xref: /dflybsd-src/sys/dev/netif/igb/if_igb.c (revision 858d36ec0da1c070488660b7c0121e6f70100ae9)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 	IGB_DEVICE(I210_COPPER),
125 	IGB_DEVICE(I210_COPPER_IT),
126 	IGB_DEVICE(I210_COPPER_OEM1),
127 	IGB_DEVICE(I210_FIBER),
128 	IGB_DEVICE(I210_SERDES),
129 	IGB_DEVICE(I210_SGMII),
130 	IGB_DEVICE(I211_COPPER),
131 
132 	/* required last entry */
133 	IGB_DEVICE_NULL
134 };
135 
136 static int	igb_probe(device_t);
137 static int	igb_attach(device_t);
138 static int	igb_detach(device_t);
139 static int	igb_shutdown(device_t);
140 static int	igb_suspend(device_t);
141 static int	igb_resume(device_t);
142 
143 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
144 static void	igb_setup_ifp(struct igb_softc *);
145 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
146 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
147 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
148 static void	igb_add_sysctl(struct igb_softc *);
149 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
150 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
151 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
152 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
153 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
154 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
155 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
156 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
157 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
158 #ifdef IFPOLL_ENABLE
159 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
160 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
161 #endif
162 
163 static void	igb_vf_init_stats(struct igb_softc *);
164 static void	igb_reset(struct igb_softc *);
165 static void	igb_update_stats_counters(struct igb_softc *);
166 static void	igb_update_vf_stats_counters(struct igb_softc *);
167 static void	igb_update_link_status(struct igb_softc *);
168 static void	igb_init_tx_unit(struct igb_softc *);
169 static void	igb_init_rx_unit(struct igb_softc *);
170 
171 static void	igb_set_vlan(struct igb_softc *);
172 static void	igb_set_multi(struct igb_softc *);
173 static void	igb_set_promisc(struct igb_softc *);
174 static void	igb_disable_promisc(struct igb_softc *);
175 
176 static int	igb_alloc_rings(struct igb_softc *);
177 static void	igb_free_rings(struct igb_softc *);
178 static int	igb_create_tx_ring(struct igb_tx_ring *);
179 static int	igb_create_rx_ring(struct igb_rx_ring *);
180 static void	igb_free_tx_ring(struct igb_tx_ring *);
181 static void	igb_free_rx_ring(struct igb_rx_ring *);
182 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
183 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
184 static void	igb_init_tx_ring(struct igb_tx_ring *);
185 static int	igb_init_rx_ring(struct igb_rx_ring *);
186 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
187 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
188 static void	igb_rx_refresh(struct igb_rx_ring *, int);
189 static void	igb_setup_serializer(struct igb_softc *);
190 
191 static void	igb_stop(struct igb_softc *);
192 static void	igb_init(void *);
193 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
194 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
195 static int	igb_media_change(struct ifnet *);
196 static void	igb_timer(void *);
197 static void	igb_watchdog(struct ifaltq_subque *);
198 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
199 #ifdef IFPOLL_ENABLE
200 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
201 static void	igb_npoll_rx(struct ifnet *, void *, int);
202 static void	igb_npoll_tx(struct ifnet *, void *, int);
203 static void	igb_npoll_status(struct ifnet *);
204 #endif
205 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
206 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
207 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
208 #ifdef INVARIANTS
209 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
210 		    boolean_t);
211 #endif
212 
213 static void	igb_intr(void *);
214 static void	igb_intr_shared(void *);
215 static void	igb_rxeof(struct igb_rx_ring *, int);
216 static void	igb_txeof(struct igb_tx_ring *);
217 static void	igb_set_eitr(struct igb_softc *, int, int);
218 static void	igb_enable_intr(struct igb_softc *);
219 static void	igb_disable_intr(struct igb_softc *);
220 static void	igb_init_unshared_intr(struct igb_softc *);
221 static void	igb_init_intr(struct igb_softc *);
222 static int	igb_setup_intr(struct igb_softc *);
223 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
224 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
225 static void	igb_set_intr_mask(struct igb_softc *);
226 static int	igb_alloc_intr(struct igb_softc *);
227 static void	igb_free_intr(struct igb_softc *);
228 static void	igb_teardown_intr(struct igb_softc *);
229 static void	igb_msix_try_alloc(struct igb_softc *);
230 static void	igb_msix_rx_conf(struct igb_softc *, int, int *, int);
231 static void	igb_msix_tx_conf(struct igb_softc *, int, int *, int);
232 static void	igb_msix_free(struct igb_softc *, boolean_t);
233 static int	igb_msix_setup(struct igb_softc *);
234 static void	igb_msix_teardown(struct igb_softc *, int);
235 static void	igb_msix_rx(void *);
236 static void	igb_msix_tx(void *);
237 static void	igb_msix_status(void *);
238 static void	igb_msix_rxtx(void *);
239 
240 /* Management and WOL Support */
241 static void	igb_get_mgmt(struct igb_softc *);
242 static void	igb_rel_mgmt(struct igb_softc *);
243 static void	igb_get_hw_control(struct igb_softc *);
244 static void	igb_rel_hw_control(struct igb_softc *);
245 static void	igb_enable_wol(device_t);
246 
247 static device_method_t igb_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		igb_probe),
250 	DEVMETHOD(device_attach,	igb_attach),
251 	DEVMETHOD(device_detach,	igb_detach),
252 	DEVMETHOD(device_shutdown,	igb_shutdown),
253 	DEVMETHOD(device_suspend,	igb_suspend),
254 	DEVMETHOD(device_resume,	igb_resume),
255 	DEVMETHOD_END
256 };
257 
258 static driver_t igb_driver = {
259 	"igb",
260 	igb_methods,
261 	sizeof(struct igb_softc),
262 };
263 
264 static devclass_t igb_devclass;
265 
266 DECLARE_DUMMY_MODULE(if_igb);
267 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
268 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
269 
270 static int	igb_rxd = IGB_DEFAULT_RXD;
271 static int	igb_txd = IGB_DEFAULT_TXD;
272 static int	igb_rxr = 0;
273 static int	igb_txr = 0;
274 static int	igb_msi_enable = 1;
275 static int	igb_msix_enable = 1;
276 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
277 static int	igb_fc_setting = e1000_fc_full;
278 
279 /*
280  * DMA Coalescing, only for i350 - default to off,
281  * this feature is for power savings
282  */
283 static int	igb_dma_coalesce = 0;
284 
285 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
286 TUNABLE_INT("hw.igb.txd", &igb_txd);
287 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
288 TUNABLE_INT("hw.igb.txr", &igb_txr);
289 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
290 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
291 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
292 
293 /* i350 specific */
294 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
295 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
296 
297 static __inline void
298 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
299 {
300 	/* Ignore Checksum bit is set */
301 	if (staterr & E1000_RXD_STAT_IXSM)
302 		return;
303 
304 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
305 	    E1000_RXD_STAT_IPCS)
306 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
307 
308 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
309 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
310 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
311 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
312 			mp->m_pkthdr.csum_data = htons(0xffff);
313 		}
314 	}
315 }
316 
317 static __inline struct pktinfo *
318 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
319     uint32_t hash, uint32_t hashtype, uint32_t staterr)
320 {
321 	switch (hashtype) {
322 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
323 		pi->pi_netisr = NETISR_IP;
324 		pi->pi_flags = 0;
325 		pi->pi_l3proto = IPPROTO_TCP;
326 		break;
327 
328 	case E1000_RXDADV_RSSTYPE_IPV4:
329 		if (staterr & E1000_RXD_STAT_IXSM)
330 			return NULL;
331 
332 		if ((staterr &
333 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
334 		    E1000_RXD_STAT_TCPCS) {
335 			pi->pi_netisr = NETISR_IP;
336 			pi->pi_flags = 0;
337 			pi->pi_l3proto = IPPROTO_UDP;
338 			break;
339 		}
340 		/* FALL THROUGH */
341 	default:
342 		return NULL;
343 	}
344 
345 	m->m_flags |= M_HASH;
346 	m->m_pkthdr.hash = toeplitz_hash(hash);
347 	return pi;
348 }
349 
350 static int
351 igb_probe(device_t dev)
352 {
353 	const struct igb_device *d;
354 	uint16_t vid, did;
355 
356 	vid = pci_get_vendor(dev);
357 	did = pci_get_device(dev);
358 
359 	for (d = igb_devices; d->desc != NULL; ++d) {
360 		if (vid == d->vid && did == d->did) {
361 			device_set_desc(dev, d->desc);
362 			return 0;
363 		}
364 	}
365 	return ENXIO;
366 }
367 
368 static int
369 igb_attach(device_t dev)
370 {
371 	struct igb_softc *sc = device_get_softc(dev);
372 	uint16_t eeprom_data;
373 	int error = 0, i, ring_max;
374 #ifdef IFPOLL_ENABLE
375 	int offset, offset_def;
376 #endif
377 
378 #ifdef notyet
379 	/* SYSCTL stuff */
380 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
381 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
382 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
383 	    igb_sysctl_nvm_info, "I", "NVM Information");
384 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
385 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
386 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
387 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
388 #endif
389 
390 	callout_init_mp(&sc->timer);
391 	lwkt_serialize_init(&sc->main_serialize);
392 
393 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
394 	    device_get_unit(dev));
395 	sc->dev = sc->osdep.dev = dev;
396 
397 	/*
398 	 * Determine hardware and mac type
399 	 */
400 	sc->hw.vendor_id = pci_get_vendor(dev);
401 	sc->hw.device_id = pci_get_device(dev);
402 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
403 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
404 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
405 
406 	if (e1000_set_mac_type(&sc->hw))
407 		return ENXIO;
408 
409 	/* Are we a VF device? */
410 	if (sc->hw.mac.type == e1000_vfadapt ||
411 	    sc->hw.mac.type == e1000_vfadapt_i350)
412 		sc->vf_ifp = 1;
413 	else
414 		sc->vf_ifp = 0;
415 
416 	/*
417 	 * Configure total supported RX/TX ring count
418 	 */
419 	switch (sc->hw.mac.type) {
420 	case e1000_82575:
421 		ring_max = IGB_MAX_RING_82575;
422 		break;
423 
424 	case e1000_82576:
425 		ring_max = IGB_MAX_RING_82576;
426 		break;
427 
428 	case e1000_82580:
429 		ring_max = IGB_MAX_RING_82580;
430 		break;
431 
432 	case e1000_i350:
433 		ring_max = IGB_MAX_RING_I350;
434 		break;
435 
436 	case e1000_i210:
437 		ring_max = IGB_MAX_RING_I210;
438 		break;
439 
440 	case e1000_i211:
441 		ring_max = IGB_MAX_RING_I211;
442 		break;
443 
444 	default:
445 		ring_max = IGB_MIN_RING;
446 		break;
447 	}
448 
449 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
450 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
451 #ifdef IGB_RSS_DEBUG
452 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
453 #endif
454 	sc->rx_ring_inuse = sc->rx_ring_cnt;
455 
456 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
457 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
458 #ifdef IGB_TSS_DEBUG
459 	sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
460 #endif
461 	sc->tx_ring_inuse = sc->tx_ring_cnt;
462 
463 	/* Enable bus mastering */
464 	pci_enable_busmaster(dev);
465 
466 	/*
467 	 * Allocate IO memory
468 	 */
469 	sc->mem_rid = PCIR_BAR(0);
470 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
471 	    RF_ACTIVE);
472 	if (sc->mem_res == NULL) {
473 		device_printf(dev, "Unable to allocate bus resource: memory\n");
474 		error = ENXIO;
475 		goto failed;
476 	}
477 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
478 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
479 
480 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
481 
482 	/* Save PCI command register for Shared Code */
483 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
484 	sc->hw.back = &sc->osdep;
485 
486 	/* Do Shared Code initialization */
487 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
488 		device_printf(dev, "Setup of Shared code failed\n");
489 		error = ENXIO;
490 		goto failed;
491 	}
492 
493 	e1000_get_bus_info(&sc->hw);
494 
495 	sc->hw.mac.autoneg = DO_AUTO_NEG;
496 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
497 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
498 
499 	/* Copper options */
500 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
501 		sc->hw.phy.mdix = AUTO_ALL_MODES;
502 		sc->hw.phy.disable_polarity_correction = FALSE;
503 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
504 	}
505 
506 	/* Set the frame limits assuming  standard ethernet sized frames. */
507 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
508 
509 	/* Allocate RX/TX rings */
510 	error = igb_alloc_rings(sc);
511 	if (error)
512 		goto failed;
513 
514 #ifdef IFPOLL_ENABLE
515 	/*
516 	 * NPOLLING RX CPU offset
517 	 */
518 	if (sc->rx_ring_cnt == ncpus2) {
519 		offset = 0;
520 	} else {
521 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
522 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
523 		if (offset >= ncpus2 ||
524 		    offset % sc->rx_ring_cnt != 0) {
525 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
526 			    offset, offset_def);
527 			offset = offset_def;
528 		}
529 	}
530 	sc->rx_npoll_off = offset;
531 
532 	/*
533 	 * NPOLLING TX CPU offset
534 	 */
535 	if (sc->tx_ring_cnt == ncpus2) {
536 		offset = 0;
537 	} else {
538 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
539 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
540 		if (offset >= ncpus2 ||
541 		    offset % sc->tx_ring_cnt != 0) {
542 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
543 			    offset, offset_def);
544 			offset = offset_def;
545 		}
546 	}
547 	sc->tx_npoll_off = offset;
548 #endif
549 
550 	/* Allocate interrupt */
551 	error = igb_alloc_intr(sc);
552 	if (error)
553 		goto failed;
554 
555 	/* Setup serializers */
556 	igb_setup_serializer(sc);
557 
558 	/* Allocate the appropriate stats memory */
559 	if (sc->vf_ifp) {
560 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
561 		    M_WAITOK | M_ZERO);
562 		igb_vf_init_stats(sc);
563 	} else {
564 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
565 		    M_WAITOK | M_ZERO);
566 	}
567 
568 	/* Allocate multicast array memory. */
569 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
570 	    M_DEVBUF, M_WAITOK);
571 
572 	/* Some adapter-specific advanced features */
573 	if (sc->hw.mac.type >= e1000_i350) {
574 #ifdef notyet
575 		igb_set_sysctl_value(adapter, "dma_coalesce",
576 		    "configure dma coalesce",
577 		    &adapter->dma_coalesce, igb_dma_coalesce);
578 		igb_set_sysctl_value(adapter, "eee_disabled",
579 		    "enable Energy Efficient Ethernet",
580 		    &adapter->hw.dev_spec._82575.eee_disable,
581 		    igb_eee_disabled);
582 #else
583 		sc->dma_coalesce = igb_dma_coalesce;
584 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
585 #endif
586 		if (sc->hw.phy.media_type == e1000_media_type_copper)
587 			e1000_set_eee_i350(&sc->hw);
588 	}
589 
590 	/*
591 	 * Start from a known state, this is important in reading the nvm and
592 	 * mac from that.
593 	 */
594 	e1000_reset_hw(&sc->hw);
595 
596 	/* Make sure we have a good EEPROM before we read from it */
597 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
598 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
599 		/*
600 		 * Some PCI-E parts fail the first check due to
601 		 * the link being in sleep state, call it again,
602 		 * if it fails a second time its a real issue.
