1 /*- 2 * Copyright (c) 2004, 2005 3 * Damien Bergamini <damien.bergamini@free.fr>. All rights reserved. 4 * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting 5 * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD: head/sys/dev/iwi/if_iwi.c 298818 2016-04-29 22:14:11Z avos $ 30 */ 31 32 /*- 33 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver 34 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm 35 */ 36 37 #include <sys/param.h> 38 #include <sys/sysctl.h> 39 #include <sys/sockio.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/lock.h> 46 #include <sys/module.h> 47 #include <sys/bus.h> 48 #include <sys/endian.h> 49 #include <sys/proc.h> 50 #include <sys/mount.h> 51 #include <sys/namei.h> 52 #include <sys/linker.h> 53 #include <sys/firmware.h> 54 #include <sys/taskqueue.h> 55 #if defined(__DragonFly__) 56 #include <sys/devfs.h> 57 #endif 58 59 #if !defined(__DragonFly__) 60 #include <machine/bus.h> 61 #include <machine/resource.h> 62 #endif 63 #include <sys/rman.h> 64 65 #if defined(__DragonFly__) 66 #include <bus/pci/pcivar.h> 67 #include <bus/pci/pcireg.h> 68 #else 69 #include <dev/pci/pcireg.h> 70 #include <dev/pci/pcivar.h> 71 #endif 72 73 #include <net/bpf.h> 74 #include <net/if.h> 75 #include <net/if_var.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_dl.h> 79 #include <net/if_media.h> 80 #include <net/if_types.h> 81 82 #if defined(__DragonFly__) 83 #include <netproto/802_11/ieee80211_var.h> 84 #include <netproto/802_11/ieee80211_radiotap.h> 85 #include <netproto/802_11/ieee80211_input.h> 86 #include <netproto/802_11/ieee80211_regdomain.h> 87 #else 88 #include <net80211/ieee80211_var.h> 89 #include <net80211/ieee80211_radiotap.h> 90 #include <net80211/ieee80211_input.h> 91 #include <net80211/ieee80211_regdomain.h> 92 #endif 93 94 #include <netinet/in.h> 95 #include <netinet/in_systm.h> 96 #include <netinet/in_var.h> 97 #include <netinet/ip.h> 98 #include <netinet/if_ether.h> 99 100 #if defined(__DragonFly__) 101 #include "if_iwireg.h" 102 #include "if_iwivar.h" 103 #else 104 #include <dev/iwi/if_iwireg.h> 105 #include <dev/iwi/if_iwivar.h> 106 #endif 107 108 #define IWI_DEBUG 109 #ifdef IWI_DEBUG 110 #define DPRINTF(x) do { if (iwi_debug > 0) kprintf x; } while (0) 111 #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) kprintf x; } while (0) 112 int iwi_debug = 0; 113 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); 114 115 static const char *iwi_fw_states[] = { 116 "IDLE", /* IWI_FW_IDLE */ 117 "LOADING", /* IWI_FW_LOADING */ 118 "ASSOCIATING", /* IWI_FW_ASSOCIATING */ 119 "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ 120 "SCANNING", /* IWI_FW_SCANNING */ 121 }; 122 #else 123 #define DPRINTF(x) 124 #define DPRINTFN(n, x) 125 #endif 126 127 MODULE_DEPEND(iwi, pci, 1, 1, 1); 128 MODULE_DEPEND(iwi, wlan, 1, 1, 1); 129 MODULE_DEPEND(iwi, firmware, 1, 1, 1); 130 131 enum { 132 IWI_LED_TX, 133 IWI_LED_RX, 134 IWI_LED_POLL, 135 }; 136 137 struct iwi_ident { 138 uint16_t vendor; 139 uint16_t device; 140 const char *name; 141 }; 142 143 static const struct iwi_ident iwi_ident_table[] = { 144 { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, 145 { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, 146 { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, 147 { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, 148 149 { 0, 0, NULL } 150 }; 151 152 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void iwi_vap_delete(struct ieee80211vap *); 157 static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 158 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, 159 int); 160 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 161 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); 162 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, 163 int, bus_addr_t, bus_addr_t); 164 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 165 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); 166 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, 167 int); 168 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 169 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); 170 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, 171 const uint8_t [IEEE80211_ADDR_LEN]); 172 static void iwi_node_free(struct ieee80211_node *); 173 static void iwi_media_status(struct ifnet *, struct ifmediareq *); 174 static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 175 static void iwi_wme_init(struct iwi_softc *); 176 static int iwi_wme_setparams(struct iwi_softc *); 177 static int iwi_wme_update(struct ieee80211com *); 178 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); 179 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, 180 struct iwi_frame *); 181 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); 182 static void iwi_rx_intr(struct iwi_softc *); 183 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); 184 static void iwi_intr(void *); 185 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); 186 static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); 187 static int iwi_tx_start(struct iwi_softc *, struct mbuf *, 188 struct ieee80211_node *, int); 189 static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, 190 const struct ieee80211_bpf_params *); 191 static void iwi_start(struct iwi_softc *); 192 static int iwi_transmit(struct ieee80211com *, struct mbuf *); 193 static void iwi_watchdog(void *); 194 static void iwi_parent(struct ieee80211com *); 195 static void iwi_stop_master(struct iwi_softc *); 196 static int iwi_reset(struct iwi_softc *); 197 static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); 198 static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); 199 static void iwi_release_fw_dma(struct iwi_softc *sc); 200 static int iwi_config(struct iwi_softc *); 201 static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); 202 static void iwi_put_firmware(struct iwi_softc *); 203 static void iwi_monitor_scan(void *, int); 204 static int iwi_scanchan(struct iwi_softc *, unsigned long, int); 205 static void iwi_scan_start(struct ieee80211com *); 206 static void iwi_scan_end(struct ieee80211com *); 207 static void iwi_set_channel(struct ieee80211com *); 208 static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); 209 static void iwi_scan_mindwell(struct ieee80211_scan_state *); 210 static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); 211 static void iwi_disassoc(void *, int); 212 static int iwi_disassociate(struct iwi_softc *, int quiet); 213 static void iwi_init_locked(struct iwi_softc *); 214 static void iwi_init(void *); 215 static int iwi_init_fw_dma(struct iwi_softc *, int); 216 static void iwi_stop_locked(void *); 217 static void iwi_stop(struct iwi_softc *); 218 static void iwi_restart(void *, int); 219 static int iwi_getrfkill(struct iwi_softc *); 220 static void iwi_radio_on(void *, int); 221 static void iwi_radio_off(void *, int); 222 static void iwi_sysctlattach(struct iwi_softc *); 223 static void iwi_led_event(struct iwi_softc *, int); 224 static void iwi_ledattach(struct iwi_softc *); 225 226 static int iwi_probe(device_t); 227 static int iwi_attach(device_t); 228 static int iwi_detach(device_t); 229 static int iwi_shutdown(device_t); 230 static int iwi_suspend(device_t); 231 static int iwi_resume(device_t); 232 233 static device_method_t iwi_methods[] = { 234 /* Device interface */ 235 DEVMETHOD(device_probe, iwi_probe), 236 DEVMETHOD(device_attach, iwi_attach), 237 DEVMETHOD(device_detach, iwi_detach), 238 DEVMETHOD(device_shutdown, iwi_shutdown), 239 DEVMETHOD(device_suspend, iwi_suspend), 240 DEVMETHOD(device_resume, iwi_resume), 241 242 DEVMETHOD_END 243 }; 244 245 static driver_t iwi_driver = { 246 "iwi", 247 iwi_methods, 248 sizeof (struct iwi_softc) 249 }; 250 251 static devclass_t iwi_devclass; 252 253 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL); 254 255 MODULE_VERSION(iwi, 1); 256 257 static __inline uint8_t 258 MEM_READ_1(struct iwi_softc *sc, uint32_t addr) 259 { 260 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 261 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); 262 } 263 264 static __inline uint32_t 265 MEM_READ_4(struct iwi_softc *sc, uint32_t addr) 266 { 267 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); 268 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); 269 } 270 271 static int 272 iwi_probe(device_t dev) 273 { 274 const struct iwi_ident *ident; 275 276 for (ident = iwi_ident_table; ident->name != NULL; ident++) { 277 if (pci_get_vendor(dev) == ident->vendor && 278 pci_get_device(dev) == ident->device) { 279 device_set_desc(dev, ident->name); 280 return (BUS_PROBE_DEFAULT); 281 } 282 } 283 return ENXIO; 284 } 285 286 static int 287 iwi_attach(device_t dev) 288 { 289 struct iwi_softc *sc = device_get_softc(dev); 290 struct ieee80211com *ic = &sc->sc_ic; 291 uint16_t val; 292 uint8_t bands[IEEE80211_MODE_BYTES]; 293 int i, error; 294 295 sc->sc_dev = dev; 296 297 IWI_LOCK_INIT(sc); 298 mbufq_init(&sc->sc_snd, ifqmaxlen); 299 300 #if defined(__DragonFly__) 301 devfs_clone_bitmap_init(&sc->sc_unr); 302 #else 303 sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); 304 #endif 305 306 TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); 307 TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); 308 TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); 309 TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); 310 TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); 311 312 #if defined(__DragonFly__) 313 callout_init_lk(&sc->sc_wdtimer, &sc->sc_lock); 314 callout_init_lk(&sc->sc_rftimer, &sc->sc_lock); 315 #else 316 callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); 317 callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); 318 #endif 319 320 pci_write_config(dev, 0x41, 0, 1); 321 322 /* enable bus-mastering */ 323 pci_enable_busmaster(dev); 324 325 i = PCIR_BAR(0); 326 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); 327 if (sc->mem == NULL) { 328 device_printf(dev, "could not allocate memory resource\n"); 329 goto fail; 330 } 331 332 sc->sc_st = rman_get_bustag(sc->mem); 333 sc->sc_sh = rman_get_bushandle(sc->mem); 334 335 i = 0; 336 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, 337 RF_ACTIVE | RF_SHAREABLE); 338 if (sc->irq == NULL) { 339 device_printf(dev, "could not allocate interrupt resource\n"); 340 goto fail; 341 } 342 343 if (iwi_reset(sc) != 0) { 344 device_printf(dev, "could not reset adapter\n"); 345 goto fail; 346 } 347 348 /* 349 * Allocate rings. 350 */ 351 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { 352 device_printf(dev, "could not allocate Cmd ring\n"); 353 goto fail; 354 } 355 356 for (i = 0; i < 4; i++) { 357 error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, 358 IWI_CSR_TX1_RIDX + i * 4, 359 IWI_CSR_TX1_WIDX + i * 4); 360 if (error != 0) { 361 device_printf(dev, "could not allocate Tx ring %d\n", 362 i+i); 363 goto fail; 364 } 365 } 366 367 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { 368 device_printf(dev, "could not allocate Rx ring\n"); 369 goto fail; 370 } 371 372 iwi_wme_init(sc); 373 374 ic->ic_softc = sc; 375 ic->ic_name = device_get_nameunit(dev); 376 ic->ic_opmode = IEEE80211_M_STA; 377 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 378 379 /* set device capabilities */ 380 ic->ic_caps = 381 IEEE80211_C_STA /* station mode supported */ 382 | IEEE80211_C_IBSS /* IBSS mode supported */ 383 | IEEE80211_C_MONITOR /* monitor mode supported */ 384 | IEEE80211_C_PMGT /* power save supported */ 385 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 386 | IEEE80211_C_WPA /* 802.11i */ 387 | IEEE80211_C_WME /* 802.11e */ 388 #if 0 389 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 390 #endif 391 ; 392 393 /* read MAC address from EEPROM */ 394 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); 395 ic->ic_macaddr[0] = val & 0xff; 396 ic->ic_macaddr[1] = val >> 8; 397 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); 398 ic->ic_macaddr[2] = val & 0xff; 399 ic->ic_macaddr[3] = val >> 8; 400 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); 401 ic->ic_macaddr[4] = val & 0xff; 402 ic->ic_macaddr[5] = val >> 8; 403 404 memset(bands, 0, sizeof(bands)); 405 setbit(bands, IEEE80211_MODE_11B); 406 setbit(bands, IEEE80211_MODE_11G); 407 if (pci_get_device(dev) >= 0x4223) 408 setbit(bands, IEEE80211_MODE_11A); 409 ieee80211_init_channels(ic, NULL, bands); 410 411 ieee80211_ifattach(ic); 412 /* override default methods */ 413 ic->ic_node_alloc = iwi_node_alloc; 414 sc->sc_node_free = ic->ic_node_free; 415 ic->ic_node_free = iwi_node_free; 416 ic->ic_raw_xmit = iwi_raw_xmit; 417 ic->ic_scan_start = iwi_scan_start; 418 ic->ic_scan_end = iwi_scan_end; 419 ic->ic_set_channel = iwi_set_channel; 420 ic->ic_scan_curchan = iwi_scan_curchan; 421 ic->ic_scan_mindwell = iwi_scan_mindwell; 422 ic->ic_wme.wme_update = iwi_wme_update; 423 424 ic->ic_vap_create = iwi_vap_create; 425 ic->ic_vap_delete = iwi_vap_delete; 426 ic->ic_transmit = iwi_transmit; 427 ic->ic_parent = iwi_parent; 428 429 ieee80211_radiotap_attach(ic, 430 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 431 IWI_TX_RADIOTAP_PRESENT, 432 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 433 IWI_RX_RADIOTAP_PRESENT); 434 435 iwi_sysctlattach(sc); 436 iwi_ledattach(sc); 437 438 /* 439 * Hook our interrupt after all initialization is complete. 