1 /****************************************************************************** 2 3 Copyright (c) 2001-2009, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD: $*/ 34 35 #include "e1000_api.h" 36 37 /** 38 * e1000_init_mac_params - Initialize MAC function pointers 39 * @hw: pointer to the HW structure 40 * 41 * This function initializes the function pointers for the MAC 42 * set of functions. Called by drivers or by e1000_setup_init_funcs. 43 **/ 44 s32 e1000_init_mac_params(struct e1000_hw *hw) 45 { 46 s32 ret_val = E1000_SUCCESS; 47 48 if (hw->mac.ops.init_params) { 49 ret_val = hw->mac.ops.init_params(hw); 50 if (ret_val) { 51 DEBUGOUT("MAC Initialization Error\n"); 52 goto out; 53 } 54 } else { 55 DEBUGOUT("mac.init_mac_params was NULL\n"); 56 ret_val = -E1000_ERR_CONFIG; 57 } 58 59 out: 60 return ret_val; 61 } 62 63 /** 64 * e1000_init_nvm_params - Initialize NVM function pointers 65 * @hw: pointer to the HW structure 66 * 67 * This function initializes the function pointers for the NVM 68 * set of functions. Called by drivers or by e1000_setup_init_funcs. 69 **/ 70 s32 e1000_init_nvm_params(struct e1000_hw *hw) 71 { 72 s32 ret_val = E1000_SUCCESS; 73 74 if (hw->nvm.ops.init_params) { 75 ret_val = hw->nvm.ops.init_params(hw); 76 if (ret_val) { 77 DEBUGOUT("NVM Initialization Error\n"); 78 goto out; 79 } 80 } else { 81 DEBUGOUT("nvm.init_nvm_params was NULL\n"); 82 ret_val = -E1000_ERR_CONFIG; 83 } 84 85 out: 86 return ret_val; 87 } 88 89 /** 90 * e1000_init_phy_params - Initialize PHY function pointers 91 * @hw: pointer to the HW structure 92 * 93 * This function initializes the function pointers for the PHY 94 * set of functions. Called by drivers or by e1000_setup_init_funcs. 95 **/ 96 s32 e1000_init_phy_params(struct e1000_hw *hw) 97 { 98 s32 ret_val = E1000_SUCCESS; 99 100 if (hw->phy.ops.init_params) { 101 ret_val = hw->phy.ops.init_params(hw); 102 if (ret_val) { 103 DEBUGOUT("PHY Initialization Error\n"); 104 goto out; 105 } 106 } else { 107 DEBUGOUT("phy.init_phy_params was NULL\n"); 108 ret_val = -E1000_ERR_CONFIG; 109 } 110 111 out: 112 return ret_val; 113 } 114 115 /** 116 * e1000_set_mac_type - Sets MAC type 117 * @hw: pointer to the HW structure 118 * 119 * This function sets the mac type of the adapter based on the 120 * device ID stored in the hw structure. 121 * MUST BE FIRST FUNCTION CALLED (explicitly or through 122 * e1000_setup_init_funcs()). 123 **/ 124 s32 e1000_set_mac_type(struct e1000_hw *hw) 125 { 126 struct e1000_mac_info *mac = &hw->mac; 127 s32 ret_val = E1000_SUCCESS; 128 129 DEBUGFUNC("e1000_set_mac_type"); 130 131 switch (hw->device_id) { 132 #ifndef NO_82542_SUPPORT 133 case E1000_DEV_ID_82542: 134 mac->type = e1000_82542; 135 break; 136 #endif 137 case E1000_DEV_ID_82543GC_FIBER: 138 case E1000_DEV_ID_82543GC_COPPER: 139 mac->type = e1000_82543; 140 break; 141 case E1000_DEV_ID_82544EI_COPPER: 142 case E1000_DEV_ID_82544EI_FIBER: 143 case E1000_DEV_ID_82544GC_COPPER: 144 case E1000_DEV_ID_82544GC_LOM: 145 mac->type = e1000_82544; 146 break; 147 case E1000_DEV_ID_82540EM: 148 case E1000_DEV_ID_82540EM_LOM: 149 case E1000_DEV_ID_82540EP: 150 case E1000_DEV_ID_82540EP_LOM: 151 case E1000_DEV_ID_82540EP_LP: 152 mac->type = e1000_82540; 153 break; 154 case E1000_DEV_ID_82545EM_COPPER: 155 case E1000_DEV_ID_82545EM_FIBER: 156 mac->type = e1000_82545; 157 break; 158 case E1000_DEV_ID_82545GM_COPPER: 159 case E1000_DEV_ID_82545GM_FIBER: 160 case E1000_DEV_ID_82545GM_SERDES: 161 mac->type = e1000_82545_rev_3; 162 break; 163 case E1000_DEV_ID_82546EB_COPPER: 164 case E1000_DEV_ID_82546EB_FIBER: 165 case E1000_DEV_ID_82546EB_QUAD_COPPER: 166 mac->type = e1000_82546; 167 break; 168 case E1000_DEV_ID_82546GB_COPPER: 169 case E1000_DEV_ID_82546GB_FIBER: 170 case E1000_DEV_ID_82546GB_SERDES: 171 case E1000_DEV_ID_82546GB_PCIE: 172 case E1000_DEV_ID_82546GB_QUAD_COPPER: 