xref: /dflybsd-src/sys/dev/netif/igb/if_igb.c (revision 636eca08bbf84bbb648c68d757be5ec1a2b86a72)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 
125 	/* required last entry */
126 	IGB_DEVICE_NULL
127 };
128 
129 static int	igb_probe(device_t);
130 static int	igb_attach(device_t);
131 static int	igb_detach(device_t);
132 static int	igb_shutdown(device_t);
133 static int	igb_suspend(device_t);
134 static int	igb_resume(device_t);
135 
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void	igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void	igb_add_sysctl(struct igb_softc *);
142 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
146 #ifdef IFPOLL_ENABLE
147 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
148 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
149 #endif
150 
151 static void	igb_vf_init_stats(struct igb_softc *);
152 static void	igb_reset(struct igb_softc *);
153 static void	igb_update_stats_counters(struct igb_softc *);
154 static void	igb_update_vf_stats_counters(struct igb_softc *);
155 static void	igb_update_link_status(struct igb_softc *);
156 static void	igb_init_tx_unit(struct igb_softc *);
157 static void	igb_init_rx_unit(struct igb_softc *);
158 
159 static void	igb_set_vlan(struct igb_softc *);
160 static void	igb_set_multi(struct igb_softc *);
161 static void	igb_set_promisc(struct igb_softc *);
162 static void	igb_disable_promisc(struct igb_softc *);
163 
164 static int	igb_alloc_rings(struct igb_softc *);
165 static void	igb_free_rings(struct igb_softc *);
166 static int	igb_create_tx_ring(struct igb_tx_ring *);
167 static int	igb_create_rx_ring(struct igb_rx_ring *);
168 static void	igb_free_tx_ring(struct igb_tx_ring *);
169 static void	igb_free_rx_ring(struct igb_rx_ring *);
170 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
171 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
172 static void	igb_init_tx_ring(struct igb_tx_ring *);
173 static int	igb_init_rx_ring(struct igb_rx_ring *);
174 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
175 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
176 static void	igb_rx_refresh(struct igb_rx_ring *, int);
177 
178 static void	igb_stop(struct igb_softc *);
179 static void	igb_init(void *);
180 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
181 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
182 static int	igb_media_change(struct ifnet *);
183 static void	igb_timer(void *);
184 static void	igb_watchdog(struct ifnet *);
185 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
186 #ifdef IFPOLL_ENABLE
187 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
188 static void	igb_npoll_rx(struct ifnet *, void *, int);
189 static void	igb_npoll_tx(struct ifnet *, void *, int);
190 static void	igb_npoll_status(struct ifnet *);
191 #endif
192 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
193 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
194 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
195 #ifdef INVARIANTS
196 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
197 		    boolean_t);
198 #endif
199 
200 static void	igb_intr(void *);
201 static void	igb_intr_shared(void *);
202 static void	igb_rxeof(struct igb_rx_ring *, int);
203 static void	igb_txeof(struct igb_tx_ring *);
204 static void	igb_set_eitr(struct igb_softc *, int, int);
205 static void	igb_enable_intr(struct igb_softc *);
206 static void	igb_disable_intr(struct igb_softc *);
207 static void	igb_init_unshared_intr(struct igb_softc *);
208 static void	igb_init_intr(struct igb_softc *);
209 static int	igb_setup_intr(struct igb_softc *);
210 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
211 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
212 static void	igb_set_intr_mask(struct igb_softc *);
213 static int	igb_alloc_intr(struct igb_softc *);
214 static void	igb_free_intr(struct igb_softc *);
215 static void	igb_teardown_intr(struct igb_softc *);
216 static void	igb_msix_try_alloc(struct igb_softc *);
217 static void	igb_msix_free(struct igb_softc *, boolean_t);
218 static int	igb_msix_setup(struct igb_softc *);
219 static void	igb_msix_teardown(struct igb_softc *, int);
220 static void	igb_msix_rx(void *);
221 static void	igb_msix_tx(void *);
222 static void	igb_msix_status(void *);
223 
224 /* Management and WOL Support */
225 static void	igb_get_mgmt(struct igb_softc *);
226 static void	igb_rel_mgmt(struct igb_softc *);
227 static void	igb_get_hw_control(struct igb_softc *);
228 static void	igb_rel_hw_control(struct igb_softc *);
229 static void	igb_enable_wol(device_t);
230 
231 static device_method_t igb_methods[] = {
232 	/* Device interface */
233 	DEVMETHOD(device_probe,		igb_probe),
234 	DEVMETHOD(device_attach,	igb_attach),
235 	DEVMETHOD(device_detach,	igb_detach),
236 	DEVMETHOD(device_shutdown,	igb_shutdown),
237 	DEVMETHOD(device_suspend,	igb_suspend),
238 	DEVMETHOD(device_resume,	igb_resume),
239 	{ 0, 0 }
240 };
241 
242 static driver_t igb_driver = {
243 	"igb",
244 	igb_methods,
245 	sizeof(struct igb_softc),
246 };
247 
248 static devclass_t igb_devclass;
249 
250 DECLARE_DUMMY_MODULE(if_igb);
251 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
252 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
253 
254 static int	igb_rxd = IGB_DEFAULT_RXD;
255 static int	igb_txd = IGB_DEFAULT_TXD;
256 static int	igb_rxr = 0;
257 static int	igb_msi_enable = 1;
258 static int	igb_msix_enable = 1;
259 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
260 static int	igb_fc_setting = e1000_fc_full;
261 
262 /*
263  * DMA Coalescing, only for i350 - default to off,
264  * this feature is for power savings
265  */
266 static int	igb_dma_coalesce = 0;
267 
268 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
269 TUNABLE_INT("hw.igb.txd", &igb_txd);
270 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
271 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
272 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
273 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
274 
275 /* i350 specific */
276 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
277 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
278 
279 static __inline void
280 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
281 {
282 	/* Ignore Checksum bit is set */
283 	if (staterr & E1000_RXD_STAT_IXSM)
284 		return;
285 
286 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
287 	    E1000_RXD_STAT_IPCS)
288 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
289 
290 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
291 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
292 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
293 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
294 			mp->m_pkthdr.csum_data = htons(0xffff);
295 		}
296 	}
297 }
298 
299 static __inline struct pktinfo *
300 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
301     uint32_t hash, uint32_t hashtype, uint32_t staterr)
302 {
303 	switch (hashtype) {
304 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
305 		pi->pi_netisr = NETISR_IP;
306 		pi->pi_flags = 0;
307 		pi->pi_l3proto = IPPROTO_TCP;
308 		break;
309 
310 	case E1000_RXDADV_RSSTYPE_IPV4:
311 		if (staterr & E1000_RXD_STAT_IXSM)
312 			return NULL;
313 
314 		if ((staterr &
315 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
316 		    E1000_RXD_STAT_TCPCS) {
317 			pi->pi_netisr = NETISR_IP;
318 			pi->pi_flags = 0;
319 			pi->pi_l3proto = IPPROTO_UDP;
320 			break;
321 		}
322 		/* FALL THROUGH */
323 	default:
324 		return NULL;
325 	}
326 
327 	m->m_flags |= M_HASH;
328 	m->m_pkthdr.hash = toeplitz_hash(hash);
329 	return pi;
330 }
331 
332 static int
333 igb_probe(device_t dev)
334 {
335 	const struct igb_device *d;
336 	uint16_t vid, did;
337 
338 	vid = pci_get_vendor(dev);
339 	did = pci_get_device(dev);
340 
341 	for (d = igb_devices; d->desc != NULL; ++d) {
342 		if (vid == d->vid && did == d->did) {
343 			device_set_desc(dev, d->desc);
344 			return 0;
345 		}
346 	}
347 	return ENXIO;
348 }
349 
350 static int
351 igb_attach(device_t dev)
352 {
353 	struct igb_softc *sc = device_get_softc(dev);
354 	uint16_t eeprom_data;
355 	int error = 0, i, j, ring_max;
356 #ifdef IFPOLL_ENABLE
357 	int offset, offset_def;
358 #endif
359 
360 #ifdef notyet
361 	/* SYSCTL stuff */
362 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
363 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
364 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
365 	    igb_sysctl_nvm_info, "I", "NVM Information");
366 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
367 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
368 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
369 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
370 #endif
371 
372 	callout_init_mp(&sc->timer);
373 	lwkt_serialize_init(&sc->main_serialize);
374 
375 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
376 	    device_get_unit(dev));
377 	sc->dev = sc->osdep.dev = dev;
378 
379 	/*
380 	 * Determine hardware and mac type
381 	 */
382 	sc->hw.vendor_id = pci_get_vendor(dev);
383 	sc->hw.device_id = pci_get_device(dev);
384 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
385 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
386 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
387 
388 	if (e1000_set_mac_type(&sc->hw))
389 		return ENXIO;
390 
391 	/* Are we a VF device? */
392 	if (sc->hw.mac.type == e1000_vfadapt ||
393 	    sc->hw.mac.type == e1000_vfadapt_i350)
394 		sc->vf_ifp = 1;
395 	else
396 		sc->vf_ifp = 0;
397 
398 	/*
399 	 * Configure total supported RX/TX ring count
400 	 */
401 	switch (sc->hw.mac.type) {
402 	case e1000_82575:
403 		ring_max = IGB_MAX_RING_82575;
404 		break;
405 	case e1000_82580:
406 		ring_max = IGB_MAX_RING_82580;
407 		break;
408 	case e1000_i350:
409 		ring_max = IGB_MAX_RING_I350;
410 		break;
411 	case e1000_82576:
412 		ring_max = IGB_MAX_RING_82576;
413 		break;
414 	default:
415 		ring_max = IGB_MIN_RING;
416 		break;
417 	}
418 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
419 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
420 #ifdef IGB_RSS_DEBUG
421 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
422 #endif
423 	sc->rx_ring_inuse = sc->rx_ring_cnt;
424 	sc->tx_ring_cnt = 1; /* XXX */
425 
426 	if (sc->hw.mac.type == e1000_82575)
427 		sc->flags |= IGB_FLAG_TSO_IPLEN0;
428 
429 	/* Enable bus mastering */
430 	pci_enable_busmaster(dev);
431 
432 	/*
433 	 * Allocate IO memory
434 	 */
435 	sc->mem_rid = PCIR_BAR(0);
436 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
437 	    RF_ACTIVE);
438 	if (sc->mem_res == NULL) {
439 		device_printf(dev, "Unable to allocate bus resource: memory\n");
440 		error = ENXIO;
441 		goto failed;
442 	}
443 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
444 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
445 
446 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
447 
448 	/* Save PCI command register for Shared Code */
449 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
450 	sc->hw.back = &sc->osdep;
451 
452 	/* Do Shared Code initialization */
453 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
454 		device_printf(dev, "Setup of Shared code failed\n");
455 		error = ENXIO;
456 		goto failed;
457 	}
458 
459 	e1000_get_bus_info(&sc->hw);
460 
461 	sc->hw.mac.autoneg = DO_AUTO_NEG;
462 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
463 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
464 
465 	/* Copper options */
466 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
467 		sc->hw.phy.mdix = AUTO_ALL_MODES;
468 		sc->hw.phy.disable_polarity_correction = FALSE;
469 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
470 	}
471 
472 	/* Set the frame limits assuming  standard ethernet sized frames. */
473 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
474 
475 	/* Allocate RX/TX rings */
476 	error = igb_alloc_rings(sc);
477 	if (error)
478 		goto failed;
479 
480 #ifdef IFPOLL_ENABLE
481 	/*
482 	 * NPOLLING RX CPU offset
483 	 */
484 	if (sc->rx_ring_cnt == ncpus2) {
485 		offset = 0;
486 	} else {
487 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
488 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
489 		if (offset >= ncpus2 ||
490 		    offset % sc->rx_ring_cnt != 0) {
491 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
492 			    offset, offset_def);
493 			offset = offset_def;
494 		}
495 	}
496 	sc->rx_npoll_off = offset;
497 
498 	/*
499 	 * NPOLLING TX CPU offset
500 	 */
501 	offset_def = sc->rx_npoll_off;
502 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
503 	if (offset >= ncpus2) {
504 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
505 		    offset, offset_def);
506 		offset = offset_def;
507 	}
508 	sc->tx_npoll_off = offset;
509 #endif
510 
511 	/* Allocate interrupt */
512 	error = igb_alloc_intr(sc);
513 	if (error)
514 		goto failed;
515 
516 	/*
517 	 * Setup serializers
518 	 */
519 	i = 0;
520 	sc->serializes[i++] = &sc->main_serialize;
521 
522 	sc->tx_serialize = i;
523 	for (j = 0; j < sc->tx_ring_cnt; ++j)
524 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
525 
526 	sc->rx_serialize = i;
527 	for (j = 0; j < sc->rx_ring_cnt; ++j)
528 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
529 
530 	sc->serialize_cnt = i;
531 	KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
532 
533 	/* Allocate the appropriate stats memory */
534 	if (sc->vf_ifp) {
535 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
536 		    M_WAITOK | M_ZERO);
537 		igb_vf_init_stats(sc);
538 	} else {
539 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
540 		    M_WAITOK | M_ZERO);
541 	}
542 
543 	/* Allocate multicast array memory. */
544 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
545 	    M_DEVBUF, M_WAITOK);
546 
547 	/* Some adapter-specific advanced features */
548 	if (sc->hw.mac.type >= e1000_i350) {
549 #ifdef notyet
550 		igb_set_sysctl_value(adapter, "dma_coalesce",
551 		    "configure dma coalesce",
552 		    &adapter->dma_coalesce, igb_dma_coalesce);
553 		igb_set_sysctl_value(adapter, "eee_disabled",
554 		    "enable Energy Efficient Ethernet",
555 		    &adapter->hw.dev_spec._82575.eee_disable,
556 		    igb_eee_disabled);
557 #else
558 		sc->dma_coalesce = igb_dma_coalesce;
559 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
560 #endif
561 		e1000_set_eee_i350(&sc->hw);
562 	}
563 
564 	/*
565 	 * Start from a known state, this is important in reading the nvm and
566 	 * mac from that.
567 	 */
568 	e1000_reset_hw(&sc->hw);
569 
570 	/* Make sure we have a good EEPROM before we read from it */
571 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
572 		/*
573 		 * Some PCI-E parts fail the first check due to
574 		 * the link being in sleep state, call it again,
575 		 * if it fails a second time its a real issue.