440 */ 441 #if defined(__DragonFly__) 442 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 443 iwi_intr, sc, &sc->sc_ih, &wlan_global_serializer); 444 #else 445 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 446 NULL, iwi_intr, sc, &sc->sc_ih); 447 #endif 448 if (error != 0) { 449 device_printf(dev, "could not set up interrupt\n"); 450 goto fail; 451 } 452 453 if (bootverbose) 454 ieee80211_announce(ic); 455 456 return 0; 457 fail: 458 /* XXX fix */ 459 iwi_detach(dev); 460 return ENXIO; 461 } 462 463 static int 464 iwi_detach(device_t dev) 465 { 466 struct iwi_softc *sc = device_get_softc(dev); 467 struct ieee80211com *ic = &sc->sc_ic; 468 469 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 470 471 /* NB: do early to drain any pending tasks */ 472 ieee80211_draintask(ic, &sc->sc_radiontask); 473 ieee80211_draintask(ic, &sc->sc_radiofftask); 474 ieee80211_draintask(ic, &sc->sc_restarttask); 475 ieee80211_draintask(ic, &sc->sc_disassoctask); 476 ieee80211_draintask(ic, &sc->sc_monitortask); 477 478 iwi_stop(sc); 479 480 ieee80211_ifdetach(ic); 481 482 iwi_put_firmware(sc); 483 iwi_release_fw_dma(sc); 484 485 iwi_free_cmd_ring(sc, &sc->cmdq); 486 iwi_free_tx_ring(sc, &sc->txq[0]); 487 iwi_free_tx_ring(sc, &sc->txq[1]); 488 iwi_free_tx_ring(sc, &sc->txq[2]); 489 iwi_free_tx_ring(sc, &sc->txq[3]); 490 iwi_free_rx_ring(sc, &sc->rxq); 491 492 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); 493 494 bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), 495 sc->mem); 496 497 #if defined(__DragonFly__) 498 devfs_clone_bitmap_uninit(&sc->sc_unr); 499 #else 500 delete_unrhdr(sc->sc_unr); 501 #endif 502 mbufq_drain(&sc->sc_snd); 503 504 IWI_LOCK_DESTROY(sc); 505 506 return 0; 507 } 508 509 static struct ieee80211vap * 510 iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 511 enum ieee80211_opmode opmode, int flags, 512 const uint8_t bssid[IEEE80211_ADDR_LEN], 513 const uint8_t mac[IEEE80211_ADDR_LEN]) 514 { 515 struct iwi_softc *sc = ic->ic_softc; 516 struct iwi_vap *ivp; 517 struct ieee80211vap *vap; 518 int i; 519 520 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 521 return NULL; 522 /* 523 * Get firmware image (and possibly dma memory) on mode change. 524 */ 525 if (iwi_get_firmware(sc, opmode)) 526 return NULL; 527 /* allocate DMA memory for mapping firmware image */ 528 i = sc->fw_fw.size; 529 if (sc->fw_boot.size > i) 530 i = sc->fw_boot.size; 531 /* XXX do we dma the ucode as well ? */ 532 if (sc->fw_uc.size > i) 533 i = sc->fw_uc.size; 534 if (iwi_init_fw_dma(sc, i)) 535 return NULL; 536 537 ivp = kmalloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 538 vap = &ivp->iwi_vap; 539 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 540 /* override the default, the setting comes from the linux driver */ 541 vap->iv_bmissthreshold = 24; 542 /* override with driver methods */ 543 ivp->iwi_newstate = vap->iv_newstate; 544 vap->iv_newstate = iwi_newstate; 545 546 /* complete setup */ 547 ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, 548 mac); 549 ic->ic_opmode = opmode; 550 return vap; 551 } 552 553 static void 554 iwi_vap_delete(struct ieee80211vap *vap) 555 { 556 struct iwi_vap *ivp = IWI_VAP(vap); 557 558 ieee80211_vap_detach(vap); 559 kfree(ivp, M_80211_VAP); 560 } 561 562 static void 563 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 564 { 565 if (error != 0) 566 return; 567 568 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 569 570 *(bus_addr_t *)arg = segs[0].ds_addr; 571 } 572 573 static int 574 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) 575 { 576 int error; 577 578 ring->count = count; 579 ring->queued = 0; 580 ring->cur = ring->next = 0; 581 582 #if defined(__DragonFly__) 583 error = bus_dma_tag_create(NULL, 4, 0, 584 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 585 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 586 0 , &ring->desc_dmat); 587 #else 588 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 589 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 590 count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, 591 NULL, NULL, &ring->desc_dmat); 592 #endif 593 if (error != 0) { 594 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 595 goto fail; 596 } 597 598 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 599 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 600 if (error != 0) { 601 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 602 goto fail; 603 } 604 605 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 606 count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 607 if (error != 0) { 608 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 609 goto fail; 610 } 611 612 return 0; 613 614 fail: iwi_free_cmd_ring(sc, ring); 615 return error; 616 } 617 618 static void 619 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 620 { 621 ring->queued = 0; 622 ring->cur = ring->next = 0; 623 } 624 625 static void 626 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) 627 { 628 if (ring->desc != NULL) { 629 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 630 BUS_DMASYNC_POSTWRITE); 631 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 632 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 633 } 634 635 if (ring->desc_dmat != NULL) 636 bus_dma_tag_destroy(ring->desc_dmat); 637 } 638 639 static int 640 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, 641 bus_addr_t csr_ridx, bus_addr_t csr_widx) 642 { 643 int i, error; 644 645 ring->count = count; 646 ring->queued = 0; 647 ring->cur = ring->next = 0; 648 ring->csr_ridx = csr_ridx; 649 ring->csr_widx = csr_widx; 650 651 #if defined(__DragonFly__) 652 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 653 BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, 654 count * IWI_TX_DESC_SIZE, 0, &ring->desc_dmat); 655 #else 656 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 657 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 658 count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, 659 NULL, &ring->desc_dmat); 660 #endif 661 if (error != 0) { 662 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 663 goto fail; 664 } 665 666 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 667 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 668 if (error != 0) { 669 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 670 goto fail; 671 } 672 673 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 674 count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); 675 if (error != 0) { 676 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 677 goto fail; 678 } 679 680 ring->data = kmalloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, 681 M_WAITOK | M_ZERO); 682 if (ring->data == NULL) { 683 device_printf(sc->sc_dev, "could not allocate soft data\n"); 684 error = ENOMEM; 685 goto fail; 686 } 687 688 #if defined(__DragonFly__) 689 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 690 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG, 691 MCLBYTES, 0, &ring->data_dmat); 692 #else 693 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 694 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 695 IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 696 #endif 697 if (error != 0) { 698 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 699 goto fail; 700 } 701 702 for (i = 0; i < count; i++) { 703 error = bus_dmamap_create(ring->data_dmat, 0, 704 &ring->data[i].map); 705 if (error != 0) { 706 device_printf(sc->sc_dev, "could not create DMA map\n"); 707 goto fail; 708 } 709 } 710 711 return 0; 712 713 fail: iwi_free_tx_ring(sc, ring); 714 return error; 715 } 716 717 static void 718 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 719 { 720 struct iwi_tx_data *data; 721 int i; 722 723 for (i = 0; i < ring->count; i++) { 724 data = &ring->data[i]; 725 726 if (data->m != NULL) { 727 bus_dmamap_sync(ring->data_dmat, data->map, 728 BUS_DMASYNC_POSTWRITE); 729 bus_dmamap_unload(ring->data_dmat, data->map); 730 m_freem(data->m); 731 data->m = NULL; 732 } 733 734 if (data->ni != NULL) { 735 ieee80211_free_node(data->ni); 736 data->ni = NULL; 737 } 738 } 739 740 ring->queued = 0; 741 ring->cur = ring->next = 0; 742 } 743 744 static void 745 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) 746 { 747 struct iwi_tx_data *data; 748 int i; 749 750 if (ring->desc != NULL) { 751 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 752 BUS_DMASYNC_POSTWRITE); 753 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 754 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 755 } 756 757 if (ring->desc_dmat != NULL) 758 bus_dma_tag_destroy(ring->desc_dmat); 759 760 if (ring->data != NULL) { 761 for (i = 0; i < ring->count; i++) { 762 data = &ring->data[i]; 763 764 if (data->m != NULL) { 765 bus_dmamap_sync(ring->data_dmat, data->map, 766 BUS_DMASYNC_POSTWRITE); 767 bus_dmamap_unload(ring->data_dmat, data->map); 768 m_freem(data->m); 769 } 770 771 if (data->ni != NULL) 772 ieee80211_free_node(data->ni); 773 774 if (data->map != NULL) 775 bus_dmamap_destroy(ring->data_dmat, data->map); 776 } 777 778 kfree(ring->data, M_DEVBUF); 779 } 780 781 if (ring->data_dmat != NULL) 782 bus_dma_tag_destroy(ring->data_dmat); 783 } 784 785 static int 786 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) 787 { 788 struct iwi_rx_data *data; 789 int i, error; 790 791 ring->count = count; 792 ring->cur = 0; 793 794 ring->data = kmalloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, 795 M_WAITOK | M_ZERO); 796 if (ring->data == NULL) { 797 device_printf(sc->sc_dev, "could not allocate soft data\n"); 798 error = ENOMEM; 799 goto fail; 800 } 801 802 #if defined(__DragonFly__) 803 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 804 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 805 0, &ring->data_dmat); 806 #else 807 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 808 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 809 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 810 #endif 811 if (error != 0) { 812 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 813 goto fail; 814 } 815 816 for (i = 0; i < count; i++) { 817 data = &ring->data[i]; 818 819 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 820 if (error != 0) { 821 device_printf(sc->sc_dev, "could not create DMA map\n"); 822 goto fail; 823 } 824 825 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 826 if (data->m == NULL) { 827 device_printf(sc->sc_dev, 828 "could not allocate rx mbuf\n"); 829 error = ENOMEM; 830 goto fail; 831 } 832 833 error = bus_dmamap_load(ring->data_dmat, data->map, 834 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 835 &data->physaddr, 0); 836 if (error != 0) { 837 device_printf(sc->sc_dev, 838 "could not load rx buf DMA map"); 839 goto fail; 840 } 841 842 data->reg = IWI_CSR_RX_BASE + i * 4; 843 } 844 845 return 0; 846 847 fail: iwi_free_rx_ring(sc, ring); 848 return error; 849 } 850 851 static void 852 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 853 { 854 ring->cur = 0; 855 } 856 857 static void 858 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) 859 { 860 struct iwi_rx_data *data; 861 int i; 862 863 if (ring->data != NULL) { 864 for (i = 0; i < ring->count; i++) { 865 data = &ring->data[i]; 866 867 if (data->m != NULL) { 868 bus_dmamap_sync(ring->data_dmat, data->map, 869 BUS_DMASYNC_POSTREAD); 870 bus_dmamap_unload(ring->data_dmat, data->map); 871 m_freem(data->m); 872 } 873 874 if (data->map != NULL) 875 bus_dmamap_destroy(ring->data_dmat, data->map); 876 } 877 878 kfree(ring->data, M_DEVBUF); 879 } 880 881 if (ring->data_dmat != NULL) 882 bus_dma_tag_destroy(ring->data_dmat); 883 } 884 885 static int 886 iwi_shutdown(device_t dev) 887 { 888 struct iwi_softc *sc = device_get_softc(dev); 889 890 iwi_stop(sc); 891 iwi_put_firmware(sc); /* ??? XXX */ 892 893 return 0; 894 } 895 896 static int 897 iwi_suspend(device_t dev) 898 { 899 struct iwi_softc *sc = device_get_softc(dev); 900 struct ieee80211com *ic = &sc->sc_ic; 901 902 ieee80211_suspend_all(ic); 903 return 0; 904 } 905 906 static int 907 iwi_resume(device_t dev) 908 { 909 struct iwi_softc *sc = device_get_softc(dev); 910 struct ieee80211com *ic = &sc->sc_ic; 911 912 pci_write_config(dev, 0x41, 0, 1); 913 914 ieee80211_resume_all(ic); 915 return 0; 916 } 917 918 static struct ieee80211_node * 919 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 920 { 921 struct iwi_node *in; 922 923 in = kmalloc(sizeof (struct iwi_node), M_80211_NODE, M_INTWAIT | M_ZERO); 924 if (in == NULL) 925 return NULL; 926 /* XXX assign sta table entry for adhoc */ 927 in->in_station = -1; 928 929 return &in->in_node; 930 } 931 932 static void 933 iwi_node_free(struct ieee80211_node *ni) 934 { 935 struct ieee80211com *ic = ni->ni_ic; 936 struct iwi_softc *sc = ic->ic_softc; 937 struct iwi_node *in = (struct iwi_node *)ni; 938 939 if (in->in_station != -1) { 940 #if defined(__DragonFly__) 941 DPRINTF(("%s mac %s station %u\n", __func__, 942 ether_sprintf(ni->ni_macaddr), in->in_station)); 943 #else 944 DPRINTF(("%s mac %6D station %u\n", __func__, 945 ni->ni_macaddr, ":", in->in_station)); 946 #endif 947 #if defined(__DragonFly__) 948 devfs_clone_bitmap_put(&sc->sc_unr, in->in_station); 949 #else 950 free_unr(sc->sc_unr, in->in_station); 951 #endif 952 } 953 954 sc->sc_node_free(ni); 955 } 956 957 /* 958 * Convert h/w rate code to IEEE rate code. 959 */ 960 static int 961 iwi_cvtrate(int iwirate) 962 { 963 switch (iwirate) { 964 case IWI_RATE_DS1: return 2; 965 case IWI_RATE_DS2: return 4; 966 case IWI_RATE_DS5: return 11; 967 case IWI_RATE_DS11: return 22; 968 case IWI_RATE_OFDM6: return 12; 969 case IWI_RATE_OFDM9: return 18; 970 case IWI_RATE_OFDM12: return 24; 971 case IWI_RATE_OFDM18: return 36; 972 case IWI_RATE_OFDM24: return 48; 973 case IWI_RATE_OFDM36: return 72; 974 case IWI_RATE_OFDM48: return 96; 975 case IWI_RATE_OFDM54: return 108; 976 } 977 return 0; 978 } 979 980 /* 981 * The firmware automatically adapts the transmit speed. We report its current 982 * value here. 983 */ 984 static void 985 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 986 { 987 struct ieee80211vap *vap = ifp->if_softc; 988 struct ieee80211com *ic = vap->iv_ic; 989 struct iwi_softc *sc = ic->ic_softc; 990 struct ieee80211_node *ni; 991 992 /* read current transmission rate from adapter */ 993 ni = ieee80211_ref_node(vap->iv_bss); 994 ni->ni_txrate = 995 iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); 996 ieee80211_free_node(ni); 997 ieee80211_media_status(ifp, imr); 998 } 999 1000 static int 1001 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1002 { 1003 struct iwi_vap *ivp = IWI_VAP(vap); 1004 struct ieee80211com *ic = vap->iv_ic; 1005 struct iwi_softc *sc = ic->ic_softc; 1006 IWI_LOCK_DECL; 1007 1008 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1009 ieee80211_state_name[vap->iv_state], 1010 ieee80211_state_name[nstate], sc->flags)); 1011 1012 IEEE80211_UNLOCK(ic); 1013 IWI_LOCK(sc); 1014 switch (nstate) { 1015 case IEEE80211_S_INIT: 1016 /* 1017 * NB: don't try to do this if iwi_stop_master has 1018 * shutdown the firmware and disabled interrupts. 