173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 174 mac->type = e1000_82546_rev_3; 175 break; 176 case E1000_DEV_ID_82541EI: 177 case E1000_DEV_ID_82541EI_MOBILE: 178 case E1000_DEV_ID_82541ER_LOM: 179 mac->type = e1000_82541; 180 break; 181 case E1000_DEV_ID_82541ER: 182 case E1000_DEV_ID_82541GI: 183 case E1000_DEV_ID_82541GI_LF: 184 case E1000_DEV_ID_82541GI_MOBILE: 185 mac->type = e1000_82541_rev_2; 186 break; 187 case E1000_DEV_ID_82547EI: 188 case E1000_DEV_ID_82547EI_MOBILE: 189 mac->type = e1000_82547; 190 break; 191 case E1000_DEV_ID_82547GI: 192 mac->type = e1000_82547_rev_2; 193 break; 194 case E1000_DEV_ID_82571EB_COPPER: 195 case E1000_DEV_ID_82571EB_FIBER: 196 case E1000_DEV_ID_82571EB_SERDES: 197 case E1000_DEV_ID_82571EB_SERDES_DUAL: 198 case E1000_DEV_ID_82571EB_SERDES_QUAD: 199 case E1000_DEV_ID_82571EB_QUAD_COPPER: 200 case E1000_DEV_ID_82571PT_QUAD_COPPER: 201 case E1000_DEV_ID_82571EB_QUAD_FIBER: 202 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: 203 mac->type = e1000_82571; 204 break; 205 case E1000_DEV_ID_82572EI: 206 case E1000_DEV_ID_82572EI_COPPER: 207 case E1000_DEV_ID_82572EI_FIBER: 208 case E1000_DEV_ID_82572EI_SERDES: 209 mac->type = e1000_82572; 210 break; 211 case E1000_DEV_ID_82573E: 212 case E1000_DEV_ID_82573E_IAMT: 213 case E1000_DEV_ID_82573L: 214 mac->type = e1000_82573; 215 break; 216 case E1000_DEV_ID_82574L: 217 case E1000_DEV_ID_82574LA: 218 mac->type = e1000_82574; 219 break; 220 case E1000_DEV_ID_82583V: 221 mac->type = e1000_82583; 222 break; 223 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 224 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 225 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: 226 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: 227 mac->type = e1000_80003es2lan; 228 break; 229 case E1000_DEV_ID_ICH8_IFE: 230 case E1000_DEV_ID_ICH8_IFE_GT: 231 case E1000_DEV_ID_ICH8_IFE_G: 232 case E1000_DEV_ID_ICH8_IGP_M: 233 case E1000_DEV_ID_ICH8_IGP_M_AMT: 234 case E1000_DEV_ID_ICH8_IGP_AMT: 235 case E1000_DEV_ID_ICH8_IGP_C: 236 case E1000_DEV_ID_ICH8_82567V_3: 237 mac->type = e1000_ich8lan; 238 break; 239 case E1000_DEV_ID_ICH9_IFE: 240 case E1000_DEV_ID_ICH9_IFE_GT: 241 case E1000_DEV_ID_ICH9_IFE_G: 242 case E1000_DEV_ID_ICH9_IGP_M: 243 case E1000_DEV_ID_ICH9_IGP_M_AMT: 244 case E1000_DEV_ID_ICH9_IGP_M_V: 245 case E1000_DEV_ID_ICH9_IGP_AMT: 246 case E1000_DEV_ID_ICH9_BM: 247 case E1000_DEV_ID_ICH9_IGP_C: 248 case E1000_DEV_ID_ICH10_R_BM_LM: 249 case E1000_DEV_ID_ICH10_R_BM_LF: 250 case E1000_DEV_ID_ICH10_R_BM_V: 251 mac->type = e1000_ich9lan; 252 break; 253 case E1000_DEV_ID_ICH10_D_BM_LM: 254 case E1000_DEV_ID_ICH10_D_BM_LF: 255 case E1000_DEV_ID_ICH10_D_BM_V: 256 mac->type = e1000_ich10lan; 257 break; 258 case E1000_DEV_ID_PCH_D_HV_DM: 259 case E1000_DEV_ID_PCH_D_HV_DC: 260 case E1000_DEV_ID_PCH_M_HV_LM: 261 case E1000_DEV_ID_PCH_M_HV_LC: 262 mac->type = e1000_pchlan; 263 break; 264 case E1000_DEV_ID_PCH2_LV_LM: 265 case E1000_DEV_ID_PCH2_LV_V: 266 mac->type = e1000_pch2lan; 267 break; 268 default: 269 /* Should never have loaded on this device */ 270 ret_val = -E1000_ERR_MAC_INIT; 271 break; 272 } 273 274 return ret_val; 275 } 276 277 /** 278 * e1000_setup_init_funcs - Initializes function pointers 279 * @hw: pointer to the HW structure 280 * @init_device: TRUE will initialize the rest of the function pointers 281 * getting the device ready for use. FALSE will only set 282 * MAC type and the function pointers for the other init 283 * functions. Passing FALSE will not generate any hardware 284 * reads or writes. 285 * 286 * This function must be called by a driver in order to use the rest 287 * of the 'shared' code files. Called by drivers only. 288 **/ 289 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) 290 { 291 s32 ret_val; 292 293 /* Can't do much good without knowing the MAC type. */ 294 ret_val = e1000_set_mac_type(hw); 295 if (ret_val) { 296 DEBUGOUT("ERROR: MAC type could not be set properly.