1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * __FBSDID("$FreeBSD: src/sys/dev/iwi/if_iwi.c,v 1.72 2009/07/10 15:28:33 rpaulo Exp $"); 30 */ 31 32 #include <sys/cdefs.h> 33 34 /*- 35 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 36 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 37 */ 38 39 #include <sys/param.h> 40 #include <sys/sysctl.h> 41 #include <sys/sockio.h> 42 #include <sys/mbuf.h> 43 #include <sys/kernel.h> 44 #include <sys/socket.h> 45 #include <sys/systm.h> 46 #include <sys/malloc.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/module.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/proc.h> 53 #include <sys/mount.h> 54 #include <sys/namei.h> 55 #include <sys/linker.h> 56 #include <sys/firmware.h> 57 #include <sys/taskqueue.h> 58 #include <sys/devfs.h> 59 60 #include <sys/resource.h> 61 #include <sys/rman.h> 62 63 #include <bus/pci/pcireg.h> 64 #include <bus/pci/pcivar.h> 65 66 #include <net/bpf.h> 67 #include <net/if.h> 68 #include <net/if_arp.h> 69 #include <net/ethernet.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 #include <net/ifq_var.h> 74 75 #include <netproto/802_11/ieee80211_var.h> 76 #include <netproto/802_11/ieee80211_radiotap.h> 77 #include <netproto/802_11/ieee80211_input.h> 78 #include <netproto/802_11/ieee80211_regdomain.h> 79 80 #include <netinet/in.h> 81 #include <netinet/in_systm.h> 82 #include <netinet/in_var.h> 83 #include <netinet/ip.h> 84 #include <netinet/if_ether.h> 85 86 #include <dev/netif/iwi/if_iwireg.h> 87 #include <dev/netif/iwi/if_iwivar.h> 88 89 #define IWI_DEBUG 90 #ifdef IWI_DEBUG 91 #define DPRINTF(x) do { if (iwi_debug > 0) kprintf x; } while (0) 92 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) kprintf x; } while (0) 93 int iwi_debug = 0; 94 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 95 96 static const char *iwi_fw_states[] = { 97 "IDLE", /* IWI_FW_IDLE */ 98 "LOADING", /* IWI_FW_LOADING */ 99 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 100 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 101 "SCANNING", /* IWI_FW_SCANNING */ 102 }; 103 #else 104 #define DPRINTF(x) 105 #define DPRINTFN(n, x) 106 #endif 107 108 MODULE_DEPEND(iwi, pci, 1, 1, 1); 109 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 110 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 111 112 enum { 113 IWI_LED_TX, 114 IWI_LED_RX, 115 IWI_LED_POLL, 116 }; 117 118 struct iwi_ident { 119 uint16_t vendor; 120 uint16_t device; 121 const char *name; 122 }; 123 124 static const struct iwi_ident iwi_ident_table[] = { 125 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 126 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 127 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 128 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 129 130 { 0, 0, NULL } 131 }; 132 133 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 134 const char name[IFNAMSIZ], int unit, int opmode, int flags, 135 const uint8_t bssid[IEEE80211_ADDR_LEN], 136 const uint8_t mac[IEEE80211_ADDR_LEN]); 137 static void iwi_vap_delete(struct ieee80211vap *); 138 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 139 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 140 int); 141 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 142 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 143 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 144 int, bus_addr_t, bus_addr_t); 145 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 146 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 147 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 148 int); 149 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 150 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 151 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void iwi_node_free(struct ieee80211_node *); 154 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 155 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 156 static void iwi_wme_init(struct iwi_softc *); 157 static int iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *); 158 static void iwi_update_wme(void *, int); 159 static int iwi_wme_update(struct ieee80211com *); 160 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 161 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 162 struct iwi_frame *); 163 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 164 static void iwi_rx_intr(struct iwi_softc *); 165 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 166 static void iwi_intr(void *); 167 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 168 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 169 static int iwi_tx_start(struct ifnet *, struct mbuf *, 170 struct ieee80211_node *, int); 171 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 172 const struct ieee80211_bpf_params *); 173 static void iwi_start_locked(struct ifnet *); 174 static void iwi_start(struct ifnet *); 175 static void iwi_watchdog(void *); 176 static int iwi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *ucred); 177 static void iwi_stop_master(struct iwi_softc *); 178 static int iwi_reset(struct iwi_softc *); 179 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 180 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 181 static void iwi_release_fw_dma(struct iwi_softc *sc); 182 static int iwi_config(struct iwi_softc *); 183 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 184 static void iwi_put_firmware(struct iwi_softc *); 185 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 186 static void iwi_scan_start(struct ieee80211com *); 187 static void iwi_scan_end(struct ieee80211com *); 188 static void iwi_set_channel(struct ieee80211com *); 189 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 190 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 191 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 192 static void iwi_disassoc(void *, int); 193 static int iwi_disassociate(struct iwi_softc *, int quiet); 194 static void iwi_init_locked(struct iwi_softc *); 195 static void iwi_init(void *); 196 static int iwi_init_fw_dma(struct iwi_softc *, int); 197 static void iwi_stop_locked(void *); 198 static void iwi_stop(struct iwi_softc *); 199 static void iwi_restart(void *, int); 200 static int iwi_getrfkill(struct iwi_softc *); 201 static void iwi_radio_on(void *, int); 202 static void iwi_radio_off(void *, int); 203 static void iwi_sysctlattach(struct iwi_softc *); 204 static void iwi_led_event(struct iwi_softc *, int); 205 static void iwi_ledattach(struct iwi_softc *); 206 207 static int iwi_probe(device_t); 208 static int iwi_attach(device_t); 209 static int iwi_detach(device_t); 210 static int iwi_shutdown(device_t); 211 static int iwi_suspend(device_t); 212 static int iwi_resume(device_t); 213 214 static device_method_t iwi_methods[] = { 215 /* Device interface */ 216 DEVMETHOD(device_probe, iwi_probe), 217 DEVMETHOD(device_attach, iwi_attach), 218 DEVMETHOD(device_detach, iwi_detach), 219 DEVMETHOD(device_shutdown, iwi_shutdown), 220 DEVMETHOD(device_suspend, iwi_suspend), 221 DEVMETHOD(device_resume, iwi_resume), 222 223 { 0, 0 } 224 }; 225 226 static driver_t iwi_driver = { 227 "iwi", 228 iwi_methods, 229 sizeof (struct iwi_softc) 230 }; 231 232 static devclass_t iwi_devclass; 233 234 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0); 235 236 static __inline uint8_t 237 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 238 { 239 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 240 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 241 } 242 243 static __inline uint32_t 244 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 245 { 246 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 247 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 248 } 249 250 static int 251 iwi_probe(device_t dev) 252 { 253 const struct iwi_ident *ident; 254 255 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 256 if (pci_get_vendor(dev) == ident->vendor && 257 pci_get_device(dev) == ident->device) { 258 device_set_desc(dev, ident->name); 259 return 0; 260 } 261 } 262 return ENXIO; 263 } 264 265 /* Base Address Register */ 266 #define IWI_PCI_BAR0 0x10 267 268 static int 269 iwi_attach(device_t dev) 270 { 271 struct iwi_softc *sc = device_get_softc(dev); 272 struct ifnet *ifp; 273 struct ieee80211com *ic; 274 uint16_t val; 275 int i, error; 276 uint8_t bands; 277 uint8_t macaddr[IEEE80211_ADDR_LEN]; 278 279 sc->sc_dev = dev; 280 281 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 282 if (ifp == NULL) { 283 device_printf(dev, "can not if_alloc()\n"); 284 return ENXIO; 285 } 286 ic = ifp->if_l2com; 287 288 IWI_LOCK_INIT(sc); 289 290 devfs_clone_bitmap_init(&sc->sc_unr); 291 292 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 293 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 294 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 295 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 296 TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme, sc); 297 298 callout_init(&sc->sc_wdtimer); 299 callout_init(&sc->sc_rftimer); 300 301 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 302 device_printf(dev, "chip is in D%d power mode " 303 "-- setting to D0\n", pci_get_powerstate(dev)); 304 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 305 } 306 307 pci_write_config(dev, 0x41, 0, 1); 308 309 /* enable bus-mastering */ 310 pci_enable_busmaster(dev); 311 312 sc->mem_rid = IWI_PCI_BAR0; 313 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 314 RF_ACTIVE); 315 if (sc->mem == NULL) { 316 device_printf(dev, "could not allocate memory resource\n"); 317 goto fail; 318 } 319 320 sc->sc_st = rman_get_bustag(sc->mem); 321 sc->sc_sh = rman_get_bushandle(sc->mem); 322 323 sc->irq_rid = 0; 324 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 325 RF_ACTIVE | RF_SHAREABLE); 326 if (sc->irq == NULL) { 327 device_printf(dev, "could not allocate interrupt resource\n"); 328 goto fail; 329 } 330 331 if (iwi_reset(sc) != 0) { 332 device_printf(dev, "could not reset adapter\n"); 333 goto fail; 334 } 335 336 /* 337 * Allocate rings. 338 */ 339 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 340 device_printf(dev, "could not allocate Cmd ring\n"); 341 goto fail; 342 } 343 344 for (i = 0; i < 4; i++) { 345 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 346 IWI_CSR_TX1_RIDX + i * 4, 347 IWI_CSR_TX1_WIDX + i * 4); 348 if (error != 0) { 349 device_printf(dev, "could not allocate Tx ring %d\n", 350 i+i); 351 goto fail; 352 } 353 } 354 355 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 356 device_printf(dev, "could not allocate Rx ring\n"); 357 goto fail; 358 } 359 360 iwi_wme_init(sc); 361 362 ifp->if_softc = sc; 363 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 364 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 365 ifp->if_init = iwi_init; 366 ifp->if_ioctl = iwi_ioctl; 367 ifp->if_start = iwi_start; 368 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 369 ifq_set_ready(&ifp->if_snd); 370 371 ic->ic_ifp = ifp; 372 ic->ic_opmode = IEEE80211_M_STA; 373 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 374 375 /* set device capabilities */ 376 ic->ic_caps = 377 IEEE80211_C_STA /* station mode supported */ 378 | IEEE80211_C_IBSS /* IBSS mode supported */ 379 | IEEE80211_C_MONITOR /* monitor mode supported */ 380 | IEEE80211_C_PMGT /* power save supported */ 381 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 382 | IEEE80211_C_WPA /* 802.11i */ 383 | IEEE80211_C_WME /* 802.11e */ 384 #if 0 385 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 386 #endif 387 ; 388 389 /* read MAC address from EEPROM */ 390 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 391 macaddr[0] = val & 0xff; 392 macaddr[1] = val >> 8; 393 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 394 macaddr[2] = val & 0xff; 395 macaddr[3] = val >> 8; 396 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 397 macaddr[4] = val & 0xff; 398 macaddr[5] = val >> 8; 399 400 bands = 0; 401 setbit(&bands, IEEE80211_MODE_11B); 402 setbit(&bands, IEEE80211_MODE_11G); 403 if (pci_get_device(dev) >= 0x4223) 404 setbit(&bands, IEEE80211_MODE_11A); 405 ieee80211_init_channels(ic, NULL, &bands); 406 407 ieee80211_ifattach(ic, macaddr); 408 /* override default methods */ 409 ic->ic_node_alloc = iwi_node_alloc; 410 sc->sc_node_free = ic->ic_node_free; 411 ic->ic_node_free = iwi_node_free; 412 ic->ic_raw_xmit = iwi_raw_xmit; 413 ic->ic_scan_start = iwi_scan_start; 414 ic->ic_scan_end = iwi_scan_end; 415 ic->ic_set_channel = iwi_set_channel; 416 ic->ic_scan_curchan = iwi_scan_curchan; 417 ic->ic_scan_mindwell = iwi_scan_mindwell; 418 ic->ic_wme.wme_update = iwi_wme_update; 419 420 ic->ic_vap_create = iwi_vap_create; 421 ic->ic_vap_delete = iwi_vap_delete; 422 423 ieee80211_radiotap_attach(ic, 424 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 425 IWI_TX_RADIOTAP_PRESENT, 426 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 427 IWI_RX_RADIOTAP_PRESENT); 428 429 iwi_sysctlattach(sc); 430 iwi_ledattach(sc); 431 432 /* 433 * Hook our interrupt after all initialization is complete. 