1019 */ 1020 if (vap->iv_state == IEEE80211_S_RUN && 1021 (sc->flags & IWI_FLAG_FW_INITED)) 1022 iwi_disassociate(sc, 0); 1023 break; 1024 case IEEE80211_S_AUTH: 1025 iwi_auth_and_assoc(sc, vap); 1026 break; 1027 case IEEE80211_S_RUN: 1028 if (vap->iv_opmode == IEEE80211_M_IBSS && 1029 vap->iv_state == IEEE80211_S_SCAN) { 1030 /* 1031 * XXX when joining an ibss network we are called 1032 * with a SCAN -> RUN transition on scan complete. 1033 * Use that to call iwi_auth_and_assoc. On completing 1034 * the join we are then called again with an 1035 * AUTH -> RUN transition and we want to do nothing. 1036 * This is all totally bogus and needs to be redone. 1037 */ 1038 iwi_auth_and_assoc(sc, vap); 1039 } else if (vap->iv_opmode == IEEE80211_M_MONITOR) 1040 ieee80211_runtask(ic, &sc->sc_monitortask); 1041 break; 1042 case IEEE80211_S_ASSOC: 1043 /* 1044 * If we are transitioning from AUTH then just wait 1045 * for the ASSOC status to come back from the firmware. 1046 * Otherwise we need to issue the association request. 1047 */ 1048 if (vap->iv_state == IEEE80211_S_AUTH) 1049 break; 1050 iwi_auth_and_assoc(sc, vap); 1051 break; 1052 default: 1053 break; 1054 } 1055 IWI_UNLOCK(sc); 1056 IEEE80211_LOCK(ic); 1057 return ivp->iwi_newstate(vap, nstate, arg); 1058 } 1059 1060 /* 1061 * WME parameters coming from IEEE 802.11e specification. These values are 1062 * already declared in ieee80211_proto.c, but they are static so they can't 1063 * be reused here. 1064 */ 1065 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { 1066 { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ 1067 { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ 1068 { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ 1069 { 0, 2, 3, 4, 102 } /* WME_AC_VO */ 1070 }; 1071 1072 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { 1073 { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ 1074 { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ 1075 { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ 1076 { 0, 2, 2, 3, 47 } /* WME_AC_VO */ 1077 }; 1078 #define IWI_EXP2(v) htole16((1 << (v)) - 1) 1079 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 1080 1081 static void 1082 iwi_wme_init(struct iwi_softc *sc) 1083 { 1084 const struct wmeParams *wmep; 1085 int ac; 1086 1087 memset(sc->wme, 0, sizeof sc->wme); 1088 for (ac = 0; ac < WME_NUM_AC; ac++) { 1089 /* set WME values for CCK modulation */ 1090 wmep = &iwi_wme_cck_params[ac]; 1091 sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; 1092 sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1093 sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1094 sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1095 sc->wme[1].acm[ac] = wmep->wmep_acm; 1096 1097 /* set WME values for OFDM modulation */ 1098 wmep = &iwi_wme_ofdm_params[ac]; 1099 sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; 1100 sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1101 sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1102 sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1103 sc->wme[2].acm[ac] = wmep->wmep_acm; 1104 } 1105 } 1106 1107 static int 1108 iwi_wme_setparams(struct iwi_softc *sc) 1109 { 1110 struct ieee80211com *ic = &sc->sc_ic; 1111 const struct wmeParams *wmep; 1112 int ac; 1113 1114 for (ac = 0; ac < WME_NUM_AC; ac++) { 1115 /* set WME values for current operating mode */ 1116 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 1117 sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; 1118 sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); 1119 sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); 1120 sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); 1121 sc->wme[0].acm[ac] = wmep->wmep_acm; 1122 } 1123 1124 DPRINTF(("Setting WME parameters\n")); 1125 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); 1126 } 1127 #undef IWI_USEC 1128 #undef IWI_EXP2 1129 1130 static int 1131 iwi_wme_update(struct ieee80211com *ic) 1132 { 1133 struct iwi_softc *sc = ic->ic_softc; 1134 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1135 IWI_LOCK_DECL; 1136 1137 /* 1138 * We may be called to update the WME parameters in 1139 * the adapter at various places. If we're already 1140 * associated then initiate the request immediately; 1141 * otherwise we assume the params will get sent down 1142 * to the adapter as part of the work iwi_auth_and_assoc 1143 * does. 1144 */ 1145 if (vap->iv_state == IEEE80211_S_RUN) { 1146 IWI_LOCK(sc); 1147 iwi_wme_setparams(sc); 1148 IWI_UNLOCK(sc); 1149 } 1150 return (0); 1151 } 1152 1153 static int 1154 iwi_wme_setie(struct iwi_softc *sc) 1155 { 1156 struct ieee80211_wme_info wme; 1157 1158 memset(&wme, 0, sizeof wme); 1159 wme.wme_id = IEEE80211_ELEMID_VENDOR; 1160 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; 1161 wme.wme_oui[0] = 0x00; 1162 wme.wme_oui[1] = 0x50; 1163 wme.wme_oui[2] = 0xf2; 1164 wme.wme_type = WME_OUI_TYPE; 1165 wme.wme_subtype = WME_INFO_OUI_SUBTYPE; 1166 wme.wme_version = WME_VERSION; 1167 wme.wme_info = 0; 1168 1169 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); 1170 return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); 1171 } 1172 1173 /* 1174 * Read 16 bits at address 'addr' from the serial EEPROM. 1175 */ 1176 static uint16_t 1177 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) 1178 { 1179 uint32_t tmp; 1180 uint16_t val; 1181 int n; 1182 1183 /* clock C once before the first command */ 1184 IWI_EEPROM_CTL(sc, 0); 1185 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1186 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1187 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1188 1189 /* write start bit (1) */ 1190 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1191 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1192 1193 /* write READ opcode (10) */ 1194 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); 1195 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); 1196 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1197 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1198 1199 /* write address A7-A0 */ 1200 for (n = 7; n >= 0; n--) { 1201 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1202 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); 1203 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | 1204 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); 1205 } 1206 1207 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1208 1209 /* read data Q15-Q0 */ 1210 val = 0; 1211 for (n = 15; n >= 0; n--) { 1212 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); 1213 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1214 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); 1215 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; 1216 } 1217 1218 IWI_EEPROM_CTL(sc, 0); 1219 1220 /* clear Chip Select and clock C */ 1221 IWI_EEPROM_CTL(sc, IWI_EEPROM_S); 1222 IWI_EEPROM_CTL(sc, 0); 1223 IWI_EEPROM_CTL(sc, IWI_EEPROM_C); 1224 1225 return val; 1226 } 1227 1228 static void 1229 iwi_setcurchan(struct iwi_softc *sc, int chan) 1230 { 1231 struct ieee80211com *ic = &sc->sc_ic; 1232 1233 sc->curchan = chan; 1234 ieee80211_radiotap_chan_change(ic); 1235 } 1236 1237 static void 1238 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, 1239 struct iwi_frame *frame) 1240 { 1241 struct ieee80211com *ic = &sc->sc_ic; 1242 struct mbuf *mnew, *m; 1243 struct ieee80211_node *ni; 1244 int type, error, framelen; 1245 int8_t rssi, nf; 1246 IWI_LOCK_DECL; 1247 1248 framelen = le16toh(frame->len); 1249 if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { 1250 /* 1251 * XXX >MCLBYTES is bogus as it means the h/w dma'd 1252 * out of bounds; need to figure out how to limit 1253 * frame size in the firmware 1254 */ 1255 /* XXX stat */ 1256 DPRINTFN(1, 1257 ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1258 le16toh(frame->len), frame->chan, frame->rssi, 1259 frame->rssi_dbm)); 1260 return; 1261 } 1262 1263 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", 1264 le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); 1265 1266 if (frame->chan != sc->curchan) 1267 iwi_setcurchan(sc, frame->chan); 1268 1269 /* 1270 * Try to allocate a new mbuf for this ring element and load it before 1271 * processing the current mbuf. If the ring element cannot be loaded, 1272 * drop the received packet and reuse the old mbuf. In the unlikely 1273 * case that the old mbuf can't be reloaded either, explicitly panic. 1274 */ 1275 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1276 if (mnew == NULL) { 1277 #if defined(__DragonFly__) 1278 ++ic->ic_ierrors; 1279 #else 1280 counter_u64_add(ic->ic_ierrors, 1); 1281 #endif 1282 return; 1283 } 1284 1285 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1286 1287 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1288 mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 1289 0); 1290 if (error != 0) { 1291 m_freem(mnew); 1292 1293 /* try to reload the old mbuf */ 1294 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1295 mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, 1296 &data->physaddr, 0); 1297 if (error != 0) { 1298 /* very unlikely that it will fail... */ 1299 panic("%s: could not load old rx mbuf", 1300 device_get_name(sc->sc_dev)); 1301 } 1302 #if defined(__DragonFly__) 1303 ++ic->ic_ierrors; 1304 #else 1305 counter_u64_add(ic->ic_ierrors, 1); 1306 #endif 1307 return; 1308 } 1309 1310 /* 1311 * New mbuf successfully loaded, update Rx ring and continue 1312 * processing. 1313 */ 1314 m = data->m; 1315 data->m = mnew; 1316 CSR_WRITE_4(sc, data->reg, data->physaddr); 1317 1318 /* finalize mbuf */ 1319 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + 1320 sizeof (struct iwi_frame) + framelen; 1321 1322 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); 1323 1324 rssi = frame->rssi_dbm; 1325 nf = -95; 1326 if (ieee80211_radiotap_active(ic)) { 1327 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; 1328 1329 tap->wr_flags = 0; 1330 tap->wr_antsignal = rssi; 1331 tap->wr_antnoise = nf; 1332 tap->wr_rate = iwi_cvtrate(frame->rate); 1333 tap->wr_antenna = frame->antenna; 1334 } 1335 IWI_UNLOCK(sc); 1336 1337 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1338 if (ni != NULL) { 1339 type = ieee80211_input(ni, m, rssi, nf); 1340 ieee80211_free_node(ni); 1341 } else 1342 type = ieee80211_input_all(ic, m, rssi, nf); 1343 1344 IWI_LOCK(sc); 1345 if (sc->sc_softled) { 1346 /* 1347 * Blink for any data frame. Otherwise do a 1348 * heartbeat-style blink when idle. The latter 1349 * is mainly for station mode where we depend on 1350 * periodic beacon frames to trigger the poll event. 1351 */ 1352 if (type == IEEE80211_FC0_TYPE_DATA) { 1353 sc->sc_rxrate = frame->rate; 1354 iwi_led_event(sc, IWI_LED_RX); 1355 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 1356 iwi_led_event(sc, IWI_LED_POLL); 1357 } 1358 } 1359 1360 /* 1361 * Check for an association response frame to see if QoS 1362 * has been negotiated. We parse just enough to figure 1363 * out if we're supposed to use QoS. The proper solution 1364 * is to pass the frame up so ieee80211_input can do the 1365 * work but that's made hard by how things currently are 1366 * done in the driver. 