576 		 */
577 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
578 			device_printf(dev,
579 			    "The EEPROM Checksum Is Not Valid\n");
580 			error = EIO;
581 			goto failed;
582 		}
583 	}
584 
585 	/* Copy the permanent MAC address out of the EEPROM */
586 	if (e1000_read_mac_addr(&sc->hw) < 0) {
587 		device_printf(dev, "EEPROM read error while reading MAC"
588 		    " address\n");
589 		error = EIO;
590 		goto failed;
591 	}
592 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
593 		device_printf(dev, "Invalid MAC address\n");
594 		error = EIO;
595 		goto failed;
596 	}
597 
598 	/* Setup OS specific network interface */
599 	igb_setup_ifp(sc);
600 
601 	/* Add sysctl tree, must after igb_setup_ifp() */
602 	igb_add_sysctl(sc);
603 
604 	/* Now get a good starting state */
605 	igb_reset(sc);
606 
607 	/* Initialize statistics */
608 	igb_update_stats_counters(sc);
609 
610 	sc->hw.mac.get_link_status = 1;
611 	igb_update_link_status(sc);
612 
613 	/* Indicate SOL/IDER usage */
614 	if (e1000_check_reset_block(&sc->hw)) {
615 		device_printf(dev,
616 		    "PHY reset is blocked due to SOL/IDER session.\n");
617 	}
618 
619 	/* Determine if we have to control management hardware */
620 	if (e1000_enable_mng_pass_thru(&sc->hw))
621 		sc->flags |= IGB_FLAG_HAS_MGMT;
622 
623 	/*
624 	 * Setup Wake-on-Lan
625 	 */
626 	/* APME bit in EEPROM is mapped to WUC.APME */
627 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
628 	if (eeprom_data)
629 		sc->wol = E1000_WUFC_MAG;
630 	/* XXX disable WOL */
631 	sc->wol = 0;
632 
633 #ifdef notyet
634 	/* Register for VLAN events */
635 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
636 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
637 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
638 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
639 #endif
640 
641 #ifdef notyet
642 	igb_add_hw_stats(adapter);
643 #endif
644 
645 	error = igb_setup_intr(sc);
646 	if (error) {
647 		ether_ifdetach(&sc->arpcom.ac_if);
648 		goto failed;
649 	}
650 
651 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
652 		struct ifaltq_subque *ifsq =
653 		    ifq_get_subq(&sc->arpcom.ac_if.if_snd, i);
654 		struct igb_tx_ring *txr = &sc->tx_rings[i];
655 
656 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
657 		ifsq_set_priv(ifsq, txr);
658 		txr->ifsq = ifsq;
659 	}
660 
661 	return 0;
662 
663 failed:
664 	igb_detach(dev);
665 	return error;
666 }
667 
668 static int
669 igb_detach(device_t dev)
670 {
671 	struct igb_softc *sc = device_get_softc(dev);
672 
673 	if (device_is_attached(dev)) {
674 		struct ifnet *ifp = &sc->arpcom.ac_if;
675 
676 		ifnet_serialize_all(ifp);
677 
678 		igb_stop(sc);
679 
680 		e1000_phy_hw_reset(&sc->hw);
681 
682 		/* Give control back to firmware */
683 		igb_rel_mgmt(sc);
684 		igb_rel_hw_control(sc);
685 
686 		if (sc->wol) {
687 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
688 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
689 			igb_enable_wol(dev);
690 		}
691 
692 		igb_teardown_intr(sc);
693 
694 		ifnet_deserialize_all(ifp);
695 
696 		ether_ifdetach(ifp);
697 	} else if (sc->mem_res != NULL) {
698 		igb_rel_hw_control(sc);
699 	}
700 	bus_generic_detach(dev);
701 
702 	if (sc->sysctl_tree != NULL)
703 		sysctl_ctx_free(&sc->sysctl_ctx);
704 
705 	igb_free_intr(sc);
706 
707 	if (sc->msix_mem_res != NULL) {
708 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
709 		    sc->msix_mem_res);
710 	}
711 	if (sc->mem_res != NULL) {
712 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
713 		    sc->mem_res);
714 	}
715 
716 	igb_free_rings(sc);
717 
718 	if (sc->mta != NULL)
719 		kfree(sc->mta, M_DEVBUF);
720 	if (sc->stats != NULL)
721 		kfree(sc->stats, M_DEVBUF);
722 
723 	return 0;
724 }
725 
726 static int
727 igb_shutdown(device_t dev)
728 {
729 	return igb_suspend(dev);
730 }
731 
732 static int
733 igb_suspend(device_t dev)
734 {
735 	struct igb_softc *sc = device_get_softc(dev);
736 	struct ifnet *ifp = &sc->arpcom.ac_if;
737 
738 	ifnet_serialize_all(ifp);
739 
740 	igb_stop(sc);
741 
742 	igb_rel_mgmt(sc);
743 	igb_rel_hw_control(sc);
744 
745 	if (sc->wol) {
746 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
747 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
748 		igb_enable_wol(dev);
749 	}
750 
751 	ifnet_deserialize_all(ifp);
752 
753 	return bus_generic_suspend(dev);
754 }
755 
756 static int
757 igb_resume(device_t dev)
758 {
759 	struct igb_softc *sc = device_get_softc(dev);
760 	struct ifnet *ifp = &sc->arpcom.ac_if;
761 	int i;
762 
763 	ifnet_serialize_all(ifp);
764 
765 	igb_init(sc);
766 	igb_get_mgmt(sc);
767 
768 	for (i = 0; i < sc->tx_ring_cnt; ++i)
769 		ifsq_devstart(sc->tx_rings[i].ifsq);
770 
771 	ifnet_deserialize_all(ifp);
772 
773 	return bus_generic_resume(dev);
774 }
775 
776 static int
777 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
778 {
779 	struct igb_softc *sc = ifp->if_softc;
780 	struct ifreq *ifr = (struct ifreq *)data;
781 	int max_frame_size, mask, reinit;
782 	int error = 0;
783 
784 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
785 
786 	switch (command) {
787 	case SIOCSIFMTU:
788 		max_frame_size = 9234;
789 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
790 		    ETHER_CRC_LEN) {
791 			error = EINVAL;
792 			break;
793 		}
794 
795 		ifp->if_mtu = ifr->ifr_mtu;
796 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
797 		    ETHER_CRC_LEN;
798 
799 		if (ifp->if_flags & IFF_RUNNING)
800 			igb_init(sc);
801 		break;
802 
803 	case SIOCSIFFLAGS:
804 		if (ifp->if_flags & IFF_UP) {
805 			if (ifp->if_flags & IFF_RUNNING) {
806 				if ((ifp->if_flags ^ sc->if_flags) &
807 				    (IFF_PROMISC | IFF_ALLMULTI)) {
808 					igb_disable_promisc(sc);
809 					igb_set_promisc(sc);
810 				}
811 			} else {
812 				igb_init(sc);
813 			}
814 		} else if (ifp->if_flags & IFF_RUNNING) {
815 			igb_stop(sc);
816 		}
817 		sc->if_flags = ifp->if_flags;
818 		break;
819 
820 	case SIOCADDMULTI:
821 	case SIOCDELMULTI:
822 		if (ifp->if_flags & IFF_RUNNING) {
823 			igb_disable_intr(sc);
824 			igb_set_multi(sc);
825 #ifdef IFPOLL_ENABLE
826 			if (!(ifp->if_flags & IFF_NPOLLING))
827 #endif
828 				igb_enable_intr(sc);
829 		}
830 		break;
831 
832 	case SIOCSIFMEDIA:
833 		/*
834 		 * As the speed/duplex settings are being
835 		 * changed, we need toreset the PHY.
836 		 */
837 		sc->hw.phy.reset_disable = FALSE;
838 
839 		/* Check SOL/IDER usage */
840 		if (e1000_check_reset_block(&sc->hw)) {
841 			if_printf(ifp, "Media change is "
842 			    "blocked due to SOL/IDER session.\n");
843 			break;
844 		}
845 		/* FALL THROUGH */
846 
847 	case SIOCGIFMEDIA:
848 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
849 		break;
850 
851 	case SIOCSIFCAP:
852 		reinit = 0;
853 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
854 		if (mask & IFCAP_RXCSUM) {
855 			ifp->if_capenable ^= IFCAP_RXCSUM;
856 			reinit = 1;
857 		}
858 		if (mask & IFCAP_VLAN_HWTAGGING) {
859 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
860 			reinit = 1;
861 		}
862 		if (mask & IFCAP_TXCSUM) {
863 			ifp->if_capenable ^= IFCAP_TXCSUM;
864 			if (ifp->if_capenable & IFCAP_TXCSUM)
865 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
866 			else
867 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
868 		}
869 		if (mask & IFCAP_TSO) {
870 			ifp->if_capenable ^= IFCAP_TSO;
871 			if (ifp->if_capenable & IFCAP_TSO)
872 				ifp->if_hwassist |= CSUM_TSO;
873 			else
874 				ifp->if_hwassist &= ~CSUM_TSO;
875 		}
876 		if (mask & IFCAP_RSS)
877 			ifp->if_capenable ^= IFCAP_RSS;
878 		if (reinit && (ifp->if_flags & IFF_RUNNING))
879 			igb_init(sc);
880 		break;
881 
882 	default:
883 		error = ether_ioctl(ifp, command, data);
884 		break;
885 	}
886 	return error;
887 }
888 
889 static void
890 igb_init(void *xsc)
891 {
892 	struct igb_softc *sc = xsc;
893 	struct ifnet *ifp = &sc->arpcom.ac_if;
894 	boolean_t polling;
895 	int i;
896 
897 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
898 
899 	igb_stop(sc);
900 
901 	/* Get the latest mac address, User can use a LAA */
902 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
903 
904 	/* Put the address into the Receive Address Array */
905 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
906 
907 	igb_reset(sc);
908 	igb_update_link_status(sc);
909 
910 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
911 
912 	/* Configure for OS presence */
913 	igb_get_mgmt(sc);
914 
915 	polling = FALSE;
916 #ifdef IFPOLL_ENABLE
917 	if (ifp->if_flags & IFF_NPOLLING)
918 		polling = TRUE;
919 #endif
920 
921 	/* Configured used RX/TX rings */
922 	igb_set_ring_inuse(sc, polling);
923 
924 	/* Initialize interrupt */
925 	igb_init_intr(sc);
926 
927 	/* Prepare transmit descriptors and buffers */
928 	for (i = 0; i < sc->tx_ring_cnt; ++i)
929 		igb_init_tx_ring(&sc->tx_rings[i]);
930 	igb_init_tx_unit(sc);
931 
932 	/* Setup Multicast table */
933 	igb_set_multi(sc);
934 
935 #if 0
936 	/*
937 	 * Figure out the desired mbuf pool
938 	 * for doing jumbo/packetsplit
939 	 */
940 	if (adapter->max_frame_size <= 2048)
941 		adapter->rx_mbuf_sz = MCLBYTES;
942 	else if (adapter->max_frame_size <= 4096)
943 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
944 	else
945 		adapter->rx_mbuf_sz = MJUM9BYTES;
946 #endif
947 
948 	/* Prepare receive descriptors and buffers */
949 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
950 		int error;
951 
952 		error = igb_init_rx_ring(&sc->rx_rings[i]);
953 		if (error) {
954 			if_printf(ifp, "Could not setup receive structures\n");
955 			igb_stop(sc);
956 			return;
957 		}
958 	}
959 	igb_init_rx_unit(sc);
960 
961 	/* Enable VLAN support */
962 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
963 		igb_set_vlan(sc);
964 
965 	/* Don't lose promiscuous settings */
966 	igb_set_promisc(sc);
967 
968 	ifp->if_flags |= IFF_RUNNING;
969 	for (i = 0; i < sc->tx_ring_cnt; ++i)
970 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
971 
972 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
973 		sc->timer_cpuid = 0; /* XXX fixed */
974 	else
975 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
976 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
977 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
978 
979 	/* This clears any pending interrupts */
980 	E1000_READ_REG(&sc->hw, E1000_ICR);
981 
982 	/*
983 	 * Only enable interrupts if we are not polling, make sure
984 	 * they are off otherwise.
985 	 */
986 	if (polling) {
987 		igb_disable_intr(sc);
988 	} else {
989 		igb_enable_intr(sc);
990 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
991 	}
992 
993 	/* Set Energy Efficient Ethernet */
994 	e1000_set_eee_i350(&sc->hw);
995 
996 	/* Don't reset the phy next time init gets called */
997 	sc->hw.phy.reset_disable = TRUE;
998 }
999 
1000 static void
1001 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1002 {
1003 	struct igb_softc *sc = ifp->if_softc;
1004 	u_char fiber_type = IFM_1000_SX;
1005 
1006 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1007 
1008 	igb_update_link_status(sc);
1009 
1010 	ifmr->ifm_status = IFM_AVALID;
1011 	ifmr->ifm_active = IFM_ETHER;
1012 
1013 	if (!sc->link_active)
1014 		return;
1015 
1016 	ifmr->ifm_status |= IFM_ACTIVE;
1017 
1018 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1019 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1020 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1021 	} else {
1022 		switch (sc->link_speed) {
1023 		case 10:
1024 			ifmr->ifm_active |= IFM_10_T;
1025 			break;
1026 
1027 		case 100:
1028 			ifmr->ifm_active |= IFM_100_TX;
1029 			break;
1030 
1031 		case 1000:
1032 			ifmr->ifm_active |= IFM_1000_T;
1033 			break;
1034 		}
1035 		if (sc->link_duplex == FULL_DUPLEX)
1036 			ifmr->ifm_active |= IFM_FDX;
1037 		else
1038 			ifmr->ifm_active |= IFM_HDX;
1039 	}
1040 }
1041 
1042 static int
1043 igb_media_change(struct ifnet *ifp)
1044 {
1045 	struct igb_softc *sc = ifp->if_softc;
1046 	struct ifmedia *ifm = &sc->media;
1047 
1048 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1049 
1050 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1051 		return EINVAL;
1052 
1053 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1054 	case IFM_AUTO:
1055 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1056 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1057 		break;
1058 
1059 	case IFM_1000_LX:
1060 	case IFM_1000_SX:
1061 	case IFM_1000_T:
1062 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1063 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1064 		break;
1065 
1066 	case IFM_100_TX:
1067 		sc->hw.mac.autoneg = FALSE;
1068 		sc->hw.phy.autoneg_advertised = 0;
1069 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1070 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1071 		else
1072 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1073 		break;
1074 
1075 	case IFM_10_T:
1076 		sc->hw.mac.autoneg = FALSE;
1077 		sc->hw.phy.autoneg_advertised = 0;
1078 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1079 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1080 		else
1081 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1082 		break;
1083 
1084 	default:
1085 		if_printf(ifp, "Unsupported media type\n");
1086 		break;
1087 	}
1088 
1089 	igb_init(sc);
1090 
1091 	return 0;
1092 }
1093 
1094 static void
1095 igb_set_promisc(struct igb_softc *sc)
1096 {
1097 	struct ifnet *ifp = &sc->arpcom.ac_if;
1098 	struct e1000_hw *hw = &sc->hw;
1099 	uint32_t reg;
1100 
1101 	if (sc->vf_ifp) {
1102 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1103 		return;
1104 	}
1105 
1106 	reg = E1000_READ_REG(hw, E1000_RCTL);
1107 	if (ifp->if_flags & IFF_PROMISC) {
1108 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1109 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1110 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1111 		reg |= E1000_RCTL_MPE;
1112 		reg &= ~E1000_RCTL_UPE;
1113 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1114 	}
1115 }
1116 
1117 static void
1118 igb_disable_promisc(struct igb_softc *sc)
1119 {
1120 	struct e1000_hw *hw = &sc->hw;
1121 	uint32_t reg;
1122 
1123 	if (sc->vf_ifp) {
1124 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1125 		return;
1126 	}
1127 	reg = E1000_READ_REG(hw, E1000_RCTL);
1128 	reg &= ~E1000_RCTL_UPE;
1129 	reg &= ~E1000_RCTL_MPE;
1130 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1131 }
1132 
1133 static void
1134 igb_set_multi(struct igb_softc *sc)
1135 {
1136 	struct ifnet *ifp = &sc->arpcom.ac_if;
1137 	struct ifmultiaddr *ifma;
1138 	uint32_t reg_rctl = 0;
1139 	uint8_t *mta;
1140 	int mcnt = 0;
1141 
1142 	mta = sc->mta;
1143 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1144 
1145 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1146 		if (ifma->ifma_addr->sa_family != AF_LINK)
1147 			continue;
1148 
1149 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1150 			break;
1151 
1152 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1153 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1154 		mcnt++;
1155 	}
1156 
1157 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1158 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1159 		reg_rctl |= E1000_RCTL_MPE;
1160 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1161 	} else {
1162 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1163 	}
1164 }
1165 
1166 static void
1167 igb_timer(void *xsc)
1168 {
1169 	struct igb_softc *sc = xsc;
1170 
1171 	lwkt_serialize_enter(&sc->main_serialize);
1172 
1173 	igb_update_link_status(sc);
1174 	igb_update_stats_counters(sc);
1175 
1176 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1177 
1178 	lwkt_serialize_exit(&sc->main_serialize);
1179 }
1180 
1181 static void
1182 igb_update_link_status(struct igb_softc *sc)
1183 {
1184 	struct ifnet *ifp = &sc->arpcom.ac_if;
1185 	struct e1000_hw *hw = &sc->hw;
1186 	uint32_t link_check, thstat, ctrl;
1187 
1188 	link_check = thstat = ctrl = 0;
1189 
1190 	/* Get the cached link value or read for real */
1191 	switch (hw->phy.media_type) {
1192 	case e1000_media_type_copper:
1193 		if (hw->mac.get_link_status) {
1194 			/* Do the work to read phy */
1195 			e1000_check_for_link(hw);
1196 			link_check = !hw->mac.get_link_status;
1197 		} else {
1198 			link_check = TRUE;
1199 		}
1200 		break;
1201 
1202 	case e1000_media_type_fiber:
1203 		e1000_check_for_link(hw);
1204 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1205 		break;
1206 
1207 	case e1000_media_type_internal_serdes:
1208 		e1000_check_for_link(hw);
1209 		link_check = hw->mac.serdes_has_link;
1210 		break;
1211 
1212 	/* VF device is type_unknown */
1213 	case e1000_media_type_unknown:
1214 		e1000_check_for_link(hw);
1215 		link_check = !hw->mac.get_link_status;
1216 		/* Fall thru */
1217 	default:
1218 		break;
1219 	}
1220 
1221 	/* Check for thermal downshift or shutdown */
1222 	if (hw->mac.type == e1000_i350) {
1223 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1224 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1225 	}
1226 
1227 	/* Now we check if a transition has happened */
1228 	if (link_check && sc->link_active == 0) {
1229 		e1000_get_speed_and_duplex(hw,
1230 		    &sc->link_speed, &sc->link_duplex);
1231 		if (bootverbose) {
1232 			if_printf(ifp, "Link is up %d Mbps %s\n",
1233 			    sc->link_speed,
1234 			    sc->link_duplex == FULL_DUPLEX ?
