTF(sc, IWN_DEBUG_RESET,
1753 			    "skip chan %d flags 0x%x maxpwr %d\n",
1754 			    band->chan[i], channels[i].flags,
1755 			    channels[i].maxpwr);
1756 			continue;
1757 		}
1758 		chan = band->chan[i];
1759 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1760 
1761 		DPRINTF(sc, IWN_DEBUG_RESET,
1762 		    "add chan %d flags 0x%x maxpwr %d\n",
1763 		    chan, channels[i].flags, channels[i].maxpwr);
1764 
1765 		c = &ic->ic_channels[ic->ic_nchans++];
1766 		c->ic_ieee = chan;
1767 		c->ic_maxregpower = channels[i].maxpwr;
1768 		c->ic_maxpower = 2*c->ic_maxregpower;
1769 
1770 		/* Save maximum allowed TX power for this channel. */
1771 		sc->maxpwr[chan] = channels[i].maxpwr;
1772 
1773 		if (n == 0) {	/* 2GHz band */
1774 			c->ic_freq = ieee80211_ieee2mhz(chan,
1775 			    IEEE80211_CHAN_G);
1776 
1777 			/* G =>'s B is supported */
1778 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1779 
1780 			c = &ic->ic_channels[ic->ic_nchans++];
1781 			c[0] = c[-1];
1782 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1783 		} else {	/* 5GHz band */
1784 			c->ic_freq = ieee80211_ieee2mhz(chan,
1785 			    IEEE80211_CHAN_A);
1786 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1787 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1788 		}
1789 #if 0	/* HT */
1790 		/* XXX no constraints on using HT20 */
1791 		/* add HT20, HT40 added separately */
1792 		c = &ic->ic_channels[ic->ic_nchans++];
1793 		c[0] = c[-1];
1794 		c->ic_flags |= IEEE80211_CHAN_HT20;
1795 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1796 #endif
1797 	}
1798 }
1799 
1800 #if 0	/* HT */
1801 static void
1802 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1803 {
1804 	struct ifnet *ifp = sc->sc_ifp;
1805 	struct ieee80211com *ic = ifp->if_l2com;
1806 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1807 	const struct iwn_chan_band *band = &iwn_bands[n];
1808 	struct ieee80211_channel *c, *cent, *extc;
1809 	int i;
1810 
1811 	for (i = 0; i < band->nchan; i++) {
1812 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1813 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1814 			DPRINTF(sc, IWN_DEBUG_RESET,
1815 			    "skip chan %d flags 0x%x maxpwr %d\n",
1816 			    band->chan[i], channels[i].flags,
1817 			    channels[i].maxpwr);
1818 			continue;
1819 		}
1820 		/*
1821 		 * Each entry defines an HT40 channel pair; find the
1822 		 * center channel, then the extension channel above.
1823 		 */
1824 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1825 		    band->flags & ~IEEE80211_CHAN_HT);
1826 		if (cent == NULL) {	/* XXX shouldn't happen */
1827 			device_printf(sc->sc_dev,
1828 			    "%s: no entry for channel %d\n",
1829 			    __func__, band->chan[i]);
1830 			continue;
1831 		}
1832 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1833 		    band->flags & ~IEEE80211_CHAN_HT);
1834 		if (extc == NULL) {
1835 			DPRINTF(sc, IWN_DEBUG_RESET,
1836 			    "skip chan %d, extension channel not found\n",
1837 			    band->chan[i]);
1838 			continue;
1839 		}
1840 
1841 		DPRINTF(sc, IWN_DEBUG_RESET,
1842 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1843 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1844 
1845 		c = &ic->ic_channels[ic->ic_nchans++];
1846 		c[0] = cent[0];
1847 		c->ic_extieee = extc->ic_ieee;
1848 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1849 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1850 		c = &ic->ic_channels[ic->ic_nchans++];
1851 		c[0] = extc[0];
1852 		c->ic_extieee = cent->ic_ieee;
1853 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1854 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1855 	}
1856 }
1857 #endif
1858 
1859 static void
1860 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1861 {
1862 	struct ifnet *ifp = sc->sc_ifp;
1863 	struct ieee80211com *ic = ifp->if_l2com;
1864 
1865 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1866 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1867 
1868 	if (n < 5)
1869 		iwn_read_eeprom_band(sc, n);
1870 #if 0	/* HT */
1871 	else
1872 		iwn_read_eeprom_ht40(sc, n);
1873 #endif
1874 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1875 }
1876 
1877 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
1878 
1879 static void
1880 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1881 {
1882 	struct iwn_eeprom_enhinfo enhinfo[35];
1883 	uint16_t val, base;
1884 	int8_t maxpwr;
1885 	int i;
1886 
1887 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1888 	base = le16toh(val);
1889 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1890 	    enhinfo, sizeof enhinfo);
1891 
1892 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1893 	for (i = 0; i < nitems(enhinfo); i++) {
1894 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1895 			continue;	/* Skip invalid entries. */
1896 
1897 		maxpwr = 0;
1898 		if (sc->txchainmask & IWN_ANT_A)
1899 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1900 		if (sc->txchainmask & IWN_ANT_B)
1901 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1902 		if (sc->txchainmask & IWN_ANT_C)
1903 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1904 		if (sc->ntxchains == 2)
1905 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1906 		else if (sc->ntxchains == 3)
1907 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1908 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1909 
1910 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1911 		    maxpwr);
1912 		sc->enh_maxpwr[i] = maxpwr;
1913 	}
1914 }
1915 
1916 static struct ieee80211_node *
1917 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1918 {
1919 	return kmalloc(sizeof (struct iwn_node), M_80211_NODE,M_INTWAIT | M_ZERO);
1920 }
1921 
1922 static void
1923 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1924 {
1925 	/* XXX move */
1926 	//if (!isnew) {
1927 		ieee80211_ratectl_node_deinit(ni);
1928 	//}
1929 
1930 	ieee80211_ratectl_node_init(ni);
1931 }
1932 
1933 static int
1934 iwn_media_change(struct ifnet *ifp)
1935 {
1936 	int error = ieee80211_media_change(ifp);
1937 	/* NB: only the fixed rate can change and that doesn't need a reset */
1938 	return (error == ENETRESET ? 0 : error);
1939 }
1940 
1941 static int
1942 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1943 {
1944 	struct iwn_vap *ivp = IWN_VAP(vap);
1945 	struct ieee80211com *ic = vap->iv_ic;
1946 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1947 	int error;
1948 
1949 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1950 		ieee80211_state_name[vap->iv_state],
1951 		ieee80211_state_name[nstate]);
1952 
1953 	IEEE80211_UNLOCK(ic);
1954 	IWN_LOCK(sc);
1955 	callout_stop(&sc->sc_timer_to);
1956 
1957 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1958 		/* !AUTH -> AUTH requires adapter config */
1959 		/* Reset state to handle reassociations correctly. */
1960 		sc->rxon.associd = 0;
1961 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1962 		iwn_calib_reset(sc);
1963 		error = iwn_auth(sc, vap);
1964 	}
1965 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1966 		/*
1967 		 * !RUN -> RUN requires setting the association id
1968 		 * which is done with a firmware cmd.  We also defer
1969 		 * starting the timers until that work is done.
1970 		 */
1971 		error = iwn_run(sc, vap);
1972 	}
1973 	if (nstate == IEEE80211_S_RUN) {
1974 		/*
1975 		 * RUN -> RUN transition; just restart the timers.
1976 		 */
1977 		iwn_calib_reset(sc);
1978 	}
1979 	IWN_UNLOCK(sc);
1980 	IEEE80211_LOCK(ic);
1981 	return ivp->iv_newstate(vap, nstate, arg);
1982 }
1983 
1984 /*
1985  * Process an RX_PHY firmware notification.  This is usually immediately
1986  * followed by an MPDU_RX_DONE notification.
1987  */
1988 static void
1989 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1990     struct iwn_rx_data *data)
1991 {
1992 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1993 
1994 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
1995 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1996 
1997 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1998 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1999 	sc->last_rx_valid = 1;
2000 }
2001 
2002 static void
2003 iwn_timer_timeout(void *arg)
2004 {
2005 	struct iwn_softc *sc = arg;
2006 	uint32_t flags = 0;
2007 
2008 	IWN_LOCK_ASSERT(sc);
2009 
2010 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
2011 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2012 		    "send statistics request");
2013 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2014 		    sizeof flags, 1);
2015 		sc->calib_cnt = 60;	/* do calibration every 60s */
2016 	}
2017 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2018 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
2019 }
2020 
2021 static void
2022 iwn_calib_reset(struct iwn_softc *sc)
2023 {
2024 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
2025 	sc->calib_cnt = 60;		/* do calibration every 60s */
2026 }
2027 
2028 /*
2029  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2030  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2031  */
2032 static void
2033 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2034     struct iwn_rx_data *data)
2035 {
2036 	const struct iwn_hal *hal = sc->sc_hal;
2037 	struct ifnet *ifp = sc->sc_ifp;
2038 	struct ieee80211com *ic = ifp->if_l2com;
2039 	struct iwn_rx_ring *ring = &sc->rxq;
2040 	struct ieee80211_frame *wh;
2041 	struct ieee80211_node *ni;
2042 	struct mbuf *m, *m1;
2043 	struct iwn_rx_stat *stat;
2044 	caddr_t head;
2045 	bus_addr_t paddr;
2046 	uint32_t flags;
2047 	int error, len, rssi, nf;
2048 
2049 	if (desc->type == IWN_MPDU_RX_DONE) {
2050 		/* Check for prior RX_PHY notification. */
2051 		if (!sc->last_rx_valid) {
2052 			DPRINTF(sc, IWN_DEBUG_ANY,
2053 			    "%s: missing RX_PHY\n", __func__);
2054 			ifp->if_ierrors++;
2055 			return;
2056 		}
2057 		sc->last_rx_valid = 0;
2058 		stat = &sc->last_rx_stat;
2059 	} else
2060 		stat = (struct iwn_rx_stat *)(desc + 1);
2061 
2062 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2063 
2064 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2065 		device_printf(sc->sc_dev,
2066 		    "%s: invalid rx statistic header, len %d\n",
2067 		    __func__, stat->cfg_phy_len);
2068 		ifp->if_ierrors++;
2069 		return;
2070 	}
2071 	if (desc->type == IWN_MPDU_RX_DONE) {
2072 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2073 		head = (caddr_t)(mpdu + 1);
2074 		len = le16toh(mpdu->len);
2075 	} else {
2076 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2077 		len = le16toh(stat->len);
2078 	}
2079 
2080 	flags = le32toh(*(uint32_t *)(head + len));
2081 
2082 	/* Discard frames with a bad FCS early. */
2083 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2084 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2085 		    __func__, flags);
2086 		ifp->if_ierrors++;
2087 		return;
2088 	}
2089 	/* Discard frames that are too short. */
2090 	if (len < sizeof (*wh)) {
2091 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2092 		    __func__, len);
2093 		ifp->if_ierrors++;
2094 		return;
2095 	}
2096 
2097 	/* XXX don't need mbuf, just dma buffer */
2098 	m1 = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2099 	if (m1 == NULL) {
2100 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2101 		    __func__);
2102 		ifp->if_ierrors++;
2103 		return;
2104 	}
2105 	bus_dmamap_unload(ring->data_dmat, data->map);
2106 
2107 	error = bus_dmamap_load(ring->data_dmat, data->map,
2108 	    mtod(m1, caddr_t), MCLBYTES,
2109 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2110 	if (error != 0 && error != EFBIG) {
2111 		device_printf(sc->sc_dev,
2112 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2113 		m_freem(m1);
2114 		ifp->if_ierrors++;
2115 		return;
2116 	}
2117 
2118 	m = data->m;
2119 	data->m = m1;
2120 	/* Update RX descriptor. */
2121 	ring->desc[ring->cur] = htole32(paddr >> 8);
2122 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2123 	    BUS_DMASYNC_PREWRITE);
2124 
2125 	/* Finalize mbuf. */
2126 	m->m_pkthdr.rcvif = ifp;
2127 	m->m_data = head;
2128 	m->m_pkthdr.len = m->m_len = len;
2129 
2130 	rssi = hal->get_rssi(sc, stat);
2131 
2132 	/* Grab a reference to the source node. */
2133 	wh = mtod(m, struct ieee80211_frame *);
2134 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2135 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2136 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2137 
2138 	if (ieee80211_radiotap_active(ic)) {
2139 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2140 
2141 		tap->wr_tsft = htole64(stat->tstamp);
2142 		tap->wr_flags = 0;
2143 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2144 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2145 		switch (stat->rate) {
2146 		/* CCK rates. */
2147 		case  10: tap->wr_rate =   2; break;
2148 		case  20: tap->wr_rate =   4; break;
2149 		case  55: tap->wr_rate =  11; break;
2150 		case 110: tap->wr_rate =  22; break;
2151 		/* OFDM rates. */
2152 		case 0xd: tap->wr_rate =  12; break;
2153 		case 0xf: tap->wr_rate =  18; break;
2154 		case 0x5: tap->wr_rate =  24; break;
2155 		case 0x7: tap->wr_rate =  36; break;
2156 		case 0x9: tap->wr_rate =  48; break;
2157 		case 0xb: tap->wr_rate =  72; break;
2158 		case 0x1: tap->wr_rate =  96; break;
2159 		case 0x3: tap->wr_rate = 108; break;
2160 		/* Unknown rate: should not happen. */
2161 		default:  tap->wr_rate =   0;
2162 		}
2163 		tap->wr_dbm_antsignal = rssi;
2164 		tap->wr_dbm_antnoise = nf;
2165 	}
2166 
2167 	IWN_UNLOCK(sc);
2168 
2169 	/* Send the frame to the 802.11 layer. */
2170 	if (ni != NULL) {
2171 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2172 		/* Node is no longer needed. */
2173 		ieee80211_free_node(ni);
2174 	} else
2175 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2176 
2177 	IWN_LOCK(sc);
2178 }
2179 
2180 #if 0	/* HT */
2181 /* Process an incoming Compressed BlockAck. */
2182 static void
2183 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2184     struct iwn_rx_data *data)
2185 {
2186 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2187 	struct iwn_tx_ring *txq;
2188 
2189 	txq = &sc->txq[letoh16(ba->qid)];
2190 	/* XXX TBD */
2191 }
2192 #endif
2193 
2194 /*
2195  * Process a CALIBRATION_RESULT notification sent by the initialization
2196  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2197  */
2198 static void
2199 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2200     struct iwn_rx_data *data)
2201 {
2202 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2203 	int len, idx = -1;
2204 
2205 	/* Runtime firmware should not send such a notification. */
2206 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2207 		return;
2208 
2209 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2210 	len = (le32toh(desc->len) & 0x3fff) - 4;
2211 
2212 	switch (calib->code) {
2213 	case IWN5000_PHY_CALIB_DC:
2214 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2215 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2216 			idx = 0;
2217 		break;
2218 	case IWN5000_PHY_CALIB_LO:
2219 		idx = 1;
2220 		break;
2221 	case IWN5000_PHY_CALIB_TX_IQ:
2222 		idx = 2;
2223 		break;
2224 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2225 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2226 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2227 			idx = 3;
2228 		break;
2229 	case IWN5000_PHY_CALIB_BASE_BAND:
2230 		idx = 4;
2231 		break;
2232 	}
2233 	if (idx == -1)	/* Ignore other results. */
2234 		return;
2235 
2236 	/* Save calibration result. */
2237 	if (sc->calibcmd[idx].buf != NULL)
2238 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
2239 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
2240 	if (sc->calibcmd[idx].buf == NULL) {
2241 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2242 		    "not enough memory for calibration result %d\n",
2243 		    calib->code);
2244 		return;
2245 	}
2246 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2247 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2248 	sc->calibcmd[idx].len = len;
2249 	memcpy(sc->calibcmd[idx].buf, calib, len);
2250 }
2251 
2252 /*
2253  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2254  * The latter is sent by the firmware after each received beacon.
2255  */
2256 static void
2257 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2258     struct iwn_rx_data *data)
2259 {
2260 	const struct iwn_hal *hal = sc->sc_hal;
2261 	struct ifnet *ifp = sc->sc_ifp;
2262 	struct ieee80211com *ic = ifp->if_l2com;
2263 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2264 	struct iwn_calib_state *calib = &sc->calib;
2265 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2266 	int temp;
2267 
2268 	/* Beacon stats are meaningful only when associated and not scanning. */
2269 	if (vap->iv_state != IEEE80211_S_RUN ||
2270 	    (ic->ic_flags & IEEE80211_F_SCAN))
2271 		return;
2272 
2273 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2274 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2275 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2276 
2277 	/* Test if temperature has changed. */
2278 	if (stats->general.temp != sc->rawtemp) {
2279 		/* Convert "raw" temperature to degC. */
2280 		sc->rawtemp = stats->general.temp;
2281 		temp = hal->get_temperature(sc);
2282 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2283 		    __func__, temp);
2284 
2285 		/* Update TX power if need be (4965AGN only.) */
2286 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2287 			iwn4965_power_calibration(sc, temp);
2288 	}
2289 
2290 	if (desc->type != IWN_BEACON_STATISTICS)
2291 		return;	/* Reply to a statistics request. */
2292 
2293 	sc->noise = iwn_get_noise(&stats->rx.general);
2294 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2295 
2296 	/* Test that RSSI and noise are present in stats report. */
2297 	if (le32toh(stats->rx.general.flags) != 1) {
2298 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2299 		    "received statistics without RSSI");
2300 		return;
2301 	}
2302 
2303 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2304 		iwn_collect_noise(sc, &stats->rx.general);
2305 	else if (calib->state == IWN_CALIB_STATE_RUN)
2306 		iwn_tune_sensitivity(sc, &stats->rx);
2307 }
2308 
2309 /*
2310  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2311  * and 5000 adapters have different incompatible TX status formats.