1367 */ 1368 static void 1369 iwi_checkforqos(struct ieee80211vap *vap, 1370 const struct ieee80211_frame *wh, int len) 1371 { 1372 #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 1373 const uint8_t *frm, *efrm, *wme; 1374 struct ieee80211_node *ni; 1375 uint16_t capinfo, status, associd; 1376 1377 /* NB: +8 for capinfo, status, associd, and first ie */ 1378 if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || 1379 SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) 1380 return; 1381 /* 1382 * asresp frame format 1383 * [2] capability information 1384 * [2] status 1385 * [2] association ID 1386 * [tlv] supported rates 1387 * [tlv] extended supported rates 1388 * [tlv] WME 1389 */ 1390 frm = (const uint8_t *)&wh[1]; 1391 efrm = ((const uint8_t *) wh) + len; 1392 1393 capinfo = le16toh(*(const uint16_t *)frm); 1394 frm += 2; 1395 status = le16toh(*(const uint16_t *)frm); 1396 frm += 2; 1397 associd = le16toh(*(const uint16_t *)frm); 1398 frm += 2; 1399 1400 wme = NULL; 1401 while (efrm - frm > 1) { 1402 IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); 1403 switch (*frm) { 1404 case IEEE80211_ELEMID_VENDOR: 1405 if (iswmeoui(frm)) 1406 wme = frm; 1407 break; 1408 } 1409 frm += frm[1] + 2; 1410 } 1411 1412 ni = ieee80211_ref_node(vap->iv_bss); 1413 ni->ni_capinfo = capinfo; 1414 ni->ni_associd = associd & 0x3fff; 1415 if (wme != NULL) 1416 ni->ni_flags |= IEEE80211_NODE_QOS; 1417 else 1418 ni->ni_flags &= ~IEEE80211_NODE_QOS; 1419 ieee80211_free_node(ni); 1420 #undef SUBTYPE 1421 } 1422 1423 static void 1424 iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) 1425 { 1426 struct iwi_notif_link_quality *lq; 1427 int len; 1428 1429 len = le16toh(notif->len); 1430 1431 DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", 1432 notif->type, 1433 len, 1434 sizeof(struct iwi_notif_link_quality) 1435 )); 1436 1437 /* enforce length */ 1438 if (len != sizeof(struct iwi_notif_link_quality)) { 1439 DPRINTFN(5, ("Notification: (%u) too short (%d)\n", 1440 notif->type, 1441 len)); 1442 return; 1443 } 1444 1445 lq = (struct iwi_notif_link_quality *)(notif + 1); 1446 memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); 1447 sc->sc_linkqual_valid = 1; 1448 } 1449 1450 /* 1451 * Task queue callbacks for iwi_notification_intr used to avoid LOR's. 1452 */ 1453 1454 static void 1455 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) 1456 { 1457 struct ieee80211com *ic = &sc->sc_ic; 1458 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1459 struct iwi_notif_scan_channel *chan; 1460 struct iwi_notif_scan_complete *scan; 1461 struct iwi_notif_authentication *auth; 1462 struct iwi_notif_association *assoc; 1463 struct iwi_notif_beacon_state *beacon; 1464 1465 switch (notif->type) { 1466 case IWI_NOTIF_TYPE_SCAN_CHANNEL: 1467 chan = (struct iwi_notif_scan_channel *)(notif + 1); 1468 1469 DPRINTFN(3, ("Scan of channel %u complete (%u)\n", 1470 ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); 1471 1472 /* Reset the timer, the scan is still going */ 1473 sc->sc_state_timer = 3; 1474 break; 1475 1476 case IWI_NOTIF_TYPE_SCAN_COMPLETE: 1477 scan = (struct iwi_notif_scan_complete *)(notif + 1); 1478 1479 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, 1480 scan->status)); 1481 1482 IWI_STATE_END(sc, IWI_FW_SCANNING); 1483 1484 /* 1485 * Monitor mode works by doing a passive scan to set 1486 * the channel and enable rx. Because we don't want 1487 * to abort a scan lest the firmware crash we scan 1488 * for a short period of time and automatically restart 1489 * the scan when notified the sweep has completed. 1490 */ 1491 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 1492 ieee80211_runtask(ic, &sc->sc_monitortask); 1493 break; 1494 } 1495 1496 if (scan->status == IWI_SCAN_COMPLETED) { 1497 /* NB: don't need to defer, net80211 does it for us */ 1498 ieee80211_scan_next(vap); 1499 } 1500 break; 1501 1502 case IWI_NOTIF_TYPE_AUTHENTICATION: 1503 auth = (struct iwi_notif_authentication *)(notif + 1); 1504 switch (auth->state) { 1505 case IWI_AUTH_SUCCESS: 1506 DPRINTFN(2, ("Authentication succeeeded\n")); 1507 ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); 1508 break; 1509 case IWI_AUTH_FAIL: 1510 /* 1511 * These are delivered as an unsolicited deauth 1512 * (e.g. due to inactivity) or in response to an 1513 * associate request. 1514 */ 1515 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1516 if (vap->iv_state != IEEE80211_S_RUN) { 1517 DPRINTFN(2, ("Authentication failed\n")); 1518 vap->iv_stats.is_rx_auth_fail++; 1519 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1520 } else { 1521 DPRINTFN(2, ("Deauthenticated\n")); 1522 vap->iv_stats.is_rx_deauth++; 1523 } 1524 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1525 break; 1526 case IWI_AUTH_SENT_1: 1527 case IWI_AUTH_RECV_2: 1528 case IWI_AUTH_SEQ1_PASS: 1529 break; 1530 case IWI_AUTH_SEQ1_FAIL: 1531 DPRINTFN(2, ("Initial authentication handshake failed; " 1532 "you probably need shared key\n")); 1533 vap->iv_stats.is_rx_auth_fail++; 1534 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1535 /* XXX retry shared key when in auto */ 1536 break; 1537 default: 1538 device_printf(sc->sc_dev, 1539 "unknown authentication state %u\n", auth->state); 1540 break; 1541 } 1542 break; 1543 1544 case IWI_NOTIF_TYPE_ASSOCIATION: 1545 assoc = (struct iwi_notif_association *)(notif + 1); 1546 switch (assoc->state) { 1547 case IWI_AUTH_SUCCESS: 1548 /* re-association, do nothing */ 1549 break; 1550 case IWI_ASSOC_SUCCESS: 1551 DPRINTFN(2, ("Association succeeded\n")); 1552 sc->flags |= IWI_FLAG_ASSOCIATED; 1553 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1554 iwi_checkforqos(vap, 1555 (const struct ieee80211_frame *)(assoc+1), 1556 le16toh(notif->len) - sizeof(*assoc) - 1); 1557 ieee80211_new_state(vap, IEEE80211_S_RUN, -1); 1558 break; 1559 case IWI_ASSOC_INIT: 1560 sc->flags &= ~IWI_FLAG_ASSOCIATED; 1561 switch (sc->fw_state) { 1562 case IWI_FW_ASSOCIATING: 1563 DPRINTFN(2, ("Association failed\n")); 1564 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 1565 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1566 break; 1567 1568 case IWI_FW_DISASSOCIATING: 1569 DPRINTFN(2, ("Dissassociated\n")); 1570 IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); 1571 vap->iv_stats.is_rx_disassoc++; 1572 ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); 1573 break; 1574 } 1575 break; 1576 default: 1577 device_printf(sc->sc_dev, 1578 "unknown association state %u\n", assoc->state); 1579 break; 1580 } 1581 break; 1582 1583 case IWI_NOTIF_TYPE_BEACON: 1584 /* XXX check struct length */ 1585 beacon = (struct iwi_notif_beacon_state *)(notif + 1); 1586 1587 DPRINTFN(5, ("Beacon state (%u, %u)\n", 1588 beacon->state, le32toh(beacon->number))); 1589 1590 if (beacon->state == IWI_BEACON_MISS) { 1591 /* 1592 * The firmware notifies us of every beacon miss 1593 * so we need to track the count against the 1594 * configured threshold before notifying the 1595 * 802.11 layer. 1596 * XXX try to roam, drop assoc only on much higher count 1597 */ 1598 if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { 1599 DPRINTF(("Beacon miss: %u >= %u\n", 1600 le32toh(beacon->number), 1601 vap->iv_bmissthreshold)); 1602 vap->iv_stats.is_beacon_miss++; 1603 /* 1604 * It's pointless to notify the 802.11 layer 1605 * as it'll try to send a probe request (which 1606 * we'll discard) and then timeout and drop us 1607 * into scan state. Instead tell the firmware 1608 * to disassociate and then on completion we'll 1609 * kick the state machine to scan. 1610 */ 1611 ieee80211_runtask(ic, &sc->sc_disassoctask); 1612 } 1613 } 1614 break; 1615 1616 case IWI_NOTIF_TYPE_CALIBRATION: 1617 case IWI_NOTIF_TYPE_NOISE: 1618 /* XXX handle? */ 1619 DPRINTFN(5, ("Notification (%u)\n", notif->type)); 1620 break; 1621 case IWI_NOTIF_TYPE_LINK_QUALITY: 1622 iwi_notif_link_quality(sc, notif); 1623 break; 1624 1625 default: 1626 DPRINTF(("unknown notification type %u flags 0x%x len %u\n", 1627 notif->type, notif->flags, le16toh(notif->len))); 1628 break; 1629 } 1630 } 1631 1632 static void 1633 iwi_rx_intr(struct iwi_softc *sc) 1634 { 1635 struct iwi_rx_data *data; 1636 struct iwi_hdr *hdr; 1637 uint32_t hw; 1638 1639 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); 1640 1641 for (; sc->rxq.cur != hw;) { 1642 data = &sc->rxq.data[sc->rxq.cur]; 1643 1644 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1645 BUS_DMASYNC_POSTREAD); 1646 1647 hdr = mtod(data->m, struct iwi_hdr *); 1648 1649 switch (hdr->type) { 1650 case IWI_HDR_TYPE_FRAME: 1651 iwi_frame_intr(sc, data, sc->rxq.cur, 1652 (struct iwi_frame *)(hdr + 1)); 1653 break; 1654 1655 case IWI_HDR_TYPE_NOTIF: 1656 iwi_notification_intr(sc, 1657 (struct iwi_notif *)(hdr + 1)); 1658 break; 1659 1660 default: 1661 device_printf(sc->sc_dev, "unknown hdr type %u\n", 1662 hdr->type); 1663 } 1664 1665 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1666 1667 sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; 1668 } 1669 1670 /* tell the firmware what we have processed */ 1671 hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; 1672 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); 1673 } 1674 1675 static void 1676 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) 1677 { 1678 struct iwi_tx_data *data; 1679 uint32_t hw; 1680 1681 hw = CSR_READ_4(sc, txq->csr_ridx); 1682 1683 while (txq->next != hw) { 1684 data = &txq->data[txq->next]; 1685 DPRINTFN(15, ("tx done idx=%u\n", txq->next)); 1686 bus_dmamap_sync(txq->data_dmat, data->map, 1687 BUS_DMASYNC_POSTWRITE); 1688 bus_dmamap_unload(txq->data_dmat, data->map); 1689 ieee80211_tx_complete(data->ni, data->m, 0); 1690 data->ni = NULL; 1691 data->m = NULL; 1692 txq->queued--; 1693 txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; 1694 } 1695 sc->sc_tx_timer = 0; 1696 if (sc->sc_softled) 1697 iwi_led_event(sc, IWI_LED_TX); 1698 iwi_start(sc); 1699 } 1700 1701 static void 1702 iwi_fatal_error_intr(struct iwi_softc *sc) 1703 { 1704 struct ieee80211com *ic = &sc->sc_ic; 1705 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1706 1707 device_printf(sc->sc_dev, "firmware error\n"); 1708 if (vap != NULL) 1709 ieee80211_cancel_scan(vap); 1710 ieee80211_runtask(ic, &sc->sc_restarttask); 1711 1712 sc->flags &= ~IWI_FLAG_BUSY; 1713 sc->sc_busy_timer = 0; 1714 wakeup(sc); 1715 } 1716 1717 static void 1718 iwi_radio_off_intr(struct iwi_softc *sc) 1719 { 1720 1721 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); 1722 } 1723 1724 static void 1725 iwi_intr(void *arg) 1726 { 1727 struct iwi_softc *sc = arg; 1728 uint32_t r; 1729 IWI_LOCK_DECL; 1730 1731 IWI_LOCK(sc); 1732 1733 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { 1734 IWI_UNLOCK(sc); 1735 return; 1736 } 1737 1738 /* acknowledge interrupts */ 1739 CSR_WRITE_4(sc, IWI_CSR_INTR, r); 1740 1741 if (r & IWI_INTR_FATAL_ERROR) { 1742 iwi_fatal_error_intr(sc); 1743 goto done; 1744 } 1745 1746 if (r & IWI_INTR_FW_INITED) { 1747 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) 1748 wakeup(sc); 1749 } 1750 1751 if (r & IWI_INTR_RADIO_OFF) 1752 iwi_radio_off_intr(sc); 1753 1754 if (r & IWI_INTR_CMD_DONE) { 1755 sc->flags &= ~IWI_FLAG_BUSY; 1756 sc->sc_busy_timer = 0; 1757 wakeup(sc); 1758 } 1759 1760 if (r & IWI_INTR_TX1_DONE) 1761 iwi_tx_intr(sc, &sc->txq[0]); 1762 1763 if (r & IWI_INTR_TX2_DONE) 1764 iwi_tx_intr(sc, &sc->txq[1]); 1765 1766 if (r & IWI_INTR_TX3_DONE) 1767 iwi_tx_intr(sc, &sc->txq[2]); 1768 1769 if (r & IWI_INTR_TX4_DONE) 1770 iwi_tx_intr(sc, &sc->txq[3]); 1771 1772 if (r & IWI_INTR_RX_DONE) 1773 iwi_rx_intr(sc); 1774 1775 if (r & IWI_INTR_PARITY_ERROR) { 1776 /* XXX rate-limit */ 1777 device_printf(sc->sc_dev, "parity error\n"); 1778 } 1779 done: 1780 IWI_UNLOCK(sc); 1781 } 1782 1783 static int 1784 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) 1785 { 1786 struct iwi_cmd_desc *desc; 1787 1788 IWI_LOCK_ASSERT(sc); 1789 1790 if (sc->flags & IWI_FLAG_BUSY) { 1791 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 1792 __func__, type); 1793 return EAGAIN; 1794 } 1795 sc->flags |= IWI_FLAG_BUSY; 1796 sc->sc_busy_timer = 2; 1797 1798 desc = &sc->cmdq.desc[sc->cmdq.cur]; 1799 1800 desc->hdr.type = IWI_HDR_TYPE_COMMAND; 1801 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1802 desc->type = type; 1803 desc->len = len; 1804 memcpy(desc->data, data, len); 1805 1806 bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, 1807 BUS_DMASYNC_PREWRITE); 1808 1809 DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, 1810 type, len)); 1811 1812 sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; 1813 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 1814 1815 #if defined(__DragonFly__) 1816 return lksleep(sc, &sc->sc_lock, 0, "iwicmd", hz); 1817 #else 1818 return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); 1819 #endif 1820 } 1821 1822 static void 1823 iwi_write_ibssnode(struct iwi_softc *sc, 1824 const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) 1825 { 1826 struct iwi_ibssnode node; 1827 1828 /* write node information into NIC memory */ 1829 memset(&node, 0, sizeof node); 1830 IEEE80211_ADDR_COPY(node.bssid, addr); 1831 #if defined(__DragonFly__) 1832 DPRINTF(("%s mac %s station %u\n", __func__, ether_sprintf(node.bssid), 1833 entry)); 1834 #else 1835 DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); 1836 #endif 1837 1838 CSR_WRITE_REGION_1(sc, 1839 IWI_CSR_NODE_BASE + entry * sizeof node, 1840 (uint8_t *)&node, sizeof node); 1841 } 1842 1843 static int 1844 iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1845 int ac) 1846 { 1847 struct ieee80211vap *vap = ni->ni_vap; 1848 struct ieee80211com *ic = ni->ni_ic; 1849 struct iwi_node *in = (struct iwi_node *)ni; 1850 const struct ieee80211_frame *wh; 1851 struct ieee80211_key *k; 1852 const struct chanAccParams *cap; 1853 struct iwi_tx_ring *txq = &sc->txq[ac]; 1854 struct iwi_tx_data *data; 1855 struct iwi_tx_desc *desc; 1856 struct mbuf *mnew; 1857 bus_dma_segment_t segs[IWI_MAX_NSEG]; 1858 int error, nsegs, hdrlen, i; 1859 int ismcast, flags, xflags, staid; 1860 1861 IWI_LOCK_ASSERT(sc); 1862 wh = mtod(m0, const struct ieee80211_frame *); 1863 /* NB: only data frames use this path */ 1864 hdrlen = ieee80211_hdrsize(wh); 1865 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1866 flags = xflags = 0; 1867 1868 if (!ismcast) 1869 flags |= IWI_DATA_FLAG_NEED_ACK; 1870 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 1871 flags |= IWI_DATA_FLAG_SHPREAMBLE; 1872 if (IEEE80211_QOS_HAS_SEQ(wh)) { 1873 xflags |= IWI_DATA_XFLAG_QOS; 1874 cap = &ic->ic_wme.wme_chanParams; 1875 if (!cap->cap_wmeParams[ac].wmep_noackPolicy) 1876 flags &= ~IWI_DATA_FLAG_NEED_ACK; 1877 } 1878 1879 /* 1880 * This is only used in IBSS mode where the firmware expect an index 1881 * in a h/w table instead of a destination address. 