xref: /dflybsd-src/sys/dev/netif/igb/if_igb.c (revision 8bb2400d5e4f21e6ed6fe870515c2d9a1cdfb5c7)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_polling.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 
125 	/* required last entry */
126 	IGB_DEVICE_NULL
127 };
128 
129 static int	igb_probe(device_t);
130 static int	igb_attach(device_t);
131 static int	igb_detach(device_t);
132 static int	igb_shutdown(device_t);
133 static int	igb_suspend(device_t);
134 static int	igb_resume(device_t);
135 
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void	igb_setup_ifp(struct igb_softc *);
138 static int	igb_txctx_pullup(struct igb_tx_ring *, struct mbuf **);
139 static boolean_t igb_txctx(struct igb_tx_ring *, struct mbuf *);
140 static void	igb_add_sysctl(struct igb_softc *);
141 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
142 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
143 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
144 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
145 
146 static void	igb_vf_init_stats(struct igb_softc *);
147 static void	igb_reset(struct igb_softc *);
148 static void	igb_update_stats_counters(struct igb_softc *);
149 static void	igb_update_vf_stats_counters(struct igb_softc *);
150 static void	igb_update_link_status(struct igb_softc *);
151 static void	igb_init_tx_unit(struct igb_softc *);
152 static void	igb_init_rx_unit(struct igb_softc *);
153 
154 static void	igb_set_vlan(struct igb_softc *);
155 static void	igb_set_multi(struct igb_softc *);
156 static void	igb_set_promisc(struct igb_softc *);
157 static void	igb_disable_promisc(struct igb_softc *);
158 
159 static int	igb_alloc_rings(struct igb_softc *);
160 static void	igb_free_rings(struct igb_softc *);
161 static int	igb_create_tx_ring(struct igb_tx_ring *);
162 static int	igb_create_rx_ring(struct igb_rx_ring *);
163 static void	igb_free_tx_ring(struct igb_tx_ring *);
164 static void	igb_free_rx_ring(struct igb_rx_ring *);
165 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
166 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
167 static void	igb_init_tx_ring(struct igb_tx_ring *);
168 static int	igb_init_rx_ring(struct igb_rx_ring *);
169 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
170 static int	igb_encap(struct igb_tx_ring *, struct mbuf **);
171 
172 static void	igb_stop(struct igb_softc *);
173 static void	igb_init(void *);
174 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
175 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
176 static int	igb_media_change(struct ifnet *);
177 static void	igb_timer(void *);
178 static void	igb_watchdog(struct ifnet *);
179 static void	igb_start(struct ifnet *);
180 #ifdef DEVICE_POLLING
181 static void	igb_poll(struct ifnet *, enum poll_cmd, int);
182 #endif
183 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
184 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
185 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
186 #ifdef INVARIANTS
187 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
188 		    boolean_t);
189 #endif
190 
191 static void	igb_intr(void *);
192 static void	igb_intr_shared(void *);
193 static void	igb_rxeof(struct igb_rx_ring *, int);
194 static void	igb_txeof(struct igb_tx_ring *);
195 static void	igb_set_eitr(struct igb_softc *, int, int);
196 static void	igb_enable_intr(struct igb_softc *);
197 static void	igb_disable_intr(struct igb_softc *);
198 static void	igb_init_unshared_intr(struct igb_softc *);
199 static void	igb_init_intr(struct igb_softc *);
200 static int	igb_setup_intr(struct igb_softc *);
201 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
202 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
203 static void	igb_set_intr_mask(struct igb_softc *);
204 static int	igb_alloc_intr(struct igb_softc *);
205 static void	igb_free_intr(struct igb_softc *);
206 static void	igb_teardown_intr(struct igb_softc *);
207 static void	igb_msix_try_alloc(struct igb_softc *);
208 static void	igb_msix_free(struct igb_softc *, boolean_t);
209 static int	igb_msix_setup(struct igb_softc *);
210 static void	igb_msix_teardown(struct igb_softc *, int);
211 static void	igb_msix_rx(void *);
212 static void	igb_msix_tx(void *);
213 static void	igb_msix_status(void *);
214 
215 /* Management and WOL Support */
216 static void	igb_get_mgmt(struct igb_softc *);
217 static void	igb_rel_mgmt(struct igb_softc *);
218 static void	igb_get_hw_control(struct igb_softc *);
219 static void	igb_rel_hw_control(struct igb_softc *);
220 static void	igb_enable_wol(device_t);
221 
222 static device_method_t igb_methods[] = {
223 	/* Device interface */
224 	DEVMETHOD(device_probe,		igb_probe),
225 	DEVMETHOD(device_attach,	igb_attach),
226 	DEVMETHOD(device_detach,	igb_detach),
227 	DEVMETHOD(device_shutdown,	igb_shutdown),
228 	DEVMETHOD(device_suspend,	igb_suspend),
229 	DEVMETHOD(device_resume,	igb_resume),
230 	{ 0, 0 }
231 };
232 
233 static driver_t igb_driver = {
234 	"igb",
235 	igb_methods,
236 	sizeof(struct igb_softc),
237 };
238 
239 static devclass_t igb_devclass;
240 
241 DECLARE_DUMMY_MODULE(if_igb);
242 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
243 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
244 
245 static int	igb_rxd = IGB_DEFAULT_RXD;
246 static int	igb_txd = IGB_DEFAULT_TXD;
247 static int	igb_rxr = 0;
248 static int	igb_msi_enable = 1;
249 static int	igb_msix_enable = 1;
250 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
251 static int	igb_fc_setting = e1000_fc_full;
252 
253 /*
254  * DMA Coalescing, only for i350 - default to off,
255  * this feature is for power savings
256  */
257 static int	igb_dma_coalesce = 0;
258 
259 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
260 TUNABLE_INT("hw.igb.txd", &igb_txd);
261 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
262 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
263 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
264 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
265 
266 /* i350 specific */
267 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
268 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
269 
270 static __inline void
271 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
272 {
273 	/* Ignore Checksum bit is set */
274 	if (staterr & E1000_RXD_STAT_IXSM)
275 		return;
276 
277 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
278 	    E1000_RXD_STAT_IPCS)
279 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
280 
281 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
282 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
283 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
284 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
285 			mp->m_pkthdr.csum_data = htons(0xffff);
286 		}
287 	}
288 }
289 
290 static __inline struct pktinfo *
291 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
292     uint32_t hash, uint32_t hashtype, uint32_t staterr)
293 {
294 	switch (hashtype) {
295 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
296 		pi->pi_netisr = NETISR_IP;
297 		pi->pi_flags = 0;
298 		pi->pi_l3proto = IPPROTO_TCP;
299 		break;
300 
301 	case E1000_RXDADV_RSSTYPE_IPV4:
302 		if (staterr & E1000_RXD_STAT_IXSM)
303 			return NULL;
304 
305 		if ((staterr &
306 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
307 		    E1000_RXD_STAT_TCPCS) {
308 			pi->pi_netisr = NETISR_IP;
309 			pi->pi_flags = 0;
310 			pi->pi_l3proto = IPPROTO_UDP;
311 			break;
312 		}
313 		/* FALL THROUGH */
314 	default:
315 		return NULL;
316 	}
317 
318 	m->m_flags |= M_HASH;
319 	m->m_pkthdr.hash = toeplitz_hash(hash);
320 	return pi;
321 }
322 
323 static int
324 igb_probe(device_t dev)
325 {
326 	const struct igb_device *d;
327 	uint16_t vid, did;
328 
329 	vid = pci_get_vendor(dev);
330 	did = pci_get_device(dev);
331 
332 	for (d = igb_devices; d->desc != NULL; ++d) {
333 		if (vid == d->vid && did == d->did) {
334 			device_set_desc(dev, d->desc);
335 			return 0;
336 		}
337 	}
338 	return ENXIO;
339 }
340 
341 static int
342 igb_attach(device_t dev)
343 {
344 	struct igb_softc *sc = device_get_softc(dev);
345 	uint16_t eeprom_data;
346 	int error = 0, i, j, ring_max;
347 
348 #ifdef notyet
349 	/* SYSCTL stuff */
350 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
351 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
352 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
353 	    igb_sysctl_nvm_info, "I", "NVM Information");
354 
355 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
356 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
357 	    OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
358 	    &igb_enable_aim, 1, "Interrupt Moderation");
359 
360 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
361 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
362 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
363 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
364 #endif
365 
366 	callout_init_mp(&sc->timer);
367 	lwkt_serialize_init(&sc->main_serialize);
368 
369 	sc->dev = sc->osdep.dev = dev;
370 
371 	/*
372 	 * Determine hardware and mac type
373 	 */
374 	sc->hw.vendor_id = pci_get_vendor(dev);
375 	sc->hw.device_id = pci_get_device(dev);
376 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
377 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
378 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
379 
380 	if (e1000_set_mac_type(&sc->hw))
381 		return ENXIO;
382 
383 	/* Are we a VF device? */
384 	if (sc->hw.mac.type == e1000_vfadapt ||
385 	    sc->hw.mac.type == e1000_vfadapt_i350)
386 		sc->vf_ifp = 1;
387 	else
388 		sc->vf_ifp = 0;
389 
390 	/*
391 	 * Configure total supported RX/TX ring count
392 	 */
393 	switch (sc->hw.mac.type) {
394 	case e1000_82575:
395 		ring_max = IGB_MAX_RING_82575;
396 		break;
397 	case e1000_82580:
398 		ring_max = IGB_MAX_RING_82580;
399 		break;
400 	case e1000_i350:
401 		ring_max = IGB_MAX_RING_I350;
402 		break;
403 	case e1000_82576:
404 		ring_max = IGB_MAX_RING_82576;
405 		break;
406 	default:
407 		ring_max = IGB_MIN_RING;
408 		break;
409 	}
410 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
411 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
412 #ifdef IGB_RSS_DEBUG
413 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
414 #endif
415 	sc->rx_ring_inuse = sc->rx_ring_cnt;
416 	sc->tx_ring_cnt = 1; /* XXX */
417 
418 	/* Enable bus mastering */
419 	pci_enable_busmaster(dev);
420 
421 	/*
422 	 * Allocate IO memory
423 	 */
424 	sc->mem_rid = PCIR_BAR(0);
425 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
426 	    RF_ACTIVE);
427 	if (sc->mem_res == NULL) {
428 		device_printf(dev, "Unable to allocate bus resource: memory\n");
429 		error = ENXIO;
430 		goto failed;
431 	}
432 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
433 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
434 
435 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
436 
437 	/* Save PCI command register for Shared Code */
438 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
439 	sc->hw.back = &sc->osdep;
440 
441 	/* Do Shared Code initialization */
442 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
443 		device_printf(dev, "Setup of Shared code failed\n");
444 		error = ENXIO;
445 		goto failed;
446 	}
447 
448 	e1000_get_bus_info(&sc->hw);
449 
450 	sc->hw.mac.autoneg = DO_AUTO_NEG;
451 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
452 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
453 
454 	/* Copper options */
455 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
456 		sc->hw.phy.mdix = AUTO_ALL_MODES;
457 		sc->hw.phy.disable_polarity_correction = FALSE;
458 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
459 	}
460 
461 	/* Set the frame limits assuming  standard ethernet sized frames. */
462 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
463 
464 	/* Allocate RX/TX rings */
465 	error = igb_alloc_rings(sc);
466 	if (error)
467 		goto failed;
468 
469 	/* Allocate interrupt */
470 	error = igb_alloc_intr(sc);
471 	if (error)
472 		goto failed;
473 
474 	/*
475 	 * Setup serializers
476 	 */
477 	i = 0;
478 	sc->serializes[i++] = &sc->main_serialize;
479 
480 	sc->tx_serialize = i;
481 	for (j = 0; j < sc->tx_ring_cnt; ++j)
482 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
483 
484 	sc->rx_serialize = i;
485 	for (j = 0; j < sc->rx_ring_cnt; ++j)
486 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
487 
488 	sc->serialize_cnt = i;
489 	KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
490 
491 	/* Allocate the appropriate stats memory */
492 	if (sc->vf_ifp) {
493 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
494 		    M_WAITOK | M_ZERO);
495 		igb_vf_init_stats(sc);
496 	} else {
497 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
498 		    M_WAITOK | M_ZERO);
499 	}
500 
501 	/* Allocate multicast array memory. */
502 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
503 	    M_DEVBUF, M_WAITOK);
504 
505 	/* Some adapter-specific advanced features */
506 	if (sc->hw.mac.type >= e1000_i350) {
507 #ifdef notyet
508 		igb_set_sysctl_value(adapter, "dma_coalesce",
509 		    "configure dma coalesce",
510 		    &adapter->dma_coalesce, igb_dma_coalesce);
511 		igb_set_sysctl_value(adapter, "eee_disabled",
512 		    "enable Energy Efficient Ethernet",
513 		    &adapter->hw.dev_spec._82575.eee_disable,
514 		    igb_eee_disabled);
515 #else
516 		sc->dma_coalesce = igb_dma_coalesce;
517 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
518 #endif
519 		e1000_set_eee_i350(&sc->hw);
520 	}
521 
522 	/*
523 	 * Start from a known state, this is important in reading the nvm and
524 	 * mac from that.
525 	 */
526 	e1000_reset_hw(&sc->hw);
527 
528 	/* Make sure we have a good EEPROM before we read from it */
529 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
530 		/*
531 		 * Some PCI-E parts fail the first check due to
532 		 * the link being in sleep state, call it again,
533 		 * if it fails a second time its a real issue.