434 */ 435 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 436 iwi_intr, sc, &sc->sc_ih, NULL); 437 if (error != 0) { 438 device_printf(dev, "could not set up interrupt\n"); 439 goto fail; 440 } 441 442 if (bootverbose) 443 ieee80211_announce(ic); 444 445 return 0; 446 fail: 447 /* XXX fix */ 448 iwi_detach(dev); 449 return ENXIO; 450 } 451 452 static int 453 iwi_detach(device_t dev) 454 { 455 struct iwi_softc *sc = device_get_softc(dev); 456 struct ifnet *ifp = sc->sc_ifp; 457 struct ieee80211com *ic = ifp->if_l2com; 458 459 /* NB: do early to drain any pending tasks */ 460 ieee80211_draintask(ic, &sc->sc_radiontask); 461 ieee80211_draintask(ic, &sc->sc_radiofftask); 462 ieee80211_draintask(ic, &sc->sc_restarttask); 463 ieee80211_draintask(ic, &sc->sc_disassoctask); 464 465 iwi_stop(sc); 466 467 ieee80211_ifdetach(ic); 468 469 iwi_put_firmware(sc); 470 iwi_release_fw_dma(sc); 471 472 iwi_free_cmd_ring(sc, &sc->cmdq); 473 iwi_free_tx_ring(sc, &sc->txq[0]); 474 iwi_free_tx_ring(sc, &sc->txq[1]); 475 iwi_free_tx_ring(sc, &sc->txq[2]); 476 iwi_free_tx_ring(sc, &sc->txq[3]); 477 iwi_free_rx_ring(sc, &sc->rxq); 478 479 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 480 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 481 482 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 483 484 devfs_clone_bitmap_uninit(&sc->sc_unr); 485 486 if (sc->sc_sysctl_tree != NULL) 487 sysctl_ctx_free(&sc->sc_sysctl_ctx); 488 489 IWI_LOCK_DESTROY(sc); 490 491 if_free(ifp); 492 493 return 0; 494 } 495 496 static struct ieee80211vap * 497 iwi_vap_create(struct ieee80211com *ic, 498 const char name[IFNAMSIZ], int unit, int opmode, int flags, 499 const uint8_t bssid[IEEE80211_ADDR_LEN], 500 const uint8_t mac[IEEE80211_ADDR_LEN]) 501 { 502 struct ifnet *ifp = ic->ic_ifp; 503 struct iwi_softc *sc = ifp->if_softc; 504 struct iwi_vap *ivp; 505 struct ieee80211vap *vap; 506 int i; 507 508 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 509 return NULL; 510 /* 511 * Get firmware image (and possibly dma memory) on mode change. 512 */ 513 if (iwi_get_firmware(sc, opmode)) 514 return NULL; 515 /* allocate DMA memory for mapping firmware image */ 516 i = sc->fw_fw.size; 517 if (sc->fw_boot.size > i) 518 i = sc->fw_boot.size; 519 /* XXX do we dma the ucode as well ? */ 520 if (sc->fw_uc.size > i) 521 i = sc->fw_uc.size; 522 if (iwi_init_fw_dma(sc, i)) 523 return NULL; 524 525 ivp = (struct iwi_vap *) kmalloc(sizeof(struct iwi_vap), 526 M_80211_VAP, M_WAITOK | M_ZERO); 527 if (ivp == NULL) 528 return NULL; 529 vap = &ivp->iwi_vap; 530 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 531 /* override the default, the setting comes from the linux driver */ 532 vap->iv_bmissthreshold = 24; 533 /* override with driver methods */ 534 ivp->iwi_newstate = vap->iv_newstate; 535 vap->iv_newstate = iwi_newstate; 536 537 /* complete setup */ 538 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status); 539 ic->ic_opmode = opmode; 540 return vap; 541 } 542 543 static void 544 iwi_vap_delete(struct ieee80211vap *vap) 545 { 546 struct iwi_vap *ivp = IWI_VAP(vap); 547 548 ieee80211_vap_detach(vap); 549 kfree(ivp, M_80211_VAP); 550 } 551 552 static void 553 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 554 { 555 if (error != 0) 556 return; 557 558 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 559 560 *(bus_addr_t *)arg = segs[0].ds_addr; 561 } 562 563 static int 564 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 565 { 566 int error; 567 568 ring->count = count; 569 ring->queued = 0; 570 ring->cur = ring->next = 0; 571 572 error = bus_dma_tag_create(NULL, 4, 0, 573 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 574 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 575 0 , &ring->desc_dmat); 576 if (error != 0) { 577 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 578 goto fail; 579 } 580 581 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 582 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 583 if (error != 0) { 584 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 585 goto fail; 586 } 587 588 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 589 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 590 if (error != 0) { 591 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 592 goto fail; 593 } 594 595 return 0; 596 597 fail: iwi_free_cmd_ring(sc, ring); 598 return error; 599 } 600 601 static void 602 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 603 { 604 ring->queued = 0; 605 ring->cur = ring->next = 0; 606 } 607 608 static void 609 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 610 { 611 if (ring->desc != NULL) { 612 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 613 BUS_DMASYNC_POSTWRITE); 614 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 615 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 616 } 617 618 if (ring->desc_dmat != NULL) 619 bus_dma_tag_destroy(ring->desc_dmat); 620 } 621 622 static int 623 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 624 bus_addr_t csr_ridx, bus_addr_t csr_widx) 625 { 626 int i, error; 627 628 ring->count = count; 629 ring->queued = 0; 630 ring->cur = ring->next = 0; 631 ring->csr_ridx = csr_ridx; 632 ring->csr_widx = csr_widx; 633 634 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 635 BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, 636 count * IWI_TX_DESC_SIZE, 0, &ring->desc_dmat); 637 if (error != 0) { 638 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 639 goto fail; 640 } 641 642 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 643 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 644 if (error != 0) { 645 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 646 goto fail; 647 } 648 649 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 650 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 651 if (error != 0) { 652 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 653 goto fail; 654 } 655 656 ring->data = kmalloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 657 M_WAITOK | M_ZERO); 658 if (ring->data == NULL) { 659 device_printf(sc->sc_dev, "could not allocate soft data\n"); 660 error = ENOMEM; 661 goto fail; 662 } 663 664 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 665 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG, 666 MCLBYTES, 0, &ring->data_dmat); 667 if (error != 0) { 668 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 669 goto fail; 670 } 671 672 for (i = 0; i < count; i++) { 673 error = bus_dmamap_create(ring->data_dmat, 0, 674 &ring->data[i].map); 675 if (error != 0) { 676 device_printf(sc->sc_dev, "could not create DMA map\n"); 677 goto fail; 678 } 679 } 680 681 return 0; 682 683 fail: iwi_free_tx_ring(sc, ring); 684 return error; 685 } 686 687 static void 688 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 689 { 690 struct iwi_tx_data *data; 691 int i; 692 693 for (i = 0; i < ring->count; i++) { 694 data = &ring->data[i]; 695 696 if (data->m != NULL) { 697 bus_dmamap_sync(ring->data_dmat, data->map, 698 BUS_DMASYNC_POSTWRITE); 699 bus_dmamap_unload(ring->data_dmat, data->map); 700 m_freem(data->m); 701 data->m = NULL; 702 } 703 704 if (data->ni != NULL) { 705 ieee80211_free_node(data->ni); 706 data->ni = NULL; 707 } 708 } 709 710 ring->queued = 0; 711 ring->cur = ring->next = 0; 712 } 713 714 static void 715 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 716 { 717 struct iwi_tx_data *data; 718 int i; 719 720 if (ring->desc != NULL) { 721 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 722 BUS_DMASYNC_POSTWRITE); 723 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 724 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 725 } 726 727 if (ring->desc_dmat != NULL) 728 bus_dma_tag_destroy(ring->desc_dmat); 729 730 if (ring->data != NULL) { 731 for (i = 0; i < ring->count; i++) { 732 data = &ring->data[i]; 733 734 if (data->m != NULL) { 735 bus_dmamap_sync(ring->data_dmat, data->map, 736 BUS_DMASYNC_POSTWRITE); 737 bus_dmamap_unload(ring->data_dmat, data->map); 738 m_freem(data->m); 739 } 740 741 if (data->ni != NULL) 742 ieee80211_free_node(data->ni); 743 744 if (data->map != NULL) 745 bus_dmamap_destroy(ring->data_dmat, data->map); 746 } 747 748 kfree(ring->data, M_DEVBUF); 749 } 750 751 if (ring->data_dmat != NULL) 752 bus_dma_tag_destroy(ring->data_dmat); 753 } 754 755 static int 756 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 757 { 758 struct iwi_rx_data *data; 759 int i, error; 760 761 ring->count = count; 762 ring->cur = 0; 763 764 ring->data = kmalloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 765 M_WAITOK | M_ZERO); 766 if (ring->data == NULL) { 767 device_printf(sc->sc_dev, "could not allocate soft data\n"); 768 error = ENOMEM; 769 goto fail; 770 } 771 772 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 773 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 774 0, &ring->data_dmat); 775 if (error != 0) { 776 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 777 goto fail; 778 } 779 780 for (i = 0; i < count; i++) { 781 data = &ring->data[i]; 782 783 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 784 if (error != 0) { 785 device_printf(sc->sc_dev, "could not create DMA map\n"); 786 goto fail; 787 } 788 789 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 790 if (data->m == NULL) { 791 device_printf(sc->sc_dev, 792 "could not allocate rx mbuf\n"); 793 error = ENOMEM; 794 goto fail; 795 } 796 797 error = bus_dmamap_load(ring->data_dmat, data->map, 798 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 799 &data->physaddr, 0); 800 if (error != 0) { 801 device_printf(sc->sc_dev, 802 "could not load rx buf DMA map"); 803 goto fail; 804 } 805 806 data->reg = IWI_CSR_RX_BASE + i * 4; 807 } 808 809 return 0; 810 811 fail: iwi_free_rx_ring(sc, ring); 812 return error; 813 } 814 815 static void 816 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 817 { 818 ring->cur = 0; 819 } 820 821 static void 822 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 823 { 824 struct iwi_rx_data *data; 825 int i; 826 827 if (ring->data != NULL) { 828 for (i = 0; i < ring->count; i++) { 829 data = &ring->data[i]; 830 831 if (data->m != NULL) { 832 bus_dmamap_sync(ring->data_dmat, data->map, 833 BUS_DMASYNC_POSTREAD); 834 bus_dmamap_unload(ring->data_dmat, data->map); 835 m_freem(data->m); 836 } 837 838 if (data->map != NULL) 839 bus_dmamap_destroy(ring->data_dmat, data->map); 840 } 841 842 kfree(ring->data, M_DEVBUF); 843 } 844 845 if (ring->data_dmat != NULL) 846 bus_dma_tag_destroy(ring->data_dmat); 847 } 848 849 static int 850 iwi_shutdown(device_t dev) 851 { 852 struct iwi_softc *sc = device_get_softc(dev); 853 854 iwi_stop(sc); 855 iwi_put_firmware(sc); /* ??? XXX */ 856 857 return 0; 858 } 859 860 static int 861 iwi_suspend(device_t dev) 862 { 863 struct iwi_softc *sc = device_get_softc(dev); 864 865 iwi_stop(sc); 866 867 return 0; 868 } 869 870 static int 871 iwi_resume(device_t dev) 872 { 873 struct iwi_softc *sc = device_get_softc(dev); 874 struct ifnet *ifp = sc->sc_ifp; 875 876 pci_write_config(dev, 0x41, 0, 1); 877 878 if (ifp->if_flags & IFF_UP) 879 iwi_init(sc); 880 881 return 0; 882 } 883 884 static struct ieee80211_node * 885 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 886 { 887 struct iwi_node *in; 888 889 in = kmalloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 890 if (in == NULL) 891 return NULL; 892 /* XXX assign sta table entry for adhoc */ 893 in->in_station = -1; 894 895 return &in->in_node; 896 } 897 898 static void 899 iwi_node_free(struct ieee80211_node *ni) 900 { 901 struct ieee80211com *ic = ni->ni_ic; 902 struct iwi_softc *sc = ic->ic_ifp->if_softc; 903 struct iwi_node *in = (struct iwi_node *)ni; 904 905 if (in->in_station != -1) { 906 DPRINTF(("%s mac %6D station %u\n", __func__, 907 ni->ni_macaddr, ":", in->in_station)); 908 devfs_clone_bitmap_put(&sc->sc_unr, in->in_station); 909 } 910 911 sc->sc_node_free(ni); 912 } 913 914 /* 915 * Convert h/w rate code to IEEE rate code. 916 */ 917 static int 918 iwi_cvtrate(int iwirate) 919 { 920 switch (iwirate) { 921 case IWI_RATE_DS1: return 2; 922 case IWI_RATE_DS2: return 4; 923 case IWI_RATE_DS5: return 11; 924 case IWI_RATE_DS11: return 22; 925 case IWI_RATE_OFDM6: return 12; 926 case IWI_RATE_OFDM9: return 18; 927 case IWI_RATE_OFDM12: return 24; 928 case IWI_RATE_OFDM18: return 36; 929 case IWI_RATE_OFDM24: return 48; 930 case IWI_RATE_OFDM36: return 72; 931 case IWI_RATE_OFDM48: return 96; 932 case IWI_RATE_OFDM54: return 108; 933 } 934 return 0; 935 } 936 937 /* 938 * The firmware automatically adapts the transmit speed. We report its current 939 * value here. 940 */ 941 static void 942 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 943 { 944 struct ieee80211vap *vap = ifp->if_softc; 945 struct ieee80211com *ic = vap->iv_ic; 946 struct iwi_softc *sc = ic->ic_ifp->if_softc; 947 948 /* read current transmission rate from adapter */ 949 vap->iv_bss->ni_txrate = 950 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 951 ieee80211_media_status(ifp, imr); 952 } 953 954 static int 955 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 956 { 957 struct iwi_vap *ivp = IWI_VAP(vap); 958 struct ieee80211com *ic = vap->iv_ic; 959 struct ifnet *ifp = ic->ic_ifp; 960 struct iwi_softc *sc = ifp->if_softc; 961 IWI_LOCK_DECL; 962 963 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 964 ieee80211_state_name[vap->iv_state], 965 ieee80211_state_name[nstate], sc->flags)); 966 967 IEEE80211_UNLOCK(ic); 968 IWI_LOCK(sc); 969 switch (nstate) { 970 case IEEE80211_S_INIT: 971 /* 972 * NB: don't try to do this if iwi_stop_master has 973 * shutdown the firmware and disabled interrupts. 