1882 */ 1883 if (vap->iv_opmode == IEEE80211_M_IBSS) { 1884 if (!ismcast) { 1885 if (in->in_station == -1) { 1886 #if defined(__DragonFly__) 1887 in->in_station = devfs_clone_bitmap_get(&sc->sc_unr, 1888 IWI_MAX_IBSSNODE-1); 1889 #else 1890 in->in_station = alloc_unr(sc->sc_unr); 1891 #endif 1892 if (in->in_station == -1) { 1893 /* h/w table is full */ 1894 if_inc_counter(ni->ni_vap->iv_ifp, 1895 IFCOUNTER_OERRORS, 1); 1896 m_freem(m0); 1897 ieee80211_free_node(ni); 1898 return 0; 1899 } 1900 iwi_write_ibssnode(sc, 1901 ni->ni_macaddr, in->in_station); 1902 } 1903 staid = in->in_station; 1904 } else { 1905 /* 1906 * Multicast addresses have no associated node 1907 * so there will be no station entry. We reserve 1908 * entry 0 for one mcast address and use that. 1909 * If there are many being used this will be 1910 * expensive and we'll need to do a better job 1911 * but for now this handles the broadcast case. 1912 */ 1913 if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { 1914 IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); 1915 iwi_write_ibssnode(sc, sc->sc_mcast, 0); 1916 } 1917 staid = 0; 1918 } 1919 } else 1920 staid = 0; 1921 1922 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1923 k = ieee80211_crypto_encap(ni, m0); 1924 if (k == NULL) { 1925 m_freem(m0); 1926 return ENOBUFS; 1927 } 1928 1929 /* packet header may have moved, reset our local pointer */ 1930 wh = mtod(m0, struct ieee80211_frame *); 1931 } 1932 1933 if (ieee80211_radiotap_active_vap(vap)) { 1934 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; 1935 1936 tap->wt_flags = 0; 1937 1938 ieee80211_radiotap_tx(vap, m0); 1939 } 1940 1941 data = &txq->data[txq->cur]; 1942 desc = &txq->desc[txq->cur]; 1943 1944 /* save and trim IEEE802.11 header */ 1945 m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); 1946 m_adj(m0, hdrlen); 1947 1948 #if defined(__DragonFly__) 1949 error = bus_dmamap_load_mbuf_segment(txq->data_dmat, data->map, 1950 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1951 #else 1952 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1953 &nsegs, 0); 1954 #endif 1955 if (error != 0 && error != EFBIG) { 1956 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1957 error); 1958 m_freem(m0); 1959 return error; 1960 } 1961 if (error != 0) { 1962 mnew = m_defrag(m0, M_NOWAIT); 1963 if (mnew == NULL) { 1964 device_printf(sc->sc_dev, 1965 "could not defragment mbuf\n"); 1966 m_freem(m0); 1967 return ENOBUFS; 1968 } 1969 m0 = mnew; 1970 1971 #if defined(__DragonFly__) 1972 error = bus_dmamap_load_mbuf_segment(txq->data_dmat, 1973 data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1974 #else 1975 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, 1976 m0, segs, &nsegs, 0); 1977 #endif 1978 if (error != 0) { 1979 device_printf(sc->sc_dev, 1980 "could not map mbuf (error %d)\n", error); 1981 m_freem(m0); 1982 return error; 1983 } 1984 } 1985 1986 data->m = m0; 1987 data->ni = ni; 1988 1989 desc->hdr.type = IWI_HDR_TYPE_DATA; 1990 desc->hdr.flags = IWI_HDR_FLAG_IRQ; 1991 desc->station = staid; 1992 desc->cmd = IWI_DATA_CMD_TX; 1993 desc->len = htole16(m0->m_pkthdr.len); 1994 desc->flags = flags; 1995 desc->xflags = xflags; 1996 1997 #if 0 1998 if (vap->iv_flags & IEEE80211_F_PRIVACY) 1999 desc->wep_txkey = vap->iv_def_txkey; 2000 else 2001 #endif 2002 desc->flags |= IWI_DATA_FLAG_NO_WEP; 2003 2004 desc->nseg = htole32(nsegs); 2005 for (i = 0; i < nsegs; i++) { 2006 desc->seg_addr[i] = htole32(segs[i].ds_addr); 2007 desc->seg_len[i] = htole16(segs[i].ds_len); 2008 } 2009 2010 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2011 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 2012 2013 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", 2014 ac, txq->cur, le16toh(desc->len), nsegs)); 2015 2016 txq->queued++; 2017 txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; 2018 CSR_WRITE_4(sc, txq->csr_widx, txq->cur); 2019 2020 return 0; 2021 } 2022 2023 static int 2024 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2025 const struct ieee80211_bpf_params *params) 2026 { 2027 /* no support; just discard */ 2028 m_freem(m); 2029 ieee80211_free_node(ni); 2030 return 0; 2031 } 2032 2033 static int 2034 iwi_transmit(struct ieee80211com *ic, struct mbuf *m) 2035 { 2036 struct iwi_softc *sc = ic->ic_softc; 2037 int error; 2038 IWI_LOCK_DECL; 2039 2040 IWI_LOCK(sc); 2041 if (!sc->sc_running) { 2042 IWI_UNLOCK(sc); 2043 return (ENXIO); 2044 } 2045 error = mbufq_enqueue(&sc->sc_snd, m); 2046 if (error) { 2047 IWI_UNLOCK(sc); 2048 return (error); 2049 } 2050 iwi_start(sc); 2051 IWI_UNLOCK(sc); 2052 return (0); 2053 } 2054 2055 static void 2056 iwi_start(struct iwi_softc *sc) 2057 { 2058 struct mbuf *m; 2059 struct ieee80211_node *ni; 2060 int ac; 2061 2062 IWI_LOCK_ASSERT(sc); 2063 2064 while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 2065 ac = M_WME_GETAC(m); 2066 if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { 2067 /* there is no place left in this ring; tail drop */ 2068 /* XXX tail drop */ 2069 mbufq_prepend(&sc->sc_snd, m); 2070 break; 2071 } 2072 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2073 if (iwi_tx_start(sc, m, ni, ac) != 0) { 2074 ieee80211_free_node(ni); 2075 if_inc_counter(ni->ni_vap->iv_ifp, 2076 IFCOUNTER_OERRORS, 1); 2077 break; 2078 } 2079 sc->sc_tx_timer = 5; 2080 } 2081 } 2082 2083 static void 2084 iwi_watchdog(void *arg) 2085 { 2086 struct iwi_softc *sc = arg; 2087 struct ieee80211com *ic = &sc->sc_ic; 2088 2089 IWI_LOCK_ASSERT(sc); 2090 2091 if (sc->sc_tx_timer > 0) { 2092 if (--sc->sc_tx_timer == 0) { 2093 device_printf(sc->sc_dev, "device timeout\n"); 2094 #if defined(__DragonFly__) 2095 ++ic->ic_oerrors; 2096 #else 2097 counter_u64_add(ic->ic_oerrors, 1); 2098 #endif 2099 ieee80211_runtask(ic, &sc->sc_restarttask); 2100 } 2101 } 2102 if (sc->sc_state_timer > 0) { 2103 if (--sc->sc_state_timer == 0) { 2104 device_printf(sc->sc_dev, 2105 "firmware stuck in state %d, resetting\n", 2106 sc->fw_state); 2107 if (sc->fw_state == IWI_FW_SCANNING) 2108 ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); 2109 ieee80211_runtask(ic, &sc->sc_restarttask); 2110 sc->sc_state_timer = 3; 2111 } 2112 } 2113 if (sc->sc_busy_timer > 0) { 2114 if (--sc->sc_busy_timer == 0) { 2115 device_printf(sc->sc_dev, 2116 "firmware command timeout, resetting\n"); 2117 ieee80211_runtask(ic, &sc->sc_restarttask); 2118 } 2119 } 2120 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 2121 } 2122 2123 static void 2124 iwi_parent(struct ieee80211com *ic) 2125 { 2126 struct iwi_softc *sc = ic->ic_softc; 2127 int startall = 0; 2128 IWI_LOCK_DECL; 2129 2130 IWI_LOCK(sc); 2131 if (ic->ic_nrunning > 0) { 2132 if (!sc->sc_running) { 2133 iwi_init_locked(sc); 2134 startall = 1; 2135 } 2136 } else if (sc->sc_running) 2137 iwi_stop_locked(sc); 2138 IWI_UNLOCK(sc); 2139 if (startall) 2140 ieee80211_start_all(ic); 2141 } 2142 2143 static void 2144 iwi_stop_master(struct iwi_softc *sc) 2145 { 2146 uint32_t tmp; 2147 int ntries; 2148 2149 /* disable interrupts */ 2150 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); 2151 2152 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); 2153 for (ntries = 0; ntries < 5; ntries++) { 2154 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2155 break; 2156 DELAY(10); 2157 } 2158 if (ntries == 5) 2159 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2160 2161 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2162 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); 2163 2164 sc->flags &= ~IWI_FLAG_FW_INITED; 2165 } 2166 2167 static int 2168 iwi_reset(struct iwi_softc *sc) 2169 { 2170 uint32_t tmp; 2171 int i, ntries; 2172 2173 iwi_stop_master(sc); 2174 2175 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2176 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2177 2178 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); 2179 2180 /* wait for clock stabilization */ 2181 for (ntries = 0; ntries < 1000; ntries++) { 2182 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) 2183 break; 2184 DELAY(200); 2185 } 2186 if (ntries == 1000) { 2187 device_printf(sc->sc_dev, 2188 "timeout waiting for clock stabilization\n"); 2189 return EIO; 2190 } 2191 2192 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2193 CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); 2194 2195 DELAY(10); 2196 2197 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2198 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); 2199 2200 /* clear NIC memory */ 2201 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); 2202 for (i = 0; i < 0xc000; i++) 2203 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2204 2205 return 0; 2206 } 2207 2208 static const struct iwi_firmware_ohdr * 2209 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) 2210 { 2211 const struct firmware *fp = fw->fp; 2212 const struct iwi_firmware_ohdr *hdr; 2213 2214 if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { 2215 device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); 2216 return NULL; 2217 } 2218 hdr = (const struct iwi_firmware_ohdr *)fp->data; 2219 if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || 2220 (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { 2221 device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", 2222 fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), 2223 IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, 2224 IWI_FW_REQ_MINOR); 2225 return NULL; 2226 } 2227 fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); 2228 fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); 2229 fw->name = fp->name; 2230 return hdr; 2231 } 2232 2233 static const struct iwi_firmware_ohdr * 2234 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) 2235 { 2236 const struct iwi_firmware_ohdr *hdr; 2237 2238 hdr = iwi_setup_ofw(sc, fw); 2239 if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { 2240 device_printf(sc->sc_dev, "%s is not a ucode image\n", 2241 fw->name); 2242 hdr = NULL; 2243 } 2244 return hdr; 2245 } 2246 2247 static void 2248 iwi_getfw(struct iwi_fw *fw, const char *fwname, 2249 struct iwi_fw *uc, const char *ucname) 2250 { 2251 if (fw->fp == NULL) 2252 fw->fp = firmware_get(fwname); 2253 /* NB: pre-3.0 ucode is packaged separately */ 2254 if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) 2255 uc->fp = firmware_get(ucname); 2256 } 2257 2258 /* 2259 * Get the required firmware images if not already loaded. 2260 * Note that we hold firmware images so long as the device 2261 * is marked up in case we need to reload them on device init. 2262 * This is necessary because we re-init the device sometimes 2263 * from a context where we cannot read from the filesystem 2264 * (e.g. from the taskqueue thread when rfkill is re-enabled). 2265 * XXX return 0 on success, 1 on error. 2266 * 2267 * NB: the order of get'ing and put'ing images here is 2268 * intentional to support handling firmware images bundled 2269 * by operating mode and/or all together in one file with 2270 * the boot firmware as "master". 2271 */ 2272 static int 2273 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) 2274 { 2275 const struct iwi_firmware_hdr *hdr; 2276 const struct firmware *fp; 2277 2278 /* invalidate cached firmware on mode change */ 2279 if (sc->fw_mode != opmode) 2280 iwi_put_firmware(sc); 2281 2282 switch (opmode) { 2283 case IEEE80211_M_STA: 2284 iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); 2285 break; 2286 case IEEE80211_M_IBSS: 2287 iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); 2288 break; 2289 case IEEE80211_M_MONITOR: 2290 iwi_getfw(&sc->fw_fw, "iwi_monitor", 2291 &sc->fw_uc, "iwi_ucode_monitor"); 2292 break; 2293 default: 2294 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 2295 return EINVAL; 2296 } 2297 fp = sc->fw_fw.fp; 2298 if (fp == NULL) { 2299 device_printf(sc->sc_dev, "could not load firmware\n"); 2300 goto bad; 2301 } 2302 if (fp->version < 300) { 2303 /* 2304 * Firmware prior to 3.0 was packaged as separate 2305 * boot, firmware, and ucode images. Verify the 2306 * ucode image was read in, retrieve the boot image 2307 * if needed, and check version stamps for consistency. 2308 * The version stamps in the data are also checked 2309 * above; this is a bit paranoid but is a cheap 2310 * safeguard against mis-packaging. 2311 */ 2312 if (sc->fw_uc.fp == NULL) { 2313 device_printf(sc->sc_dev, "could not load ucode\n"); 2314 goto bad; 2315 } 2316 if (sc->fw_boot.fp == NULL) { 2317 sc->fw_boot.fp = firmware_get("iwi_boot"); 2318 if (sc->fw_boot.fp == NULL) { 2319 device_printf(sc->sc_dev, 2320 "could not load boot firmware\n"); 2321 goto bad; 2322 } 2323 } 2324 if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || 2325 sc->fw_boot.fp->version != sc->fw_uc.fp->version) { 2326 device_printf(sc->sc_dev, 2327 "firmware version mismatch: " 2328 "'%s' is %d, '%s' is %d, '%s' is %d\n", 2329 sc->fw_boot.fp->name, sc->fw_boot.fp->version, 2330 sc->fw_uc.fp->name, sc->fw_uc.fp->version, 2331 sc->fw_fw.fp->name, sc->fw_fw.fp->version 2332 ); 2333 goto bad; 2334 } 2335 /* 2336 * Check and setup each image. 