534 		 */
535 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
536 			device_printf(dev,
537 			    "The EEPROM Checksum Is Not Valid\n");
538 			error = EIO;
539 			goto failed;
540 		}
541 	}
542 
543 	/* Copy the permanent MAC address out of the EEPROM */
544 	if (e1000_read_mac_addr(&sc->hw) < 0) {
545 		device_printf(dev, "EEPROM read error while reading MAC"
546 		    " address\n");
547 		error = EIO;
548 		goto failed;
549 	}
550 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
551 		device_printf(dev, "Invalid MAC address\n");
552 		error = EIO;
553 		goto failed;
554 	}
555 
556 #ifdef notyet
557 	/*
558 	** Configure Interrupts
559 	*/
560 	if ((adapter->msix > 1) && (igb_enable_msix))
561 		error = igb_allocate_msix(adapter);
562 	else /* MSI or Legacy */
563 		error = igb_allocate_legacy(adapter);
564 	if (error)
565 		goto err_late;
566 #endif
567 
568 	/* Setup OS specific network interface */
569 	igb_setup_ifp(sc);
570 
571 	/* Add sysctl tree, must after igb_setup_ifp() */
572 	igb_add_sysctl(sc);
573 
574 	/* Now get a good starting state */
575 	igb_reset(sc);
576 
577 	/* Initialize statistics */
578 	igb_update_stats_counters(sc);
579 
580 	sc->hw.mac.get_link_status = 1;
581 	igb_update_link_status(sc);
582 
583 	/* Indicate SOL/IDER usage */
584 	if (e1000_check_reset_block(&sc->hw)) {
585 		device_printf(dev,
586 		    "PHY reset is blocked due to SOL/IDER session.\n");
587 	}
588 
589 	/* Determine if we have to control management hardware */
590 	if (e1000_enable_mng_pass_thru(&sc->hw))
591 		sc->flags |= IGB_FLAG_HAS_MGMT;
592 
593 	/*
594 	 * Setup Wake-on-Lan
595 	 */
596 	/* APME bit in EEPROM is mapped to WUC.APME */
597 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
598 	if (eeprom_data)
599 		sc->wol = E1000_WUFC_MAG;
600 	/* XXX disable WOL */
601 	sc->wol = 0;
602 
603 #ifdef notyet
604 	/* Register for VLAN events */
605 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
606 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
607 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
608 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
609 #endif
610 
611 #ifdef notyet
612 	igb_add_hw_stats(adapter);
613 #endif
614 
615 	error = igb_setup_intr(sc);
616 	if (error) {
617 		ether_ifdetach(&sc->arpcom.ac_if);
618 		goto failed;
619 	}
620 	return 0;
621 
622 failed:
623 	igb_detach(dev);
624 	return error;
625 }
626 
627 static int
628 igb_detach(device_t dev)
629 {
630 	struct igb_softc *sc = device_get_softc(dev);
631 
632 	if (device_is_attached(dev)) {
633 		struct ifnet *ifp = &sc->arpcom.ac_if;
634 
635 		ifnet_serialize_all(ifp);
636 
637 		igb_stop(sc);
638 
639 		e1000_phy_hw_reset(&sc->hw);
640 
641 		/* Give control back to firmware */
642 		igb_rel_mgmt(sc);
643 		igb_rel_hw_control(sc);
644 
645 		if (sc->wol) {
646 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
647 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
648 			igb_enable_wol(dev);
649 		}
650 
651 		igb_teardown_intr(sc);
652 
653 		ifnet_deserialize_all(ifp);
654 
655 		ether_ifdetach(ifp);
656 	} else if (sc->mem_res != NULL) {
657 		igb_rel_hw_control(sc);
658 	}
659 	bus_generic_detach(dev);
660 
661 	if (sc->sysctl_tree != NULL)
662 		sysctl_ctx_free(&sc->sysctl_ctx);
663 
664 	igb_free_intr(sc);
665 
666 	if (sc->msix_mem_res != NULL) {
667 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
668 		    sc->msix_mem_res);
669 	}
670 	if (sc->mem_res != NULL) {
671 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
672 		    sc->mem_res);
673 	}
674 
675 	igb_free_rings(sc);
676 
677 	if (sc->mta != NULL)
678 		kfree(sc->mta, M_DEVBUF);
679 	if (sc->stats != NULL)
680 		kfree(sc->stats, M_DEVBUF);
681 
682 	return 0;
683 }
684 
685 static int
686 igb_shutdown(device_t dev)
687 {
688 	return igb_suspend(dev);
689 }
690 
691 static int
692 igb_suspend(device_t dev)
693 {
694 	struct igb_softc *sc = device_get_softc(dev);
695 	struct ifnet *ifp = &sc->arpcom.ac_if;
696 
697 	ifnet_serialize_all(ifp);
698 
699 	igb_stop(sc);
700 
701 	igb_rel_mgmt(sc);
702 	igb_rel_hw_control(sc);
703 
704 	if (sc->wol) {
705 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
706 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
707 		igb_enable_wol(dev);
708 	}
709 
710 	ifnet_deserialize_all(ifp);
711 
712 	return bus_generic_suspend(dev);
713 }
714 
715 static int
716 igb_resume(device_t dev)
717 {
718 	struct igb_softc *sc = device_get_softc(dev);
719 	struct ifnet *ifp = &sc->arpcom.ac_if;
720 
721 	ifnet_serialize_all(ifp);
722 
723 	igb_init(sc);
724 	igb_get_mgmt(sc);
725 
726 	if_devstart(ifp);
727 
728 	ifnet_deserialize_all(ifp);
729 
730 	return bus_generic_resume(dev);
731 }
732 
733 static int
734 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
735 {
736 	struct igb_softc *sc = ifp->if_softc;
737 	struct ifreq *ifr = (struct ifreq *)data;
738 	int max_frame_size, mask, reinit;
739 	int error = 0;
740 
741 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
742 
743 	switch (command) {
744 	case SIOCSIFMTU:
745 		max_frame_size = 9234;
746 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
747 		    ETHER_CRC_LEN) {
748 			error = EINVAL;
749 			break;
750 		}
751 
752 		ifp->if_mtu = ifr->ifr_mtu;
753 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
754 		    ETHER_CRC_LEN;
755 
756 		if (ifp->if_flags & IFF_RUNNING)
757 			igb_init(sc);
758 		break;
759 
760 	case SIOCSIFFLAGS:
761 		if (ifp->if_flags & IFF_UP) {
762 			if (ifp->if_flags & IFF_RUNNING) {
763 				if ((ifp->if_flags ^ sc->if_flags) &
764 				    (IFF_PROMISC | IFF_ALLMULTI)) {
765 					igb_disable_promisc(sc);
766 					igb_set_promisc(sc);
767 				}
768 			} else {
769 				igb_init(sc);
770 			}
771 		} else if (ifp->if_flags & IFF_RUNNING) {
772 			igb_stop(sc);
773 		}
774 		sc->if_flags = ifp->if_flags;
775 		break;
776 
777 	case SIOCADDMULTI:
778 	case SIOCDELMULTI:
779 		if (ifp->if_flags & IFF_RUNNING) {
780 			igb_disable_intr(sc);
781 			igb_set_multi(sc);
782 #ifdef DEVICE_POLLING
783 			if (!(ifp->if_flags & IFF_POLLING))
784 #endif
785 				igb_enable_intr(sc);
786 		}
787 		break;
788 
789 	case SIOCSIFMEDIA:
790 		/*
791 		 * As the speed/duplex settings are being
792 		 * changed, we need toreset the PHY.
793 		 */
794 		sc->hw.phy.reset_disable = FALSE;
795 
796 		/* Check SOL/IDER usage */
797 		if (e1000_check_reset_block(&sc->hw)) {
798 			if_printf(ifp, "Media change is "
799 			    "blocked due to SOL/IDER session.\n");
800 			break;
801 		}
802 		/* FALL THROUGH */
803 
804 	case SIOCGIFMEDIA:
805 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
806 		break;
807 
808 	case SIOCSIFCAP:
809 		reinit = 0;
810 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
811 		if (mask & IFCAP_HWCSUM) {
812 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
813 			reinit = 1;
814 		}
815 		if (mask & IFCAP_VLAN_HWTAGGING) {
816 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
817 			reinit = 1;
818 		}
819 		if (mask & IFCAP_RSS)
820 			ifp->if_capenable ^= IFCAP_RSS;
821 		if (reinit && (ifp->if_flags & IFF_RUNNING))
822 			igb_init(sc);
823 		break;
824 
825 	default:
826 		error = ether_ioctl(ifp, command, data);
827 		break;
828 	}
829 	return error;
830 }
831 
832 static void
833 igb_init(void *xsc)
834 {
835 	struct igb_softc *sc = xsc;
836 	struct ifnet *ifp = &sc->arpcom.ac_if;
837 	boolean_t polling;
838 	int i;
839 
840 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
841 
842 	igb_stop(sc);
843 
844 	/* Get the latest mac address, User can use a LAA */
845 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
846 
847 	/* Put the address into the Receive Address Array */
848 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
849 
850 	igb_reset(sc);
851 	igb_update_link_status(sc);
852 
853 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
854 
855 	/* Set hardware offload abilities */
856 	if (ifp->if_capenable & IFCAP_TXCSUM)
857 		ifp->if_hwassist = IGB_CSUM_FEATURES;
858 	else
859 		ifp->if_hwassist = 0;
860 
861 	/* Configure for OS presence */
862 	igb_get_mgmt(sc);
863 
864 	polling = FALSE;
865 #ifdef DEVICE_POLLING
866 	if (ifp->if_flags & IFF_POLLING)
867 		polling = TRUE;
868 #endif
869 
870 	/* Configured used RX/TX rings */
871 	igb_set_ring_inuse(sc, polling);
872 
873 	/* Initialize interrupt */
874 	igb_init_intr(sc);
875 
876 	/* Prepare transmit descriptors and buffers */
877 	for (i = 0; i < sc->tx_ring_cnt; ++i)
878 		igb_init_tx_ring(&sc->tx_rings[i]);
879 	igb_init_tx_unit(sc);
880 
881 	/* Setup Multicast table */
882 	igb_set_multi(sc);
883 
884 #if 0
885 	/*
886 	 * Figure out the desired mbuf pool
887 	 * for doing jumbo/packetsplit
888 	 */
889 	if (adapter->max_frame_size <= 2048)
890 		adapter->rx_mbuf_sz = MCLBYTES;
891 	else if (adapter->max_frame_size <= 4096)
892 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
893 	else
894 		adapter->rx_mbuf_sz = MJUM9BYTES;
895 #endif
896 
897 	/* Prepare receive descriptors and buffers */
898 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
899 		int error;
900 
901 		error = igb_init_rx_ring(&sc->rx_rings[i]);
902 		if (error) {
903 			if_printf(ifp, "Could not setup receive structures\n");
904 			igb_stop(sc);
905 			return;
906 		}
907 	}
908 	igb_init_rx_unit(sc);
909 
910 	/* Enable VLAN support */
911 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
912 		igb_set_vlan(sc);
913 
914 	/* Don't lose promiscuous settings */
915 	igb_set_promisc(sc);
916 
917 	ifp->if_flags |= IFF_RUNNING;
918 	ifp->if_flags &= ~IFF_OACTIVE;
919 
920 	callout_reset(&sc->timer, hz, igb_timer, sc);
921 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
922 
923 #if 0
924 	if (adapter->msix > 1) /* Set up queue routing */
925 		igb_configure_queues(adapter);
926 #endif
927 
928 	/* This clears any pending interrupts */
929 	E1000_READ_REG(&sc->hw, E1000_ICR);
930 
931 	/*
932 	 * Only enable interrupts if we are not polling, make sure
933 	 * they are off otherwise.
934 	 */
935 	if (polling) {
936 		igb_disable_intr(sc);
937 	} else {
938 		igb_enable_intr(sc);
939 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
940 	}
941 
942 	/* Set Energy Efficient Ethernet */
943 	e1000_set_eee_i350(&sc->hw);
944 
945 	/* Don't reset the phy next time init gets called */
946 	sc->hw.phy.reset_disable = TRUE;
947 }
948 
949 static void
950 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
951 {
952 	struct igb_softc *sc = ifp->if_softc;
953 	u_char fiber_type = IFM_1000_SX;
954 
955 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
956 
957 	igb_update_link_status(sc);
958 
959 	ifmr->ifm_status = IFM_AVALID;
960 	ifmr->ifm_active = IFM_ETHER;
961 
962 	if (!sc->link_active)
963 		return;
964 
965 	ifmr->ifm_status |= IFM_ACTIVE;
966 
967 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
968 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
969 		ifmr->ifm_active |= fiber_type | IFM_FDX;
970 	} else {
971 		switch (sc->link_speed) {
972 		case 10:
973 			ifmr->ifm_active |= IFM_10_T;
974 			break;
975 
976 		case 100:
977 			ifmr->ifm_active |= IFM_100_TX;
978 			break;
979 
980 		case 1000:
981 			ifmr->ifm_active |= IFM_1000_T;
982 			break;
983 		}
984 		if (sc->link_duplex == FULL_DUPLEX)
985 			ifmr->ifm_active |= IFM_FDX;
986 		else
987 			ifmr->ifm_active |= IFM_HDX;
988 	}
989 }
990 
991 static int
992 igb_media_change(struct ifnet *ifp)
993 {
994 	struct igb_softc *sc = ifp->if_softc;
995 	struct ifmedia *ifm = &sc->media;
996 
997 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
998 
999 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1000 		return EINVAL;
1001 
1002 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1003 	case IFM_AUTO:
1004 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1005 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1006 		break;
1007 
1008 	case IFM_1000_LX:
1009 	case IFM_1000_SX:
1010 	case IFM_1000_T:
1011 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1012 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1013 		break;
1014 
1015 	case IFM_100_TX:
1016 		sc->hw.mac.autoneg = FALSE;
1017 		sc->hw.phy.autoneg_advertised = 0;
1018 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1019 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1020 		else
1021 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1022 		break;
1023 
1024 	case IFM_10_T:
1025 		sc->hw.mac.autoneg = FALSE;
1026 		sc->hw.phy.autoneg_advertised = 0;
1027 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1028 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1029 		else
1030 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1031 		break;
1032 
1033 	default:
1034 		if_printf(ifp, "Unsupported media type\n");
1035 		break;
1036 	}
1037 
1038 	igb_init(sc);
1039 
1040 	return 0;
1041 }
1042 
1043 static void
1044 igb_set_promisc(struct igb_softc *sc)
1045 {
1046 	struct ifnet *ifp = &sc->arpcom.ac_if;
1047 	struct e1000_hw *hw = &sc->hw;
1048 	uint32_t reg;
1049 
1050 	if (sc->vf_ifp) {
1051 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1052 		return;
1053 	}
1054 
1055 	reg = E1000_READ_REG(hw, E1000_RCTL);
1056 	if (ifp->if_flags & IFF_PROMISC) {
1057 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1058 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1059 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1060 		reg |= E1000_RCTL_MPE;
1061 		reg &= ~E1000_RCTL_UPE;
1062 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1063 	}
1064 }
1065 
1066 static void
1067 igb_disable_promisc(struct igb_softc *sc)
1068 {
1069 	struct e1000_hw *hw = &sc->hw;
1070 	uint32_t reg;
1071 
1072 	if (sc->vf_ifp) {
1073 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1074 		return;
1075 	}
1076 	reg = E1000_READ_REG(hw, E1000_RCTL);
1077 	reg &= ~E1000_RCTL_UPE;
1078 	reg &= ~E1000_RCTL_MPE;
1079 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1080 }
1081 
1082 static void
1083 igb_set_multi(struct igb_softc *sc)
1084 {
1085 	struct ifnet *ifp = &sc->arpcom.ac_if;
1086 	struct ifmultiaddr *ifma;
1087 	uint32_t reg_rctl = 0;
1088 	uint8_t *mta;
1089 	int mcnt = 0;
1090 
1091 	mta = sc->mta;
1092 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1093 
1094 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1095 		if (ifma->ifma_addr->sa_family != AF_LINK)
1096 			continue;
1097 
1098 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1099 			break;
1100 
1101 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1102 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1103 		mcnt++;
1104 	}
1105 
1106 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1107 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1108 		reg_rctl |= E1000_RCTL_MPE;
1109 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1110 	} else {
1111 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1112 	}
1113 }
1114 
1115 static void
1116 igb_timer(void *xsc)
1117 {
1118 	struct igb_softc *sc = xsc;
1119 
1120 	lwkt_serialize_enter(&sc->main_serialize);
1121 
1122 	igb_update_link_status(sc);
1123 	igb_update_stats_counters(sc);
1124 
1125 	callout_reset(&sc->timer, hz, igb_timer, sc);
1126 
1127 	lwkt_serialize_exit(&sc->main_serialize);
1128 }
1129 
1130 static void
1131 igb_update_link_status(struct igb_softc *sc)
1132 {
1133 	struct ifnet *ifp = &sc->arpcom.ac_if;
1134 	struct e1000_hw *hw = &sc->hw;
1135 	uint32_t link_check, thstat, ctrl;
1136 
1137 	link_check = thstat = ctrl = 0;
1138 
1139 	/* Get the cached link value or read for real */
1140 	switch (hw->phy.media_type) {
1141 	case e1000_media_type_copper:
1142 		if (hw->mac.get_link_status) {
1143 			/* Do the work to read phy */
1144 			e1000_check_for_link(hw);
1145 			link_check = !hw->mac.get_link_status;
1146 		} else {
1147 			link_check = TRUE;
1148 		}
1149 		break;
1150 
1151 	case e1000_media_type_fiber:
1152 		e1000_check_for_link(hw);
1153 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1154 		break;
1155 
1156 	case e1000_media_type_internal_serdes:
1157 		e1000_check_for_link(hw);
1158 		link_check = hw->mac.serdes_has_link;
1159 		break;
1160 
1161 	/* VF device is type_unknown */
1162 	case e1000_media_type_unknown:
1163 		e1000_check_for_link(hw);
1164 		link_check = !hw->mac.get_link_status;
1165 		/* Fall thru */
1166 	default:
1167 		break;
1168 	}
1169 
1170 	/* Check for thermal downshift or shutdown */
1171 	if (hw->mac.type == e1000_i350) {
1172 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1173 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1174 	}
1175 
1176 	/* Now we check if a transition has happened */
1177 	if (link_check && sc->link_active == 0) {
1178 		e1000_get_speed_and_duplex(hw,
1179 		    &sc->link_speed, &sc->link_duplex);
1180 		if (bootverbose) {
1181 			if_printf(ifp, "Link is up %d Mbps %s\n",
1182 			    sc->link_speed,
1183 			    sc->link_duplex == FULL_DUPLEX ?