974 */ 975 if (vap->iv_state == IEEE80211_S_RUN && 976 (sc->flags & IWI_FLAG_FW_INITED)) 977 iwi_disassociate(sc, 0); 978 break; 979 case IEEE80211_S_AUTH: 980 iwi_auth_and_assoc(sc, vap); 981 break; 982 case IEEE80211_S_RUN: 983 if (vap->iv_opmode == IEEE80211_M_IBSS && 984 vap->iv_state == IEEE80211_S_SCAN) { 985 /* 986 * XXX when joining an ibss network we are called 987 * with a SCAN -> RUN transition on scan complete. 988 * Use that to call iwi_auth_and_assoc. On completing 989 * the join we are then called again with an 990 * AUTH -> RUN transition and we want to do nothing. 991 * This is all totally bogus and needs to be redone. 992 */ 993 iwi_auth_and_assoc(sc, vap); 994 } 995 break; 996 case IEEE80211_S_ASSOC: 997 /* 998 * If we are transitioning from AUTH then just wait 999 * for the ASSOC status to come back from the firmware. 1000 * Otherwise we need to issue the association request. 1001 */ 1002 if (vap->iv_state == IEEE80211_S_AUTH) 1003 break; 1004 iwi_auth_and_assoc(sc, vap); 1005 break; 1006 default: 1007 break; 1008 } 1009 IWI_UNLOCK(sc); 1010 IEEE80211_LOCK(ic); 1011 return ivp->iwi_newstate(vap, nstate, arg); 1012 } 1013 1014 /* 1015 * WME parameters coming from IEEE 802.11e specification. These values are 1016 * already declared in ieee80211_proto.c, but they are static so they can't 1017 * be reused here. 1018 */ 1019 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1020 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1021 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1022 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1023 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1024 }; 1025 1026 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1027 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1028 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1029 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1030 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1031 }; 1032 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1033 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1034 1035 static void 1036 iwi_wme_init(struct iwi_softc *sc) 1037 { 1038 const struct wmeParams *wmep; 1039 int ac; 1040 1041 memset(sc->wme, 0, sizeof sc->wme); 1042 for (ac = 0; ac < WME_NUM_AC; ac++) { 1043 /* set WME values for CCK modulation */ 1044 wmep = &iwi_wme_cck_params[ac]; 1045 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1046 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1047 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1048 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1049 sc->wme[1].acm[ac] = wmep->wmep_acm; 1050 1051 /* set WME values for OFDM modulation */ 1052 wmep = &iwi_wme_ofdm_params[ac]; 1053 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1054 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1055 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1056 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1057 sc->wme[2].acm[ac] = wmep->wmep_acm; 1058 } 1059 } 1060 1061 static int 1062 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic) 1063 { 1064 const struct wmeParams *wmep; 1065 int ac; 1066 1067 for (ac = 0; ac < WME_NUM_AC; ac++) { 1068 /* set WME values for current operating mode */ 1069 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1070 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1071 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1072 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1073 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1074 sc->wme[0].acm[ac] = wmep->wmep_acm; 1075 } 1076 1077 DPRINTF(("Setting WME parameters\n")); 1078 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1079 } 1080 #undef IWI_USEC 1081 #undef IWI_EXP2 1082 1083 static void 1084 iwi_update_wme(void *arg, int npending) 1085 { 1086 struct ieee80211com *ic = arg; 1087 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1088 IWI_LOCK_DECL; 1089 1090 IWI_LOCK(sc); 1091 (void) iwi_wme_setparams(sc, ic); 1092 IWI_UNLOCK(sc); 1093 } 1094 1095 static int 1096 iwi_wme_update(struct ieee80211com *ic) 1097 { 1098 struct iwi_softc *sc = ic->ic_ifp->if_softc; 1099 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1100 1101 /* 1102 * We may be called to update the WME parameters in 1103 * the adapter at various places. If we're already 1104 * associated then initiate the request immediately; 1105 * otherwise we assume the params will get sent down 1106 * to the adapter as part of the work iwi_auth_and_assoc 1107 * does. 1108 */ 1109 if (vap->iv_state == IEEE80211_S_RUN) 1110 ieee80211_runtask(ic, &sc->sc_wmetask); 1111 return (0); 1112 } 1113 1114 static int 1115 iwi_wme_setie(struct iwi_softc *sc) 1116 { 1117 struct ieee80211_wme_info wme; 1118 1119 memset(&wme, 0, sizeof wme); 1120 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1121 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1122 wme.wme_oui[0] = 0x00; 1123 wme.wme_oui[1] = 0x50; 1124 wme.wme_oui[2] = 0xf2; 1125 wme.wme_type = WME_OUI_TYPE; 1126 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1127 wme.wme_version = WME_VERSION; 1128 wme.wme_info = 0; 1129 1130 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1131 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1132 } 1133 1134 /* 1135 * Read 16 bits at address 'addr' from the serial EEPROM. 1136 */ 1137 static uint16_t 1138 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1139 { 1140 uint32_t tmp; 1141 uint16_t val; 1142 int n; 1143 1144 /* clock C once before the first command */ 1145 IWI_EEPROM_CTL(sc, 0); 1146 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1147 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1148 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1149 1150 /* write start bit (1) */ 1151 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1152 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1153 1154 /* write READ opcode (10) */ 1155 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1156 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1157 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1158 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1159 1160 /* write address A7-A0 */ 1161 for (n = 7; n >= 0; n--) { 1162 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1163 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1164 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1165 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1166 } 1167 1168 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1169 1170 /* read data Q15-Q0 */ 1171 val = 0; 1172 for (n = 15; n >= 0; n--) { 1173 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1174 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1175 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1176 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1177 } 1178 1179 IWI_EEPROM_CTL(sc, 0); 1180 1181 /* clear Chip Select and clock C */ 1182 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1183 IWI_EEPROM_CTL(sc, 0); 1184 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1185 1186 return val; 1187 } 1188 1189 static void 1190 iwi_setcurchan(struct iwi_softc *sc, int chan) 1191 { 1192 struct ifnet *ifp = sc->sc_ifp; 1193 struct ieee80211com *ic = ifp->if_l2com; 1194 1195 sc->curchan = chan; 1196 ieee80211_radiotap_chan_change(ic); 1197 } 1198 1199 static void 1200 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1201 struct iwi_frame *frame) 1202 { 1203 struct ifnet *ifp = sc->sc_ifp; 1204 struct ieee80211com *ic = ifp->if_l2com; 1205 struct mbuf *mnew, *m; 1206 struct ieee80211_node *ni; 1207 int type, error, framelen; 1208 int8_t rssi, nf; 1209 IWI_LOCK_DECL; 1210 1211 framelen = le16toh(frame->len); 1212 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1213 /* 1214 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1215 * out of bounds; need to figure out how to limit 1216 * frame size in the firmware 1217 */ 1218 /* XXX stat */ 1219 DPRINTFN(1, 1220 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1221 le16toh(frame->len), frame->chan, frame->rssi, 1222 frame->rssi_dbm)); 1223 return; 1224 } 1225 1226 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1227 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1228 1229 if (frame->chan != sc->curchan) 1230 iwi_setcurchan(sc, frame->chan); 1231 1232 /* 1233 * Try to allocate a new mbuf for this ring element and load it before 1234 * processing the current mbuf. If the ring element cannot be loaded, 1235 * drop the received packet and reuse the old mbuf. In the unlikely 1236 * case that the old mbuf can't be reloaded either, explicitly panic. 1237 */ 1238 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1239 if (mnew == NULL) { 1240 ifp->if_ierrors++; 1241 return; 1242 } 1243 1244 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1245 1246 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1247 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1248 0); 1249 if (error != 0) { 1250 m_freem(mnew); 1251 1252 /* try to reload the old mbuf */ 1253 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1254 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1255 &data->physaddr, 0); 1256 if (error != 0) { 1257 /* very unlikely that it will fail... */ 1258 panic("%s: could not load old rx mbuf", 1259 device_get_name(sc->sc_dev)); 1260 } 1261 ifp->if_ierrors++; 1262 return; 1263 } 1264 1265 /* 1266 * New mbuf successfully loaded, update Rx ring and continue 1267 * processing. 1268 */ 1269 m = data->m; 1270 data->m = mnew; 1271 CSR_WRITE_4(sc, data->reg, data->physaddr); 1272 1273 /* finalize mbuf */ 1274 m->m_pkthdr.rcvif = ifp; 1275 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1276 sizeof (struct iwi_frame) + framelen; 1277 1278 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1279 1280 rssi = frame->rssi_dbm; 1281 nf = -95; 1282 if (ieee80211_radiotap_active(ic)) { 1283 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1284 1285 tap->wr_flags = 0; 1286 tap->wr_antsignal = rssi; 1287 tap->wr_antnoise = nf; 1288 tap->wr_rate = iwi_cvtrate(frame->rate); 1289 tap->wr_antenna = frame->antenna; 1290 } 1291 IWI_UNLOCK(sc); 1292 1293 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1294 if (ni != NULL) { 1295 type = ieee80211_input(ni, m, rssi, nf); 1296 ieee80211_free_node(ni); 1297 } else 1298 type = ieee80211_input_all(ic, m, rssi, nf); 1299 1300 IWI_LOCK(sc); 1301 if (sc->sc_softled) { 1302 /* 1303 * Blink for any data frame. Otherwise do a 1304 * heartbeat-style blink when idle. The latter 1305 * is mainly for station mode where we depend on 1306 * periodic beacon frames to trigger the poll event. 1307 */ 1308 if (type == IEEE80211_FC0_TYPE_DATA) { 1309 sc->sc_rxrate = frame->rate; 1310 iwi_led_event(sc, IWI_LED_RX); 1311 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1312 iwi_led_event(sc, IWI_LED_POLL); 1313 } 1314 } 1315 1316 /* 1317 * Check for an association response frame to see if QoS 1318 * has been negotiated. We parse just enough to figure 1319 * out if we're supposed to use QoS. The proper solution 1320 * is to pass the frame up so ieee80211_input can do the 1321 * work but that's made hard by how things currently are 1322 * done in the driver. 