603 		 */
604 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
605 			device_printf(dev,
606 			    "The EEPROM Checksum Is Not Valid\n");
607 			error = EIO;
608 			goto failed;
609 		}
610 	}
611 
612 	/* Copy the permanent MAC address out of the EEPROM */
613 	if (e1000_read_mac_addr(&sc->hw) < 0) {
614 		device_printf(dev, "EEPROM read error while reading MAC"
615 		    " address\n");
616 		error = EIO;
617 		goto failed;
618 	}
619 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
620 		device_printf(dev, "Invalid MAC address\n");
621 		error = EIO;
622 		goto failed;
623 	}
624 
625 	/* Setup OS specific network interface */
626 	igb_setup_ifp(sc);
627 
628 	/* Add sysctl tree, must after igb_setup_ifp() */
629 	igb_add_sysctl(sc);
630 
631 	/* Now get a good starting state */
632 	igb_reset(sc);
633 
634 	/* Initialize statistics */
635 	igb_update_stats_counters(sc);
636 
637 	sc->hw.mac.get_link_status = 1;
638 	igb_update_link_status(sc);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&sc->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/* Determine if we have to control management hardware */
647 	if (e1000_enable_mng_pass_thru(&sc->hw))
648 		sc->flags |= IGB_FLAG_HAS_MGMT;
649 
650 	/*
651 	 * Setup Wake-on-Lan
652 	 */
653 	/* APME bit in EEPROM is mapped to WUC.APME */
654 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
655 	if (eeprom_data)
656 		sc->wol = E1000_WUFC_MAG;
657 	/* XXX disable WOL */
658 	sc->wol = 0;
659 
660 #ifdef notyet
661 	/* Register for VLAN events */
662 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
663 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
664 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
665 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
666 #endif
667 
668 #ifdef notyet
669 	igb_add_hw_stats(adapter);
670 #endif
671 
672 	error = igb_setup_intr(sc);
673 	if (error) {
674 		ether_ifdetach(&sc->arpcom.ac_if);
675 		goto failed;
676 	}
677 
678 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
679 		struct ifaltq_subque *ifsq =
680 		    ifq_get_subq(&sc->arpcom.ac_if.if_snd, i);
681 		struct igb_tx_ring *txr = &sc->tx_rings[i];
682 
683 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
684 		ifsq_set_priv(ifsq, txr);
685 		txr->ifsq = ifsq;
686 
687 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
688 	}
689 
690 	return 0;
691 
692 failed:
693 	igb_detach(dev);
694 	return error;
695 }
696 
697 static int
698 igb_detach(device_t dev)
699 {
700 	struct igb_softc *sc = device_get_softc(dev);
701 
702 	if (device_is_attached(dev)) {
703 		struct ifnet *ifp = &sc->arpcom.ac_if;
704 
705 		ifnet_serialize_all(ifp);
706 
707 		igb_stop(sc);
708 
709 		e1000_phy_hw_reset(&sc->hw);
710 
711 		/* Give control back to firmware */
712 		igb_rel_mgmt(sc);
713 		igb_rel_hw_control(sc);
714 
715 		if (sc->wol) {
716 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
717 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
718 			igb_enable_wol(dev);
719 		}
720 
721 		igb_teardown_intr(sc);
722 
723 		ifnet_deserialize_all(ifp);
724 
725 		ether_ifdetach(ifp);
726 	} else if (sc->mem_res != NULL) {
727 		igb_rel_hw_control(sc);
728 	}
729 	bus_generic_detach(dev);
730 
731 	if (sc->sysctl_tree != NULL)
732 		sysctl_ctx_free(&sc->sysctl_ctx);
733 
734 	igb_free_intr(sc);
735 
736 	if (sc->msix_mem_res != NULL) {
737 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
738 		    sc->msix_mem_res);
739 	}
740 	if (sc->mem_res != NULL) {
741 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
742 		    sc->mem_res);
743 	}
744 
745 	igb_free_rings(sc);
746 
747 	if (sc->mta != NULL)
748 		kfree(sc->mta, M_DEVBUF);
749 	if (sc->stats != NULL)
750 		kfree(sc->stats, M_DEVBUF);
751 	if (sc->serializes != NULL)
752 		kfree(sc->serializes, M_DEVBUF);
753 
754 	return 0;
755 }
756 
757 static int
758 igb_shutdown(device_t dev)
759 {
760 	return igb_suspend(dev);
761 }
762 
763 static int
764 igb_suspend(device_t dev)
765 {
766 	struct igb_softc *sc = device_get_softc(dev);
767 	struct ifnet *ifp = &sc->arpcom.ac_if;
768 
769 	ifnet_serialize_all(ifp);
770 
771 	igb_stop(sc);
772 
773 	igb_rel_mgmt(sc);
774 	igb_rel_hw_control(sc);
775 
776 	if (sc->wol) {
777 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
778 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
779 		igb_enable_wol(dev);
780 	}
781 
782 	ifnet_deserialize_all(ifp);
783 
784 	return bus_generic_suspend(dev);
785 }
786 
787 static int
788 igb_resume(device_t dev)
789 {
790 	struct igb_softc *sc = device_get_softc(dev);
791 	struct ifnet *ifp = &sc->arpcom.ac_if;
792 	int i;
793 
794 	ifnet_serialize_all(ifp);
795 
796 	igb_init(sc);
797 	igb_get_mgmt(sc);
798 
799 	for (i = 0; i < sc->tx_ring_inuse; ++i)
800 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
801 
802 	ifnet_deserialize_all(ifp);
803 
804 	return bus_generic_resume(dev);
805 }
806 
807 static int
808 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
809 {
810 	struct igb_softc *sc = ifp->if_softc;
811 	struct ifreq *ifr = (struct ifreq *)data;
812 	int max_frame_size, mask, reinit;
813 	int error = 0;
814 
815 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
816 
817 	switch (command) {
818 	case SIOCSIFMTU:
819 		max_frame_size = 9234;
820 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
821 		    ETHER_CRC_LEN) {
822 			error = EINVAL;
823 			break;
824 		}
825 
826 		ifp->if_mtu = ifr->ifr_mtu;
827 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
828 		    ETHER_CRC_LEN;
829 
830 		if (ifp->if_flags & IFF_RUNNING)
831 			igb_init(sc);
832 		break;
833 
834 	case SIOCSIFFLAGS:
835 		if (ifp->if_flags & IFF_UP) {
836 			if (ifp->if_flags & IFF_RUNNING) {
837 				if ((ifp->if_flags ^ sc->if_flags) &
838 				    (IFF_PROMISC | IFF_ALLMULTI)) {
839 					igb_disable_promisc(sc);
840 					igb_set_promisc(sc);
841 				}
842 			} else {
843 				igb_init(sc);
844 			}
845 		} else if (ifp->if_flags & IFF_RUNNING) {
846 			igb_stop(sc);
847 		}
848 		sc->if_flags = ifp->if_flags;
849 		break;
850 
851 	case SIOCADDMULTI:
852 	case SIOCDELMULTI:
853 		if (ifp->if_flags & IFF_RUNNING) {
854 			igb_disable_intr(sc);
855 			igb_set_multi(sc);
856 #ifdef IFPOLL_ENABLE
857 			if (!(ifp->if_flags & IFF_NPOLLING))
858 #endif
859 				igb_enable_intr(sc);
860 		}
861 		break;
862 
863 	case SIOCSIFMEDIA:
864 		/* Check SOL/IDER usage */
865 		if (e1000_check_reset_block(&sc->hw)) {
866 			if_printf(ifp, "Media change is "
867 			    "blocked due to SOL/IDER session.\n");
868 			break;
869 		}
870 		/* FALL THROUGH */
871 
872 	case SIOCGIFMEDIA:
873 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
874 		break;
875 
876 	case SIOCSIFCAP:
877 		reinit = 0;
878 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
879 		if (mask & IFCAP_RXCSUM) {
880 			ifp->if_capenable ^= IFCAP_RXCSUM;
881 			reinit = 1;
882 		}
883 		if (mask & IFCAP_VLAN_HWTAGGING) {
884 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
885 			reinit = 1;
886 		}
887 		if (mask & IFCAP_TXCSUM) {
888 			ifp->if_capenable ^= IFCAP_TXCSUM;
889 			if (ifp->if_capenable & IFCAP_TXCSUM)
890 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
891 			else
892 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
893 		}
894 		if (mask & IFCAP_TSO) {
895 			ifp->if_capenable ^= IFCAP_TSO;
896 			if (ifp->if_capenable & IFCAP_TSO)
897 				ifp->if_hwassist |= CSUM_TSO;
898 			else
899 				ifp->if_hwassist &= ~CSUM_TSO;
900 		}
901 		if (mask & IFCAP_RSS)
902 			ifp->if_capenable ^= IFCAP_RSS;
903 		if (reinit && (ifp->if_flags & IFF_RUNNING))
904 			igb_init(sc);
905 		break;
906 
907 	default:
908 		error = ether_ioctl(ifp, command, data);
909 		break;
910 	}
911 	return error;
912 }
913 
914 static void
915 igb_init(void *xsc)
916 {
917 	struct igb_softc *sc = xsc;
918 	struct ifnet *ifp = &sc->arpcom.ac_if;
919 	boolean_t polling;
920 	int i;
921 
922 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
923 
924 	igb_stop(sc);
925 
926 	/* Get the latest mac address, User can use a LAA */
927 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
928 
929 	/* Put the address into the Receive Address Array */
930 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
931 
932 	igb_reset(sc);
933 	igb_update_link_status(sc);
934 
935 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
936 
937 	/* Configure for OS presence */
938 	igb_get_mgmt(sc);
939 
940 	polling = FALSE;
941 #ifdef IFPOLL_ENABLE
942 	if (ifp->if_flags & IFF_NPOLLING)
943 		polling = TRUE;
944 #endif
945 
946 	/* Configured used RX/TX rings */
947 	igb_set_ring_inuse(sc, polling);
948 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
949 
950 	/* Initialize interrupt */
951 	igb_init_intr(sc);
952 
953 	/* Prepare transmit descriptors and buffers */
954 	for (i = 0; i < sc->tx_ring_inuse; ++i)
955 		igb_init_tx_ring(&sc->tx_rings[i]);
956 	igb_init_tx_unit(sc);
957 
958 	/* Setup Multicast table */
959 	igb_set_multi(sc);
960 
961 #if 0
962 	/*
963 	 * Figure out the desired mbuf pool
964 	 * for doing jumbo/packetsplit
965 	 */
966 	if (adapter->max_frame_size <= 2048)
967 		adapter->rx_mbuf_sz = MCLBYTES;
968 	else if (adapter->max_frame_size <= 4096)
969 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
970 	else
971 		adapter->rx_mbuf_sz = MJUM9BYTES;
972 #endif
973 
974 	/* Prepare receive descriptors and buffers */
975 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
976 		int error;
977 
978 		error = igb_init_rx_ring(&sc->rx_rings[i]);
979 		if (error) {
980 			if_printf(ifp, "Could not setup receive structures\n");
981 			igb_stop(sc);
982 			return;
983 		}
984 	}
985 	igb_init_rx_unit(sc);
986 
987 	/* Enable VLAN support */
988 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
989 		igb_set_vlan(sc);
990 
991 	/* Don't lose promiscuous settings */
992 	igb_set_promisc(sc);
993 
994 	ifp->if_flags |= IFF_RUNNING;
995 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
996 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
997 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
998 	}
999 
1000 	igb_set_timer_cpuid(sc, polling);
1001 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1002 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1003 
1004 	/* This clears any pending interrupts */
1005 	E1000_READ_REG(&sc->hw, E1000_ICR);
1006 
1007 	/*
1008 	 * Only enable interrupts if we are not polling, make sure
1009 	 * they are off otherwise.
1010 	 */
1011 	if (polling) {
1012 		igb_disable_intr(sc);
1013 	} else {
1014 		igb_enable_intr(sc);
1015 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1016 	}
1017 
1018 	/* Set Energy Efficient Ethernet */
1019 	if (sc->hw.phy.media_type == e1000_media_type_copper)
1020 		e1000_set_eee_i350(&sc->hw);
1021 }
1022 
1023 static void
1024 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1025 {
1026 	struct igb_softc *sc = ifp->if_softc;
1027 
1028 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1029 
1030 	igb_update_link_status(sc);
1031 
1032 	ifmr->ifm_status = IFM_AVALID;
1033 	ifmr->ifm_active = IFM_ETHER;
1034 
1035 	if (!sc->link_active)
1036 		return;
1037 
1038 	ifmr->ifm_status |= IFM_ACTIVE;
1039 
1040 	switch (sc->link_speed) {
1041 	case 10:
1042 		ifmr->ifm_active |= IFM_10_T;
1043 		break;
1044 
1045 	case 100:
1046 		/*
1047 		 * Support for 100Mb SFP - these are Fiber
1048 		 * but the media type appears as serdes
1049 		 */
1050 		if (sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1051 			ifmr->ifm_active |= IFM_100_FX;
1052 		else
1053 			ifmr->ifm_active |= IFM_100_TX;
1054 		break;
1055 
1056 	case 1000:
1057 		ifmr->ifm_active |= IFM_1000_T;
1058 		break;
1059 	}
1060 
1061 	if (sc->link_duplex == FULL_DUPLEX)
1062 		ifmr->ifm_active |= IFM_FDX;
1063 	else
1064 		ifmr->ifm_active |= IFM_HDX;
1065 }
1066 
1067 static int
1068 igb_media_change(struct ifnet *ifp)
1069 {
1070 	struct igb_softc *sc = ifp->if_softc;
1071 	struct ifmedia *ifm = &sc->media;
1072 
1073 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1074 
1075 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1076 		return EINVAL;
1077 
1078 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1079 	case IFM_AUTO:
1080 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1081 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1082 		break;
1083 
1084 	case IFM_1000_LX:
1085 	case IFM_1000_SX:
1086 	case IFM_1000_T:
1087 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1088 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1089 		break;
1090 
1091 	case IFM_100_TX:
1092 		sc->hw.mac.autoneg = FALSE;
1093 		sc->hw.phy.autoneg_advertised = 0;
1094 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1095 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1096 		else
1097 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1098 		break;
1099 
1100 	case IFM_10_T:
1101 		sc->hw.mac.autoneg = FALSE;
1102 		sc->hw.phy.autoneg_advertised = 0;
1103 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1104 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1105 		else
1106 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1107 		break;
1108 
1109 	default:
1110 		if_printf(ifp, "Unsupported media type\n");
1111 		break;
1112 	}
1113 
1114 	igb_init(sc);
1115 
1116 	return 0;
1117 }
1118 
1119 static void
1120 igb_set_promisc(struct igb_softc *sc)
1121 {
1122 	struct ifnet *ifp = &sc->arpcom.ac_if;
1123 	struct e1000_hw *hw = &sc->hw;
1124 	uint32_t reg;
1125 
1126 	if (sc->vf_ifp) {
1127 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1128 		return;
1129 	}
1130 
1131 	reg = E1000_READ_REG(hw, E1000_RCTL);
1132 	if (ifp->if_flags & IFF_PROMISC) {
1133 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1134 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1135 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1136 		reg |= E1000_RCTL_MPE;
1137 		reg &= ~E1000_RCTL_UPE;
1138 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1139 	}
1140 }
1141 
1142 static void
1143 igb_disable_promisc(struct igb_softc *sc)
1144 {
1145 	struct e1000_hw *hw = &sc->hw;
1146 	uint32_t reg;
1147 
1148 	if (sc->vf_ifp) {
1149 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1150 		return;
1151 	}
1152 	reg = E1000_READ_REG(hw, E1000_RCTL);
1153 	reg &= ~E1000_RCTL_UPE;
1154 	reg &= ~E1000_RCTL_MPE;
1155 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1156 }
1157 
1158 static void
1159 igb_set_multi(struct igb_softc *sc)
1160 {
1161 	struct ifnet *ifp = &sc->arpcom.ac_if;
1162 	struct ifmultiaddr *ifma;
1163 	uint32_t reg_rctl = 0;
1164 	uint8_t *mta;
1165 	int mcnt = 0;
1166 
1167 	mta = sc->mta;
1168 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1169 
1170 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1171 		if (ifma->ifma_addr->sa_family != AF_LINK)
1172 			continue;
1173 
1174 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1175 			break;
1176 
1177 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1178 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1179 		mcnt++;
1180 	}
1181 
1182 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1183 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1184 		reg_rctl |= E1000_RCTL_MPE;
1185 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1186 	} else {
1187 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1188 	}
1189 }
1190 
1191 static void
1192 igb_timer(void *xsc)
1193 {
1194 	struct igb_softc *sc = xsc;
1195 
1196 	lwkt_serialize_enter(&sc->main_serialize);
1197 
1198 	igb_update_link_status(sc);
1199 	igb_update_stats_counters(sc);
1200 
1201 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1202 
1203 	lwkt_serialize_exit(&sc->main_serialize);
1204 }
1205 
1206 static void
1207 igb_update_link_status(struct igb_softc *sc)
1208 {
1209 	struct ifnet *ifp = &sc->arpcom.ac_if;
1210 	struct e1000_hw *hw = &sc->hw;
1211 	uint32_t link_check, thstat, ctrl;
1212 
1213 	link_check = thstat = ctrl = 0;
1214 
1215 	/* Get the cached link value or read for real */
1216 	switch (hw->phy.media_type) {
1217 	case e1000_media_type_copper:
1218 		if (hw->mac.get_link_status) {
1219 			/* Do the work to read phy */
1220 			e1000_check_for_link(hw);
1221 			link_check = !hw->mac.get_link_status;
1222 		} else {
1223 			link_check = TRUE;
1224 		}
1225 		break;
1226 
1227 	case e1000_media_type_fiber:
1228 		e1000_check_for_link(hw);
1229 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1230 		break;
1231 
1232 	case e1000_media_type_internal_serdes:
1233 		e1000_check_for_link(hw);
1234 		link_check = hw->mac.serdes_has_link;
1235 		break;
1236 
1237 	/* VF device is type_unknown */
1238 	case e1000_media_type_unknown:
1239 		e1000_check_for_link(hw);
1240 		link_check = !hw->mac.get_link_status;
1241 		/* Fall thru */
1242 	default:
1243 		break;
1244 	}
1245 
1246 	/* Check for thermal downshift or shutdown */
1247 	if (hw->mac.type == e1000_i350) {
1248 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1249 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1250 	}
1251 
1252 	/* Now we check if a transition has happened */
1253 	if (link_check && sc->link_active == 0) {
1254 		e1000_get_speed_and_duplex(hw,
1255 		    &sc->link_speed, &sc->link_duplex);
1256 		if (bootverbose) {
1257 			const char *flowctl;
1258 
1259 			/* Get the flow control for display */
1260 			switch (hw->fc.current_mode) {
1261 			case e1000_fc_rx_pause:
1262 				flowctl = "RX";
1263 				break;
1264 
1265 			case e1000_fc_tx_pause:
1266 				flowctl = "TX";
1267 				break;
1268 
1269 			case e1000_fc_full:
1270 				flowctl = "Full";
1271 				break;
1272 
1273 			default:
1274 				flowctl = "None";
1275 				break;
1276 			}
1277 
1278 			if_printf(ifp, "Link is up %d Mbps %s, "
1279 			    "Flow control: %s\n",
1280 			    sc->link_speed,
1281 			    sc->link_duplex == FULL_DUPLEX ?