2312  */
2313 static void
2314 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2315     struct iwn_rx_data *data)
2316 {
2317 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2318 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2319 
2320 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2321 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2322 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2323 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2324 	    le32toh(stat->status));
2325 
2326 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2327 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2328 }
2329 
2330 static void
2331 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2332     struct iwn_rx_data *data)
2333 {
2334 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2335 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2336 
2337 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2338 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2339 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2340 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2341 	    le32toh(stat->status));
2342 
2343 #ifdef notyet
2344 	/* Reset TX scheduler slot. */
2345 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2346 #endif
2347 
2348 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2349 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2350 }
2351 
2352 /*
2353  * Adapter-independent backend for TX_DONE firmware notifications.
2354  */
2355 static void
2356 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2357     uint8_t status)
2358 {
2359 	struct ifnet *ifp = sc->sc_ifp;
2360 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2361 	struct iwn_tx_data *data = &ring->data[desc->idx];
2362 	struct mbuf *m;
2363 	struct ieee80211_node *ni;
2364 	struct ieee80211vap *vap;
2365 
2366 	KASSERT(data->ni != NULL, ("no node"));
2367 
2368 	/* Unmap and free mbuf. */
2369 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2370 	bus_dmamap_unload(ring->data_dmat, data->map);
2371 	m = data->m, data->m = NULL;
2372 	ni = data->ni, data->ni = NULL;
2373 	vap = ni->ni_vap;
2374 
2375 	if (m->m_flags & M_TXCB) {
2376 		/*
2377 		 * Channels marked for "radar" require traffic to be received
2378 		 * to unlock before we can transmit.  Until traffic is seen
2379 		 * any attempt to transmit is returned immediately with status
2380 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2381 		 * happen on first authenticate after scanning.  To workaround
2382 		 * this we ignore a failure of this sort in AUTH state so the
2383 		 * 802.11 layer will fall back to using a timeout to wait for
2384 		 * the AUTH reply.  This allows the firmware time to see
2385 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2386 		 * unclear why the firmware does not maintain state for
2387 		 * channels recently visited as this would allow immediate
2388 		 * use of the channel after a scan (where we see traffic).
2389 		 */
2390 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2391 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2392 			ieee80211_process_callback(ni, m, 0);
2393 		else
2394 			ieee80211_process_callback(ni, m,
2395 			    (status & IWN_TX_FAIL) != 0);
2396 	}
2397 
2398 	/*
2399 	 * Update rate control statistics for the node.
2400 	 */
2401 	if (status & 0x80) {
2402 		ifp->if_oerrors++;
2403 		ieee80211_ratectl_tx_complete(vap, ni,
2404 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2405 	} else {
2406 		ieee80211_ratectl_tx_complete(vap, ni,
2407 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2408 	}
2409 	m_freem(m);
2410 	ieee80211_free_node(ni);
2411 
2412 	sc->sc_tx_timer = 0;
2413 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2414 		sc->qfullmsk &= ~(1 << ring->qid);
2415 		if (sc->qfullmsk == 0 &&
2416 		    (ifp->if_flags & IFF_OACTIVE)) {
2417 			ifp->if_flags &= ~IFF_OACTIVE;
2418 			iwn_start_locked(ifp);
2419 		}
2420 	}
2421 }
2422 
2423 /*
2424  * Process a "command done" firmware notification.  This is where we wakeup
2425  * processes waiting for a synchronous command completion.
2426  */
2427 static void
2428 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2429 {
2430 	struct iwn_tx_ring *ring = &sc->txq[4];
2431 	struct iwn_tx_data *data;
2432 
2433 	if ((desc->qid & 0xf) != 4)
2434 		return;	/* Not a command ack. */
2435 
2436 	data = &ring->data[desc->idx];
2437 
2438 	/* If the command was mapped in an mbuf, free it. */
2439 	if (data->m != NULL) {
2440 		bus_dmamap_unload(ring->data_dmat, data->map);
2441 		m_freem(data->m);
2442 		data->m = NULL;
2443 	}
2444 	wakeup(&ring->desc[desc->idx]);
2445 }
2446 
2447 /*
2448  * Process an INT_FH_RX or INT_SW_RX interrupt.
2449  */
2450 static void
2451 iwn_notif_intr(struct iwn_softc *sc)
2452 {
2453 	struct ifnet *ifp = sc->sc_ifp;
2454 	struct ieee80211com *ic = ifp->if_l2com;
2455 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2456 	uint16_t hw;
2457 
2458 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2459 	    BUS_DMASYNC_POSTREAD);
2460 
2461 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2462 	while (sc->rxq.cur != hw) {
2463 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2464 		struct iwn_rx_desc *desc;
2465 
2466 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2467 		    BUS_DMASYNC_POSTREAD);
2468 		desc = mtod(data->m, struct iwn_rx_desc *);
2469 
2470 		DPRINTF(sc, IWN_DEBUG_RECV,
2471 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2472 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2473 		    desc->type, iwn_intr_str(desc->type),
2474 		    le16toh(desc->len));
2475 
2476 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2477 			iwn_cmd_done(sc, desc);
2478 
2479 		switch (desc->type) {
2480 		case IWN_RX_PHY:
2481 			iwn_rx_phy(sc, desc, data);
2482 			break;
2483 
2484 		case IWN_RX_DONE:		/* 4965AGN only. */
2485 		case IWN_MPDU_RX_DONE:
2486 			/* An 802.11 frame has been received. */
2487 			iwn_rx_done(sc, desc, data);
2488 			break;
2489 
2490 #if 0	/* HT */
2491 		case IWN_RX_COMPRESSED_BA:
2492 			/* A Compressed BlockAck has been received. */
2493 			iwn_rx_compressed_ba(sc, desc, data);
2494 			break;
2495 #endif
2496 
2497 		case IWN_TX_DONE:
2498 			/* An 802.11 frame has been transmitted. */
2499 			sc->sc_hal->tx_done(sc, desc, data);
2500 			break;
2501 
2502 		case IWN_RX_STATISTICS:
2503 		case IWN_BEACON_STATISTICS:
2504 			iwn_rx_statistics(sc, desc, data);
2505 			break;
2506 
2507 		case IWN_BEACON_MISSED:
2508 		{
2509 			struct iwn_beacon_missed *miss =
2510 			    (struct iwn_beacon_missed *)(desc + 1);
2511 			int misses;
2512 
2513 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2514 			    BUS_DMASYNC_POSTREAD);
2515 			misses = le32toh(miss->consecutive);
2516 
2517 			/* XXX not sure why we're notified w/ zero */
2518 			if (misses == 0)
2519 				break;
2520 			DPRINTF(sc, IWN_DEBUG_STATE,
2521 			    "%s: beacons missed %d/%d\n", __func__,
2522 			    misses, le32toh(miss->total));
2523 
2524 			/*
2525 			 * If more than 5 consecutive beacons are missed,
2526 			 * reinitialize the sensitivity state machine.
2527 			 */
2528 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2529 				(void) iwn_init_sensitivity(sc);
2530 			if (misses >= vap->iv_bmissthreshold) {
2531 				IWN_UNLOCK(sc);
2532 				ieee80211_beacon_miss(ic);
2533 				IWN_LOCK(sc);
2534 			}
2535 			break;
2536 		}
2537 		case IWN_UC_READY:
2538 		{
2539 			struct iwn_ucode_info *uc =
2540 			    (struct iwn_ucode_info *)(desc + 1);
2541 
2542 			/* The microcontroller is ready. */
2543 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2544 			    BUS_DMASYNC_POSTREAD);
2545 			DPRINTF(sc, IWN_DEBUG_RESET,
2546 			    "microcode alive notification version=%d.%d "
2547 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2548 			    uc->subtype, le32toh(uc->valid));
2549 
2550 			if (le32toh(uc->valid) != 1) {
2551 				device_printf(sc->sc_dev,
2552 				    "microcontroller initialization failed");
2553 				break;
2554 			}
2555 			if (uc->subtype == IWN_UCODE_INIT) {
2556 				/* Save microcontroller report. */
2557 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2558 			}
2559 			/* Save the address of the error log in SRAM. */
2560 			sc->errptr = le32toh(uc->errptr);
2561 			break;
2562 		}
2563 		case IWN_STATE_CHANGED:
2564 		{
2565 			uint32_t *status = (uint32_t *)(desc + 1);
2566 
2567 			/*
2568 			 * State change allows hardware switch change to be
2569 			 * noted. However, we handle this in iwn_intr as we
2570 			 * get both the enable/disble intr.
2571 			 */
2572 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2573 			    BUS_DMASYNC_POSTREAD);
2574 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2575 			    le32toh(*status));
2576 			break;
2577 		}
2578 		case IWN_START_SCAN:
2579 		{
2580 			struct iwn_start_scan *scan =
2581 			    (struct iwn_start_scan *)(desc + 1);
2582 
2583 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2584 			    BUS_DMASYNC_POSTREAD);
2585 			DPRINTF(sc, IWN_DEBUG_ANY,
2586 			    "%s: scanning channel %d status %x\n",
2587 			    __func__, scan->chan, le32toh(scan->status));
2588 			break;
2589 		}
2590 		case IWN_STOP_SCAN:
2591 		{
2592 			struct iwn_stop_scan *scan =
2593 			    (struct iwn_stop_scan *)(desc + 1);
2594 
2595 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2596 			    BUS_DMASYNC_POSTREAD);
2597 			DPRINTF(sc, IWN_DEBUG_STATE,
2598 			    "scan finished nchan=%d status=%d chan=%d\n",
2599 			    scan->nchan, scan->status, scan->chan);
2600 
2601 			IWN_UNLOCK(sc);
2602 			ieee80211_scan_next(vap);
2603 			IWN_LOCK(sc);
2604 			break;
2605 		}
2606 		case IWN5000_CALIBRATION_RESULT:
2607 			iwn5000_rx_calib_results(sc, desc, data);
2608 			break;
2609 
2610 		case IWN5000_CALIBRATION_DONE:
2611 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2612 			wakeup(sc);
2613 			break;
2614 		}
2615 
2616 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2617 	}
2618 
2619 	/* Tell the firmware what we have processed. */
2620 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2621 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2622 }
2623 
2624 /*
2625  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2626  * from power-down sleep mode.
2627  */
2628 static void
2629 iwn_wakeup_intr(struct iwn_softc *sc)
2630 {
2631 	int qid;
2632 
2633 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2634 	    __func__);
2635 
2636 	/* Wakeup RX and TX rings. */
2637 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2638 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2639 		struct iwn_tx_ring *ring = &sc->txq[qid];
2640 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2641 	}
2642 }
2643 
2644 static void
2645 iwn_rftoggle_intr(struct iwn_softc *sc)
2646 {
2647 	struct ifnet *ifp = sc->sc_ifp;
2648 	struct ieee80211com *ic = ifp->if_l2com;
2649 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2650 
2651 	IWN_LOCK_ASSERT(sc);
2652 
2653 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2654 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2655 	if (tmp & IWN_GP_CNTRL_RFKILL)
2656 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2657 	else
2658 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2659 }
2660 
2661 /*
2662  * Dump the error log of the firmware when a firmware panic occurs.  Although
2663  * we can't debug the firmware because it is neither open source nor free, it
2664  * can help us to identify certain classes of problems.
2665  */
2666 static void
2667 iwn_fatal_intr(struct iwn_softc *sc)
2668 {
2669 	const struct iwn_hal *hal = sc->sc_hal;
2670 	struct iwn_fw_dump dump;
2671 	int i;
2672 
2673 	IWN_LOCK_ASSERT(sc);
2674 
2675 	/* Force a complete recalibration on next init. */
2676 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2677 
2678 	/* Check that the error log address is valid. */
2679 	if (sc->errptr < IWN_FW_DATA_BASE ||
2680 	    sc->errptr + sizeof (dump) >
2681 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2682 		kprintf("%s: bad firmware error log address 0x%08x\n",
2683 		    __func__, sc->errptr);
2684 		return;
2685 	}
2686 	if (iwn_nic_lock(sc) != 0) {
2687 		kprintf("%s: could not read firmware error log\n",
2688 		    __func__);
2689 		return;
2690 	}
2691 	/* Read firmware error log from SRAM. */
2692 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2693 	    sizeof (dump) / sizeof (uint32_t));
2694 	iwn_nic_unlock(sc);
2695 
2696 	if (dump.valid == 0) {
2697 		kprintf("%s: firmware error log is empty\n",
2698 		    __func__);
2699 		return;
2700 	}
2701 	kprintf("firmware error log:\n");
2702 	kprintf("  error type      = \"%s\" (0x%08X)\n",
2703 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2704 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2705 	    dump.id);
2706 	kprintf("  program counter = 0x%08X\n", dump.pc);
2707 	kprintf("  source line     = 0x%08X\n", dump.src_line);
2708 	kprintf("  error data      = 0x%08X%08X\n",
2709 	    dump.error_data[0], dump.error_data[1]);
2710 	kprintf("  branch link     = 0x%08X%08X\n",
2711 	    dump.branch_link[0], dump.branch_link[1]);
2712 	kprintf("  interrupt link  = 0x%08X%08X\n",
2713 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2714 	kprintf("  time            = %u\n", dump.time[0]);
2715 
2716 	/* Dump driver status (TX and RX rings) while we're here. */
2717 	kprintf("driver status:\n");
2718 	for (i = 0; i < hal->ntxqs; i++) {
2719 		struct iwn_tx_ring *ring = &sc->txq[i];
2720 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2721 		    i, ring->qid, ring->cur, ring->queued);
2722 	}
2723 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
2724 }
2725 
2726 static void
2727 iwn_intr(void *arg)
2728 {
2729 	struct iwn_softc *sc = arg;
2730 	struct ifnet *ifp = sc->sc_ifp;
2731 	uint32_t r1, r2, tmp;
2732 
2733 	IWN_LOCK(sc);
2734 
2735 	/* Disable interrupts. */
2736 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2737 
2738 	/* Read interrupts from ICT (fast) or from registers (slow). */
2739 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2740 		tmp = 0;
2741 		while (sc->ict[sc->ict_cur] != 0) {
2742 			tmp |= sc->ict[sc->ict_cur];
2743 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2744 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2745 		}
2746 		tmp = le32toh(tmp);
2747 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2748 			tmp = 0;
2749 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2750 			tmp |= 0x8000;
2751 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2752 		r2 = 0;	/* Unused. */
2753 	} else {
2754 		r1 = IWN_READ(sc, IWN_INT);
2755 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2756 			return;	/* Hardware gone! */
2757 		r2 = IWN_READ(sc, IWN_FH_INT);
2758 	}
2759 
2760 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2761 
2762 	if (r1 == 0 && r2 == 0)
2763 		goto done;	/* Interrupt not for us. */
2764 
2765 	/* Acknowledge interrupts. */
2766 	IWN_WRITE(sc, IWN_INT, r1);
2767 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2768 		IWN_WRITE(sc, IWN_FH_INT, r2);
2769 
2770 	if (r1 & IWN_INT_RF_TOGGLED) {
2771 		iwn_rftoggle_intr(sc);
2772 		goto done;
2773 	}
2774 	if (r1 & IWN_INT_CT_REACHED) {
2775 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2776 		    __func__);
2777 	}
2778 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2779 		iwn_fatal_intr(sc);
2780 		ifp->if_flags &= ~IFF_UP;
2781 		iwn_stop_locked(sc);
2782 		goto done;
2783 	}
2784 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2785 	    (r2 & IWN_FH_INT_RX)) {
2786 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2787 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2788 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2789 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2790 			    IWN_INT_PERIODIC_DIS);
2791 			iwn_notif_intr(sc);
2792 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2793 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2794 				    IWN_INT_PERIODIC_ENA);
2795 			}
2796 		} else
2797 			iwn_notif_intr(sc);
2798 	}
2799 
2800 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2801 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2802 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2803 		wakeup(sc);	/* FH DMA transfer completed. */
2804 	}
2805 
2806 	if (r1 & IWN_INT_ALIVE)
2807 		wakeup(sc);	/* Firmware is alive. */
2808 
2809 	if (r1 & IWN_INT_WAKEUP)
2810 		iwn_wakeup_intr(sc);
2811 
2812 done:
2813 	/* Re-enable interrupts. */
2814 	if (ifp->if_flags & IFF_UP)
2815 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2816 
2817 	IWN_UNLOCK(sc);
2818 
2819 }
2820 
2821 /*
2822  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2823  * 5000 adapters use a slightly different format.)