1235 			    "Full Duplex" : "Half Duplex");
1236 		}
1237 		sc->link_active = 1;
1238 
1239 		ifp->if_baudrate = sc->link_speed * 1000000;
1240 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1241 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1242 			if_printf(ifp, "Link: thermal downshift\n");
1243 		/* This can sleep */
1244 		ifp->if_link_state = LINK_STATE_UP;
1245 		if_link_state_change(ifp);
1246 	} else if (!link_check && sc->link_active == 1) {
1247 		ifp->if_baudrate = sc->link_speed = 0;
1248 		sc->link_duplex = 0;
1249 		if (bootverbose)
1250 			if_printf(ifp, "Link is Down\n");
1251 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1252 		    (thstat & E1000_THSTAT_PWR_DOWN))
1253 			if_printf(ifp, "Link: thermal shutdown\n");
1254 		sc->link_active = 0;
1255 		/* This can sleep */
1256 		ifp->if_link_state = LINK_STATE_DOWN;
1257 		if_link_state_change(ifp);
1258 	}
1259 }
1260 
1261 static void
1262 igb_stop(struct igb_softc *sc)
1263 {
1264 	struct ifnet *ifp = &sc->arpcom.ac_if;
1265 	int i;
1266 
1267 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1268 
1269 	igb_disable_intr(sc);
1270 
1271 	callout_stop(&sc->timer);
1272 
1273 	ifp->if_flags &= ~IFF_RUNNING;
1274 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1275 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1276 	ifp->if_timer = 0;
1277 
1278 	e1000_reset_hw(&sc->hw);
1279 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1280 
1281 	e1000_led_off(&sc->hw);
1282 	e1000_cleanup_led(&sc->hw);
1283 
1284 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1285 		igb_free_tx_ring(&sc->tx_rings[i]);
1286 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1287 		igb_free_rx_ring(&sc->rx_rings[i]);
1288 }
1289 
1290 static void
1291 igb_reset(struct igb_softc *sc)
1292 {
1293 	struct ifnet *ifp = &sc->arpcom.ac_if;
1294 	struct e1000_hw *hw = &sc->hw;
1295 	struct e1000_fc_info *fc = &hw->fc;
1296 	uint32_t pba = 0;
1297 	uint16_t hwm;
1298 
1299 	/* Let the firmware know the OS is in control */
1300 	igb_get_hw_control(sc);
1301 
1302 	/*
1303 	 * Packet Buffer Allocation (PBA)
1304 	 * Writing PBA sets the receive portion of the buffer
1305 	 * the remainder is used for the transmit buffer.
1306 	 */
1307 	switch (hw->mac.type) {
1308 	case e1000_82575:
1309 		pba = E1000_PBA_32K;
1310 		break;
1311 
1312 	case e1000_82576:
1313 	case e1000_vfadapt:
1314 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1315 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1316 		break;
1317 
1318 	case e1000_82580:
1319 	case e1000_i350:
1320 	case e1000_vfadapt_i350:
1321 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1322 		pba = e1000_rxpbs_adjust_82580(pba);
1323 		break;
1324 		/* XXX pba = E1000_PBA_35K; */
1325 
1326 	default:
1327 		break;
1328 	}
1329 
1330 	/* Special needs in case of Jumbo frames */
1331 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1332 		uint32_t tx_space, min_tx, min_rx;
1333 
1334 		pba = E1000_READ_REG(hw, E1000_PBA);
1335 		tx_space = pba >> 16;
1336 		pba &= 0xffff;
1337 
1338 		min_tx = (sc->max_frame_size +
1339 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1340 		min_tx = roundup2(min_tx, 1024);
1341 		min_tx >>= 10;
1342 		min_rx = sc->max_frame_size;
1343 		min_rx = roundup2(min_rx, 1024);
1344 		min_rx >>= 10;
1345 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1346 			pba = pba - (min_tx - tx_space);
1347 			/*
1348 			 * if short on rx space, rx wins
1349 			 * and must trump tx adjustment
1350 			 */
1351 			if (pba < min_rx)
1352 				pba = min_rx;
1353 		}
1354 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1355 	}
1356 
1357 	/*
1358 	 * These parameters control the automatic generation (Tx) and
1359 	 * response (Rx) to Ethernet PAUSE frames.
1360 	 * - High water mark should allow for at least two frames to be
1361 	 *   received after sending an XOFF.
1362 	 * - Low water mark works best when it is very near the high water mark.
1363 	 *   This allows the receiver to restart by sending XON when it has
1364 	 *   drained a bit.
1365 	 */
1366 	hwm = min(((pba << 10) * 9 / 10),
1367 	    ((pba << 10) - 2 * sc->max_frame_size));
1368 
1369 	if (hw->mac.type < e1000_82576) {
1370 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1371 		fc->low_water = fc->high_water - 8;
1372 	} else {
1373 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1374 		fc->low_water = fc->high_water - 16;
1375 	}
1376 	fc->pause_time = IGB_FC_PAUSE_TIME;
1377 	fc->send_xon = TRUE;
1378 
1379 	/* Issue a global reset */
1380 	e1000_reset_hw(hw);
1381 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1382 
1383 	if (e1000_init_hw(hw) < 0)
1384 		if_printf(ifp, "Hardware Initialization Failed\n");
1385 
1386 	/* Setup DMA Coalescing */
1387 	if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1388 		uint32_t reg;
1389 
1390 		hwm = (pba - 4) << 10;
1391 		reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1392 		    & E1000_DMACR_DMACTHR_MASK;
1393 
1394 		/* transition to L0x or L1 if available..*/
1395 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1396 
1397 		/* timer = +-1000 usec in 32usec intervals */
1398 		reg |= (1000 >> 5);
1399 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1400 
1401 		/* No lower threshold */
1402 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1403 
1404 		/* set hwm to PBA -  2 * max frame size */
1405 		E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1406 
1407 		/* Set the interval before transition */
1408 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1409 		reg |= 0x800000FF; /* 255 usec */
1410 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1411 
1412 		/* free space in tx packet buffer to wake from DMA coal */
1413 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1414 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1415 
1416 		/* make low power state decision controlled by DMA coal */
1417 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1418 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1419 		    reg | E1000_PCIEMISC_LX_DECISION);
1420 		if_printf(ifp, "DMA Coalescing enabled\n");
1421 	}
1422 
1423 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1424 	e1000_get_phy_info(hw);
1425 	e1000_check_for_link(hw);
1426 }
1427 
1428 static void
1429 igb_setup_ifp(struct igb_softc *sc)
1430 {
1431 	struct ifnet *ifp = &sc->arpcom.ac_if;
1432 
1433 	ifp->if_softc = sc;
1434 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1435 	ifp->if_init = igb_init;
1436 	ifp->if_ioctl = igb_ioctl;
1437 	ifp->if_start = igb_start;
1438 	ifp->if_serialize = igb_serialize;
1439 	ifp->if_deserialize = igb_deserialize;
1440 	ifp->if_tryserialize = igb_tryserialize;
1441 #ifdef INVARIANTS
1442 	ifp->if_serialize_assert = igb_serialize_assert;
1443 #endif
1444 #ifdef IFPOLL_ENABLE
1445 	ifp->if_npoll = igb_npoll;
1446 #endif
1447 	ifp->if_watchdog = igb_watchdog;
1448 
1449 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1450 	ifq_set_ready(&ifp->if_snd);
1451 
1452 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1453 
1454 	ifp->if_capabilities =
1455 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1456 	if (IGB_ENABLE_HWRSS(sc))
1457 		ifp->if_capabilities |= IFCAP_RSS;
1458 	ifp->if_capenable = ifp->if_capabilities;
1459 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1460 
1461 	/*
1462 	 * Tell the upper layer(s) we support long frames
1463 	 */
1464 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1465 
1466 	/*
1467 	 * Specify the media types supported by this adapter and register
1468 	 * callbacks to update media and link information
1469 	 */
1470 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1471 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1472 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1473 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1474 		    0, NULL);
1475 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1476 	} else {
1477 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1478 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1479 		    0, NULL);
1480 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1481 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1482 		    0, NULL);
1483 		if (sc->hw.phy.type != e1000_phy_ife) {
1484 			ifmedia_add(&sc->media,
1485 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1486 			ifmedia_add(&sc->media,
1487 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1488 		}
1489 	}
1490 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1491 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1492 }
1493 
1494 static void
1495 igb_add_sysctl(struct igb_softc *sc)
1496 {
1497 	char node[32];
1498 	int i;
1499 
1500 	sysctl_ctx_init(&sc->sysctl_ctx);
1501 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1502 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1503 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1504 	if (sc->sysctl_tree == NULL) {
1505 		device_printf(sc->dev, "can't add sysctl node\n");
1506 		return;
1507 	}
1508 
1509 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1510 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1511 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1512 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1513 	    "# of RX rings used");
1514 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1515 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1516 	    "# of RX descs");
1517 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1518 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1519 	    "# of TX descs");
1520 
1521 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1522 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1523 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1524 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1525 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1526 	} else {
1527 		for (i = 0; i < sc->msix_cnt; ++i) {
1528 			struct igb_msix_data *msix = &sc->msix_data[i];
1529 
1530 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1531 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1532 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1533 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1534 			    msix, 0, igb_sysctl_msix_rate, "I",
1535 			    msix->msix_rate_desc);
1536 		}
1537 	}
1538 
1539 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1540 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1541 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1542 	    "# of segments per TX interrupt");
1543 
1544 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1545 	    OID_AUTO, "tx_wreg_nsegs", CTLFLAG_RW,
1546 	    &sc->tx_rings[0].wreg_nsegs, 0,
1547 	    "# of segments before write to hardare register");
1548 
1549 #ifdef IFPOLL_ENABLE
1550 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1551 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1552 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1553 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1554 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1555 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1556 #endif
1557 
1558 #ifdef IGB_RSS_DEBUG
1559 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1560 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1561 	    "RSS debug level");
1562 #endif
1563 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1564 #ifdef IGB_RSS_DEBUG
1565 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1566 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1567 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1568 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1569 #endif
1570 		ksnprintf(node, sizeof(node), "rx%d_wreg", i);
1571 		SYSCTL_ADD_INT(&sc->sysctl_ctx,
1572 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1573 		    CTLFLAG_RW, &sc->rx_rings[i].rx_wreg, 0,
1574 		    "# of segments before write to hardare register");
1575 	}
1576 }
1577 
1578 static int
1579 igb_alloc_rings(struct igb_softc *sc)
1580 {
1581 	int error, i;
1582 
1583 	/*
1584 	 * Create top level busdma tag
1585 	 */
1586 	error = bus_dma_tag_create(NULL, 1, 0,
1587 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1588 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1589 	    &sc->parent_tag);
1590 	if (error) {
1591 		device_printf(sc->dev, "could not create top level DMA tag\n");
1592 		return error;
1593 	}
1594 
1595 	/*
1596 	 * Allocate TX descriptor rings and buffers
1597 	 */
1598 	sc->tx_rings = kmalloc_cachealign(
1599 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1600 	    M_DEVBUF, M_WAITOK | M_ZERO);
1601 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1602 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1603 
1604 		/* Set up some basics */
1605 		txr->sc = sc;
1606 		txr->me = i;
1607 		lwkt_serialize_init(&txr->tx_serialize);
1608 
1609 		error = igb_create_tx_ring(txr);
1610 		if (error)
1611 			return error;
1612 	}
1613 
1614 	/*
1615 	 * Allocate RX descriptor rings and buffers
1616 	 */
1617 	sc->rx_rings = kmalloc_cachealign(
1618 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1619 	    M_DEVBUF, M_WAITOK | M_ZERO);
1620 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1621 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1622 
1623 		/* Set up some basics */
1624 		rxr->sc = sc;
1625 		rxr->me = i;
1626 		lwkt_serialize_init(&rxr->rx_serialize);
1627 
1628 		error = igb_create_rx_ring(rxr);
1629 		if (error)
1630 			return error;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static void
1637 igb_free_rings(struct igb_softc *sc)
1638 {
1639 	int i;
1640 
1641 	if (sc->tx_rings != NULL) {
1642 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1643 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1644 
1645 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1646 		}
1647 		kfree(sc->tx_rings, M_DEVBUF);
1648 	}
1649 
1650 	if (sc->rx_rings != NULL) {
1651 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1652 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1653 
1654 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1655 		}
1656 		kfree(sc->rx_rings, M_DEVBUF);
1657 	}
1658 }
1659 
1660 static int
1661 igb_create_tx_ring(struct igb_tx_ring *txr)
1662 {
1663 	int tsize, error, i, ntxd;
1664 
1665 	/*
1666 	 * Validate number of transmit descriptors. It must not exceed
1667 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1668 	 */
1669 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1670 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1671 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1672 		device_printf(txr->sc->dev,
1673 		    "Using %d TX descriptors instead of %d!\n",
1674 		    IGB_DEFAULT_TXD, ntxd);
1675 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1676 	} else {
1677 		txr->num_tx_desc = ntxd;
1678 	}
1679 
1680 	/*
1681 	 * Allocate TX descriptor ring
1682 	 */
1683 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1684 	    IGB_DBA_ALIGN);
1685 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1686 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1687 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1688 	if (txr->txdma.dma_vaddr == NULL) {
1689 		device_printf(txr->sc->dev,
1690 		    "Unable to allocate TX Descriptor memory\n");
1691 		return ENOMEM;
1692 	}
1693 	txr->tx_base = txr->txdma.dma_vaddr;
1694 	bzero(txr->tx_base, tsize);
1695 
1696 	tsize = __VM_CACHELINE_ALIGN(
1697 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1698 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1699 
1700 	/*
1701 	 * Allocate TX head write-back buffer
1702 	 */
1703 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1704 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1705 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1706 	if (txr->tx_hdr == NULL) {
1707 		device_printf(txr->sc->dev,
1708 		    "Unable to allocate TX head write-back buffer\n");
1709 		return ENOMEM;
1710 	}
1711 
1712 	/*
1713 	 * Create DMA tag for TX buffers
1714 	 */
1715 	error = bus_dma_tag_create(txr->sc->parent_tag,
1716 	    1, 0,		/* alignment, bounds */
1717 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1718 	    BUS_SPACE_MAXADDR,	/* highaddr */
1719 	    NULL, NULL,		/* filter, filterarg */
1720 	    IGB_TSO_SIZE,	/* maxsize */
1721 	    IGB_MAX_SCATTER,	/* nsegments */
1722 	    PAGE_SIZE,		/* maxsegsize */
1723 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1724 	    BUS_DMA_ONEBPAGE,	/* flags */
1725 	    &txr->tx_tag);
1726 	if (error) {
1727 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1728 		kfree(txr->tx_buf, M_DEVBUF);
1729 		txr->tx_buf = NULL;
1730 		return error;
1731 	}
1732 
1733 	/*
1734 	 * Create DMA maps for TX buffers
1735 	 */
1736 	for (i = 0; i < txr->num_tx_desc; ++i) {
1737 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1738 
1739 		error = bus_dmamap_create(txr->tx_tag,
1740 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1741 		if (error) {
1742 			device_printf(txr->sc->dev,
1743 			    "Unable to create TX DMA map\n");
1744 			igb_destroy_tx_ring(txr, i);
1745 			return error;
1746 		}
1747 	}
1748 
1749 	/*
1750 	 * Initialize various watermark
1751 	 */
1752 	txr->spare_desc = IGB_TX_SPARE;
1753 	txr->intr_nsegs = txr->num_tx_desc / 16;
1754 	txr->wreg_nsegs = 8;
1755 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1756 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1757 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1758 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1759 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1760 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1761 