2337 */ 2338 if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || 2339 iwi_setup_ofw(sc, &sc->fw_boot) == NULL || 2340 iwi_setup_ofw(sc, &sc->fw_fw) == NULL) 2341 goto bad; 2342 } else { 2343 /* 2344 * Check and setup combined image. 2345 */ 2346 if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { 2347 device_printf(sc->sc_dev, "image '%s' too small\n", 2348 fp->name); 2349 goto bad; 2350 } 2351 hdr = (const struct iwi_firmware_hdr *)fp->data; 2352 if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) 2353 + le32toh(hdr->fsize)) { 2354 device_printf(sc->sc_dev, "image '%s' too small (2)\n", 2355 fp->name); 2356 goto bad; 2357 } 2358 sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); 2359 sc->fw_boot.size = le32toh(hdr->bsize); 2360 sc->fw_boot.name = fp->name; 2361 sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; 2362 sc->fw_uc.size = le32toh(hdr->usize); 2363 sc->fw_uc.name = fp->name; 2364 sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; 2365 sc->fw_fw.size = le32toh(hdr->fsize); 2366 sc->fw_fw.name = fp->name; 2367 } 2368 #if 0 2369 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", 2370 sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); 2371 #endif 2372 2373 sc->fw_mode = opmode; 2374 return 0; 2375 bad: 2376 iwi_put_firmware(sc); 2377 return 1; 2378 } 2379 2380 static void 2381 iwi_put_fw(struct iwi_fw *fw) 2382 { 2383 if (fw->fp != NULL) { 2384 firmware_put(fw->fp, FIRMWARE_UNLOAD); 2385 fw->fp = NULL; 2386 } 2387 fw->data = NULL; 2388 fw->size = 0; 2389 fw->name = NULL; 2390 } 2391 2392 /* 2393 * Release any cached firmware images. 2394 */ 2395 static void 2396 iwi_put_firmware(struct iwi_softc *sc) 2397 { 2398 iwi_put_fw(&sc->fw_uc); 2399 iwi_put_fw(&sc->fw_fw); 2400 iwi_put_fw(&sc->fw_boot); 2401 } 2402 2403 static int 2404 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) 2405 { 2406 uint32_t tmp; 2407 const uint16_t *w; 2408 const char *uc = fw->data; 2409 size_t size = fw->size; 2410 int i, ntries, error; 2411 2412 IWI_LOCK_ASSERT(sc); 2413 error = 0; 2414 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | 2415 IWI_RST_STOP_MASTER); 2416 for (ntries = 0; ntries < 5; ntries++) { 2417 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) 2418 break; 2419 DELAY(10); 2420 } 2421 if (ntries == 5) { 2422 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2423 error = EIO; 2424 goto fail; 2425 } 2426 2427 MEM_WRITE_4(sc, 0x3000e0, 0x80000000); 2428 DELAY(5000); 2429 2430 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2431 tmp &= ~IWI_RST_PRINCETON_RESET; 2432 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2433 2434 DELAY(5000); 2435 MEM_WRITE_4(sc, 0x3000e0, 0); 2436 DELAY(1000); 2437 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); 2438 DELAY(1000); 2439 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); 2440 DELAY(1000); 2441 MEM_WRITE_1(sc, 0x200000, 0x00); 2442 MEM_WRITE_1(sc, 0x200000, 0x40); 2443 DELAY(1000); 2444 2445 /* write microcode into adapter memory */ 2446 for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) 2447 MEM_WRITE_2(sc, 0x200010, htole16(*w)); 2448 2449 MEM_WRITE_1(sc, 0x200000, 0x00); 2450 MEM_WRITE_1(sc, 0x200000, 0x80); 2451 2452 /* wait until we get an answer */ 2453 for (ntries = 0; ntries < 100; ntries++) { 2454 if (MEM_READ_1(sc, 0x200000) & 1) 2455 break; 2456 DELAY(100); 2457 } 2458 if (ntries == 100) { 2459 device_printf(sc->sc_dev, 2460 "timeout waiting for ucode to initialize\n"); 2461 error = EIO; 2462 goto fail; 2463 } 2464 2465 /* read the answer or the firmware will not initialize properly */ 2466 for (i = 0; i < 7; i++) 2467 MEM_READ_4(sc, 0x200004); 2468 2469 MEM_WRITE_1(sc, 0x200000, 0x00); 2470 2471 fail: 2472 return error; 2473 } 2474 2475 /* macro to handle unaligned little endian data in firmware image */ 2476 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) 2477 2478 static int 2479 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) 2480 { 2481 u_char *p, *end; 2482 uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; 2483 int ntries, error; 2484 2485 IWI_LOCK_ASSERT(sc); 2486 2487 /* copy firmware image to DMA memory */ 2488 memcpy(sc->fw_virtaddr, fw->data, fw->size); 2489 2490 /* make sure the adapter will get up-to-date values */ 2491 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); 2492 2493 /* tell the adapter where the command blocks are stored */ 2494 MEM_WRITE_4(sc, 0x3000a0, 0x27000); 2495 2496 /* 2497 * Store command blocks into adapter's internal memory using register 2498 * indirections. The adapter will read the firmware image through DMA 2499 * using information stored in command blocks. 2500 */ 2501 src = sc->fw_physaddr; 2502 p = sc->fw_virtaddr; 2503 end = p + fw->size; 2504 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); 2505 2506 while (p < end) { 2507 dst = GETLE32(p); p += 4; src += 4; 2508 len = GETLE32(p); p += 4; src += 4; 2509 p += len; 2510 2511 while (len > 0) { 2512 mlen = min(len, IWI_CB_MAXDATALEN); 2513 2514 ctl = IWI_CB_DEFAULT_CTL | mlen; 2515 sum = ctl ^ src ^ dst; 2516 2517 /* write a command block */ 2518 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); 2519 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); 2520 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); 2521 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); 2522 2523 src += mlen; 2524 dst += mlen; 2525 len -= mlen; 2526 } 2527 } 2528 2529 /* write a fictive final command block (sentinel) */ 2530 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); 2531 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); 2532 2533 tmp = CSR_READ_4(sc, IWI_CSR_RST); 2534 tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); 2535 CSR_WRITE_4(sc, IWI_CSR_RST, tmp); 2536 2537 /* tell the adapter to start processing command blocks */ 2538 MEM_WRITE_4(sc, 0x3000a4, 0x540100); 2539 2540 /* wait until the adapter reaches the sentinel */ 2541 for (ntries = 0; ntries < 400; ntries++) { 2542 if (MEM_READ_4(sc, 0x3000d0) >= sentinel) 2543 break; 2544 DELAY(100); 2545 } 2546 /* sync dma, just in case */ 2547 bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); 2548 if (ntries == 400) { 2549 device_printf(sc->sc_dev, 2550 "timeout processing command blocks for %s firmware\n", 2551 fw->name); 2552 return EIO; 2553 } 2554 2555 /* we're done with command blocks processing */ 2556 MEM_WRITE_4(sc, 0x3000a4, 0x540c00); 2557 2558 /* allow interrupts so we know when the firmware is ready */ 2559 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); 2560 2561 /* tell the adapter to initialize the firmware */ 2562 CSR_WRITE_4(sc, IWI_CSR_RST, 0); 2563 2564 tmp = CSR_READ_4(sc, IWI_CSR_CTL); 2565 CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); 2566 2567 /* wait at most one second for firmware initialization to complete */ 2568 #if defined(__DragonFly__) 2569 if ((error = lksleep(sc, &sc->sc_lock, 0, "iwiinit", hz)) != 0) { 2570 #else 2571 if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { 2572 #endif 2573 device_printf(sc->sc_dev, "timeout waiting for %s firmware " 2574 "initialization to complete\n", fw->name); 2575 } 2576 2577 return error; 2578 } 2579 2580 static int 2581 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) 2582 { 2583 uint32_t data; 2584 2585 if (vap->iv_flags & IEEE80211_F_PMGTON) { 2586 /* XXX set more fine-grained operation */ 2587 data = htole32(IWI_POWER_MODE_MAX); 2588 } else 2589 data = htole32(IWI_POWER_MODE_CAM); 2590 2591 DPRINTF(("Setting power mode to %u\n", le32toh(data))); 2592 return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); 2593 } 2594 2595 static int 2596 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) 2597 { 2598 struct iwi_wep_key wepkey; 2599 struct ieee80211_key *wk; 2600 int error, i; 2601 2602 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2603 wk = &vap->iv_nw_keys[i]; 2604 2605 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; 2606 wepkey.idx = i; 2607 wepkey.len = wk->wk_keylen; 2608 memset(wepkey.key, 0, sizeof wepkey.key); 2609 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); 2610 DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, 2611 wepkey.len)); 2612 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, 2613 sizeof wepkey); 2614 if (error != 0) 2615 return error; 2616 } 2617 return 0; 2618 } 2619 2620 static int 2621 iwi_config(struct iwi_softc *sc) 2622 { 2623 struct ieee80211com *ic = &sc->sc_ic; 2624 struct iwi_configuration config; 2625 struct iwi_rateset rs; 2626 struct iwi_txpower power; 2627 uint32_t data; 2628 int error, i; 2629 2630 IWI_LOCK_ASSERT(sc); 2631 2632 #if defined(__DragonFly__) 2633 DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_macaddr))); 2634 #else 2635 DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":")); 2636 #endif 2637 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr, 2638 IEEE80211_ADDR_LEN); 2639 if (error != 0) 2640 return error; 2641 2642 memset(&config, 0, sizeof config); 2643 config.bluetooth_coexistence = sc->bluetooth; 2644 config.silence_threshold = 0x1e; 2645 config.antenna = sc->antenna; 2646 config.multicast_enabled = 1; 2647 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2648 config.disable_unicast_decryption = 1; 2649 config.disable_multicast_decryption = 1; 2650 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 2651 config.allow_invalid_frames = 1; 2652 config.allow_beacon_and_probe_resp = 1; 2653 config.allow_mgt = 1; 2654 } 2655 DPRINTF(("Configuring adapter\n")); 2656 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2657 if (error != 0) 2658 return error; 2659 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2660 power.mode = IWI_MODE_11B; 2661 power.nchan = 11; 2662 for (i = 0; i < 11; i++) { 2663 power.chan[i].chan = i + 1; 2664 power.chan[i].power = IWI_TXPOWER_MAX; 2665 } 2666 DPRINTF(("Setting .11b channels tx power\n")); 2667 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2668 if (error != 0) 2669 return error; 2670 2671 power.mode = IWI_MODE_11G; 2672 DPRINTF(("Setting .11g channels tx power\n")); 2673 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); 2674 if (error != 0) 2675 return error; 2676 } 2677 2678 memset(&rs, 0, sizeof rs); 2679 rs.mode = IWI_MODE_11G; 2680 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2681 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; 2682 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, 2683 rs.nrates); 2684 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); 2685 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2686 if (error != 0) 2687 return error; 2688 2689 memset(&rs, 0, sizeof rs); 2690 rs.mode = IWI_MODE_11A; 2691 rs.type = IWI_RATESET_TYPE_SUPPORTED; 2692 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; 2693 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, 2694 rs.nrates); 2695 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); 2696 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2697 if (error != 0) 2698 return error; 2699 2700 data = htole32(karc4random()); 2701 DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); 2702 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); 2703 if (error != 0) 2704 return error; 2705 2706 /* enable adapter */ 2707 DPRINTF(("Enabling adapter\n")); 2708 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); 2709 } 2710 2711 static __inline void 2712 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) 2713 { 2714 uint8_t *st = &scan->scan_type[ix / 2]; 2715 if (ix % 2) 2716 *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); 2717 else 2718 *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); 2719 } 2720 2721 static int 2722 scan_type(const struct ieee80211_scan_state *ss, 2723 const struct ieee80211_channel *chan) 2724 { 2725 /* We can only set one essid for a directed scan */ 2726 if (ss->ss_nssid != 0) 2727 return IWI_SCAN_TYPE_BDIRECTED; 2728 if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && 2729 (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) 2730 return IWI_SCAN_TYPE_BROADCAST; 2731 return IWI_SCAN_TYPE_PASSIVE; 2732 } 2733 2734 static __inline int 2735 scan_band(const struct ieee80211_channel *c) 2736 { 2737 return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; 2738 } 2739 2740 static void 2741 iwi_monitor_scan(void *arg, int npending) 2742 { 2743 struct iwi_softc *sc = arg; 2744 IWI_LOCK_DECL; 2745 2746 IWI_LOCK(sc); 2747 (void) iwi_scanchan(sc, 2000, 0); 2748 IWI_UNLOCK(sc); 2749 } 2750 2751 /* 2752 * Start a scan on the current channel or all channels. 2753 */ 2754 static int 2755 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) 2756 { 2757 struct ieee80211com *ic = &sc->sc_ic; 2758 struct ieee80211_channel *chan; 2759 struct ieee80211_scan_state *ss; 2760 struct iwi_scan_ext scan; 2761 int error = 0; 2762 2763 IWI_LOCK_ASSERT(sc); 2764 if (sc->fw_state == IWI_FW_SCANNING) { 2765 /* 2766 * This should not happen as we only trigger scan_next after 2767 * completion 2768 */ 2769 DPRINTF(("%s: called too early - still scanning\n", __func__)); 2770 return (EBUSY); 2771 } 2772 IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); 2773 2774 ss = ic->ic_scan; 2775 2776 memset(&scan, 0, sizeof scan); 2777 scan.full_scan_index = htole32(++sc->sc_scangen); 2778 scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); 2779 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 2780 /* 2781 * Use very short dwell times for when we send probe request 2782 * frames. Without this bg scans hang. Ideally this should 2783 * be handled with early-termination as done by net80211 but 2784 * that's not feasible (aborting a scan is problematic). 