1282 			    "Full Duplex" : "Half Duplex",
1283 			    flowctl);
1284 		}
1285 		sc->link_active = 1;
1286 
1287 		ifp->if_baudrate = sc->link_speed * 1000000;
1288 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1289 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1290 			if_printf(ifp, "Link: thermal downshift\n");
1291 		/* This can sleep */
1292 		ifp->if_link_state = LINK_STATE_UP;
1293 		if_link_state_change(ifp);
1294 	} else if (!link_check && sc->link_active == 1) {
1295 		ifp->if_baudrate = sc->link_speed = 0;
1296 		sc->link_duplex = 0;
1297 		if (bootverbose)
1298 			if_printf(ifp, "Link is Down\n");
1299 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1300 		    (thstat & E1000_THSTAT_PWR_DOWN))
1301 			if_printf(ifp, "Link: thermal shutdown\n");
1302 		sc->link_active = 0;
1303 		/* This can sleep */
1304 		ifp->if_link_state = LINK_STATE_DOWN;
1305 		if_link_state_change(ifp);
1306 	}
1307 }
1308 
1309 static void
1310 igb_stop(struct igb_softc *sc)
1311 {
1312 	struct ifnet *ifp = &sc->arpcom.ac_if;
1313 	int i;
1314 
1315 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1316 
1317 	igb_disable_intr(sc);
1318 
1319 	callout_stop(&sc->timer);
1320 
1321 	ifp->if_flags &= ~IFF_RUNNING;
1322 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1323 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1324 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1325 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1326 	}
1327 
1328 	e1000_reset_hw(&sc->hw);
1329 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1330 
1331 	e1000_led_off(&sc->hw);
1332 	e1000_cleanup_led(&sc->hw);
1333 
1334 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1335 		igb_free_tx_ring(&sc->tx_rings[i]);
1336 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1337 		igb_free_rx_ring(&sc->rx_rings[i]);
1338 }
1339 
1340 static void
1341 igb_reset(struct igb_softc *sc)
1342 {
1343 	struct ifnet *ifp = &sc->arpcom.ac_if;
1344 	struct e1000_hw *hw = &sc->hw;
1345 	struct e1000_fc_info *fc = &hw->fc;
1346 	uint32_t pba = 0;
1347 	uint16_t hwm;
1348 
1349 	/* Let the firmware know the OS is in control */
1350 	igb_get_hw_control(sc);
1351 
1352 	/*
1353 	 * Packet Buffer Allocation (PBA)
1354 	 * Writing PBA sets the receive portion of the buffer
1355 	 * the remainder is used for the transmit buffer.
1356 	 */
1357 	switch (hw->mac.type) {
1358 	case e1000_82575:
1359 		pba = E1000_PBA_32K;
1360 		break;
1361 
1362 	case e1000_82576:
1363 	case e1000_vfadapt:
1364 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1365 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1366 		break;
1367 
1368 	case e1000_82580:
1369 	case e1000_i350:
1370 	case e1000_vfadapt_i350:
1371 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1372 		pba = e1000_rxpbs_adjust_82580(pba);
1373 		break;
1374 
1375 	case e1000_i210:
1376 	case e1000_i211:
1377 		pba = E1000_PBA_34K;
1378 		break;
1379 
1380 	default:
1381 		break;
1382 	}
1383 
1384 	/* Special needs in case of Jumbo frames */
1385 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1386 		uint32_t tx_space, min_tx, min_rx;
1387 
1388 		pba = E1000_READ_REG(hw, E1000_PBA);
1389 		tx_space = pba >> 16;
1390 		pba &= 0xffff;
1391 
1392 		min_tx = (sc->max_frame_size +
1393 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1394 		min_tx = roundup2(min_tx, 1024);
1395 		min_tx >>= 10;
1396 		min_rx = sc->max_frame_size;
1397 		min_rx = roundup2(min_rx, 1024);
1398 		min_rx >>= 10;
1399 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1400 			pba = pba - (min_tx - tx_space);
1401 			/*
1402 			 * if short on rx space, rx wins
1403 			 * and must trump tx adjustment
1404 			 */
1405 			if (pba < min_rx)
1406 				pba = min_rx;
1407 		}
1408 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1409 	}
1410 
1411 	/*
1412 	 * These parameters control the automatic generation (Tx) and
1413 	 * response (Rx) to Ethernet PAUSE frames.
1414 	 * - High water mark should allow for at least two frames to be
1415 	 *   received after sending an XOFF.
1416 	 * - Low water mark works best when it is very near the high water mark.
1417 	 *   This allows the receiver to restart by sending XON when it has
1418 	 *   drained a bit.
1419 	 */
1420 	hwm = min(((pba << 10) * 9 / 10),
1421 	    ((pba << 10) - 2 * sc->max_frame_size));
1422 
1423 	if (hw->mac.type < e1000_82576) {
1424 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1425 		fc->low_water = fc->high_water - 8;
1426 	} else {
1427 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1428 		fc->low_water = fc->high_water - 16;
1429 	}
1430 	fc->pause_time = IGB_FC_PAUSE_TIME;
1431 	fc->send_xon = TRUE;
1432 	fc->requested_mode = e1000_fc_default;
1433 
1434 	/* Issue a global reset */
1435 	e1000_reset_hw(hw);
1436 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1437 
1438 	if (e1000_init_hw(hw) < 0)
1439 		if_printf(ifp, "Hardware Initialization Failed\n");
1440 
1441 	/* Setup DMA Coalescing */
1442 	if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1443 		uint32_t dmac;
1444 		uint32_t reg;
1445 
1446 		if (sc->dma_coalesce == 0) {
1447 			/*
1448 			 * Disabled
1449 			 */
1450 			reg = E1000_READ_REG(hw, E1000_DMACR);
1451 			reg &= ~E1000_DMACR_DMAC_EN;
1452 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
1453 			goto reset_out;
1454 		}
1455 
1456 		/* Set starting thresholds */
1457 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1458 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1459 
1460 		hwm = 64 * pba - sc->max_frame_size / 16;
1461 		if (hwm < 64 * (pba - 6))
1462 			hwm = 64 * (pba - 6);
1463 		reg = E1000_READ_REG(hw, E1000_FCRTC);
1464 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1465 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1466 		    & E1000_FCRTC_RTH_COAL_MASK);
1467 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1468 
1469 		dmac = pba - sc->max_frame_size / 512;
1470 		if (dmac < pba - 10)
1471 			dmac = pba - 10;
1472 		reg = E1000_READ_REG(hw, E1000_DMACR);
1473 		reg &= ~E1000_DMACR_DMACTHR_MASK;
1474 		reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1475 		    & E1000_DMACR_DMACTHR_MASK);
1476 		/* Transition to L0x or L1 if available.. */
1477 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1478 		/* timer = value in sc->dma_coalesce in 32usec intervals */
1479 		reg |= (sc->dma_coalesce >> 5);
1480 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1481 
1482 		/* Set the interval before transition */
1483 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1484 		reg |= 0x80000004;
1485 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1486 
1487 		/* Free space in tx packet buffer to wake from DMA coal */
1488 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1489 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1490 
1491 		/* Make low power state decision controlled by DMA coal */
1492 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1493 		reg &= ~E1000_PCIEMISC_LX_DECISION;
1494 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1495 		if_printf(ifp, "DMA Coalescing enabled\n");
1496 	} else if (hw->mac.type == e1000_82580) {
1497 		uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1498 
1499 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
1500 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1501 		    reg & ~E1000_PCIEMISC_LX_DECISION);
1502 	}
1503 
1504 reset_out:
1505 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1506 	e1000_get_phy_info(hw);
1507 	e1000_check_for_link(hw);
1508 }
1509 
1510 static void
1511 igb_setup_ifp(struct igb_softc *sc)
1512 {
1513 	struct ifnet *ifp = &sc->arpcom.ac_if;
1514 
1515 	ifp->if_softc = sc;
1516 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1517 	ifp->if_init = igb_init;
1518 	ifp->if_ioctl = igb_ioctl;
1519 	ifp->if_start = igb_start;
1520 	ifp->if_serialize = igb_serialize;
1521 	ifp->if_deserialize = igb_deserialize;
1522 	ifp->if_tryserialize = igb_tryserialize;
1523 #ifdef INVARIANTS
1524 	ifp->if_serialize_assert = igb_serialize_assert;
1525 #endif
1526 #ifdef IFPOLL_ENABLE
1527 	ifp->if_npoll = igb_npoll;
1528 #endif
1529 
1530 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1531 	ifq_set_ready(&ifp->if_snd);
1532 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1533 
1534 	ifp->if_mapsubq = ifq_mapsubq_mask;
1535 	ifq_set_subq_mask(&ifp->if_snd, 0);
1536 
1537 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1538 
1539 	ifp->if_capabilities =
1540 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1541 	if (IGB_ENABLE_HWRSS(sc))
1542 		ifp->if_capabilities |= IFCAP_RSS;
1543 	ifp->if_capenable = ifp->if_capabilities;
1544 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1545 
1546 	/*
1547 	 * Tell the upper layer(s) we support long frames
1548 	 */
1549 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1550 
1551 	/*
1552 	 * Specify the media types supported by this adapter and register
1553 	 * callbacks to update media and link information
1554 	 */
1555 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1556 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1557 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1558 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1559 		    0, NULL);
1560 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1561 	} else {
1562 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1563 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1564 		    0, NULL);
1565 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1566 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1567 		    0, NULL);
1568 		if (sc->hw.phy.type != e1000_phy_ife) {
1569 			ifmedia_add(&sc->media,
1570 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1571 			ifmedia_add(&sc->media,
1572 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1573 		}
1574 	}
1575 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1576 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1577 }
1578 
1579 static void
1580 igb_add_sysctl(struct igb_softc *sc)
1581 {
1582 	char node[32];
1583 	int i;
1584 
1585 	sysctl_ctx_init(&sc->sysctl_ctx);
1586 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1587 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1588 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1589 	if (sc->sysctl_tree == NULL) {
1590 		device_printf(sc->dev, "can't add sysctl node\n");
1591 		return;
1592 	}
1593 
1594 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1595 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1596 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1597 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1598 	    "# of RX rings used");
1599 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1600 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1601 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1602 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1603 	    "# of TX rings used");
1604 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1605 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1606 	    "# of RX descs");
1607 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1608 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1609 	    "# of TX descs");
1610 
1611 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1612 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1613 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1614 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1615 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1616 	} else {
1617 		for (i = 0; i < sc->msix_cnt; ++i) {
1618 			struct igb_msix_data *msix = &sc->msix_data[i];
1619 
1620 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1621 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1622 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1623 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1624 			    msix, 0, igb_sysctl_msix_rate, "I",
1625 			    msix->msix_rate_desc);
1626 		}
1627 	}
1628 
1629 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1630 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1631 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1632 	    "# of segments per TX interrupt");
1633 
1634 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1635 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1636 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1637 	    "# of segments sent before write to hardware register");
1638 
1639 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1640 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1641 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1642 	    "# of segments received before write to hardware register");
1643 
1644 #ifdef IFPOLL_ENABLE
1645 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1646 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1647 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1648 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1649 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1650 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1651 #endif
1652 
1653 #ifdef IGB_RSS_DEBUG
1654 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1655 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1656 	    "RSS debug level");
1657 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1658 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1659 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1660 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1661 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1662 	}
1663 #endif
1664 #ifdef IGB_TSS_DEBUG
1665 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1666 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1667 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1668 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1669 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1670 	}
1671 #endif
1672 }
1673 
1674 static int
1675 igb_alloc_rings(struct igb_softc *sc)
1676 {
1677 	int error, i;
1678 
1679 	/*
1680 	 * Create top level busdma tag
1681 	 */
1682 	error = bus_dma_tag_create(NULL, 1, 0,
1683 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1684 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1685 	    &sc->parent_tag);
1686 	if (error) {
1687 		device_printf(sc->dev, "could not create top level DMA tag\n");
1688 		return error;
1689 	}
1690 
1691 	/*
1692 	 * Allocate TX descriptor rings and buffers
1693 	 */
1694 	sc->tx_rings = kmalloc_cachealign(
1695 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1696 	    M_DEVBUF, M_WAITOK | M_ZERO);
1697 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1698 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1699 
1700 		/* Set up some basics */
1701 		txr->sc = sc;
1702 		txr->me = i;
1703 		lwkt_serialize_init(&txr->tx_serialize);
1704 
1705 		error = igb_create_tx_ring(txr);
1706 		if (error)
1707 			return error;
1708 	}
1709 
1710 	/*
1711 	 * Allocate RX descriptor rings and buffers
1712 	 */
1713 	sc->rx_rings = kmalloc_cachealign(
1714 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1715 	    M_DEVBUF, M_WAITOK | M_ZERO);
1716 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1717 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1718 
1719 		/* Set up some basics */
1720 		rxr->sc = sc;
1721 		rxr->me = i;
1722 		lwkt_serialize_init(&rxr->rx_serialize);
1723 
1724 		error = igb_create_rx_ring(rxr);
1725 		if (error)
1726 			return error;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static void
1733 igb_free_rings(struct igb_softc *sc)
1734 {
1735 	int i;
1736 
1737 	if (sc->tx_rings != NULL) {
1738 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1739 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1740 
1741 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1742 		}
1743 		kfree(sc->tx_rings, M_DEVBUF);
1744 	}
1745 
1746 	if (sc->rx_rings != NULL) {
1747 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1748 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1749 
1750 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1751 		}
1752 		kfree(sc->rx_rings, M_DEVBUF);
1753 	}
1754 }
1755 
1756 static int
1757 igb_create_tx_ring(struct igb_tx_ring *txr)
1758 {
1759 	int tsize, error, i, ntxd;
1760 
1761 	/*
1762 	 * Validate number of transmit descriptors. It must not exceed
1763 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1764 	 */
1765 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1766 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1767 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1768 		device_printf(txr->sc->dev,
1769 		    "Using %d TX descriptors instead of %d!\n",
1770 		    IGB_DEFAULT_TXD, ntxd);
1771 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1772 	} else {
1773 		txr->num_tx_desc = ntxd;
1774 	}
1775 
1776 	/*
1777 	 * Allocate TX descriptor ring
1778 	 */
1779 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1780 	    IGB_DBA_ALIGN);
1781 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1782 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1783 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1784 	if (txr->txdma.dma_vaddr == NULL) {
1785 		device_printf(txr->sc->dev,
1786 		    "Unable to allocate TX Descriptor memory\n");
1787 		return ENOMEM;
1788 	}
1789 	txr->tx_base = txr->txdma.dma_vaddr;
1790 	bzero(txr->tx_base, tsize);
1791 
1792 	tsize = __VM_CACHELINE_ALIGN(
1793 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1794 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1795 
1796 	/*
1797 	 * Allocate TX head write-back buffer
1798 	 */
1799 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1800 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1801 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1802 	if (txr->tx_hdr == NULL) {
1803 		device_printf(txr->sc->dev,
1804 		    "Unable to allocate TX head write-back buffer\n");
1805 		return ENOMEM;
1806 	}
1807 
1808 	/*
1809 	 * Create DMA tag for TX buffers
1810 	 */
1811 	error = bus_dma_tag_create(txr->sc->parent_tag,
1812 	    1, 0,		/* alignment, bounds */
1813 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1814 	    BUS_SPACE_MAXADDR,	/* highaddr */
1815 	    NULL, NULL,		/* filter, filterarg */
1816 	    IGB_TSO_SIZE,	/* maxsize */
1817 	    IGB_MAX_SCATTER,	/* nsegments */
1818 	    PAGE_SIZE,		/* maxsegsize */
1819 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1820 	    BUS_DMA_ONEBPAGE,	/* flags */
1821 	    &txr->tx_tag);
1822 	if (error) {
1823 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1824 		kfree(txr->tx_buf, M_DEVBUF);
1825 		txr->tx_buf = NULL;
1826 		return error;
1827 	}
1828 
1829 	/*
1830 	 * Create DMA maps for TX buffers
1831 	 */
1832 	for (i = 0; i < txr->num_tx_desc; ++i) {
1833 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1834 
1835 		error = bus_dmamap_create(txr->tx_tag,
1836 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1837 		if (error) {
1838 			device_printf(txr->sc->dev,
1839 			    "Unable to create TX DMA map\n");
1840 			igb_destroy_tx_ring(txr, i);
1841 			return error;
1842 		}
1843 	}
1844 
1845 	if (txr->sc->hw.mac.type == e1000_82575)
1846 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1847 
1848 	/*
1849 	 * Initialize various watermark
1850 	 */
1851 	txr->spare_desc = IGB_TX_SPARE;
1852 	txr->intr_nsegs = txr->num_tx_desc / 16;
1853 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1854 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1855 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1856 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1857 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1858 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1859 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1860 
1861 	return 0;
1862 }
1863 
1864 static void
1865 igb_free_tx_ring(struct igb_tx_ring *txr)
1866 {
1867 	int i;
1868 
1869 	for (i = 0; i < txr->num_tx_desc; ++i) {
1870 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1871 
1872 		if (txbuf->m_head != NULL) {
1873 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1874 			m_freem(txbuf->m_head);
1875 			txbuf->m_head = NULL;
1876 		}
1877 	}
1878 }
1879 
1880 static void
1881 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1882 {
1883 	int i;
1884 
1885 	if (txr->txdma.dma_vaddr != NULL) {
1886 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1887 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1888 		    txr->txdma.dma_map);
1889 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1890 		txr->txdma.dma_vaddr = NULL;
1891 	}
1892 
1893 	if (txr->tx_hdr != NULL) {
1894 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1895 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1896 		    txr->tx_hdr_dmap);
1897 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1898 		txr->tx_hdr = NULL;
1899 	}
1900 
1901 	if (txr->tx_buf == NULL)
1902 		return;
1903 
1904 	for (i = 0; i < ndesc; ++i) {
1905 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1906 
1907 		KKASSERT(txbuf->m_head == NULL);
1908 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1909 	}
1910 	bus_dma_tag_destroy(txr->tx_tag);
1911 
1912 	kfree(txr->tx_buf, M_DEVBUF);
1913 	txr->tx_buf = NULL;
1914 }
1915 
1916 static void
1917 igb_init_tx_ring(struct igb_tx_ring *txr)
1918 {
1919 	/* Clear the old descriptor contents */
1920 	bzero(txr->tx_base,
1921 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1922 
1923 	/* Clear TX head write-back buffer */
1924 	*(txr->tx_hdr) = 0;
1925 
1926 	/* Reset indices */
1927 	txr->next_avail_desc = 0;
1928 	txr->next_to_clean = 0;
1929 	txr->tx_nsegs = 0;
1930 
1931 	/* Set number of descriptors available */
1932 	txr->tx_avail = txr->num_tx_desc;
1933 
1934 	/* Enable this TX ring */
1935 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1936 }
1937 
1938 static void
1939 igb_init_tx_unit(struct igb_softc *sc)
1940 {
1941 	struct e1000_hw *hw = &sc->hw;
1942 	uint32_t tctl;
1943 	int i;
1944 
1945 	/* Setup the Tx Descriptor Rings */
1946 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1947 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1948 		uint64_t bus_addr = txr->txdma.dma_paddr;
1949 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1950 		uint32_t txdctl = 0;
1951 		uint32_t dca_txctrl;
1952 
1953 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1954 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1955 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1956 		    (uint32_t)(bus_addr >> 32));
1957 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1958 		    (uint32_t)bus_addr);
1959 
1960 		/* Setup the HW Tx Head and Tail descriptor pointers */
1961 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1962 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1963 
1964 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1965 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1966 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1967 
1968 		/*
1969 		 * Don't set WB_on_EITR:
1970 		 * - 82575 does not have it
1971 		 * - It almost has no effect on 82576, see:
1972 		 *   82576 specification update errata #26
1973 		 * - It causes unnecessary bus traffic
1974 		 */
1975 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1976 		    (uint32_t)(hdr_paddr >> 32));
1977 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1978 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1979 
1980 		/*
1981 		 * WTHRESH is ignored by the hardware, since header
1982 		 * write back mode is used.