2824  */
2825 static void
2826 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2827     uint16_t len)
2828 {
2829 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2830 
2831 	*w = htole16(len + 8);
2832 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2833 	    BUS_DMASYNC_PREWRITE);
2834 	if (idx < IWN_SCHED_WINSZ) {
2835 		*(w + IWN_TX_RING_COUNT) = *w;
2836 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2837 		    BUS_DMASYNC_PREWRITE);
2838 	}
2839 }
2840 
2841 static void
2842 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2843     uint16_t len)
2844 {
2845 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2846 
2847 	*w = htole16(id << 12 | (len + 8));
2848 
2849 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2850 	    BUS_DMASYNC_PREWRITE);
2851 	if (idx < IWN_SCHED_WINSZ) {
2852 		*(w + IWN_TX_RING_COUNT) = *w;
2853 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2854 		    BUS_DMASYNC_PREWRITE);
2855 	}
2856 }
2857 
2858 #ifdef notyet
2859 static void
2860 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2861 {
2862 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2863 
2864 	*w = (*w & htole16(0xf000)) | htole16(1);
2865 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2866 	    BUS_DMASYNC_PREWRITE);
2867 	if (idx < IWN_SCHED_WINSZ) {
2868 		*(w + IWN_TX_RING_COUNT) = *w;
2869 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2870 		    BUS_DMASYNC_PREWRITE);
2871 	}
2872 }
2873 #endif
2874 
2875 static uint8_t
2876 iwn_plcp_signal(int rate) {
2877 	int i;
2878 
2879 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2880 		if (rate == iwn_rates[i].rate)
2881 			return i;
2882 	}
2883 
2884 	return 0;
2885 }
2886 
2887 static int
2888 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2889     struct iwn_tx_ring *ring)
2890 {
2891 	const struct iwn_hal *hal = sc->sc_hal;
2892 	const struct ieee80211_txparam *tp;
2893 	const struct iwn_rate *rinfo;
2894 	struct ieee80211vap *vap = ni->ni_vap;
2895 	struct ieee80211com *ic = ni->ni_ic;
2896 	struct iwn_node *wn = (void *)ni;
2897 	struct iwn_tx_desc *desc;
2898 	struct iwn_tx_data *data;
2899 	struct iwn_tx_cmd *cmd;
2900 	struct iwn_cmd_data *tx;
2901 	struct ieee80211_frame *wh;
2902 	struct ieee80211_key *k = NULL;
2903 	struct mbuf *mnew;
2904 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2905 	uint32_t flags;
2906 	u_int hdrlen;
2907 	int totlen, error, pad, nsegs = 0, i, rate;
2908 	uint8_t ridx, type, txant;
2909 
2910 	IWN_LOCK_ASSERT(sc);
2911 
2912 	wh = mtod(m, struct ieee80211_frame *);
2913 	hdrlen = ieee80211_anyhdrsize(wh);
2914 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2915 
2916 	desc = &ring->desc[ring->cur];
2917 	data = &ring->data[ring->cur];
2918 
2919 	/* Choose a TX rate index. */
2920 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2921 	if (type == IEEE80211_FC0_TYPE_MGT)
2922 		rate = tp->mgmtrate;
2923 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2924 		rate = tp->mcastrate;
2925 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2926 		rate = tp->ucastrate;
2927 	else {
2928 		/* XXX pass pktlen */
2929 		ieee80211_ratectl_rate(ni, NULL, 0);
2930 
2931 		rate = ni->ni_txrate;
2932 	}
2933 	ridx = iwn_plcp_signal(rate);
2934 	rinfo = &iwn_rates[ridx];
2935 
2936 	/* Encrypt the frame if need be. */
2937 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2938 		k = ieee80211_crypto_encap(ni, m);
2939 		if (k == NULL) {
2940 			m_freem(m);
2941 			return ENOBUFS;
2942 		}
2943 		/* Packet header may have moved, reset our local pointer. */
2944 		wh = mtod(m, struct ieee80211_frame *);
2945 	}
2946 	totlen = m->m_pkthdr.len;
2947 
2948 	if (ieee80211_radiotap_active_vap(vap)) {
2949 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2950 
2951 		tap->wt_flags = 0;
2952 		tap->wt_rate = rinfo->rate;
2953 		if (k != NULL)
2954 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2955 
2956 		ieee80211_radiotap_tx(vap, m);
2957 	}
2958 
2959 	/* Prepare TX firmware command. */
2960 	cmd = &ring->cmd[ring->cur];
2961 	cmd->code = IWN_CMD_TX_DATA;
2962 	cmd->flags = 0;
2963 	cmd->qid = ring->qid;
2964 	cmd->idx = ring->cur;
2965 
2966 	tx = (struct iwn_cmd_data *)cmd->data;
2967 	/* NB: No need to clear tx, all fields are reinitialized here. */
2968 	tx->scratch = 0;	/* clear "scratch" area */
2969 
2970 	flags = 0;
2971 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2972 		flags |= IWN_TX_NEED_ACK;
2973 	if ((wh->i_fc[0] &
2974 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2975 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2976 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2977 
2978 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2979 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2980 
2981 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2982 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2983 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2984 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2985 			flags |= IWN_TX_NEED_RTS;
2986 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2987 		    ridx >= IWN_RIDX_OFDM6) {
2988 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2989 				flags |= IWN_TX_NEED_CTS;
2990 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2991 				flags |= IWN_TX_NEED_RTS;
2992 		}
2993 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2994 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2995 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2996 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2997 				flags |= IWN_TX_NEED_PROTECTION;
2998 			} else
2999 				flags |= IWN_TX_FULL_TXOP;
3000 		}
3001 	}
3002 
3003 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3004 	    type != IEEE80211_FC0_TYPE_DATA)
3005 		tx->id = hal->broadcast_id;
3006 	else
3007 		tx->id = wn->id;
3008 
3009 	if (type == IEEE80211_FC0_TYPE_MGT) {
3010 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3011 
3012 		/* Tell HW to set timestamp in probe responses. */
3013 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3014 			flags |= IWN_TX_INSERT_TSTAMP;
3015 
3016 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3017 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3018 			tx->timeout = htole16(3);
3019 		else
3020 			tx->timeout = htole16(2);
3021 	} else
3022 		tx->timeout = htole16(0);
3023 
3024 	if (hdrlen & 3) {
3025 		/* First segment length must be a multiple of 4. */
3026 		flags |= IWN_TX_NEED_PADDING;
3027 		pad = 4 - (hdrlen & 3);
3028 	} else
3029 		pad = 0;
3030 
3031 	tx->len = htole16(totlen);
3032 	tx->tid = 0;
3033 	tx->rts_ntries = 60;
3034 	tx->data_ntries = 15;
3035 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3036 	tx->plcp = rinfo->plcp;
3037 	tx->rflags = rinfo->flags;
3038 	if (tx->id == hal->broadcast_id) {
3039 		/* Group or management frame. */
3040 		tx->linkq = 0;
3041 		/* XXX Alternate between antenna A and B? */
3042 		txant = IWN_LSB(sc->txchainmask);
3043 		tx->rflags |= IWN_RFLAG_ANT(txant);
3044 	} else {
3045 		tx->linkq = 0;
3046 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3047 	}
3048 
3049 	/* Set physical address of "scratch area". */
3050 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3051 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3052 
3053 	/* Copy 802.11 header in TX command. */
3054 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3055 
3056 	/* Trim 802.11 header. */
3057 	m_adj(m, hdrlen);
3058 	tx->security = 0;
3059 	tx->flags = htole32(flags);
3060 
3061 	if (m->m_len > 0) {
3062 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3063 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3064 		if (error == EFBIG) {
3065 			/* too many fragments, linearize */
3066 			mnew = m_defrag(m, MB_DONTWAIT);
3067 			if (mnew == NULL) {
3068 				device_printf(sc->sc_dev,
3069 				    "%s: could not defrag mbuf\n", __func__);
3070 				m_freem(m);
3071 				return ENOBUFS;
3072 			}
3073 			m = mnew;
3074 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3075 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3076 		}
3077 		if (error != 0) {
3078 			device_printf(sc->sc_dev,
3079 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3080 			    __func__, error);
3081 			m_freem(m);
3082 			return error;
3083 		}
3084 	}
3085 
3086 	data->m = m;
3087 	data->ni = ni;
3088 
3089 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3090 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3091 
3092 	/* Fill TX descriptor. */
3093 	desc->nsegs = 1 + nsegs;
3094 	/* First DMA segment is used by the TX command. */
3095 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3096 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3097 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3098 	/* Other DMA segments are for data payload. */
3099 	for (i = 1; i <= nsegs; i++) {
3100 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3101 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3102 		    segs[i - 1].ds_len << 4);
3103 	}
3104 
3105 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3106 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3107 	    BUS_DMASYNC_PREWRITE);
3108 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3109 	    BUS_DMASYNC_PREWRITE);
3110 
3111 #ifdef notyet
3112 	/* Update TX scheduler. */
3113 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3114 #endif
3115 
3116 	/* Kick TX ring. */
3117 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3118 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3119 
3120 	/* Mark TX ring as full if we reach a certain threshold. */
3121 	if (++ring->queued > IWN_TX_RING_HIMARK)
3122 		sc->qfullmsk |= 1 << ring->qid;
3123 
3124 	return 0;
3125 }
3126 
3127 static int
3128 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3129     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3130     const struct ieee80211_bpf_params *params)
3131 {
3132 	const struct iwn_hal *hal = sc->sc_hal;
3133 	const struct iwn_rate *rinfo;
3134 	struct ifnet *ifp = sc->sc_ifp;
3135 	struct ieee80211vap *vap = ni->ni_vap;
3136 	struct ieee80211com *ic = ifp->if_l2com;
3137 	struct iwn_tx_cmd *cmd;
3138 	struct iwn_cmd_data *tx;
3139 	struct ieee80211_frame *wh;
3140 	struct iwn_tx_desc *desc;
3141 	struct iwn_tx_data *data;
3142 	struct mbuf *mnew;
3143 	bus_addr_t paddr;
3144 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3145 	uint32_t flags;
3146 	u_int hdrlen;
3147 	int totlen, error, pad, nsegs = 0, i, rate;
3148 	uint8_t ridx, type, txant;
3149 
3150 	IWN_LOCK_ASSERT(sc);
3151 
3152 	wh = mtod(m, struct ieee80211_frame *);
3153 	hdrlen = ieee80211_anyhdrsize(wh);
3154 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3155 
3156 	desc = &ring->desc[ring->cur];
3157 	data = &ring->data[ring->cur];
3158 
3159 	/* Choose a TX rate index. */
3160 	rate = params->ibp_rate0;
3161 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3162 		/* XXX fall back to mcast/mgmt rate? */
3163 		m_freem(m);
3164 		return EINVAL;
3165 	}
3166 	ridx = iwn_plcp_signal(rate);
3167 	rinfo = &iwn_rates[ridx];
3168 
3169 	totlen = m->m_pkthdr.len;
3170 
3171 	/* Prepare TX firmware command. */
3172 	cmd = &ring->cmd[ring->cur];
3173 	cmd->code = IWN_CMD_TX_DATA;
3174 	cmd->flags = 0;
3175 	cmd->qid = ring->qid;
3176 	cmd->idx = ring->cur;
3177 
3178 	tx = (struct iwn_cmd_data *)cmd->data;
3179 	/* NB: No need to clear tx, all fields are reinitialized here. */
3180 	tx->scratch = 0;	/* clear "scratch" area */
3181 
3182 	flags = 0;
3183 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3184 		flags |= IWN_TX_NEED_ACK;
3185 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3186 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3187 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3188 			flags &= ~IWN_TX_NEED_RTS;
3189 			flags |= IWN_TX_NEED_PROTECTION;
3190 		} else
3191 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3192 	}
3193 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3194 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3195 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3196 			flags &= ~IWN_TX_NEED_CTS;
3197 			flags |= IWN_TX_NEED_PROTECTION;
3198 		} else
3199 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3200 	}
3201 	if (type == IEEE80211_FC0_TYPE_MGT) {
3202 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3203 
3204 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3205 			flags |= IWN_TX_INSERT_TSTAMP;
3206 
3207 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3208 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3209 			tx->timeout = htole16(3);
3210 		else
3211 			tx->timeout = htole16(2);
3212 	} else
3213 		tx->timeout = htole16(0);
3214 
3215 	if (hdrlen & 3) {
3216 		/* First segment length must be a multiple of 4. */
3217 		flags |= IWN_TX_NEED_PADDING;
3218 		pad = 4 - (hdrlen & 3);
3219 	} else
3220 		pad = 0;
3221 
3222 	if (ieee80211_radiotap_active_vap(vap)) {
3223 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3224 
3225 		tap->wt_flags = 0;
3226 		tap->wt_rate = rate;
3227 
3228 		ieee80211_radiotap_tx(vap, m);
3229 	}
3230 
3231 	tx->len = htole16(totlen);
3232 	tx->tid = 0;
3233 	tx->id = hal->broadcast_id;
3234 	tx->rts_ntries = params->ibp_try1;
3235 	tx->data_ntries = params->ibp_try0;
3236 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3237 	tx->plcp = rinfo->plcp;
3238 	tx->rflags = rinfo->flags;
3239 	/* Group or management frame. */
3240 	tx->linkq = 0;
3241 	txant = IWN_LSB(sc->txchainmask);
3242 	tx->rflags |= IWN_RFLAG_ANT(txant);
3243 	/* Set physical address of "scratch area". */
3244 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3245 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3246 	tx->hiaddr = IWN_HIADDR(paddr);
3247 
3248 	/* Copy 802.11 header in TX command. */
3249 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3250 
3251 	/* Trim 802.11 header. */
3252 	m_adj(m, hdrlen);
3253 	tx->security = 0;
3254 	tx->flags = htole32(flags);
3255 
3256 	if (m->m_len > 0) {
3257 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3258 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3259 		if (error == EFBIG) {
3260 			/* Too many fragments, linearize. */
3261 			mnew = m_defrag(m, MB_DONTWAIT);
3262 			if (mnew == NULL) {
3263 				device_printf(sc->sc_dev,
3264 				    "%s: could not defrag mbuf\n", __func__);
3265 				m_freem(m);
3266 				return ENOBUFS;
3267 			}
3268 			m = mnew;
3269 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3270 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3271 		}
3272 		if (error != 0) {
3273 			device_printf(sc->sc_dev,
3274 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3275 			    __func__, error);
3276 			m_freem(m);
3277 			return error;
3278 		}
3279 	}
3280 
3281 	data->m = m;
3282 	data->ni = ni;
3283 
3284 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3285 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3286 
3287 	/* Fill TX descriptor. */
3288 	desc->nsegs = 1 + nsegs;
3289 	/* First DMA segment is used by the TX command. */
3290 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3291 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3292 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3293 	/* Other DMA segments are for data payload. */
3294 	for (i = 1; i <= nsegs; i++) {
3295 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3296 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3297 		    segs[i - 1].ds_len << 4);
3298 	}
3299 
3300 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3301 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3302 	    BUS_DMASYNC_PREWRITE);
3303 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3304 	    BUS_DMASYNC_PREWRITE);
3305 
3306 #ifdef notyet
3307 	/* Update TX scheduler. */
3308 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3309 #endif
3310 
3311 	/* Kick TX ring. */
3312 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3313 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3314 
3315 	/* Mark TX ring as full if we reach a certain threshold. */
3316 	if (++ring->queued > IWN_TX_RING_HIMARK)
3317 		sc->qfullmsk |= 1 << ring->qid;
3318 
3319 	return 0;
3320 }
3321 
3322 static int
3323 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3324 	const struct ieee80211_bpf_params *params)
3325 {
3326 	struct ieee80211com *ic = ni->ni_ic;
3327 	struct ifnet *ifp = ic->ic_ifp;
3328 	struct iwn_softc *sc = ifp->if_softc;
3329 	struct iwn_tx_ring *txq;
3330 	int error = 0;
3331 
3332 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
3333 		ieee80211_free_node(ni);
3334 		m_freem(m);
3335 		return ENETDOWN;
3336 	}
3337 
3338 	IWN_LOCK(sc);
3339 	if (params == NULL)
3340 		txq = &sc->txq[M_WME_GETAC(m)];
3341 	else
3342 		txq = &sc->txq[params->ibp_pri & 3];
3343 
3344 	if (params == NULL) {
3345 		/*
3346 		 * Legacy path; interpret frame contents to decide
3347 		 * precisely how to send the frame.
3348 		 */
3349 		error = iwn_tx_data(sc, m, ni, txq);
3350 	} else {
3351 		/*
3352 		 * Caller supplied explicit parameters to use in
3353 		 * sending the frame.
3354 		 */
3355 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3356 	}
3357 	if (error != 0) {
3358 		/* NB: m is reclaimed on tx failure */
3359 		ieee80211_free_node(ni);
3360 		ifp->if_oerrors++;
3361 	}
3362 	IWN_UNLOCK(sc);
3363 	return error;
3364 }
3365 
3366 static void
3367 iwn_start(struct ifnet *ifp)
3368 {
3369 	struct iwn_softc *sc = ifp->if_softc;
3370 
3371 	IWN_LOCK(sc);
3372 	iwn_start_locked(ifp);
3373 	IWN_UNLOCK(sc);
3374 }
3375 
3376 static void
3377 iwn_start_locked(struct ifnet *ifp)
3378 {
3379 	struct iwn_softc *sc = ifp->if_softc;
3380 	struct ieee80211_node *ni;
3381 	struct iwn_tx_ring *txq;
3382 	struct mbuf *m;
3383 	int pri;
3384 
3385 	IWN_LOCK_ASSERT(sc);
3386 
3387 	for (;;) {
3388 		if (sc->qfullmsk != 0) {
3389 			ifp->if_flags |= IFF_OACTIVE;
3390 			break;
3391 		}
3392 		m = ifq_dequeue(&ifp->if_snd, NULL);
3393 		if (m == NULL)
3394 			break;
3395 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3396 		pri = M_WME_GETAC(m);
3397 		txq = &sc->txq[pri];
3398 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3399 			ifp->if_oerrors++;
3400 			ieee80211_free_node(ni);
3401 			break;
3402 		}
3403 		sc->sc_tx_timer = 5;
3404 	}
3405 }
3406 
3407 static void
3408 iwn_watchdog(struct iwn_softc *sc)
3409 {
3410 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3411 		struct ifnet *ifp = sc->sc_ifp;
3412 		struct ieee80211com *ic = ifp->if_l2com;
3413 
3414 		if_printf(ifp, "device timeout\n");
3415 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3416 	}
3417 }
3418 
3419 static int
3420 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
3421 {
3422 	struct iwn_softc *sc = ifp->if_softc;
3423 	struct ieee80211com *ic = ifp->if_l2com;
3424 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3425 	struct ifreq *ifr = (struct ifreq *) data;
3426 	int error = 0, startall = 0, stop = 0;
3427 
3428 	switch (cmd) {
3429 	case SIOCSIFFLAGS:
3430 		IWN_LOCK(sc);
3431 		if (ifp->if_flags & IFF_UP) {
3432 			if (!(ifp->if_flags & IFF_RUNNING)) {
3433 				iwn_init_locked(sc);
3434 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3435 					startall = 1;
3436 				else
3437 					stop = 1;
3438 			}
3439 		} else {
3440 			if (ifp->if_flags & IFF_RUNNING)
3441 				iwn_stop_locked(sc);
3442 		}
3443 		IWN_UNLOCK(sc);
3444 		if (startall)
3445 			ieee80211_start_all(ic);
3446 		else if (vap != NULL && stop)
3447 			ieee80211_stop(vap);
3448 		break;
3449 	case SIOCGIFMEDIA:
3450 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3451 		break;
3452 	case SIOCGIFADDR:
3453 		error = ether_ioctl(ifp, cmd, data);
3454 		break;
3455 	default:
3456 		error = EINVAL;
3457 		break;
3458 	}
3459 	return error;
3460 }
3461 
3462 /*
3463  * Send a command to the firmware.