\n"); 297 goto out; 298 } 299 300 if (!hw->hw_addr) { 301 DEBUGOUT("ERROR: Registers not mapped\n"); 302 ret_val = -E1000_ERR_CONFIG; 303 goto out; 304 } 305 306 /* 307 * Init function pointers to generic implementations. We do this first 308 * allowing a driver module to override it afterward. 309 */ 310 e1000_init_mac_ops_generic(hw); 311 e1000_init_phy_ops_generic(hw); 312 e1000_init_nvm_ops_generic(hw); 313 314 /* 315 * Set up the init function pointers. These are functions within the 316 * adapter family file that sets up function pointers for the rest of 317 * the functions in that family. 318 */ 319 switch (hw->mac.type) { 320 #ifndef NO_82542_SUPPORT 321 case e1000_82542: 322 e1000_init_function_pointers_82542(hw); 323 break; 324 #endif 325 case e1000_82543: 326 case e1000_82544: 327 e1000_init_function_pointers_82543(hw); 328 break; 329 case e1000_82540: 330 case e1000_82545: 331 case e1000_82545_rev_3: 332 case e1000_82546: 333 case e1000_82546_rev_3: 334 e1000_init_function_pointers_82540(hw); 335 break; 336 case e1000_82541: 337 case e1000_82541_rev_2: 338 case e1000_82547: 339 case e1000_82547_rev_2: 340 e1000_init_function_pointers_82541(hw); 341 break; 342 case e1000_82571: 343 case e1000_82572: 344 case e1000_82573: 345 case e1000_82574: 346 case e1000_82583: 347 e1000_init_function_pointers_82571(hw); 348 break; 349 case e1000_80003es2lan: 350 e1000_init_function_pointers_80003es2lan(hw); 351 break; 352 case e1000_ich8lan: 353 case e1000_ich9lan: 354 case e1000_ich10lan: 355 case e1000_pchlan: 356 case e1000_pch2lan: 357 e1000_init_function_pointers_ich8lan(hw); 358 break; 359 default: 360 DEBUGOUT("Hardware not supported\n"); 361 ret_val = -E1000_ERR_CONFIG; 362 break; 363 } 364 365 /* 366 * Initialize the rest of the function pointers. These require some 367 * register reads/writes in some cases. 368 */ 369 if (!(ret_val) && init_device) { 370 ret_val = e1000_init_mac_params(hw); 371 if (ret_val) 372 goto out; 373 374 ret_val = e1000_init_nvm_params(hw); 375 if (ret_val) 376 goto out; 377 378 ret_val = e1000_init_phy_params(hw); 379 if (ret_val) 380 goto out; 381 } 382 383 out: 384 return ret_val; 385 } 386 387 /** 388 * e1000_get_bus_info - Obtain bus information for adapter 389 * @hw: pointer to the HW structure 390 * 391 * This will obtain information about the HW bus for which the 392 * adapter is attached and stores it in the hw structure. This is a 393 * function pointer entry point called by drivers. 394 **/ 395 s32 e1000_get_bus_info(struct e1000_hw *hw) 396 { 397 if (hw->mac.ops.get_bus_info) 398 return hw->mac.ops.get_bus_info(hw); 399 400 return E1000_SUCCESS; 401 } 402 403 /** 404 * e1000_clear_vfta - Clear VLAN filter table 405 * @hw: pointer to the HW structure 406 * 407 * This clears the VLAN filter table on the adapter. This is a function 408 * pointer entry point called by drivers. 409 **/ 410 void e1000_clear_vfta(struct e1000_hw *hw) 411 { 412 if (hw->mac.ops.clear_vfta) 413 hw->mac.ops.clear_vfta(hw); 414 } 415 416 /** 417 * e1000_write_vfta - Write value to VLAN filter table 418 * @hw: pointer to the HW structure 419 * @offset: the 32-bit offset in which to write the value to. 420 * @value: the 32-bit value to write at location offset. 421 * 422 * This writes a 32-bit value to a 32-bit offset in the VLAN filter 423 * table. This is a function pointer entry point called by drivers. 424 **/ 425 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 426 { 427 if (hw->mac.ops.write_vfta) 428 hw->mac.ops.write_vfta(hw, offset, value); 429 } 430 431 /** 432 * e1000_update_mc_addr_list - Update Multicast addresses 433 * @hw: pointer to the HW structure 434 * @mc_addr_list: array of multicast addresses to program 435 * @mc_addr_count: number of multicast addresses to program 436 * 437 * Updates the Multicast Table Array. 