1184 			    "Full Duplex" : "Half Duplex");
1185 		}
1186 		sc->link_active = 1;
1187 
1188 		ifp->if_baudrate = sc->link_speed * 1000000;
1189 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1190 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1191 			if_printf(ifp, "Link: thermal downshift\n");
1192 		/* This can sleep */
1193 		ifp->if_link_state = LINK_STATE_UP;
1194 		if_link_state_change(ifp);
1195 	} else if (!link_check && sc->link_active == 1) {
1196 		ifp->if_baudrate = sc->link_speed = 0;
1197 		sc->link_duplex = 0;
1198 		if (bootverbose)
1199 			if_printf(ifp, "Link is Down\n");
1200 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1201 		    (thstat & E1000_THSTAT_PWR_DOWN))
1202 			if_printf(ifp, "Link: thermal shutdown\n");
1203 		sc->link_active = 0;
1204 		/* This can sleep */
1205 		ifp->if_link_state = LINK_STATE_DOWN;
1206 		if_link_state_change(ifp);
1207 	}
1208 }
1209 
1210 static void
1211 igb_stop(struct igb_softc *sc)
1212 {
1213 	struct ifnet *ifp = &sc->arpcom.ac_if;
1214 	int i;
1215 
1216 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1217 
1218 	igb_disable_intr(sc);
1219 
1220 	callout_stop(&sc->timer);
1221 
1222 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1223 	ifp->if_timer = 0;
1224 
1225 	e1000_reset_hw(&sc->hw);
1226 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1227 
1228 	e1000_led_off(&sc->hw);
1229 	e1000_cleanup_led(&sc->hw);
1230 
1231 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1232 		igb_free_tx_ring(&sc->tx_rings[i]);
1233 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1234 		igb_free_rx_ring(&sc->rx_rings[i]);
1235 }
1236 
1237 static void
1238 igb_reset(struct igb_softc *sc)
1239 {
1240 	struct ifnet *ifp = &sc->arpcom.ac_if;
1241 	struct e1000_hw *hw = &sc->hw;
1242 	struct e1000_fc_info *fc = &hw->fc;
1243 	uint32_t pba = 0;
1244 	uint16_t hwm;
1245 
1246 	/* Let the firmware know the OS is in control */
1247 	igb_get_hw_control(sc);
1248 
1249 	/*
1250 	 * Packet Buffer Allocation (PBA)
1251 	 * Writing PBA sets the receive portion of the buffer
1252 	 * the remainder is used for the transmit buffer.
1253 	 */
1254 	switch (hw->mac.type) {
1255 	case e1000_82575:
1256 		pba = E1000_PBA_32K;
1257 		break;
1258 
1259 	case e1000_82576:
1260 	case e1000_vfadapt:
1261 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1262 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1263 		break;
1264 
1265 	case e1000_82580:
1266 	case e1000_i350:
1267 	case e1000_vfadapt_i350:
1268 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1269 		pba = e1000_rxpbs_adjust_82580(pba);
1270 		break;
1271 		/* XXX pba = E1000_PBA_35K; */
1272 
1273 	default:
1274 		break;
1275 	}
1276 
1277 	/* Special needs in case of Jumbo frames */
1278 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1279 		uint32_t tx_space, min_tx, min_rx;
1280 
1281 		pba = E1000_READ_REG(hw, E1000_PBA);
1282 		tx_space = pba >> 16;
1283 		pba &= 0xffff;
1284 
1285 		min_tx = (sc->max_frame_size +
1286 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1287 		min_tx = roundup2(min_tx, 1024);
1288 		min_tx >>= 10;
1289 		min_rx = sc->max_frame_size;
1290 		min_rx = roundup2(min_rx, 1024);
1291 		min_rx >>= 10;
1292 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1293 			pba = pba - (min_tx - tx_space);
1294 			/*
1295 			 * if short on rx space, rx wins
1296 			 * and must trump tx adjustment
1297 			 */
1298 			if (pba < min_rx)
1299 				pba = min_rx;
1300 		}
1301 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1302 	}
1303 
1304 	/*
1305 	 * These parameters control the automatic generation (Tx) and
1306 	 * response (Rx) to Ethernet PAUSE frames.
1307 	 * - High water mark should allow for at least two frames to be
1308 	 *   received after sending an XOFF.
1309 	 * - Low water mark works best when it is very near the high water mark.
1310 	 *   This allows the receiver to restart by sending XON when it has
1311 	 *   drained a bit.
1312 	 */
1313 	hwm = min(((pba << 10) * 9 / 10),
1314 	    ((pba << 10) - 2 * sc->max_frame_size));
1315 
1316 	if (hw->mac.type < e1000_82576) {
1317 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1318 		fc->low_water = fc->high_water - 8;
1319 	} else {
1320 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1321 		fc->low_water = fc->high_water - 16;
1322 	}
1323 	fc->pause_time = IGB_FC_PAUSE_TIME;
1324 	fc->send_xon = TRUE;
1325 
1326 	/* Issue a global reset */
1327 	e1000_reset_hw(hw);
1328 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1329 
1330 	if (e1000_init_hw(hw) < 0)
1331 		if_printf(ifp, "Hardware Initialization Failed\n");
1332 
1333 	/* Setup DMA Coalescing */
1334 	if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1335 		uint32_t reg;
1336 
1337 		hwm = (pba - 4) << 10;
1338 		reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1339 		    & E1000_DMACR_DMACTHR_MASK;
1340 
1341 		/* transition to L0x or L1 if available..*/
1342 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1343 
1344 		/* timer = +-1000 usec in 32usec intervals */
1345 		reg |= (1000 >> 5);
1346 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1347 
1348 		/* No lower threshold */
1349 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1350 
1351 		/* set hwm to PBA -  2 * max frame size */
1352 		E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1353 
1354 		/* Set the interval before transition */
1355 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1356 		reg |= 0x800000FF; /* 255 usec */
1357 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1358 
1359 		/* free space in tx packet buffer to wake from DMA coal */
1360 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1361 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1362 
1363 		/* make low power state decision controlled by DMA coal */
1364 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1365 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1366 		    reg | E1000_PCIEMISC_LX_DECISION);
1367 		if_printf(ifp, "DMA Coalescing enabled\n");
1368 	}
1369 
1370 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1371 	e1000_get_phy_info(hw);
1372 	e1000_check_for_link(hw);
1373 }
1374 
1375 static void
1376 igb_setup_ifp(struct igb_softc *sc)
1377 {
1378 	struct ifnet *ifp = &sc->arpcom.ac_if;
1379 
1380 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
1381 	ifp->if_softc = sc;
1382 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1383 	ifp->if_init = igb_init;
1384 	ifp->if_ioctl = igb_ioctl;
1385 	ifp->if_start = igb_start;
1386 	ifp->if_serialize = igb_serialize;
1387 	ifp->if_deserialize = igb_deserialize;
1388 	ifp->if_tryserialize = igb_tryserialize;
1389 #ifdef INVARIANTS
1390 	ifp->if_serialize_assert = igb_serialize_assert;
1391 #endif
1392 #ifdef DEVICE_POLLING
1393 	ifp->if_poll = igb_poll;
1394 #endif
1395 	ifp->if_watchdog = igb_watchdog;
1396 
1397 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1398 	ifq_set_ready(&ifp->if_snd);
1399 
1400 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1401 
1402 	ifp->if_capabilities =
1403 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1404 	if (IGB_ENABLE_HWRSS(sc))
1405 		ifp->if_capabilities |= IFCAP_RSS;
1406 	ifp->if_capenable = ifp->if_capabilities;
1407 	ifp->if_hwassist = IGB_CSUM_FEATURES;
1408 
1409 	/*
1410 	 * Tell the upper layer(s) we support long frames
1411 	 */
1412 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1413 
1414 	/*
1415 	 * Specify the media types supported by this adapter and register
1416 	 * callbacks to update media and link information
1417 	 */
1418 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1419 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1420 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1421 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1422 		    0, NULL);
1423 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1424 	} else {
1425 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1426 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1427 		    0, NULL);
1428 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1429 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1430 		    0, NULL);
1431 		if (sc->hw.phy.type != e1000_phy_ife) {
1432 			ifmedia_add(&sc->media,
1433 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1434 			ifmedia_add(&sc->media,
1435 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1436 		}
1437 	}
1438 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1439 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1440 }
1441 
1442 static void
1443 igb_add_sysctl(struct igb_softc *sc)
1444 {
1445 	char node[32];
1446 	int i;
1447 
1448 	sysctl_ctx_init(&sc->sysctl_ctx);
1449 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1450 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1451 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1452 	if (sc->sysctl_tree == NULL) {
1453 		device_printf(sc->dev, "can't add sysctl node\n");
1454 		return;
1455 	}
1456 
1457 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1458 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1459 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1460 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1461 	    "# of RX rings used");
1462 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1463 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1464 	    "# of RX descs");
1465 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1466 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1467 	    "# of TX descs");
1468 
1469 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1470 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1471 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1472 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1473 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1474 	} else {
1475 		for (i = 0; i < sc->msix_cnt; ++i) {
1476 			struct igb_msix_data *msix = &sc->msix_data[i];
1477 
1478 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1479 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1480 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1481 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1482 			    msix, 0, igb_sysctl_msix_rate, "I",
1483 			    msix->msix_rate_desc);
1484 		}
1485 	}
1486 
1487 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1488 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1489 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1490 	    "# of segments per TX interrupt");
1491 
1492 #ifdef IGB_RSS_DEBUG
1493 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1494 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1495 	    "RSS debug level");
1496 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1497 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1498 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1499 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1500 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1501 	}
1502 #endif
1503 }
1504 
1505 static int
1506 igb_alloc_rings(struct igb_softc *sc)
1507 {
1508 	int error, i;
1509 
1510 	/*
1511 	 * Create top level busdma tag
1512 	 */
1513 	error = bus_dma_tag_create(NULL, 1, 0,
1514 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1515 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1516 	    &sc->parent_tag);
1517 	if (error) {
1518 		device_printf(sc->dev, "could not create top level DMA tag\n");
1519 		return error;
1520 	}
1521 
1522 	/*
1523 	 * Allocate TX descriptor rings and buffers
1524 	 */
1525 	sc->tx_rings = kmalloc(sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1526 	    M_DEVBUF, M_WAITOK | M_ZERO);
1527 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1528 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1529 
1530 		/* Set up some basics */
1531 		txr->sc = sc;
1532 		txr->me = i;
1533 		lwkt_serialize_init(&txr->tx_serialize);
1534 
1535 		error = igb_create_tx_ring(txr);
1536 		if (error)
1537 			return error;
1538 	}
1539 
1540 	/*
1541 	 * Allocate RX descriptor rings and buffers
1542 	 */
1543 	sc->rx_rings = kmalloc(sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1544 	    M_DEVBUF, M_WAITOK | M_ZERO);
1545 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1546 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1547 
1548 		/* Set up some basics */
1549 		rxr->sc = sc;
1550 		rxr->me = i;
1551 		lwkt_serialize_init(&rxr->rx_serialize);
1552 
1553 		error = igb_create_rx_ring(rxr);
1554 		if (error)
1555 			return error;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static void
1562 igb_free_rings(struct igb_softc *sc)
1563 {
1564 	int i;
1565 
1566 	if (sc->tx_rings != NULL) {
1567 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1568 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1569 
1570 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1571 		}
1572 		kfree(sc->tx_rings, M_DEVBUF);
1573 	}
1574 
1575 	if (sc->rx_rings != NULL) {
1576 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1577 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1578 
1579 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1580 		}
1581 		kfree(sc->rx_rings, M_DEVBUF);
1582 	}
1583 }
1584 
1585 static int
1586 igb_create_tx_ring(struct igb_tx_ring *txr)
1587 {
1588 	int tsize, error, i;
1589 
1590 	/*
1591 	 * Validate number of transmit descriptors. It must not exceed
1592 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1593 	 */
1594 	if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
1595 	    (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
1596 		device_printf(txr->sc->dev,
1597 		    "Using %d TX descriptors instead of %d!\n",
1598 		    IGB_DEFAULT_TXD, igb_txd);
1599 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1600 	} else {
1601 		txr->num_tx_desc = igb_txd;
1602 	}
1603 
1604 	/*
1605 	 * Allocate TX descriptor ring
1606 	 */
1607 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1608 	    IGB_DBA_ALIGN);
1609 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1610 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1611 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1612 	if (txr->txdma.dma_vaddr == NULL) {
1613 		device_printf(txr->sc->dev,
1614 		    "Unable to allocate TX Descriptor memory\n");
1615 		return ENOMEM;
1616 	}
1617 	txr->tx_base = txr->txdma.dma_vaddr;
1618 	bzero(txr->tx_base, tsize);
1619 
1620 	txr->tx_buf = kmalloc(sizeof(struct igb_tx_buf) * txr->num_tx_desc,
1621 	    M_DEVBUF, M_WAITOK | M_ZERO);
1622 
1623 	/*
1624 	 * Allocate TX head write-back buffer
1625 	 */
1626 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1627 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1628 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1629 	if (txr->tx_hdr == NULL) {
1630 		device_printf(txr->sc->dev,
1631 		    "Unable to allocate TX head write-back buffer\n");
1632 		return ENOMEM;
1633 	}
1634 
1635 	/*
1636 	 * Create DMA tag for TX buffers
1637 	 */
1638 	error = bus_dma_tag_create(txr->sc->parent_tag,
1639 	    1, 0,		/* alignment, bounds */
1640 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1641 	    BUS_SPACE_MAXADDR,	/* highaddr */
1642 	    NULL, NULL,		/* filter, filterarg */
1643 	    IGB_TSO_SIZE,	/* maxsize */
1644 	    IGB_MAX_SCATTER,	/* nsegments */
1645 	    PAGE_SIZE,		/* maxsegsize */
1646 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1647 	    BUS_DMA_ONEBPAGE,	/* flags */
1648 	    &txr->tx_tag);
1649 	if (error) {
1650 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1651 		kfree(txr->tx_buf, M_DEVBUF);
1652 		txr->tx_buf = NULL;
1653 		return error;
1654 	}
1655 
1656 	/*
1657 	 * Create DMA maps for TX buffers
1658 	 */
1659 	for (i = 0; i < txr->num_tx_desc; ++i) {
1660 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1661 
1662 		error = bus_dmamap_create(txr->tx_tag,
1663 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1664 		if (error) {
1665 			device_printf(txr->sc->dev,
1666 			    "Unable to create TX DMA map\n");
1667 			igb_destroy_tx_ring(txr, i);
1668 			return error;
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * Initialize various watermark
1674 	 */
1675 	txr->spare_desc = IGB_TX_SPARE;
1676 	txr->intr_nsegs = txr->num_tx_desc / 16;
1677 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1678 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1679 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1680 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1681 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1682 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1683 
1684 	return 0;
1685 }
1686 
1687 static void
1688 igb_free_tx_ring(struct igb_tx_ring *txr)
1689 {
1690 	int i;
1691 
1692 	for (i = 0; i < txr->num_tx_desc; ++i) {
1693 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1694 
1695 		if (txbuf->m_head != NULL) {
1696 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1697 			m_freem(txbuf->m_head);
1698 			txbuf->m_head = NULL;
1699 		}
1700 	}
1701 }
1702 
1703 static void
1704 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1705 {
1706 	int i;
1707 
1708 	if (txr->txdma.dma_vaddr != NULL) {
1709 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1710 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1711 		    txr->txdma.dma_map);
1712 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1713 		txr->txdma.dma_vaddr = NULL;
1714 	}
1715 
1716 	if (txr->tx_hdr != NULL) {
1717 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1718 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1719 		    txr->tx_hdr_dmap);
1720 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1721 		txr->tx_hdr = NULL;
1722 	}
1723 
1724 	if (txr->tx_buf == NULL)
1725 		return;
1726 
1727 	for (i = 0; i < ndesc; ++i) {
1728 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1729 
1730 		KKASSERT(txbuf->m_head == NULL);
1731 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1732 	}
1733 	bus_dma_tag_destroy(txr->tx_tag);
1734 
1735 	kfree(txr->tx_buf, M_DEVBUF);
1736 	txr->tx_buf = NULL;
1737 }
1738 
1739 static void
1740 igb_init_tx_ring(struct igb_tx_ring *txr)
1741 {
1742 	/* Clear the old descriptor contents */
1743 	bzero(txr->tx_base,
1744 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1745 
1746 	/* Clear TX head write-back buffer */
1747 	*(txr->tx_hdr) = 0;
1748 
1749 	/* Reset indices */
1750 	txr->next_avail_desc = 0;
1751 	txr->next_to_clean = 0;
1752 	txr->tx_nsegs = 0;
1753 
1754 	/* Set number of descriptors available */
1755 	txr->tx_avail = txr->num_tx_desc;
1756 }
1757 
1758 static void
1759 igb_init_tx_unit(struct igb_softc *sc)
1760 {
1761 	struct e1000_hw *hw = &sc->hw;
1762 	uint32_t tctl;
1763 	int i;
1764 
1765 	/* Setup the Tx Descriptor Rings */
1766 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1767 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1768 		uint64_t bus_addr = txr->txdma.dma_paddr;
1769 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1770 		uint32_t txdctl = 0;
1771 		uint32_t dca_txctrl;
1772 
1773 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1774 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1775 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1776 		    (uint32_t)(bus_addr >> 32));
1777 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1778 		    (uint32_t)bus_addr);
1779 
1780 		/* Setup the HW Tx Head and Tail descriptor pointers */
1781 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1782 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1783 
1784 		/*
1785 		 * WTHRESH is ignored by the hardware, since header
1786 		 * write back mode is used.