2785 */ 2786 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); 2787 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); 2788 } else { 2789 scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); 2790 scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); 2791 } 2792 2793 /* We can only set one essid for a directed scan */ 2794 if (ss->ss_nssid != 0) { 2795 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, 2796 ss->ss_ssid[0].len); 2797 if (error) 2798 return (error); 2799 } 2800 2801 if (allchan) { 2802 int i, next, band, b, bstart; 2803 /* 2804 * Convert scan list to run-length encoded channel list 2805 * the firmware requires (preserving the order setup by 2806 * net80211). The first entry in each run specifies the 2807 * band and the count of items in the run. 2808 */ 2809 next = 0; /* next open slot */ 2810 bstart = 0; /* NB: not needed, silence compiler */ 2811 band = -1; /* NB: impossible value */ 2812 KASSERT(ss->ss_last > 0, ("no channels")); 2813 for (i = 0; i < ss->ss_last; i++) { 2814 chan = ss->ss_chans[i]; 2815 b = scan_band(chan); 2816 if (b != band) { 2817 if (band != -1) 2818 scan.channels[bstart] = 2819 (next - bstart) | band; 2820 /* NB: this allocates a slot for the run-len */ 2821 band = b, bstart = next++; 2822 } 2823 if (next >= IWI_SCAN_CHANNELS) { 2824 DPRINTF(("truncating scan list\n")); 2825 break; 2826 } 2827 scan.channels[next] = ieee80211_chan2ieee(ic, chan); 2828 set_scan_type(&scan, next, scan_type(ss, chan)); 2829 next++; 2830 } 2831 scan.channels[bstart] = (next - bstart) | band; 2832 } else { 2833 /* Scan the current channel only */ 2834 chan = ic->ic_curchan; 2835 scan.channels[0] = 1 | scan_band(chan); 2836 scan.channels[1] = ieee80211_chan2ieee(ic, chan); 2837 set_scan_type(&scan, 1, scan_type(ss, chan)); 2838 } 2839 #ifdef IWI_DEBUG 2840 if (iwi_debug > 0) { 2841 static const char *scantype[8] = 2842 { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; 2843 int i; 2844 kprintf("Scan request: index %u dwell %d/%d/%d\n" 2845 , le32toh(scan.full_scan_index) 2846 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) 2847 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) 2848 , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) 2849 ); 2850 i = 0; 2851 do { 2852 int run = scan.channels[i]; 2853 if (run == 0) 2854 break; 2855 kprintf("Scan %d %s channels:", run & 0x3f, 2856 run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); 2857 for (run &= 0x3f, i++; run > 0; run--, i++) { 2858 uint8_t type = scan.scan_type[i/2]; 2859 kprintf(" %u/%s", scan.channels[i], 2860 scantype[(i & 1 ? type : type>>4) & 7]); 2861 } 2862 kprintf("\n"); 2863 } while (i < IWI_SCAN_CHANNELS); 2864 } 2865 #endif 2866 2867 return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); 2868 } 2869 2870 static int 2871 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) 2872 { 2873 struct iwi_sensitivity sens; 2874 2875 DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); 2876 2877 memset(&sens, 0, sizeof sens); 2878 sens.rssi = htole16(rssi_dbm); 2879 return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); 2880 } 2881 2882 static int 2883 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) 2884 { 2885 struct ieee80211com *ic = vap->iv_ic; 2886 struct ifnet *ifp = vap->iv_ifp; 2887 struct ieee80211_node *ni; 2888 struct iwi_configuration config; 2889 struct iwi_associate *assoc = &sc->assoc; 2890 struct iwi_rateset rs; 2891 uint16_t capinfo; 2892 uint32_t data; 2893 int error, mode; 2894 2895 IWI_LOCK_ASSERT(sc); 2896 2897 ni = ieee80211_ref_node(vap->iv_bss); 2898 2899 if (sc->flags & IWI_FLAG_ASSOCIATED) { 2900 DPRINTF(("Already associated\n")); 2901 return (-1); 2902 } 2903 2904 IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); 2905 error = 0; 2906 mode = 0; 2907 2908 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 2909 mode = IWI_MODE_11A; 2910 else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) 2911 mode = IWI_MODE_11G; 2912 if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) 2913 mode = IWI_MODE_11B; 2914 2915 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2916 memset(&config, 0, sizeof config); 2917 config.bluetooth_coexistence = sc->bluetooth; 2918 config.antenna = sc->antenna; 2919 config.multicast_enabled = 1; 2920 if (mode == IWI_MODE_11G) 2921 config.use_protection = 1; 2922 config.answer_pbreq = 2923 (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; 2924 config.disable_unicast_decryption = 1; 2925 config.disable_multicast_decryption = 1; 2926 DPRINTF(("Configuring adapter\n")); 2927 error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); 2928 if (error != 0) 2929 goto done; 2930 } 2931 2932 #ifdef IWI_DEBUG 2933 if (iwi_debug > 0) { 2934 kprintf("Setting ESSID to "); 2935 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 2936 kprintf("\n"); 2937 } 2938 #endif 2939 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); 2940 if (error != 0) 2941 goto done; 2942 2943 error = iwi_setpowermode(sc, vap); 2944 if (error != 0) 2945 goto done; 2946 2947 data = htole32(vap->iv_rtsthreshold); 2948 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); 2949 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); 2950 if (error != 0) 2951 goto done; 2952 2953 data = htole32(vap->iv_fragthreshold); 2954 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); 2955 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); 2956 if (error != 0) 2957 goto done; 2958 2959 /* the rate set has already been "negotiated" */ 2960 memset(&rs, 0, sizeof rs); 2961 rs.mode = mode; 2962 rs.type = IWI_RATESET_TYPE_NEGOTIATED; 2963 rs.nrates = ni->ni_rates.rs_nrates; 2964 if (rs.nrates > IWI_RATESET_SIZE) { 2965 DPRINTF(("Truncating negotiated rate set from %u\n", 2966 rs.nrates)); 2967 rs.nrates = IWI_RATESET_SIZE; 2968 } 2969 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); 2970 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); 2971 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); 2972 if (error != 0) 2973 goto done; 2974 2975 memset(assoc, 0, sizeof *assoc); 2976 2977 if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { 2978 /* NB: don't treat WME setup as failure */ 2979 if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) 2980 assoc->policy |= htole16(IWI_POLICY_WME); 2981 /* XXX complain on failure? */ 2982 } 2983 2984 if (vap->iv_appie_wpa != NULL) { 2985 struct ieee80211_appie *ie = vap->iv_appie_wpa; 2986 2987 DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); 2988 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); 2989 if (error != 0) 2990 goto done; 2991 } 2992 2993 error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); 2994 if (error != 0) 2995 goto done; 2996 2997 assoc->mode = mode; 2998 assoc->chan = ic->ic_curchan->ic_ieee; 2999 /* 3000 * NB: do not arrange for shared key auth w/o privacy 3001 * (i.e. a wep key); it causes a firmware error. 3002 */ 3003 if ((vap->iv_flags & IEEE80211_F_PRIVACY) && 3004 ni->ni_authmode == IEEE80211_AUTH_SHARED) { 3005 assoc->auth = IWI_AUTH_SHARED; 3006 /* 3007 * It's possible to have privacy marked but no default 3008 * key setup. This typically is due to a user app bug 3009 * but if we blindly grab the key the firmware will 3010 * barf so avoid it for now. 3011 */ 3012 if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) 3013 assoc->auth |= vap->iv_def_txkey << 4; 3014 3015 error = iwi_setwepkeys(sc, vap); 3016 if (error != 0) 3017 goto done; 3018 } 3019 if (vap->iv_flags & IEEE80211_F_WPA) 3020 assoc->policy |= htole16(IWI_POLICY_WPA); 3021 if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) 3022 assoc->type = IWI_HC_IBSS_START; 3023 else 3024 assoc->type = IWI_HC_ASSOC; 3025 memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); 3026 3027 if (vap->iv_opmode == IEEE80211_M_IBSS) 3028 capinfo = IEEE80211_CAPINFO_IBSS; 3029 else 3030 capinfo = IEEE80211_CAPINFO_ESS; 3031 if (vap->iv_flags & IEEE80211_F_PRIVACY) 3032 capinfo |= IEEE80211_CAPINFO_PRIVACY; 3033 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3034 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 3035 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 3036 if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) 3037 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 3038 assoc->capinfo = htole16(capinfo); 3039 3040 assoc->lintval = htole16(ic->ic_lintval); 3041 assoc->intval = htole16(ni->ni_intval); 3042 IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); 3043 if (vap->iv_opmode == IEEE80211_M_IBSS) 3044 IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); 3045 else 3046 IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); 3047 3048 #if defined(__DragonFly__) 3049 DPRINTF(("%s bssid %s dst %s channel %u policy 0x%x " 3050 "auth %u capinfo 0x%x lintval %u bintval %u\n", 3051 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 3052 ether_sprintf(assoc->bssid), ether_sprintf(assoc->dst), 3053 assoc->chan, le16toh(assoc->policy), assoc->auth, 3054 le16toh(assoc->capinfo), le16toh(assoc->lintval), 3055 le16toh(assoc->intval))); 3056 #else 3057 DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " 3058 "auth %u capinfo 0x%x lintval %u bintval %u\n", 3059 assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", 3060 assoc->bssid, ":", assoc->dst, ":", 3061 assoc->chan, le16toh(assoc->policy), assoc->auth, 3062 le16toh(assoc->capinfo), le16toh(assoc->lintval), 3063 le16toh(assoc->intval))); 3064 #endif 3065 error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3066 done: 3067 ieee80211_free_node(ni); 3068 if (error) 3069 IWI_STATE_END(sc, IWI_FW_ASSOCIATING); 3070 3071 return (error); 3072 } 3073 3074 static void 3075 iwi_disassoc(void *arg, int pending) 3076 { 3077 struct iwi_softc *sc = arg; 3078 IWI_LOCK_DECL; 3079 3080 IWI_LOCK(sc); 3081 iwi_disassociate(sc, 0); 3082 IWI_UNLOCK(sc); 3083 } 3084 3085 static int 3086 iwi_disassociate(struct iwi_softc *sc, int quiet) 3087 { 3088 struct iwi_associate *assoc = &sc->assoc; 3089 3090 if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { 3091 DPRINTF(("Not associated\n")); 3092 return (-1); 3093 } 3094 3095 IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); 3096 3097 if (quiet) 3098 assoc->type = IWI_HC_DISASSOC_QUIET; 3099 else 3100 assoc->type = IWI_HC_DISASSOC; 3101 3102 #if defined(__DragonFly__) 3103 DPRINTF(("Trying to disassociate from %s channel %u\n", 3104 ether_sprintf(assoc->bssid), assoc->chan)); 3105 #else 3106 DPRINTF(("Trying to disassociate from %6D channel %u\n", 3107 assoc->bssid, ":", assoc->chan)); 3108 #endif 3109 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); 3110 } 3111 3112 /* 3113 * release dma resources for the firmware 3114 */ 3115 static void 3116 iwi_release_fw_dma(struct iwi_softc *sc) 3117 { 3118 if (sc->fw_flags & IWI_FW_HAVE_PHY) 3119 bus_dmamap_unload(sc->fw_dmat, sc->fw_map); 3120 if (sc->fw_flags & IWI_FW_HAVE_MAP) 3121 bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); 3122 if (sc->fw_flags & IWI_FW_HAVE_DMAT) 3123 bus_dma_tag_destroy(sc->fw_dmat); 3124 3125 sc->fw_flags = 0; 3126 sc->fw_dma_size = 0; 3127 sc->fw_dmat = NULL; 3128 sc->fw_map = NULL; 3129 sc->fw_physaddr = 0; 3130 sc->fw_virtaddr = NULL; 3131 } 3132 3133 /* 3134 * allocate the dma descriptor for the firmware. 3135 * Return 0 on success, 1 on error. 3136 * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. 