1762 	return 0;
1763 }
1764 
1765 static void
1766 igb_free_tx_ring(struct igb_tx_ring *txr)
1767 {
1768 	int i;
1769 
1770 	for (i = 0; i < txr->num_tx_desc; ++i) {
1771 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1772 
1773 		if (txbuf->m_head != NULL) {
1774 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1775 			m_freem(txbuf->m_head);
1776 			txbuf->m_head = NULL;
1777 		}
1778 	}
1779 }
1780 
1781 static void
1782 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1783 {
1784 	int i;
1785 
1786 	if (txr->txdma.dma_vaddr != NULL) {
1787 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1788 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1789 		    txr->txdma.dma_map);
1790 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1791 		txr->txdma.dma_vaddr = NULL;
1792 	}
1793 
1794 	if (txr->tx_hdr != NULL) {
1795 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1796 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1797 		    txr->tx_hdr_dmap);
1798 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1799 		txr->tx_hdr = NULL;
1800 	}
1801 
1802 	if (txr->tx_buf == NULL)
1803 		return;
1804 
1805 	for (i = 0; i < ndesc; ++i) {
1806 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1807 
1808 		KKASSERT(txbuf->m_head == NULL);
1809 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1810 	}
1811 	bus_dma_tag_destroy(txr->tx_tag);
1812 
1813 	kfree(txr->tx_buf, M_DEVBUF);
1814 	txr->tx_buf = NULL;
1815 }
1816 
1817 static void
1818 igb_init_tx_ring(struct igb_tx_ring *txr)
1819 {
1820 	/* Clear the old descriptor contents */
1821 	bzero(txr->tx_base,
1822 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1823 
1824 	/* Clear TX head write-back buffer */
1825 	*(txr->tx_hdr) = 0;
1826 
1827 	/* Reset indices */
1828 	txr->next_avail_desc = 0;
1829 	txr->next_to_clean = 0;
1830 	txr->tx_nsegs = 0;
1831 
1832 	/* Set number of descriptors available */
1833 	txr->tx_avail = txr->num_tx_desc;
1834 }
1835 
1836 static void
1837 igb_init_tx_unit(struct igb_softc *sc)
1838 {
1839 	struct e1000_hw *hw = &sc->hw;
1840 	uint32_t tctl;
1841 	int i;
1842 
1843 	/* Setup the Tx Descriptor Rings */
1844 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1845 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1846 		uint64_t bus_addr = txr->txdma.dma_paddr;
1847 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1848 		uint32_t txdctl = 0;
1849 		uint32_t dca_txctrl;
1850 
1851 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1852 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1853 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1854 		    (uint32_t)(bus_addr >> 32));
1855 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1856 		    (uint32_t)bus_addr);
1857 
1858 		/* Setup the HW Tx Head and Tail descriptor pointers */
1859 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1860 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1861 
1862 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1863 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1864 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1865 
1866 		/*
1867 		 * Don't set WB_on_EITR:
1868 		 * - 82575 does not have it
1869 		 * - It almost has no effect on 82576, see:
1870 		 *   82576 specification update errata #26
1871 		 * - It causes unnecessary bus traffic
1872 		 */
1873 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1874 		    (uint32_t)(hdr_paddr >> 32));
1875 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1876 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1877 
1878 		/*
1879 		 * WTHRESH is ignored by the hardware, since header
1880 		 * write back mode is used.
1881 		 */
1882 		txdctl |= IGB_TX_PTHRESH;
1883 		txdctl |= IGB_TX_HTHRESH << 8;
1884 		txdctl |= IGB_TX_WTHRESH << 16;
1885 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1886 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1887 	}
1888 
1889 	if (sc->vf_ifp)
1890 		return;
1891 
1892 	e1000_config_collision_dist(hw);
1893 
1894 	/* Program the Transmit Control Register */
1895 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1896 	tctl &= ~E1000_TCTL_CT;
1897 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1898 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1899 
1900 	/* This write will effectively turn on the transmit unit. */
1901 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1902 }
1903 
1904 static boolean_t
1905 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1906 {
1907 	struct e1000_adv_tx_context_desc *TXD;
1908 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1909 	int ehdrlen, ctxd, ip_hlen = 0;
1910 	boolean_t offload = TRUE;
1911 
1912 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1913 		offload = FALSE;
1914 
1915 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1916 
1917 	ctxd = txr->next_avail_desc;
1918 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1919 
1920 	/*
1921 	 * In advanced descriptors the vlan tag must
1922 	 * be placed into the context descriptor, thus
1923 	 * we need to be here just for that setup.
1924 	 */
1925 	if (mp->m_flags & M_VLANTAG) {
1926 		uint16_t vlantag;
1927 
1928 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1929 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1930 	} else if (!offload) {
1931 		return FALSE;
1932 	}
1933 
1934 	ehdrlen = mp->m_pkthdr.csum_lhlen;
1935 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1936 
1937 	/* Set the ether header length */
1938 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1939 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1940 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1941 		ip_hlen = mp->m_pkthdr.csum_iphlen;
1942 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1943 	}
1944 	vlan_macip_lens |= ip_hlen;
1945 
1946 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1947 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1948 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1949 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1950 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1951 
1952 	/* 82575 needs the queue index added */
1953 	if (txr->sc->hw.mac.type == e1000_82575)
1954 		mss_l4len_idx = txr->me << 4;
1955 
1956 	/* Now copy bits into descriptor */
1957 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1958 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1959 	TXD->seqnum_seed = htole32(0);
1960 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1961 
1962 	/* We've consumed the first desc, adjust counters */
1963 	if (++ctxd == txr->num_tx_desc)
1964 		ctxd = 0;
1965 	txr->next_avail_desc = ctxd;
1966 	--txr->tx_avail;
1967 
1968 	return offload;
1969 }
1970 
1971 static void
1972 igb_txeof(struct igb_tx_ring *txr)
1973 {
1974 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1975 	int first, hdr, avail;
1976 
1977 	if (txr->tx_avail == txr->num_tx_desc)
1978 		return;
1979 
1980 	first = txr->next_to_clean;
1981 	hdr = *(txr->tx_hdr);
1982 
1983 	if (first == hdr)
1984 		return;
1985 
1986 	avail = txr->tx_avail;
1987 	while (first != hdr) {
1988 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1989 
1990 		++avail;
1991 		if (txbuf->m_head) {
1992 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1993 			m_freem(txbuf->m_head);
1994 			txbuf->m_head = NULL;
1995 			++ifp->if_opackets;
1996 		}
1997 		if (++first == txr->num_tx_desc)
1998 			first = 0;
1999 	}
2000 	txr->next_to_clean = first;
2001 	txr->tx_avail = avail;
2002 
2003 	/*
2004 	 * If we have a minimum free, clear OACTIVE
2005 	 * to tell the stack that it is OK to send packets.
2006 	 */
2007 	if (IGB_IS_NOT_OACTIVE(txr)) {
2008 		ifsq_clr_oactive(txr->ifsq);
2009 
2010 		/*
2011 		 * We have enough TX descriptors, turn off
2012 		 * the watchdog.  We allow small amount of
2013 		 * packets (roughly intr_nsegs) pending on
2014 		 * the transmit ring.
2015 		 */
2016 		ifp->if_timer = 0;
2017 	}
2018 }
2019 
2020 static int
2021 igb_create_rx_ring(struct igb_rx_ring *rxr)
2022 {
2023 	int rsize, i, error, nrxd;
2024 
2025 	/*
2026 	 * Validate number of receive descriptors. It must not exceed
2027 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2028 	 */
2029 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2030 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2031 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2032 		device_printf(rxr->sc->dev,
2033 		    "Using %d RX descriptors instead of %d!\n",
2034 		    IGB_DEFAULT_RXD, nrxd);
2035 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2036 	} else {
2037 		rxr->num_rx_desc = nrxd;
2038 	}
2039 
2040 	/*
2041 	 * Allocate RX descriptor ring
2042 	 */
2043 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2044 	    IGB_DBA_ALIGN);
2045 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2046 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2047 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2048 	    &rxr->rxdma.dma_paddr);
2049 	if (rxr->rxdma.dma_vaddr == NULL) {
2050 		device_printf(rxr->sc->dev,
2051 		    "Unable to allocate RxDescriptor memory\n");
2052 		return ENOMEM;
2053 	}
2054 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2055 	bzero(rxr->rx_base, rsize);
2056 
2057 	rsize = __VM_CACHELINE_ALIGN(
2058 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2059 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2060 
2061 	/*
2062 	 * Create DMA tag for RX buffers
2063 	 */
2064 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2065 	    1, 0,		/* alignment, bounds */
2066 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2067 	    BUS_SPACE_MAXADDR,	/* highaddr */
2068 	    NULL, NULL,		/* filter, filterarg */
2069 	    MCLBYTES,		/* maxsize */
2070 	    1,			/* nsegments */
2071 	    MCLBYTES,		/* maxsegsize */
2072 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2073 	    &rxr->rx_tag);
2074 	if (error) {
2075 		device_printf(rxr->sc->dev,
2076 		    "Unable to create RX payload DMA tag\n");
2077 		kfree(rxr->rx_buf, M_DEVBUF);
2078 		rxr->rx_buf = NULL;
2079 		return error;
2080 	}
2081 
2082 	/*
2083 	 * Create spare DMA map for RX buffers
2084 	 */
2085 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2086 	    &rxr->rx_sparemap);
2087 	if (error) {
2088 		device_printf(rxr->sc->dev,
2089 		    "Unable to create spare RX DMA maps\n");
2090 		bus_dma_tag_destroy(rxr->rx_tag);
2091 		kfree(rxr->rx_buf, M_DEVBUF);
2092 		rxr->rx_buf = NULL;
2093 		return error;
2094 	}
2095 
2096 	/*
2097 	 * Create DMA maps for RX buffers
2098 	 */
2099 	for (i = 0; i < rxr->num_rx_desc; i++) {
2100 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2101 
2102 		error = bus_dmamap_create(rxr->rx_tag,
2103 		    BUS_DMA_WAITOK, &rxbuf->map);
2104 		if (error) {
2105 			device_printf(rxr->sc->dev,
2106 			    "Unable to create RX DMA maps\n");
2107 			igb_destroy_rx_ring(rxr, i);
2108 			return error;
2109 		}
2110 	}
2111 
2112 	/*
2113 	 * Initialize various watermark
2114 	 */
2115 	rxr->rx_wreg = 32;
2116 
2117 	return 0;
2118 }
2119 
2120 static void
2121 igb_free_rx_ring(struct igb_rx_ring *rxr)
2122 {
2123 	int i;
2124 
2125 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2126 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2127 
2128 		if (rxbuf->m_head != NULL) {
2129 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2130 			m_freem(rxbuf->m_head);
2131 			rxbuf->m_head = NULL;
2132 		}
2133 	}
2134 
2135 	if (rxr->fmp != NULL)
2136 		m_freem(rxr->fmp);
2137 	rxr->fmp = NULL;
2138 	rxr->lmp = NULL;
2139 }
2140 
2141 static void
2142 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2143 {
2144 	int i;
2145 
2146 	if (rxr->rxdma.dma_vaddr != NULL) {
2147 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2148 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2149 		    rxr->rxdma.dma_map);
2150 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2151 		rxr->rxdma.dma_vaddr = NULL;
2152 	}
2153 
2154 	if (rxr->rx_buf == NULL)
2155 		return;
2156 
2157 	for (i = 0; i < ndesc; ++i) {
2158 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2159 
2160 		KKASSERT(rxbuf->m_head == NULL);
2161 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2162 	}
2163 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2164 	bus_dma_tag_destroy(rxr->rx_tag);
2165 
2166 	kfree(rxr->rx_buf, M_DEVBUF);
2167 	rxr->rx_buf = NULL;
2168 }
2169 
2170 static void
2171 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2172 {
2173 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2174 	rxd->wb.upper.status_error = 0;
2175 }
2176 
2177 static int
2178 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2179 {
2180 	struct mbuf *m;
2181 	bus_dma_segment_t seg;
2182 	bus_dmamap_t map;
2183 	struct igb_rx_buf *rxbuf;
2184 	int error, nseg;
2185 
2186 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2187 	if (m == NULL) {
2188 		if (wait) {
2189 			if_printf(&rxr->sc->arpcom.ac_if,
2190 			    "Unable to allocate RX mbuf\n");
2191 		}
2192 		return ENOBUFS;
2193 	}
2194 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2195 
2196 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2197 		m_adj(m, ETHER_ALIGN);
2198 
2199 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2200 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2201 	if (error) {
2202 		m_freem(m);
2203 		if (wait) {
2204 			if_printf(&rxr->sc->arpcom.ac_if,
2205 			    "Unable to load RX mbuf\n");
2206 		}
2207 		return error;
2208 	}
2209 
2210 	rxbuf = &rxr->rx_buf[i];
2211 	if (rxbuf->m_head != NULL)
2212 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2213 
2214 	map = rxbuf->map;
2215 	rxbuf->map = rxr->rx_sparemap;
2216 	rxr->rx_sparemap = map;
2217 
2218 	rxbuf->m_head = m;
2219 	rxbuf->paddr = seg.ds_addr;
2220 
2221 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2222 	return 0;
2223 }
2224 
2225 static int
2226 igb_init_rx_ring(struct igb_rx_ring *rxr)
2227 {
2228 	int i;
2229 
2230 	/* Clear the ring contents */
2231 	bzero(rxr->rx_base,
2232 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2233 
2234 	/* Now replenish the ring mbufs */
2235 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2236 		int error;
2237 
2238 		error = igb_newbuf(rxr, i, TRUE);
2239 		if (error)
2240 			return error;
2241 	}
2242 
2243 	/* Setup our descriptor indices */
2244 	rxr->next_to_check = 0;
2245 
2246 	rxr->fmp = NULL;
2247 	rxr->lmp = NULL;
2248 	rxr->discard = FALSE;
2249 
2250 	return 0;
2251 }
2252 
2253 static void
2254 igb_init_rx_unit(struct igb_softc *sc)
2255 {
2256 	struct ifnet *ifp = &sc->arpcom.ac_if;
2257 	struct e1000_hw *hw = &sc->hw;
2258 	uint32_t rctl, rxcsum, srrctl = 0;
2259 	int i;
2260 
2261 	/*
2262 	 * Make sure receives are disabled while setting
2263 	 * up the descriptor ring
2264 	 */
2265 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2266 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2267 
2268 #if 0
2269 	/*
2270 	** Set up for header split
2271 	*/
2272 	if (igb_header_split) {
2273 		/* Use a standard mbuf for the header */
2274 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2275 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2276 	} else
2277 #endif
2278 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2279 
2280 	/*
2281 	** Set up for jumbo frames
2282 	*/
2283 	if (ifp->if_mtu > ETHERMTU) {
2284 		rctl |= E1000_RCTL_LPE;
2285 #if 0
2286 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2287 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2288 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2289 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2290 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2291 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2292 		}
2293 		/* Set maximum packet len */
2294 		psize = adapter->max_frame_size;
2295 		/* are we on a vlan? */
2296 		if (adapter->ifp->if_vlantrunk != NULL)
2297 			psize += VLAN_TAG_SIZE;
2298 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2299 #else
2300 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2301 		rctl |= E1000_RCTL_SZ_2048;
2302 #endif
2303 	} else {
2304 		rctl &= ~E1000_RCTL_LPE;
2305 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2306 		rctl |= E1000_RCTL_SZ_2048;
2307 	}
2308 
2309 	/* Setup the Base and Length of the Rx Descriptor Rings */
2310 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2311 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2312 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2313 		uint32_t rxdctl;
2314 
2315 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2316 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2317 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2318 		    (uint32_t)(bus_addr >> 32));
2319 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2320 		    (uint32_t)bus_addr);
2321 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2322 		/* Enable this Queue */
2323 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2324 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2325 		rxdctl &= 0xFFF00000;
2326 		rxdctl |= IGB_RX_PTHRESH;
2327 		rxdctl |= IGB_RX_HTHRESH << 8;
2328 		/*
2329 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2330 		 * 82576 specification update errata #26
2331 		 */
2332 		rxdctl |= IGB_RX_WTHRESH << 16;
2333 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2334 	}
2335 
2336 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2337 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2338 
2339 	/*
2340 	 * Receive Checksum Offload for TCP and UDP
2341 	 *
2342 	 * Checksum offloading is also enabled if multiple receive
2343 	 * queue is to be supported, since we need it to figure out
2344 	 * fragments.