1323 */ 1324 static void 1325 iwi_checkforqos(struct ieee80211vap *vap, 1326 const struct ieee80211_frame *wh, int len) 1327 { 1328 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1329 const uint8_t *frm, *efrm, *wme; 1330 struct ieee80211_node *ni; 1331 uint16_t capinfo, status, associd; 1332 1333 /* NB: +8 for capinfo, status, associd, and first ie */ 1334 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1335 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1336 return; 1337 /* 1338 * asresp frame format 1339 * [2] capability information 1340 * [2] status 1341 * [2] association ID 1342 * [tlv] supported rates 1343 * [tlv] extended supported rates 1344 * [tlv] WME 1345 */ 1346 frm = (const uint8_t *)&wh[1]; 1347 efrm = ((const uint8_t *) wh) + len; 1348 1349 capinfo = le16toh(*(const uint16_t *)frm); 1350 frm += 2; 1351 status = le16toh(*(const uint16_t *)frm); 1352 frm += 2; 1353 associd = le16toh(*(const uint16_t *)frm); 1354 frm += 2; 1355 1356 wme = NULL; 1357 while (frm < efrm) { 1358 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return); 1359 switch (*frm) { 1360 case IEEE80211_ELEMID_VENDOR: 1361 if (iswmeoui(frm)) 1362 wme = frm; 1363 break; 1364 } 1365 frm += frm[1] + 2; 1366 } 1367 1368 ni = vap->iv_bss; 1369 ni->ni_capinfo = capinfo; 1370 ni->ni_associd = associd; 1371 if (wme != NULL) 1372 ni->ni_flags |= IEEE80211_NODE_QOS; 1373 else 1374 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1375 #undef SUBTYPE 1376 } 1377 1378 /* 1379 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1380 */ 1381 1382 static void 1383 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1384 { 1385 struct ifnet *ifp = sc->sc_ifp; 1386 struct ieee80211com *ic = ifp->if_l2com; 1387 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1388 struct iwi_notif_scan_channel *chan; 1389 struct iwi_notif_scan_complete *scan; 1390 struct iwi_notif_authentication *auth; 1391 struct iwi_notif_association *assoc; 1392 struct iwi_notif_beacon_state *beacon; 1393 1394 switch (notif->type) { 1395 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1396 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1397 1398 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1399 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1400 1401 /* Reset the timer, the scan is still going */ 1402 sc->sc_state_timer = 3; 1403 break; 1404 1405 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1406 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1407 1408 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1409 scan->status)); 1410 1411 IWI_STATE_END(sc, IWI_FW_SCANNING); 1412 1413 if (scan->status == IWI_SCAN_COMPLETED) { 1414 /* NB: don't need to defer, net80211 does it for us */ 1415 ieee80211_scan_next(vap); 1416 } 1417 break; 1418 1419 case IWI_NOTIF_TYPE_AUTHENTICATION: 1420 auth = (struct iwi_notif_authentication *)(notif + 1); 1421 switch (auth->state) { 1422 case IWI_AUTH_SUCCESS: 1423 DPRINTFN(2, ("Authentication succeeeded\n")); 1424 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1425 break; 1426 case IWI_AUTH_FAIL: 1427 /* 1428 * These are delivered as an unsolicited deauth 1429 * (e.g. due to inactivity) or in response to an 1430 * associate request. 1431 */ 1432 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1433 if (vap->iv_state != IEEE80211_S_RUN) { 1434 DPRINTFN(2, ("Authentication failed\n")); 1435 vap->iv_stats.is_rx_auth_fail++; 1436 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1437 } else { 1438 DPRINTFN(2, ("Deauthenticated\n")); 1439 vap->iv_stats.is_rx_deauth++; 1440 } 1441 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1442 break; 1443 case IWI_AUTH_SENT_1: 1444 case IWI_AUTH_RECV_2: 1445 case IWI_AUTH_SEQ1_PASS: 1446 break; 1447 case IWI_AUTH_SEQ1_FAIL: 1448 DPRINTFN(2, ("Initial authentication handshake failed; " 1449 "you probably need shared key\n")); 1450 vap->iv_stats.is_rx_auth_fail++; 1451 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1452 /* XXX retry shared key when in auto */ 1453 break; 1454 default: 1455 device_printf(sc->sc_dev, 1456 "unknown authentication state %u\n", auth->state); 1457 break; 1458 } 1459 break; 1460 1461 case IWI_NOTIF_TYPE_ASSOCIATION: 1462 assoc = (struct iwi_notif_association *)(notif + 1); 1463 switch (assoc->state) { 1464 case IWI_AUTH_SUCCESS: 1465 /* re-association, do nothing */ 1466 break; 1467 case IWI_ASSOC_SUCCESS: 1468 DPRINTFN(2, ("Association succeeded\n")); 1469 sc->flags |= IWI_FLAG_ASSOCIATED; 1470 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1471 iwi_checkforqos(vap, 1472 (const struct ieee80211_frame *)(assoc+1), 1473 le16toh(notif->len) - sizeof(*assoc)); 1474 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1475 break; 1476 case IWI_ASSOC_INIT: 1477 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1478 switch (sc->fw_state) { 1479 case IWI_FW_ASSOCIATING: 1480 DPRINTFN(2, ("Association failed\n")); 1481 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1482 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1483 break; 1484 1485 case IWI_FW_DISASSOCIATING: 1486 DPRINTFN(2, ("Dissassociated\n")); 1487 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1488 vap->iv_stats.is_rx_disassoc++; 1489 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1490 break; 1491 } 1492 break; 1493 default: 1494 device_printf(sc->sc_dev, 1495 "unknown association state %u\n", assoc->state); 1496 break; 1497 } 1498 break; 1499 1500 case IWI_NOTIF_TYPE_BEACON: 1501 /* XXX check struct length */ 1502 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1503 1504 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1505 beacon->state, le32toh(beacon->number))); 1506 1507 if (beacon->state == IWI_BEACON_MISS) { 1508 /* 1509 * The firmware notifies us of every beacon miss 1510 * so we need to track the count against the 1511 * configured threshold before notifying the 1512 * 802.11 layer. 1513 * XXX try to roam, drop assoc only on much higher count 1514 */ 1515 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1516 DPRINTF(("Beacon miss: %u >= %u\n", 1517 le32toh(beacon->number), 1518 vap->iv_bmissthreshold)); 1519 vap->iv_stats.is_beacon_miss++; 1520 /* 1521 * It's pointless to notify the 802.11 layer 1522 * as it'll try to send a probe request (which 1523 * we'll discard) and then timeout and drop us 1524 * into scan state. Instead tell the firmware 1525 * to disassociate and then on completion we'll 1526 * kick the state machine to scan. 1527 */ 1528 ieee80211_runtask(ic, &sc->sc_disassoctask); 1529 } 1530 } 1531 break; 1532 1533 case IWI_NOTIF_TYPE_CALIBRATION: 1534 case IWI_NOTIF_TYPE_NOISE: 1535 case IWI_NOTIF_TYPE_LINK_QUALITY: 1536 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1537 break; 1538 1539 default: 1540 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1541 notif->type, notif->flags, le16toh(notif->len))); 1542 break; 1543 } 1544 } 1545 1546 static void 1547 iwi_rx_intr(struct iwi_softc *sc) 1548 { 1549 struct iwi_rx_data *data; 1550 struct iwi_hdr *hdr; 1551 uint32_t hw; 1552 1553 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1554 1555 for (; sc->rxq.cur != hw;) { 1556 data = &sc->rxq.data[sc->rxq.cur]; 1557 1558 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1559 BUS_DMASYNC_POSTREAD); 1560 1561 hdr = mtod(data->m, struct iwi_hdr *); 1562 1563 switch (hdr->type) { 1564 case IWI_HDR_TYPE_FRAME: 1565 iwi_frame_intr(sc, data, sc->rxq.cur, 1566 (struct iwi_frame *)(hdr + 1)); 1567 break; 1568 1569 case IWI_HDR_TYPE_NOTIF: 1570 iwi_notification_intr(sc, 1571 (struct iwi_notif *)(hdr + 1)); 1572 break; 1573 1574 default: 1575 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1576 hdr->type); 1577 } 1578 1579 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1580 1581 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1582 } 1583 1584 /* tell the firmware what we have processed */ 1585 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1586 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1587 } 1588 1589 static void 1590 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1591 { 1592 struct ifnet *ifp = sc->sc_ifp; 1593 struct iwi_tx_data *data; 1594 uint32_t hw; 1595 1596 hw = CSR_READ_4(sc, txq->csr_ridx); 1597 1598 for (; txq->next != hw;) { 1599 data = &txq->data[txq->next]; 1600 1601 bus_dmamap_sync(txq->data_dmat, data->map, 1602 BUS_DMASYNC_POSTWRITE); 1603 bus_dmamap_unload(txq->data_dmat, data->map); 1604 if (data->m->m_flags & M_TXCB) 1605 ieee80211_process_callback(data->ni, data->m, 0/*XXX*/); 1606 m_freem(data->m); 1607 data->m = NULL; 1608 ieee80211_free_node(data->ni); 1609 data->ni = NULL; 1610 1611 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1612 1613 ifp->if_opackets++; 1614 1615 txq->queued--; 1616 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1617 } 1618 1619 sc->sc_tx_timer = 0; 1620 ifp->if_flags &= ~IFF_OACTIVE; 1621 1622 if (sc->sc_softled) 1623 iwi_led_event(sc, IWI_LED_TX); 1624 1625 iwi_start_locked(ifp); 1626 } 1627 1628 static void 1629 iwi_fatal_error_intr(struct iwi_softc *sc) 1630 { 1631 struct ifnet *ifp = sc->sc_ifp; 1632 struct ieee80211com *ic = ifp->if_l2com; 1633 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1634 1635 device_printf(sc->sc_dev, "firmware error\n"); 1636 if (vap != NULL) 1637 ieee80211_cancel_scan(vap); 1638 ieee80211_runtask(ic, &sc->sc_restarttask); 1639 1640 sc->flags &= ~IWI_FLAG_BUSY; 1641 sc->sc_busy_timer = 0; 1642 wakeup(sc); 1643 } 1644 1645 static void 1646 iwi_radio_off_intr(struct iwi_softc *sc) 1647 { 1648 struct ifnet *ifp = sc->sc_ifp; 1649 struct ieee80211com *ic = ifp->if_l2com; 1650 1651 ieee80211_runtask(ic, &sc->sc_radiofftask); 1652 } 1653 1654 static void 1655 iwi_intr(void *arg) 1656 { 1657 struct iwi_softc *sc = arg; 1658 uint32_t r; 1659 IWI_LOCK_DECL; 1660 1661 IWI_LOCK(sc); 1662 1663 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1664 IWI_UNLOCK(sc); 1665 return; 1666 } 1667 1668 /* acknowledge interrupts */ 1669 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1670 1671 if (r & IWI_INTR_FATAL_ERROR) { 1672 iwi_fatal_error_intr(sc); 1673 goto done; 1674 } 1675 1676 if (r & IWI_INTR_FW_INITED) { 1677 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1678 wakeup(sc); 1679 } 1680 1681 if (r & IWI_INTR_RADIO_OFF) 1682 iwi_radio_off_intr(sc); 1683 1684 if (r & IWI_INTR_CMD_DONE) { 1685 sc->flags &= ~IWI_FLAG_BUSY; 1686 sc->sc_busy_timer = 0; 1687 wakeup(sc); 1688 } 1689 1690 if (r & IWI_INTR_TX1_DONE) 1691 iwi_tx_intr(sc, &sc->txq[0]); 1692 1693 if (r & IWI_INTR_TX2_DONE) 1694 iwi_tx_intr(sc, &sc->txq[1]); 1695 1696 if (r & IWI_INTR_TX3_DONE) 1697 iwi_tx_intr(sc, &sc->txq[2]); 1698 1699 if (r & IWI_INTR_TX4_DONE) 1700 iwi_tx_intr(sc, &sc->txq[3]); 1701 1702 if (r & IWI_INTR_RX_DONE) 1703 iwi_rx_intr(sc); 1704 1705 if (r & IWI_INTR_PARITY_ERROR) { 1706 /* XXX rate-limit */ 1707 device_printf(sc->sc_dev, "parity error\n"); 1708 } 1709 done: 1710 IWI_UNLOCK(sc); 1711 } 1712 1713 static int 1714 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1715 { 1716 struct iwi_cmd_desc *desc; 1717 1718 IWI_LOCK_ASSERT(sc); 1719 1720 if (sc->flags & IWI_FLAG_BUSY) { 1721 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1722 __func__, type); 1723 return EAGAIN; 1724 } 1725 1726 sc->flags |= IWI_FLAG_BUSY; 1727 sc->sc_busy_timer = 2; 1728 1729 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1730 1731 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1732 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1733 desc->type = type; 1734 desc->len = len; 1735 memcpy(desc->data, data, len); 1736 1737 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1738 BUS_DMASYNC_PREWRITE); 1739 1740 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1741 type, len)); 1742 1743 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1744 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1745 1746 return lksleep(sc, &sc->sc_lock, PINTERLOCKED, "iwicmd", hz); 1747 } 1748 1749 static void 1750 iwi_write_ibssnode(struct iwi_softc *sc, 1751 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1752 { 1753 struct iwi_ibssnode node; 1754 1755 /* write node information into NIC memory */ 1756 memset(&node, 0, sizeof node); 1757 IEEE80211_ADDR_COPY(node.bssid, addr); 1758 1759 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1760 1761 CSR_WRITE_REGION_1(sc, 1762 IWI_CSR_NODE_BASE + entry * sizeof node, 1763 (uint8_t *)&node, sizeof node); 1764 } 1765 1766 static int 1767 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, 1768 int ac) 1769 { 1770 struct iwi_softc *sc = ifp->if_softc; 1771 struct ieee80211vap *vap = ni->ni_vap; 1772 struct ieee80211com *ic = ni->ni_ic; 1773 struct iwi_node *in = (struct iwi_node *)ni; 1774 const struct ieee80211_frame *wh; 1775 struct ieee80211_key *k; 1776 const struct chanAccParams *cap; 1777 struct iwi_tx_ring *txq = &sc->txq[ac]; 1778 struct iwi_tx_data *data; 1779 struct iwi_tx_desc *desc; 1780 struct mbuf *mnew; 1781 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1782 int error, nsegs, hdrlen, i; 1783 int ismcast, flags, xflags, staid; 1784 1785 IWI_LOCK_ASSERT(sc); 1786 wh = mtod(m0, const struct ieee80211_frame *); 1787 /* NB: only data frames use this path */ 1788 hdrlen = ieee80211_hdrsize(wh); 1789 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1790 flags = xflags = 0; 1791 1792 if (!ismcast) 1793 flags |= IWI_DATA_FLAG_NEED_ACK; 1794 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1795 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1796 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1797 xflags |= IWI_DATA_XFLAG_QOS; 1798 cap = &ic->ic_wme.wme_chanParams; 1799 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1800 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1801 } 1802 1803 /* 1804 * This is only used in IBSS mode where the firmware expect an index 1805 * in a h/w table instead of a destination address. 