438 * The caller must have a packed mc_addr_list of multicast addresses. 439 **/ 440 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, 441 u32 mc_addr_count) 442 { 443 if (hw->mac.ops.update_mc_addr_list) 444 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, 445 mc_addr_count); 446 } 447 448 /** 449 * e1000_force_mac_fc - Force MAC flow control 450 * @hw: pointer to the HW structure 451 * 452 * Force the MAC's flow control settings. Currently no func pointer exists 453 * and all implementations are handled in the generic version of this 454 * function. 455 **/ 456 s32 e1000_force_mac_fc(struct e1000_hw *hw) 457 { 458 return e1000_force_mac_fc_generic(hw); 459 } 460 461 /** 462 * e1000_check_for_link - Check/Store link connection 463 * @hw: pointer to the HW structure 464 * 465 * This checks the link condition of the adapter and stores the 466 * results in the hw->mac structure. This is a function pointer entry 467 * point called by drivers. 468 **/ 469 s32 e1000_check_for_link(struct e1000_hw *hw) 470 { 471 if (hw->mac.ops.check_for_link) 472 return hw->mac.ops.check_for_link(hw); 473 474 return -E1000_ERR_CONFIG; 475 } 476 477 /** 478 * e1000_check_mng_mode - Check management mode 479 * @hw: pointer to the HW structure 480 * 481 * This checks if the adapter has manageability enabled. 482 * This is a function pointer entry point called by drivers. 483 **/ 484 bool e1000_check_mng_mode(struct e1000_hw *hw) 485 { 486 if (hw->mac.ops.check_mng_mode) 487 return hw->mac.ops.check_mng_mode(hw); 488 489 return FALSE; 490 } 491 492 /** 493 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface 494 * @hw: pointer to the HW structure 495 * @buffer: pointer to the host interface 496 * @length: size of the buffer 497 * 498 * Writes the DHCP information to the host interface. 499 **/ 500 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) 501 { 502 return e1000_mng_write_dhcp_info_generic(hw, buffer, length); 503 } 504 505 /** 506 * e1000_reset_hw - Reset hardware 507 * @hw: pointer to the HW structure 508 * 509 * This resets the hardware into a known state. This is a function pointer 510 * entry point called by drivers. 511 **/ 512 s32 e1000_reset_hw(struct e1000_hw *hw) 513 { 514 if (hw->mac.ops.reset_hw) 515 return hw->mac.ops.reset_hw(hw); 516 517 return -E1000_ERR_CONFIG; 518 } 519 520 /** 521 * e1000_init_hw - Initialize hardware 522 * @hw: pointer to the HW structure 523 * 524 * This inits the hardware readying it for operation. This is a function 525 * pointer entry point called by drivers. 526 **/ 527 s32 e1000_init_hw(struct e1000_hw *hw) 528 { 529 if (hw->mac.ops.init_hw) 530 return hw->mac.ops.init_hw(hw); 531 532 return -E1000_ERR_CONFIG; 533 } 534 535 /** 536 * e1000_setup_link - Configures link and flow control 537 * @hw: pointer to the HW structure 538 * 539 * This configures link and flow control settings for the adapter. This 540 * is a function pointer entry point called by drivers. While modules can 541 * also call this, they probably call their own version of this function. 542 **/ 543 s32 e1000_setup_link(struct e1000_hw *hw) 544 { 545 if (hw->mac.ops.setup_link) 546 return hw->mac.ops.setup_link(hw); 547 548 return -E1000_ERR_CONFIG; 549 } 550 551 /** 552 * e1000_get_speed_and_duplex - Returns current speed and duplex 553 * @hw: pointer to the HW structure 554 * @speed: pointer to a 16-bit value to store the speed 555 * @duplex: pointer to a 16-bit value to store the duplex. 556 * 557 * This returns the speed and duplex of the adapter in the two 'out' 558 * variables passed in. This is a function pointer entry point called 559 * by drivers. 