1787 		 */
1788 		txdctl |= IGB_TX_PTHRESH;
1789 		txdctl |= IGB_TX_HTHRESH << 8;
1790 		txdctl |= IGB_TX_WTHRESH << 16;
1791 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1792 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1793 
1794 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1795 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1796 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1797 
1798 		/*
1799 		 * Don't set WB_on_EITR:
1800 		 * - 82575 does not have it
1801 		 * - It almost has no effect on 82576, see:
1802 		 *   82576 specification update errata #26
1803 		 * - It causes unnecessary bus traffic
1804 		 */
1805 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1806 		    (uint32_t)(hdr_paddr >> 32));
1807 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1808 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1809 	}
1810 
1811 	if (sc->vf_ifp)
1812 		return;
1813 
1814 	e1000_config_collision_dist(hw);
1815 
1816 	/* Program the Transmit Control Register */
1817 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1818 	tctl &= ~E1000_TCTL_CT;
1819 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1820 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1821 
1822 	/* This write will effectively turn on the transmit unit. */
1823 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1824 }
1825 
1826 static boolean_t
1827 igb_txctx(struct igb_tx_ring *txr, struct mbuf *mp)
1828 {
1829 	struct e1000_adv_tx_context_desc *TXD;
1830 	struct igb_tx_buf *txbuf;
1831 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1832 	struct ether_vlan_header *eh;
1833 	struct ip *ip = NULL;
1834 	int ehdrlen, ctxd, ip_hlen = 0;
1835 	uint16_t etype, vlantag = 0;
1836 	boolean_t offload = TRUE;
1837 
1838 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1839 		offload = FALSE;
1840 
1841 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1842 	ctxd = txr->next_avail_desc;
1843 	txbuf = &txr->tx_buf[ctxd];
1844 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1845 
1846 	/*
1847 	 * In advanced descriptors the vlan tag must
1848 	 * be placed into the context descriptor, thus
1849 	 * we need to be here just for that setup.
1850 	 */
1851 	if (mp->m_flags & M_VLANTAG) {
1852 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1853 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1854 	} else if (!offload) {
1855 		return FALSE;
1856 	}
1857 
1858 	/*
1859 	 * Determine where frame payload starts.
1860 	 * Jump over vlan headers if already present,
1861 	 * helpful for QinQ too.
1862 	 */
1863 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
1864 	    ("igb_txctx_pullup is not called (eh)?\n"));
1865 	eh = mtod(mp, struct ether_vlan_header *);
1866 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1867 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
1868 		    ("igb_txctx_pullup is not called (evh)?\n"));
1869 		etype = ntohs(eh->evl_proto);
1870 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
1871 	} else {
1872 		etype = ntohs(eh->evl_encap_proto);
1873 		ehdrlen = ETHER_HDR_LEN;
1874 	}
1875 
1876 	/* Set the ether header length */
1877 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1878 
1879 	switch (etype) {
1880 	case ETHERTYPE_IP:
1881 		KASSERT(mp->m_len >= ehdrlen + IGB_IPVHL_SIZE,
1882 		    ("igb_txctx_pullup is not called (eh+ip_vhl)?\n"));
1883 
1884 		/* NOTE: We could only safely access ip.ip_vhl part */
1885 		ip = (struct ip *)(mp->m_data + ehdrlen);
1886 		ip_hlen = ip->ip_hl << 2;
1887 
1888 		if (mp->m_pkthdr.csum_flags & CSUM_IP)
1889 			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1890 		break;
1891 
1892 #ifdef notyet
1893 	case ETHERTYPE_IPV6:
1894 		ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
1895 		ip_hlen = sizeof(struct ip6_hdr);
1896 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
1897 		break;
1898 #endif
1899 
1900 	default:
1901 		offload = FALSE;
1902 		break;
1903 	}
1904 
1905 	vlan_macip_lens |= ip_hlen;
1906 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1907 
1908 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1909 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1910 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1911 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1912 
1913 	/* 82575 needs the queue index added */
1914 	if (txr->sc->hw.mac.type == e1000_82575)
1915 		mss_l4len_idx = txr->me << 4;
1916 
1917 	/* Now copy bits into descriptor */
1918 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1919 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1920 	TXD->seqnum_seed = htole32(0);
1921 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1922 
1923 	txbuf->m_head = NULL;
1924 
1925 	/* We've consumed the first desc, adjust counters */
1926 	if (++ctxd == txr->num_tx_desc)
1927 		ctxd = 0;
1928 	txr->next_avail_desc = ctxd;
1929 	--txr->tx_avail;
1930 
1931 	return offload;
1932 }
1933 
1934 static void
1935 igb_txeof(struct igb_tx_ring *txr)
1936 {
1937 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1938 	int first, hdr, avail;
1939 
1940 	if (txr->tx_avail == txr->num_tx_desc)
1941 		return;
1942 
1943 	first = txr->next_to_clean;
1944 	hdr = *(txr->tx_hdr);
1945 
1946 	if (first == hdr)
1947 		return;
1948 
1949 	avail = txr->tx_avail;
1950 	while (first != hdr) {
1951 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1952 
1953 		++avail;
1954 		if (txbuf->m_head) {
1955 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1956 			m_freem(txbuf->m_head);
1957 			txbuf->m_head = NULL;
1958 			++ifp->if_opackets;
1959 		}
1960 		if (++first == txr->num_tx_desc)
1961 			first = 0;
1962 	}
1963 	txr->next_to_clean = first;
1964 	txr->tx_avail = avail;
1965 
1966 	/*
1967 	 * If we have a minimum free, clear IFF_OACTIVE
1968 	 * to tell the stack that it is OK to send packets.
1969 	 */
1970 	if (IGB_IS_NOT_OACTIVE(txr)) {
1971 		ifp->if_flags &= ~IFF_OACTIVE;
1972 
1973 		/*
1974 		 * We have enough TX descriptors, turn off
1975 		 * the watchdog.  We allow small amount of
1976 		 * packets (roughly intr_nsegs) pending on
1977 		 * the transmit ring.
1978 		 */
1979 		ifp->if_timer = 0;
1980 	}
1981 }
1982 
1983 static int
1984 igb_create_rx_ring(struct igb_rx_ring *rxr)
1985 {
1986 	int rsize, i, error;
1987 
1988 	/*
1989 	 * Validate number of receive descriptors. It must not exceed
1990 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1991 	 */
1992 	if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
1993 	    (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
1994 		device_printf(rxr->sc->dev,
1995 		    "Using %d RX descriptors instead of %d!\n",
1996 		    IGB_DEFAULT_RXD, igb_rxd);
1997 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
1998 	} else {
1999 		rxr->num_rx_desc = igb_rxd;
2000 	}
2001 
2002 	/*
2003 	 * Allocate RX descriptor ring
2004 	 */
2005 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2006 	    IGB_DBA_ALIGN);
2007 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2008 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2009 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2010 	    &rxr->rxdma.dma_paddr);
2011 	if (rxr->rxdma.dma_vaddr == NULL) {
2012 		device_printf(rxr->sc->dev,
2013 		    "Unable to allocate RxDescriptor memory\n");
2014 		return ENOMEM;
2015 	}
2016 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2017 	bzero(rxr->rx_base, rsize);
2018 
2019 	rxr->rx_buf = kmalloc(sizeof(struct igb_rx_buf) * rxr->num_rx_desc,
2020 	    M_DEVBUF, M_WAITOK | M_ZERO);
2021 
2022 	/*
2023 	 * Create DMA tag for RX buffers
2024 	 */
2025 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2026 	    1, 0,		/* alignment, bounds */
2027 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2028 	    BUS_SPACE_MAXADDR,	/* highaddr */
2029 	    NULL, NULL,		/* filter, filterarg */
2030 	    MCLBYTES,		/* maxsize */
2031 	    1,			/* nsegments */
2032 	    MCLBYTES,		/* maxsegsize */
2033 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2034 	    &rxr->rx_tag);
2035 	if (error) {
2036 		device_printf(rxr->sc->dev,
2037 		    "Unable to create RX payload DMA tag\n");
2038 		kfree(rxr->rx_buf, M_DEVBUF);
2039 		rxr->rx_buf = NULL;
2040 		return error;
2041 	}
2042 
2043 	/*
2044 	 * Create spare DMA map for RX buffers
2045 	 */
2046 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2047 	    &rxr->rx_sparemap);
2048 	if (error) {
2049 		device_printf(rxr->sc->dev,
2050 		    "Unable to create spare RX DMA maps\n");
2051 		bus_dma_tag_destroy(rxr->rx_tag);
2052 		kfree(rxr->rx_buf, M_DEVBUF);
2053 		rxr->rx_buf = NULL;
2054 		return error;
2055 	}
2056 
2057 	/*
2058 	 * Create DMA maps for RX buffers
2059 	 */
2060 	for (i = 0; i < rxr->num_rx_desc; i++) {
2061 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2062 
2063 		error = bus_dmamap_create(rxr->rx_tag,
2064 		    BUS_DMA_WAITOK, &rxbuf->map);
2065 		if (error) {
2066 			device_printf(rxr->sc->dev,
2067 			    "Unable to create RX DMA maps\n");
2068 			igb_destroy_rx_ring(rxr, i);
2069 			return error;
2070 		}
2071 	}
2072 	return 0;
2073 }
2074 
2075 static void
2076 igb_free_rx_ring(struct igb_rx_ring *rxr)
2077 {
2078 	int i;
2079 
2080 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2081 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2082 
2083 		if (rxbuf->m_head != NULL) {
2084 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2085 			m_freem(rxbuf->m_head);
2086 			rxbuf->m_head = NULL;
2087 		}
2088 	}
2089 
2090 	if (rxr->fmp != NULL)
2091 		m_freem(rxr->fmp);
2092 	rxr->fmp = NULL;
2093 	rxr->lmp = NULL;
2094 }
2095 
2096 static void
2097 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2098 {
2099 	int i;
2100 
2101 	if (rxr->rxdma.dma_vaddr != NULL) {
2102 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2103 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2104 		    rxr->rxdma.dma_map);
2105 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2106 		rxr->rxdma.dma_vaddr = NULL;
2107 	}
2108 
2109 	if (rxr->rx_buf == NULL)
2110 		return;
2111 
2112 	for (i = 0; i < ndesc; ++i) {
2113 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2114 
2115 		KKASSERT(rxbuf->m_head == NULL);
2116 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2117 	}
2118 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2119 	bus_dma_tag_destroy(rxr->rx_tag);
2120 
2121 	kfree(rxr->rx_buf, M_DEVBUF);
2122 	rxr->rx_buf = NULL;
2123 }
2124 
2125 static void
2126 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2127 {
2128 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2129 	rxd->wb.upper.status_error = 0;
2130 }
2131 
2132 static int
2133 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2134 {
2135 	struct mbuf *m;
2136 	bus_dma_segment_t seg;
2137 	bus_dmamap_t map;
2138 	struct igb_rx_buf *rxbuf;
2139 	int error, nseg;
2140 
2141 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2142 	if (m == NULL) {
2143 		if (wait) {
2144 			if_printf(&rxr->sc->arpcom.ac_if,
2145 			    "Unable to allocate RX mbuf\n");
2146 		}
2147 		return ENOBUFS;
2148 	}
2149 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2150 
2151 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2152 		m_adj(m, ETHER_ALIGN);
2153 
2154 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2155 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2156 	if (error) {
2157 		m_freem(m);
2158 		if (wait) {
2159 			if_printf(&rxr->sc->arpcom.ac_if,
2160 			    "Unable to load RX mbuf\n");
2161 		}
2162 		return error;
2163 	}
2164 
2165 	rxbuf = &rxr->rx_buf[i];
2166 	if (rxbuf->m_head != NULL)
2167 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2168 
2169 	map = rxbuf->map;
2170 	rxbuf->map = rxr->rx_sparemap;
2171 	rxr->rx_sparemap = map;
2172 
2173 	rxbuf->m_head = m;
2174 	rxbuf->paddr = seg.ds_addr;
2175 
2176 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2177 	return 0;
2178 }
2179 
2180 static int
2181 igb_init_rx_ring(struct igb_rx_ring *rxr)
2182 {
2183 	int i;
2184 
2185 	/* Clear the ring contents */
2186 	bzero(rxr->rx_base,
2187 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2188 
2189 	/* Now replenish the ring mbufs */
2190 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2191 		int error;
2192 
2193 		error = igb_newbuf(rxr, i, TRUE);
2194 		if (error)
2195 			return error;
2196 	}
2197 
2198 	/* Setup our descriptor indices */
2199 	rxr->next_to_check = 0;
2200 
2201 	rxr->fmp = NULL;
2202 	rxr->lmp = NULL;
2203 	rxr->discard = FALSE;
2204 
2205 	return 0;
2206 }
2207 
2208 static void
2209 igb_init_rx_unit(struct igb_softc *sc)
2210 {
2211 	struct ifnet *ifp = &sc->arpcom.ac_if;
2212 	struct e1000_hw *hw = &sc->hw;
2213 	uint32_t rctl, rxcsum, srrctl = 0;
2214 	int i;
2215 
2216 	/*
2217 	 * Make sure receives are disabled while setting
2218 	 * up the descriptor ring
2219 	 */
2220 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2221 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2222 
2223 #if 0
2224 	/*
2225 	** Set up for header split
2226 	*/
2227 	if (igb_header_split) {
2228 		/* Use a standard mbuf for the header */
2229 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2230 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2231 	} else
2232 #endif
2233 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2234 
2235 	/*
2236 	** Set up for jumbo frames
2237 	*/
2238 	if (ifp->if_mtu > ETHERMTU) {
2239 		rctl |= E1000_RCTL_LPE;
2240 #if 0
2241 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2242 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2243 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2244 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2245 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2246 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2247 		}
2248 		/* Set maximum packet len */
2249 		psize = adapter->max_frame_size;
2250 		/* are we on a vlan? */
2251 		if (adapter->ifp->if_vlantrunk != NULL)
2252 			psize += VLAN_TAG_SIZE;
2253 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2254 #else
2255 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2256 		rctl |= E1000_RCTL_SZ_2048;
2257 #endif
2258 	} else {
2259 		rctl &= ~E1000_RCTL_LPE;
2260 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2261 		rctl |= E1000_RCTL_SZ_2048;
2262 	}
2263 
2264 	/* Setup the Base and Length of the Rx Descriptor Rings */
2265 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2266 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2267 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2268 		uint32_t rxdctl;
2269 
2270 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2271 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2272 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2273 		    (uint32_t)(bus_addr >> 32));
2274 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2275 		    (uint32_t)bus_addr);
2276 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2277 		/* Enable this Queue */
2278 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2279 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2280 		rxdctl &= 0xFFF00000;
2281 		rxdctl |= IGB_RX_PTHRESH;
2282 		rxdctl |= IGB_RX_HTHRESH << 8;
2283 		/*
2284 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2285 		 * 82576 specification update errata #26
2286 		 */
2287 		rxdctl |= IGB_RX_WTHRESH << 16;
2288 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2289 	}
2290 
2291 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2292 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2293 
2294 	/*
2295 	 * Receive Checksum Offload for TCP and UDP
2296 	 *
2297 	 * Checksum offloading is also enabled if multiple receive
2298 	 * queue is to be supported, since we need it to figure out
2299 	 * fragments.