1806 */ 1807 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1808 if (!ismcast) { 1809 if (in->in_station == -1) { 1810 in->in_station = devfs_clone_bitmap_get(&sc->sc_unr, 1811 IWI_MAX_IBSSNODE-1); 1812 if (in->in_station == -1) { 1813 /* h/w table is full */ 1814 m_freem(m0); 1815 ieee80211_free_node(ni); 1816 ifp->if_oerrors++; 1817 return 0; 1818 } 1819 iwi_write_ibssnode(sc, 1820 ni->ni_macaddr, in->in_station); 1821 } 1822 staid = in->in_station; 1823 } else { 1824 /* 1825 * Multicast addresses have no associated node 1826 * so there will be no station entry. We reserve 1827 * entry 0 for one mcast address and use that. 1828 * If there are many being used this will be 1829 * expensive and we'll need to do a better job 1830 * but for now this handles the broadcast case. 1831 */ 1832 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1833 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1834 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1835 } 1836 staid = 0; 1837 } 1838 } else 1839 staid = 0; 1840 1841 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1842 k = ieee80211_crypto_encap(ni, m0); 1843 if (k == NULL) { 1844 m_freem(m0); 1845 return ENOBUFS; 1846 } 1847 1848 /* packet header may have moved, reset our local pointer */ 1849 wh = mtod(m0, struct ieee80211_frame *); 1850 } 1851 1852 if (ieee80211_radiotap_active_vap(vap)) { 1853 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1854 1855 tap->wt_flags = 0; 1856 1857 ieee80211_radiotap_tx(vap, m0); 1858 } 1859 1860 data = &txq->data[txq->cur]; 1861 desc = &txq->desc[txq->cur]; 1862 1863 /* save and trim IEEE802.11 header */ 1864 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1865 m_adj(m0, hdrlen); 1866 1867 error = bus_dmamap_load_mbuf_segment(txq->data_dmat, data->map, 1868 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1869 if (error != 0 && error != EFBIG) { 1870 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1871 error); 1872 m_freem(m0); 1873 return error; 1874 } 1875 if (error != 0) { 1876 mnew = m_defrag(m0, MB_DONTWAIT); 1877 if (mnew == NULL) { 1878 device_printf(sc->sc_dev, 1879 "could not defragment mbuf\n"); 1880 m_freem(m0); 1881 return ENOBUFS; 1882 } 1883 m0 = mnew; 1884 1885 error = bus_dmamap_load_mbuf_segment(txq->data_dmat, 1886 data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1887 if (error != 0) { 1888 device_printf(sc->sc_dev, 1889 "could not map mbuf (error %d)\n", error); 1890 m_freem(m0); 1891 return error; 1892 } 1893 } 1894 1895 data->m = m0; 1896 data->ni = ni; 1897 1898 desc->hdr.type = IWI_HDR_TYPE_DATA; 1899 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1900 desc->station = staid; 1901 desc->cmd = IWI_DATA_CMD_TX; 1902 desc->len = htole16(m0->m_pkthdr.len); 1903 desc->flags = flags; 1904 desc->xflags = xflags; 1905 1906 #if 0 1907 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1908 desc->wep_txkey = vap->iv_def_txkey; 1909 else 1910 #endif 1911 desc->flags |= IWI_DATA_FLAG_NO_WEP; 1912 1913 desc->nseg = htole32(nsegs); 1914 for (i = 0; i < nsegs; i++) { 1915 desc->seg_addr[i] = htole32(segs[i].ds_addr); 1916 desc->seg_len[i] = htole16(segs[i].ds_len); 1917 } 1918 1919 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1920 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1921 1922 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 1923 ac, txq->cur, le16toh(desc->len), nsegs)); 1924 1925 txq->queued++; 1926 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 1927 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 1928 1929 return 0; 1930 } 1931 1932 static int 1933 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 1934 const struct ieee80211_bpf_params *params) 1935 { 1936 /* no support; just discard */ 1937 m_freem(m); 1938 ieee80211_free_node(ni); 1939 return 0; 1940 } 1941 1942 static void 1943 iwi_start_locked(struct ifnet *ifp) 1944 { 1945 struct iwi_softc *sc = ifp->if_softc; 1946 struct mbuf *m; 1947 struct ieee80211_node *ni; 1948 int ac; 1949 1950 IWI_LOCK_ASSERT(sc); 1951 1952 if ((ifp->if_flags & IFF_RUNNING) == 0) 1953 return; 1954 1955 for (;;) { 1956 IF_DEQUEUE(&ifp->if_snd, m); 1957 if (m == NULL) 1958 break; 1959 ac = M_WME_GETAC(m); 1960 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 1961 /* there is no place left in this ring; tail drop */ 1962 /* XXX tail drop */ 1963 IF_PREPEND(&ifp->if_snd, m); 1964 ifp->if_flags |= IFF_OACTIVE; 1965 break; 1966 } 1967 1968 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1969 if (iwi_tx_start(ifp, m, ni, ac) != 0) { 1970 ieee80211_free_node(ni); 1971 ifp->if_oerrors++; 1972 break; 1973 } 1974 1975 sc->sc_tx_timer = 5; 1976 } 1977 } 1978 1979 static void 1980 iwi_start(struct ifnet *ifp) 1981 { 1982 struct iwi_softc *sc = ifp->if_softc; 1983 IWI_LOCK_DECL; 1984 1985 IWI_LOCK(sc); 1986 iwi_start_locked(ifp); 1987 IWI_UNLOCK(sc); 1988 } 1989 1990 static void 1991 iwi_watchdog(void *arg) 1992 { 1993 struct iwi_softc *sc = arg; 1994 struct ifnet *ifp = sc->sc_ifp; 1995 struct ieee80211com *ic = ifp->if_l2com; 1996 1997 IWI_LOCK(sc); 1998 1999 if (sc->sc_tx_timer > 0) { 2000 if (--sc->sc_tx_timer == 0) { 2001 if_printf(ifp, "device timeout\n"); 2002 ifp->if_oerrors++; 2003 ieee80211_runtask(ic, &sc->sc_restarttask); 2004 } 2005 } 2006 if (sc->sc_state_timer > 0) { 2007 if (--sc->sc_state_timer == 0) { 2008 if_printf(ifp, "firmware stuck in state %d, resetting\n", 2009 sc->fw_state); 2010 if (sc->fw_state == IWI_FW_SCANNING) { 2011 struct ieee80211com *ic = ifp->if_l2com; 2012 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2013 } 2014 ieee80211_runtask(ic, &sc->sc_restarttask); 2015 sc->sc_state_timer = 3; 2016 } 2017 } 2018 if (sc->sc_busy_timer > 0) { 2019 if (--sc->sc_busy_timer == 0) { 2020 if_printf(ifp, "firmware command timeout, resetting\n"); 2021 ieee80211_runtask(ic, &sc->sc_restarttask); 2022 } 2023 } 2024 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2025 IWI_UNLOCK(sc); 2026 } 2027 2028 static int 2029 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred) 2030 { 2031 struct iwi_softc *sc = ifp->if_softc; 2032 struct ieee80211com *ic = ifp->if_l2com; 2033 struct ifreq *ifr = (struct ifreq *) data; 2034 int error = 0, startall = 0; 2035 IWI_LOCK_DECL; 2036 2037 switch (cmd) { 2038 case SIOCSIFFLAGS: 2039 IWI_LOCK(sc); 2040 if (ifp->if_flags & IFF_UP) { 2041 if (!(ifp->if_flags & IFF_RUNNING)) { 2042 iwi_init_locked(sc); 2043 startall = 1; 2044 } 2045 } else { 2046 if (ifp->if_flags & IFF_RUNNING) 2047 iwi_stop_locked(sc); 2048 } 2049 IWI_UNLOCK(sc); 2050 if (startall) 2051 ieee80211_start_all(ic); 2052 break; 2053 case SIOCGIFMEDIA: 2054 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2055 break; 2056 case SIOCGIFADDR: 2057 error = ether_ioctl(ifp, cmd, data); 2058 break; 2059 default: 2060 error = EINVAL; 2061 break; 2062 } 2063 return error; 2064 } 2065 2066 static void 2067 iwi_stop_master(struct iwi_softc *sc) 2068 { 2069 uint32_t tmp; 2070 int ntries; 2071 2072 /* disable interrupts */ 2073 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2074 2075 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2076 for (ntries = 0; ntries < 5; ntries++) { 2077 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2078 break; 2079 DELAY(10); 2080 } 2081 if (ntries == 5) 2082 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2083 2084 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2085 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2086 2087 sc->flags &= ~IWI_FLAG_FW_INITED; 2088 } 2089 2090 static int 2091 iwi_reset(struct iwi_softc *sc) 2092 { 2093 uint32_t tmp; 2094 int i, ntries; 2095 2096 iwi_stop_master(sc); 2097 2098 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2099 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2100 2101 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2102 2103 /* wait for clock stabilization */ 2104 for (ntries = 0; ntries < 1000; ntries++) { 2105 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2106 break; 2107 DELAY(200); 2108 } 2109 if (ntries == 1000) { 2110 device_printf(sc->sc_dev, 2111 "timeout waiting for clock stabilization\n"); 2112 return EIO; 2113 } 2114 2115 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2116 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2117 2118 DELAY(10); 2119 2120 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2121 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2122 2123 /* clear NIC memory */ 2124 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2125 for (i = 0; i < 0xc000; i++) 2126 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2127 2128 return 0; 2129 } 2130 2131 static const struct iwi_firmware_ohdr * 2132 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2133 { 2134 const struct firmware *fp = fw->fp; 2135 const struct iwi_firmware_ohdr *hdr; 2136 2137 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2138 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2139 return NULL; 2140 } 2141 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2142 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2143 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2144 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2145 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2146 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2147 IWI_FW_REQ_MINOR); 2148 return NULL; 2149 } 2150 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2151 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2152 fw->name = fp->name; 2153 return hdr; 2154 } 2155 2156 static const struct iwi_firmware_ohdr * 2157 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2158 { 2159 const struct iwi_firmware_ohdr *hdr; 2160 2161 hdr = iwi_setup_ofw(sc, fw); 2162 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2163 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2164 fw->name); 2165 hdr = NULL; 2166 } 2167 return hdr; 2168 } 2169 2170 static void 2171 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2172 struct iwi_fw *uc, const char *ucname) 2173 { 2174 if (fw->fp == NULL) 2175 fw->fp = firmware_get(fwname); 2176 2177 /* NB: pre-3.0 ucode is packaged separately */ 2178 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2179 uc->fp = firmware_get(ucname); 2180 } 2181 2182 /* 2183 * Get the required firmware images if not already loaded. 2184 * Note that we hold firmware images so long as the device 2185 * is marked up in case we need to reload them on device init. 2186 * This is necessary because we re-init the device sometimes 2187 * from a context where we cannot read from the filesystem 2188 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2189 * XXX return 0 on success, 1 on error. 2190 * 2191 * NB: the order of get'ing and put'ing images here is 2192 * intentional to support handling firmware images bundled 2193 * by operating mode and/or all together in one file with 2194 * the boot firmware as "master". 2195 */ 2196 static int 2197 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2198 { 2199 const struct iwi_firmware_hdr *hdr; 2200 const struct firmware *fp; 2201 2202 /* invalidate cached firmware on mode change */ 2203 if (sc->fw_mode != opmode) 2204 iwi_put_firmware(sc); 2205 2206 switch (opmode) { 2207 case IEEE80211_M_STA: 2208 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2209 break; 2210 case IEEE80211_M_IBSS: 2211 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2212 break; 2213 case IEEE80211_M_MONITOR: 2214 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2215 &sc->fw_uc, "iwi_ucode_monitor"); 2216 break; 2217 default: 2218 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2219 return EINVAL; 2220 } 2221 fp = sc->fw_fw.fp; 2222 if (fp == NULL) { 2223 device_printf(sc->sc_dev, "could not load firmware\n"); 2224 goto bad; 2225 } 2226 if (fp->version < 300) { 2227 /* 2228 * Firmware prior to 3.0 was packaged as separate 2229 * boot, firmware, and ucode images. Verify the 2230 * ucode image was read in, retrieve the boot image 2231 * if needed, and check version stamps for consistency. 2232 * The version stamps in the data are also checked 2233 * above; this is a bit paranoid but is a cheap 2234 * safeguard against mis-packaging. 2235 */ 2236 if (sc->fw_uc.fp == NULL) { 2237 device_printf(sc->sc_dev, "could not load ucode\n"); 2238 goto bad; 2239 } 2240 if (sc->fw_boot.fp == NULL) { 2241 sc->fw_boot.fp = firmware_get("iwi_boot"); 2242 if (sc->fw_boot.fp == NULL) { 2243 device_printf(sc->sc_dev, 2244 "could not load boot firmware\n"); 2245 goto bad; 2246 } 2247 } 2248 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2249 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2250 device_printf(sc->sc_dev, 2251 "firmware version mismatch: " 2252 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2253 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2254 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2255 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2256 ); 2257 goto bad; 2258 } 2259 /* 2260 * Check and setup each image. 2261 */ 2262 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2263 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2264 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2265 goto bad; 2266 } else { 2267 /* 2268 * Check and setup combined image. 