1983 		 */
1984 		txdctl |= IGB_TX_PTHRESH;
1985 		txdctl |= IGB_TX_HTHRESH << 8;
1986 		txdctl |= IGB_TX_WTHRESH << 16;
1987 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1988 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1989 	}
1990 
1991 	if (sc->vf_ifp)
1992 		return;
1993 
1994 	e1000_config_collision_dist(hw);
1995 
1996 	/* Program the Transmit Control Register */
1997 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1998 	tctl &= ~E1000_TCTL_CT;
1999 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2000 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2001 
2002 	/* This write will effectively turn on the transmit unit. */
2003 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2004 }
2005 
2006 static boolean_t
2007 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2008 {
2009 	struct e1000_adv_tx_context_desc *TXD;
2010 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2011 	int ehdrlen, ctxd, ip_hlen = 0;
2012 	boolean_t offload = TRUE;
2013 
2014 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2015 		offload = FALSE;
2016 
2017 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2018 
2019 	ctxd = txr->next_avail_desc;
2020 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2021 
2022 	/*
2023 	 * In advanced descriptors the vlan tag must
2024 	 * be placed into the context descriptor, thus
2025 	 * we need to be here just for that setup.
2026 	 */
2027 	if (mp->m_flags & M_VLANTAG) {
2028 		uint16_t vlantag;
2029 
2030 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2031 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2032 	} else if (!offload) {
2033 		return FALSE;
2034 	}
2035 
2036 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2037 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2038 
2039 	/* Set the ether header length */
2040 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2041 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2042 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2043 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2044 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2045 	}
2046 	vlan_macip_lens |= ip_hlen;
2047 
2048 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2049 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2050 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2051 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2052 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2053 
2054 	/* 82575 needs the queue index added */
2055 	if (txr->sc->hw.mac.type == e1000_82575)
2056 		mss_l4len_idx = txr->me << 4;
2057 
2058 	/* Now copy bits into descriptor */
2059 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2060 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2061 	TXD->seqnum_seed = htole32(0);
2062 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2063 
2064 	/* We've consumed the first desc, adjust counters */
2065 	if (++ctxd == txr->num_tx_desc)
2066 		ctxd = 0;
2067 	txr->next_avail_desc = ctxd;
2068 	--txr->tx_avail;
2069 
2070 	return offload;
2071 }
2072 
2073 static void
2074 igb_txeof(struct igb_tx_ring *txr)
2075 {
2076 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2077 	int first, hdr, avail;
2078 
2079 	if (txr->tx_avail == txr->num_tx_desc)
2080 		return;
2081 
2082 	first = txr->next_to_clean;
2083 	hdr = *(txr->tx_hdr);
2084 
2085 	if (first == hdr)
2086 		return;
2087 
2088 	avail = txr->tx_avail;
2089 	while (first != hdr) {
2090 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2091 
2092 		++avail;
2093 		if (txbuf->m_head) {
2094 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2095 			m_freem(txbuf->m_head);
2096 			txbuf->m_head = NULL;
2097 			IFNET_STAT_INC(ifp, opackets, 1);
2098 		}
2099 		if (++first == txr->num_tx_desc)
2100 			first = 0;
2101 	}
2102 	txr->next_to_clean = first;
2103 	txr->tx_avail = avail;
2104 
2105 	/*
2106 	 * If we have a minimum free, clear OACTIVE
2107 	 * to tell the stack that it is OK to send packets.
2108 	 */
2109 	if (IGB_IS_NOT_OACTIVE(txr)) {
2110 		ifsq_clr_oactive(txr->ifsq);
2111 
2112 		/*
2113 		 * We have enough TX descriptors, turn off
2114 		 * the watchdog.  We allow small amount of
2115 		 * packets (roughly intr_nsegs) pending on
2116 		 * the transmit ring.
2117 		 */
2118 		txr->tx_watchdog.wd_timer = 0;
2119 	}
2120 }
2121 
2122 static int
2123 igb_create_rx_ring(struct igb_rx_ring *rxr)
2124 {
2125 	int rsize, i, error, nrxd;
2126 
2127 	/*
2128 	 * Validate number of receive descriptors. It must not exceed
2129 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2130 	 */
2131 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2132 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2133 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2134 		device_printf(rxr->sc->dev,
2135 		    "Using %d RX descriptors instead of %d!\n",
2136 		    IGB_DEFAULT_RXD, nrxd);
2137 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2138 	} else {
2139 		rxr->num_rx_desc = nrxd;
2140 	}
2141 
2142 	/*
2143 	 * Allocate RX descriptor ring
2144 	 */
2145 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2146 	    IGB_DBA_ALIGN);
2147 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2148 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2149 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2150 	    &rxr->rxdma.dma_paddr);
2151 	if (rxr->rxdma.dma_vaddr == NULL) {
2152 		device_printf(rxr->sc->dev,
2153 		    "Unable to allocate RxDescriptor memory\n");
2154 		return ENOMEM;
2155 	}
2156 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2157 	bzero(rxr->rx_base, rsize);
2158 
2159 	rsize = __VM_CACHELINE_ALIGN(
2160 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2161 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2162 
2163 	/*
2164 	 * Create DMA tag for RX buffers
2165 	 */
2166 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2167 	    1, 0,		/* alignment, bounds */
2168 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2169 	    BUS_SPACE_MAXADDR,	/* highaddr */
2170 	    NULL, NULL,		/* filter, filterarg */
2171 	    MCLBYTES,		/* maxsize */
2172 	    1,			/* nsegments */
2173 	    MCLBYTES,		/* maxsegsize */
2174 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2175 	    &rxr->rx_tag);
2176 	if (error) {
2177 		device_printf(rxr->sc->dev,
2178 		    "Unable to create RX payload DMA tag\n");
2179 		kfree(rxr->rx_buf, M_DEVBUF);
2180 		rxr->rx_buf = NULL;
2181 		return error;
2182 	}
2183 
2184 	/*
2185 	 * Create spare DMA map for RX buffers
2186 	 */
2187 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2188 	    &rxr->rx_sparemap);
2189 	if (error) {
2190 		device_printf(rxr->sc->dev,
2191 		    "Unable to create spare RX DMA maps\n");
2192 		bus_dma_tag_destroy(rxr->rx_tag);
2193 		kfree(rxr->rx_buf, M_DEVBUF);
2194 		rxr->rx_buf = NULL;
2195 		return error;
2196 	}
2197 
2198 	/*
2199 	 * Create DMA maps for RX buffers
2200 	 */
2201 	for (i = 0; i < rxr->num_rx_desc; i++) {
2202 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2203 
2204 		error = bus_dmamap_create(rxr->rx_tag,
2205 		    BUS_DMA_WAITOK, &rxbuf->map);
2206 		if (error) {
2207 			device_printf(rxr->sc->dev,
2208 			    "Unable to create RX DMA maps\n");
2209 			igb_destroy_rx_ring(rxr, i);
2210 			return error;
2211 		}
2212 	}
2213 
2214 	/*
2215 	 * Initialize various watermark
2216 	 */
2217 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2218 
2219 	return 0;
2220 }
2221 
2222 static void
2223 igb_free_rx_ring(struct igb_rx_ring *rxr)
2224 {
2225 	int i;
2226 
2227 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2228 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2229 
2230 		if (rxbuf->m_head != NULL) {
2231 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2232 			m_freem(rxbuf->m_head);
2233 			rxbuf->m_head = NULL;
2234 		}
2235 	}
2236 
2237 	if (rxr->fmp != NULL)
2238 		m_freem(rxr->fmp);
2239 	rxr->fmp = NULL;
2240 	rxr->lmp = NULL;
2241 }
2242 
2243 static void
2244 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2245 {
2246 	int i;
2247 
2248 	if (rxr->rxdma.dma_vaddr != NULL) {
2249 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2250 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2251 		    rxr->rxdma.dma_map);
2252 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2253 		rxr->rxdma.dma_vaddr = NULL;
2254 	}
2255 
2256 	if (rxr->rx_buf == NULL)
2257 		return;
2258 
2259 	for (i = 0; i < ndesc; ++i) {
2260 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2261 
2262 		KKASSERT(rxbuf->m_head == NULL);
2263 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2264 	}
2265 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2266 	bus_dma_tag_destroy(rxr->rx_tag);
2267 
2268 	kfree(rxr->rx_buf, M_DEVBUF);
2269 	rxr->rx_buf = NULL;
2270 }
2271 
2272 static void
2273 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2274 {
2275 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2276 	rxd->wb.upper.status_error = 0;
2277 }
2278 
2279 static int
2280 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2281 {
2282 	struct mbuf *m;
2283 	bus_dma_segment_t seg;
2284 	bus_dmamap_t map;
2285 	struct igb_rx_buf *rxbuf;
2286 	int error, nseg;
2287 
2288 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2289 	if (m == NULL) {
2290 		if (wait) {
2291 			if_printf(&rxr->sc->arpcom.ac_if,
2292 			    "Unable to allocate RX mbuf\n");
2293 		}
2294 		return ENOBUFS;
2295 	}
2296 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2297 
2298 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2299 		m_adj(m, ETHER_ALIGN);
2300 
2301 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2302 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2303 	if (error) {
2304 		m_freem(m);
2305 		if (wait) {
2306 			if_printf(&rxr->sc->arpcom.ac_if,
2307 			    "Unable to load RX mbuf\n");
2308 		}
2309 		return error;
2310 	}
2311 
2312 	rxbuf = &rxr->rx_buf[i];
2313 	if (rxbuf->m_head != NULL)
2314 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2315 
2316 	map = rxbuf->map;
2317 	rxbuf->map = rxr->rx_sparemap;
2318 	rxr->rx_sparemap = map;
2319 
2320 	rxbuf->m_head = m;
2321 	rxbuf->paddr = seg.ds_addr;
2322 
2323 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2324 	return 0;
2325 }
2326 
2327 static int
2328 igb_init_rx_ring(struct igb_rx_ring *rxr)
2329 {
2330 	int i;
2331 
2332 	/* Clear the ring contents */
2333 	bzero(rxr->rx_base,
2334 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2335 
2336 	/* Now replenish the ring mbufs */
2337 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2338 		int error;
2339 
2340 		error = igb_newbuf(rxr, i, TRUE);
2341 		if (error)
2342 			return error;
2343 	}
2344 
2345 	/* Setup our descriptor indices */
2346 	rxr->next_to_check = 0;
2347 
2348 	rxr->fmp = NULL;
2349 	rxr->lmp = NULL;
2350 	rxr->discard = FALSE;
2351 
2352 	return 0;
2353 }
2354 
2355 static void
2356 igb_init_rx_unit(struct igb_softc *sc)
2357 {
2358 	struct ifnet *ifp = &sc->arpcom.ac_if;
2359 	struct e1000_hw *hw = &sc->hw;
2360 	uint32_t rctl, rxcsum, srrctl = 0;
2361 	int i;
2362 
2363 	/*
2364 	 * Make sure receives are disabled while setting
2365 	 * up the descriptor ring
2366 	 */
2367 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2368 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2369 
2370 #if 0
2371 	/*
2372 	** Set up for header split
2373 	*/
2374 	if (igb_header_split) {
2375 		/* Use a standard mbuf for the header */
2376 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2377 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2378 	} else
2379 #endif
2380 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2381 
2382 	/*
2383 	** Set up for jumbo frames
2384 	*/
2385 	if (ifp->if_mtu > ETHERMTU) {
2386 		rctl |= E1000_RCTL_LPE;
2387 #if 0
2388 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2389 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2390 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2391 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2392 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2393 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2394 		}
2395 		/* Set maximum packet len */
2396 		psize = adapter->max_frame_size;
2397 		/* are we on a vlan? */
2398 		if (adapter->ifp->if_vlantrunk != NULL)
2399 			psize += VLAN_TAG_SIZE;
2400 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2401 #else
2402 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2403 		rctl |= E1000_RCTL_SZ_2048;
2404 #endif
2405 	} else {
2406 		rctl &= ~E1000_RCTL_LPE;
2407 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2408 		rctl |= E1000_RCTL_SZ_2048;
2409 	}
2410 
2411 	/* Setup the Base and Length of the Rx Descriptor Rings */
2412 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2413 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2414 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2415 		uint32_t rxdctl;
2416 
2417 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2418 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2419 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2420 		    (uint32_t)(bus_addr >> 32));
2421 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2422 		    (uint32_t)bus_addr);
2423 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2424 		/* Enable this Queue */
2425 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2426 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2427 		rxdctl &= 0xFFF00000;
2428 		rxdctl |= IGB_RX_PTHRESH;
2429 		rxdctl |= IGB_RX_HTHRESH << 8;
2430 		/*
2431 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2432 		 * 82576 specification update errata #26
2433 		 */
2434 		rxdctl |= IGB_RX_WTHRESH << 16;
2435 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2436 	}
2437 
2438 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2439 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2440 
2441 	/*
2442 	 * Receive Checksum Offload for TCP and UDP
2443 	 *
2444 	 * Checksum offloading is also enabled if multiple receive
2445 	 * queue is to be supported, since we need it to figure out
2446 	 * fragments.
2447 	 */
2448 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2449 		/*
2450 		 * NOTE:
2451 		 * PCSD must be enabled to enable multiple
2452 		 * receive queues.
2453 		 */
2454 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2455 		    E1000_RXCSUM_PCSD;
2456 	} else {
2457 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2458 		    E1000_RXCSUM_PCSD);
2459 	}
2460 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2461 
2462 	if (IGB_ENABLE_HWRSS(sc)) {
2463 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2464 		uint32_t reta_shift;
2465 		int j, r;
2466 
2467 		/*
2468 		 * NOTE:
2469 		 * When we reach here, RSS has already been disabled
2470 		 * in igb_stop(), so we could safely configure RSS key
2471 		 * and redirect table.