2300 	 */
2301 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2302 		/*
2303 		 * NOTE:
2304 		 * PCSD must be enabled to enable multiple
2305 		 * receive queues.
2306 		 */
2307 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2308 		    E1000_RXCSUM_PCSD;
2309 	} else {
2310 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2311 		    E1000_RXCSUM_PCSD);
2312 	}
2313 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2314 
2315 	if (IGB_ENABLE_HWRSS(sc)) {
2316 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2317 		uint32_t reta_shift;
2318 		int j, r;
2319 
2320 		/*
2321 		 * NOTE:
2322 		 * When we reach here, RSS has already been disabled
2323 		 * in igb_stop(), so we could safely configure RSS key
2324 		 * and redirect table.
2325 		 */
2326 
2327 		/*
2328 		 * Configure RSS key
2329 		 */
2330 		toeplitz_get_key(key, sizeof(key));
2331 		for (i = 0; i < IGB_NRSSRK; ++i) {
2332 			uint32_t rssrk;
2333 
2334 			rssrk = IGB_RSSRK_VAL(key, i);
2335 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2336 
2337 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2338 		}
2339 
2340 		/*
2341 		 * Configure RSS redirect table in following fashion:
2342 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2343 		 */
2344 		reta_shift = IGB_RETA_SHIFT;
2345 		if (hw->mac.type == e1000_82575)
2346 			reta_shift = IGB_RETA_SHIFT_82575;
2347 
2348 		r = 0;
2349 		for (j = 0; j < IGB_NRETA; ++j) {
2350 			uint32_t reta = 0;
2351 
2352 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2353 				uint32_t q;
2354 
2355 				q = (r % sc->rx_ring_inuse) << reta_shift;
2356 				reta |= q << (8 * i);
2357 				++r;
2358 			}
2359 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2360 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2361 		}
2362 
2363 		/*
2364 		 * Enable multiple receive queues.
2365 		 * Enable IPv4 RSS standard hash functions.
2366 		 * Disable RSS interrupt on 82575
2367 		 */
2368 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2369 				E1000_MRQC_ENABLE_RSS_4Q |
2370 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2371 				E1000_MRQC_RSS_FIELD_IPV4);
2372 	}
2373 
2374 	/* Setup the Receive Control Register */
2375 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2376 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2377 	    E1000_RCTL_RDMTS_HALF |
2378 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2379 	/* Strip CRC bytes. */
2380 	rctl |= E1000_RCTL_SECRC;
2381 	/* Make sure VLAN Filters are off */
2382 	rctl &= ~E1000_RCTL_VFE;
2383 	/* Don't store bad packets */
2384 	rctl &= ~E1000_RCTL_SBP;
2385 
2386 	/* Enable Receives */
2387 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2388 
2389 	/*
2390 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2391 	 *   - needs to be after enable
2392 	 */
2393 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2394 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2395 
2396 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2397 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2398 	}
2399 }
2400 
2401 static void
2402 igb_rxeof(struct igb_rx_ring *rxr, int count)
2403 {
2404 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2405 	union e1000_adv_rx_desc	*cur;
2406 	uint32_t staterr;
2407 	int i;
2408 
2409 	i = rxr->next_to_check;
2410 	cur = &rxr->rx_base[i];
2411 	staterr = le32toh(cur->wb.upper.status_error);
2412 
2413 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2414 		return;
2415 
2416 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2417 		struct pktinfo *pi = NULL, pi0;
2418 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2419 		struct mbuf *m = NULL;
2420 		boolean_t eop;
2421 
2422 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2423 		if (eop)
2424 			--count;
2425 
2426 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2427 		    !rxr->discard) {
2428 			struct mbuf *mp = rxbuf->m_head;
2429 			uint32_t hash, hashtype;
2430 			uint16_t vlan;
2431 			int len;
2432 
2433 			len = le16toh(cur->wb.upper.length);
2434 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2435 			    (staterr & E1000_RXDEXT_STATERR_LB))
2436 				vlan = be16toh(cur->wb.upper.vlan);
2437 			else
2438 				vlan = le16toh(cur->wb.upper.vlan);
2439 
2440 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2441 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2442 			    E1000_RXDADV_RSSTYPE_MASK;
2443 
2444 			IGB_RSS_DPRINTF(rxr->sc, 10,
2445 			    "ring%d, hash 0x%08x, hashtype %u\n",
2446 			    rxr->me, hash, hashtype);
2447 
2448 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2449 			    BUS_DMASYNC_POSTREAD);
2450 
2451 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2452 				ifp->if_iqdrops++;
2453 				goto discard;
2454 			}
2455 
2456 			mp->m_len = len;
2457 			if (rxr->fmp == NULL) {
2458 				mp->m_pkthdr.len = len;
2459 				rxr->fmp = mp;
2460 				rxr->lmp = mp;
2461 			} else {
2462 				rxr->lmp->m_next = mp;
2463 				rxr->lmp = rxr->lmp->m_next;
2464 				rxr->fmp->m_pkthdr.len += len;
2465 			}
2466 
2467 			if (eop) {
2468 				m = rxr->fmp;
2469 				rxr->fmp = NULL;
2470 				rxr->lmp = NULL;
2471 
2472 				m->m_pkthdr.rcvif = ifp;
2473 				ifp->if_ipackets++;
2474 
2475 				if (ifp->if_capenable & IFCAP_RXCSUM)
2476 					igb_rxcsum(staterr, m);
2477 
2478 				if (staterr & E1000_RXD_STAT_VP) {
2479 					m->m_pkthdr.ether_vlantag = vlan;
2480 					m->m_flags |= M_VLANTAG;
2481 				}
2482 
2483 				if (ifp->if_capenable & IFCAP_RSS) {
2484 					pi = igb_rssinfo(m, &pi0,
2485 					    hash, hashtype, staterr);
2486 				}
2487 #ifdef IGB_RSS_DEBUG
2488 				rxr->rx_packets++;
2489 #endif
2490 			}
2491 		} else {
2492 			ifp->if_ierrors++;
2493 discard:
2494 			igb_setup_rxdesc(cur, rxbuf);
2495 			if (!eop)
2496 				rxr->discard = TRUE;
2497 			else
2498 				rxr->discard = FALSE;
2499 			if (rxr->fmp != NULL) {
2500 				m_freem(rxr->fmp);
2501 				rxr->fmp = NULL;
2502 				rxr->lmp = NULL;
2503 			}
2504 			m = NULL;
2505 		}
2506 
2507 		if (m != NULL)
2508 			ether_input_pkt(ifp, m, pi);
2509 
2510 		/* Advance our pointers to the next descriptor. */
2511 		if (++i == rxr->num_rx_desc)
2512 			i = 0;
2513 
2514 		cur = &rxr->rx_base[i];
2515 		staterr = le32toh(cur->wb.upper.status_error);
2516 	}
2517 	rxr->next_to_check = i;
2518 
2519 	if (--i < 0)
2520 		i = rxr->num_rx_desc - 1;
2521 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2522 }
2523 
2524 
2525 static void
2526 igb_set_vlan(struct igb_softc *sc)
2527 {
2528 	struct e1000_hw *hw = &sc->hw;
2529 	uint32_t reg;
2530 #if 0
2531 	struct ifnet *ifp = sc->arpcom.ac_if;
2532 #endif
2533 
2534 	if (sc->vf_ifp) {
2535 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2536 		return;
2537 	}
2538 
2539 	reg = E1000_READ_REG(hw, E1000_CTRL);
2540 	reg |= E1000_CTRL_VME;
2541 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2542 
2543 #if 0
2544 	/* Enable the Filter Table */
2545 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2546 		reg = E1000_READ_REG(hw, E1000_RCTL);
2547 		reg &= ~E1000_RCTL_CFIEN;
2548 		reg |= E1000_RCTL_VFE;
2549 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2550 	}
2551 #endif
2552 
2553 	/* Update the frame size */
2554 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2555 	    sc->max_frame_size + VLAN_TAG_SIZE);
2556 
2557 #if 0
2558 	/* Don't bother with table if no vlans */
2559 	if ((adapter->num_vlans == 0) ||
2560 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2561 		return;
2562 	/*
2563 	** A soft reset zero's out the VFTA, so
2564 	** we need to repopulate it now.
2565 	*/
2566 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2567 		if (adapter->shadow_vfta[i] != 0) {
2568 			if (adapter->vf_ifp)
2569 				e1000_vfta_set_vf(hw,
2570 				    adapter->shadow_vfta[i], TRUE);
2571 			else
2572 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2573 				 i, adapter->shadow_vfta[i]);
2574 		}
2575 #endif
2576 }
2577 
2578 static void
2579 igb_enable_intr(struct igb_softc *sc)
2580 {
2581 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2582 		lwkt_serialize_handler_enable(&sc->main_serialize);
2583 	} else {
2584 		int i;
2585 
2586 		for (i = 0; i < sc->msix_cnt; ++i) {
2587 			lwkt_serialize_handler_enable(
2588 			    sc->msix_data[i].msix_serialize);
2589 		}
2590 	}
2591 
2592 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2593 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2594 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2595 		else
2596 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2597 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2598 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2599 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2600 	} else {
2601 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2602 	}
2603 	E1000_WRITE_FLUSH(&sc->hw);
2604 }
2605 
2606 static void
2607 igb_disable_intr(struct igb_softc *sc)
2608 {
2609 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2610 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2611 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2612 	}
2613 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2614 	E1000_WRITE_FLUSH(&sc->hw);
2615 
2616 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2617 		lwkt_serialize_handler_disable(&sc->main_serialize);
2618 	} else {
2619 		int i;
2620 
2621 		for (i = 0; i < sc->msix_cnt; ++i) {
2622 			lwkt_serialize_handler_disable(
2623 			    sc->msix_data[i].msix_serialize);
2624 		}
2625 	}
2626 }
2627 
2628 /*
2629  * Bit of a misnomer, what this really means is
2630  * to enable OS management of the system... aka
2631  * to disable special hardware management features
2632  */
2633 static void
2634 igb_get_mgmt(struct igb_softc *sc)
2635 {
2636 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2637 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2638 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2639 
2640 		/* disable hardware interception of ARP */
2641 		manc &= ~E1000_MANC_ARP_EN;
2642 
2643 		/* enable receiving management packets to the host */
2644 		manc |= E1000_MANC_EN_MNG2HOST;
2645 		manc2h |= 1 << 5; /* Mng Port 623 */
2646 		manc2h |= 1 << 6; /* Mng Port 664 */
2647 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2648 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2649 	}
2650 }
2651 
2652 /*
2653  * Give control back to hardware management controller
2654  * if there is one.
2655  */
2656 static void
2657 igb_rel_mgmt(struct igb_softc *sc)
2658 {
2659 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2660 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2661 
2662 		/* Re-enable hardware interception of ARP */
2663 		manc |= E1000_MANC_ARP_EN;
2664 		manc &= ~E1000_MANC_EN_MNG2HOST;
2665 
2666 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2667 	}
2668 }
2669 
2670 /*
2671  * Sets CTRL_EXT:DRV_LOAD bit.
2672  *
2673  * For ASF and Pass Through versions of f/w this means that
2674  * the driver is loaded.
2675  */
2676 static void
2677 igb_get_hw_control(struct igb_softc *sc)
2678 {
2679 	uint32_t ctrl_ext;
2680 
2681 	if (sc->vf_ifp)
2682 		return;
2683 
2684 	/* Let firmware know the driver has taken over */
2685 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2686 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2687 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2688 }
2689 
2690 /*
2691  * Resets CTRL_EXT:DRV_LOAD bit.
2692  *
2693  * For ASF and Pass Through versions of f/w this means that the
2694  * driver is no longer loaded.