2269 */ 2270 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2271 device_printf(sc->sc_dev, "image '%s' too small\n", 2272 fp->name); 2273 goto bad; 2274 } 2275 hdr = (const struct iwi_firmware_hdr *)fp->data; 2276 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2277 + le32toh(hdr->fsize)) { 2278 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2279 fp->name); 2280 goto bad; 2281 } 2282 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2283 sc->fw_boot.size = le32toh(hdr->bsize); 2284 sc->fw_boot.name = fp->name; 2285 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2286 sc->fw_uc.size = le32toh(hdr->usize); 2287 sc->fw_uc.name = fp->name; 2288 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2289 sc->fw_fw.size = le32toh(hdr->fsize); 2290 sc->fw_fw.name = fp->name; 2291 } 2292 #if 0 2293 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2294 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2295 #endif 2296 2297 sc->fw_mode = opmode; 2298 return 0; 2299 bad: 2300 iwi_put_firmware(sc); 2301 return 1; 2302 } 2303 2304 static void 2305 iwi_put_fw(struct iwi_fw *fw) 2306 { 2307 if (fw->fp != NULL) { 2308 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2309 fw->fp = NULL; 2310 } 2311 fw->data = NULL; 2312 fw->size = 0; 2313 fw->name = NULL; 2314 } 2315 2316 /* 2317 * Release any cached firmware images. 2318 */ 2319 static void 2320 iwi_put_firmware(struct iwi_softc *sc) 2321 { 2322 iwi_put_fw(&sc->fw_uc); 2323 iwi_put_fw(&sc->fw_fw); 2324 iwi_put_fw(&sc->fw_boot); 2325 } 2326 2327 static int 2328 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2329 { 2330 uint32_t tmp; 2331 const uint16_t *w; 2332 const char *uc = fw->data; 2333 size_t size = fw->size; 2334 int i, ntries, error; 2335 2336 IWI_LOCK_ASSERT(sc); 2337 error = 0; 2338 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2339 IWI_RST_STOP_MASTER); 2340 for (ntries = 0; ntries < 5; ntries++) { 2341 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2342 break; 2343 DELAY(10); 2344 } 2345 if (ntries == 5) { 2346 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2347 error = EIO; 2348 goto fail; 2349 } 2350 2351 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2352 DELAY(5000); 2353 2354 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2355 tmp &= ~IWI_RST_PRINCETON_RESET; 2356 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2357 2358 DELAY(5000); 2359 MEM_WRITE_4(sc, 0x3000e0, 0); 2360 DELAY(1000); 2361 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2362 DELAY(1000); 2363 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2364 DELAY(1000); 2365 MEM_WRITE_1(sc, 0x200000, 0x00); 2366 MEM_WRITE_1(sc, 0x200000, 0x40); 2367 DELAY(1000); 2368 2369 /* write microcode into adapter memory */ 2370 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2371 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2372 2373 MEM_WRITE_1(sc, 0x200000, 0x00); 2374 MEM_WRITE_1(sc, 0x200000, 0x80); 2375 2376 /* wait until we get an answer */ 2377 for (ntries = 0; ntries < 100; ntries++) { 2378 if (MEM_READ_1(sc, 0x200000) & 1) 2379 break; 2380 DELAY(100); 2381 } 2382 if (ntries == 100) { 2383 device_printf(sc->sc_dev, 2384 "timeout waiting for ucode to initialize\n"); 2385 error = EIO; 2386 goto fail; 2387 } 2388 2389 /* read the answer or the firmware will not initialize properly */ 2390 for (i = 0; i < 7; i++) 2391 MEM_READ_4(sc, 0x200004); 2392 2393 MEM_WRITE_1(sc, 0x200000, 0x00); 2394 2395 fail: 2396 return error; 2397 } 2398 2399 /* macro to handle unaligned little endian data in firmware image */ 2400 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2401 2402 static int 2403 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2404 { 2405 u_char *p, *end; 2406 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2407 int ntries, error; 2408 2409 IWI_LOCK_ASSERT(sc); 2410 2411 /* copy firmware image to DMA memory */ 2412 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2413 2414 /* make sure the adapter will get up-to-date values */ 2415 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2416 2417 /* tell the adapter where the command blocks are stored */ 2418 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2419 2420 /* 2421 * Store command blocks into adapter's internal memory using register 2422 * indirections. The adapter will read the firmware image through DMA 2423 * using information stored in command blocks. 2424 */ 2425 src = sc->fw_physaddr; 2426 p = sc->fw_virtaddr; 2427 end = p + fw->size; 2428 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2429 2430 while (p < end) { 2431 dst = GETLE32(p); p += 4; src += 4; 2432 len = GETLE32(p); p += 4; src += 4; 2433 p += len; 2434 2435 while (len > 0) { 2436 mlen = min(len, IWI_CB_MAXDATALEN); 2437 2438 ctl = IWI_CB_DEFAULT_CTL | mlen; 2439 sum = ctl ^ src ^ dst; 2440 2441 /* write a command block */ 2442 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2443 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2444 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2445 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2446 2447 src += mlen; 2448 dst += mlen; 2449 len -= mlen; 2450 } 2451 } 2452 2453 /* write a fictive final command block (sentinel) */ 2454 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2455 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2456 2457 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2458 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2459 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2460 2461 /* tell the adapter to start processing command blocks */ 2462 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2463 2464 /* wait until the adapter reaches the sentinel */ 2465 for (ntries = 0; ntries < 400; ntries++) { 2466 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2467 break; 2468 DELAY(100); 2469 } 2470 /* sync dma, just in case */ 2471 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2472 if (ntries == 400) { 2473 device_printf(sc->sc_dev, 2474 "timeout processing command blocks for %s firmware\n", 2475 fw->name); 2476 return EIO; 2477 } 2478 2479 /* we're done with command blocks processing */ 2480 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2481 2482 /* allow interrupts so we know when the firmware is ready */ 2483 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2484 2485 /* tell the adapter to initialize the firmware */ 2486 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2487 2488 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2489 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2490 2491 /* wait at most one second for firmware initialization to complete */ 2492 error = lksleep(sc, &sc->sc_lock, PINTERLOCKED, "iwiinit", hz); 2493 if (error != 0) { 2494 device_printf(sc->sc_dev, "timeout waiting for firmware " 2495 "initialization to complete\n"); 2496 } 2497 2498 return error; 2499 } 2500 2501 static int 2502 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2503 { 2504 uint32_t data; 2505 2506 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2507 /* XXX set more fine-grained operation */ 2508 data = htole32(IWI_POWER_MODE_MAX); 2509 } else 2510 data = htole32(IWI_POWER_MODE_CAM); 2511 2512 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2513 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2514 } 2515 2516 static int 2517 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2518 { 2519 struct iwi_wep_key wepkey; 2520 struct ieee80211_key *wk; 2521 int error, i; 2522 2523 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2524 wk = &vap->iv_nw_keys[i]; 2525 2526 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2527 wepkey.idx = i; 2528 wepkey.len = wk->wk_keylen; 2529 memset(wepkey.key, 0, sizeof wepkey.key); 2530 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2531 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2532 wepkey.len)); 2533 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2534 sizeof wepkey); 2535 if (error != 0) 2536 return error; 2537 } 2538 return 0; 2539 } 2540 2541 static int 2542 iwi_config(struct iwi_softc *sc) 2543 { 2544 struct ifnet *ifp = sc->sc_ifp; 2545 struct ieee80211com *ic = ifp->if_l2com; 2546 struct iwi_configuration config; 2547 struct iwi_rateset rs; 2548 struct iwi_txpower power; 2549 uint32_t data; 2550 int error, i; 2551 const uint8_t *eaddr = IF_LLADDR(ifp); 2552 2553 IWI_LOCK_ASSERT(sc); 2554 2555 DPRINTF(("Setting MAC address to %6D\n", eaddr, ":")); 2556 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp), 2557 IEEE80211_ADDR_LEN); 2558 if (error != 0) 2559 return error; 2560 2561 memset(&config, 0, sizeof config); 2562 config.bluetooth_coexistence = sc->bluetooth; 2563 config.silence_threshold = 0x1e; 2564 config.antenna = sc->antenna; 2565 config.multicast_enabled = 1; 2566 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2567 config.disable_unicast_decryption = 1; 2568 config.disable_multicast_decryption = 1; 2569 DPRINTF(("Configuring adapter\n")); 2570 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2571 if (error != 0) 2572 return error; 2573 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2574 power.mode = IWI_MODE_11B; 2575 power.nchan = 11; 2576 for (i = 0; i < 11; i++) { 2577 power.chan[i].chan = i + 1; 2578 power.chan[i].power = IWI_TXPOWER_MAX; 2579 } 2580 DPRINTF(("Setting .11b channels tx power\n")); 2581 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2582 if (error != 0) 2583 return error; 2584 2585 power.mode = IWI_MODE_11G; 2586 DPRINTF(("Setting .11g channels tx power\n")); 2587 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2588 if (error != 0) 2589 return error; 2590 } 2591 2592 memset(&rs, 0, sizeof rs); 2593 rs.mode = IWI_MODE_11G; 2594 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2595 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2596 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2597 rs.nrates); 2598 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2599 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2600 if (error != 0) 2601 return error; 2602 2603 memset(&rs, 0, sizeof rs); 2604 rs.mode = IWI_MODE_11A; 2605 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2606 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2607 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2608 rs.nrates); 2609 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2610 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2611 if (error != 0) 2612 return error; 2613 2614 data = htole32(karc4random()); 2615 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2616 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2617 if (error != 0) 2618 return error; 2619 2620 /* enable adapter */ 2621 DPRINTF(("Enabling adapter\n")); 2622 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2623 } 2624 2625 static __inline void 2626 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2627 { 2628 uint8_t *st = &scan->scan_type[ix / 2]; 2629 if (ix % 2) 2630 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2631 else 2632 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2633 } 2634 2635 static int 2636 scan_type(const struct ieee80211_scan_state *ss, 2637 const struct ieee80211_channel *chan) 2638 { 2639 /* We can only set one essid for a directed scan */ 2640 if (ss->ss_nssid != 0) 2641 return IWI_SCAN_TYPE_BDIRECTED; 2642 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2643 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2644 return IWI_SCAN_TYPE_BROADCAST; 2645 return IWI_SCAN_TYPE_PASSIVE; 2646 } 2647 2648 static __inline int 2649 scan_band(const struct ieee80211_channel *c) 2650 { 2651 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2652 } 2653 2654 /* 2655 * Start a scan on the current channel or all channels. 2656 */ 2657 static int 2658 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2659 { 2660 struct ieee80211com *ic; 2661 struct ieee80211_channel *chan; 2662 struct ieee80211_scan_state *ss; 2663 struct iwi_scan_ext scan; 2664 int error = 0; 2665 2666 IWI_LOCK_ASSERT(sc); 2667 if (sc->fw_state == IWI_FW_SCANNING) { 2668 /* 2669 * This should not happen as we only trigger scan_next after 2670 * completion 2671 */ 2672 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2673 return (EBUSY); 2674 } 2675 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2676 2677 ic = sc->sc_ifp->if_l2com; 2678 ss = ic->ic_scan; 2679 2680 memset(&scan, 0, sizeof scan); 2681 scan.full_scan_index = htole32(++sc->sc_scangen); 2682 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2683 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2684 /* 2685 * Use very short dwell times for when we send probe request 2686 * frames. Without this bg scans hang. Ideally this should 2687 * be handled with early-termination as done by net80211 but 2688 * that's not feasible (aborting a scan is problematic). 