560 **/ 561 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) 562 { 563 if (hw->mac.ops.get_link_up_info) 564 return hw->mac.ops.get_link_up_info(hw, speed, duplex); 565 566 return -E1000_ERR_CONFIG; 567 } 568 569 /** 570 * e1000_setup_led - Configures SW controllable LED 571 * @hw: pointer to the HW structure 572 * 573 * This prepares the SW controllable LED for use and saves the current state 574 * of the LED so it can be later restored. This is a function pointer entry 575 * point called by drivers. 576 **/ 577 s32 e1000_setup_led(struct e1000_hw *hw) 578 { 579 if (hw->mac.ops.setup_led) 580 return hw->mac.ops.setup_led(hw); 581 582 return E1000_SUCCESS; 583 } 584 585 /** 586 * e1000_cleanup_led - Restores SW controllable LED 587 * @hw: pointer to the HW structure 588 * 589 * This restores the SW controllable LED to the value saved off by 590 * e1000_setup_led. This is a function pointer entry point called by drivers. 591 **/ 592 s32 e1000_cleanup_led(struct e1000_hw *hw) 593 { 594 if (hw->mac.ops.cleanup_led) 595 return hw->mac.ops.cleanup_led(hw); 596 597 return E1000_SUCCESS; 598 } 599 600 /** 601 * e1000_blink_led - Blink SW controllable LED 602 * @hw: pointer to the HW structure 603 * 604 * This starts the adapter LED blinking. Request the LED to be setup first 605 * and cleaned up after. This is a function pointer entry point called by 606 * drivers. 607 **/ 608 s32 e1000_blink_led(struct e1000_hw *hw) 609 { 610 if (hw->mac.ops.blink_led) 611 return hw->mac.ops.blink_led(hw); 612 613 return E1000_SUCCESS; 614 } 615 616 /** 617 * e1000_id_led_init - store LED configurations in SW 618 * @hw: pointer to the HW structure 619 * 620 * Initializes the LED config in SW. This is a function pointer entry point 621 * called by drivers. 622 **/ 623 s32 e1000_id_led_init(struct e1000_hw *hw) 624 { 625 if (hw->mac.ops.id_led_init) 626 return hw->mac.ops.id_led_init(hw); 627 628 return E1000_SUCCESS; 629 } 630 631 /** 632 * e1000_led_on - Turn on SW controllable LED 633 * @hw: pointer to the HW structure 634 * 635 * Turns the SW defined LED on. This is a function pointer entry point 636 * called by drivers. 637 **/ 638 s32 e1000_led_on(struct e1000_hw *hw) 639 { 640 if (hw->mac.ops.led_on) 641 return hw->mac.ops.led_on(hw); 642 643 return E1000_SUCCESS; 644 } 645 646 /** 647 * e1000_led_off - Turn off SW controllable LED 648 * @hw: pointer to the HW structure 649 * 650 * Turns the SW defined LED off. This is a function pointer entry point 651 * called by drivers. 652 **/ 653 s32 e1000_led_off(struct e1000_hw *hw) 654 { 655 if (hw->mac.ops.led_off) 656 return hw->mac.ops.led_off(hw); 657 658 return E1000_SUCCESS; 659 } 660 661 /** 662 * e1000_reset_adaptive - Reset adaptive IFS 663 * @hw: pointer to the HW structure 664 * 665 * Resets the adaptive IFS. Currently no func pointer exists and all 666 * implementations are handled in the generic version of this function. 667 **/ 668 void e1000_reset_adaptive(struct e1000_hw *hw) 669 { 670 e1000_reset_adaptive_generic(hw); 671 } 672 673 /** 674 * e1000_update_adaptive - Update adaptive IFS 675 * @hw: pointer to the HW structure 676 * 677 * Updates adapter IFS. Currently no func pointer exists and all 678 * implementations are handled in the generic version of this function. 679 **/ 680 void e1000_update_adaptive(struct e1000_hw *hw) 681 { 682 e1000_update_adaptive_generic(hw); 683 } 684 685 /** 686 * e1000_disable_pcie_master - Disable PCI-Express master access 687 * @hw: pointer to the HW structure 688 * 689 * Disables PCI-Express master access and verifies there are no pending 690 * requests. Currently no func pointer exists and all implementations are 691 * handled in the generic version of this function. 692 **/ 693 s32 e1000_disable_pcie_master(struct e1000_hw *hw) 694 { 695 return e1000_disable_pcie_master_generic(hw); 696 } 697 698 /** 699 * e1000_config_collision_dist - Configure collision distance 700 * @hw: pointer to the HW structure 701 * 702 * Configures the collision distance to the default value and is used 703 * during link setup. 