2695  */
2696 static void
2697 igb_rel_hw_control(struct igb_softc *sc)
2698 {
2699 	uint32_t ctrl_ext;
2700 
2701 	if (sc->vf_ifp)
2702 		return;
2703 
2704 	/* Let firmware taken over control of h/w */
2705 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2706 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2707 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2708 }
2709 
2710 static int
2711 igb_is_valid_ether_addr(const uint8_t *addr)
2712 {
2713 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2714 
2715 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2716 		return FALSE;
2717 	return TRUE;
2718 }
2719 
2720 /*
2721  * Enable PCI Wake On Lan capability
2722  */
2723 static void
2724 igb_enable_wol(device_t dev)
2725 {
2726 	uint16_t cap, status;
2727 	uint8_t id;
2728 
2729 	/* First find the capabilities pointer*/
2730 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2731 
2732 	/* Read the PM Capabilities */
2733 	id = pci_read_config(dev, cap, 1);
2734 	if (id != PCIY_PMG)     /* Something wrong */
2735 		return;
2736 
2737 	/*
2738 	 * OK, we have the power capabilities,
2739 	 * so now get the status register
2740 	 */
2741 	cap += PCIR_POWER_STATUS;
2742 	status = pci_read_config(dev, cap, 2);
2743 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2744 	pci_write_config(dev, cap, status, 2);
2745 }
2746 
2747 static void
2748 igb_update_stats_counters(struct igb_softc *sc)
2749 {
2750 	struct e1000_hw *hw = &sc->hw;
2751 	struct e1000_hw_stats *stats;
2752 	struct ifnet *ifp = &sc->arpcom.ac_if;
2753 
2754 	/*
2755 	 * The virtual function adapter has only a
2756 	 * small controlled set of stats, do only
2757 	 * those and return.
2758 	 */
2759 	if (sc->vf_ifp) {
2760 		igb_update_vf_stats_counters(sc);
2761 		return;
2762 	}
2763 	stats = sc->stats;
2764 
2765 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2766 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2767 		stats->symerrs +=
2768 		    E1000_READ_REG(hw,E1000_SYMERRS);
2769 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2770 	}
2771 
2772 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2773 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2774 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2775 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2776 
2777 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2778 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2779 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2780 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2781 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2782 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2783 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2784 
2785 	/*
2786 	 * For watchdog management we need to know if we have been
2787 	 * paused during the last interval, so capture that here.
2788 	 */
2789 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2790 	stats->xoffrxc += sc->pause_frames;
2791 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2792 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2793 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2794 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2795 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2796 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2797 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2798 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2799 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2800 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2801 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2802 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2803 
2804 	/* For the 64-bit byte counters the low dword must be read first. */
2805 	/* Both registers clear on the read of the high dword */
2806 
2807 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2808 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2809 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2810 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2811 
2812 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2813 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2814 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2815 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2816 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2817 
2818 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2819 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2820 
2821 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2822 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2823 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2824 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2825 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2826 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2827 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2828 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2829 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2830 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2831 
2832 	/* Interrupt Counts */
2833 
2834 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
2835 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2836 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2837 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2838 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2839 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2840 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2841 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2842 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2843 
2844 	/* Host to Card Statistics */
2845 
2846 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2847 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2848 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2849 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2850 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2851 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2852 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2853 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2854 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2855 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2856 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2857 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2858 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2859 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2860 
2861 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2862 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2863 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2864 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2865 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2866 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2867 
2868 	ifp->if_collisions = stats->colc;
2869 
2870 	/* Rx Errors */
2871 	ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2872 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2873 
2874 	/* Tx Errors */
2875 	ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2876 
2877 	/* Driver specific counters */
2878 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2879 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2880 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2881 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2882 	sc->packet_buf_alloc_tx =
2883 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2884 	sc->packet_buf_alloc_rx =
2885 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2886 }
2887 
2888 static void
2889 igb_vf_init_stats(struct igb_softc *sc)
2890 {
2891 	struct e1000_hw *hw = &sc->hw;
2892 	struct e1000_vf_stats *stats;
2893 
2894 	stats = sc->stats;
2895 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2896 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2897 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2898 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2899 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2900 }
2901 
2902 static void
2903 igb_update_vf_stats_counters(struct igb_softc *sc)
2904 {
2905 	struct e1000_hw *hw = &sc->hw;
2906 	struct e1000_vf_stats *stats;
2907 
2908 	if (sc->link_speed == 0)
2909 		return;
2910 
2911 	stats = sc->stats;
2912 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2913 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2914 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2915 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2916 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2917 }
2918 
2919 #ifdef DEVICE_POLLING
2920 
2921 static void
2922 igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2923 {
2924 	struct igb_softc *sc = ifp->if_softc;
2925 	uint32_t reg_icr;
2926 
2927 	switch (cmd) {
2928 	case POLL_REGISTER:
2929 	case POLL_DEREGISTER:
2930 		ASSERT_IFNET_SERIALIZED_ALL(ifp);
2931 		igb_init(sc);
2932 		break;
2933 
2934 	case POLL_AND_CHECK_STATUS:
2935 		ASSERT_SERIALIZED(&sc->main_serialize);
2936 		reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2937 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2938 			sc->hw.mac.get_link_status = 1;
2939 			igb_update_link_status(sc);
2940 		}
2941 		/* FALL THROUGH */
2942 	case POLL_ONLY:
2943 		ASSERT_SERIALIZED(&sc->main_serialize);
2944 		if (ifp->if_flags & IFF_RUNNING) {
2945 			struct igb_tx_ring *txr;
2946 			int i;
2947 
2948 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
2949 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
2950 
2951 				lwkt_serialize_enter(&rxr->rx_serialize);
2952 				igb_rxeof(rxr, count);
2953 				lwkt_serialize_exit(&rxr->rx_serialize);
2954 			}
2955 
2956 			txr = &sc->tx_rings[0];
2957 			lwkt_serialize_enter(&txr->tx_serialize);
2958 			igb_txeof(txr);
2959 			if (!ifq_is_empty(&ifp->if_snd))
2960 				if_devstart(ifp);
2961 			lwkt_serialize_exit(&txr->tx_serialize);
2962 		}
2963 		break;
2964 	}
2965 }
2966 
2967 #endif /* DEVICE_POLLING */
2968 
2969 static void
2970 igb_intr(void *xsc)
2971 {
2972 	struct igb_softc *sc = xsc;
2973 	struct ifnet *ifp = &sc->arpcom.ac_if;
2974 	uint32_t eicr;
2975 
2976 	ASSERT_SERIALIZED(&sc->main_serialize);
2977 
2978 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
2979 
2980 	if (eicr == 0)
2981 		return;
2982 
2983 	if (ifp->if_flags & IFF_RUNNING) {
2984 		struct igb_tx_ring *txr;
2985 		int i;
2986 
2987 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
2988 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
2989 
2990 			if (eicr & rxr->rx_intr_mask) {
2991 				lwkt_serialize_enter(&rxr->rx_serialize);
2992 				igb_rxeof(rxr, -1);
2993 				lwkt_serialize_exit(&rxr->rx_serialize);
2994 			}
2995 		}
2996 
2997 		txr = &sc->tx_rings[0];
2998 		if (eicr & txr->tx_intr_mask) {
2999 			lwkt_serialize_enter(&txr->tx_serialize);
3000 			igb_txeof(txr);
3001 			if (!ifq_is_empty(&ifp->if_snd))
3002 				if_devstart(ifp);
3003 			lwkt_serialize_exit(&txr->tx_serialize);
3004 		}
3005 	}
3006 
3007 	if (eicr & E1000_EICR_OTHER) {
3008 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3009 
3010 		/* Link status change */
3011 		if (icr & E1000_ICR_LSC) {
3012 			sc->hw.mac.get_link_status = 1;
3013 			igb_update_link_status(sc);
3014 		}
3015 	}
3016 
3017 	/*
3018 	 * Reading EICR has the side effect to clear interrupt mask,
3019 	 * so all interrupts need to be enabled here.
3020 	 */
3021 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3022 }
3023 
3024 static void
3025 igb_intr_shared(void *xsc)
3026 {
3027 	struct igb_softc *sc = xsc;
3028 	struct ifnet *ifp = &sc->arpcom.ac_if;
3029 	uint32_t reg_icr;
3030 
3031 	ASSERT_SERIALIZED(&sc->main_serialize);
3032 
3033 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3034 
3035 	/* Hot eject?  */
3036 	if (reg_icr == 0xffffffff)
3037 		return;
3038 
3039 	/* Definitely not our interrupt.  */
3040 	if (reg_icr == 0x0)
3041 		return;
3042 
3043 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3044 		return;
3045 
3046 	if (ifp->if_flags & IFF_RUNNING) {
3047 		if (reg_icr &
3048 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3049 			int i;
3050 
3051 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3052 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3053 
3054 				lwkt_serialize_enter(&rxr->rx_serialize);
3055 				igb_rxeof(rxr, -1);
3056 				lwkt_serialize_exit(&rxr->rx_serialize);
3057 			}
3058 		}
3059 
3060 		if (reg_icr & E1000_ICR_TXDW) {
3061 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3062 
3063 			lwkt_serialize_enter(&txr->tx_serialize);
3064 			igb_txeof(txr);
3065 			if (!ifq_is_empty(&ifp->if_snd))
3066 				if_devstart(ifp);
3067 			lwkt_serialize_exit(&txr->tx_serialize);
3068 		}
3069 	}
3070 
3071 	/* Link status change */
3072 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3073 		sc->hw.mac.get_link_status = 1;
3074 		igb_update_link_status(sc);
3075 	}
3076 
3077 	if (reg_icr & E1000_ICR_RXO)
3078 		sc->rx_overruns++;
3079 }
3080 
3081 static int
3082 igb_txctx_pullup(struct igb_tx_ring *txr, struct mbuf **m0)
3083 {
3084 	struct mbuf *m = *m0;
3085 	struct ether_header *eh;
3086 	int len;
3087 
3088 	txr->ctx_try_pullup++;
3089 
3090 	len = ETHER_HDR_LEN + IGB_IPVHL_SIZE;
3091 
3092 	if (__predict_false(!M_WRITABLE(m))) {
3093 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
3094 			txr->ctx_drop1++;
3095 			m_freem(m);
3096 			*m0 = NULL;
3097 			return ENOBUFS;
3098 		}
3099 		eh = mtod(m, struct ether_header *);
3100 
3101 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
3102 			len += EVL_ENCAPLEN;
3103 
3104 		if (m->m_len < len) {
3105 			txr->ctx_drop2++;
3106 			m_freem(m);
3107 			*m0 = NULL;
3108 			return ENOBUFS;
3109 		}
3110 		return 0;
3111 	}
3112 
3113 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
3114 		txr->ctx_pullup1++;
3115 		m = m_pullup(m, ETHER_HDR_LEN);
3116 		if (m == NULL) {
3117 			txr->ctx_pullup1_failed++;
3118 			*m0 = NULL;
3119 			return ENOBUFS;
3120 		}
3121 		*m0 = m;
3122 	}
3123 	eh = mtod(m, struct ether_header *);
3124 
3125 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
3126 		len += EVL_ENCAPLEN;
3127 
3128 	if (m->m_len < len) {
3129 		txr->ctx_pullup2++;
3130 		m = m_pullup(m, len);
3131 		if (m == NULL) {
3132 			txr->ctx_pullup2_failed++;
3133 			*m0 = NULL;
3134 			return ENOBUFS;
3135 		}
3136 		*m0 = m;
3137 	}
3138 	return 0;
3139 }
3140 
3141 static int
3142 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp)
3143 {
3144 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3145 	bus_dmamap_t map;
3146 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3147 	union e1000_adv_tx_desc	*txd = NULL;
3148 	struct mbuf *m_head = *m_headp;
3149 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3150 	int maxsegs, nsegs, i, j, error, last = 0;
3151 	uint32_t hdrlen = 0;
3152 
3153 	if (m_head->m_len < IGB_TXCSUM_MINHL &&
3154 	    ((m_head->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) ||
3155 	     (m_head->m_flags & M_VLANTAG))) {
3156 		/*
3157 		 * Make sure that ethernet header and ip.ip_hl are in
3158 		 * contiguous memory, since if TXCSUM or VLANTAG is
3159 		 * enabled, later TX context descriptor's setup need
3160 		 * to access ip.ip_hl.
3161 		 */
3162 		error = igb_txctx_pullup(txr, m_headp);
3163 		if (error) {
3164 			KKASSERT(*m_headp == NULL);
3165 			return error;
3166 		}
3167 		m_head = *m_headp;
3168 	}
3169 
3170 	/* Set basic descriptor constants */
3171 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3172 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3173 	if (m_head->m_flags & M_VLANTAG)
3174 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3175 
3176 	/*
3177 	 * Map the packet for DMA.
3178 	 */
3179 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3180 	tx_buf_mapped = tx_buf;
3181 	map = tx_buf->map;
3182 
3183 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3184 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3185 	if (maxsegs > IGB_MAX_SCATTER)
3186 		maxsegs = IGB_MAX_SCATTER;
3187 
3188 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3189 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3190 	if (error) {
3191 		if (error == ENOBUFS)
3192 			txr->sc->mbuf_defrag_failed++;
3193 		else
3194 			txr->sc->no_tx_dma_setup++;
3195 
3196 		m_freem(*m_headp);
3197 		*m_headp = NULL;
3198 		return error;
3199 	}
3200 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3201 
3202 	m_head = *m_headp;
3203 
3204 #if 0
3205 	/*
3206 	 * Set up the context descriptor:
3207 	 * used when any hardware offload is done.
3208 	 * This includes CSUM, VLAN, and TSO. It
3209 	 * will use the first descriptor.
3210 	 */
3211 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3212 		if (igb_tso_setup(txr, m_head, &hdrlen)) {
3213 			cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3214 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3215 			olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3216 		} else
3217 			return (ENXIO);
3218 	} else if (igb_tx_ctx_setup(txr, m_head))
3219 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3220 #else
3221 	if (igb_txctx(txr, m_head)) {
3222 		olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3223 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3224 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3225 		txr->tx_nsegs++;
3226 	}
3227 #endif
3228 
3229 	txr->tx_nsegs += nsegs;
3230 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3231 		/*
3232 		 * Report Status (RS) is turned on every intr_nsegs
3233 		 * descriptors (roughly).
3234 		 */
3235 		txr->tx_nsegs = 0;
3236 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3237 	}
3238 
3239 	/* Calculate payload length */
3240 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3241 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3242 
3243 	/* 82575 needs the queue index added */
3244 	if (txr->sc->hw.mac.type == e1000_82575)
3245 		olinfo_status |= txr->me << 4;
3246 
3247 	/* Set up our transmit descriptors */
3248 	i = txr->next_avail_desc;
3249 	for (j = 0; j < nsegs; j++) {
3250 		bus_size_t seg_len;
3251 		bus_addr_t seg_addr;
3252 
3253 		tx_buf = &txr->tx_buf[i];
3254 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3255 		seg_addr = segs[j].ds_addr;
3256 		seg_len = segs[j].ds_len;
3257 
3258 		txd->read.buffer_addr = htole64(seg_addr);
3259 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3260 		txd->read.olinfo_status = htole32(olinfo_status);
3261 		last = i;
3262 		if (++i == txr->num_tx_desc)
3263 			i = 0;
3264 		tx_buf->m_head = NULL;
3265 	}
3266 
3267 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3268 	txr->next_avail_desc = i;
3269 	txr->tx_avail -= nsegs;
3270 
3271 	tx_buf->m_head = m_head;
3272 	tx_buf_mapped->map = tx_buf->map;
3273 	tx_buf->map = map;
3274 
3275 	/*
3276 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3277 	 */
3278 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3279 
3280 	/*
3281 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
3282 	 * that this frame is available to transmit.