2689 */ 2690 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2691 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2692 } else { 2693 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2694 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2695 } 2696 2697 /* We can only set one essid for a directed scan */ 2698 if (ss->ss_nssid != 0) { 2699 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2700 ss->ss_ssid[0].len); 2701 if (error) 2702 return (error); 2703 } 2704 2705 if (allchan) { 2706 int i, next, band, b, bstart; 2707 /* 2708 * Convert scan list to run-length encoded channel list 2709 * the firmware requires (preserving the order setup by 2710 * net80211). The first entry in each run specifies the 2711 * band and the count of items in the run. 2712 */ 2713 next = 0; /* next open slot */ 2714 bstart = 0; /* NB: not needed, silence compiler */ 2715 band = -1; /* NB: impossible value */ 2716 KASSERT(ss->ss_last > 0, ("no channels")); 2717 for (i = 0; i < ss->ss_last; i++) { 2718 chan = ss->ss_chans[i]; 2719 b = scan_band(chan); 2720 if (b != band) { 2721 if (band != -1) 2722 scan.channels[bstart] = 2723 (next - bstart) | band; 2724 /* NB: this allocates a slot for the run-len */ 2725 band = b, bstart = next++; 2726 } 2727 if (next >= IWI_SCAN_CHANNELS) { 2728 DPRINTF(("truncating scan list\n")); 2729 break; 2730 } 2731 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2732 set_scan_type(&scan, next, scan_type(ss, chan)); 2733 next++; 2734 } 2735 scan.channels[bstart] = (next - bstart) | band; 2736 } else { 2737 /* Scan the current channel only */ 2738 chan = ic->ic_curchan; 2739 scan.channels[0] = 1 | scan_band(chan); 2740 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2741 set_scan_type(&scan, 1, scan_type(ss, chan)); 2742 } 2743 #ifdef IWI_DEBUG 2744 if (iwi_debug > 0) { 2745 static const char *scantype[8] = 2746 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2747 int i; 2748 kprintf("Scan request: index %u dwell %d/%d/%d\n" 2749 , le32toh(scan.full_scan_index) 2750 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2751 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2752 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2753 ); 2754 i = 0; 2755 do { 2756 int run = scan.channels[i]; 2757 if (run == 0) 2758 break; 2759 kprintf("Scan %d %s channels:", run & 0x3f, 2760 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2761 for (run &= 0x3f, i++; run > 0; run--, i++) { 2762 uint8_t type = scan.scan_type[i/2]; 2763 kprintf(" %u/%s", scan.channels[i], 2764 scantype[(i & 1 ? type : type>>4) & 7]); 2765 } 2766 kprintf("\n"); 2767 } while (i < IWI_SCAN_CHANNELS); 2768 } 2769 #endif 2770 2771 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2772 } 2773 2774 static int 2775 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2776 { 2777 struct iwi_sensitivity sens; 2778 2779 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2780 2781 memset(&sens, 0, sizeof sens); 2782 sens.rssi = htole16(rssi_dbm); 2783 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2784 } 2785 2786 static int 2787 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2788 { 2789 struct ieee80211com *ic = vap->iv_ic; 2790 struct ifnet *ifp = vap->iv_ifp; 2791 struct ieee80211_node *ni = vap->iv_bss; 2792 struct iwi_configuration config; 2793 struct iwi_associate *assoc = &sc->assoc; 2794 struct iwi_rateset rs; 2795 uint16_t capinfo; 2796 uint32_t data; 2797 int error, mode; 2798 2799 IWI_LOCK_ASSERT(sc); 2800 2801 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2802 DPRINTF(("Already associated\n")); 2803 return (-1); 2804 } 2805 2806 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2807 error = 0; 2808 mode = 0; 2809 2810 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2811 mode = IWI_MODE_11A; 2812 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2813 mode = IWI_MODE_11G; 2814 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2815 mode = IWI_MODE_11B; 2816 2817 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2818 memset(&config, 0, sizeof config); 2819 config.bluetooth_coexistence = sc->bluetooth; 2820 config.antenna = sc->antenna; 2821 config.multicast_enabled = 1; 2822 if (mode == IWI_MODE_11G) 2823 config.use_protection = 1; 2824 config.answer_pbreq = 2825 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2826 config.disable_unicast_decryption = 1; 2827 config.disable_multicast_decryption = 1; 2828 DPRINTF(("Configuring adapter\n")); 2829 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2830 if (error != 0) 2831 goto done; 2832 } 2833 2834 #ifdef IWI_DEBUG 2835 if (iwi_debug > 0) { 2836 kprintf("Setting ESSID to "); 2837 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2838 kprintf("\n"); 2839 } 2840 #endif 2841 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2842 if (error != 0) 2843 goto done; 2844 2845 error = iwi_setpowermode(sc, vap); 2846 if (error != 0) 2847 goto done; 2848 2849 data = htole32(vap->iv_rtsthreshold); 2850 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2851 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2852 if (error != 0) 2853 goto done; 2854 2855 data = htole32(vap->iv_fragthreshold); 2856 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2857 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2858 if (error != 0) 2859 goto done; 2860 2861 /* the rate set has already been "negotiated" */ 2862 memset(&rs, 0, sizeof rs); 2863 rs.mode = mode; 2864 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2865 rs.nrates = ni->ni_rates.rs_nrates; 2866 if (rs.nrates > IWI_RATESET_SIZE) { 2867 DPRINTF(("Truncating negotiated rate set from %u\n", 2868 rs.nrates)); 2869 rs.nrates = IWI_RATESET_SIZE; 2870 } 2871 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2872 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2873 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2874 if (error != 0) 2875 goto done; 2876 2877 memset(assoc, 0, sizeof *assoc); 2878 2879 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2880 /* NB: don't treat WME setup as failure */ 2881 if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0) 2882 assoc->policy |= htole16(IWI_POLICY_WME); 2883 /* XXX complain on failure? */ 2884 } 2885 2886 if (vap->iv_appie_wpa != NULL) { 2887 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2888 2889 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2890 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2891 if (error != 0) 2892 goto done; 2893 } 2894 2895 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2896 if (error != 0) 2897 goto done; 2898 2899 assoc->mode = mode; 2900 assoc->chan = ic->ic_curchan->ic_ieee; 2901 /* 2902 * NB: do not arrange for shared key auth w/o privacy 2903 * (i.e. a wep key); it causes a firmware error. 2904 */ 2905 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 2906 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 2907 assoc->auth = IWI_AUTH_SHARED; 2908 /* 2909 * It's possible to have privacy marked but no default 2910 * key setup. This typically is due to a user app bug 2911 * but if we blindly grab the key the firmware will 2912 * barf so avoid it for now. 2913 */ 2914 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 2915 assoc->auth |= vap->iv_def_txkey << 4; 2916 2917 error = iwi_setwepkeys(sc, vap); 2918 if (error != 0) 2919 goto done; 2920 } 2921 if (vap->iv_flags & IEEE80211_F_WPA) 2922 assoc->policy |= htole16(IWI_POLICY_WPA); 2923 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 2924 assoc->type = IWI_HC_IBSS_START; 2925 else 2926 assoc->type = IWI_HC_ASSOC; 2927 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 2928 2929 if (vap->iv_opmode == IEEE80211_M_IBSS) 2930 capinfo = IEEE80211_CAPINFO_IBSS; 2931 else 2932 capinfo = IEEE80211_CAPINFO_ESS; 2933 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2934 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2935 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2936 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2937 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2938 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 2939 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2940 assoc->capinfo = htole16(capinfo); 2941 2942 assoc->lintval = htole16(ic->ic_lintval); 2943 assoc->intval = htole16(ni->ni_intval); 2944 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 2945 if (vap->iv_opmode == IEEE80211_M_IBSS) 2946 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 2947 else 2948 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 2949 2950 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 2951 "auth %u capinfo 0x%x lintval %u bintval %u\n", 2952 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 2953 assoc->bssid, ":", assoc->dst, ":", 2954 assoc->chan, le16toh(assoc->policy), assoc->auth, 2955 le16toh(assoc->capinfo), le16toh(assoc->lintval), 2956 le16toh(assoc->intval))); 2957 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2958 done: 2959 if (error) 2960 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 2961 2962 return (error); 2963 } 2964 2965 static void 2966 iwi_disassoc(void *arg, int pending) 2967 { 2968 struct iwi_softc *sc = arg; 2969 IWI_LOCK_DECL; 2970 2971 IWI_LOCK(sc); 2972 iwi_disassociate(sc, 0); 2973 IWI_UNLOCK(sc); 2974 } 2975 2976 static int 2977 iwi_disassociate(struct iwi_softc *sc, int quiet) 2978 { 2979 struct iwi_associate *assoc = &sc->assoc; 2980 2981 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 2982 DPRINTF(("Not associated\n")); 2983 return (-1); 2984 } 2985 2986 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 2987 2988 if (quiet) 2989 assoc->type = IWI_HC_DISASSOC_QUIET; 2990 else 2991 assoc->type = IWI_HC_DISASSOC; 2992 2993 DPRINTF(("Trying to disassociate from %6D channel %u\n", 2994 assoc->bssid, ":", assoc->chan)); 2995 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 2996 } 2997 2998 /* 2999 * release dma resources for the firmware 3000 */ 3001 static void 3002 iwi_release_fw_dma(struct iwi_softc *sc) 3003 { 3004 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3005 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3006 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3007 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3008 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3009 bus_dma_tag_destroy(sc->fw_dmat); 3010 3011 sc->fw_flags = 0; 3012 sc->fw_dma_size = 0; 3013 sc->fw_dmat = NULL; 3014 sc->fw_map = NULL; 3015 sc->fw_physaddr = 0; 3016 sc->fw_virtaddr = NULL; 3017 } 3018 3019 /* 3020 * allocate the dma descriptor for the firmware. 3021 * Return 0 on success, 1 on error. 3022 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3023 */ 3024 static int 3025 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3026 { 3027 if (sc->fw_dma_size >= size) 3028 return 0; 3029 if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 3030 BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 3031 0, &sc->fw_dmat) != 0) { 3032 device_printf(sc->sc_dev, 3033 "could not create firmware DMA tag\n"); 3034 goto error; 3035 } 3036 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3037 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3038 &sc->fw_map) != 0) { 3039 device_printf(sc->sc_dev, 3040 "could not allocate firmware DMA memory\n"); 3041 goto error; 3042 } 3043 sc->fw_flags |= IWI_FW_HAVE_MAP; 3044 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3045 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3046 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3047 goto error; 3048 } 3049 sc->fw_flags |= IWI_FW_HAVE_PHY; 3050 sc->fw_dma_size = size; 3051 return 0; 3052 3053 error: 3054 iwi_release_fw_dma(sc); 3055 return 1; 3056 } 3057 3058 static void 3059 iwi_init_locked(struct iwi_softc *sc) 3060 { 3061 struct ifnet *ifp = sc->sc_ifp; 3062 struct iwi_rx_data *data; 3063 int i; 3064 3065 IWI_LOCK_ASSERT(sc); 3066 3067 if (sc->fw_state == IWI_FW_LOADING) { 3068 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3069 return; /* XXX: condvar? */ 3070 } 3071 3072 iwi_stop_locked(sc); 3073 3074 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3075 3076 if (iwi_reset(sc) != 0) { 3077 device_printf(sc->sc_dev, "could not reset adapter\n"); 3078 goto fail; 3079 } 3080 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3081 device_printf(sc->sc_dev, 3082 "could not load boot firmware %s\n", sc->fw_boot.name); 3083 goto fail; 3084 } 3085 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3086 device_printf(sc->sc_dev, 3087 "could not load microcode %s\n", sc->fw_uc.name); 3088 goto fail; 3089 } 3090 3091 iwi_stop_master(sc); 3092 3093 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3094 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3095 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3096 3097 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3098 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3099 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3100 3101 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3102 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3103 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3104 3105 