2345 	 */
2346 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2347 		/*
2348 		 * NOTE:
2349 		 * PCSD must be enabled to enable multiple
2350 		 * receive queues.
2351 		 */
2352 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2353 		    E1000_RXCSUM_PCSD;
2354 	} else {
2355 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2356 		    E1000_RXCSUM_PCSD);
2357 	}
2358 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2359 
2360 	if (IGB_ENABLE_HWRSS(sc)) {
2361 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2362 		uint32_t reta_shift;
2363 		int j, r;
2364 
2365 		/*
2366 		 * NOTE:
2367 		 * When we reach here, RSS has already been disabled
2368 		 * in igb_stop(), so we could safely configure RSS key
2369 		 * and redirect table.
2370 		 */
2371 
2372 		/*
2373 		 * Configure RSS key
2374 		 */
2375 		toeplitz_get_key(key, sizeof(key));
2376 		for (i = 0; i < IGB_NRSSRK; ++i) {
2377 			uint32_t rssrk;
2378 
2379 			rssrk = IGB_RSSRK_VAL(key, i);
2380 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2381 
2382 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2383 		}
2384 
2385 		/*
2386 		 * Configure RSS redirect table in following fashion:
2387 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2388 		 */
2389 		reta_shift = IGB_RETA_SHIFT;
2390 		if (hw->mac.type == e1000_82575)
2391 			reta_shift = IGB_RETA_SHIFT_82575;
2392 
2393 		r = 0;
2394 		for (j = 0; j < IGB_NRETA; ++j) {
2395 			uint32_t reta = 0;
2396 
2397 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2398 				uint32_t q;
2399 
2400 				q = (r % sc->rx_ring_inuse) << reta_shift;
2401 				reta |= q << (8 * i);
2402 				++r;
2403 			}
2404 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2405 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2406 		}
2407 
2408 		/*
2409 		 * Enable multiple receive queues.
2410 		 * Enable IPv4 RSS standard hash functions.
2411 		 * Disable RSS interrupt on 82575
2412 		 */
2413 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2414 				E1000_MRQC_ENABLE_RSS_4Q |
2415 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2416 				E1000_MRQC_RSS_FIELD_IPV4);
2417 	}
2418 
2419 	/* Setup the Receive Control Register */
2420 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2421 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2422 	    E1000_RCTL_RDMTS_HALF |
2423 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2424 	/* Strip CRC bytes. */
2425 	rctl |= E1000_RCTL_SECRC;
2426 	/* Make sure VLAN Filters are off */
2427 	rctl &= ~E1000_RCTL_VFE;
2428 	/* Don't store bad packets */
2429 	rctl &= ~E1000_RCTL_SBP;
2430 
2431 	/* Enable Receives */
2432 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2433 
2434 	/*
2435 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2436 	 *   - needs to be after enable
2437 	 */
2438 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2439 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2440 
2441 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2442 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2443 	}
2444 }
2445 
2446 static void
2447 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2448 {
2449 	if (--i < 0)
2450 		i = rxr->num_rx_desc - 1;
2451 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2452 }
2453 
2454 static void
2455 igb_rxeof(struct igb_rx_ring *rxr, int count)
2456 {
2457 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2458 	union e1000_adv_rx_desc	*cur;
2459 	uint32_t staterr;
2460 	int i, ncoll = 0;
2461 
2462 	i = rxr->next_to_check;
2463 	cur = &rxr->rx_base[i];
2464 	staterr = le32toh(cur->wb.upper.status_error);
2465 
2466 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2467 		return;
2468 
2469 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2470 		struct pktinfo *pi = NULL, pi0;
2471 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2472 		struct mbuf *m = NULL;
2473 		boolean_t eop;
2474 
2475 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2476 		if (eop)
2477 			--count;
2478 
2479 		++ncoll;
2480 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2481 		    !rxr->discard) {
2482 			struct mbuf *mp = rxbuf->m_head;
2483 			uint32_t hash, hashtype;
2484 			uint16_t vlan;
2485 			int len;
2486 
2487 			len = le16toh(cur->wb.upper.length);
2488 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2489 			    (staterr & E1000_RXDEXT_STATERR_LB))
2490 				vlan = be16toh(cur->wb.upper.vlan);
2491 			else
2492 				vlan = le16toh(cur->wb.upper.vlan);
2493 
2494 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2495 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2496 			    E1000_RXDADV_RSSTYPE_MASK;
2497 
2498 			IGB_RSS_DPRINTF(rxr->sc, 10,
2499 			    "ring%d, hash 0x%08x, hashtype %u\n",
2500 			    rxr->me, hash, hashtype);
2501 
2502 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2503 			    BUS_DMASYNC_POSTREAD);
2504 
2505 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2506 				ifp->if_iqdrops++;
2507 				goto discard;
2508 			}
2509 
2510 			mp->m_len = len;
2511 			if (rxr->fmp == NULL) {
2512 				mp->m_pkthdr.len = len;
2513 				rxr->fmp = mp;
2514 				rxr->lmp = mp;
2515 			} else {
2516 				rxr->lmp->m_next = mp;
2517 				rxr->lmp = rxr->lmp->m_next;
2518 				rxr->fmp->m_pkthdr.len += len;
2519 			}
2520 
2521 			if (eop) {
2522 				m = rxr->fmp;
2523 				rxr->fmp = NULL;
2524 				rxr->lmp = NULL;
2525 
2526 				m->m_pkthdr.rcvif = ifp;
2527 				ifp->if_ipackets++;
2528 
2529 				if (ifp->if_capenable & IFCAP_RXCSUM)
2530 					igb_rxcsum(staterr, m);
2531 
2532 				if (staterr & E1000_RXD_STAT_VP) {
2533 					m->m_pkthdr.ether_vlantag = vlan;
2534 					m->m_flags |= M_VLANTAG;
2535 				}
2536 
2537 				if (ifp->if_capenable & IFCAP_RSS) {
2538 					pi = igb_rssinfo(m, &pi0,
2539 					    hash, hashtype, staterr);
2540 				}
2541 #ifdef IGB_RSS_DEBUG
2542 				rxr->rx_packets++;
2543 #endif
2544 			}
2545 		} else {
2546 			ifp->if_ierrors++;
2547 discard:
2548 			igb_setup_rxdesc(cur, rxbuf);
2549 			if (!eop)
2550 				rxr->discard = TRUE;
2551 			else
2552 				rxr->discard = FALSE;
2553 			if (rxr->fmp != NULL) {
2554 				m_freem(rxr->fmp);
2555 				rxr->fmp = NULL;
2556 				rxr->lmp = NULL;
2557 			}
2558 			m = NULL;
2559 		}
2560 
2561 		if (m != NULL)
2562 			ether_input_pkt(ifp, m, pi);
2563 
2564 		/* Advance our pointers to the next descriptor. */
2565 		if (++i == rxr->num_rx_desc)
2566 			i = 0;
2567 
2568 		if (ncoll >= rxr->rx_wreg) {
2569 			igb_rx_refresh(rxr, i);
2570 			ncoll = 0;
2571 		}
2572 
2573 		cur = &rxr->rx_base[i];
2574 		staterr = le32toh(cur->wb.upper.status_error);
2575 	}
2576 	rxr->next_to_check = i;
2577 
2578 	if (ncoll > 0)
2579 		igb_rx_refresh(rxr, i);
2580 }
2581 
2582 
2583 static void
2584 igb_set_vlan(struct igb_softc *sc)
2585 {
2586 	struct e1000_hw *hw = &sc->hw;
2587 	uint32_t reg;
2588 #if 0
2589 	struct ifnet *ifp = sc->arpcom.ac_if;
2590 #endif
2591 
2592 	if (sc->vf_ifp) {
2593 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2594 		return;
2595 	}
2596 
2597 	reg = E1000_READ_REG(hw, E1000_CTRL);
2598 	reg |= E1000_CTRL_VME;
2599 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2600 
2601 #if 0
2602 	/* Enable the Filter Table */
2603 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2604 		reg = E1000_READ_REG(hw, E1000_RCTL);
2605 		reg &= ~E1000_RCTL_CFIEN;
2606 		reg |= E1000_RCTL_VFE;
2607 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2608 	}
2609 #endif
2610 
2611 	/* Update the frame size */
2612 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2613 	    sc->max_frame_size + VLAN_TAG_SIZE);
2614 
2615 #if 0
2616 	/* Don't bother with table if no vlans */
2617 	if ((adapter->num_vlans == 0) ||
2618 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2619 		return;
2620 	/*
2621 	** A soft reset zero's out the VFTA, so
2622 	** we need to repopulate it now.
2623 	*/
2624 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2625 		if (adapter->shadow_vfta[i] != 0) {
2626 			if (adapter->vf_ifp)
2627 				e1000_vfta_set_vf(hw,
2628 				    adapter->shadow_vfta[i], TRUE);
2629 			else
2630 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2631 				 i, adapter->shadow_vfta[i]);
2632 		}
2633 #endif
2634 }
2635 
2636 static void
2637 igb_enable_intr(struct igb_softc *sc)
2638 {
2639 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2640 		lwkt_serialize_handler_enable(&sc->main_serialize);
2641 	} else {
2642 		int i;
2643 
2644 		for (i = 0; i < sc->msix_cnt; ++i) {
2645 			lwkt_serialize_handler_enable(
2646 			    sc->msix_data[i].msix_serialize);
2647 		}
2648 	}
2649 
2650 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2651 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2652 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2653 		else
2654 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2655 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2656 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2657 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2658 	} else {
2659 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2660 	}
2661 	E1000_WRITE_FLUSH(&sc->hw);
2662 }
2663 
2664 static void
2665 igb_disable_intr(struct igb_softc *sc)
2666 {
2667 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2668 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2669 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2670 	}
2671 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2672 	E1000_WRITE_FLUSH(&sc->hw);
2673 
2674 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2675 		lwkt_serialize_handler_disable(&sc->main_serialize);
2676 	} else {
2677 		int i;
2678 
2679 		for (i = 0; i < sc->msix_cnt; ++i) {
2680 			lwkt_serialize_handler_disable(
2681 			    sc->msix_data[i].msix_serialize);
2682 		}
2683 	}
2684 }
2685 
2686 /*
2687  * Bit of a misnomer, what this really means is
2688  * to enable OS management of the system... aka
2689  * to disable special hardware management features
2690  */
2691 static void
2692 igb_get_mgmt(struct igb_softc *sc)
2693 {
2694 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2695 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2696 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2697 
2698 		/* disable hardware interception of ARP */
2699 		manc &= ~E1000_MANC_ARP_EN;
2700 
2701 		/* enable receiving management packets to the host */
2702 		manc |= E1000_MANC_EN_MNG2HOST;
2703 		manc2h |= 1 << 5; /* Mng Port 623 */
2704 		manc2h |= 1 << 6; /* Mng Port 664 */
2705 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2706 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2707 	}
2708 }
2709 
2710 /*
2711  * Give control back to hardware management controller
2712  * if there is one.
2713  */
2714 static void
2715 igb_rel_mgmt(struct igb_softc *sc)
2716 {
2717 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2718 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2719 
2720 		/* Re-enable hardware interception of ARP */
2721 		manc |= E1000_MANC_ARP_EN;
2722 		manc &= ~E1000_MANC_EN_MNG2HOST;
2723 
2724 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2725 	}
2726 }
2727 
2728 /*
2729  * Sets CTRL_EXT:DRV_LOAD bit.
2730  *
2731  * For ASF and Pass Through versions of f/w this means that
2732  * the driver is loaded.
2733  */
2734 static void
2735 igb_get_hw_control(struct igb_softc *sc)
2736 {
2737 	uint32_t ctrl_ext;
2738 
2739 	if (sc->vf_ifp)
2740 		return;
2741 
2742 	/* Let firmware know the driver has taken over */
2743 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2744 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2745 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2746 }
2747 
2748 /*
2749  * Resets CTRL_EXT:DRV_LOAD bit.
2750  *
2751  * For ASF and Pass Through versions of f/w this means that the
2752  * driver is no longer loaded.
2753  */
2754 static void
2755 igb_rel_hw_control(struct igb_softc *sc)
2756 {
2757 	uint32_t ctrl_ext;
2758 
2759 	if (sc->vf_ifp)
2760 		return;
2761 
2762 	/* Let firmware taken over control of h/w */
2763 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2764 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2765 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2766 }
2767 
2768 static int
2769 igb_is_valid_ether_addr(const uint8_t *addr)
2770 {
2771 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2772 
2773 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2774 		return FALSE;
2775 	return TRUE;
2776 }
2777 
2778 /*
2779  * Enable PCI Wake On Lan capability
2780  */
2781 static void
2782 igb_enable_wol(device_t dev)
2783 {
2784 	uint16_t cap, status;
2785 	uint8_t id;
2786 
2787 	/* First find the capabilities pointer*/
2788 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2789 
2790 	/* Read the PM Capabilities */
2791 	id = pci_read_config(dev, cap, 1);
2792 	if (id != PCIY_PMG)     /* Something wrong */
2793 		return;
2794 
2795 	/*
2796 	 * OK, we have the power capabilities,
2797 	 * so now get the status register
2798 	 */
2799 	cap += PCIR_POWER_STATUS;
2800 	status = pci_read_config(dev, cap, 2);
2801 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2802 	pci_write_config(dev, cap, status, 2);
2803 }
2804 
2805 static void
2806 igb_update_stats_counters(struct igb_softc *sc)
2807 {
2808 	struct e1000_hw *hw = &sc->hw;
2809 	struct e1000_hw_stats *stats;
2810 	struct ifnet *ifp = &sc->arpcom.ac_if;
2811 
2812 	/*
2813 	 * The virtual function adapter has only a
2814 	 * small controlled set of stats, do only
2815 	 * those and return.