3464  */
3465 static int
3466 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3467 {
3468 	struct iwn_tx_ring *ring = &sc->txq[4];
3469 	struct iwn_tx_desc *desc;
3470 	struct iwn_tx_data *data;
3471 	struct iwn_tx_cmd *cmd;
3472 	struct mbuf *m;
3473 	bus_addr_t paddr;
3474 	int totlen, error;
3475 
3476 	IWN_LOCK_ASSERT(sc);
3477 
3478 	desc = &ring->desc[ring->cur];
3479 	data = &ring->data[ring->cur];
3480 	totlen = 4 + size;
3481 
3482 	if (size > sizeof cmd->data) {
3483 		/* Command is too large to fit in a descriptor. */
3484 		if (totlen > MCLBYTES)
3485 			return EINVAL;
3486 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
3487 		if (m == NULL)
3488 			return ENOMEM;
3489 		cmd = mtod(m, struct iwn_tx_cmd *);
3490 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3491 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3492 		if (error != 0) {
3493 			m_freem(m);
3494 			return error;
3495 		}
3496 		data->m = m;
3497 	} else {
3498 		cmd = &ring->cmd[ring->cur];
3499 		paddr = data->cmd_paddr;
3500 	}
3501 
3502 	cmd->code = code;
3503 	cmd->flags = 0;
3504 	cmd->qid = ring->qid;
3505 	cmd->idx = ring->cur;
3506 	memcpy(cmd->data, buf, size);
3507 
3508 	desc->nsegs = 1;
3509 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3510 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3511 
3512 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3513 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3514 	    cmd->flags, cmd->qid, cmd->idx);
3515 
3516 	if (size > sizeof cmd->data) {
3517 		bus_dmamap_sync(ring->data_dmat, data->map,
3518 		    BUS_DMASYNC_PREWRITE);
3519 	} else {
3520 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3521 		    BUS_DMASYNC_PREWRITE);
3522 	}
3523 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3524 	    BUS_DMASYNC_PREWRITE);
3525 
3526 #ifdef notyet
3527 	/* Update TX scheduler. */
3528 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3529 #endif
3530 
3531 	/* Kick command ring. */
3532 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3533 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3534 
3535 	return async ? 0 : lksleep(desc, &sc->sc_lock, 0, "iwncmd", hz);
3536 }
3537 
3538 static int
3539 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3540 {
3541 	struct iwn4965_node_info hnode;
3542 	caddr_t src, dst;
3543 
3544 	/*
3545 	 * We use the node structure for 5000 Series internally (it is
3546 	 * a superset of the one for 4965AGN). We thus copy the common
3547 	 * fields before sending the command.
3548 	 */
3549 	src = (caddr_t)node;
3550 	dst = (caddr_t)&hnode;
3551 	memcpy(dst, src, 48);
3552 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3553 	memcpy(dst + 48, src + 72, 20);
3554 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3555 }
3556 
3557 static int
3558 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3559 {
3560 	/* Direct mapping. */
3561 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3562 }
3563 
3564 #if 0	/* HT */
3565 static const uint8_t iwn_ridx_to_plcp[] = {
3566 	10, 20, 55, 110, /* CCK */
3567 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3568 };
3569 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3570 	0, 0, 0, 0, 			/* CCK */
3571 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3572 };
3573 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3574 	0, 0, 0, 0, 			/* CCK */
3575 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3576 };
3577 #endif
3578 static const uint8_t iwn_prev_ridx[] = {
3579 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3580 	0, 0, 1, 5,			/* CCK */
3581 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3582 };
3583 
3584 /*
3585  * Configure hardware link parameters for the specified
3586  * node operating on the specified channel.
3587  */
3588 static int
3589 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3590 {
3591 	struct ifnet *ifp = sc->sc_ifp;
3592 	struct ieee80211com *ic = ifp->if_l2com;
3593 	struct iwn_cmd_link_quality linkq;
3594 	const struct iwn_rate *rinfo;
3595 	int i;
3596 	uint8_t txant, ridx;
3597 
3598 	/* Use the first valid TX antenna. */
3599 	txant = IWN_LSB(sc->txchainmask);
3600 
3601 	memset(&linkq, 0, sizeof linkq);
3602 	linkq.id = id;
3603 	linkq.antmsk_1stream = txant;
3604 	linkq.antmsk_2stream = IWN_ANT_AB;
3605 	linkq.ampdu_max = 31;
3606 	linkq.ampdu_threshold = 3;
3607 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3608 
3609 #if 0	/* HT */
3610 	if (IEEE80211_IS_CHAN_HT(c))
3611 		linkq.mimo = 1;
3612 #endif
3613 
3614 	if (id == IWN_ID_BSS)
3615 		ridx = IWN_RIDX_OFDM54;
3616 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3617 		ridx = IWN_RIDX_OFDM6;
3618 	else
3619 		ridx = IWN_RIDX_CCK1;
3620 
3621 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3622 		rinfo = &iwn_rates[ridx];
3623 #if 0	/* HT */
3624 		if (IEEE80211_IS_CHAN_HT40(c)) {
3625 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3626 					 | IWN_RIDX_MCS;
3627 			linkq.retry[i].rflags = IWN_RFLAG_HT
3628 					 | IWN_RFLAG_HT40;
3629 			/* XXX shortGI */
3630 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3631 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3632 					 | IWN_RIDX_MCS;
3633 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3634 			/* XXX shortGI */
3635 		} else
3636 #endif
3637 		{
3638 			linkq.retry[i].plcp = rinfo->plcp;
3639 			linkq.retry[i].rflags = rinfo->flags;
3640 		}
3641 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3642 		ridx = iwn_prev_ridx[ridx];
3643 	}
3644 #ifdef IWN_DEBUG
3645 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3646 		kprintf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3647 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3648 		kprintf("%s:", __func__);
3649 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3650 			kprintf(" %d:%x", linkq.retry[i].plcp,
3651 			    linkq.retry[i].rflags);
3652 		kprintf("\n");
3653 	}
3654 #endif
3655 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3656 }
3657 
3658 /*
3659  * Broadcast node is used to send group-addressed and management frames.
3660  */
3661 static int
3662 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3663 {
3664 	const struct iwn_hal *hal = sc->sc_hal;
3665 	struct ifnet *ifp = sc->sc_ifp;
3666 	struct iwn_node_info node;
3667 	int error;
3668 
3669 	memset(&node, 0, sizeof node);
3670 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3671 	node.id = hal->broadcast_id;
3672 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3673 	error = hal->add_node(sc, &node, async);
3674 	if (error != 0)
3675 		return error;
3676 
3677 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3678 	return error;
3679 }
3680 
3681 static int
3682 iwn_wme_update(struct ieee80211com *ic)
3683 {
3684 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3685 #define	IWN_TXOP_TO_US(v)		(v<<5)
3686 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3687 	struct iwn_edca_params cmd;
3688 	int i;
3689 
3690 	memset(&cmd, 0, sizeof cmd);
3691 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3692 	for (i = 0; i < WME_NUM_AC; i++) {
3693 		const struct wmeParams *wmep =
3694 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3695 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3696 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3697 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3698 		cmd.ac[i].txoplimit =
3699 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3700 	}
3701 	IEEE80211_UNLOCK(ic);
3702 	IWN_LOCK(sc);
3703 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3704 	IWN_UNLOCK(sc);
3705 	IEEE80211_LOCK(ic);
3706 	return 0;
3707 #undef IWN_TXOP_TO_US
3708 #undef IWN_EXP2
3709 }
3710 
3711 static void
3712 iwn_update_mcast(struct ifnet *ifp)
3713 {
3714 	/* Ignore */
3715 }
3716 
3717 static void
3718 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3719 {
3720 	struct iwn_cmd_led led;
3721 
3722 	/* Clear microcode LED ownership. */
3723 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3724 
3725 	led.which = which;
3726 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3727 	led.off = off;
3728 	led.on = on;
3729 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3730 }
3731 
3732 /*
3733  * Set the critical temperature at which the firmware will stop the radio
3734  * and notify us.
3735  */
3736 static int
3737 iwn_set_critical_temp(struct iwn_softc *sc)
3738 {
3739 	struct iwn_critical_temp crit;
3740 	int32_t temp;
3741 
3742 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3743 
3744 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3745 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3746 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3747 		temp = IWN_CTOK(110);
3748 	else
3749 		temp = 110;
3750 	memset(&crit, 0, sizeof crit);
3751 	crit.tempR = htole32(temp);
3752 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3753 	    temp);
3754 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3755 }
3756 
3757 static int
3758 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3759 {
3760 	struct iwn_cmd_timing cmd;
3761 	uint64_t val, mod;
3762 
3763 	memset(&cmd, 0, sizeof cmd);
3764 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3765 	cmd.bintval = htole16(ni->ni_intval);
3766 	cmd.lintval = htole16(10);
3767 
3768 	/* Compute remaining time until next beacon. */
3769 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3770 	mod = le64toh(cmd.tstamp) % val;
3771 	cmd.binitval = htole32((uint32_t)(val - mod));
3772 
3773 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3774 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3775 
3776 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3777 }
3778 
3779 static void
3780 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3781 {
3782 	struct ifnet *ifp = sc->sc_ifp;
3783 	struct ieee80211com *ic = ifp->if_l2com;
3784 
3785 	/* Adjust TX power if need be (delta >= 3 degC.) */
3786 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3787 	    __func__, sc->temp, temp);
3788 	if (abs(temp - sc->temp) >= 3) {
3789 		/* Record temperature of last calibration. */
3790 		sc->temp = temp;
3791 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3792 	}
3793 }
3794 
3795 /*
3796  * Set TX power for current channel (each rate has its own power settings).
3797  * This function takes into account the regulatory information from EEPROM,
3798  * the current temperature and the current voltage.
3799  */
3800 static int
3801 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3802     int async)
3803 {
3804 /* Fixed-point arithmetic division using a n-bit fractional part. */
3805 #define fdivround(a, b, n)	\
3806 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3807 /* Linear interpolation. */
3808 #define interpolate(x, x1, y1, x2, y2, n)	\
3809 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3810 
3811 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3812 	struct ifnet *ifp = sc->sc_ifp;
3813 	struct ieee80211com *ic = ifp->if_l2com;
3814 	struct iwn_ucode_info *uc = &sc->ucode_info;
3815 	struct iwn4965_cmd_txpower cmd;
3816 	struct iwn4965_eeprom_chan_samples *chans;
3817 	int32_t vdiff, tdiff;
3818 	int i, c, grp, maxpwr;
3819 	const uint8_t *rf_gain, *dsp_gain;
3820 	uint8_t chan;
3821 
3822 	/* Retrieve channel number. */
3823 	chan = ieee80211_chan2ieee(ic, ch);
3824 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3825 	    chan);
3826 
3827 	memset(&cmd, 0, sizeof cmd);
3828 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3829 	cmd.chan = chan;
3830 
3831 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3832 		maxpwr   = sc->maxpwr5GHz;
3833 		rf_gain  = iwn4965_rf_gain_5ghz;
3834 		dsp_gain = iwn4965_dsp_gain_5ghz;
3835 	} else {
3836 		maxpwr   = sc->maxpwr2GHz;
3837 		rf_gain  = iwn4965_rf_gain_2ghz;
3838 		dsp_gain = iwn4965_dsp_gain_2ghz;
3839 	}
3840 
3841 	/* Compute voltage compensation. */
3842 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3843 	if (vdiff > 0)
3844 		vdiff *= 2;
3845 	if (abs(vdiff) > 2)
3846 		vdiff = 0;
3847 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3848 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3849 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3850 
3851 	/* Get channel attenuation group. */
3852 	if (chan <= 20)		/* 1-20 */
3853 		grp = 4;
3854 	else if (chan <= 43)	/* 34-43 */
3855 		grp = 0;
3856 	else if (chan <= 70)	/* 44-70 */
3857 		grp = 1;
3858 	else if (chan <= 124)	/* 71-124 */
3859 		grp = 2;
3860 	else			/* 125-200 */
3861 		grp = 3;
3862 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3863 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3864 
3865 	/* Get channel sub-band. */
3866 	for (i = 0; i < IWN_NBANDS; i++)
3867 		if (sc->bands[i].lo != 0 &&
3868 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3869 			break;
3870 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3871 		return EINVAL;
3872 	chans = sc->bands[i].chans;
3873 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3874 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3875 
3876 	for (c = 0; c < 2; c++) {
3877 		uint8_t power, gain, temp;
3878 		int maxchpwr, pwr, ridx, idx;
3879 
3880 		power = interpolate(chan,
3881 		    chans[0].num, chans[0].samples[c][1].power,
3882 		    chans[1].num, chans[1].samples[c][1].power, 1);
3883 		gain  = interpolate(chan,
3884 		    chans[0].num, chans[0].samples[c][1].gain,
3885 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3886 		temp  = interpolate(chan,
3887 		    chans[0].num, chans[0].samples[c][1].temp,
3888 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3889 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3890 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3891 		    __func__, c, power, gain, temp);
3892 
3893 		/* Compute temperature compensation. */
3894 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3895 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3896 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3897 		    __func__, tdiff, sc->temp, temp);
3898 
3899 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3900 			/* Convert dBm to half-dBm. */
3901 			maxchpwr = sc->maxpwr[chan] * 2;
3902 			if ((ridx / 8) & 1)
3903 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3904 
3905 			pwr = maxpwr;
3906 
3907 			/* Adjust TX power based on rate. */
3908 			if ((ridx % 8) == 5)
3909 				pwr -= 15;	/* OFDM48: -7.5dB */
3910 			else if ((ridx % 8) == 6)
3911 				pwr -= 17;	/* OFDM54: -8.5dB */
3912 			else if ((ridx % 8) == 7)
3913 				pwr -= 20;	/* OFDM60: -10dB */
3914 			else
3915 				pwr -= 10;	/* Others: -5dB */
3916 
3917 			/* Do not exceed channel max TX power. */
3918 			if (pwr > maxchpwr)
3919 				pwr = maxchpwr;
3920 
3921 			idx = gain - (pwr - power) - tdiff - vdiff;
3922 			if ((ridx / 8) & 1)	/* MIMO */
3923 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3924 
3925 			if (cmd.band == 0)
3926 				idx += 9;	/* 5GHz */
3927 			if (ridx == IWN_RIDX_MAX)
3928 				idx += 5;	/* CCK */
3929 
3930 			/* Make sure idx stays in a valid range. */
3931 			if (idx < 0)
3932 				idx = 0;
3933 			else if (idx > IWN4965_MAX_PWR_INDEX)
3934 				idx = IWN4965_MAX_PWR_INDEX;
3935 
3936 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3937 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3938 			    __func__, c, ridx, idx);
3939 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3940 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3941 		}
3942 	}
3943 
3944 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3945 	    "%s: set tx power for chan %d\n", __func__, chan);
3946 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3947 
3948 #undef interpolate
3949 #undef fdivround
3950 }
3951 
3952 static int
3953 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3954     int async)
3955 {
3956 	struct iwn5000_cmd_txpower cmd;
3957 
3958 	/*
3959 	 * TX power calibration is handled automatically by the firmware
3960 	 * for 5000 Series.
3961 	 */
3962 	memset(&cmd, 0, sizeof cmd);
3963 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3964 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3965 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3966 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3967 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3968 }
3969 
3970 /*
3971  * Retrieve the maximum RSSI (in dBm) among receivers.
3972  */
3973 static int
3974 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3975 {
3976 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3977 	uint8_t mask, agc;
3978 	int rssi;
3979 
3980 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3981 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3982 
3983 	rssi = 0;
3984 #if 0
3985 	if (mask & IWN_ANT_A)	/* Ant A */
3986 		rssi = max(rssi, phy->rssi[0]);
3987 	if (mask & IWN_ATH_B)	/* Ant B */
3988 		rssi = max(rssi, phy->rssi[2]);
3989 	if (mask & IWN_ANT_C)	/* Ant C */
3990 		rssi = max(rssi, phy->rssi[4]);
3991 #else
3992 	rssi = max(rssi, phy->rssi[0]);
3993 	rssi = max(rssi, phy->rssi[2]);
3994 	rssi = max(rssi, phy->rssi[4]);
3995 #endif
3996 
3997 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3998 	    "result %d\n", __func__, agc, mask,
3999 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
4000 	    rssi - agc - IWN_RSSI_TO_DBM);
4001 	return rssi - agc - IWN_RSSI_TO_DBM;
4002 }
4003 
4004 static int
4005 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4006 {
4007 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4008 	int rssi;
4009 	uint8_t agc;
4010 
4011 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4012 
4013 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4014 		   le16toh(phy->rssi[1]) & 0xff);
4015 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4016 
4017 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
4018 	    "result %d\n", __func__, agc,
4019 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4020 	    rssi - agc - IWN_RSSI_TO_DBM);
4021 	return rssi - agc - IWN_RSSI_TO_DBM;
4022 }
4023 
4024 /*
4025  * Retrieve the average noise (in dBm) among receivers.
4026  */
4027 static int
4028 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4029 {
4030 	int i, total, nbant, noise;
4031 
4032 	total = nbant = 0;
4033 	for (i = 0; i < 3; i++) {
4034 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4035 			continue;
4036 		total += noise;
4037 		nbant++;
4038 	}
4039 	/* There should be at least one antenna but check anyway. */
4040 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4041 }
4042 
4043 /*
4044  * Compute temperature (in degC) from last received statistics.
4045  */
4046 static int
4047 iwn4965_get_temperature(struct iwn_softc *sc)
4048 {
4049 	struct iwn_ucode_info *uc = &sc->ucode_info;
4050 	int32_t r1, r2, r3, r4, temp;
4051 
4052 	r1 = le32toh(uc->temp[0].chan20MHz);
4053 	r2 = le32toh(uc->temp[1].chan20MHz);
4054 	r3 = le32toh(uc->temp[2].chan20MHz);
4055 	r4 = le32toh(sc->rawtemp);
4056 
4057 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4058 		return 0;
4059 
4060 	/* Sign-extend 23-bit R4 value to 32-bit. */
4061 	r4 = (r4 << 8) >> 8;
4062 	/* Compute temperature in Kelvin. */
4063 	temp = (259 * (r4 - r2)) / (r3 - r1);
4064 	temp = (temp * 97) / 100 + 8;
4065 
4066 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4067 	    IWN_KTOC(temp));
4068 	return IWN_KTOC(temp);
4069 }
4070 
4071 static int
4072 iwn5000_get_temperature(struct iwn_softc *sc)
4073 {
4074 	int32_t temp;
4075 
4076 	/*
4077 	 * Temperature is not used by the driver for 5000 Series because
4078 	 * TX power calibration is handled by firmware.  We export it to
4079 	 * users through the sensor framework though.