3137 */ 3138 static int 3139 iwi_init_fw_dma(struct iwi_softc *sc, int size) 3140 { 3141 if (sc->fw_dma_size >= size) 3142 return 0; 3143 #if defined(__DragonFly__) 3144 if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 3145 BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 3146 0, &sc->fw_dmat) != 0) { 3147 #else 3148 if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 3149 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 3150 size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { 3151 #endif 3152 device_printf(sc->sc_dev, 3153 "could not create firmware DMA tag\n"); 3154 goto error; 3155 } 3156 sc->fw_flags |= IWI_FW_HAVE_DMAT; 3157 if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, 3158 &sc->fw_map) != 0) { 3159 device_printf(sc->sc_dev, 3160 "could not allocate firmware DMA memory\n"); 3161 goto error; 3162 } 3163 sc->fw_flags |= IWI_FW_HAVE_MAP; 3164 if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, 3165 size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { 3166 device_printf(sc->sc_dev, "could not load firmware DMA map\n"); 3167 goto error; 3168 } 3169 sc->fw_flags |= IWI_FW_HAVE_PHY; 3170 sc->fw_dma_size = size; 3171 return 0; 3172 3173 error: 3174 iwi_release_fw_dma(sc); 3175 return 1; 3176 } 3177 3178 static void 3179 iwi_init_locked(struct iwi_softc *sc) 3180 { 3181 struct iwi_rx_data *data; 3182 int i; 3183 3184 IWI_LOCK_ASSERT(sc); 3185 3186 if (sc->fw_state == IWI_FW_LOADING) { 3187 device_printf(sc->sc_dev, "%s: already loading\n", __func__); 3188 return; /* XXX: condvar? */ 3189 } 3190 3191 iwi_stop_locked(sc); 3192 3193 IWI_STATE_BEGIN(sc, IWI_FW_LOADING); 3194 3195 if (iwi_reset(sc) != 0) { 3196 device_printf(sc->sc_dev, "could not reset adapter\n"); 3197 goto fail; 3198 } 3199 if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { 3200 device_printf(sc->sc_dev, 3201 "could not load boot firmware %s\n", sc->fw_boot.name); 3202 goto fail; 3203 } 3204 if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { 3205 device_printf(sc->sc_dev, 3206 "could not load microcode %s\n", sc->fw_uc.name); 3207 goto fail; 3208 } 3209 3210 iwi_stop_master(sc); 3211 3212 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); 3213 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); 3214 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); 3215 3216 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); 3217 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); 3218 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); 3219 3220 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); 3221 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); 3222 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); 3223 3224 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); 3225 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); 3226 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); 3227 3228 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); 3229 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); 3230 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); 3231 3232 for (i = 0; i < sc->rxq.count; i++) { 3233 data = &sc->rxq.data[i]; 3234 CSR_WRITE_4(sc, data->reg, data->physaddr); 3235 } 3236 3237 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); 3238 3239 if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { 3240 device_printf(sc->sc_dev, 3241 "could not load main firmware %s\n", sc->fw_fw.name); 3242 goto fail; 3243 } 3244 sc->flags |= IWI_FLAG_FW_INITED; 3245 3246 IWI_STATE_END(sc, IWI_FW_LOADING); 3247 3248 if (iwi_config(sc) != 0) { 3249 device_printf(sc->sc_dev, "unable to enable adapter\n"); 3250 goto fail2; 3251 } 3252 3253 callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); 3254 sc->sc_running = 1; 3255 return; 3256 fail: 3257 IWI_STATE_END(sc, IWI_FW_LOADING); 3258 fail2: 3259 iwi_stop_locked(sc); 3260 } 3261 3262 static void 3263 iwi_init(void *priv) 3264 { 3265 struct iwi_softc *sc = priv; 3266 struct ieee80211com *ic = &sc->sc_ic; 3267 IWI_LOCK_DECL; 3268 3269 IWI_LOCK(sc); 3270 iwi_init_locked(sc); 3271 IWI_UNLOCK(sc); 3272 3273 if (sc->sc_running) 3274 ieee80211_start_all(ic); 3275 } 3276 3277 static void 3278 iwi_stop_locked(void *priv) 3279 { 3280 struct iwi_softc *sc = priv; 3281 3282 IWI_LOCK_ASSERT(sc); 3283 3284 sc->sc_running = 0; 3285 3286 if (sc->sc_softled) { 3287 callout_stop(&sc->sc_ledtimer); 3288 sc->sc_blinking = 0; 3289 } 3290 callout_stop(&sc->sc_wdtimer); 3291 callout_stop(&sc->sc_rftimer); 3292 3293 iwi_stop_master(sc); 3294 3295 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); 3296 3297 /* reset rings */ 3298 iwi_reset_cmd_ring(sc, &sc->cmdq); 3299 iwi_reset_tx_ring(sc, &sc->txq[0]); 3300 iwi_reset_tx_ring(sc, &sc->txq[1]); 3301 iwi_reset_tx_ring(sc, &sc->txq[2]); 3302 iwi_reset_tx_ring(sc, &sc->txq[3]); 3303 iwi_reset_rx_ring(sc, &sc->rxq); 3304 3305 sc->sc_tx_timer = 0; 3306 sc->sc_state_timer = 0; 3307 sc->sc_busy_timer = 0; 3308 sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); 3309 sc->fw_state = IWI_FW_IDLE; 3310 wakeup(sc); 3311 } 3312 3313 static void 3314 iwi_stop(struct iwi_softc *sc) 3315 { 3316 IWI_LOCK_DECL; 3317 3318 IWI_LOCK(sc); 3319 iwi_stop_locked(sc); 3320 IWI_UNLOCK(sc); 3321 } 3322 3323 static void 3324 iwi_restart(void *arg, int npending) 3325 { 3326 struct iwi_softc *sc = arg; 3327 3328 iwi_init(sc); 3329 } 3330 3331 /* 3332 * Return whether or not the radio is enabled in hardware 3333 * (i.e. the rfkill switch is "off"). 3334 */ 3335 static int 3336 iwi_getrfkill(struct iwi_softc *sc) 3337 { 3338 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; 3339 } 3340 3341 static void 3342 iwi_radio_on(void *arg, int pending) 3343 { 3344 struct iwi_softc *sc = arg; 3345 struct ieee80211com *ic = &sc->sc_ic; 3346 3347 device_printf(sc->sc_dev, "radio turned on\n"); 3348 3349 iwi_init(sc); 3350 ieee80211_notify_radio(ic, 1); 3351 } 3352 3353 static void 3354 iwi_rfkill_poll(void *arg) 3355 { 3356 struct iwi_softc *sc = arg; 3357 3358 IWI_LOCK_ASSERT(sc); 3359 3360 /* 3361 * Check for a change in rfkill state. We get an 3362 * interrupt when a radio is disabled but not when 3363 * it is enabled so we must poll for the latter. 3364 */ 3365 if (!iwi_getrfkill(sc)) { 3366 ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); 3367 return; 3368 } 3369 callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); 3370 } 3371 3372 static void 3373 iwi_radio_off(void *arg, int pending) 3374 { 3375 struct iwi_softc *sc = arg; 3376 struct ieee80211com *ic = &sc->sc_ic; 3377 IWI_LOCK_DECL; 3378 3379 device_printf(sc->sc_dev, "radio turned off\n"); 3380 3381 ieee80211_notify_radio(ic, 0); 3382 3383 IWI_LOCK(sc); 3384 iwi_stop_locked(sc); 3385 iwi_rfkill_poll(sc); 3386 IWI_UNLOCK(sc); 3387 } 3388 3389 static int 3390 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) 3391 { 3392 struct iwi_softc *sc = arg1; 3393 uint32_t size, buf[128]; 3394 3395 memset(buf, 0, sizeof buf); 3396 3397 if (!(sc->flags & IWI_FLAG_FW_INITED)) 3398 return SYSCTL_OUT(req, buf, sizeof buf); 3399 3400 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); 3401 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); 3402 3403 return SYSCTL_OUT(req, buf, size); 3404 } 3405 3406 static int 3407 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) 3408 { 3409 struct iwi_softc *sc = arg1; 3410 int val = !iwi_getrfkill(sc); 3411 3412 return SYSCTL_OUT(req, &val, sizeof val); 3413 } 3414 3415 /* 3416 * Add sysctl knobs. 3417 */ 3418 static void 3419 iwi_sysctlattach(struct iwi_softc *sc) 3420 { 3421 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3422 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3423 3424 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", 3425 CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", 3426 "radio transmitter switch state (0=off, 1=on)"); 3427 3428 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", 3429 CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", 3430 "statistics"); 3431 3432 sc->bluetooth = 0; 3433 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", 3434 CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); 3435 3436 sc->antenna = IWI_ANTENNA_AUTO; 3437 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", 3438 CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); 3439 } 3440 3441 /* 3442 * LED support. 3443 * 3444 * Different cards have different capabilities. Some have three 3445 * led's while others have only one. The linux ipw driver defines 3446 * led's for link state (associated or not), band (11a, 11g, 11b), 3447 * and for link activity. We use one led and vary the blink rate 3448 * according to the tx/rx traffic a la the ath driver. 3449 */ 3450 3451 static __inline uint32_t 3452 iwi_toggle_event(uint32_t r) 3453 { 3454 return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | 3455 IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); 3456 } 3457 3458 static uint32_t 3459 iwi_read_event(struct iwi_softc *sc) 3460 { 3461 return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); 3462 } 3463 3464 static void 3465 iwi_write_event(struct iwi_softc *sc, uint32_t v) 3466 { 3467 MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); 3468 } 3469 3470 static void 3471 iwi_led_done(void *arg) 3472 { 3473 struct iwi_softc *sc = arg; 3474 3475 sc->sc_blinking = 0; 3476 } 3477 3478 /* 3479 * Turn the activity LED off: flip the pin and then set a timer so no 3480 * update will happen for the specified duration. 3481 */ 3482 static void 3483 iwi_led_off(void *arg) 3484 { 3485 struct iwi_softc *sc = arg; 3486 uint32_t v; 3487 3488 v = iwi_read_event(sc); 3489 v &= ~sc->sc_ledpin; 3490 iwi_write_event(sc, iwi_toggle_event(v)); 3491 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); 3492 } 3493 3494 /* 3495 * Blink the LED according to the specified on/off times. 3496 */ 3497 static void 3498 iwi_led_blink(struct iwi_softc *sc, int on, int off) 3499 { 3500 uint32_t v; 3501 3502 v = iwi_read_event(sc); 3503 v |= sc->sc_ledpin; 3504 iwi_write_event(sc, iwi_toggle_event(v)); 3505 sc->sc_blinking = 1; 3506 sc->sc_ledoff = off; 3507 callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); 3508 } 3509 3510 static void 3511 iwi_led_event(struct iwi_softc *sc, int event) 3512 { 3513 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 3514 static const struct { 3515 u_int rate; /* tx/rx iwi rate */ 3516 u_int16_t timeOn; /* LED on time (ms) */ 3517 u_int16_t timeOff; /* LED off time (ms) */ 3518 } blinkrates[] = { 3519 { IWI_RATE_OFDM54, 40, 10 }, 3520 { IWI_RATE_OFDM48, 44, 11 }, 3521 { IWI_RATE_OFDM36, 50, 13 }, 3522 { IWI_RATE_OFDM24, 57, 14 }, 3523 { IWI_RATE_OFDM18, 67, 16 }, 3524 { IWI_RATE_OFDM12, 80, 20 }, 3525 { IWI_RATE_DS11, 100, 25 }, 3526 { IWI_RATE_OFDM9, 133, 34 }, 3527 { IWI_RATE_OFDM6, 160, 40 }, 3528 { IWI_RATE_DS5, 200, 50 }, 3529 { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ 3530 { IWI_RATE_DS2, 267, 66 }, 3531 { IWI_RATE_DS1, 400, 100 }, 3532 { 0, 500, 130 }, /* unknown rate/polling */ 3533 }; 3534 uint32_t txrate; 3535 int j = 0; /* XXX silence compiler */ 3536 3537 sc->sc_ledevent = ticks; /* time of last event */ 3538 if (sc->sc_blinking) /* don't interrupt active blink */ 3539 return; 3540 switch (event) { 3541 case IWI_LED_POLL: 3542 j = nitems(blinkrates)-1; 3543 break; 3544 case IWI_LED_TX: 3545 /* read current transmission rate from adapter */ 3546 txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); 3547 if (blinkrates[sc->sc_txrix].rate != txrate) { 3548 for (j = 0; j < nitems(blinkrates)-1; j++) 3549 if (blinkrates[j].rate == txrate) 3550 break; 3551 sc->sc_txrix = j; 3552 } else 3553 j = sc->sc_txrix; 3554 break; 3555 case IWI_LED_RX: 3556 if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { 3557 for (j = 0; j < nitems(blinkrates)-1; j++) 3558 if (blinkrates[j].rate == sc->sc_rxrate) 3559 break; 3560 sc->sc_rxrix = j; 3561 } else 3562 j = sc->sc_rxrix; 3563 break; 3564 } 3565 /* XXX beware of overflow */ 3566 iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, 3567 (blinkrates[j].timeOff * hz) / 1000); 3568 } 3569 3570 static int 3571 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) 3572 { 3573 struct iwi_softc *sc = arg1; 3574 int softled = sc->sc_softled; 3575 int error; 3576 3577 error = sysctl_handle_int(oidp, &softled, 0, req); 3578 if (error || !req->newptr) 3579 return error; 3580 softled = (softled != 0); 3581 if (softled != sc->sc_softled) { 3582 if (softled) { 3583 uint32_t v = iwi_read_event(sc); 3584 v &= ~sc->sc_ledpin; 3585 iwi_write_event(sc, iwi_toggle_event(v)); 3586 } 3587 sc->sc_softled = softled; 3588 } 3589 return 0; 3590 } 3591 3592 static void 3593 iwi_ledattach(struct iwi_softc *sc) 3594 { 3595 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 3596 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 3597 3598 sc->sc_blinking = 0; 3599 sc->sc_ledstate = 1; 3600 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 3601 #if defined(__DragonFly__) 3602 callout_init_lk(&sc->sc_ledtimer, &sc->sc_lock); 3603 #else 3604 callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); 3605 #endif 3606 3607 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3608 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 3609 iwi_sysctl_softled, "I", "enable/disable software LED support"); 3610 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3611 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 3612 "pin setting to turn activity LED on"); 3613 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3614 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 3615 "idle time for inactivity LED (ticks)"); 3616 /* XXX for debugging */ 3617 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 3618 "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, 3619 "NIC type from EEPROM"); 3620 3621 sc->sc_ledpin = IWI_RST_LED_ACTIVITY; 3622 sc->sc_softled = 1; 3623 3624 sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; 3625 if (sc->sc_nictype == 1) { 3626 /* 3627 * NB: led's are reversed. 3628 */ 3629 sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; 3630 } 3631 } 3632 3633 static void 3634 iwi_scan_start(struct ieee80211com *ic) 3635 { 3636 /* ignore */ 3637 } 3638 3639 static void 3640 iwi_set_channel(struct ieee80211com *ic) 3641 { 3642 struct iwi_softc *sc = ic->ic_softc; 3643 3644 if (sc->fw_state == IWI_FW_IDLE) 3645 iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); 3646 } 3647 3648 static void 3649 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3650 { 3651 struct ieee80211vap *vap = ss->ss_vap; 3652 struct iwi_softc *sc = vap->iv_ic->ic_softc; 3653 IWI_LOCK_DECL; 3654 3655 IWI_LOCK(sc); 3656 if (iwi_scanchan(sc, maxdwell, 0)) 3657 ieee80211_cancel_scan(vap); 3658 IWI_UNLOCK(sc); 3659 } 3660 3661 static void 3662 iwi_scan_mindwell(struct ieee80211_scan_state *ss) 3663 { 3664 /* NB: don't try to abort scan; wait for firmware to finish */ 3665 } 3666 3667 static void 3668 iwi_scan_end(struct ieee80211com *ic) 3669 { 3670 struct iwi_softc *sc = ic->ic_softc; 3671 IWI_LOCK_DECL; 3672 3673 IWI_LOCK(sc); 3674 sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; 3675 /* NB: make sure we're still scanning */ 3676 if (sc->fw_state == IWI_FW_SCANNING) 3677 iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); 3678 IWI_UNLOCK(sc); 3679 } 3680