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3106 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3107 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3108 3109 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3110 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3111 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3112 3113 for (i = 0; i < sc->rxq.count; i++) { 3114 data = &sc->rxq.data[i]; 3115 CSR_WRITE_4(sc, data->reg, data->physaddr); 3116 } 3117 3118 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3119 3120 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3121 device_printf(sc->sc_dev, 3122 "could not load main firmware %s\n", sc->fw_fw.name); 3123 goto fail; 3124 } 3125 sc->flags |= IWI_FLAG_FW_INITED; 3126 3127 IWI_STATE_END(sc, IWI_FW_LOADING); 3128 3129 if (iwi_config(sc) != 0) { 3130 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3131 goto fail2; 3132 } 3133 3134 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3135 ifp->if_flags &= ~IFF_OACTIVE; 3136 ifp->if_flags |= IFF_RUNNING; 3137 return; 3138 fail: 3139 IWI_STATE_END(sc, IWI_FW_LOADING); 3140 fail2: 3141 iwi_stop_locked(sc); 3142 } 3143 3144 static void 3145 iwi_init(void *priv) 3146 { 3147 struct iwi_softc *sc = priv; 3148 struct ifnet *ifp = sc->sc_ifp; 3149 struct ieee80211com *ic = ifp->if_l2com; 3150 IWI_LOCK_DECL; 3151 3152 IWI_LOCK(sc); 3153 iwi_init_locked(sc); 3154 IWI_UNLOCK(sc); 3155 3156 if (ifp->if_flags & IFF_RUNNING) 3157 ieee80211_start_all(ic); 3158 } 3159 3160 static void 3161 iwi_stop_locked(void *priv) 3162 { 3163 struct iwi_softc *sc = priv; 3164 struct ifnet *ifp = sc->sc_ifp; 3165 3166 IWI_LOCK_ASSERT(sc); 3167 3168 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3169 3170 if (sc->sc_softled) { 3171 callout_stop(&sc->sc_ledtimer); 3172 sc->sc_blinking = 0; 3173 } 3174 callout_stop(&sc->sc_wdtimer); 3175 callout_stop(&sc->sc_rftimer); 3176 3177 iwi_stop_master(sc); 3178 3179 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3180 3181 /* reset rings */ 3182 iwi_reset_cmd_ring(sc, &sc->cmdq); 3183 iwi_reset_tx_ring(sc, &sc->txq[0]); 3184 iwi_reset_tx_ring(sc, &sc->txq[1]); 3185 iwi_reset_tx_ring(sc, &sc->txq[2]); 3186 iwi_reset_tx_ring(sc, &sc->txq[3]); 3187 iwi_reset_rx_ring(sc, &sc->rxq); 3188 3189 sc->sc_tx_timer = 0; 3190 sc->sc_state_timer = 0; 3191 sc->sc_busy_timer = 0; 3192 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3193 sc->fw_state = IWI_FW_IDLE; 3194 wakeup(sc); 3195 } 3196 3197 static void 3198 iwi_stop(struct iwi_softc *sc) 3199 { 3200 IWI_LOCK_DECL; 3201 3202 IWI_LOCK(sc); 3203 iwi_stop_locked(sc); 3204 IWI_UNLOCK(sc); 3205 } 3206 3207 static void 3208 iwi_restart(void *arg, int npending) 3209 { 3210 struct iwi_softc *sc = arg; 3211 3212 iwi_init(sc); 3213 } 3214 3215 /* 3216 * Return whether or not the radio is enabled in hardware 3217 * (i.e. the rfkill switch is "off"). 3218 */ 3219 static int 3220 iwi_getrfkill(struct iwi_softc *sc) 3221 { 3222 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3223 } 3224 3225 static void 3226 iwi_radio_on(void *arg, int pending) 3227 { 3228 struct iwi_softc *sc = arg; 3229 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3230 3231 device_printf(sc->sc_dev, "radio turned on\n"); 3232 3233 iwi_init(sc); 3234 ieee80211_notify_radio(ic, 1); 3235 } 3236 3237 static void 3238 iwi_rfkill_poll(void *arg) 3239 { 3240 struct iwi_softc *sc = arg; 3241 3242 IWI_LOCK_ASSERT(sc); 3243 3244 /* 3245 * Check for a change in rfkill state. We get an 3246 * interrupt when a radio is disabled but not when 3247 * it is enabled so we must poll for the latter. 3248 */ 3249 if (!iwi_getrfkill(sc)) { 3250 struct ifnet *ifp = sc->sc_ifp; 3251 struct ieee80211com *ic = ifp->if_l2com; 3252 3253 ieee80211_runtask(ic, &sc->sc_radiontask); 3254 return; 3255 } 3256 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3257 } 3258 3259 static void 3260 iwi_radio_off(void *arg, int pending) 3261 { 3262 struct iwi_softc *sc = arg; 3263 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3264 IWI_LOCK_DECL; 3265 3266 device_printf(sc->sc_dev, "radio turned off\n"); 3267 3268 ieee80211_notify_radio(ic, 0); 3269 3270 IWI_LOCK(sc); 3271 iwi_stop_locked(sc); 3272 iwi_rfkill_poll(sc); 3273 IWI_UNLOCK(sc); 3274 } 3275 3276 static int 3277 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3278 { 3279 struct iwi_softc *sc = arg1; 3280 uint32_t size, buf[128]; 3281 3282 memset(buf, 0, sizeof buf); 3283 3284 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3285 return SYSCTL_OUT(req, buf, sizeof buf); 3286 3287 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3288 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3289 3290 return SYSCTL_OUT(req, buf, size); 3291 } 3292 3293 static int 3294 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3295 { 3296 struct iwi_softc *sc = arg1; 3297 int val = !iwi_getrfkill(sc); 3298 3299 return SYSCTL_OUT(req, &val, sizeof val); 3300 } 3301 3302 /* 3303 * Add sysctl knobs. 3304 */ 3305 static void 3306 iwi_sysctlattach(struct iwi_softc *sc) 3307 { 3308 struct sysctl_ctx_list *ctx; 3309 struct sysctl_oid *tree; 3310 3311 ctx = &sc->sc_sysctl_ctx; 3312 sysctl_ctx_init(ctx); 3313 3314 tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw), 3315 OID_AUTO, 3316 device_get_nameunit(sc->sc_dev), 3317 CTLFLAG_RD, 0, ""); 3318 if (tree == NULL) { 3319 device_printf(sc->sc_dev, "can't add sysctl node\n"); 3320 return; 3321 } 3322 3323 sc->sc_sysctl_tree = tree; 3324 3325 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3326 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3327 "radio transmitter switch state (0=off, 1=on)"); 3328 3329 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3330 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3331 "statistics"); 3332 3333 sc->bluetooth = 0; 3334 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3335 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3336 3337 sc->antenna = IWI_ANTENNA_AUTO; 3338 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3339 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3340 } 3341 3342 /* 3343 * LED support. 3344 * 3345 * Different cards have different capabilities. Some have three 3346 * led's while others have only one. The linux ipw driver defines 3347 * led's for link state (associated or not), band (11a, 11g, 11b), 3348 * and for link activity. We use one led and vary the blink rate 3349 * according to the tx/rx traffic a la the ath driver. 3350 */ 3351 3352 static __inline uint32_t 3353 iwi_toggle_event(uint32_t r) 3354 { 3355 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3356 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3357 } 3358 3359 static uint32_t 3360 iwi_read_event(struct iwi_softc *sc) 3361 { 3362 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3363 } 3364 3365 static void 3366 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3367 { 3368 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3369 } 3370 3371 static void 3372 iwi_led_done(void *arg) 3373 { 3374 struct iwi_softc *sc = arg; 3375 3376 sc->sc_blinking = 0; 3377 } 3378 3379 /* 3380 * Turn the activity LED off: flip the pin and then set a timer so no 3381 * update will happen for the specified duration. 3382 */ 3383 static void 3384 iwi_led_off(void *arg) 3385 { 3386 struct iwi_softc *sc = arg; 3387 uint32_t v; 3388 3389 v = iwi_read_event(sc); 3390 v &= ~sc->sc_ledpin; 3391 iwi_write_event(sc, iwi_toggle_event(v)); 3392 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3393 } 3394 3395 /* 3396 * Blink the LED according to the specified on/off times. 3397 */ 3398 static void 3399 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3400 { 3401 uint32_t v; 3402 3403 v = iwi_read_event(sc); 3404 v |= sc->sc_ledpin; 3405 iwi_write_event(sc, iwi_toggle_event(v)); 3406 sc->sc_blinking = 1; 3407 sc->sc_ledoff = off; 3408 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3409 } 3410 3411 static void 3412 iwi_led_event(struct iwi_softc *sc, int event) 3413 { 3414 #define N(a) (sizeof(a)/sizeof(a[0])) 3415 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3416 static const struct { 3417 u_int rate; /* tx/rx iwi rate */ 3418 u_int16_t timeOn; /* LED on time (ms) */ 3419 u_int16_t timeOff; /* LED off time (ms) */ 3420 } blinkrates[] = { 3421 { IWI_RATE_OFDM54, 40, 10 }, 3422 { IWI_RATE_OFDM48, 44, 11 }, 3423 { IWI_RATE_OFDM36, 50, 13 }, 3424 { IWI_RATE_OFDM24, 57, 14 }, 3425 { IWI_RATE_OFDM18, 67, 16 }, 3426 { IWI_RATE_OFDM12, 80, 20 }, 3427 { IWI_RATE_DS11, 100, 25 }, 3428 { IWI_RATE_OFDM9, 133, 34 }, 3429 { IWI_RATE_OFDM6, 160, 40 }, 3430 { IWI_RATE_DS5, 200, 50 }, 3431 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3432 { IWI_RATE_DS2, 267, 66 }, 3433 { IWI_RATE_DS1, 400, 100 }, 3434 { 0, 500, 130 }, /* unknown rate/polling */ 3435 }; 3436 uint32_t txrate; 3437 int j = 0; /* XXX silence compiler */ 3438 3439 sc->sc_ledevent = ticks; /* time of last event */ 3440 if (sc->sc_blinking) /* don't interrupt active blink */ 3441 return; 3442 switch (event) { 3443 case IWI_LED_POLL: 3444 j = N(blinkrates)-1; 3445 break; 3446 case IWI_LED_TX: 3447 /* read current transmission rate from adapter */ 3448 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3449 if (blinkrates[sc->sc_txrix].rate != txrate) { 3450 for (j = 0; j < N(blinkrates)-1; j++) 3451 if (blinkrates[j].rate == txrate) 3452 break; 3453 sc->sc_txrix = j; 3454 } else 3455 j = sc->sc_txrix; 3456 break; 3457 case IWI_LED_RX: 3458 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3459 for (j = 0; j < N(blinkrates)-1; j++) 3460 if (blinkrates[j].rate == sc->sc_rxrate) 3461 break; 3462 sc->sc_rxrix = j; 3463 } else 3464 j = sc->sc_rxrix; 3465 break; 3466 } 3467 /* XXX beware of overflow */ 3468 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3469 (blinkrates[j].timeOff * hz) / 1000); 3470 #undef N 3471 } 3472 3473 static int 3474 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3475 { 3476 struct iwi_softc *sc = arg1; 3477 int softled = sc->sc_softled; 3478 int error; 3479 3480 error = sysctl_handle_int(oidp, &softled, 0, req); 3481 if (error || !req->newptr) 3482 return error; 3483 softled = (softled != 0); 3484 if (softled != sc->sc_softled) { 3485 if (softled) { 3486 uint32_t v = iwi_read_event(sc); 3487 v &= ~sc->sc_ledpin; 3488 iwi_write_event(sc, iwi_toggle_event(v)); 3489 } 3490 sc->sc_softled = softled; 3491 } 3492 return 0; 3493 } 3494 3495 static void 3496 iwi_ledattach(struct iwi_softc *sc) 3497 { 3498 struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx; 3499 struct sysctl_oid *tree = sc->sc_sysctl_tree; 3500 3501 sc->sc_blinking = 0; 3502 sc->sc_ledstate = 1; 3503 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3504 callout_init(&sc->sc_ledtimer); 3505 3506 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3507 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3508 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3509 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3510 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3511 "pin setting to turn activity LED on"); 3512 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3513 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3514 "idle time for inactivity LED (ticks)"); 3515 /* XXX for debugging */ 3516 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3517 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3518 "NIC type from EEPROM"); 3519 3520 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3521 sc->sc_softled = 1; 3522 3523 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3524 if (sc->sc_nictype == 1) { 3525 /* 3526 * NB: led's are reversed. 3527 */ 3528 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3529 } 3530 } 3531 3532 static void 3533 iwi_scan_start(struct ieee80211com *ic) 3534 { 3535 /* ignore */ 3536 } 3537 3538 static void 3539 iwi_set_channel(struct ieee80211com *ic) 3540 { 3541 struct ifnet *ifp = ic->ic_ifp; 3542 struct iwi_softc *sc = ifp->if_softc; 3543 if (sc->fw_state == IWI_FW_IDLE) 3544 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3545 } 3546 3547 static void 3548 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3549 { 3550 struct ieee80211vap *vap = ss->ss_vap; 3551 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3552 struct iwi_softc *sc = ifp->if_softc; 3553 IWI_LOCK_DECL; 3554 3555 IWI_LOCK(sc); 3556 if (iwi_scanchan(sc, maxdwell, 0)) 3557 ieee80211_cancel_scan(vap); 3558 IWI_UNLOCK(sc); 3559 } 3560 3561 static void 3562 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3563 { 3564 /* NB: don't try to abort scan; wait for firmware to finish */ 3565 } 3566 3567 static void 3568 iwi_scan_end(struct ieee80211com *ic) 3569 { 3570 struct ifnet *ifp = ic->ic_ifp; 3571 struct iwi_softc *sc = ifp->if_softc; 3572 IWI_LOCK_DECL; 3573 3574 IWI_LOCK(sc); 3575 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3576 /* NB: make sure we're still scanning */ 3577 if (sc->fw_state == IWI_FW_SCANNING) 3578 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3579 IWI_UNLOCK(sc); 3580 } 3581