3283 	 */
3284 	E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), i);
3285 	++txr->tx_packets;
3286 
3287 	return 0;
3288 }
3289 
3290 static void
3291 igb_start(struct ifnet *ifp)
3292 {
3293 	struct igb_softc *sc = ifp->if_softc;
3294 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3295 	struct mbuf *m_head;
3296 
3297 	ASSERT_SERIALIZED(&txr->tx_serialize);
3298 
3299 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3300 		return;
3301 
3302 	if (!sc->link_active) {
3303 		ifq_purge(&ifp->if_snd);
3304 		return;
3305 	}
3306 
3307 	if (!IGB_IS_NOT_OACTIVE(txr))
3308 		igb_txeof(txr);
3309 
3310 	while (!ifq_is_empty(&ifp->if_snd)) {
3311 		if (IGB_IS_OACTIVE(txr)) {
3312 			ifp->if_flags |= IFF_OACTIVE;
3313 			/* Set watchdog on */
3314 			ifp->if_timer = 5;
3315 			break;
3316 		}
3317 
3318 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
3319 		if (m_head == NULL)
3320 			break;
3321 
3322 		if (igb_encap(txr, &m_head)) {
3323 			ifp->if_oerrors++;
3324 			continue;
3325 		}
3326 
3327 		/* Send a copy of the frame to the BPF listener */
3328 		ETHER_BPF_MTAP(ifp, m_head);
3329 	}
3330 }
3331 
3332 static void
3333 igb_watchdog(struct ifnet *ifp)
3334 {
3335 	struct igb_softc *sc = ifp->if_softc;
3336 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3337 
3338 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3339 
3340 	/*
3341 	 * If flow control has paused us since last checking
3342 	 * it invalidates the watchdog timing, so dont run it.
3343 	 */
3344 	if (sc->pause_frames) {
3345 		sc->pause_frames = 0;
3346 		ifp->if_timer = 5;
3347 		return;
3348 	}
3349 
3350 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3351 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3352 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3353 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3354 	if_printf(ifp, "TX(%d) desc avail = %d, "
3355 	    "Next TX to Clean = %d\n",
3356 	    txr->me, txr->tx_avail, txr->next_to_clean);
3357 
3358 	ifp->if_oerrors++;
3359 	sc->watchdog_events++;
3360 
3361 	igb_init(sc);
3362 	if (!ifq_is_empty(&ifp->if_snd))
3363 		if_devstart(ifp);
3364 }
3365 
3366 static void
3367 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3368 {
3369 	uint32_t eitr = 0;
3370 
3371 	if (rate > 0) {
3372 		if (sc->hw.mac.type == e1000_82575) {
3373 			eitr = 1000000000 / 256 / rate;
3374 			/*
3375 			 * NOTE:
3376 			 * Document is wrong on the 2 bits left shift
3377 			 */
3378 		} else {
3379 			eitr = 1000000 / rate;
3380 			eitr <<= IGB_EITR_INTVL_SHIFT;
3381 		}
3382 
3383 		if (eitr == 0) {
3384 			/* Don't disable it */
3385 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3386 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3387 			/* Don't allow it to be too large */
3388 			eitr = IGB_EITR_INTVL_MASK;
3389 		}
3390 	}
3391 	if (sc->hw.mac.type == e1000_82575)
3392 		eitr |= eitr << 16;
3393 	else
3394 		eitr |= E1000_EITR_CNT_IGNR;
3395 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3396 }
3397 
3398 static int
3399 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3400 {
3401 	struct igb_softc *sc = (void *)arg1;
3402 	struct ifnet *ifp = &sc->arpcom.ac_if;
3403 	int error, intr_rate;
3404 
3405 	intr_rate = sc->intr_rate;
3406 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3407 	if (error || req->newptr == NULL)
3408 		return error;
3409 	if (intr_rate < 0)
3410 		return EINVAL;
3411 
3412 	ifnet_serialize_all(ifp);
3413 
3414 	sc->intr_rate = intr_rate;
3415 	if (ifp->if_flags & IFF_RUNNING)
3416 		igb_set_eitr(sc, 0, sc->intr_rate);
3417 
3418 	if (bootverbose)
3419 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3420 
3421 	ifnet_deserialize_all(ifp);
3422 
3423 	return 0;
3424 }
3425 
3426 static int
3427 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3428 {
3429 	struct igb_msix_data *msix = (void *)arg1;
3430 	struct igb_softc *sc = msix->msix_sc;
3431 	struct ifnet *ifp = &sc->arpcom.ac_if;
3432 	int error, msix_rate;
3433 
3434 	msix_rate = msix->msix_rate;
3435 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3436 	if (error || req->newptr == NULL)
3437 		return error;
3438 	if (msix_rate < 0)
3439 		return EINVAL;
3440 
3441 	lwkt_serialize_enter(msix->msix_serialize);
3442 
3443 	msix->msix_rate = msix_rate;
3444 	if (ifp->if_flags & IFF_RUNNING)
3445 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3446 
3447 	if (bootverbose) {
3448 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3449 		    msix->msix_rate);
3450 	}
3451 
3452 	lwkt_serialize_exit(msix->msix_serialize);
3453 
3454 	return 0;
3455 }
3456 
3457 static int
3458 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3459 {
3460 	struct igb_softc *sc = (void *)arg1;
3461 	struct ifnet *ifp = &sc->arpcom.ac_if;
3462 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3463 	int error, nsegs;
3464 
3465 	nsegs = txr->intr_nsegs;
3466 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3467 	if (error || req->newptr == NULL)
3468 		return error;
3469 	if (nsegs <= 0)
3470 		return EINVAL;
3471 
3472 	ifnet_serialize_all(ifp);
3473 
3474 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3475 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3476 		error = EINVAL;
3477 	} else {
3478 		error = 0;
3479 		txr->intr_nsegs = nsegs;
3480 	}
3481 
3482 	ifnet_deserialize_all(ifp);
3483 
3484 	return error;
3485 }
3486 
3487 static void
3488 igb_init_intr(struct igb_softc *sc)
3489 {
3490 	igb_set_intr_mask(sc);
3491 
3492 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3493 		igb_init_unshared_intr(sc);
3494 
3495 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3496 		igb_set_eitr(sc, 0, sc->intr_rate);
3497 	} else {
3498 		int i;
3499 
3500 		for (i = 0; i < sc->msix_cnt; ++i)
3501 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3502 	}
3503 }
3504 
3505 static void
3506 igb_init_unshared_intr(struct igb_softc *sc)
3507 {
3508 	struct e1000_hw *hw = &sc->hw;
3509 	const struct igb_rx_ring *rxr;
3510 	const struct igb_tx_ring *txr;
3511 	uint32_t ivar, index;
3512 	int i;
3513 
3514 	/*
3515 	 * Enable extended mode
3516 	 */
3517 	if (sc->hw.mac.type != e1000_82575) {
3518 		uint32_t gpie;
3519 		int ivar_max;
3520 
3521 		gpie = E1000_GPIE_NSICR;
3522 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3523 			gpie |= E1000_GPIE_MSIX_MODE |
3524 			    E1000_GPIE_EIAME |
3525 			    E1000_GPIE_PBA;
3526 		}
3527 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3528 
3529 		/*
3530 		 * Clear IVARs
3531 		 */
3532 		switch (sc->hw.mac.type) {
3533 		case e1000_82580:
3534 			ivar_max = IGB_MAX_IVAR_82580;
3535 			break;
3536 
3537 		case e1000_i350:
3538 			ivar_max = IGB_MAX_IVAR_I350;
3539 			break;
3540 
3541 		case e1000_vfadapt:
3542 		case e1000_vfadapt_i350:
3543 			ivar_max = IGB_MAX_IVAR_VF;
3544 			break;
3545 
3546 		case e1000_82576:
3547 			ivar_max = IGB_MAX_IVAR_82576;
3548 			break;
3549 
3550 		default:
3551 			panic("unknown mac type %d\n", sc->hw.mac.type);
3552 		}
3553 		for (i = 0; i < ivar_max; ++i)
3554 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3555 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3556 	} else {
3557 		uint32_t tmp;
3558 
3559 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3560 		    ("82575 w/ MSI-X"));
3561 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3562 		tmp |= E1000_CTRL_EXT_IRCA;
3563 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3564 	}
3565 
3566 	/*
3567 	 * Map TX/RX interrupts to EICR
3568 	 */
3569 	switch (sc->hw.mac.type) {
3570 	case e1000_82580:
3571 	case e1000_i350:
3572 	case e1000_vfadapt:
3573 	case e1000_vfadapt_i350:
3574 		/* RX entries */
3575 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3576 			rxr = &sc->rx_rings[i];
3577 
3578 			index = i >> 1;
3579 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3580 
3581 			if (i & 1) {
3582 				ivar &= 0xff00ffff;
3583 				ivar |=
3584 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3585 			} else {
3586 				ivar &= 0xffffff00;
3587 				ivar |=
3588 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3589 			}
3590 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3591 		}
3592 		/* TX entries */
3593 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3594 			txr = &sc->tx_rings[i];
3595 
3596 			index = i >> 1;
3597 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3598 
3599 			if (i & 1) {
3600 				ivar &= 0x00ffffff;
3601 				ivar |=
3602 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3603 			} else {
3604 				ivar &= 0xffff00ff;
3605 				ivar |=
3606 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3607 			}
3608 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3609 		}
3610 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3611 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3612 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3613 		}
3614 		break;
3615 
3616 	case e1000_82576:
3617 		/* RX entries */
3618 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3619 			rxr = &sc->rx_rings[i];
3620 
3621 			index = i & 0x7; /* Each IVAR has two entries */
3622 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3623 
3624 			if (i < 8) {
3625 				ivar &= 0xffffff00;
3626 				ivar |=
3627 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3628 			} else {
3629 				ivar &= 0xff00ffff;
3630 				ivar |=
3631 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3632 			}
3633 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3634 		}
3635 		/* TX entries */
3636 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3637 			txr = &sc->tx_rings[i];
3638 
3639 			index = i & 0x7; /* Each IVAR has two entries */
3640 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3641 
3642 			if (i < 8) {
3643 				ivar &= 0xffff00ff;
3644 				ivar |=
3645 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3646 			} else {
3647 				ivar &= 0x00ffffff;
3648 				ivar |=
3649 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3650 			}
3651 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3652 		}
3653 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3654 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3655 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3656 		}
3657 		break;
3658 
3659 	case e1000_82575:
3660 		/*
3661 		 * Enable necessary interrupt bits.
3662 		 *
3663 		 * The name of the register is confusing; in addition to
3664 		 * configuring the first vector of MSI-X, it also configures
3665 		 * which bits of EICR could be set by the hardware even when
3666 		 * MSI or line interrupt is used; it thus controls interrupt
3667 		 * generation.  It MUST be configured explicitly; the default
3668 		 * value mentioned in the datasheet is wrong: RX queue0 and
3669 		 * TX queue0 are NOT enabled by default.