2816 	 */
2817 	if (sc->vf_ifp) {
2818 		igb_update_vf_stats_counters(sc);
2819 		return;
2820 	}
2821 	stats = sc->stats;
2822 
2823 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2824 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2825 		stats->symerrs +=
2826 		    E1000_READ_REG(hw,E1000_SYMERRS);
2827 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2828 	}
2829 
2830 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2831 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2832 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2833 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2834 
2835 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2836 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2837 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2838 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2839 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2840 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2841 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2842 
2843 	/*
2844 	 * For watchdog management we need to know if we have been
2845 	 * paused during the last interval, so capture that here.
2846 	 */
2847 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2848 	stats->xoffrxc += sc->pause_frames;
2849 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2850 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2851 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2852 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2853 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2854 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2855 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2856 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2857 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2858 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2859 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2860 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2861 
2862 	/* For the 64-bit byte counters the low dword must be read first. */
2863 	/* Both registers clear on the read of the high dword */
2864 
2865 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2866 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2867 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2868 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2869 
2870 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2871 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2872 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2873 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2874 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2875 
2876 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2877 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2878 
2879 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2880 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2881 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2882 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2883 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2884 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2885 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2886 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2887 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2888 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2889 
2890 	/* Interrupt Counts */
2891 
2892 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
2893 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2894 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2895 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2896 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2897 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2898 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2899 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2900 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2901 
2902 	/* Host to Card Statistics */
2903 
2904 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2905 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2906 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2907 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2908 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2909 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2910 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2911 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2912 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2913 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2914 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2915 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2916 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2917 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2918 
2919 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2920 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2921 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2922 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2923 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2924 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2925 
2926 	ifp->if_collisions = stats->colc;
2927 
2928 	/* Rx Errors */
2929 	ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2930 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2931 
2932 	/* Tx Errors */
2933 	ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2934 
2935 	/* Driver specific counters */
2936 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2937 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2938 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2939 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2940 	sc->packet_buf_alloc_tx =
2941 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2942 	sc->packet_buf_alloc_rx =
2943 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2944 }
2945 
2946 static void
2947 igb_vf_init_stats(struct igb_softc *sc)
2948 {
2949 	struct e1000_hw *hw = &sc->hw;
2950 	struct e1000_vf_stats *stats;
2951 
2952 	stats = sc->stats;
2953 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2954 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2955 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2956 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2957 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2958 }
2959 
2960 static void
2961 igb_update_vf_stats_counters(struct igb_softc *sc)
2962 {
2963 	struct e1000_hw *hw = &sc->hw;
2964 	struct e1000_vf_stats *stats;
2965 
2966 	if (sc->link_speed == 0)
2967 		return;
2968 
2969 	stats = sc->stats;
2970 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2971 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2972 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2973 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2974 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2975 }
2976 
2977 #ifdef IFPOLL_ENABLE
2978 
2979 static void
2980 igb_npoll_status(struct ifnet *ifp)
2981 {
2982 	struct igb_softc *sc = ifp->if_softc;
2983 	uint32_t reg_icr;
2984 
2985 	ASSERT_SERIALIZED(&sc->main_serialize);
2986 
2987 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2988 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2989 		sc->hw.mac.get_link_status = 1;
2990 		igb_update_link_status(sc);
2991 	}
2992 }
2993 
2994 static void
2995 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
2996 {
2997 	struct igb_tx_ring *txr = arg;
2998 
2999 	ASSERT_SERIALIZED(&txr->tx_serialize);
3000 
3001 	igb_txeof(txr);
3002 	if (!ifsq_is_empty(txr->ifsq))
3003 		ifsq_devstart(txr->ifsq);
3004 }
3005 
3006 static void
3007 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3008 {
3009 	struct igb_rx_ring *rxr = arg;
3010 
3011 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3012 
3013 	igb_rxeof(rxr, cycle);
3014 }
3015 
3016 static void
3017 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3018 {
3019 	struct igb_softc *sc = ifp->if_softc;
3020 	int i;
3021 
3022 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3023 
3024 	if (info) {
3025 		int off;
3026 
3027 		info->ifpi_status.status_func = igb_npoll_status;
3028 		info->ifpi_status.serializer = &sc->main_serialize;
3029 
3030 		off = sc->tx_npoll_off;
3031 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3032 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3033 			int idx = i + off;
3034 
3035 			KKASSERT(idx < ncpus2);
3036 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3037 			info->ifpi_tx[idx].arg = txr;
3038 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3039 			ifsq_set_cpuid(txr->ifsq, idx);
3040 		}
3041 
3042 		off = sc->rx_npoll_off;
3043 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3044 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3045 			int idx = i + off;
3046 
3047 			KKASSERT(idx < ncpus2);
3048 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3049 			info->ifpi_rx[idx].arg = rxr;
3050 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3051 		}
3052 
3053 		if (ifp->if_flags & IFF_RUNNING) {
3054 			if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3055 				igb_disable_intr(sc);
3056 			else
3057 				igb_init(sc);
3058 		}
3059 	} else {
3060 		if (ifp->if_flags & IFF_RUNNING) {
3061 			if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3062 				igb_enable_intr(sc);
3063 			else
3064 				igb_init(sc);
3065 		}
3066 
3067 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3068 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3069 
3070 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3071 		}
3072 	}
3073 }
3074 
3075 #endif /* IFPOLL_ENABLE */
3076 
3077 static void
3078 igb_intr(void *xsc)
3079 {
3080 	struct igb_softc *sc = xsc;
3081 	struct ifnet *ifp = &sc->arpcom.ac_if;
3082 	uint32_t eicr;
3083 
3084 	ASSERT_SERIALIZED(&sc->main_serialize);
3085 
3086 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3087 
3088 	if (eicr == 0)
3089 		return;
3090 
3091 	if (ifp->if_flags & IFF_RUNNING) {
3092 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3093 		int i;
3094 
3095 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3096 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3097 
3098 			if (eicr & rxr->rx_intr_mask) {
3099 				lwkt_serialize_enter(&rxr->rx_serialize);
3100 				igb_rxeof(rxr, -1);
3101 				lwkt_serialize_exit(&rxr->rx_serialize);
3102 			}
3103 		}
3104 
3105 		if (eicr & txr->tx_intr_mask) {
3106 			lwkt_serialize_enter(&txr->tx_serialize);
3107 			igb_txeof(txr);
3108 			if (!ifsq_is_empty(txr->ifsq))
3109 				ifsq_devstart(txr->ifsq);
3110 			lwkt_serialize_exit(&txr->tx_serialize);
3111 		}
3112 	}
3113 
3114 	if (eicr & E1000_EICR_OTHER) {
3115 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3116 
3117 		/* Link status change */
3118 		if (icr & E1000_ICR_LSC) {
3119 			sc->hw.mac.get_link_status = 1;
3120 			igb_update_link_status(sc);
3121 		}
3122 	}
3123 
3124 	/*
3125 	 * Reading EICR has the side effect to clear interrupt mask,
3126 	 * so all interrupts need to be enabled here.
3127 	 */
3128 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3129 }
3130 
3131 static void
3132 igb_intr_shared(void *xsc)
3133 {
3134 	struct igb_softc *sc = xsc;
3135 	struct ifnet *ifp = &sc->arpcom.ac_if;
3136 	uint32_t reg_icr;
3137 
3138 	ASSERT_SERIALIZED(&sc->main_serialize);
3139 
3140 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3141 
3142 	/* Hot eject?  */
3143 	if (reg_icr == 0xffffffff)
3144 		return;
3145 
3146 	/* Definitely not our interrupt.  */
3147 	if (reg_icr == 0x0)
3148 		return;
3149 
3150 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3151 		return;
3152 
3153 	if (ifp->if_flags & IFF_RUNNING) {
3154 		if (reg_icr &
3155 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3156 			int i;
3157 
3158 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3159 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3160 
3161 				lwkt_serialize_enter(&rxr->rx_serialize);
3162 				igb_rxeof(rxr, -1);
3163 				lwkt_serialize_exit(&rxr->rx_serialize);
3164 			}
3165 		}
3166 
3167 		if (reg_icr & E1000_ICR_TXDW) {
3168 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3169 
3170 			lwkt_serialize_enter(&txr->tx_serialize);
3171 			igb_txeof(txr);
3172 			if (!ifsq_is_empty(txr->ifsq))
3173 				ifsq_devstart(txr->ifsq);
3174 			lwkt_serialize_exit(&txr->tx_serialize);
3175 		}
3176 	}
3177 
3178 	/* Link status change */
3179 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3180 		sc->hw.mac.get_link_status = 1;
3181 		igb_update_link_status(sc);
3182 	}
3183 
3184 	if (reg_icr & E1000_ICR_RXO)
3185 		sc->rx_overruns++;
3186 }
3187 
3188 static int
3189 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3190     int *segs_used, int *idx)
3191 {
3192 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3193 	bus_dmamap_t map;
3194 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3195 	union e1000_adv_tx_desc	*txd = NULL;
3196 	struct mbuf *m_head = *m_headp;
3197 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3198 	int maxsegs, nsegs, i, j, error;
3199 	uint32_t hdrlen = 0;
3200 
3201 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3202 		error = igb_tso_pullup(txr, m_headp);
3203 		if (error)
3204 			return error;
3205 		m_head = *m_headp;
3206 	}
3207 
3208 	/* Set basic descriptor constants */
3209 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3210 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3211 	if (m_head->m_flags & M_VLANTAG)
3212 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3213 
3214 	/*
3215 	 * Map the packet for DMA.
3216 	 */
3217 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3218 	tx_buf_mapped = tx_buf;
3219 	map = tx_buf->map;
3220 
3221 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3222 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3223 	if (maxsegs > IGB_MAX_SCATTER)
3224 		maxsegs = IGB_MAX_SCATTER;
3225 
3226 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3227 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3228 	if (error) {
3229 		if (error == ENOBUFS)
3230 			txr->sc->mbuf_defrag_failed++;
3231 		else
3232 			txr->sc->no_tx_dma_setup++;
3233 
3234 		m_freem(*m_headp);
3235 		*m_headp = NULL;
3236 		return error;
3237 	}
3238 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3239 
3240 	m_head = *m_headp;
3241 
3242 	/*
3243 	 * Set up the TX context descriptor, if any hardware offloading is
3244 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3245 	 * TX descriptor.
3246 	 *
3247 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3248 	 * will _not_ interfere TX data fetching pipelining.
3249 	 */
3250 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3251 		igb_tso_ctx(txr, m_head, &hdrlen);
3252 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3253 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3254 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3255 		txr->tx_nsegs++;
3256 		(*segs_used)++;
3257 	} else if (igb_txcsum_ctx(txr, m_head)) {
3258 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3259 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3260 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3261 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3262 		txr->tx_nsegs++;
3263 		(*segs_used)++;
3264 	}
3265 
3266 	*segs_used += nsegs;
3267 	txr->tx_nsegs += nsegs;
3268 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3269 		/*
3270 		 * Report Status (RS) is turned on every intr_nsegs
3271 		 * descriptors (roughly).
3272 		 */
3273 		txr->tx_nsegs = 0;
3274 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3275 	}
3276 
3277 	/* Calculate payload length */
3278 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3279 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3280 
3281 	/* 82575 needs the queue index added */
3282 	if (txr->sc->hw.mac.type == e1000_82575)
3283 		olinfo_status |= txr->me << 4;
3284 
3285 	/* Set up our transmit descriptors */
3286 	i = txr->next_avail_desc;
3287 	for (j = 0; j < nsegs; j++) {
3288 		bus_size_t seg_len;
3289 		bus_addr_t seg_addr;
3290 
3291 		tx_buf = &txr->tx_buf[i];
3292 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3293 		seg_addr = segs[j].ds_addr;
3294 		seg_len = segs[j].ds_len;
3295 
3296 		txd->read.buffer_addr = htole64(seg_addr);
3297 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3298 		txd->read.olinfo_status = htole32(olinfo_status);
3299 		if (++i == txr->num_tx_desc)
3300 			i = 0;
3301 		tx_buf->m_head = NULL;
3302 	}
3303 
3304 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3305 	txr->next_avail_desc = i;
3306 	txr->tx_avail -= nsegs;
3307 
3308 	tx_buf->m_head = m_head;
3309 	tx_buf_mapped->map = tx_buf->map;
3310 	tx_buf->map = map;
3311 
3312 	/*
3313 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3314 	 */
3315 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3316 
3317 	/*
3318 	 * Defer TDT updating, until enough descrptors are setup
3319 	 */
3320 	*idx = i;
3321 	++txr->tx_packets;
3322 
3323 	return 0;
3324 }
3325 
3326 static void
3327 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3328 {
3329 	struct igb_softc *sc = ifp->if_softc;
3330 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3331 	struct mbuf *m_head;
3332 	int idx = -1, nsegs = 0;
3333 
3334 	KKASSERT(txr->ifsq == ifsq);
3335 	ASSERT_SERIALIZED(&txr->tx_serialize);
3336 
3337 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3338 		return;
3339 
3340 	if (!sc->link_active) {
3341 		ifsq_purge(ifsq);
3342 		return;
3343 	}
3344 
3345 	if (!IGB_IS_NOT_OACTIVE(txr))
3346 		igb_txeof(txr);
3347 
3348 	while (!ifsq_is_empty(ifsq)) {
3349 		if (IGB_IS_OACTIVE(txr)) {
3350 			ifsq_set_oactive(ifsq);
3351 			/* Set watchdog on */
3352 			ifp->if_timer = 5;
3353 			break;
3354 		}
3355 
3356 		m_head = ifsq_dequeue(ifsq, NULL);
3357 		if (m_head == NULL)
3358 			break;
3359 
3360 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3361 			ifp->if_oerrors++;
3362 			continue;
3363 		}
3364 
3365 		if (nsegs >= txr->wreg_nsegs) {
3366 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3367 			idx = -1;
3368 			nsegs = 0;
3369 		}
3370 
3371 		/* Send a copy of the frame to the BPF listener */
3372 		ETHER_BPF_MTAP(ifp, m_head);
3373 	}
3374 	if (idx >= 0)
3375 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3376 }
3377 
3378 static void
3379 igb_watchdog(struct ifnet *ifp)
3380 {
3381 	struct igb_softc *sc = ifp->if_softc;
3382 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3383 
3384 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3385 
3386 	/*
3387 	 * If flow control has paused us since last checking
3388 	 * it invalidates the watchdog timing, so dont run it.