4080 	 */
4081 	temp = le32toh(sc->rawtemp);
4082 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4083 		temp = (temp / -5) + sc->temp_off;
4084 		temp = IWN_KTOC(temp);
4085 	}
4086 	return temp;
4087 }
4088 
4089 /*
4090  * Initialize sensitivity calibration state machine.
4091  */
4092 static int
4093 iwn_init_sensitivity(struct iwn_softc *sc)
4094 {
4095 	const struct iwn_hal *hal = sc->sc_hal;
4096 	struct iwn_calib_state *calib = &sc->calib;
4097 	uint32_t flags;
4098 	int error;
4099 
4100 	/* Reset calibration state machine. */
4101 	memset(calib, 0, sizeof (*calib));
4102 	calib->state = IWN_CALIB_STATE_INIT;
4103 	calib->cck_state = IWN_CCK_STATE_HIFA;
4104 	/* Set initial correlation values. */
4105 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4106 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4107 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4108 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4109 	calib->cck_x4      = 125;
4110 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4111 	calib->energy_cck  = sc->limits->energy_cck;
4112 
4113 	/* Write initial sensitivity. */
4114 	error = iwn_send_sensitivity(sc);
4115 	if (error != 0)
4116 		return error;
4117 
4118 	/* Write initial gains. */
4119 	error = hal->init_gains(sc);
4120 	if (error != 0)
4121 		return error;
4122 
4123 	/* Request statistics at each beacon interval. */
4124 	flags = 0;
4125 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4126 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4127 }
4128 
4129 /*
4130  * Collect noise and RSSI statistics for the first 20 beacons received
4131  * after association and use them to determine connected antennas and
4132  * to set differential gains.
4133  */
4134 static void
4135 iwn_collect_noise(struct iwn_softc *sc,
4136     const struct iwn_rx_general_stats *stats)
4137 {
4138 	const struct iwn_hal *hal = sc->sc_hal;
4139 	struct iwn_calib_state *calib = &sc->calib;
4140 	uint32_t val;
4141 	int i;
4142 
4143 	/* Accumulate RSSI and noise for all 3 antennas. */
4144 	for (i = 0; i < 3; i++) {
4145 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4146 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4147 	}
4148 	/* NB: We update differential gains only once after 20 beacons. */
4149 	if (++calib->nbeacons < 20)
4150 		return;
4151 
4152 	/* Determine highest average RSSI. */
4153 	val = MAX(calib->rssi[0], calib->rssi[1]);
4154 	val = MAX(calib->rssi[2], val);
4155 
4156 	/* Determine which antennas are connected. */
4157 	sc->chainmask = 0;
4158 	for (i = 0; i < 3; i++)
4159 		if (val - calib->rssi[i] <= 15 * 20)
4160 			sc->chainmask |= 1 << i;
4161 	/* If none of the TX antennas are connected, keep at least one. */
4162 	if ((sc->chainmask & sc->txchainmask) == 0)
4163 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4164 
4165 	(void)hal->set_gains(sc);
4166 	calib->state = IWN_CALIB_STATE_RUN;
4167 
4168 #ifdef notyet
4169 	/* XXX Disable RX chains with no antennas connected. */
4170 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4171 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4172 #endif
4173 
4174 #if 0
4175 	/* XXX: not yet */
4176 	/* Enable power-saving mode if requested by user. */
4177 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4178 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4179 #endif
4180 }
4181 
4182 static int
4183 iwn4965_init_gains(struct iwn_softc *sc)
4184 {
4185 	struct iwn_phy_calib_gain cmd;
4186 
4187 	memset(&cmd, 0, sizeof cmd);
4188 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4189 	/* Differential gains initially set to 0 for all 3 antennas. */
4190 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4191 	    "%s: setting initial differential gains\n", __func__);
4192 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4193 }
4194 
4195 static int
4196 iwn5000_init_gains(struct iwn_softc *sc)
4197 {
4198 	struct iwn_phy_calib cmd;
4199 
4200 	memset(&cmd, 0, sizeof cmd);
4201 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4202 	cmd.ngroups = 1;
4203 	cmd.isvalid = 1;
4204 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4205 	    "%s: setting initial differential gains\n", __func__);
4206 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4207 }
4208 
4209 static int
4210 iwn4965_set_gains(struct iwn_softc *sc)
4211 {
4212 	struct iwn_calib_state *calib = &sc->calib;
4213 	struct iwn_phy_calib_gain cmd;
4214 	int i, delta, noise;
4215 
4216 	/* Get minimal noise among connected antennas. */
4217 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4218 	for (i = 0; i < 3; i++)
4219 		if (sc->chainmask & (1 << i))
4220 			noise = MIN(calib->noise[i], noise);
4221 
4222 	memset(&cmd, 0, sizeof cmd);
4223 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4224 	/* Set differential gains for connected antennas. */
4225 	for (i = 0; i < 3; i++) {
4226 		if (sc->chainmask & (1 << i)) {
4227 			/* Compute attenuation (in unit of 1.5dB). */
4228 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4229 			/* NB: delta <= 0 */
4230 			/* Limit to [-4.5dB,0]. */
4231 			cmd.gain[i] = MIN(abs(delta), 3);
4232 			if (delta < 0)
4233 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4234 		}
4235 	}
4236 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4237 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4238 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4239 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4240 }
4241 
4242 static int
4243 iwn5000_set_gains(struct iwn_softc *sc)
4244 {
4245 	struct iwn_calib_state *calib = &sc->calib;
4246 	struct iwn_phy_calib_gain cmd;
4247 	int i, ant, delta, div;
4248 
4249 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4250 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4251 
4252 	memset(&cmd, 0, sizeof cmd);
4253 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4254 	cmd.ngroups = 1;
4255 	cmd.isvalid = 1;
4256 	/* Get first available RX antenna as referential. */
4257 	ant = IWN_LSB(sc->rxchainmask);
4258 	/* Set differential gains for other antennas. */
4259 	for (i = ant + 1; i < 3; i++) {
4260 		if (sc->chainmask & (1 << i)) {
4261 			/* The delta is relative to antenna "ant". */
4262 			delta = ((int32_t)calib->noise[ant] -
4263 			    (int32_t)calib->noise[i]) / div;
4264 			/* Limit to [-4.5dB,+4.5dB]. */
4265 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4266 			if (delta < 0)
4267 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4268 		}
4269 	}
4270 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4271 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4272 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4273 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4274 }
4275 
4276 /*
4277  * Tune RF RX sensitivity based on the number of false alarms detected
4278  * during the last beacon period.
4279  */
4280 static void
4281 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4282 {
4283 #define inc(val, inc, max)			\
4284 	if ((val) < (max)) {			\
4285 		if ((val) < (max) - (inc))	\
4286 			(val) += (inc);		\
4287 		else				\
4288 			(val) = (max);		\
4289 		needs_update = 1;		\
4290 	}
4291 #define dec(val, dec, min)			\
4292 	if ((val) > (min)) {			\
4293 		if ((val) > (min) + (dec))	\
4294 			(val) -= (dec);		\
4295 		else				\
4296 			(val) = (min);		\
4297 		needs_update = 1;		\
4298 	}
4299 
4300 	const struct iwn_sensitivity_limits *limits = sc->limits;
4301 	struct iwn_calib_state *calib = &sc->calib;
4302 	uint32_t val, rxena, fa;
4303 	uint32_t energy[3], energy_min;
4304 	uint8_t noise[3], noise_ref;
4305 	int i, needs_update = 0;
4306 
4307 	/* Check that we've been enabled long enough. */
4308 	rxena = le32toh(stats->general.load);
4309 	if (rxena == 0)
4310 		return;
4311 
4312 	/* Compute number of false alarms since last call for OFDM. */
4313 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4314 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4315 	fa *= 200 * 1024;	/* 200TU */
4316 
4317 	/* Save counters values for next call. */
4318 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4319 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4320 
4321 	if (fa > 50 * rxena) {
4322 		/* High false alarm count, decrease sensitivity. */
4323 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4324 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4325 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4326 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4327 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4328 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4329 
4330 	} else if (fa < 5 * rxena) {
4331 		/* Low false alarm count, increase sensitivity. */
4332 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4333 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4334 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4335 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4336 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4337 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4338 	}
4339 
4340 	/* Compute maximum noise among 3 receivers. */
4341 	for (i = 0; i < 3; i++)
4342 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4343 	val = MAX(noise[0], noise[1]);
4344 	val = MAX(noise[2], val);
4345 	/* Insert it into our samples table. */
4346 	calib->noise_samples[calib->cur_noise_sample] = val;
4347 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4348 
4349 	/* Compute maximum noise among last 20 samples. */
4350 	noise_ref = calib->noise_samples[0];
4351 	for (i = 1; i < 20; i++)
4352 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4353 
4354 	/* Compute maximum energy among 3 receivers. */
4355 	for (i = 0; i < 3; i++)
4356 		energy[i] = le32toh(stats->general.energy[i]);
4357 	val = MIN(energy[0], energy[1]);
4358 	val = MIN(energy[2], val);
4359 	/* Insert it into our samples table. */
4360 	calib->energy_samples[calib->cur_energy_sample] = val;
4361 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4362 
4363 	/* Compute minimum energy among last 10 samples. */
4364 	energy_min = calib->energy_samples[0];
4365 	for (i = 1; i < 10; i++)
4366 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4367 	energy_min += 6;
4368 
4369 	/* Compute number of false alarms since last call for CCK. */
4370 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4371 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4372 	fa *= 200 * 1024;	/* 200TU */
4373 
4374 	/* Save counters values for next call. */
4375 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4376 	calib->fa_cck = le32toh(stats->cck.fa);
4377 
4378 	if (fa > 50 * rxena) {
4379 		/* High false alarm count, decrease sensitivity. */
4380 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4381 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4382 		calib->cck_state = IWN_CCK_STATE_HIFA;
4383 		calib->low_fa = 0;
4384 
4385 		if (calib->cck_x4 > 160) {
4386 			calib->noise_ref = noise_ref;
4387 			if (calib->energy_cck > 2)
4388 				dec(calib->energy_cck, 2, energy_min);
4389 		}
4390 		if (calib->cck_x4 < 160) {
4391 			calib->cck_x4 = 161;
4392 			needs_update = 1;
4393 		} else
4394 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4395 
4396 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4397 
4398 	} else if (fa < 5 * rxena) {
4399 		/* Low false alarm count, increase sensitivity. */
4400 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4401 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4402 		calib->cck_state = IWN_CCK_STATE_LOFA;
4403 		calib->low_fa++;
4404 
4405 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4406 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4407 		    calib->low_fa > 100)) {
4408 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4409 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4410 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4411 		}
4412 	} else {
4413 		/* Not worth to increase or decrease sensitivity. */
4414 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4415 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4416 		calib->low_fa = 0;
4417 		calib->noise_ref = noise_ref;
4418 
4419 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4420 			/* Previous interval had many false alarms. */
4421 			dec(calib->energy_cck, 8, energy_min);
4422 		}
4423 		calib->cck_state = IWN_CCK_STATE_INIT;
4424 	}
4425 
4426 	if (needs_update)
4427 		(void)iwn_send_sensitivity(sc);
4428 #undef dec
4429 #undef inc
4430 }
4431 
4432 static int
4433 iwn_send_sensitivity(struct iwn_softc *sc)
4434 {
4435 	struct iwn_calib_state *calib = &sc->calib;
4436 	struct iwn_sensitivity_cmd cmd;
4437 
4438 	memset(&cmd, 0, sizeof cmd);
4439 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4440 	/* OFDM modulation. */
4441 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4442 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4443 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4444 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4445 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4446 	cmd.energy_ofdm_th   = htole16(62);
4447 	/* CCK modulation. */
4448 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4449 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4450 	cmd.energy_cck       = htole16(calib->energy_cck);
4451 	/* Barker modulation: use default values. */
4452 	cmd.corr_barker      = htole16(190);
4453 	cmd.corr_barker_mrc  = htole16(390);
4454 
4455 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4456 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4457 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4458 	    calib->ofdm_mrc_x4, calib->cck_x4,
4459 	    calib->cck_mrc_x4, calib->energy_cck);
4460 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4461 }
4462 
4463 /*
4464  * Set STA mode power saving level (between 0 and 5).
4465  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4466  */
4467 static int
4468 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4469 {
4470 	const struct iwn_pmgt *pmgt;
4471 	struct iwn_pmgt_cmd cmd;
4472 	uint32_t max, skip_dtim;
4473 	uint32_t tmp;
4474 	int i;
4475 
4476 	/* Select which PS parameters to use. */
4477 	if (dtim <= 2)
4478 		pmgt = &iwn_pmgt[0][level];
4479 	else if (dtim <= 10)
4480 		pmgt = &iwn_pmgt[1][level];
4481 	else
4482 		pmgt = &iwn_pmgt[2][level];
4483 
4484 	memset(&cmd, 0, sizeof cmd);
4485 	if (level != 0)	/* not CAM */
4486 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4487 	if (level == 5)
4488 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4489 	/* Retrieve PCIe Active State Power Management (ASPM). */
4490 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4491 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4492 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4493 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4494 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4495 
4496 	if (dtim == 0) {
4497 		dtim = 1;
4498 		skip_dtim = 0;
4499 	} else
4500 		skip_dtim = pmgt->skip_dtim;
4501 	if (skip_dtim != 0) {
4502 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4503 		max = pmgt->intval[4];
4504 		if (max == (uint32_t)-1)
4505 			max = dtim * (skip_dtim + 1);
4506 		else if (max > dtim)
4507 			max = (max / dtim) * dtim;
4508 	} else
4509 		max = dtim;
4510 	for (i = 0; i < 5; i++)
4511 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4512 
4513 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4514 	    level);
4515 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4516 }
4517 
4518 static int
4519 iwn_config(struct iwn_softc *sc)
4520 {
4521 	const struct iwn_hal *hal = sc->sc_hal;
4522 	struct ifnet *ifp = sc->sc_ifp;
4523 	struct ieee80211com *ic = ifp->if_l2com;
4524 	struct iwn_bluetooth bluetooth;
4525 	uint32_t txmask;
4526 	int error;
4527 	uint16_t rxchain;
4528 
4529 	/* Configure valid TX chains for 5000 Series. */
4530 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4531 		txmask = htole32(sc->txchainmask);
4532 		DPRINTF(sc, IWN_DEBUG_RESET,
4533 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4534 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4535 		    sizeof txmask, 0);
4536 		if (error != 0) {
4537 			device_printf(sc->sc_dev,
4538 			    "%s: could not configure valid TX chains, "
4539 			    "error %d\n", __func__, error);
4540 			return error;
4541 		}
4542 	}
4543 
4544 	/* Configure bluetooth coexistence. */
4545 	memset(&bluetooth, 0, sizeof bluetooth);
4546 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4547 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4548 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4549 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4550 	    __func__);
4551 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4552 	if (error != 0) {
4553 		device_printf(sc->sc_dev,
4554 		    "%s: could not configure bluetooth coexistence, error %d\n",
4555 		    __func__, error);
4556 		return error;
4557 	}
4558 
4559 	/* Set mode, channel, RX filter and enable RX. */
4560 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4561 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4562 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4563 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4564 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4565 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4566 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4567 	switch (ic->ic_opmode) {
4568 	case IEEE80211_M_STA:
4569 		sc->rxon.mode = IWN_MODE_STA;
4570 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4571 		break;
4572 	case IEEE80211_M_MONITOR:
4573 		sc->rxon.mode = IWN_MODE_MONITOR;
4574 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4575 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4576 		break;
4577 	default:
4578 		/* Should not get there. */
4579 		break;
4580 	}
4581 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4582 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4583 	sc->rxon.ht_single_mask = 0xff;
4584 	sc->rxon.ht_dual_mask = 0xff;
4585 	sc->rxon.ht_triple_mask = 0xff;
4586 	rxchain =
4587 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4588 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4589 	    IWN_RXCHAIN_IDLE_COUNT(2);
4590 	sc->rxon.rxchain = htole16(rxchain);
4591 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4592 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4593 	if (error != 0) {
4594 		device_printf(sc->sc_dev,
4595 		    "%s: RXON command failed\n", __func__);
4596 		return error;
4597 	}
4598 
4599 	error = iwn_add_broadcast_node(sc, 0);
4600 	if (error != 0) {
4601 		device_printf(sc->sc_dev,
4602 		    "%s: could not add broadcast node\n", __func__);
4603 		return error;
4604 	}
4605 
4606 	/* Configuration has changed, set TX power accordingly. */
4607 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4608 	if (error != 0) {
4609 		device_printf(sc->sc_dev,
4610 		    "%s: could not set TX power\n", __func__);
4611 		return error;
4612 	}
4613 
4614 	error = iwn_set_critical_temp(sc);
4615 	if (error != 0) {
4616 		device_printf(sc->sc_dev,
4617 		    "%s: ccould not set critical temperature\n", __func__);
4618 		return error;
4619 	}
4620 
4621 	/* Set power saving level to CAM during initialization. */
4622 	error = iwn_set_pslevel(sc, 0, 0, 0);
4623 	if (error != 0) {
4624 		device_printf(sc->sc_dev,
4625 		    "%s: could not set power saving level\n", __func__);
4626 		return error;
4627 	}
4628 	return 0;
4629 }
4630 
4631 static int
4632 iwn_scan(struct iwn_softc *sc)
4633 {
4634 	struct ifnet *ifp = sc->sc_ifp;
4635 	struct ieee80211com *ic = ifp->if_l2com;
4636 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4637 	struct iwn_scan_hdr *hdr;
4638 	struct iwn_cmd_data *tx;
4639 	struct iwn_scan_essid *essid;
4640 	struct iwn_scan_chan *chan;
4641 	struct ieee80211_frame *wh;
4642 	struct ieee80211_rateset *rs;
4643 	struct ieee80211_channel *c;
4644 	int buflen, error, nrates;
4645 	uint16_t rxchain;
4646 	uint8_t *buf, *frm, txant;
4647 
4648 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
4649 	if (buf == NULL) {
4650 		device_printf(sc->sc_dev,
4651 		    "%s: could not allocate buffer for scan command\n",
4652 		    __func__);
4653 		return ENOMEM;
4654 	}
4655 	hdr = (struct iwn_scan_hdr *)buf;
4656 
4657 	/*
4658 	 * Move to the next channel if no frames are received within 10ms
4659 	 * after sending the probe request.