2472 		 */
2473 
2474 		/*
2475 		 * Configure RSS key
2476 		 */
2477 		toeplitz_get_key(key, sizeof(key));
2478 		for (i = 0; i < IGB_NRSSRK; ++i) {
2479 			uint32_t rssrk;
2480 
2481 			rssrk = IGB_RSSRK_VAL(key, i);
2482 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2483 
2484 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2485 		}
2486 
2487 		/*
2488 		 * Configure RSS redirect table in following fashion:
2489 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2490 		 */
2491 		reta_shift = IGB_RETA_SHIFT;
2492 		if (hw->mac.type == e1000_82575)
2493 			reta_shift = IGB_RETA_SHIFT_82575;
2494 
2495 		r = 0;
2496 		for (j = 0; j < IGB_NRETA; ++j) {
2497 			uint32_t reta = 0;
2498 
2499 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2500 				uint32_t q;
2501 
2502 				q = (r % sc->rx_ring_inuse) << reta_shift;
2503 				reta |= q << (8 * i);
2504 				++r;
2505 			}
2506 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2507 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2508 		}
2509 
2510 		/*
2511 		 * Enable multiple receive queues.
2512 		 * Enable IPv4 RSS standard hash functions.
2513 		 * Disable RSS interrupt on 82575
2514 		 */
2515 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2516 				E1000_MRQC_ENABLE_RSS_4Q |
2517 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2518 				E1000_MRQC_RSS_FIELD_IPV4);
2519 	}
2520 
2521 	/* Setup the Receive Control Register */
2522 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2523 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2524 	    E1000_RCTL_RDMTS_HALF |
2525 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2526 	/* Strip CRC bytes. */
2527 	rctl |= E1000_RCTL_SECRC;
2528 	/* Make sure VLAN Filters are off */
2529 	rctl &= ~E1000_RCTL_VFE;
2530 	/* Don't store bad packets */
2531 	rctl &= ~E1000_RCTL_SBP;
2532 
2533 	/* Enable Receives */
2534 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2535 
2536 	/*
2537 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2538 	 *   - needs to be after enable
2539 	 */
2540 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2541 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2542 
2543 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2544 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2545 	}
2546 }
2547 
2548 static void
2549 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2550 {
2551 	if (--i < 0)
2552 		i = rxr->num_rx_desc - 1;
2553 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2554 }
2555 
2556 static void
2557 igb_rxeof(struct igb_rx_ring *rxr, int count)
2558 {
2559 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2560 	union e1000_adv_rx_desc	*cur;
2561 	uint32_t staterr;
2562 	int i, ncoll = 0;
2563 
2564 	i = rxr->next_to_check;
2565 	cur = &rxr->rx_base[i];
2566 	staterr = le32toh(cur->wb.upper.status_error);
2567 
2568 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2569 		return;
2570 
2571 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2572 		struct pktinfo *pi = NULL, pi0;
2573 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2574 		struct mbuf *m = NULL;
2575 		boolean_t eop;
2576 
2577 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2578 		if (eop)
2579 			--count;
2580 
2581 		++ncoll;
2582 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2583 		    !rxr->discard) {
2584 			struct mbuf *mp = rxbuf->m_head;
2585 			uint32_t hash, hashtype;
2586 			uint16_t vlan;
2587 			int len;
2588 
2589 			len = le16toh(cur->wb.upper.length);
2590 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2591 			    (staterr & E1000_RXDEXT_STATERR_LB))
2592 				vlan = be16toh(cur->wb.upper.vlan);
2593 			else
2594 				vlan = le16toh(cur->wb.upper.vlan);
2595 
2596 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2597 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2598 			    E1000_RXDADV_RSSTYPE_MASK;
2599 
2600 			IGB_RSS_DPRINTF(rxr->sc, 10,
2601 			    "ring%d, hash 0x%08x, hashtype %u\n",
2602 			    rxr->me, hash, hashtype);
2603 
2604 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2605 			    BUS_DMASYNC_POSTREAD);
2606 
2607 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2608 				IFNET_STAT_INC(ifp, iqdrops, 1);
2609 				goto discard;
2610 			}
2611 
2612 			mp->m_len = len;
2613 			if (rxr->fmp == NULL) {
2614 				mp->m_pkthdr.len = len;
2615 				rxr->fmp = mp;
2616 				rxr->lmp = mp;
2617 			} else {
2618 				rxr->lmp->m_next = mp;
2619 				rxr->lmp = rxr->lmp->m_next;
2620 				rxr->fmp->m_pkthdr.len += len;
2621 			}
2622 
2623 			if (eop) {
2624 				m = rxr->fmp;
2625 				rxr->fmp = NULL;
2626 				rxr->lmp = NULL;
2627 
2628 				m->m_pkthdr.rcvif = ifp;
2629 				IFNET_STAT_INC(ifp, ipackets, 1);
2630 
2631 				if (ifp->if_capenable & IFCAP_RXCSUM)
2632 					igb_rxcsum(staterr, m);
2633 
2634 				if (staterr & E1000_RXD_STAT_VP) {
2635 					m->m_pkthdr.ether_vlantag = vlan;
2636 					m->m_flags |= M_VLANTAG;
2637 				}
2638 
2639 				if (ifp->if_capenable & IFCAP_RSS) {
2640 					pi = igb_rssinfo(m, &pi0,
2641 					    hash, hashtype, staterr);
2642 				}
2643 #ifdef IGB_RSS_DEBUG
2644 				rxr->rx_packets++;
2645 #endif
2646 			}
2647 		} else {
2648 			IFNET_STAT_INC(ifp, ierrors, 1);
2649 discard:
2650 			igb_setup_rxdesc(cur, rxbuf);
2651 			if (!eop)
2652 				rxr->discard = TRUE;
2653 			else
2654 				rxr->discard = FALSE;
2655 			if (rxr->fmp != NULL) {
2656 				m_freem(rxr->fmp);
2657 				rxr->fmp = NULL;
2658 				rxr->lmp = NULL;
2659 			}
2660 			m = NULL;
2661 		}
2662 
2663 		if (m != NULL)
2664 			ether_input_pkt(ifp, m, pi);
2665 
2666 		/* Advance our pointers to the next descriptor. */
2667 		if (++i == rxr->num_rx_desc)
2668 			i = 0;
2669 
2670 		if (ncoll >= rxr->wreg_nsegs) {
2671 			igb_rx_refresh(rxr, i);
2672 			ncoll = 0;
2673 		}
2674 
2675 		cur = &rxr->rx_base[i];
2676 		staterr = le32toh(cur->wb.upper.status_error);
2677 	}
2678 	rxr->next_to_check = i;
2679 
2680 	if (ncoll > 0)
2681 		igb_rx_refresh(rxr, i);
2682 }
2683 
2684 
2685 static void
2686 igb_set_vlan(struct igb_softc *sc)
2687 {
2688 	struct e1000_hw *hw = &sc->hw;
2689 	uint32_t reg;
2690 #if 0
2691 	struct ifnet *ifp = sc->arpcom.ac_if;
2692 #endif
2693 
2694 	if (sc->vf_ifp) {
2695 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2696 		return;
2697 	}
2698 
2699 	reg = E1000_READ_REG(hw, E1000_CTRL);
2700 	reg |= E1000_CTRL_VME;
2701 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2702 
2703 #if 0
2704 	/* Enable the Filter Table */
2705 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2706 		reg = E1000_READ_REG(hw, E1000_RCTL);
2707 		reg &= ~E1000_RCTL_CFIEN;
2708 		reg |= E1000_RCTL_VFE;
2709 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2710 	}
2711 #endif
2712 
2713 	/* Update the frame size */
2714 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2715 	    sc->max_frame_size + VLAN_TAG_SIZE);
2716 
2717 #if 0
2718 	/* Don't bother with table if no vlans */
2719 	if ((adapter->num_vlans == 0) ||
2720 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2721 		return;
2722 	/*
2723 	** A soft reset zero's out the VFTA, so
2724 	** we need to repopulate it now.
2725 	*/
2726 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2727 		if (adapter->shadow_vfta[i] != 0) {
2728 			if (adapter->vf_ifp)
2729 				e1000_vfta_set_vf(hw,
2730 				    adapter->shadow_vfta[i], TRUE);
2731 			else
2732 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2733 				 i, adapter->shadow_vfta[i]);
2734 		}
2735 #endif
2736 }
2737 
2738 static void
2739 igb_enable_intr(struct igb_softc *sc)
2740 {
2741 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2742 		lwkt_serialize_handler_enable(&sc->main_serialize);
2743 	} else {
2744 		int i;
2745 
2746 		for (i = 0; i < sc->msix_cnt; ++i) {
2747 			lwkt_serialize_handler_enable(
2748 			    sc->msix_data[i].msix_serialize);
2749 		}
2750 	}
2751 
2752 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2753 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2754 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2755 		else
2756 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2757 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2758 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2759 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2760 	} else {
2761 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2762 	}
2763 	E1000_WRITE_FLUSH(&sc->hw);
2764 }
2765 
2766 static void
2767 igb_disable_intr(struct igb_softc *sc)
2768 {
2769 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2770 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2771 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2772 	}
2773 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2774 	E1000_WRITE_FLUSH(&sc->hw);
2775 
2776 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2777 		lwkt_serialize_handler_disable(&sc->main_serialize);
2778 	} else {
2779 		int i;
2780 
2781 		for (i = 0; i < sc->msix_cnt; ++i) {
2782 			lwkt_serialize_handler_disable(
2783 			    sc->msix_data[i].msix_serialize);
2784 		}
2785 	}
2786 }
2787 
2788 /*
2789  * Bit of a misnomer, what this really means is
2790  * to enable OS management of the system... aka
2791  * to disable special hardware management features
2792  */
2793 static void
2794 igb_get_mgmt(struct igb_softc *sc)
2795 {
2796 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2797 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2798 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2799 
2800 		/* disable hardware interception of ARP */
2801 		manc &= ~E1000_MANC_ARP_EN;
2802 
2803 		/* enable receiving management packets to the host */
2804 		manc |= E1000_MANC_EN_MNG2HOST;
2805 		manc2h |= 1 << 5; /* Mng Port 623 */
2806 		manc2h |= 1 << 6; /* Mng Port 664 */
2807 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2808 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2809 	}
2810 }
2811 
2812 /*
2813  * Give control back to hardware management controller
2814  * if there is one.
2815  */
2816 static void
2817 igb_rel_mgmt(struct igb_softc *sc)
2818 {
2819 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2820 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2821 
2822 		/* Re-enable hardware interception of ARP */
2823 		manc |= E1000_MANC_ARP_EN;
2824 		manc &= ~E1000_MANC_EN_MNG2HOST;
2825 
2826 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2827 	}
2828 }
2829 
2830 /*
2831  * Sets CTRL_EXT:DRV_LOAD bit.
2832  *
2833  * For ASF and Pass Through versions of f/w this means that
2834  * the driver is loaded.
2835  */
2836 static void
2837 igb_get_hw_control(struct igb_softc *sc)
2838 {
2839 	uint32_t ctrl_ext;
2840 
2841 	if (sc->vf_ifp)
2842 		return;
2843 
2844 	/* Let firmware know the driver has taken over */
2845 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2846 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2847 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2848 }
2849 
2850 /*
2851  * Resets CTRL_EXT:DRV_LOAD bit.
2852  *
2853  * For ASF and Pass Through versions of f/w this means that the
2854  * driver is no longer loaded.
2855  */
2856 static void
2857 igb_rel_hw_control(struct igb_softc *sc)
2858 {
2859 	uint32_t ctrl_ext;
2860 
2861 	if (sc->vf_ifp)
2862 		return;
2863 
2864 	/* Let firmware taken over control of h/w */
2865 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2866 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2867 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2868 }
2869 
2870 static int
2871 igb_is_valid_ether_addr(const uint8_t *addr)
2872 {
2873 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2874 
2875 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2876 		return FALSE;
2877 	return TRUE;
2878 }
2879 
2880 /*
2881  * Enable PCI Wake On Lan capability
2882  */
2883 static void
2884 igb_enable_wol(device_t dev)
2885 {
2886 	uint16_t cap, status;
2887 	uint8_t id;
2888 
2889 	/* First find the capabilities pointer*/
2890 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2891 
2892 	/* Read the PM Capabilities */
2893 	id = pci_read_config(dev, cap, 1);
2894 	if (id != PCIY_PMG)     /* Something wrong */
2895 		return;
2896 
2897 	/*
2898 	 * OK, we have the power capabilities,
2899 	 * so now get the status register
2900 	 */
2901 	cap += PCIR_POWER_STATUS;
2902 	status = pci_read_config(dev, cap, 2);
2903 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2904 	pci_write_config(dev, cap, status, 2);
2905 }
2906 
2907 static void
2908 igb_update_stats_counters(struct igb_softc *sc)
2909 {
2910 	struct e1000_hw *hw = &sc->hw;
2911 	struct e1000_hw_stats *stats;
2912 	struct ifnet *ifp = &sc->arpcom.ac_if;
2913 
2914 	/*
2915 	 * The virtual function adapter has only a
2916 	 * small controlled set of stats, do only
2917 	 * those and return.
2918 	 */
2919 	if (sc->vf_ifp) {
2920 		igb_update_vf_stats_counters(sc);
2921 		return;
2922 	}
2923 	stats = sc->stats;
2924 
2925 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2926 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2927 		stats->symerrs +=
2928 		    E1000_READ_REG(hw,E1000_SYMERRS);
2929 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2930 	}
2931 
2932 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2933 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2934 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2935 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2936 
2937 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2938 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2939 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2940 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2941 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2942 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2943 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2944 
2945 	/*
2946 	 * For watchdog management we need to know if we have been
2947 	 * paused during the last interval, so capture that here.
2948 	 */
2949 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2950 	stats->xoffrxc += sc->pause_frames;
2951 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2952 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2953 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2954 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2955 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2956 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2957 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2958 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2959 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2960 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2961 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2962 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2963 
2964 	/* For the 64-bit byte counters the low dword must be read first. */
2965 	/* Both registers clear on the read of the high dword */
2966 
2967 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2968 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2969 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2970 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2971 
2972 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2973 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2974 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2975 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2976 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2977 
2978 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2979 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2980 
2981 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2982 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2983 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2984 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2985 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2986 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2987 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2988 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2989 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2990 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2991 
2992 	/* Interrupt Counts */
2993 
2994 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
2995 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2996 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2997 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2998 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2999 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3000 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3001 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3002 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3003 
3004 	/* Host to Card Statistics */
3005 
3006 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3007 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3008 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3009 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3010 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3011 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3012 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3013 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3014 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3015 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3016 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3017 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3018 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3019 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3020 
3021 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3022 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3023 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3024 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3025 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3026 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3027 
3028 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3029 
3030 	/* Rx Errors */
3031 	IFNET_STAT_SET(ifp, ierrors,
3032 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3033 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3034 
3035 	/* Tx Errors */
3036 	IFNET_STAT_SET(ifp, oerrors,
3037 	    stats->ecol + stats->latecol + sc->watchdog_events);
3038 
3039 	/* Driver specific counters */
3040 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3041 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3042 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3043 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3044 	sc->packet_buf_alloc_tx =
3045 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3046 	sc->packet_buf_alloc_rx =
3047 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3048 }
3049 
3050 static void
3051 igb_vf_init_stats(struct igb_softc *sc)
3052 {
3053 	struct e1000_hw *hw = &sc->hw;
3054 	struct e1000_vf_stats *stats;
3055 
3056 	stats = sc->stats;
3057 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3058 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3059 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3060 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3061 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3062 }
3063 
3064 static void
3065 igb_update_vf_stats_counters(struct igb_softc *sc)
3066 {
3067 	struct e1000_hw *hw = &sc->hw;
3068 	struct e1000_vf_stats *stats;
3069 
3070 	if (sc->link_speed == 0)
3071 		return;
3072 
3073 	stats = sc->stats;
3074 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3075 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3076 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3077 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3078 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3079 }
3080 
3081 #ifdef IFPOLL_ENABLE
3082 
3083 static void
3084 igb_npoll_status(struct ifnet *ifp)
3085 {
3086 	struct igb_softc *sc = ifp->if_softc;
3087 	uint32_t reg_icr;
3088 
3089 	ASSERT_SERIALIZED(&sc->main_serialize);
3090 
3091 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3092 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3093 		sc->hw.mac.get_link_status = 1;
3094 		igb_update_link_status(sc);
3095 	}
3096 }
3097 
3098 static void
3099 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3100 {
3101 	struct igb_tx_ring *txr = arg;
3102 
3103 	ASSERT_SERIALIZED(&txr->tx_serialize);
3104 
3105 	igb_txeof(txr);
3106 	if (!ifsq_is_empty(txr->ifsq))
3107 		ifsq_devstart(txr->ifsq);
3108 }
3109 
3110 static void
3111 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3112 {
3113 	struct igb_rx_ring *rxr = arg;
3114 
3115 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3116 
3117 	igb_rxeof(rxr, cycle);
3118 }
3119 
3120 static void
3121 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3122 {
3123 	struct igb_softc *sc = ifp->if_softc;
3124 	int i, txr_cnt, rxr_cnt;
3125 
3126 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3127 
3128 	if (info) {
3129 		int off;
3130 
3131 		info->ifpi_status.status_func = igb_npoll_status;
3132 		info->ifpi_status.serializer = &sc->main_serialize;
3133 
3134 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3135 		off = sc->tx_npoll_off;
3136 		for (i = 0; i < txr_cnt; ++i) {
3137 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3138 			int idx = i + off;
3139 
3140 			KKASSERT(idx < ncpus2);
3141 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3142 			info->ifpi_tx[idx].arg = txr;
3143 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3144 			ifsq_set_cpuid(txr->ifsq, idx);
3145 		}
3146 
3147 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3148 		off = sc->rx_npoll_off;
3149 		for (i = 0; i < rxr_cnt; ++i) {
3150 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3151 			int idx = i + off;
3152 
3153 			KKASSERT(idx < ncpus2);
3154 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3155 			info->ifpi_rx[idx].arg = rxr;
3156 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3157 		}
3158 
3159 		if (ifp->if_flags & IFF_RUNNING) {
3160 			if (rxr_cnt == sc->rx_ring_inuse &&
3161 			    txr_cnt == sc->tx_ring_inuse) {
3162 				igb_set_timer_cpuid(sc, TRUE);
3163 				igb_disable_intr(sc);
3164 			} else {
3165 				igb_init(sc);
3166 			}
3167 		}
3168 	} else {
3169 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3170 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3171 
3172 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3173 		}
3174 
3175 		if (ifp->if_flags & IFF_RUNNING) {
3176 			txr_cnt = igb_get_txring_inuse(sc, FALSE);
3177 			rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3178 
3179 			if (rxr_cnt == sc->rx_ring_inuse &&
3180 			    txr_cnt == sc->tx_ring_inuse) {
3181 				igb_set_timer_cpuid(sc, FALSE);
3182 				igb_enable_intr(sc);
3183 			} else {
3184 				igb_init(sc);
3185 			}
3186 		}
3187 	}
3188 }
3189 
3190 #endif /* IFPOLL_ENABLE */
3191 
3192 static void
3193 igb_intr(void *xsc)
3194 {
3195 	struct igb_softc *sc = xsc;
3196 	struct ifnet *ifp = &sc->arpcom.ac_if;
3197 	uint32_t eicr;
3198 
3199 	ASSERT_SERIALIZED(&sc->main_serialize);
3200 
3201 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3202 
3203 	if (eicr == 0)
3204 		return;
3205 
3206 	if (ifp->if_flags & IFF_RUNNING) {
3207 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3208 		int i;
3209 
3210 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3211 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3212 
3213 			if (eicr & rxr->rx_intr_mask) {
3214 				lwkt_serialize_enter(&rxr->rx_serialize);
3215 				igb_rxeof(rxr, -1);
3216 				lwkt_serialize_exit(&rxr->rx_serialize);
3217 			}
3218 		}
3219 
3220 		if (eicr & txr->tx_intr_mask) {
3221 			lwkt_serialize_enter(&txr->tx_serialize);
3222 			igb_txeof(txr);
3223 			if (!ifsq_is_empty(txr->ifsq))
3224 				ifsq_devstart(txr->ifsq);
3225 			lwkt_serialize_exit(&txr->tx_serialize);
3226 		}
3227 	}
3228 
3229 	if (eicr & E1000_EICR_OTHER) {
3230 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3231 
3232 		/* Link status change */
3233 		if (icr & E1000_ICR_LSC) {
3234 			sc->hw.mac.get_link_status = 1;
3235 			igb_update_link_status(sc);
3236 		}
3237 	}
3238 
3239 	/*
3240 	 * Reading EICR has the side effect to clear interrupt mask,
3241 	 * so all interrupts need to be enabled here.