704 **/ 705 void e1000_config_collision_dist(struct e1000_hw *hw) 706 { 707 if (hw->mac.ops.config_collision_dist) 708 hw->mac.ops.config_collision_dist(hw); 709 } 710 711 /** 712 * e1000_rar_set - Sets a receive address register 713 * @hw: pointer to the HW structure 714 * @addr: address to set the RAR to 715 * @index: the RAR to set 716 * 717 * Sets a Receive Address Register (RAR) to the specified address. 718 **/ 719 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 720 { 721 if (hw->mac.ops.rar_set) 722 hw->mac.ops.rar_set(hw, addr, index); 723 } 724 725 /** 726 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state 727 * @hw: pointer to the HW structure 728 * 729 * Ensures that the MDI/MDIX SW state is valid. 730 **/ 731 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) 732 { 733 if (hw->mac.ops.validate_mdi_setting) 734 return hw->mac.ops.validate_mdi_setting(hw); 735 736 return E1000_SUCCESS; 737 } 738 739 /** 740 * e1000_hash_mc_addr - Determines address location in multicast table 741 * @hw: pointer to the HW structure 742 * @mc_addr: Multicast address to hash. 743 * 744 * This hashes an address to determine its location in the multicast 745 * table. Currently no func pointer exists and all implementations 746 * are handled in the generic version of this function. 747 **/ 748 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 749 { 750 return e1000_hash_mc_addr_generic(hw, mc_addr); 751 } 752 753 /** 754 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX 755 * @hw: pointer to the HW structure 756 * 757 * Enables packet filtering on transmit packets if manageability is enabled 758 * and host interface is enabled. 759 * Currently no func pointer exists and all implementations are handled in the 760 * generic version of this function. 761 **/ 762 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) 763 { 764 return e1000_enable_tx_pkt_filtering_generic(hw); 765 } 766 767 /** 768 * e1000_mng_host_if_write - Writes to the manageability host interface 769 * @hw: pointer to the HW structure 770 * @buffer: pointer to the host interface buffer 771 * @length: size of the buffer 772 * @offset: location in the buffer to write to 773 * @sum: sum of the data (not checksum) 774 * 775 * This function writes the buffer content at the offset given on the host if. 776 * It also does alignment considerations to do the writes in most efficient 777 * way. Also fills up the sum of the buffer in *buffer parameter. 778 **/ 779 s32 e1000_mng_host_if_write(struct e1000_hw * hw, u8 *buffer, u16 length, 780 u16 offset, u8 *sum) 781 { 782 if (hw->mac.ops.mng_host_if_write) 783 return hw->mac.ops.mng_host_if_write(hw, buffer, length, 784 offset, sum); 785 786 return E1000_NOT_IMPLEMENTED; 787 } 788 789 /** 790 * e1000_mng_write_cmd_header - Writes manageability command header 791 * @hw: pointer to the HW structure 792 * @hdr: pointer to the host interface command header 793 * 794 * Writes the command header after does the checksum calculation. 795 **/ 796 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, 797 struct e1000_host_mng_command_header *hdr) 798 { 799 if (hw->mac.ops.mng_write_cmd_header) 800 return hw->mac.ops.mng_write_cmd_header(hw, hdr); 801 802 return E1000_NOT_IMPLEMENTED; 803 } 804 805 /** 806 * e1000_mng_enable_host_if - Checks host interface is enabled 807 * @hw: pointer to the HW structure 808 * 809 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND 810 * 811 * This function checks whether the HOST IF is enabled for command operation 812 * and also checks whether the previous command is completed. It busy waits 813 * in case of previous command is not completed. 