4660 	 */
4661 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4662 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4663 
4664 	/* Select antennas for scanning. */
4665 	rxchain =
4666 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4667 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4668 	    IWN_RXCHAIN_DRIVER_FORCE;
4669 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4670 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4671 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4672 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4673 	} else	/* Use all available RX antennas. */
4674 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4675 	hdr->rxchain = htole16(rxchain);
4676 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4677 
4678 	tx = (struct iwn_cmd_data *)(hdr + 1);
4679 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4680 	tx->id = sc->sc_hal->broadcast_id;
4681 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4682 
4683 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4684 		/* Send probe requests at 6Mbps. */
4685 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4686 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4687 	} else {
4688 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4689 		/* Send probe requests at 1Mbps. */
4690 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4691 		tx->rflags = IWN_RFLAG_CCK;
4692 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4693 	}
4694 	/* Use the first valid TX antenna. */
4695 	txant = IWN_LSB(sc->txchainmask);
4696 	tx->rflags |= IWN_RFLAG_ANT(txant);
4697 
4698 	essid = (struct iwn_scan_essid *)(tx + 1);
4699 	if (ss->ss_ssid[0].len != 0) {
4700 		essid[0].id = IEEE80211_ELEMID_SSID;
4701 		essid[0].len = ss->ss_ssid[0].len;
4702 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4703 	}
4704 
4705 	/*
4706 	 * Build a probe request frame.  Most of the following code is a
4707 	 * copy & paste of what is done in net80211.
4708 	 */
4709 	wh = (struct ieee80211_frame *)(essid + 20);
4710 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4711 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4712 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4713 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4714 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4715 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4716 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4717 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4718 
4719 	frm = (uint8_t *)(wh + 1);
4720 
4721 	/* Add SSID IE. */
4722 	*frm++ = IEEE80211_ELEMID_SSID;
4723 	*frm++ = ss->ss_ssid[0].len;
4724 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4725 	frm += ss->ss_ssid[0].len;
4726 
4727 	/* Add supported rates IE. */
4728 	*frm++ = IEEE80211_ELEMID_RATES;
4729 	nrates = rs->rs_nrates;
4730 	if (nrates > IEEE80211_RATE_SIZE)
4731 		nrates = IEEE80211_RATE_SIZE;
4732 	*frm++ = nrates;
4733 	memcpy(frm, rs->rs_rates, nrates);
4734 	frm += nrates;
4735 
4736 	/* Add supported xrates IE. */
4737 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4738 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4739 		*frm++ = IEEE80211_ELEMID_XRATES;
4740 		*frm++ = (uint8_t)nrates;
4741 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4742 		frm += nrates;
4743 	}
4744 
4745 	/* Set length of probe request. */
4746 	tx->len = htole16(frm - (uint8_t *)wh);
4747 
4748 	c = ic->ic_curchan;
4749 	chan = (struct iwn_scan_chan *)frm;
4750 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4751 	chan->flags = 0;
4752 	if (ss->ss_nssid > 0)
4753 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4754 	chan->dsp_gain = 0x6e;
4755 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4756 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4757 		chan->rf_gain = 0x3b;
4758 		chan->active  = htole16(24);
4759 		chan->passive = htole16(110);
4760 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4761 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4762 		chan->rf_gain = 0x3b;
4763 		chan->active  = htole16(24);
4764 		if (sc->rxon.associd)
4765 			chan->passive = htole16(78);
4766 		else
4767 			chan->passive = htole16(110);
4768 		hdr->crc_threshold = 0xffff;
4769 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4770 		chan->rf_gain = 0x28;
4771 		chan->active  = htole16(36);
4772 		chan->passive = htole16(120);
4773 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4774 	} else {
4775 		chan->rf_gain = 0x28;
4776 		chan->active  = htole16(36);
4777 		if (sc->rxon.associd)
4778 			chan->passive = htole16(88);
4779 		else
4780 			chan->passive = htole16(120);
4781 		hdr->crc_threshold = 0xffff;
4782 	}
4783 
4784 	DPRINTF(sc, IWN_DEBUG_STATE,
4785 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4786 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4787 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4788 	    chan->active, chan->passive);
4789 
4790 	hdr->nchan++;
4791 	chan++;
4792 	buflen = (uint8_t *)chan - buf;
4793 	hdr->len = htole16(buflen);
4794 
4795 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4796 	    hdr->nchan);
4797 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4798 	kfree(buf, M_DEVBUF);
4799 	return error;
4800 }
4801 
4802 static int
4803 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4804 {
4805 	const struct iwn_hal *hal = sc->sc_hal;
4806 	struct ifnet *ifp = sc->sc_ifp;
4807 	struct ieee80211com *ic = ifp->if_l2com;
4808 	struct ieee80211_node *ni = vap->iv_bss;
4809 	int error;
4810 
4811 	sc->calib.state = IWN_CALIB_STATE_INIT;
4812 
4813 	/* Update adapter configuration. */
4814 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4815 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4816 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4817 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4818 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4819 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4820 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4821 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4822 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4823 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4824 		sc->rxon.cck_mask  = 0;
4825 		sc->rxon.ofdm_mask = 0x15;
4826 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4827 		sc->rxon.cck_mask  = 0x03;
4828 		sc->rxon.ofdm_mask = 0;
4829 	} else {
4830 		/* XXX assume 802.11b/g */
4831 		sc->rxon.cck_mask  = 0x0f;
4832 		sc->rxon.ofdm_mask = 0x15;
4833 	}
4834 	DPRINTF(sc, IWN_DEBUG_STATE,
4835 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4836 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4837 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4838 	    __func__,
4839 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4840 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4841 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4842 	    le16toh(sc->rxon.rxchain),
4843 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4844 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4845 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4846 	if (error != 0) {
4847 		device_printf(sc->sc_dev,
4848 		    "%s: RXON command failed, error %d\n", __func__, error);
4849 		return error;
4850 	}
4851 
4852 	/* Configuration has changed, set TX power accordingly. */
4853 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4854 	if (error != 0) {
4855 		device_printf(sc->sc_dev,
4856 		    "%s: could not set Tx power, error %d\n", __func__, error);
4857 		return error;
4858 	}
4859 	/*
4860 	 * Reconfiguring RXON clears the firmware nodes table so we must
4861 	 * add the broadcast node again.
4862 	 */
4863 	error = iwn_add_broadcast_node(sc, 1);
4864 	if (error != 0) {
4865 		device_printf(sc->sc_dev,
4866 		    "%s: could not add broadcast node, error %d\n",
4867 		    __func__, error);
4868 		return error;
4869 	}
4870 	return 0;
4871 }
4872 
4873 /*
4874  * Configure the adapter for associated state.
4875  */
4876 static int
4877 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4878 {
4879 #define	MS(v,x)	(((v) & x) >> x##_S)
4880 	const struct iwn_hal *hal = sc->sc_hal;
4881 	struct ifnet *ifp = sc->sc_ifp;
4882 	struct ieee80211com *ic = ifp->if_l2com;
4883 	struct ieee80211_node *ni = vap->iv_bss;
4884 	struct iwn_node_info node;
4885 	int error;
4886 
4887 	sc->calib.state = IWN_CALIB_STATE_INIT;
4888 
4889 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4890 		/* Link LED blinks while monitoring. */
4891 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4892 		return 0;
4893 	}
4894 	error = iwn_set_timing(sc, ni);
4895 	if (error != 0) {
4896 		device_printf(sc->sc_dev,
4897 		    "%s: could not set timing, error %d\n", __func__, error);
4898 		return error;
4899 	}
4900 
4901 	/* Update adapter configuration. */
4902 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4903 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4904 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4905 	/* Short preamble and slot time are negotiated when associating. */
4906 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4907 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4908 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4909 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4910 	else
4911 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4912 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4913 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4914 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4915 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4916 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4917 		sc->rxon.cck_mask  = 0;
4918 		sc->rxon.ofdm_mask = 0x15;
4919 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4920 		sc->rxon.cck_mask  = 0x03;
4921 		sc->rxon.ofdm_mask = 0;
4922 	} else {
4923 		/* XXX assume 802.11b/g */
4924 		sc->rxon.cck_mask  = 0x0f;
4925 		sc->rxon.ofdm_mask = 0x15;
4926 	}
4927 #if 0	/* HT */
4928 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4929 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4930 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4931 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4932 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4933 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4934 		else
4935 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4936 		sc->rxon.rxchain = htole16(
4937 			  IWN_RXCHAIN_VALID(3)
4938 			| IWN_RXCHAIN_MIMO_COUNT(3)
4939 			| IWN_RXCHAIN_IDLE_COUNT(1)
4940 			| IWN_RXCHAIN_MIMO_FORCE);
4941 
4942 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4943 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4944 	} else
4945 		maxrxampdu = ampdudensity = 0;
4946 #endif
4947 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4948 
4949 	DPRINTF(sc, IWN_DEBUG_STATE,
4950 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4951 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4952 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4953 	    __func__,
4954 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4955 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4956 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4957 	    le16toh(sc->rxon.rxchain),
4958 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4959 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4960 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4961 	if (error != 0) {
4962 		device_printf(sc->sc_dev,
4963 		    "%s: could not update configuration, error %d\n",
4964 		    __func__, error);
4965 		return error;
4966 	}
4967 
4968 	/* Configuration has changed, set TX power accordingly. */
4969 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4970 	if (error != 0) {
4971 		device_printf(sc->sc_dev,
4972 		    "%s: could not set Tx power, error %d\n", __func__, error);
4973 		return error;
4974 	}
4975 
4976 	/* Add BSS node. */
4977 	memset(&node, 0, sizeof node);
4978 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4979 	node.id = IWN_ID_BSS;
4980 #ifdef notyet
4981 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4982 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4983 #endif
4984 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4985 	    __func__, node.id, le32toh(node.htflags));
4986 	error = hal->add_node(sc, &node, 1);
4987 	if (error != 0) {
4988 		device_printf(sc->sc_dev, "could not add BSS node\n");
4989 		return error;
4990 	}
4991 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4992 	    node.id);
4993 	error = iwn_set_link_quality(sc, node.id, 1);
4994 	if (error != 0) {
4995 		device_printf(sc->sc_dev,
4996 		    "%s: could not setup MRR for node %d, error %d\n",
4997 		    __func__, node.id, error);
4998 		return error;
4999 	}
5000 
5001 	error = iwn_init_sensitivity(sc);
5002 	if (error != 0) {
5003 		device_printf(sc->sc_dev,
5004 		    "%s: could not set sensitivity, error %d\n",
5005 		    __func__, error);
5006 		return error;
5007 	}
5008 
5009 	/* Start periodic calibration timer. */
5010 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5011 	iwn_calib_reset(sc);
5012 
5013 	/* Link LED always on while associated. */
5014 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5015 
5016 	return 0;
5017 #undef MS
5018 }
5019 
5020 #if 0	/* HT */
5021 /*
5022  * This function is called by upper layer when an ADDBA request is received
5023  * from another STA and before the ADDBA response is sent.
5024  */
5025 static int
5026 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5027     uint8_t tid)
5028 {
5029 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5030 	struct iwn_softc *sc = ic->ic_softc;
5031 	struct iwn_node *wn = (void *)ni;
5032 	struct iwn_node_info node;
5033 
5034 	memset(&node, 0, sizeof node);
5035 	node.id = wn->id;
5036 	node.control = IWN_NODE_UPDATE;
5037 	node.flags = IWN_FLAG_SET_ADDBA;
5038 	node.addba_tid = tid;
5039 	node.addba_ssn = htole16(ba->ba_winstart);
5040 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5041 	    wn->id, tid, ba->ba_winstart));
5042 	return sc->sc_hal->add_node(sc, &node, 1);
5043 }
5044 
5045 /*
5046  * This function is called by upper layer on teardown of an HT-immediate
5047  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5048  */
5049 static void
5050 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5051     uint8_t tid)
5052 {
5053 	struct iwn_softc *sc = ic->ic_softc;
5054 	struct iwn_node *wn = (void *)ni;
5055 	struct iwn_node_info node;
5056 
5057 	memset(&node, 0, sizeof node);
5058 	node.id = wn->id;
5059 	node.control = IWN_NODE_UPDATE;
5060 	node.flags = IWN_FLAG_SET_DELBA;
5061 	node.delba_tid = tid;
5062 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5063 	(void)sc->sc_hal->add_node(sc, &node, 1);
5064 }
5065 
5066 /*
5067  * This function is called by upper layer when an ADDBA response is received
5068  * from another STA.
5069  */
5070 static int
5071 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5072     uint8_t tid)
5073 {
5074 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5075 	struct iwn_softc *sc = ic->ic_softc;
5076 	const struct iwn_hal *hal = sc->sc_hal;
5077 	struct iwn_node *wn = (void *)ni;
5078 	struct iwn_node_info node;
5079 	int error;
5080 
5081 	/* Enable TX for the specified RA/TID. */
5082 	wn->disable_tid &= ~(1 << tid);
5083 	memset(&node, 0, sizeof node);
5084 	node.id = wn->id;
5085 	node.control = IWN_NODE_UPDATE;
5086 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5087 	node.disable_tid = htole16(wn->disable_tid);
5088 	error = hal->add_node(sc, &node, 1);
5089 	if (error != 0)
5090 		return error;
5091 
5092 	if ((error = iwn_nic_lock(sc)) != 0)
5093 		return error;
5094 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5095 	iwn_nic_unlock(sc);
5096 	return 0;
5097 }
5098 
5099 static void
5100 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5101     uint8_t tid)
5102 {
5103 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5104 	struct iwn_softc *sc = ic->ic_softc;
5105 	int error;
5106 
5107 	error = iwn_nic_lock(sc);
5108 	if (error != 0)
5109 		return;
5110 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5111 	iwn_nic_unlock(sc);
5112 }
5113 
5114 static void
5115 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5116     uint8_t tid, uint16_t ssn)
5117 {
5118 	struct iwn_node *wn = (void *)ni;
5119 	int qid = 7 + tid;
5120 
5121 	/* Stop TX scheduler while we're changing its configuration. */
5122 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5123 	    IWN4965_TXQ_STATUS_CHGACT);
5124 
5125 	/* Assign RA/TID translation to the queue. */
5126 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5127 	    wn->id << 4 | tid);
5128 
5129 	/* Enable chain-building mode for the queue. */
5130 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5131 
5132 	/* Set starting sequence number from the ADDBA request. */
5133 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5134 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5135 
5136 	/* Set scheduler window size. */
5137 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5138 	    IWN_SCHED_WINSZ);
5139 	/* Set scheduler frame limit. */
5140 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5141 	    IWN_SCHED_LIMIT << 16);
5142 
5143 	/* Enable interrupts for the queue. */
5144 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5145 
5146 	/* Mark the queue as active. */
5147 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5148 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5149 	    iwn_tid2fifo[tid] << 1);
5150 }
5151 
5152 static void
5153 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5154 {
5155 	int qid = 7 + tid;
5156 
5157 	/* Stop TX scheduler while we're changing its configuration. */
5158 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5159 	    IWN4965_TXQ_STATUS_CHGACT);
5160 
5161 	/* Set starting sequence number from the ADDBA request. */
5162 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5163 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5164 
5165 	/* Disable interrupts for the queue. */
5166 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5167 
5168 	/* Mark the queue as inactive. */
5169 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5170 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5171 }
5172 
5173 static void
5174 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5175     uint8_t tid, uint16_t ssn)
5176 {
5177 	struct iwn_node *wn = (void *)ni;
5178 	int qid = 10 + tid;
5179 
5180 	/* Stop TX scheduler while we're changing its configuration. */
5181 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5182 	    IWN5000_TXQ_STATUS_CHGACT);
5183 
5184 	/* Assign RA/TID translation to the queue. */
5185 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5186 	    wn->id << 4 | tid);
5187 
5188 	/* Enable chain-building mode for the queue. */
5189 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5190 
5191 	/* Enable aggregation for the queue. */
5192 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5193 
5194 	/* Set starting sequence number from the ADDBA request. */
5195 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5196 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5197 
5198 	/* Set scheduler window size and frame limit. */
5199 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5200 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5201 
5202 	/* Enable interrupts for the queue. */
5203 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5204 
5205 	/* Mark the queue as active. */
5206 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5207 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5208 }
5209 
5210 static void
5211 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5212 {
5213 	int qid = 10 + tid;
5214 
5215 	/* Stop TX scheduler while we're changing its configuration. */
5216 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5217 	    IWN5000_TXQ_STATUS_CHGACT);
5218 
5219 	/* Disable aggregation for the queue. */
5220 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5221 
5222 	/* Set starting sequence number from the ADDBA request. */
5223 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5224 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5225 
5226 	/* Disable interrupts for the queue. */
5227 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5228 
5229 	/* Mark the queue as inactive. */
5230 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5231 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5232 }
5233 #endif
5234 
5235 /*
5236  * Query calibration tables from the initialization firmware.  We do this
5237  * only once at first boot.  Called from a process context.
5238  */
5239 static int
5240 iwn5000_query_calibration(struct iwn_softc *sc)
5241 {
5242 	struct iwn5000_calib_config cmd;
5243 	int error;
5244 
5245 	memset(&cmd, 0, sizeof cmd);
5246 	cmd.ucode.once.enable = 0xffffffff;
5247 	cmd.ucode.once.start  = 0xffffffff;
5248 	cmd.ucode.once.send   = 0xffffffff;
5249 	cmd.ucode.flags       = 0xffffffff;
5250 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5251 	    __func__);
5252 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5253 	if (error != 0)
5254 		return error;
5255 
5256 	/* Wait at most two seconds for calibration to complete. */
5257 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5258 		error = lksleep(sc, &sc->sc_lock, 0, "iwninit", 2 * hz);
5259 	return error;
5260 }
5261 
5262 /*
5263  * Send calibration results to the runtime firmware.  These results were
5264  * obtained on first boot from the initialization firmware.