3242 	 */
3243 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3244 }
3245 
3246 static void
3247 igb_intr_shared(void *xsc)
3248 {
3249 	struct igb_softc *sc = xsc;
3250 	struct ifnet *ifp = &sc->arpcom.ac_if;
3251 	uint32_t reg_icr;
3252 
3253 	ASSERT_SERIALIZED(&sc->main_serialize);
3254 
3255 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3256 
3257 	/* Hot eject?  */
3258 	if (reg_icr == 0xffffffff)
3259 		return;
3260 
3261 	/* Definitely not our interrupt.  */
3262 	if (reg_icr == 0x0)
3263 		return;
3264 
3265 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3266 		return;
3267 
3268 	if (ifp->if_flags & IFF_RUNNING) {
3269 		if (reg_icr &
3270 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3271 			int i;
3272 
3273 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3274 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3275 
3276 				lwkt_serialize_enter(&rxr->rx_serialize);
3277 				igb_rxeof(rxr, -1);
3278 				lwkt_serialize_exit(&rxr->rx_serialize);
3279 			}
3280 		}
3281 
3282 		if (reg_icr & E1000_ICR_TXDW) {
3283 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3284 
3285 			lwkt_serialize_enter(&txr->tx_serialize);
3286 			igb_txeof(txr);
3287 			if (!ifsq_is_empty(txr->ifsq))
3288 				ifsq_devstart(txr->ifsq);
3289 			lwkt_serialize_exit(&txr->tx_serialize);
3290 		}
3291 	}
3292 
3293 	/* Link status change */
3294 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3295 		sc->hw.mac.get_link_status = 1;
3296 		igb_update_link_status(sc);
3297 	}
3298 
3299 	if (reg_icr & E1000_ICR_RXO)
3300 		sc->rx_overruns++;
3301 }
3302 
3303 static int
3304 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3305     int *segs_used, int *idx)
3306 {
3307 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3308 	bus_dmamap_t map;
3309 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3310 	union e1000_adv_tx_desc	*txd = NULL;
3311 	struct mbuf *m_head = *m_headp;
3312 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3313 	int maxsegs, nsegs, i, j, error;
3314 	uint32_t hdrlen = 0;
3315 
3316 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3317 		error = igb_tso_pullup(txr, m_headp);
3318 		if (error)
3319 			return error;
3320 		m_head = *m_headp;
3321 	}
3322 
3323 	/* Set basic descriptor constants */
3324 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3325 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3326 	if (m_head->m_flags & M_VLANTAG)
3327 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3328 
3329 	/*
3330 	 * Map the packet for DMA.
3331 	 */
3332 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3333 	tx_buf_mapped = tx_buf;
3334 	map = tx_buf->map;
3335 
3336 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3337 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3338 	if (maxsegs > IGB_MAX_SCATTER)
3339 		maxsegs = IGB_MAX_SCATTER;
3340 
3341 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3342 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3343 	if (error) {
3344 		if (error == ENOBUFS)
3345 			txr->sc->mbuf_defrag_failed++;
3346 		else
3347 			txr->sc->no_tx_dma_setup++;
3348 
3349 		m_freem(*m_headp);
3350 		*m_headp = NULL;
3351 		return error;
3352 	}
3353 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3354 
3355 	m_head = *m_headp;
3356 
3357 	/*
3358 	 * Set up the TX context descriptor, if any hardware offloading is
3359 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3360 	 * TX descriptor.
3361 	 *
3362 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3363 	 * will _not_ interfere TX data fetching pipelining.
3364 	 */
3365 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3366 		igb_tso_ctx(txr, m_head, &hdrlen);
3367 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3368 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3369 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3370 		txr->tx_nsegs++;
3371 		(*segs_used)++;
3372 	} else if (igb_txcsum_ctx(txr, m_head)) {
3373 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3374 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3375 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3376 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3377 		txr->tx_nsegs++;
3378 		(*segs_used)++;
3379 	}
3380 
3381 	*segs_used += nsegs;
3382 	txr->tx_nsegs += nsegs;
3383 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3384 		/*
3385 		 * Report Status (RS) is turned on every intr_nsegs
3386 		 * descriptors (roughly).
3387 		 */
3388 		txr->tx_nsegs = 0;
3389 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3390 	}
3391 
3392 	/* Calculate payload length */
3393 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3394 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3395 
3396 	/* 82575 needs the queue index added */
3397 	if (txr->sc->hw.mac.type == e1000_82575)
3398 		olinfo_status |= txr->me << 4;
3399 
3400 	/* Set up our transmit descriptors */
3401 	i = txr->next_avail_desc;
3402 	for (j = 0; j < nsegs; j++) {
3403 		bus_size_t seg_len;
3404 		bus_addr_t seg_addr;
3405 
3406 		tx_buf = &txr->tx_buf[i];
3407 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3408 		seg_addr = segs[j].ds_addr;
3409 		seg_len = segs[j].ds_len;
3410 
3411 		txd->read.buffer_addr = htole64(seg_addr);
3412 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3413 		txd->read.olinfo_status = htole32(olinfo_status);
3414 		if (++i == txr->num_tx_desc)
3415 			i = 0;
3416 		tx_buf->m_head = NULL;
3417 	}
3418 
3419 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3420 	txr->next_avail_desc = i;
3421 	txr->tx_avail -= nsegs;
3422 
3423 	tx_buf->m_head = m_head;
3424 	tx_buf_mapped->map = tx_buf->map;
3425 	tx_buf->map = map;
3426 
3427 	/*
3428 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3429 	 */
3430 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3431 
3432 	/*
3433 	 * Defer TDT updating, until enough descrptors are setup
3434 	 */
3435 	*idx = i;
3436 #ifdef IGB_TSS_DEBUG
3437 	++txr->tx_packets;
3438 #endif
3439 
3440 	return 0;
3441 }
3442 
3443 static void
3444 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3445 {
3446 	struct igb_softc *sc = ifp->if_softc;
3447 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3448 	struct mbuf *m_head;
3449 	int idx = -1, nsegs = 0;
3450 
3451 	KKASSERT(txr->ifsq == ifsq);
3452 	ASSERT_SERIALIZED(&txr->tx_serialize);
3453 
3454 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3455 		return;
3456 
3457 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3458 		ifsq_purge(ifsq);
3459 		return;
3460 	}
3461 
3462 	if (!IGB_IS_NOT_OACTIVE(txr))
3463 		igb_txeof(txr);
3464 
3465 	while (!ifsq_is_empty(ifsq)) {
3466 		if (IGB_IS_OACTIVE(txr)) {
3467 			ifsq_set_oactive(ifsq);
3468 			/* Set watchdog on */
3469 			txr->tx_watchdog.wd_timer = 5;
3470 			break;
3471 		}
3472 
3473 		m_head = ifsq_dequeue(ifsq, NULL);
3474 		if (m_head == NULL)
3475 			break;
3476 
3477 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3478 			IFNET_STAT_INC(ifp, oerrors, 1);
3479 			continue;
3480 		}
3481 
3482 		if (nsegs >= txr->wreg_nsegs) {
3483 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3484 			idx = -1;
3485 			nsegs = 0;
3486 		}
3487 
3488 		/* Send a copy of the frame to the BPF listener */
3489 		ETHER_BPF_MTAP(ifp, m_head);
3490 	}
3491 	if (idx >= 0)
3492 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3493 }
3494 
3495 static void
3496 igb_watchdog(struct ifaltq_subque *ifsq)
3497 {
3498 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3499 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3500 	struct igb_softc *sc = ifp->if_softc;
3501 	int i;
3502 
3503 	KKASSERT(txr->ifsq == ifsq);
3504 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3505 
3506 	/*
3507 	 * If flow control has paused us since last checking
3508 	 * it invalidates the watchdog timing, so dont run it.
3509 	 */
3510 	if (sc->pause_frames) {
3511 		sc->pause_frames = 0;
3512 		txr->tx_watchdog.wd_timer = 5;
3513 		return;
3514 	}
3515 
3516 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3517 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3518 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3519 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3520 	if_printf(ifp, "TX(%d) desc avail = %d, "
3521 	    "Next TX to Clean = %d\n",
3522 	    txr->me, txr->tx_avail, txr->next_to_clean);
3523 
3524 	IFNET_STAT_INC(ifp, oerrors, 1);
3525 	sc->watchdog_events++;
3526 
3527 	igb_init(sc);
3528 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3529 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3530 }
3531 
3532 static void
3533 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3534 {
3535 	uint32_t eitr = 0;
3536 
3537 	if (rate > 0) {
3538 		if (sc->hw.mac.type == e1000_82575) {
3539 			eitr = 1000000000 / 256 / rate;
3540 			/*
3541 			 * NOTE:
3542 			 * Document is wrong on the 2 bits left shift
3543 			 */
3544 		} else {
3545 			eitr = 1000000 / rate;
3546 			eitr <<= IGB_EITR_INTVL_SHIFT;
3547 		}
3548 
3549 		if (eitr == 0) {
3550 			/* Don't disable it */
3551 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3552 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3553 			/* Don't allow it to be too large */
3554 			eitr = IGB_EITR_INTVL_MASK;
3555 		}
3556 	}
3557 	if (sc->hw.mac.type == e1000_82575)
3558 		eitr |= eitr << 16;
3559 	else
3560 		eitr |= E1000_EITR_CNT_IGNR;
3561 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3562 }
3563 
3564 static int
3565 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3566 {
3567 	struct igb_softc *sc = (void *)arg1;
3568 	struct ifnet *ifp = &sc->arpcom.ac_if;
3569 	int error, intr_rate;
3570 
3571 	intr_rate = sc->intr_rate;
3572 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3573 	if (error || req->newptr == NULL)
3574 		return error;
3575 	if (intr_rate < 0)
3576 		return EINVAL;
3577 
3578 	ifnet_serialize_all(ifp);
3579 
3580 	sc->intr_rate = intr_rate;
3581 	if (ifp->if_flags & IFF_RUNNING)
3582 		igb_set_eitr(sc, 0, sc->intr_rate);
3583 
3584 	if (bootverbose)
3585 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3586 
3587 	ifnet_deserialize_all(ifp);
3588 
3589 	return 0;
3590 }
3591 
3592 static int
3593 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3594 {
3595 	struct igb_msix_data *msix = (void *)arg1;
3596 	struct igb_softc *sc = msix->msix_sc;
3597 	struct ifnet *ifp = &sc->arpcom.ac_if;
3598 	int error, msix_rate;
3599 
3600 	msix_rate = msix->msix_rate;
3601 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3602 	if (error || req->newptr == NULL)
3603 		return error;
3604 	if (msix_rate < 0)
3605 		return EINVAL;
3606 
3607 	lwkt_serialize_enter(msix->msix_serialize);
3608 
3609 	msix->msix_rate = msix_rate;
3610 	if (ifp->if_flags & IFF_RUNNING)
3611 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3612 
3613 	if (bootverbose) {
3614 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3615 		    msix->msix_rate);
3616 	}
3617 
3618 	lwkt_serialize_exit(msix->msix_serialize);
3619 
3620 	return 0;
3621 }
3622 
3623 static int
3624 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3625 {
3626 	struct igb_softc *sc = (void *)arg1;
3627 	struct ifnet *ifp = &sc->arpcom.ac_if;
3628 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3629 	int error, nsegs;
3630 
3631 	nsegs = txr->intr_nsegs;
3632 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3633 	if (error || req->newptr == NULL)
3634 		return error;
3635 	if (nsegs <= 0)
3636 		return EINVAL;
3637 
3638 	ifnet_serialize_all(ifp);
3639 
3640 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3641 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3642 		error = EINVAL;
3643 	} else {
3644 		int i;
3645 
3646 		error = 0;
3647 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3648 			sc->tx_rings[i].intr_nsegs = nsegs;
3649 	}
3650 
3651 	ifnet_deserialize_all(ifp);
3652 
3653 	return error;
3654 }
3655 
3656 static int
3657 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3658 {
3659 	struct igb_softc *sc = (void *)arg1;
3660 	struct ifnet *ifp = &sc->arpcom.ac_if;
3661 	int error, nsegs, i;
3662 
3663 	nsegs = sc->rx_rings[0].wreg_nsegs;
3664 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3665 	if (error || req->newptr == NULL)
3666 		return error;
3667 
3668 	ifnet_serialize_all(ifp);
3669 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3670 		sc->rx_rings[i].wreg_nsegs =nsegs;
3671 	ifnet_deserialize_all(ifp);
3672 
3673 	return 0;
3674 }
3675 
3676 static int
3677 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3678 {
3679 	struct igb_softc *sc = (void *)arg1;
3680 	struct ifnet *ifp = &sc->arpcom.ac_if;
3681 	int error, nsegs, i;
3682 
3683 	nsegs = sc->tx_rings[0].wreg_nsegs;
3684 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3685 	if (error || req->newptr == NULL)
3686 		return error;
3687 
3688 	ifnet_serialize_all(ifp);
3689 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3690 		sc->tx_rings[i].wreg_nsegs =nsegs;
3691 	ifnet_deserialize_all(ifp);
3692 
3693 	return 0;
3694 }
3695 
3696 #ifdef IFPOLL_ENABLE
3697 
3698 static int
3699 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3700 {
3701 	struct igb_softc *sc = (void *)arg1;
3702 	struct ifnet *ifp = &sc->arpcom.ac_if;
3703 	int error, off;
3704 
3705 	off = sc->rx_npoll_off;
3706 	error = sysctl_handle_int(oidp, &off, 0, req);
3707 	if (error || req->newptr == NULL)
3708 		return error;
3709 	if (off < 0)
3710 		return EINVAL;
3711 
3712 	ifnet_serialize_all(ifp);
3713 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3714 		error = EINVAL;
3715 	} else {
3716 		error = 0;
3717 		sc->rx_npoll_off = off;
3718 	}
3719 	ifnet_deserialize_all(ifp);
3720 
3721 	return error;
3722 }
3723 
3724 static int
3725 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3726 {
3727 	struct igb_softc *sc = (void *)arg1;
3728 	struct ifnet *ifp = &sc->arpcom.ac_if;
3729 	int error, off;
3730 
3731 	off = sc->tx_npoll_off;
3732 	error = sysctl_handle_int(oidp, &off, 0, req);
3733 	if (error || req->newptr == NULL)
3734 		return error;
3735 	if (off < 0)
3736 		return EINVAL;
3737 
3738 	ifnet_serialize_all(ifp);
3739 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3740 		error = EINVAL;
3741 	} else {
3742 		error = 0;
3743 		sc->tx_npoll_off = off;
3744 	}
3745 	ifnet_deserialize_all(ifp);
3746 
3747 	return error;
3748 }
3749 
3750 #endif	/* IFPOLL_ENABLE */
3751 
3752 static void
3753 igb_init_intr(struct igb_softc *sc)
3754 {
3755 	igb_set_intr_mask(sc);
3756 
3757 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3758 		igb_init_unshared_intr(sc);
3759 
3760 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3761 		igb_set_eitr(sc, 0, sc->intr_rate);
3762 	} else {
3763 		int i;
3764 
3765 		for (i = 0; i < sc->msix_cnt; ++i)
3766 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3767 	}
3768 }
3769 
3770 static void
3771 igb_init_unshared_intr(struct igb_softc *sc)
3772 {
3773 	struct e1000_hw *hw = &sc->hw;
3774 	const struct igb_rx_ring *rxr;
3775 	const struct igb_tx_ring *txr;
3776 	uint32_t ivar, index;
3777 	int i;
3778 
3779 	/*
3780 	 * Enable extended mode
3781 	 */
3782 	if (sc->hw.mac.type != e1000_82575) {
3783 		uint32_t gpie;
3784 		int ivar_max;
3785 
3786 		gpie = E1000_GPIE_NSICR;
3787 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3788 			gpie |= E1000_GPIE_MSIX_MODE |