3670 		 */
3671 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3672 		break;
3673 
3674 	default:
3675 		panic("unknown mac type %d\n", sc->hw.mac.type);
3676 	}
3677 }
3678 
3679 static int
3680 igb_setup_intr(struct igb_softc *sc)
3681 {
3682 	struct ifnet *ifp = &sc->arpcom.ac_if;
3683 	int error;
3684 
3685 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3686 		return igb_msix_setup(sc);
3687 
3688 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3689 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3690 	    sc, &sc->intr_tag, &sc->main_serialize);
3691 	if (error) {
3692 		device_printf(sc->dev, "Failed to register interrupt handler");
3693 		return error;
3694 	}
3695 
3696 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
3697 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3698 
3699 	return 0;
3700 }
3701 
3702 static void
3703 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3704 {
3705 	if (txr->sc->hw.mac.type == e1000_82575) {
3706 		txr->tx_intr_bit = 0;	/* unused */
3707 		switch (txr->me) {
3708 		case 0:
3709 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3710 			break;
3711 		case 1:
3712 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3713 			break;
3714 		case 2:
3715 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3716 			break;
3717 		case 3:
3718 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3719 			break;
3720 		default:
3721 			panic("unsupported # of TX ring, %d\n", txr->me);
3722 		}
3723 	} else {
3724 		int intr_bit = *intr_bit0;
3725 
3726 		txr->tx_intr_bit = intr_bit % intr_bitmax;
3727 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3728 
3729 		*intr_bit0 = intr_bit + 1;
3730 	}
3731 }
3732 
3733 static void
3734 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3735 {
3736 	if (rxr->sc->hw.mac.type == e1000_82575) {
3737 		rxr->rx_intr_bit = 0;	/* unused */
3738 		switch (rxr->me) {
3739 		case 0:
3740 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3741 			break;
3742 		case 1:
3743 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3744 			break;
3745 		case 2:
3746 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3747 			break;
3748 		case 3:
3749 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3750 			break;
3751 		default:
3752 			panic("unsupported # of RX ring, %d\n", rxr->me);
3753 		}
3754 	} else {
3755 		int intr_bit = *intr_bit0;
3756 
3757 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
3758 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3759 
3760 		*intr_bit0 = intr_bit + 1;
3761 	}
3762 }
3763 
3764 static void
3765 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3766 {
3767 	struct igb_softc *sc = ifp->if_softc;
3768 
3769 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3770 	    sc->tx_serialize, sc->rx_serialize, slz);
3771 }
3772 
3773 static void
3774 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3775 {
3776 	struct igb_softc *sc = ifp->if_softc;
3777 
3778 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3779 	    sc->tx_serialize, sc->rx_serialize, slz);
3780 }
3781 
3782 static int
3783 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3784 {
3785 	struct igb_softc *sc = ifp->if_softc;
3786 
3787 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3788 	    sc->tx_serialize, sc->rx_serialize, slz);
3789 }
3790 
3791 #ifdef INVARIANTS
3792 
3793 static void
3794 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3795     boolean_t serialized)
3796 {
3797 	struct igb_softc *sc = ifp->if_softc;
3798 
3799 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3800 	    sc->tx_serialize, sc->rx_serialize, slz, serialized);
3801 }
3802 
3803 #endif	/* INVARIANTS */
3804 
3805 static void
3806 igb_set_intr_mask(struct igb_softc *sc)
3807 {
3808 	int i;
3809 
3810 	sc->intr_mask = sc->sts_intr_mask;
3811 	for (i = 0; i < sc->rx_ring_inuse; ++i)
3812 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3813 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3814 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3815 	if (bootverbose)
3816 		device_printf(sc->dev, "intr mask 0x%08x\n", sc->intr_mask);
3817 }
3818 
3819 static int
3820 igb_alloc_intr(struct igb_softc *sc)
3821 {
3822 	int i, intr_bit, intr_bitmax;
3823 	u_int intr_flags;
3824 
3825 	igb_msix_try_alloc(sc);
3826 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3827 		goto done;
3828 
3829 	/*
3830 	 * Allocate MSI/legacy interrupt resource
3831 	 */
3832 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
3833 	    &sc->intr_rid, &intr_flags);
3834 
3835 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3836 		int unshared;
3837 
3838 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3839 		if (!unshared) {
3840 			sc->flags |= IGB_FLAG_SHARED_INTR;
3841 			if (bootverbose)
3842 				device_printf(sc->dev, "IRQ shared\n");
3843 		} else {
3844 			intr_flags &= ~RF_SHAREABLE;
3845 			if (bootverbose)
3846 				device_printf(sc->dev, "IRQ unshared\n");
3847 		}
3848 	}
3849 
3850 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
3851 	    &sc->intr_rid, intr_flags);
3852 	if (sc->intr_res == NULL) {
3853 		device_printf(sc->dev, "Unable to allocate bus resource: "
3854 		    "interrupt\n");
3855 		return ENXIO;
3856 	}
3857 
3858 	/*
3859 	 * Setup MSI/legacy interrupt mask
3860 	 */
3861 	switch (sc->hw.mac.type) {
3862 	case e1000_82575:
3863 		intr_bitmax = IGB_MAX_TXRXINT_82575;
3864 		break;
3865 	case e1000_82580:
3866 		intr_bitmax = IGB_MAX_TXRXINT_82580;
3867 		break;
3868 	case e1000_i350:
3869 		intr_bitmax = IGB_MAX_TXRXINT_I350;
3870 		break;
3871 	case e1000_82576:
3872 		intr_bitmax = IGB_MAX_TXRXINT_82576;
3873 		break;
3874 	default:
3875 		intr_bitmax = IGB_MIN_TXRXINT;
3876 		break;
3877 	}
3878 	intr_bit = 0;
3879 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3880 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
3881 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3882 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
3883 	sc->sts_intr_bit = 0;
3884 	sc->sts_intr_mask = E1000_EICR_OTHER;
3885 
3886 	/* Initialize interrupt rate */
3887 	sc->intr_rate = IGB_INTR_RATE;
3888 done:
3889 	igb_set_ring_inuse(sc, FALSE);
3890 	igb_set_intr_mask(sc);
3891 	return 0;
3892 }
3893 
3894 static void
3895 igb_free_intr(struct igb_softc *sc)
3896 {
3897 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3898 		if (sc->intr_res != NULL) {
3899 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
3900 			    sc->intr_res);
3901 		}
3902 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
3903 			pci_release_msi(sc->dev);
3904 	} else {
3905 		igb_msix_free(sc, TRUE);
3906 	}
3907 }
3908 
3909 static void
3910 igb_teardown_intr(struct igb_softc *sc)
3911 {
3912 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
3913 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
3914 	else
3915 		igb_msix_teardown(sc, sc->msix_cnt);
3916 }
3917 
3918 static void
3919 igb_msix_try_alloc(struct igb_softc *sc)
3920 {
3921 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
3922 	int i, x, error;
3923 	struct igb_msix_data *msix;
3924 	boolean_t aggregate, setup = FALSE;
3925 
3926 	/*
3927 	 * Don't enable MSI-X on 82575, see:
3928 	 * 82575 specification update errata #25
3929 	 */
3930 	if (sc->hw.mac.type == e1000_82575)
3931 		return;
3932 
3933 	/* Don't enable MSI-X on VF */
3934 	if (sc->vf_ifp)
3935 		return;
3936 
3937 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
3938 	    igb_msix_enable);
3939 	if (!msix_enable)
3940 		return;
3941 
3942 	msix_cnt = pci_msix_count(sc->dev);
3943 #ifdef IGB_MSIX_DEBUG
3944 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
3945 #endif
3946 	if (msix_cnt <= 1) {
3947 		/* One MSI-X model does not make sense */
3948 		return;
3949 	}
3950 
3951 	i = 0;
3952 	while ((1 << (i + 1)) <= msix_cnt)
3953 		++i;
3954 	msix_cnt2 = 1 << i;
3955 
3956 	if (bootverbose) {
3957 		device_printf(sc->dev, "MSI-X count %d/%d\n",
3958 		    msix_cnt2, msix_cnt);
3959 	}
3960 
3961 	KKASSERT(msix_cnt2 <= msix_cnt);
3962 	if (msix_cnt == msix_cnt2) {
3963 		/* We need at least one MSI-X for link status */
3964 		msix_cnt2 >>= 1;
3965 		if (msix_cnt2 <= 1) {
3966 			/* One MSI-X for RX/TX does not make sense */
3967 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
3968 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
3969 			return;
3970 		}
3971 		KKASSERT(msix_cnt > msix_cnt2);
3972 
3973 		if (bootverbose) {
3974 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
3975 			    msix_cnt2, msix_cnt);
3976 		}
3977 	}
3978 
3979 	sc->rx_ring_msix = sc->rx_ring_cnt;
3980 	if (sc->rx_ring_msix > msix_cnt2)
3981 		sc->rx_ring_msix = msix_cnt2;
3982 
3983 	if (msix_cnt >= sc->tx_ring_cnt + sc->rx_ring_msix + 1) {
3984 		/*
3985 		 * Independent TX/RX MSI-X
3986 		 */
3987 		aggregate = FALSE;
3988 		if (bootverbose)
3989 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
3990 		alloc_cnt = sc->tx_ring_cnt + sc->rx_ring_msix;
3991 	} else {
3992 		/*
3993 		 * Aggregate TX/RX MSI-X
3994 		 */
3995 		aggregate = TRUE;
3996 		if (bootverbose)
3997 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
3998 		alloc_cnt = msix_cnt2;
3999 		if (alloc_cnt > ncpus2)
4000 			alloc_cnt = ncpus2;
4001 		if (sc->rx_ring_msix > alloc_cnt)
4002 			sc->rx_ring_msix = alloc_cnt;
4003 	}
4004 	++alloc_cnt;	/* For link status */
4005 
4006 	if (bootverbose) {
4007 		device_printf(sc->dev, "MSI-X alloc %d, RX ring %d\n",
4008 		    alloc_cnt, sc->rx_ring_msix);
4009 	}
4010 
4011 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4012 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4013 	    &sc->msix_mem_rid, RF_ACTIVE);
4014 	if (sc->msix_mem_res == NULL) {
4015 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4016 		return;
4017 	}
4018 
4019 	sc->msix_cnt = alloc_cnt;
4020 	sc->msix_data = kmalloc(sizeof(struct igb_msix_data) * sc->msix_cnt,
4021 	    M_DEVBUF, M_WAITOK | M_ZERO);
4022 	for (x = 0; x < sc->msix_cnt; ++x) {
4023 		msix = &sc->msix_data[x];
4024 
4025 		lwkt_serialize_init(&msix->msix_serialize0);
4026 		msix->msix_sc = sc;
4027 		msix->msix_rid = -1;
4028 		msix->msix_vector = x;
4029 		msix->msix_mask = 1 << msix->msix_vector;
4030 		msix->msix_rate = IGB_INTR_RATE;
4031 	}
4032 
4033 	x = 0;
4034 	if (!aggregate) {
4035 		int offset, offset_def;
4036 
4037 		if (sc->rx_ring_msix == ncpus2) {
4038 			offset = 0;
4039 		} else {
4040 			offset_def = (sc->rx_ring_msix *
4041 			    device_get_unit(sc->dev)) % ncpus2;
4042 
4043 			offset = device_getenv_int(sc->dev,
4044 			    "msix.rxoff", offset_def);
4045 			if (offset >= ncpus2 ||
4046 			    offset % sc->rx_ring_msix != 0) {
4047 				device_printf(sc->dev,
4048 				    "invalid msix.rxoff %d, use %d\n",
4049 				    offset, offset_def);
4050 				offset = offset_def;
4051 			}
4052 		}
4053 
4054 		/* RX rings */
4055 		for (i = 0; i < sc->rx_ring_msix; ++i) {
4056 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4057 
4058 			KKASSERT(x < sc->msix_cnt);
4059 			msix = &sc->msix_data[x++];
4060 			rxr->rx_intr_bit = msix->msix_vector;
4061 			rxr->rx_intr_mask = msix->msix_mask;
4062 
4063 			msix->msix_serialize = &rxr->rx_serialize;
4064 			msix->msix_func = igb_msix_rx;
4065 			msix->msix_arg = rxr;
4066 			msix->msix_cpuid = i + offset;
4067 			KKASSERT(msix->msix_cpuid < ncpus2);
4068 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4069 			    "%s rx%d", device_get_nameunit(sc->dev), i);
4070 			msix->msix_rate = IGB_MSIX_RX_RATE;
4071 			ksnprintf(msix->msix_rate_desc,
4072 			    sizeof(msix->msix_rate_desc),
4073 			    "RX%d interrupt rate", i);
4074 		}
4075 
4076 		offset_def = device_get_unit(sc->dev) % ncpus2;
4077 		offset = device_getenv_int(sc->dev, "msix.txoff", offset_def);
4078 		if (offset >= ncpus2) {
4079 			device_printf(sc->dev, "invalid msix.txoff %d, "
4080 			    "use %d\n", offset, offset_def);
4081 			offset = offset_def;
4082 		}
4083 
4084 		/* TX rings */
4085 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4086 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4087 
4088 			KKASSERT(x < sc->msix_cnt);
4089 			msix = &sc->msix_data[x++];
4090 			txr->tx_intr_bit = msix->msix_vector;
4091 			txr->tx_intr_mask = msix->msix_mask;
4092 
4093 			msix->msix_serialize = &txr->tx_serialize;
4094 			msix->msix_func = igb_msix_tx;
4095 			msix->msix_arg = txr;
4096 			msix->msix_cpuid = i + offset;
4097 			sc->msix_tx_cpuid = msix->msix_cpuid; /* XXX */
4098 			KKASSERT(msix->msix_cpuid < ncpus2);
4099 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4100 			    "%s tx%d", device_get_nameunit(sc->dev), i);
4101 			msix->msix_rate = IGB_MSIX_TX_RATE;
4102 			ksnprintf(msix->msix_rate_desc,
4103 			    sizeof(msix->msix_rate_desc),
4104 			    "TX%d interrupt rate", i);
4105 		}
4106 	} else {
4107 		/* TODO */
4108 		error = EOPNOTSUPP;
4109 		goto back;
4110 	}
4111 
4112 	/*
4113 	 * Link status
4114 	 */
4115 	KKASSERT(x < sc->msix_cnt);
4116 	msix = &sc->msix_data[x++];
4117 	sc->sts_intr_bit = msix->msix_vector;
4118 	sc->sts_intr_mask = msix->msix_mask;
4119 
4120 	msix->msix_serialize = &sc->main_serialize;
4121 	msix->msix_func = igb_msix_status;
4122 	msix->msix_arg = sc;
4123 	msix->msix_cpuid = 0; /* TODO tunable */
4124 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4125 	    device_get_nameunit(sc->dev));
4126 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4127 	    "status interrupt rate");
4128 
4129 	KKASSERT(x == sc->msix_cnt);
4130 
4131 	error = pci_setup_msix(sc->dev);
4132 	if (error) {
4133 		device_printf(sc->dev, "Setup MSI-X failed\n");
4134 		goto back;
4135 	}
4136 	setup = TRUE;
4137 
4138 	for (i = 0; i < sc->msix_cnt; ++i) {
4139 		msix = &sc->msix_data[i];
4140 
4141 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4142 		    &msix->msix_rid, msix->msix_cpuid);
4143 		if (error) {
4144 			device_printf(sc->dev,
4145 			    "Unable to allocate MSI-X %d on cpu%d\n",
4146 			    msix->msix_vector, msix->msix_cpuid);
4147 			goto back;
4148 		}
4149 
4150 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4151 		    &msix->msix_rid, RF_ACTIVE);
4152 		if (msix->msix_res == NULL) {
4153 			device_printf(sc->dev,
4154 			    "Unable to allocate MSI-X %d resource\n",
4155 			    msix->msix_vector);
4156 			error = ENOMEM;
4157 			goto back;
4158 		}
4159 	}
4160 
4161 	pci_enable_msix(sc->dev);
4162 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4163 back:
4164 	if (error)
4165 		igb_msix_free(sc, setup);
4166 }
4167 
4168 static void
4169 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4170 {
4171 	int i;
4172 
4173 	KKASSERT(sc->msix_cnt > 1);
4174 
4175 	for (i = 0; i < sc->msix_cnt; ++i) {
4176 		struct igb_msix_data *msix = &sc->msix_data[i];
4177 
4178 		if (msix->msix_res != NULL) {
4179 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4180 			    msix->msix_rid, msix->msix_res);
4181 		}
4182 		if (msix->msix_rid >= 0)
4183 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4184 	}
4185 	if (setup)
4186 		pci_teardown_msix(sc->dev);
4187 
4188 	sc->msix_cnt = 0;
4189 	kfree(sc->msix_data, M_DEVBUF);
4190 	sc->msix_data = NULL;
4191 }
4192 
4193 static int
4194 igb_msix_setup(struct igb_softc *sc)
4195 {
4196 	struct ifnet *ifp = &sc->arpcom.ac_if;
4197 	int i;
4198 
4199 	for (i = 0; i < sc->msix_cnt; ++i) {
4200 		struct igb_msix_data *msix = &sc->msix_data[i];
4201 		int error;
4202 
4203 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4204 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4205 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4206 		if (error) {
4207 			device_printf(sc->dev, "could not set up %s "
4208 			    "interrupt handler.\n", msix->msix_desc);
4209 			igb_msix_teardown(sc, i);
4210 			return error;
4211 		}
4212 	}
4213 	ifp->if_cpuid = sc->msix_tx_cpuid;
4214 
4215 	return 0;
4216 }
4217 
4218 static void
4219 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4220 {
4221 	int i;
4222 
4223 	for (i = 0; i < msix_cnt; ++i) {
4224 		struct igb_msix_data *msix = &sc->msix_data[i];
4225 
4226 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4227 	}
4228 }
4229 
4230 static void
4231 igb_msix_rx(void *arg)
4232 {
4233 	struct igb_rx_ring *rxr = arg;
4234 
4235 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4236 	igb_rxeof(rxr, -1);
4237 
4238 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4239 }
4240 
4241 static void
4242 igb_msix_tx(void *arg)
4243 {
4244 	struct igb_tx_ring *txr = arg;
4245 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
4246 
4247 	ASSERT_SERIALIZED(&txr->tx_serialize);
4248 
4249 	igb_txeof(txr);
4250 	if (!ifq_is_empty(&ifp->if_snd))
4251 		if_devstart(ifp);
4252 
4253 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4254 }
4255 
4256 static void
4257 igb_msix_status(void *arg)
4258 {
4259 	struct igb_softc *sc = arg;
4260 	uint32_t icr;
4261 
4262 	ASSERT_SERIALIZED(&sc->main_serialize);
4263 
4264 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4265 	if (icr & E1000_ICR_LSC) {
4266 		sc->hw.mac.get_link_status = 1;
4267 		igb_update_link_status(sc);
4268 	}
4269 
4270 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4271 }
4272 
4273 static void
4274 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4275 {
4276 	if (!IGB_ENABLE_HWRSS(sc))
4277 		return;
4278 
4279 	if (sc->intr_type != PCI_INTR_TYPE_MSIX || polling)
4280 		sc->rx_ring_inuse = IGB_MIN_RING_RSS;
4281 	else
4282 		sc->rx_ring_inuse = sc->rx_ring_msix;
4283 	if (bootverbose) {
4284 		device_printf(sc->dev, "RX rings %d/%d\n",
4285 		    sc->rx_ring_inuse, sc->rx_ring_cnt);
4286 	}
4287 }
4288