3389 	 */
3390 	if (sc->pause_frames) {
3391 		sc->pause_frames = 0;
3392 		ifp->if_timer = 5;
3393 		return;
3394 	}
3395 
3396 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3397 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3398 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3399 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3400 	if_printf(ifp, "TX(%d) desc avail = %d, "
3401 	    "Next TX to Clean = %d\n",
3402 	    txr->me, txr->tx_avail, txr->next_to_clean);
3403 
3404 	ifp->if_oerrors++;
3405 	sc->watchdog_events++;
3406 
3407 	igb_init(sc);
3408 	if (!ifsq_is_empty(txr->ifsq))
3409 		ifsq_devstart(txr->ifsq);
3410 }
3411 
3412 static void
3413 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3414 {
3415 	uint32_t eitr = 0;
3416 
3417 	if (rate > 0) {
3418 		if (sc->hw.mac.type == e1000_82575) {
3419 			eitr = 1000000000 / 256 / rate;
3420 			/*
3421 			 * NOTE:
3422 			 * Document is wrong on the 2 bits left shift
3423 			 */
3424 		} else {
3425 			eitr = 1000000 / rate;
3426 			eitr <<= IGB_EITR_INTVL_SHIFT;
3427 		}
3428 
3429 		if (eitr == 0) {
3430 			/* Don't disable it */
3431 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3432 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3433 			/* Don't allow it to be too large */
3434 			eitr = IGB_EITR_INTVL_MASK;
3435 		}
3436 	}
3437 	if (sc->hw.mac.type == e1000_82575)
3438 		eitr |= eitr << 16;
3439 	else
3440 		eitr |= E1000_EITR_CNT_IGNR;
3441 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3442 }
3443 
3444 static int
3445 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3446 {
3447 	struct igb_softc *sc = (void *)arg1;
3448 	struct ifnet *ifp = &sc->arpcom.ac_if;
3449 	int error, intr_rate;
3450 
3451 	intr_rate = sc->intr_rate;
3452 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3453 	if (error || req->newptr == NULL)
3454 		return error;
3455 	if (intr_rate < 0)
3456 		return EINVAL;
3457 
3458 	ifnet_serialize_all(ifp);
3459 
3460 	sc->intr_rate = intr_rate;
3461 	if (ifp->if_flags & IFF_RUNNING)
3462 		igb_set_eitr(sc, 0, sc->intr_rate);
3463 
3464 	if (bootverbose)
3465 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3466 
3467 	ifnet_deserialize_all(ifp);
3468 
3469 	return 0;
3470 }
3471 
3472 static int
3473 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3474 {
3475 	struct igb_msix_data *msix = (void *)arg1;
3476 	struct igb_softc *sc = msix->msix_sc;
3477 	struct ifnet *ifp = &sc->arpcom.ac_if;
3478 	int error, msix_rate;
3479 
3480 	msix_rate = msix->msix_rate;
3481 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3482 	if (error || req->newptr == NULL)
3483 		return error;
3484 	if (msix_rate < 0)
3485 		return EINVAL;
3486 
3487 	lwkt_serialize_enter(msix->msix_serialize);
3488 
3489 	msix->msix_rate = msix_rate;
3490 	if (ifp->if_flags & IFF_RUNNING)
3491 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3492 
3493 	if (bootverbose) {
3494 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3495 		    msix->msix_rate);
3496 	}
3497 
3498 	lwkt_serialize_exit(msix->msix_serialize);
3499 
3500 	return 0;
3501 }
3502 
3503 static int
3504 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3505 {
3506 	struct igb_softc *sc = (void *)arg1;
3507 	struct ifnet *ifp = &sc->arpcom.ac_if;
3508 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3509 	int error, nsegs;
3510 
3511 	nsegs = txr->intr_nsegs;
3512 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3513 	if (error || req->newptr == NULL)
3514 		return error;
3515 	if (nsegs <= 0)
3516 		return EINVAL;
3517 
3518 	ifnet_serialize_all(ifp);
3519 
3520 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3521 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3522 		error = EINVAL;
3523 	} else {
3524 		error = 0;
3525 		txr->intr_nsegs = nsegs;
3526 	}
3527 
3528 	ifnet_deserialize_all(ifp);
3529 
3530 	return error;
3531 }
3532 
3533 #ifdef IFPOLL_ENABLE
3534 
3535 static int
3536 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3537 {
3538 	struct igb_softc *sc = (void *)arg1;
3539 	struct ifnet *ifp = &sc->arpcom.ac_if;
3540 	int error, off;
3541 
3542 	off = sc->rx_npoll_off;
3543 	error = sysctl_handle_int(oidp, &off, 0, req);
3544 	if (error || req->newptr == NULL)
3545 		return error;
3546 	if (off < 0)
3547 		return EINVAL;
3548 
3549 	ifnet_serialize_all(ifp);
3550 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3551 		error = EINVAL;
3552 	} else {
3553 		error = 0;
3554 		sc->rx_npoll_off = off;
3555 	}
3556 	ifnet_deserialize_all(ifp);
3557 
3558 	return error;
3559 }
3560 
3561 static int
3562 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3563 {
3564 	struct igb_softc *sc = (void *)arg1;
3565 	struct ifnet *ifp = &sc->arpcom.ac_if;
3566 	int error, off;
3567 
3568 	off = sc->tx_npoll_off;
3569 	error = sysctl_handle_int(oidp, &off, 0, req);
3570 	if (error || req->newptr == NULL)
3571 		return error;
3572 	if (off < 0)
3573 		return EINVAL;
3574 
3575 	ifnet_serialize_all(ifp);
3576 	if (off >= ncpus2) {
3577 		error = EINVAL;
3578 	} else {
3579 		error = 0;
3580 		sc->tx_npoll_off = off;
3581 	}
3582 	ifnet_deserialize_all(ifp);
3583 
3584 	return error;
3585 }
3586 
3587 #endif	/* IFPOLL_ENABLE */
3588 
3589 static void
3590 igb_init_intr(struct igb_softc *sc)
3591 {
3592 	igb_set_intr_mask(sc);
3593 
3594 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3595 		igb_init_unshared_intr(sc);
3596 
3597 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3598 		igb_set_eitr(sc, 0, sc->intr_rate);
3599 	} else {
3600 		int i;
3601 
3602 		for (i = 0; i < sc->msix_cnt; ++i)
3603 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3604 	}
3605 }
3606 
3607 static void
3608 igb_init_unshared_intr(struct igb_softc *sc)
3609 {
3610 	struct e1000_hw *hw = &sc->hw;
3611 	const struct igb_rx_ring *rxr;
3612 	const struct igb_tx_ring *txr;
3613 	uint32_t ivar, index;
3614 	int i;
3615 
3616 	/*
3617 	 * Enable extended mode
3618 	 */
3619 	if (sc->hw.mac.type != e1000_82575) {
3620 		uint32_t gpie;
3621 		int ivar_max;
3622 
3623 		gpie = E1000_GPIE_NSICR;
3624 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3625 			gpie |= E1000_GPIE_MSIX_MODE |
3626 			    E1000_GPIE_EIAME |
3627 			    E1000_GPIE_PBA;
3628 		}
3629 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3630 
3631 		/*
3632 		 * Clear IVARs
3633 		 */
3634 		switch (sc->hw.mac.type) {
3635 		case e1000_82580:
3636 			ivar_max = IGB_MAX_IVAR_82580;
3637 			break;
3638 
3639 		case e1000_i350:
3640 			ivar_max = IGB_MAX_IVAR_I350;
3641 			break;
3642 
3643 		case e1000_vfadapt:
3644 		case e1000_vfadapt_i350:
3645 			ivar_max = IGB_MAX_IVAR_VF;
3646 			break;
3647 
3648 		case e1000_82576:
3649 			ivar_max = IGB_MAX_IVAR_82576;
3650 			break;
3651 
3652 		default:
3653 			panic("unknown mac type %d\n", sc->hw.mac.type);
3654 		}
3655 		for (i = 0; i < ivar_max; ++i)
3656 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3657 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3658 	} else {
3659 		uint32_t tmp;
3660 
3661 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3662 		    ("82575 w/ MSI-X"));
3663 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3664 		tmp |= E1000_CTRL_EXT_IRCA;
3665 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3666 	}
3667 
3668 	/*
3669 	 * Map TX/RX interrupts to EICR
3670 	 */
3671 	switch (sc->hw.mac.type) {
3672 	case e1000_82580:
3673 	case e1000_i350:
3674 	case e1000_vfadapt:
3675 	case e1000_vfadapt_i350:
3676 		/* RX entries */
3677 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3678 			rxr = &sc->rx_rings[i];
3679 
3680 			index = i >> 1;
3681 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3682 
3683 			if (i & 1) {
3684 				ivar &= 0xff00ffff;
3685 				ivar |=
3686 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3687 			} else {
3688 				ivar &= 0xffffff00;
3689 				ivar |=
3690 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3691 			}
3692 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3693 		}
3694 		/* TX entries */
3695 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3696 			txr = &sc->tx_rings[i];
3697 
3698 			index = i >> 1;
3699 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3700 
3701 			if (i & 1) {
3702 				ivar &= 0x00ffffff;
3703 				ivar |=
3704 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3705 			} else {
3706 				ivar &= 0xffff00ff;
3707 				ivar |=
3708 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3709 			}
3710 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3711 		}
3712 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3713 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3714 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3715 		}
3716 		break;
3717 
3718 	case e1000_82576:
3719 		/* RX entries */
3720 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3721 			rxr = &sc->rx_rings[i];
3722 
3723 			index = i & 0x7; /* Each IVAR has two entries */
3724 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3725 
3726 			if (i < 8) {
3727 				ivar &= 0xffffff00;
3728 				ivar |=
3729 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3730 			} else {
3731 				ivar &= 0xff00ffff;
3732 				ivar |=
3733 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3734 			}
3735 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3736 		}
3737 		/* TX entries */
3738 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3739 			txr = &sc->tx_rings[i];
3740 
3741 			index = i & 0x7; /* Each IVAR has two entries */
3742 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3743 
3744 			if (i < 8) {
3745 				ivar &= 0xffff00ff;
3746 				ivar |=
3747 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3748 			} else {
3749 				ivar &= 0x00ffffff;
3750 				ivar |=
3751 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3752 			}
3753 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3754 		}
3755 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3756 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3757 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3758 		}
3759 		break;
3760 
3761 	case e1000_82575:
3762 		/*
3763 		 * Enable necessary interrupt bits.
3764 		 *
3765 		 * The name of the register is confusing; in addition to
3766 		 * configuring the first vector of MSI-X, it also configures
3767 		 * which bits of EICR could be set by the hardware even when
3768 		 * MSI or line interrupt is used; it thus controls interrupt
3769 		 * generation.  It MUST be configured explicitly; the default
3770 		 * value mentioned in the datasheet is wrong: RX queue0 and
3771 		 * TX queue0 are NOT enabled by default.
3772 		 */
3773 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3774 		break;
3775 
3776 	default:
3777 		panic("unknown mac type %d\n", sc->hw.mac.type);
3778 	}
3779 }
3780 
3781 static int
3782 igb_setup_intr(struct igb_softc *sc)
3783 {
3784 	int error;
3785 
3786 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3787 		return igb_msix_setup(sc);
3788 
3789 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3790 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3791 	    sc, &sc->intr_tag, &sc->main_serialize);
3792 	if (error) {
3793 		device_printf(sc->dev, "Failed to register interrupt handler");
3794 		return error;
3795 	}
3796 	sc->tx_rings[0].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
3797 
3798 	return 0;
3799 }
3800 
3801 static void
3802 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3803 {
3804 	if (txr->sc->hw.mac.type == e1000_82575) {
3805 		txr->tx_intr_bit = 0;	/* unused */
3806 		switch (txr->me) {
3807 		case 0:
3808 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3809 			break;
3810 		case 1:
3811 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3812 			break;
3813 		case 2:
3814 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3815 			break;
3816 		case 3:
3817 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3818 			break;
3819 		default:
3820 			panic("unsupported # of TX ring, %d\n", txr->me);
3821 		}
3822 	} else {
3823 		int intr_bit = *intr_bit0;
3824 
3825 		txr->tx_intr_bit = intr_bit % intr_bitmax;
3826 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3827 
3828 		*intr_bit0 = intr_bit + 1;
3829 	}
3830 }
3831 
3832 static void
3833 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3834 {
3835 	if (rxr->sc->hw.mac.type == e1000_82575) {
3836 		rxr->rx_intr_bit = 0;	/* unused */
3837 		switch (rxr->me) {
3838 		case 0:
3839 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3840 			break;
3841 		case 1:
3842 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3843 			break;
3844 		case 2:
3845 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3846 			break;
3847 		case 3:
3848 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3849 			break;
3850 		default:
3851 			panic("unsupported # of RX ring, %d\n", rxr->me);
3852 		}
3853 	} else {
3854 		int intr_bit = *intr_bit0;
3855 
3856 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
3857 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3858 
3859 		*intr_bit0 = intr_bit + 1;
3860 	}
3861 }
3862 
3863 static void
3864 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3865 {
3866 	struct igb_softc *sc = ifp->if_softc;
3867 
3868 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3869 	    sc->tx_serialize, sc->rx_serialize, slz);
3870 }
3871 
3872 static void
3873 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3874 {
3875 	struct igb_softc *sc = ifp->if_softc;
3876 
3877 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3878 	    sc->tx_serialize, sc->rx_serialize, slz);
3879 }
3880 
3881 static int
3882 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3883 {
3884 	struct igb_softc *sc = ifp->if_softc;
3885 
3886 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3887 	    sc->tx_serialize, sc->rx_serialize, slz);
3888 }
3889 
3890 #ifdef INVARIANTS
3891 
3892 static void
3893 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3894     boolean_t serialized)
3895 {
3896 	struct igb_softc *sc = ifp->if_softc;
3897 
3898 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3899 	    sc->tx_serialize, sc->rx_serialize, slz, serialized);
3900 }
3901 
3902 #endif	/* INVARIANTS */
3903 
3904 static void
3905 igb_set_intr_mask(struct igb_softc *sc)
3906 {
3907 	int i;
3908 
3909 	sc->intr_mask = sc->sts_intr_mask;
3910 	for (i = 0; i < sc->rx_ring_inuse; ++i)
3911 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3912 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3913 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3914 	if (bootverbose) {
3915 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
3916 		    sc->intr_mask);
3917 	}
3918 }
3919 
3920 static int
3921 igb_alloc_intr(struct igb_softc *sc)
3922 {
3923 	int i, intr_bit, intr_bitmax;
3924 	u_int intr_flags;
3925 
3926 	igb_msix_try_alloc(sc);
3927 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3928 		goto done;
3929 
3930 	/*
3931 	 * Allocate MSI/legacy interrupt resource
3932 	 */
3933 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
3934 	    &sc->intr_rid, &intr_flags);
3935 
3936 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3937 		int unshared;
3938 
3939 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3940 		if (!unshared) {
3941 			sc->flags |= IGB_FLAG_SHARED_INTR;
3942 			if (bootverbose)