3789 			    E1000_GPIE_EIAME |
3790 			    E1000_GPIE_PBA;
3791 		}
3792 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3793 
3794 		/*
3795 		 * Clear IVARs
3796 		 */
3797 		switch (sc->hw.mac.type) {
3798 		case e1000_82576:
3799 			ivar_max = IGB_MAX_IVAR_82576;
3800 			break;
3801 
3802 		case e1000_82580:
3803 			ivar_max = IGB_MAX_IVAR_82580;
3804 			break;
3805 
3806 		case e1000_i350:
3807 			ivar_max = IGB_MAX_IVAR_I350;
3808 			break;
3809 
3810 		case e1000_vfadapt:
3811 		case e1000_vfadapt_i350:
3812 			ivar_max = IGB_MAX_IVAR_VF;
3813 			break;
3814 
3815 		case e1000_i210:
3816 			ivar_max = IGB_MAX_IVAR_I210;
3817 			break;
3818 
3819 		case e1000_i211:
3820 			ivar_max = IGB_MAX_IVAR_I211;
3821 			break;
3822 
3823 		default:
3824 			panic("unknown mac type %d\n", sc->hw.mac.type);
3825 		}
3826 		for (i = 0; i < ivar_max; ++i)
3827 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3828 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3829 	} else {
3830 		uint32_t tmp;
3831 
3832 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3833 		    ("82575 w/ MSI-X"));
3834 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3835 		tmp |= E1000_CTRL_EXT_IRCA;
3836 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3837 	}
3838 
3839 	/*
3840 	 * Map TX/RX interrupts to EICR
3841 	 */
3842 	switch (sc->hw.mac.type) {
3843 	case e1000_82580:
3844 	case e1000_i350:
3845 	case e1000_vfadapt:
3846 	case e1000_vfadapt_i350:
3847 	case e1000_i210:
3848 	case e1000_i211:
3849 		/* RX entries */
3850 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3851 			rxr = &sc->rx_rings[i];
3852 
3853 			index = i >> 1;
3854 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3855 
3856 			if (i & 1) {
3857 				ivar &= 0xff00ffff;
3858 				ivar |=
3859 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3860 			} else {
3861 				ivar &= 0xffffff00;
3862 				ivar |=
3863 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3864 			}
3865 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3866 		}
3867 		/* TX entries */
3868 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3869 			txr = &sc->tx_rings[i];
3870 
3871 			index = i >> 1;
3872 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3873 
3874 			if (i & 1) {
3875 				ivar &= 0x00ffffff;
3876 				ivar |=
3877 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3878 			} else {
3879 				ivar &= 0xffff00ff;
3880 				ivar |=
3881 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3882 			}
3883 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3884 		}
3885 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3886 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3887 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3888 		}
3889 		break;
3890 
3891 	case e1000_82576:
3892 		/* RX entries */
3893 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3894 			rxr = &sc->rx_rings[i];
3895 
3896 			index = i & 0x7; /* Each IVAR has two entries */
3897 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3898 
3899 			if (i < 8) {
3900 				ivar &= 0xffffff00;
3901 				ivar |=
3902 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3903 			} else {
3904 				ivar &= 0xff00ffff;
3905 				ivar |=
3906 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3907 			}
3908 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3909 		}
3910 		/* TX entries */
3911 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3912 			txr = &sc->tx_rings[i];
3913 
3914 			index = i & 0x7; /* Each IVAR has two entries */
3915 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3916 
3917 			if (i < 8) {
3918 				ivar &= 0xffff00ff;
3919 				ivar |=
3920 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3921 			} else {
3922 				ivar &= 0x00ffffff;
3923 				ivar |=
3924 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3925 			}
3926 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3927 		}
3928 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3929 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3930 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3931 		}
3932 		break;
3933 
3934 	case e1000_82575:
3935 		/*
3936 		 * Enable necessary interrupt bits.
3937 		 *
3938 		 * The name of the register is confusing; in addition to
3939 		 * configuring the first vector of MSI-X, it also configures
3940 		 * which bits of EICR could be set by the hardware even when
3941 		 * MSI or line interrupt is used; it thus controls interrupt
3942 		 * generation.  It MUST be configured explicitly; the default
3943 		 * value mentioned in the datasheet is wrong: RX queue0 and
3944 		 * TX queue0 are NOT enabled by default.
3945 		 */
3946 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3947 		break;
3948 
3949 	default:
3950 		panic("unknown mac type %d\n", sc->hw.mac.type);
3951 	}
3952 }
3953 
3954 static int
3955 igb_setup_intr(struct igb_softc *sc)
3956 {
3957 	int error, i;
3958 
3959 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3960 		return igb_msix_setup(sc);
3961 
3962 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3963 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3964 	    sc, &sc->intr_tag, &sc->main_serialize);
3965 	if (error) {
3966 		device_printf(sc->dev, "Failed to register interrupt handler");
3967 		return error;
3968 	}
3969 
3970 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3971 		sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
3972 
3973 	return 0;
3974 }
3975 
3976 static void
3977 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3978 {
3979 	if (txr->sc->hw.mac.type == e1000_82575) {
3980 		txr->tx_intr_bit = 0;	/* unused */
3981 		switch (txr->me) {
3982 		case 0:
3983 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3984 			break;
3985 		case 1:
3986 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3987 			break;
3988 		case 2:
3989 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3990 			break;
3991 		case 3:
3992 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3993 			break;
3994 		default:
3995 			panic("unsupported # of TX ring, %d\n", txr->me);
3996 		}
3997 	} else {
3998 		int intr_bit = *intr_bit0;
3999 
4000 		txr->tx_intr_bit = intr_bit % intr_bitmax;
4001 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4002 
4003 		*intr_bit0 = intr_bit + 1;
4004 	}
4005 }
4006 
4007 static void
4008 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4009 {
4010 	if (rxr->sc->hw.mac.type == e1000_82575) {
4011 		rxr->rx_intr_bit = 0;	/* unused */
4012 		switch (rxr->me) {
4013 		case 0:
4014 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4015 			break;
4016 		case 1:
4017 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4018 			break;
4019 		case 2:
4020 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4021 			break;
4022 		case 3:
4023 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4024 			break;
4025 		default:
4026 			panic("unsupported # of RX ring, %d\n", rxr->me);
4027 		}
4028 	} else {
4029 		int intr_bit = *intr_bit0;
4030 
4031 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
4032 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4033 
4034 		*intr_bit0 = intr_bit + 1;
4035 	}
4036 }
4037 
4038 static void
4039 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4040 {
4041 	struct igb_softc *sc = ifp->if_softc;
4042 
4043 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
4044 	    sc->tx_serialize, sc->rx_serialize, slz);
4045 }
4046 
4047 static void
4048 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4049 {
4050 	struct igb_softc *sc = ifp->if_softc;
4051 
4052 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
4053 	    sc->tx_serialize, sc->rx_serialize, slz);
4054 }
4055 
4056 static int
4057 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4058 {
4059 	struct igb_softc *sc = ifp->if_softc;
4060 
4061 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4062 	    sc->tx_serialize, sc->rx_serialize, slz);
4063 }
4064 
4065 #ifdef INVARIANTS
4066 
4067 static void
4068 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4069     boolean_t serialized)
4070 {
4071 	struct igb_softc *sc = ifp->if_softc;
4072 
4073 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4074 	    sc->tx_serialize, sc->rx_serialize, slz, serialized);
4075 }
4076 
4077 #endif	/* INVARIANTS */
4078 
4079 static void
4080 igb_set_intr_mask(struct igb_softc *sc)
4081 {
4082 	int i;
4083 
4084 	sc->intr_mask = sc->sts_intr_mask;
4085 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4086 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4087 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4088 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4089 	if (bootverbose) {
4090 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4091 		    sc->intr_mask);
4092 	}
4093 }
4094 
4095 static int
4096 igb_alloc_intr(struct igb_softc *sc)
4097 {
4098 	int i, intr_bit, intr_bitmax;
4099 	u_int intr_flags;
4100 
4101 	igb_msix_try_alloc(sc);
4102 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4103 		goto done;
4104 
4105 	/*
4106 	 * Allocate MSI/legacy interrupt resource
4107 	 */
4108 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4109 	    &sc->intr_rid, &intr_flags);
4110 
4111 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4112 		int unshared;
4113 
4114 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4115 		if (!unshared) {
4116 			sc->flags |= IGB_FLAG_SHARED_INTR;
4117 			if (bootverbose)
4118 				device_printf(sc->dev, "IRQ shared\n");
4119 		} else {
4120 			intr_flags &= ~RF_SHAREABLE;
4121 			if (bootverbose)
4122 				device_printf(sc->dev, "IRQ unshared\n");
4123 		}
4124 	}
4125 
4126 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4127 	    &sc->intr_rid, intr_flags);
4128 	if (sc->intr_res == NULL) {
4129 		device_printf(sc->dev, "Unable to allocate bus resource: "
4130 		    "interrupt\n");
4131 		return ENXIO;
4132 	}
4133 
4134 	/*
4135 	 * Setup MSI/legacy interrupt mask
4136 	 */
4137 	switch (sc->hw.mac.type) {
4138 	case e1000_82575:
4139 		intr_bitmax = IGB_MAX_TXRXINT_82575;
4140 		break;
4141 
4142 	case e1000_82576:
4143 		intr_bitmax = IGB_MAX_TXRXINT_82576;
4144 		break;
4145 
4146 	case e1000_82580:
4147 		intr_bitmax = IGB_MAX_TXRXINT_82580;
4148 		break;
4149 
4150 	case e1000_i350:
4151 		intr_bitmax = IGB_MAX_TXRXINT_I350;
4152 		break;
4153 
4154 	case e1000_i210:
4155 		intr_bitmax = IGB_MAX_TXRXINT_I210;
4156 		break;
4157 
4158 	case e1000_i211:
4159 		intr_bitmax = IGB_MAX_TXRXINT_I211;
4160 		break;
4161 
4162 	default:
4163 		intr_bitmax = IGB_MIN_TXRXINT;
4164 		break;
4165 	}
4166 	intr_bit = 0;
4167 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4168 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4169 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4170 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4171 	sc->sts_intr_bit = 0;
4172 	sc->sts_intr_mask = E1000_EICR_OTHER;
4173 
4174 	/* Initialize interrupt rate */
4175 	sc->intr_rate = IGB_INTR_RATE;
4176 done:
4177 	igb_set_ring_inuse(sc, FALSE);
4178 	igb_set_intr_mask(sc);
4179 	return 0;
4180 }
4181 
4182 static void
4183 igb_free_intr(struct igb_softc *sc)
4184 {
4185 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4186 		if (sc->intr_res != NULL) {
4187 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4188 			    sc->intr_res);
4189 		}
4190 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4191 			pci_release_msi(sc->dev);
4192 	} else {
4193 		igb_msix_free(sc, TRUE);
4194 	}
4195 }
4196 
4197 static void
4198 igb_teardown_intr(struct igb_softc *sc)
4199 {
4200 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4201 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4202 	else
4203 		igb_msix_teardown(sc, sc->msix_cnt);
4204 }
4205 
4206 static void
4207 igb_msix_try_alloc(struct igb_softc *sc)
4208 {
4209 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4210 	int i, x, error;
4211 	int offset, offset_def;
4212 	struct igb_msix_data *msix;
4213 	boolean_t aggregate, setup = FALSE;
4214 
4215 	/*
4216 	 * Don't enable MSI-X on 82575, see:
4217 	 * 82575 specification update errata #25
4218 	 */
4219 	if (sc->hw.mac.type == e1000_82575)
4220 		return;
4221 
4222 	/* Don't enable MSI-X on VF */
4223 	if (sc->vf_ifp)
4224 		return;
4225 
4226 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4227 	    igb_msix_enable);
4228 	if (!msix_enable)
4229 		return;
4230 
4231 	msix_cnt = pci_msix_count(sc->dev);
4232 #ifdef IGB_MSIX_DEBUG
4233 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4234 #endif
4235 	if (msix_cnt <= 1) {
4236 		/* One MSI-X model does not make sense */
4237 		return;
4238 	}
4239 
4240 	i = 0;
4241 	while ((1 << (i + 1)) <= msix_cnt)
4242 		++i;
4243 	msix_cnt2 = 1 << i;
4244 
4245 	if (bootverbose) {
4246 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4247 		    msix_cnt2, msix_cnt);
4248 	}
4249 
4250 	KKASSERT(msix_cnt2 <= msix_cnt);
4251 	if (msix_cnt == msix_cnt2) {
4252 		/* We need at least one MSI-X for link status */
4253 		msix_cnt2 >>= 1;
4254 		if (msix_cnt2 <= 1) {
4255 			/* One MSI-X for RX/TX does not make sense */
4256 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4257 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4258 			return;
4259 		}
4260 		KKASSERT(msix_cnt > msix_cnt2);
4261 
4262 		if (bootverbose) {
4263 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4264 			    msix_cnt2, msix_cnt);
4265 		}
4266 	}
4267 
4268 	sc->rx_ring_msix = sc->rx_ring_cnt;
4269 	if (sc->rx_ring_msix > msix_cnt2)
4270 		sc->rx_ring_msix = msix_cnt2;
4271 
4272 	sc->tx_ring_msix = sc->tx_ring_cnt;
4273 	if (sc->tx_ring_msix > msix_cnt2)
4274 		sc->tx_ring_msix = msix_cnt2;
4275 
4276 	if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4277 		/*
4278 		 * Independent TX/RX MSI-X
4279 		 */
4280 		aggregate = FALSE;
4281 		if (bootverbose)
4282 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4283 		alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4284 	} else {
4285 		/*
4286 		 * Aggregate TX/RX MSI-X
4287 		 */
4288 		aggregate = TRUE;
4289 		if (bootverbose)
4290 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4291 		alloc_cnt = msix_cnt2;
4292 		if (alloc_cnt > ncpus2)
4293 			alloc_cnt = ncpus2;
4294 		if (sc->rx_ring_msix > alloc_cnt)
4295 			sc->rx_ring_msix = alloc_cnt;
4296 		if (sc->tx_ring_msix > alloc_cnt)
4297 			sc->tx_ring_msix = alloc_cnt;
4298 	}
4299 	++alloc_cnt;	/* For link status */
4300 
4301 	if (bootverbose) {
4302 		device_printf(sc->dev, "MSI-X alloc %d, "
4303 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4304 		    sc->rx_ring_msix, sc->tx_ring_msix);
4305 	}
4306 
4307 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4308 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4309 	    &sc->msix_mem_rid, RF_ACTIVE);
4310 	if (sc->msix_mem_res == NULL) {
4311 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4312 		return;
4313 	}
4314 
4315 	sc->msix_cnt = alloc_cnt;
4316 	sc->msix_data = kmalloc_cachealign(
4317 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4318 	    M_DEVBUF, M_WAITOK | M_ZERO);
4319 	for (x = 0; x < sc->msix_cnt; ++x) {
4320 		msix = &sc->msix_data[x];
4321 
4322 		lwkt_serialize_init(&msix->msix_serialize0);
4323 		msix->msix_sc = sc;
4324 		msix->msix_rid = -1;
4325 		msix->msix_vector = x;
4326 		msix->msix_mask = 1 << msix->msix_vector;