814 **/ 815 s32 e1000_mng_enable_host_if(struct e1000_hw * hw) 816 { 817 if (hw->mac.ops.mng_enable_host_if) 818 return hw->mac.ops.mng_enable_host_if(hw); 819 820 return E1000_NOT_IMPLEMENTED; 821 } 822 823 /** 824 * e1000_wait_autoneg - Waits for autonegotiation completion 825 * @hw: pointer to the HW structure 826 * 827 * Waits for autoneg to complete. Currently no func pointer exists and all 828 * implementations are handled in the generic version of this function. 829 **/ 830 s32 e1000_wait_autoneg(struct e1000_hw *hw) 831 { 832 if (hw->mac.ops.wait_autoneg) 833 return hw->mac.ops.wait_autoneg(hw); 834 835 return E1000_SUCCESS; 836 } 837 838 /** 839 * e1000_check_reset_block - Verifies PHY can be reset 840 * @hw: pointer to the HW structure 841 * 842 * Checks if the PHY is in a state that can be reset or if manageability 843 * has it tied up. This is a function pointer entry point called by drivers. 844 **/ 845 s32 e1000_check_reset_block(struct e1000_hw *hw) 846 { 847 if (hw->phy.ops.check_reset_block) 848 return hw->phy.ops.check_reset_block(hw); 849 850 return E1000_SUCCESS; 851 } 852 853 /** 854 * e1000_read_phy_reg - Reads PHY register 855 * @hw: pointer to the HW structure 856 * @offset: the register to read 857 * @data: the buffer to store the 16-bit read. 858 * 859 * Reads the PHY register and returns the value in data. 860 * This is a function pointer entry point called by drivers. 861 **/ 862 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) 863 { 864 if (hw->phy.ops.read_reg) 865 return hw->phy.ops.read_reg(hw, offset, data); 866 867 return E1000_SUCCESS; 868 } 869 870 /** 871 * e1000_write_phy_reg - Writes PHY register 872 * @hw: pointer to the HW structure 873 * @offset: the register to write 874 * @data: the value to write. 875 * 876 * Writes the PHY register at offset with the value in data. 877 * This is a function pointer entry point called by drivers. 878 **/ 879 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) 880 { 881 if (hw->phy.ops.write_reg) 882 return hw->phy.ops.write_reg(hw, offset, data); 883 884 return E1000_SUCCESS; 885 } 886 887 /** 888 * e1000_release_phy - Generic release PHY 889 * @hw: pointer to the HW structure 890 * 891 * Return if silicon family does not require a semaphore when accessing the 892 * PHY. 893 **/ 894 void e1000_release_phy(struct e1000_hw *hw) 895 { 896 if (hw->phy.ops.release) 897 hw->phy.ops.release(hw); 898 } 899 900 /** 901 * e1000_acquire_phy - Generic acquire PHY 902 * @hw: pointer to the HW structure 903 * 904 * Return success if silicon family does not require a semaphore when 905 * accessing the PHY. 906 **/ 907 s32 e1000_acquire_phy(struct e1000_hw *hw) 908 { 909 if (hw->phy.ops.acquire) 910 return hw->phy.ops.acquire(hw); 911 912 return E1000_SUCCESS; 913 } 914 915 /** 916 * e1000_cfg_on_link_up - Configure PHY upon link up 917 * @hw: pointer to the HW structure 918 **/ 919 s32 e1000_cfg_on_link_up(struct e1000_hw *hw) 920 { 921 if (hw->phy.ops.cfg_on_link_up) 922 return hw->phy.ops.cfg_on_link_up(hw); 923 924 return E1000_SUCCESS; 925 } 926 927 /** 928 * e1000_read_kmrn_reg - Reads register using Kumeran interface 929 * @hw: pointer to the HW structure 930 * @offset: the register to read 931 * @data: the location to store the 16-bit value read. 932 * 933 * Reads a register out of the Kumeran interface. Currently no func pointer 934 * exists and all implementations are handled in the generic version of 935 * this function. 936 **/ 937 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) 938 { 939 return e1000_read_kmrn_reg_generic(hw, offset, data); 940 } 941 942 /** 943 * e1000_write_kmrn_reg - Writes register using Kumeran interface 944 * @hw: pointer to the HW structure 945 * @offset: the register to write 946 * @data: the value to write. 947 * 948 * Writes a register to the Kumeran interface. Currently no func pointer 949 * exists and all implementations are handled in the generic version of 950 * this function. 