5265  */
5266 static int
5267 iwn5000_send_calibration(struct iwn_softc *sc)
5268 {
5269 	int idx, error;
5270 
5271 	for (idx = 0; idx < 5; idx++) {
5272 		if (sc->calibcmd[idx].buf == NULL)
5273 			continue;	/* No results available. */
5274 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5275 		    "send calibration result idx=%d len=%d\n",
5276 		    idx, sc->calibcmd[idx].len);
5277 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5278 		    sc->calibcmd[idx].len, 0);
5279 		if (error != 0) {
5280 			device_printf(sc->sc_dev,
5281 			    "%s: could not send calibration result, error %d\n",
5282 			    __func__, error);
5283 			return error;
5284 		}
5285 	}
5286 	return 0;
5287 }
5288 
5289 static int
5290 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5291 {
5292 	struct iwn5000_wimax_coex wimax;
5293 
5294 #ifdef notyet
5295 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5296 		/* Enable WiMAX coexistence for combo adapters. */
5297 		wimax.flags =
5298 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5299 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5300 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5301 		    IWN_WIMAX_COEX_ENABLE;
5302 		memcpy(wimax.events, iwn6050_wimax_events,
5303 		    sizeof iwn6050_wimax_events);
5304 	} else
5305 #endif
5306 	{
5307 		/* Disable WiMAX coexistence. */
5308 		wimax.flags = 0;
5309 		memset(wimax.events, 0, sizeof wimax.events);
5310 	}
5311 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5312 	    __func__);
5313 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5314 }
5315 
5316 /*
5317  * This function is called after the runtime firmware notifies us of its
5318  * readiness (called in a process context.)
5319  */
5320 static int
5321 iwn4965_post_alive(struct iwn_softc *sc)
5322 {
5323 	int error, qid;
5324 
5325 	if ((error = iwn_nic_lock(sc)) != 0)
5326 		return error;
5327 
5328 	/* Clear TX scheduler state in SRAM. */
5329 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5330 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5331 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5332 
5333 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5334 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5335 
5336 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5337 
5338 	/* Disable chain mode for all our 16 queues. */
5339 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5340 
5341 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5342 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5343 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5344 
5345 		/* Set scheduler window size. */
5346 		iwn_mem_write(sc, sc->sched_base +
5347 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5348 		/* Set scheduler frame limit. */
5349 		iwn_mem_write(sc, sc->sched_base +
5350 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5351 		    IWN_SCHED_LIMIT << 16);
5352 	}
5353 
5354 	/* Enable interrupts for all our 16 queues. */
5355 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5356 	/* Identify TX FIFO rings (0-7). */
5357 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5358 
5359 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5360 	for (qid = 0; qid < 7; qid++) {
5361 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5362 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5363 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5364 	}
5365 	iwn_nic_unlock(sc);
5366 	return 0;
5367 }
5368 
5369 /*
5370  * This function is called after the initialization or runtime firmware
5371  * notifies us of its readiness (called in a process context.)
5372  */
5373 static int
5374 iwn5000_post_alive(struct iwn_softc *sc)
5375 {
5376 	int error, qid;
5377 
5378 	/* Switch to using ICT interrupt mode. */
5379 	iwn5000_ict_reset(sc);
5380 
5381 	error = iwn_nic_lock(sc);
5382 	if (error != 0)
5383 		return error;
5384 
5385 	/* Clear TX scheduler state in SRAM. */
5386 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5387 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5388 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5389 
5390 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5391 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5392 
5393 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5394 
5395 	/* Enable chain mode for all queues, except command queue. */
5396 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5397 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5398 
5399 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5400 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5401 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5402 
5403 		iwn_mem_write(sc, sc->sched_base +
5404 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5405 		/* Set scheduler window size and frame limit. */
5406 		iwn_mem_write(sc, sc->sched_base +
5407 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5408 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5409 	}
5410 
5411 	/* Enable interrupts for all our 20 queues. */
5412 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5413 	/* Identify TX FIFO rings (0-7). */
5414 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5415 
5416 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5417 	for (qid = 0; qid < 7; qid++) {
5418 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5419 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5420 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5421 	}
5422 	iwn_nic_unlock(sc);
5423 
5424 	/* Configure WiMAX coexistence for combo adapters. */
5425 	error = iwn5000_send_wimax_coex(sc);
5426 	if (error != 0) {
5427 		device_printf(sc->sc_dev,
5428 		    "%s: could not configure WiMAX coexistence, error %d\n",
5429 		    __func__, error);
5430 		return error;
5431 	}
5432 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5433 		struct iwn5000_phy_calib_crystal cmd;
5434 
5435 		/* Perform crystal calibration. */
5436 		memset(&cmd, 0, sizeof cmd);
5437 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5438 		cmd.ngroups = 1;
5439 		cmd.isvalid = 1;
5440 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5441 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5442 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5443 		    "sending crystal calibration %d, %d\n",
5444 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5445 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5446 		if (error != 0) {
5447 			device_printf(sc->sc_dev,
5448 			    "%s: crystal calibration failed, error %d\n",
5449 			    __func__, error);
5450 			return error;
5451 		}
5452 	}
5453 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5454 		/* Query calibration from the initialization firmware. */
5455 		error = iwn5000_query_calibration(sc);
5456 		if (error != 0) {
5457 			device_printf(sc->sc_dev,
5458 			    "%s: could not query calibration, error %d\n",
5459 			    __func__, error);
5460 			return error;
5461 		}
5462 		/*
5463 		 * We have the calibration results now, reboot with the
5464 		 * runtime firmware (call ourselves recursively!)
5465 		 */
5466 		iwn_hw_stop(sc);
5467 		error = iwn_hw_init(sc);
5468 	} else {
5469 		/* Send calibration results to runtime firmware. */
5470 		error = iwn5000_send_calibration(sc);
5471 	}
5472 	return error;
5473 }
5474 
5475 /*
5476  * The firmware boot code is small and is intended to be copied directly into
5477  * the NIC internal memory (no DMA transfer.)
5478  */
5479 static int
5480 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5481 {
5482 	int error, ntries;
5483 
5484 	size /= sizeof (uint32_t);
5485 
5486 	error = iwn_nic_lock(sc);
5487 	if (error != 0)
5488 		return error;
5489 
5490 	/* Copy microcode image into NIC memory. */
5491 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5492 	    (const uint32_t *)ucode, size);
5493 
5494 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5495 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5496 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5497 
5498 	/* Start boot load now. */
5499 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5500 
5501 	/* Wait for transfer to complete. */
5502 	for (ntries = 0; ntries < 1000; ntries++) {
5503 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5504 		    IWN_BSM_WR_CTRL_START))
5505 			break;
5506 		DELAY(10);
5507 	}
5508 	if (ntries == 1000) {
5509 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5510 		    __func__);
5511 		iwn_nic_unlock(sc);
5512 		return ETIMEDOUT;
5513 	}
5514 
5515 	/* Enable boot after power up. */
5516 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5517 
5518 	iwn_nic_unlock(sc);
5519 	return 0;
5520 }
5521 
5522 static int
5523 iwn4965_load_firmware(struct iwn_softc *sc)
5524 {
5525 	struct iwn_fw_info *fw = &sc->fw;
5526 	struct iwn_dma_info *dma = &sc->fw_dma;
5527 	int error;
5528 
5529 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5530 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5531 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5532 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5533 	    fw->init.text, fw->init.textsz);
5534 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5535 
5536 	/* Tell adapter where to find initialization sections. */
5537 	error = iwn_nic_lock(sc);
5538 	if (error != 0)
5539 		return error;
5540 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5541 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5542 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5543 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5544 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5545 	iwn_nic_unlock(sc);
5546 
5547 	/* Load firmware boot code. */
5548 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5549 	if (error != 0) {
5550 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5551 		    __func__);
5552 		return error;
5553 	}
5554 	/* Now press "execute". */
5555 	IWN_WRITE(sc, IWN_RESET, 0);
5556 
5557 	/* Wait at most one second for first alive notification. */
5558 	error = lksleep(sc, &sc->sc_lock, 0, "iwninit", hz);
5559 	if (error) {
5560 		device_printf(sc->sc_dev,
5561 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5562 		    __func__, error);
5563 		return error;
5564 	}
5565 
5566 	/* Retrieve current temperature for initial TX power calibration. */
5567 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5568 	sc->temp = iwn4965_get_temperature(sc);
5569 
5570 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5571 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5572 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5573 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5574 	    fw->main.text, fw->main.textsz);
5575 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5576 
5577 	/* Tell adapter where to find runtime sections. */
5578 	error = iwn_nic_lock(sc);
5579 	if (error != 0)
5580 		return error;
5581 
5582 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5583 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5584 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5585 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5586 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5587 	    IWN_FW_UPDATED | fw->main.textsz);
5588 	iwn_nic_unlock(sc);
5589 
5590 	return 0;
5591 }
5592 
5593 static int
5594 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5595     const uint8_t *section, int size)
5596 {
5597 	struct iwn_dma_info *dma = &sc->fw_dma;
5598 	int error;
5599 
5600 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5601 	memcpy(dma->vaddr, section, size);
5602 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5603 
5604 	error = iwn_nic_lock(sc);
5605 	if (error != 0)
5606 		return error;
5607 
5608 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5609 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5610 
5611 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5612 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5613 	    IWN_LOADDR(dma->paddr));
5614 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5615 	    IWN_HIADDR(dma->paddr) << 28 | size);
5616 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5617 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5618 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5619 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5620 
5621 	/* Kick Flow Handler to start DMA transfer. */
5622 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5623 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5624 
5625 	iwn_nic_unlock(sc);
5626 
5627 	/* Wait at most five seconds for FH DMA transfer to complete. */
5628 	return lksleep(sc, &sc->sc_lock, 0, "iwninit", hz);
5629 }
5630 
5631 static int
5632 iwn5000_load_firmware(struct iwn_softc *sc)
5633 {
5634 	struct iwn_fw_part *fw;
5635 	int error;
5636 
5637 	/* Load the initialization firmware on first boot only. */
5638 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5639 	    &sc->fw.main : &sc->fw.init;
5640 
5641 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5642 	    fw->text, fw->textsz);
5643 	if (error != 0) {
5644 		device_printf(sc->sc_dev,
5645 		    "%s: could not load firmware %s section, error %d\n",
5646 		    __func__, ".text", error);
5647 		return error;
5648 	}
5649 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5650 	    fw->data, fw->datasz);
5651 	if (error != 0) {
5652 		device_printf(sc->sc_dev,
5653 		    "%s: could not load firmware %s section, error %d\n",
5654 		    __func__, ".data", error);
5655 		return error;
5656 	}
5657 
5658 	/* Now press "execute". */
5659 	IWN_WRITE(sc, IWN_RESET, 0);
5660 	return 0;
5661 }
5662 
5663 static int
5664 iwn_read_firmware(struct iwn_softc *sc)
5665 {
5666 	const struct iwn_hal *hal = sc->sc_hal;
5667 	struct iwn_fw_info *fw = &sc->fw;
5668 	const uint32_t *ptr;
5669 	uint32_t rev;
5670 	size_t size;
5671 
5672 	IWN_UNLOCK(sc);
5673 
5674 	/* Read firmware image from filesystem. */
5675 	sc->fw_fp = firmware_get(sc->fwname);
5676 	if (sc->fw_fp == NULL) {
5677 		device_printf(sc->sc_dev,
5678 		    "%s: could not load firmare image \"%s\"\n", __func__,
5679 		    sc->fwname);
5680 		IWN_LOCK(sc);
5681 		return EINVAL;
5682 	}
5683 	IWN_LOCK(sc);
5684 
5685 	size = sc->fw_fp->datasize;
5686 	if (size < 28) {
5687 		device_printf(sc->sc_dev,
5688 		    "%s: truncated firmware header: %zu bytes\n",
5689 		    __func__, size);
5690 		return EINVAL;
5691 	}
5692 
5693 	/* Process firmware header. */
5694 	ptr = (const uint32_t *)sc->fw_fp->data;
5695 	rev = le32toh(*ptr++);
5696 	/* Check firmware API version. */
5697 	if (IWN_FW_API(rev) <= 1) {
5698 		device_printf(sc->sc_dev,
5699 		    "%s: bad firmware, need API version >=2\n", __func__);
5700 		return EINVAL;
5701 	}
5702 	if (IWN_FW_API(rev) >= 3) {
5703 		/* Skip build number (version 2 header). */
5704 		size -= 4;
5705 		ptr++;
5706 	}
5707 	fw->main.textsz = le32toh(*ptr++);
5708 	fw->main.datasz = le32toh(*ptr++);
5709 	fw->init.textsz = le32toh(*ptr++);
5710 	fw->init.datasz = le32toh(*ptr++);
5711 	fw->boot.textsz = le32toh(*ptr++);
5712 	size -= 24;
5713 
5714 	/* Sanity-check firmware header. */
5715 	if (fw->main.textsz > hal->fw_text_maxsz ||
5716 	    fw->main.datasz > hal->fw_data_maxsz ||
5717 	    fw->init.textsz > hal->fw_text_maxsz ||
5718 	    fw->init.datasz > hal->fw_data_maxsz ||
5719 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5720 	    (fw->boot.textsz & 3) != 0) {
5721 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5722 		    __func__);
5723 		return EINVAL;
5724 	}
5725 
5726 	/* Check that all firmware sections fit. */
5727 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5728 	    fw->init.datasz + fw->boot.textsz > size) {
5729 		device_printf(sc->sc_dev,
5730 		    "%s: firmware file too short: %zu bytes\n",
5731 		    __func__, size);
5732 		return EINVAL;
5733 	}
5734 
5735 	/* Get pointers to firmware sections. */
5736 	fw->main.text = (const uint8_t *)ptr;
5737 	fw->main.data = fw->main.text + fw->main.textsz;
5738 	fw->init.text = fw->main.data + fw->main.datasz;
5739 	fw->init.data = fw->init.text + fw->init.textsz;
5740 	fw->boot.text = fw->init.data + fw->init.datasz;
5741 
5742 	return 0;
5743 }
5744 
5745 static int
5746 iwn_clock_wait(struct iwn_softc *sc)
5747 {
5748 	int ntries;
5749 
5750 	/* Set "initialization complete" bit. */
5751 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5752 
5753 	/* Wait for clock stabilization. */
5754 	for (ntries = 0; ntries < 2500; ntries++) {
5755 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5756 			return 0;
5757 		DELAY(10);
5758 	}
5759 	device_printf(sc->sc_dev,
5760 	    "%s: timeout waiting for clock stabilization\n", __func__);
5761 	return ETIMEDOUT;
5762 }
5763 
5764 static int
5765 iwn_apm_init(struct iwn_softc *sc)
5766 {
5767 	uint32_t tmp;
5768 	int error;
5769 
5770 	/* Disable L0s exit timer (NMI bug workaround.) */
5771 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5772 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5773 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5774 
5775 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5776 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5777 
5778 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5779 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5780 
5781 	/* Retrieve PCIe Active State Power Management (ASPM). */
5782 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5783 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5784 	if (tmp & 0x02)	/* L1 Entry enabled. */
5785 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5786 	else
5787 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5788 
5789 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5790 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5791 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5792 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5793 
5794 	/* Wait for clock stabilization before accessing prph. */
5795 	error = iwn_clock_wait(sc);
5796 	if (error != 0)
5797 		return error;
5798 
5799 	error = iwn_nic_lock(sc);
5800 	if (error != 0)
5801 		return error;
5802 
5803 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5804 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5805 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5806 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5807 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5808 	} else {
5809 		/* Enable DMA. */
5810 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5811 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5812 	}
5813 	DELAY(20);
5814 
5815 	/* Disable L1-Active. */
5816 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5817 	iwn_nic_unlock(sc);
5818 
5819 	return 0;
5820 }
5821 
5822 static void
5823 iwn_apm_stop_master(struct iwn_softc *sc)
5824 {
5825 	int ntries;
5826 
5827 	/* Stop busmaster DMA activity. */
5828 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5829 	for (ntries = 0; ntries < 100; ntries++) {
5830 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5831 			return;
5832 		DELAY(10);
5833 	}
5834 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5835 	    __func__);
5836 }
5837 
5838 static void
5839 iwn_apm_stop(struct iwn_softc *sc)
5840 {
5841 	iwn_apm_stop_master(sc);
5842 
5843 	/* Reset the entire device. */
5844 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5845 	DELAY(10);
5846 	/* Clear "initialization complete" bit. */
5847 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5848 }
5849 
5850 static int
5851 iwn4965_nic_config(struct iwn_softc *sc)
5852 {
5853 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5854 		/*
5855 		 * I don't believe this to be correct but this is what the
5856 		 * vendor driver is doing. Probably the bits should not be
5857 		 * shifted in IWN_RFCFG_*.
5858 		 */
5859 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5860 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5861 		    IWN_RFCFG_STEP(sc->rfcfg) |
5862 		    IWN_RFCFG_DASH(sc->rfcfg));
5863 	}
5864 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5865 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5866 	return 0;
5867 }
5868 
5869 static int
5870 iwn5000_nic_config(struct iwn_softc *sc)
5871 {
5872 	uint32_t tmp;
5873 	int error;
5874 
5875 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5876 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5877 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5878 		    IWN_RFCFG_STEP(sc->rfcfg) |
5879 		    IWN_RFCFG_DASH(sc->rfcfg));
5880 	}
5881 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5882 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5883 
5884 	error = iwn_nic_lock(sc);
5885 	if (error != 0)
5886 		return error;
5887 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5888 
5889 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5890 		/*
5891 		 * Select first Switching Voltage Regulator (1.32V) to
5892 		 * solve a stability issue related to noisy DC2DC line
5893 		 * in the silicon of 1000 Series.