3943 				device_printf(sc->dev, "IRQ shared\n");
3944 		} else {
3945 			intr_flags &= ~RF_SHAREABLE;
3946 			if (bootverbose)
3947 				device_printf(sc->dev, "IRQ unshared\n");
3948 		}
3949 	}
3950 
3951 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
3952 	    &sc->intr_rid, intr_flags);
3953 	if (sc->intr_res == NULL) {
3954 		device_printf(sc->dev, "Unable to allocate bus resource: "
3955 		    "interrupt\n");
3956 		return ENXIO;
3957 	}
3958 
3959 	/*
3960 	 * Setup MSI/legacy interrupt mask
3961 	 */
3962 	switch (sc->hw.mac.type) {
3963 	case e1000_82575:
3964 		intr_bitmax = IGB_MAX_TXRXINT_82575;
3965 		break;
3966 	case e1000_82580:
3967 		intr_bitmax = IGB_MAX_TXRXINT_82580;
3968 		break;
3969 	case e1000_i350:
3970 		intr_bitmax = IGB_MAX_TXRXINT_I350;
3971 		break;
3972 	case e1000_82576:
3973 		intr_bitmax = IGB_MAX_TXRXINT_82576;
3974 		break;
3975 	default:
3976 		intr_bitmax = IGB_MIN_TXRXINT;
3977 		break;
3978 	}
3979 	intr_bit = 0;
3980 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3981 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
3982 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3983 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
3984 	sc->sts_intr_bit = 0;
3985 	sc->sts_intr_mask = E1000_EICR_OTHER;
3986 
3987 	/* Initialize interrupt rate */
3988 	sc->intr_rate = IGB_INTR_RATE;
3989 done:
3990 	igb_set_ring_inuse(sc, FALSE);
3991 	igb_set_intr_mask(sc);
3992 	return 0;
3993 }
3994 
3995 static void
3996 igb_free_intr(struct igb_softc *sc)
3997 {
3998 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3999 		if (sc->intr_res != NULL) {
4000 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4001 			    sc->intr_res);
4002 		}
4003 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4004 			pci_release_msi(sc->dev);
4005 	} else {
4006 		igb_msix_free(sc, TRUE);
4007 	}
4008 }
4009 
4010 static void
4011 igb_teardown_intr(struct igb_softc *sc)
4012 {
4013 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4014 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4015 	else
4016 		igb_msix_teardown(sc, sc->msix_cnt);
4017 }
4018 
4019 static void
4020 igb_msix_try_alloc(struct igb_softc *sc)
4021 {
4022 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4023 	int i, x, error;
4024 	struct igb_msix_data *msix;
4025 	boolean_t aggregate, setup = FALSE;
4026 
4027 	/*
4028 	 * Don't enable MSI-X on 82575, see:
4029 	 * 82575 specification update errata #25
4030 	 */
4031 	if (sc->hw.mac.type == e1000_82575)
4032 		return;
4033 
4034 	/* Don't enable MSI-X on VF */
4035 	if (sc->vf_ifp)
4036 		return;
4037 
4038 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4039 	    igb_msix_enable);
4040 	if (!msix_enable)
4041 		return;
4042 
4043 	msix_cnt = pci_msix_count(sc->dev);
4044 #ifdef IGB_MSIX_DEBUG
4045 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4046 #endif
4047 	if (msix_cnt <= 1) {
4048 		/* One MSI-X model does not make sense */
4049 		return;
4050 	}
4051 
4052 	i = 0;
4053 	while ((1 << (i + 1)) <= msix_cnt)
4054 		++i;
4055 	msix_cnt2 = 1 << i;
4056 
4057 	if (bootverbose) {
4058 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4059 		    msix_cnt2, msix_cnt);
4060 	}
4061 
4062 	KKASSERT(msix_cnt2 <= msix_cnt);
4063 	if (msix_cnt == msix_cnt2) {
4064 		/* We need at least one MSI-X for link status */
4065 		msix_cnt2 >>= 1;
4066 		if (msix_cnt2 <= 1) {
4067 			/* One MSI-X for RX/TX does not make sense */
4068 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4069 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4070 			return;
4071 		}
4072 		KKASSERT(msix_cnt > msix_cnt2);
4073 
4074 		if (bootverbose) {
4075 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4076 			    msix_cnt2, msix_cnt);
4077 		}
4078 	}
4079 
4080 	sc->rx_ring_msix = sc->rx_ring_cnt;
4081 	if (sc->rx_ring_msix > msix_cnt2)
4082 		sc->rx_ring_msix = msix_cnt2;
4083 
4084 	if (msix_cnt >= sc->tx_ring_cnt + sc->rx_ring_msix + 1) {
4085 		/*
4086 		 * Independent TX/RX MSI-X
4087 		 */
4088 		aggregate = FALSE;
4089 		if (bootverbose)
4090 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4091 		alloc_cnt = sc->tx_ring_cnt + sc->rx_ring_msix;
4092 	} else {
4093 		/*
4094 		 * Aggregate TX/RX MSI-X
4095 		 */
4096 		aggregate = TRUE;
4097 		if (bootverbose)
4098 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4099 		alloc_cnt = msix_cnt2;
4100 		if (alloc_cnt > ncpus2)
4101 			alloc_cnt = ncpus2;
4102 		if (sc->rx_ring_msix > alloc_cnt)
4103 			sc->rx_ring_msix = alloc_cnt;
4104 	}
4105 	++alloc_cnt;	/* For link status */
4106 
4107 	if (bootverbose) {
4108 		device_printf(sc->dev, "MSI-X alloc %d, RX ring %d\n",
4109 		    alloc_cnt, sc->rx_ring_msix);
4110 	}
4111 
4112 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4113 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4114 	    &sc->msix_mem_rid, RF_ACTIVE);
4115 	if (sc->msix_mem_res == NULL) {
4116 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4117 		return;
4118 	}
4119 
4120 	sc->msix_cnt = alloc_cnt;
4121 	sc->msix_data = kmalloc_cachealign(
4122 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4123 	    M_DEVBUF, M_WAITOK | M_ZERO);
4124 	for (x = 0; x < sc->msix_cnt; ++x) {
4125 		msix = &sc->msix_data[x];
4126 
4127 		lwkt_serialize_init(&msix->msix_serialize0);
4128 		msix->msix_sc = sc;
4129 		msix->msix_rid = -1;
4130 		msix->msix_vector = x;
4131 		msix->msix_mask = 1 << msix->msix_vector;
4132 		msix->msix_rate = IGB_INTR_RATE;
4133 	}
4134 
4135 	x = 0;
4136 	if (!aggregate) {
4137 		int offset, offset_def;
4138 
4139 		if (sc->rx_ring_msix == ncpus2) {
4140 			offset = 0;
4141 		} else {
4142 			offset_def = (sc->rx_ring_msix *
4143 			    device_get_unit(sc->dev)) % ncpus2;
4144 
4145 			offset = device_getenv_int(sc->dev,
4146 			    "msix.rxoff", offset_def);
4147 			if (offset >= ncpus2 ||
4148 			    offset % sc->rx_ring_msix != 0) {
4149 				device_printf(sc->dev,
4150 				    "invalid msix.rxoff %d, use %d\n",
4151 				    offset, offset_def);
4152 				offset = offset_def;
4153 			}
4154 		}
4155 
4156 		/* RX rings */
4157 		for (i = 0; i < sc->rx_ring_msix; ++i) {
4158 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4159 
4160 			KKASSERT(x < sc->msix_cnt);
4161 			msix = &sc->msix_data[x++];
4162 			rxr->rx_intr_bit = msix->msix_vector;
4163 			rxr->rx_intr_mask = msix->msix_mask;
4164 
4165 			msix->msix_serialize = &rxr->rx_serialize;
4166 			msix->msix_func = igb_msix_rx;
4167 			msix->msix_arg = rxr;
4168 			msix->msix_cpuid = i + offset;
4169 			KKASSERT(msix->msix_cpuid < ncpus2);
4170 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4171 			    "%s rx%d", device_get_nameunit(sc->dev), i);
4172 			msix->msix_rate = IGB_MSIX_RX_RATE;
4173 			ksnprintf(msix->msix_rate_desc,
4174 			    sizeof(msix->msix_rate_desc),
4175 			    "RX%d interrupt rate", i);
4176 		}
4177 
4178 		offset_def = device_get_unit(sc->dev) % ncpus2;
4179 		offset = device_getenv_int(sc->dev, "msix.txoff", offset_def);
4180 		if (offset >= ncpus2) {
4181 			device_printf(sc->dev, "invalid msix.txoff %d, "
4182 			    "use %d\n", offset, offset_def);
4183 			offset = offset_def;
4184 		}
4185 
4186 		/* TX rings */
4187 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4188 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4189 
4190 			KKASSERT(x < sc->msix_cnt);
4191 			msix = &sc->msix_data[x++];
4192 			txr->tx_intr_bit = msix->msix_vector;
4193 			txr->tx_intr_mask = msix->msix_mask;
4194 
4195 			msix->msix_serialize = &txr->tx_serialize;
4196 			msix->msix_func = igb_msix_tx;
4197 			msix->msix_arg = txr;
4198 			msix->msix_cpuid = i + offset;
4199 			txr->tx_intr_cpuid = msix->msix_cpuid;
4200 			KKASSERT(msix->msix_cpuid < ncpus2);
4201 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4202 			    "%s tx%d", device_get_nameunit(sc->dev), i);
4203 			msix->msix_rate = IGB_MSIX_TX_RATE;
4204 			ksnprintf(msix->msix_rate_desc,
4205 			    sizeof(msix->msix_rate_desc),
4206 			    "TX%d interrupt rate", i);
4207 		}
4208 	} else {
4209 		/* TODO */
4210 		error = EOPNOTSUPP;
4211 		goto back;
4212 	}
4213 
4214 	/*
4215 	 * Link status
4216 	 */
4217 	KKASSERT(x < sc->msix_cnt);
4218 	msix = &sc->msix_data[x++];
4219 	sc->sts_intr_bit = msix->msix_vector;
4220 	sc->sts_intr_mask = msix->msix_mask;
4221 
4222 	msix->msix_serialize = &sc->main_serialize;
4223 	msix->msix_func = igb_msix_status;
4224 	msix->msix_arg = sc;
4225 	msix->msix_cpuid = 0; /* TODO tunable */
4226 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4227 	    device_get_nameunit(sc->dev));
4228 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4229 	    "status interrupt rate");
4230 
4231 	KKASSERT(x == sc->msix_cnt);
4232 
4233 	error = pci_setup_msix(sc->dev);
4234 	if (error) {
4235 		device_printf(sc->dev, "Setup MSI-X failed\n");
4236 		goto back;
4237 	}
4238 	setup = TRUE;
4239 
4240 	for (i = 0; i < sc->msix_cnt; ++i) {
4241 		msix = &sc->msix_data[i];
4242 
4243 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4244 		    &msix->msix_rid, msix->msix_cpuid);
4245 		if (error) {
4246 			device_printf(sc->dev,
4247 			    "Unable to allocate MSI-X %d on cpu%d\n",
4248 			    msix->msix_vector, msix->msix_cpuid);
4249 			goto back;
4250 		}
4251 
4252 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4253 		    &msix->msix_rid, RF_ACTIVE);
4254 		if (msix->msix_res == NULL) {
4255 			device_printf(sc->dev,
4256 			    "Unable to allocate MSI-X %d resource\n",
4257 			    msix->msix_vector);
4258 			error = ENOMEM;
4259 			goto back;
4260 		}
4261 	}
4262 
4263 	pci_enable_msix(sc->dev);
4264 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4265 back:
4266 	if (error)
4267 		igb_msix_free(sc, setup);
4268 }
4269 
4270 static void
4271 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4272 {
4273 	int i;
4274 
4275 	KKASSERT(sc->msix_cnt > 1);
4276 
4277 	for (i = 0; i < sc->msix_cnt; ++i) {
4278 		struct igb_msix_data *msix = &sc->msix_data[i];
4279 
4280 		if (msix->msix_res != NULL) {
4281 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4282 			    msix->msix_rid, msix->msix_res);
4283 		}
4284 		if (msix->msix_rid >= 0)
4285 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4286 	}
4287 	if (setup)
4288 		pci_teardown_msix(sc->dev);
4289 
4290 	sc->msix_cnt = 0;
4291 	kfree(sc->msix_data, M_DEVBUF);
4292 	sc->msix_data = NULL;
4293 }
4294 
4295 static int
4296 igb_msix_setup(struct igb_softc *sc)
4297 {
4298 	int i;
4299 
4300 	for (i = 0; i < sc->msix_cnt; ++i) {
4301 		struct igb_msix_data *msix = &sc->msix_data[i];
4302 		int error;
4303 
4304 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4305 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4306 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4307 		if (error) {
4308 			device_printf(sc->dev, "could not set up %s "
4309 			    "interrupt handler.\n", msix->msix_desc);
4310 			igb_msix_teardown(sc, i);
4311 			return error;
4312 		}
4313 	}
4314 	return 0;
4315 }
4316 
4317 static void
4318 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4319 {
4320 	int i;
4321 
4322 	for (i = 0; i < msix_cnt; ++i) {
4323 		struct igb_msix_data *msix = &sc->msix_data[i];
4324 
4325 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4326 	}
4327 }
4328 
4329 static void
4330 igb_msix_rx(void *arg)
4331 {
4332 	struct igb_rx_ring *rxr = arg;
4333 
4334 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4335 	igb_rxeof(rxr, -1);
4336 
4337 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4338 }
4339 
4340 static void
4341 igb_msix_tx(void *arg)
4342 {
4343 	struct igb_tx_ring *txr = arg;
4344 
4345 	ASSERT_SERIALIZED(&txr->tx_serialize);
4346 
4347 	igb_txeof(txr);
4348 	if (!ifsq_is_empty(txr->ifsq))
4349 		ifsq_devstart(txr->ifsq);
4350 
4351 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4352 }
4353 
4354 static void
4355 igb_msix_status(void *arg)
4356 {
4357 	struct igb_softc *sc = arg;
4358 	uint32_t icr;
4359 
4360 	ASSERT_SERIALIZED(&sc->main_serialize);
4361 
4362 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4363 	if (icr & E1000_ICR_LSC) {
4364 		sc->hw.mac.get_link_status = 1;
4365 		igb_update_link_status(sc);
4366 	}
4367 
4368 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4369 }
4370 
4371 static void
4372 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4373 {
4374 	if (!IGB_ENABLE_HWRSS(sc))
4375 		return;
4376 
4377 	if (polling)
4378 		sc->rx_ring_inuse = sc->rx_ring_cnt;
4379 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4380 		sc->rx_ring_inuse = IGB_MIN_RING_RSS;
4381 	else
4382 		sc->rx_ring_inuse = sc->rx_ring_msix;
4383 	if (bootverbose) {
4384 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d\n",
4385 		    sc->rx_ring_inuse, sc->rx_ring_cnt);
4386 	}
4387 }
4388 
4389 static int
4390 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4391 {
4392 	int hoff, iphlen, thoff;
4393 	struct mbuf *m;
4394 
4395 	m = *mp;
4396 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4397 
4398 	iphlen = m->m_pkthdr.csum_iphlen;
4399 	thoff = m->m_pkthdr.csum_thlen;
4400 	hoff = m->m_pkthdr.csum_lhlen;
4401 
4402 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4403 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4404 	KASSERT(hoff > 0, ("invalid ether hlen"));
4405 
4406 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4407 		m = m_pullup(m, hoff + iphlen + thoff);
4408 		if (m == NULL) {
4409 			*mp = NULL;
4410 			return ENOBUFS;
4411 		}
4412 		*mp = m;
4413 	}
4414 	if (txr->sc->flags & IGB_FLAG_TSO_IPLEN0) {
4415 		struct ip *ip;
4416 
4417 		ip = mtodoff(m, struct ip *, hoff);
4418 		ip->ip_len = 0;
4419 	}
4420 
4421 	return 0;
4422 }
4423 
4424 static void
4425 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4426 {
4427 	struct e1000_adv_tx_context_desc *TXD;
4428 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4429 	int hoff, ctxd, iphlen, thoff;
4430 
4431 	iphlen = m->m_pkthdr.csum_iphlen;
4432 	thoff = m->m_pkthdr.csum_thlen;
4433 	hoff = m->m_pkthdr.csum_lhlen;
4434 
4435 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4436 
4437 	ctxd = txr->next_avail_desc;
4438 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4439 
4440 	if (m->m_flags & M_VLANTAG) {
4441 		uint16_t vlantag;
4442 
4443 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4444 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4445 	}
4446 
4447 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4448 	vlan_macip_lens |= iphlen;
4449 
4450 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4451 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4452 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4453 
4454 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4455 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4456 	/* 82575 needs the queue index added */
4457 	if (txr->sc->hw.mac.type == e1000_82575)
4458 		mss_l4len_idx |= txr->me << 4;
4459 
4460 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4461 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4462 	TXD->seqnum_seed = htole32(0);
4463 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4464 
4465 	/* We've consumed the first desc, adjust counters */
4466 	if (++ctxd == txr->num_tx_desc)
4467 		ctxd = 0;
4468 	txr->next_avail_desc = ctxd;
4469 	--txr->tx_avail;
4470 
4471 	*hlen = hoff + iphlen + thoff;
4472 }
4473