4327 		msix->msix_rate = IGB_INTR_RATE;
4328 	}
4329 
4330 	x = 0;
4331 	if (!aggregate) {
4332 		/*
4333 		 * RX rings
4334 		 */
4335 		if (sc->rx_ring_msix == ncpus2) {
4336 			offset = 0;
4337 		} else {
4338 			offset_def = (sc->rx_ring_msix *
4339 			    device_get_unit(sc->dev)) % ncpus2;
4340 
4341 			offset = device_getenv_int(sc->dev,
4342 			    "msix.rxoff", offset_def);
4343 			if (offset >= ncpus2 ||
4344 			    offset % sc->rx_ring_msix != 0) {
4345 				device_printf(sc->dev,
4346 				    "invalid msix.rxoff %d, use %d\n",
4347 				    offset, offset_def);
4348 				offset = offset_def;
4349 			}
4350 		}
4351 		igb_msix_rx_conf(sc, 0, &x, offset);
4352 
4353 		/*
4354 		 * TX rings
4355 		 */
4356 		if (sc->tx_ring_msix == ncpus2) {
4357 			offset = 0;
4358 		} else {
4359 			offset_def = (sc->tx_ring_msix *
4360 			    device_get_unit(sc->dev)) % ncpus2;
4361 
4362 			offset = device_getenv_int(sc->dev,
4363 			    "msix.txoff", offset_def);
4364 			if (offset >= ncpus2 ||
4365 			    offset % sc->tx_ring_msix != 0) {
4366 				device_printf(sc->dev,
4367 				    "invalid msix.txoff %d, use %d\n",
4368 				    offset, offset_def);
4369 				offset = offset_def;
4370 			}
4371 		}
4372 		igb_msix_tx_conf(sc, 0, &x, offset);
4373 	} else {
4374 		int ring_agg, ring_max;
4375 
4376 		ring_agg = sc->rx_ring_msix;
4377 		if (ring_agg > sc->tx_ring_msix)
4378 			ring_agg = sc->tx_ring_msix;
4379 
4380 		ring_max = sc->rx_ring_msix;
4381 		if (ring_max < sc->tx_ring_msix)
4382 			ring_max = sc->tx_ring_msix;
4383 
4384 		if (ring_max == ncpus2) {
4385 			offset = 0;
4386 		} else {
4387 			offset_def = (ring_max * device_get_unit(sc->dev)) %
4388 			    ncpus2;
4389 
4390 			offset = device_getenv_int(sc->dev, "msix.off",
4391 			    offset_def);
4392 			if (offset >= ncpus2 || offset % ring_max != 0) {
4393 				device_printf(sc->dev,
4394 				    "invalid msix.off %d, use %d\n",
4395 				    offset, offset_def);
4396 				offset = offset_def;
4397 			}
4398 		}
4399 
4400 		for (i = 0; i < ring_agg; ++i) {
4401 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4402 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4403 
4404 			KKASSERT(x < sc->msix_cnt);
4405 			msix = &sc->msix_data[x++];
4406 
4407 			txr->tx_intr_bit = msix->msix_vector;
4408 			txr->tx_intr_mask = msix->msix_mask;
4409 			rxr->rx_intr_bit = msix->msix_vector;
4410 			rxr->rx_intr_mask = msix->msix_mask;
4411 
4412 			msix->msix_serialize = &msix->msix_serialize0;
4413 			msix->msix_func = igb_msix_rxtx;
4414 			msix->msix_arg = msix;
4415 			msix->msix_rx = rxr;
4416 			msix->msix_tx = txr;
4417 
4418 			msix->msix_cpuid = i + offset;
4419 			KKASSERT(msix->msix_cpuid < ncpus2);
4420 			txr->tx_intr_cpuid = msix->msix_cpuid;
4421 
4422 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4423 			    "%s rxtx%d", device_get_nameunit(sc->dev), i);
4424 			msix->msix_rate = IGB_MSIX_RX_RATE;
4425 			ksnprintf(msix->msix_rate_desc,
4426 			    sizeof(msix->msix_rate_desc),
4427 			    "RXTX%d interrupt rate", i);
4428 		}
4429 
4430 		if (ring_agg != ring_max) {
4431 			if (ring_max == sc->tx_ring_msix)
4432 				igb_msix_tx_conf(sc, i, &x, offset);
4433 			else
4434 				igb_msix_rx_conf(sc, i, &x, offset);
4435 		}
4436 	}
4437 
4438 	/*
4439 	 * Link status
4440 	 */
4441 	KKASSERT(x < sc->msix_cnt);
4442 	msix = &sc->msix_data[x++];
4443 	sc->sts_intr_bit = msix->msix_vector;
4444 	sc->sts_intr_mask = msix->msix_mask;
4445 
4446 	msix->msix_serialize = &sc->main_serialize;
4447 	msix->msix_func = igb_msix_status;
4448 	msix->msix_arg = sc;
4449 	msix->msix_cpuid = 0;
4450 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4451 	    device_get_nameunit(sc->dev));
4452 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4453 	    "status interrupt rate");
4454 
4455 	KKASSERT(x == sc->msix_cnt);
4456 
4457 	error = pci_setup_msix(sc->dev);
4458 	if (error) {
4459 		device_printf(sc->dev, "Setup MSI-X failed\n");
4460 		goto back;
4461 	}
4462 	setup = TRUE;
4463 
4464 	for (i = 0; i < sc->msix_cnt; ++i) {
4465 		msix = &sc->msix_data[i];
4466 
4467 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4468 		    &msix->msix_rid, msix->msix_cpuid);
4469 		if (error) {
4470 			device_printf(sc->dev,
4471 			    "Unable to allocate MSI-X %d on cpu%d\n",
4472 			    msix->msix_vector, msix->msix_cpuid);
4473 			goto back;
4474 		}
4475 
4476 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4477 		    &msix->msix_rid, RF_ACTIVE);
4478 		if (msix->msix_res == NULL) {
4479 			device_printf(sc->dev,
4480 			    "Unable to allocate MSI-X %d resource\n",
4481 			    msix->msix_vector);
4482 			error = ENOMEM;
4483 			goto back;
4484 		}
4485 	}
4486 
4487 	pci_enable_msix(sc->dev);
4488 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4489 back:
4490 	if (error)
4491 		igb_msix_free(sc, setup);
4492 }
4493 
4494 static void
4495 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4496 {
4497 	int i;
4498 
4499 	KKASSERT(sc->msix_cnt > 1);
4500 
4501 	for (i = 0; i < sc->msix_cnt; ++i) {
4502 		struct igb_msix_data *msix = &sc->msix_data[i];
4503 
4504 		if (msix->msix_res != NULL) {
4505 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4506 			    msix->msix_rid, msix->msix_res);
4507 		}
4508 		if (msix->msix_rid >= 0)
4509 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4510 	}
4511 	if (setup)
4512 		pci_teardown_msix(sc->dev);
4513 
4514 	sc->msix_cnt = 0;
4515 	kfree(sc->msix_data, M_DEVBUF);
4516 	sc->msix_data = NULL;
4517 }
4518 
4519 static int
4520 igb_msix_setup(struct igb_softc *sc)
4521 {
4522 	int i;
4523 
4524 	for (i = 0; i < sc->msix_cnt; ++i) {
4525 		struct igb_msix_data *msix = &sc->msix_data[i];
4526 		int error;
4527 
4528 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4529 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4530 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4531 		if (error) {
4532 			device_printf(sc->dev, "could not set up %s "
4533 			    "interrupt handler.\n", msix->msix_desc);
4534 			igb_msix_teardown(sc, i);
4535 			return error;
4536 		}
4537 	}
4538 	return 0;
4539 }
4540 
4541 static void
4542 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4543 {
4544 	int i;
4545 
4546 	for (i = 0; i < msix_cnt; ++i) {
4547 		struct igb_msix_data *msix = &sc->msix_data[i];
4548 
4549 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4550 	}
4551 }
4552 
4553 static void
4554 igb_msix_rx(void *arg)
4555 {
4556 	struct igb_rx_ring *rxr = arg;
4557 
4558 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4559 	igb_rxeof(rxr, -1);
4560 
4561 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4562 }
4563 
4564 static void
4565 igb_msix_tx(void *arg)
4566 {
4567 	struct igb_tx_ring *txr = arg;
4568 
4569 	ASSERT_SERIALIZED(&txr->tx_serialize);
4570 
4571 	igb_txeof(txr);
4572 	if (!ifsq_is_empty(txr->ifsq))
4573 		ifsq_devstart(txr->ifsq);
4574 
4575 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4576 }
4577 
4578 static void
4579 igb_msix_status(void *arg)
4580 {
4581 	struct igb_softc *sc = arg;
4582 	uint32_t icr;
4583 
4584 	ASSERT_SERIALIZED(&sc->main_serialize);
4585 
4586 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4587 	if (icr & E1000_ICR_LSC) {
4588 		sc->hw.mac.get_link_status = 1;
4589 		igb_update_link_status(sc);
4590 	}
4591 
4592 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4593 }
4594 
4595 static void
4596 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4597 {
4598 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4599 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4600 	if (bootverbose) {
4601 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4602 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4603 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4604 	}
4605 }
4606 
4607 static int
4608 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4609 {
4610 	if (!IGB_ENABLE_HWRSS(sc))
4611 		return 1;
4612 
4613 	if (polling)
4614 		return sc->rx_ring_cnt;
4615 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4616 		return IGB_MIN_RING_RSS;
4617 	else
4618 		return sc->rx_ring_msix;
4619 }
4620 
4621 static int
4622 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4623 {
4624 	if (!IGB_ENABLE_HWTSS(sc))
4625 		return 1;
4626 
4627 	if (polling)
4628 		return sc->tx_ring_cnt;
4629 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4630 		return IGB_MIN_RING;
4631 	else
4632 		return sc->tx_ring_msix;
4633 }
4634 
4635 static int
4636 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4637 {
4638 	int hoff, iphlen, thoff;
4639 	struct mbuf *m;
4640 
4641 	m = *mp;
4642 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4643 
4644 	iphlen = m->m_pkthdr.csum_iphlen;
4645 	thoff = m->m_pkthdr.csum_thlen;
4646 	hoff = m->m_pkthdr.csum_lhlen;
4647 
4648 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4649 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4650 	KASSERT(hoff > 0, ("invalid ether hlen"));
4651 
4652 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4653 		m = m_pullup(m, hoff + iphlen + thoff);
4654 		if (m == NULL) {
4655 			*mp = NULL;
4656 			return ENOBUFS;
4657 		}
4658 		*mp = m;
4659 	}
4660 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4661 		struct ip *ip;
4662 
4663 		ip = mtodoff(m, struct ip *, hoff);
4664 		ip->ip_len = 0;
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 static void
4671 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4672 {
4673 	struct e1000_adv_tx_context_desc *TXD;
4674 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4675 	int hoff, ctxd, iphlen, thoff;
4676 
4677 	iphlen = m->m_pkthdr.csum_iphlen;
4678 	thoff = m->m_pkthdr.csum_thlen;
4679 	hoff = m->m_pkthdr.csum_lhlen;
4680 
4681 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4682 
4683 	ctxd = txr->next_avail_desc;
4684 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4685 
4686 	if (m->m_flags & M_VLANTAG) {
4687 		uint16_t vlantag;
4688 
4689 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4690 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4691 	}
4692 
4693 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4694 	vlan_macip_lens |= iphlen;
4695 
4696 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4697 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4698 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4699 
4700 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4701 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4702 	/* 82575 needs the queue index added */
4703 	if (txr->sc->hw.mac.type == e1000_82575)
4704 		mss_l4len_idx |= txr->me << 4;
4705 
4706 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4707 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4708 	TXD->seqnum_seed = htole32(0);
4709 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4710 
4711 	/* We've consumed the first desc, adjust counters */
4712 	if (++ctxd == txr->num_tx_desc)
4713 		ctxd = 0;
4714 	txr->next_avail_desc = ctxd;
4715 	--txr->tx_avail;
4716 
4717 	*hlen = hoff + iphlen + thoff;
4718 }
4719 
4720 static void
4721 igb_setup_serializer(struct igb_softc *sc)
4722 {
4723 	const struct igb_msix_data *msix;
4724 	int i, j;
4725 
4726 	/*
4727 	 * Allocate serializer array
4728 	 */
4729 
4730 	/* Main + TX + RX */
4731 	sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4732 
4733 	/* Aggregate TX/RX MSI-X */
4734 	for (i = 0; i < sc->msix_cnt; ++i) {
4735 		msix = &sc->msix_data[i];
4736 		if (msix->msix_serialize == &msix->msix_serialize0)
4737 			sc->serialize_cnt++;
4738 	}
4739 
4740 	sc->serializes =
4741 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4742 	        M_DEVBUF, M_WAITOK | M_ZERO);
4743 
4744 	/*
4745 	 * Setup serializers
4746 	 *
4747 	 * NOTE: Order is critical
4748 	 */
4749 
4750 	i = 0;
4751 	KKASSERT(i < sc->serialize_cnt);
4752 	sc->serializes[i++] = &sc->main_serialize;
4753 
4754 	for (j = 0; j < sc->msix_cnt; ++j) {
4755 		msix = &sc->msix_data[j];
4756 		if (msix->msix_serialize == &msix->msix_serialize0) {
4757 			KKASSERT(i < sc->serialize_cnt);
4758 			sc->serializes[i++] = msix->msix_serialize;
4759 		}
4760 	}
4761 
4762 	sc->tx_serialize = i;
4763 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4764 		KKASSERT(i < sc->serialize_cnt);
4765 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4766 	}
4767 
4768 	sc->rx_serialize = i;
4769 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4770 		KKASSERT(i < sc->serialize_cnt);
4771 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4772 	}
4773 
4774 	KKASSERT(i == sc->serialize_cnt);
4775 }
4776 
4777 static void
4778 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4779 {
4780 	int x = *x0;
4781 
4782 	for (; i < sc->rx_ring_msix; ++i) {
4783 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4784 		struct igb_msix_data *msix;
4785 
4786 		KKASSERT(x < sc->msix_cnt);
4787 		msix = &sc->msix_data[x++];
4788 
4789 		rxr->rx_intr_bit = msix->msix_vector;
4790 		rxr->rx_intr_mask = msix->msix_mask;
4791 
4792 		msix->msix_serialize = &rxr->rx_serialize;
4793 		msix->msix_func = igb_msix_rx;
4794 		msix->msix_arg = rxr;
4795 
4796 		msix->msix_cpuid = i + offset;
4797 		KKASSERT(msix->msix_cpuid < ncpus2);
4798 
4799 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4800 		    device_get_nameunit(sc->dev), i);
4801 
4802 		msix->msix_rate = IGB_MSIX_RX_RATE;
4803 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4804 		    "RX%d interrupt rate", i);
4805 	}
4806 	*x0 = x;
4807 }
4808 
4809 static void
4810 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4811 {
4812 	int x = *x0;
4813 
4814 	for (; i < sc->tx_ring_msix; ++i) {
4815 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4816 		struct igb_msix_data *msix;
4817 
4818 		KKASSERT(x < sc->msix_cnt);
4819 		msix = &sc->msix_data[x++];
4820 
4821 		txr->tx_intr_bit = msix->msix_vector;
4822 		txr->tx_intr_mask = msix->msix_mask;
4823 
4824 		msix->msix_serialize = &txr->tx_serialize;
4825 		msix->msix_func = igb_msix_tx;
4826 		msix->msix_arg = txr;
4827 
4828 		msix->msix_cpuid = i + offset;
4829 		KKASSERT(msix->msix_cpuid < ncpus2);
4830 		txr->tx_intr_cpuid = msix->msix_cpuid;
4831 
4832 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4833 		    device_get_nameunit(sc->dev), i);
4834 
4835 		msix->msix_rate = IGB_MSIX_TX_RATE;
4836 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4837 		    "TX%d interrupt rate", i);
4838 	}
4839 	*x0 = x;
4840 }
4841 
4842 static void
4843 igb_msix_rxtx(void *arg)
4844 {
4845 	struct igb_msix_data *msix = arg;
4846 	struct igb_rx_ring *rxr = msix->msix_rx;
4847 	struct igb_tx_ring *txr = msix->msix_tx;
4848 
4849 	ASSERT_SERIALIZED(&msix->msix_serialize0);
4850 
4851 	lwkt_serialize_enter(&rxr->rx_serialize);
4852 	igb_rxeof(rxr, -1);
4853 	lwkt_serialize_exit(&rxr->rx_serialize);
4854 
4855 	lwkt_serialize_enter(&txr->tx_serialize);
4856 	igb_txeof(txr);
4857 	if (!ifsq_is_empty(txr->ifsq))
4858 		ifsq_devstart(txr->ifsq);
4859 	lwkt_serialize_exit(&txr->tx_serialize);
4860 
4861 	E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4862 }
4863 
4864 static void
4865 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4866 {
4867 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4868 		sc->timer_cpuid = 0; /* XXX fixed */
4869 	else
4870 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4871 }
4872