5894 		 */
5895 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5896 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5897 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5898 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5899 	}
5900 	iwn_nic_unlock(sc);
5901 
5902 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5903 		/* Use internal power amplifier only. */
5904 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5905 	}
5906 	 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5907 		 /* Indicate that ROM calibration version is >=6. */
5908 		 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5909 	}
5910 	return 0;
5911 }
5912 
5913 /*
5914  * Take NIC ownership over Intel Active Management Technology (AMT).
5915  */
5916 static int
5917 iwn_hw_prepare(struct iwn_softc *sc)
5918 {
5919 	int ntries;
5920 
5921 	/* Check if hardware is ready. */
5922 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5923 	for (ntries = 0; ntries < 5; ntries++) {
5924 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5925 		    IWN_HW_IF_CONFIG_NIC_READY)
5926 			return 0;
5927 		DELAY(10);
5928 	}
5929 
5930 	/* Hardware not ready, force into ready state. */
5931 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5932 	for (ntries = 0; ntries < 15000; ntries++) {
5933 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5934 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5935 			break;
5936 		DELAY(10);
5937 	}
5938 	if (ntries == 15000)
5939 		return ETIMEDOUT;
5940 
5941 	/* Hardware should be ready now. */
5942 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5943 	for (ntries = 0; ntries < 5; ntries++) {
5944 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5945 		    IWN_HW_IF_CONFIG_NIC_READY)
5946 			return 0;
5947 		DELAY(10);
5948 	}
5949 	return ETIMEDOUT;
5950 }
5951 
5952 static int
5953 iwn_hw_init(struct iwn_softc *sc)
5954 {
5955 	const struct iwn_hal *hal = sc->sc_hal;
5956 	int error, chnl, qid;
5957 
5958 	/* Clear pending interrupts. */
5959 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5960 
5961 	error = iwn_apm_init(sc);
5962 	if (error != 0) {
5963 		device_printf(sc->sc_dev,
5964 		    "%s: could not power ON adapter, error %d\n",
5965 		    __func__, error);
5966 		return error;
5967 	}
5968 
5969 	/* Select VMAIN power source. */
5970 	error = iwn_nic_lock(sc);
5971 	if (error != 0)
5972 		return error;
5973 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5974 	iwn_nic_unlock(sc);
5975 
5976 	/* Perform adapter-specific initialization. */
5977 	error = hal->nic_config(sc);
5978 	if (error != 0)
5979 		return error;
5980 
5981 	/* Initialize RX ring. */
5982 	error = iwn_nic_lock(sc);
5983 	if (error != 0)
5984 		return error;
5985 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5986 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5987 	/* Set physical address of RX ring (256-byte aligned.) */
5988 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5989 	/* Set physical address of RX status (16-byte aligned.) */
5990 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5991 	/* Enable RX. */
5992 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5993 	    IWN_FH_RX_CONFIG_ENA           |
5994 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5995 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5996 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5997 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5998 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5999 	iwn_nic_unlock(sc);
6000 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6001 
6002 	error = iwn_nic_lock(sc);
6003 	if (error != 0)
6004 		return error;
6005 
6006 	/* Initialize TX scheduler. */
6007 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6008 
6009 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6010 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6011 
6012 	/* Initialize TX rings. */
6013 	for (qid = 0; qid < hal->ntxqs; qid++) {
6014 		struct iwn_tx_ring *txq = &sc->txq[qid];
6015 
6016 		/* Set physical address of TX ring (256-byte aligned.) */
6017 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6018 		    txq->desc_dma.paddr >> 8);
6019 	}
6020 	iwn_nic_unlock(sc);
6021 
6022 	/* Enable DMA channels. */
6023 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6024 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6025 		    IWN_FH_TX_CONFIG_DMA_ENA |
6026 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6027 	}
6028 
6029 	/* Clear "radio off" and "commands blocked" bits. */
6030 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6031 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6032 
6033 	/* Clear pending interrupts. */
6034 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6035 	/* Enable interrupt coalescing. */
6036 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6037 	/* Enable interrupts. */
6038 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6039 
6040 	/* _Really_ make sure "radio off" bit is cleared! */
6041 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6042 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6043 
6044 	error = hal->load_firmware(sc);
6045 	if (error != 0) {
6046 		device_printf(sc->sc_dev,
6047 		    "%s: could not load firmware, error %d\n",
6048 		    __func__, error);
6049 		return error;
6050 	}
6051 	/* Wait at most one second for firmware alive notification. */
6052 	error = lksleep(sc, &sc->sc_lock, 0, "iwninit", hz);
6053 	if (error != 0) {
6054 		device_printf(sc->sc_dev,
6055 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6056 		    __func__, error);
6057 		return error;
6058 	}
6059 	/* Do post-firmware initialization. */
6060 	return hal->post_alive(sc);
6061 }
6062 
6063 static void
6064 iwn_hw_stop(struct iwn_softc *sc)
6065 {
6066 	const struct iwn_hal *hal = sc->sc_hal;
6067 	uint32_t tmp;
6068 	int chnl, qid, ntries;
6069 
6070 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6071 
6072 	/* Disable interrupts. */
6073 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6074 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6075 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6076 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6077 
6078 	/* Make sure we no longer hold the NIC lock. */
6079 	iwn_nic_unlock(sc);
6080 
6081 	/* Stop TX scheduler. */
6082 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6083 
6084 	/* Stop all DMA channels. */
6085 	if (iwn_nic_lock(sc) == 0) {
6086 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6087 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6088 			for (ntries = 0; ntries < 200; ntries++) {
6089 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6090 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6091 				    IWN_FH_TX_STATUS_IDLE(chnl))
6092 					break;
6093 				DELAY(10);
6094 			}
6095 		}
6096 		iwn_nic_unlock(sc);
6097 	}
6098 
6099 	/* Stop RX ring. */
6100 	iwn_reset_rx_ring(sc, &sc->rxq);
6101 
6102 	/* Reset all TX rings. */
6103 	for (qid = 0; qid < hal->ntxqs; qid++)
6104 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6105 
6106 	if (iwn_nic_lock(sc) == 0) {
6107 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6108 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6109 		iwn_nic_unlock(sc);
6110 	}
6111 	DELAY(5);
6112 
6113 	/* Power OFF adapter. */
6114 	iwn_apm_stop(sc);
6115 }
6116 
6117 static void
6118 iwn_init_locked(struct iwn_softc *sc)
6119 {
6120 	struct ifnet *ifp = sc->sc_ifp;
6121 	int error;
6122 
6123 	IWN_LOCK_ASSERT(sc);
6124 
6125 	error = iwn_hw_prepare(sc);
6126 	if (error != 0) {
6127 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6128 		    __func__, error);
6129 		goto fail;
6130 	}
6131 
6132 	/* Initialize interrupt mask to default value. */
6133 	sc->int_mask = IWN_INT_MASK_DEF;
6134 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6135 
6136 	/* Check that the radio is not disabled by hardware switch. */
6137 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6138 		device_printf(sc->sc_dev,
6139 		    "radio is disabled by hardware switch\n");
6140 
6141 		/* Enable interrupts to get RF toggle notifications. */
6142 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6143 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6144 		return;
6145 	}
6146 
6147 	/* Read firmware images from the filesystem. */
6148 	error = iwn_read_firmware(sc);
6149 	if (error != 0) {
6150 		device_printf(sc->sc_dev,
6151 		    "%s: could not read firmware, error %d\n",
6152 		    __func__, error);
6153 		goto fail;
6154 	}
6155 
6156 	/* Initialize hardware and upload firmware. */
6157 	error = iwn_hw_init(sc);
6158 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6159 	sc->fw_fp = NULL;
6160 	if (error != 0) {
6161 		device_printf(sc->sc_dev,
6162 		    "%s: could not initialize hardware, error %d\n",
6163 		    __func__, error);
6164 		goto fail;
6165 	}
6166 
6167 	/* Configure adapter now that it is ready. */
6168 	error = iwn_config(sc);
6169 	if (error != 0) {
6170 		device_printf(sc->sc_dev,
6171 		    "%s: could not configure device, error %d\n",
6172 		    __func__, error);
6173 		goto fail;
6174 	}
6175 
6176 	ifp->if_flags &= ~IFF_OACTIVE;
6177 	ifp->if_flags |= IFF_RUNNING;
6178 
6179 	return;
6180 
6181 fail:
6182 	iwn_stop_locked(sc);
6183 }
6184 
6185 static void
6186 iwn_init(void *arg)
6187 {
6188 	struct iwn_softc *sc = arg;
6189 	struct ifnet *ifp = sc->sc_ifp;
6190 	struct ieee80211com *ic = ifp->if_l2com;
6191 
6192 	IWN_LOCK(sc);
6193 	iwn_init_locked(sc);
6194 	IWN_UNLOCK(sc);
6195 
6196 	if (ifp->if_flags & IFF_RUNNING)
6197 		ieee80211_start_all(ic);
6198 }
6199 
6200 static void
6201 iwn_stop_locked(struct iwn_softc *sc)
6202 {
6203 	struct ifnet *ifp = sc->sc_ifp;
6204 
6205 	IWN_LOCK_ASSERT(sc);
6206 
6207 	sc->sc_tx_timer = 0;
6208 	callout_stop(&sc->sc_timer_to);
6209 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6210 
6211 	/* Power OFF hardware. */
6212 	iwn_hw_stop(sc);
6213 }
6214 
6215 static void
6216 iwn_stop(struct iwn_softc *sc)
6217 {
6218 	IWN_LOCK(sc);
6219 	iwn_stop_locked(sc);
6220 	IWN_UNLOCK(sc);
6221 }
6222 
6223 /*
6224  * Callback from net80211 to start a scan.
6225  */
6226 static void
6227 iwn_scan_start(struct ieee80211com *ic)
6228 {
6229 	struct ifnet *ifp = ic->ic_ifp;
6230 	struct iwn_softc *sc = ifp->if_softc;
6231 
6232 	IWN_LOCK(sc);
6233 	/* make the link LED blink while we're scanning */
6234 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6235 	IWN_UNLOCK(sc);
6236 }
6237 
6238 /*
6239  * Callback from net80211 to terminate a scan.
6240  */
6241 static void
6242 iwn_scan_end(struct ieee80211com *ic)
6243 {
6244 	struct ifnet *ifp = ic->ic_ifp;
6245 	struct iwn_softc *sc = ifp->if_softc;
6246 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6247 
6248 	IWN_LOCK(sc);
6249 	if (vap->iv_state == IEEE80211_S_RUN) {
6250 		/* Set link LED to ON status if we are associated */
6251 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6252 	}
6253 	IWN_UNLOCK(sc);
6254 }
6255 
6256 /*
6257  * Callback from net80211 to force a channel change.
6258  */
6259 static void
6260 iwn_set_channel(struct ieee80211com *ic)
6261 {
6262 	const struct ieee80211_channel *c = ic->ic_curchan;
6263 	struct ifnet *ifp = ic->ic_ifp;
6264 	struct iwn_softc *sc = ifp->if_softc;
6265 
6266 	IWN_LOCK(sc);
6267 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6268 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6269 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6270 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6271 	IWN_UNLOCK(sc);
6272 }
6273 
6274 /*
6275  * Callback from net80211 to start scanning of the current channel.
6276  */
6277 static void
6278 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6279 {
6280 	struct ieee80211vap *vap = ss->ss_vap;
6281 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6282 	int error;
6283 
6284 	IWN_LOCK(sc);
6285 	error = iwn_scan(sc);
6286 	IWN_UNLOCK(sc);
6287 	if (error != 0)
6288 		ieee80211_cancel_scan(vap);
6289 }
6290 
6291 /*
6292  * Callback from net80211 to handle the minimum dwell time being met.
6293  * The intent is to terminate the scan but we just let the firmware
6294  * notify us when it's finished as we have no safe way to abort it.
6295  */
6296 static void
6297 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6298 {
6299 	/* NB: don't try to abort scan; wait for firmware to finish */
6300 }
6301 
6302 static struct iwn_eeprom_chan *
6303 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6304 {
6305 	int i, j;
6306 
6307 	for (j = 0; j < 7; j++) {
6308 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6309 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6310 				return &sc->eeprom_channels[j][i];
6311 		}
6312 	}
6313 
6314 	return NULL;
6315 }
6316 
6317 /*
6318  * Enforce flags read from EEPROM.
6319  */
6320 static int
6321 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6322     int nchan, struct ieee80211_channel chans[])
6323 {
6324 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6325 	int i;
6326 
6327 	for (i = 0; i < nchan; i++) {
6328 		struct ieee80211_channel *c = &chans[i];
6329 		struct iwn_eeprom_chan *channel;
6330 
6331 		channel = iwn_find_eeprom_channel(sc, c);
6332 		if (channel == NULL) {
6333 			if_printf(ic->ic_ifp,
6334 			    "%s: invalid channel %u freq %u/0x%x\n",
6335 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6336 			return EINVAL;
6337 		}
6338 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6339 	}
6340 
6341 	return 0;
6342 }
6343 
6344 static void
6345 iwn_hw_reset(void *arg0, int pending)
6346 {
6347 	struct iwn_softc *sc = arg0;
6348 	struct ifnet *ifp = sc->sc_ifp;
6349 	struct ieee80211com *ic = ifp->if_l2com;
6350 
6351 	iwn_stop(sc);
6352 	iwn_init(sc);
6353 	ieee80211_notify_radio(ic, 1);
6354 }
6355 
6356 static void
6357 iwn_radio_on(void *arg0, int pending)
6358 {
6359 	struct iwn_softc *sc = arg0;
6360 	struct ifnet *ifp = sc->sc_ifp;
6361 	struct ieee80211com *ic = ifp->if_l2com;
6362 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6363 
6364 	if (vap != NULL) {
6365 		iwn_init(sc);
6366 		ieee80211_init(vap);
6367 	}
6368 }
6369 
6370 static void
6371 iwn_radio_off(void *arg0, int pending)
6372 {
6373 	struct iwn_softc *sc = arg0;
6374 	struct ifnet *ifp = sc->sc_ifp;
6375 	struct ieee80211com *ic = ifp->if_l2com;
6376 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6377 
6378 	iwn_stop(sc);
6379 	if (vap != NULL)
6380 		ieee80211_stop(vap);
6381 
6382 	/* Enable interrupts to get RF toggle notification. */
6383 	IWN_LOCK(sc);
6384 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6385 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6386 	IWN_UNLOCK(sc);
6387 }
6388 
6389 static void
6390 iwn_sysctlattach(struct iwn_softc *sc)
6391 {
6392 	struct sysctl_ctx_list *ctx;
6393 	struct sysctl_oid *tree;
6394 
6395 	ctx = &sc->sc_sysctl_ctx;
6396 	tree = sc->sc_sysctl_tree;
6397 	if (tree == NULL) {
6398 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6399 		return;
6400 	}
6401 
6402 #ifdef IWN_DEBUG
6403 	sc->sc_debug = 0;
6404 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6405 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6406 #endif
6407 }
6408 
6409 static int
6410 iwn_shutdown(device_t dev)
6411 {
6412 	struct iwn_softc *sc = device_get_softc(dev);
6413 
6414 	iwn_stop(sc);
6415 	return 0;
6416 }
6417 
6418 static int
6419 iwn_suspend(device_t dev)
6420 {
6421 	struct iwn_softc *sc = device_get_softc(dev);
6422 	struct ifnet *ifp = sc->sc_ifp;
6423 	struct ieee80211com *ic = ifp->if_l2com;
6424 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6425 
6426 	iwn_stop(sc);
6427 	if (vap != NULL)
6428 		ieee80211_stop(vap);
6429 	return 0;
6430 }
6431 
6432 static int
6433 iwn_resume(device_t dev)
6434 {
6435 	struct iwn_softc *sc = device_get_softc(dev);
6436 	struct ifnet *ifp = sc->sc_ifp;
6437 	struct ieee80211com *ic = ifp->if_l2com;
6438 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6439 
6440 	/* Clear device-specific "PCI retry timeout" register (41h). */
6441 	pci_write_config(dev, 0x41, 0, 1);
6442 
6443 	if (ifp->if_flags & IFF_UP) {
6444 		iwn_init(sc);
6445 		if (vap != NULL)
6446 			ieee80211_init(vap);
6447 		if (ifp->if_flags & IFF_RUNNING)
6448 			iwn_start(ifp);
6449 	}
6450 	return 0;
6451 }
6452 
6453 #ifdef IWN_DEBUG
6454 static const char *
6455 iwn_intr_str(uint8_t cmd)
6456 {
6457 	switch (cmd) {
6458 	/* Notifications */
6459 	case IWN_UC_READY:		return "UC_READY";
6460 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6461 	case IWN_TX_DONE:		return "TX_DONE";
6462 	case IWN_START_SCAN:		return "START_SCAN";
6463 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6464 	case IWN_RX_STATISTICS:		return "RX_STATS";
6465 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6466 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6467 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6468 	case IWN_RX_PHY:		return "RX_PHY";
6469 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6470 	case IWN_RX_DONE:		return "RX_DONE";
6471 
6472 	/* Command Notifications */
6473 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6474 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6475 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6476 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6477 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6478 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6479 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6480 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6481 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6482 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6483 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6484 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6485 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6486 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6487 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6488 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6489 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6490 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6491 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6492 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6493 	}
6494 	return "UNKNOWN INTR NOTIF/CMD";
6495 }
6496 #endif /* IWN_DEBUG */
6497 
6498 static device_method_t iwn_methods[] = {
6499 	/* Device interface */
6500 	DEVMETHOD(device_probe,		iwn_probe),
6501 	DEVMETHOD(device_attach,	iwn_attach),
6502 	DEVMETHOD(device_detach,	iwn_detach),
6503 	DEVMETHOD(device_shutdown,	iwn_shutdown),
6504 	DEVMETHOD(device_suspend,	iwn_suspend),
6505 	DEVMETHOD(device_resume,	iwn_resume),
6506 	{ 0, 0 }
6507 };
6508 
6509 static driver_t iwn_driver = {
6510 	"iwn",
6511 	iwn_methods,
6512 	sizeof (struct iwn_softc)
6513 };
6514 static devclass_t iwn_devclass;
6515 
6516 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
6517 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6518 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6519 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6520 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
6521