951 **/ 952 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) 953 { 954 return e1000_write_kmrn_reg_generic(hw, offset, data); 955 } 956 957 /** 958 * e1000_get_cable_length - Retrieves cable length estimation 959 * @hw: pointer to the HW structure 960 * 961 * This function estimates the cable length and stores them in 962 * hw->phy.min_length and hw->phy.max_length. This is a function pointer 963 * entry point called by drivers. 964 **/ 965 s32 e1000_get_cable_length(struct e1000_hw *hw) 966 { 967 if (hw->phy.ops.get_cable_length) 968 return hw->phy.ops.get_cable_length(hw); 969 970 return E1000_SUCCESS; 971 } 972 973 /** 974 * e1000_get_phy_info - Retrieves PHY information from registers 975 * @hw: pointer to the HW structure 976 * 977 * This function gets some information from various PHY registers and 978 * populates hw->phy values with it. This is a function pointer entry 979 * point called by drivers. 980 **/ 981 s32 e1000_get_phy_info(struct e1000_hw *hw) 982 { 983 if (hw->phy.ops.get_info) 984 return hw->phy.ops.get_info(hw); 985 986 return E1000_SUCCESS; 987 } 988 989 /** 990 * e1000_phy_hw_reset - Hard PHY reset 991 * @hw: pointer to the HW structure 992 * 993 * Performs a hard PHY reset. This is a function pointer entry point called 994 * by drivers. 995 **/ 996 s32 e1000_phy_hw_reset(struct e1000_hw *hw) 997 { 998 if (hw->phy.ops.reset) 999 return hw->phy.ops.reset(hw); 1000 1001 return E1000_SUCCESS; 1002 } 1003 1004 /** 1005 * e1000_phy_commit - Soft PHY reset 1006 * @hw: pointer to the HW structure 1007 * 1008 * Performs a soft PHY reset on those that apply. This is a function pointer 1009 * entry point called by drivers. 1010 **/ 1011 s32 e1000_phy_commit(struct e1000_hw *hw) 1012 { 1013 if (hw->phy.ops.commit) 1014 return hw->phy.ops.commit(hw); 1015 1016 return E1000_SUCCESS; 1017 } 1018 1019 /** 1020 * e1000_set_d0_lplu_state - Sets low power link up state for D0 1021 * @hw: pointer to the HW structure 1022 * @active: boolean used to enable/disable lplu 1023 * 1024 * Success returns 0, Failure returns 1 1025 * 1026 * The low power link up (lplu) state is set to the power management level D0 1027 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 1028 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1029 * is used during Dx states where the power conservation is most important. 1030 * During driver activity, SmartSpeed should be enabled so performance is 1031 * maintained. This is a function pointer entry point called by drivers. 1032 **/ 1033 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) 1034 { 1035 if (hw->phy.ops.set_d0_lplu_state) 1036 return hw->phy.ops.set_d0_lplu_state(hw, active); 1037 1038 return E1000_SUCCESS; 1039 } 1040 1041 /** 1042 * e1000_set_d3_lplu_state - Sets low power link up state for D3 1043 * @hw: pointer to the HW structure 1044 * @active: boolean used to enable/disable lplu 1045 * 1046 * Success returns 0, Failure returns 1 1047 * 1048 * The low power link up (lplu) state is set to the power management level D3 1049 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 1050 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1051 * is used during Dx states where the power conservation is most important. 1052 * During driver activity, SmartSpeed should be enabled so performance is 1053 * maintained. This is a function pointer entry point called by drivers. 1054 **/ 1055 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1056 { 1057 if (hw->phy.ops.set_d3_lplu_state) 1058 return hw->phy.ops.set_d3_lplu_state(hw, active); 1059 1060 return E1000_SUCCESS; 1061 } 1062 1063 /** 1064 * e1000_read_mac_addr - Reads MAC address 1065 * @hw: pointer to the HW structure 1066 * 1067 * Reads the MAC address out of the adapter and stores it in the HW structure. 1068 * Currently no func pointer exists and all implementations are handled in the 1069 * generic version of this function. 1070 **/ 1071 s32 e1000_read_mac_addr(struct e1000_hw *hw) 1072 { 1073 if (hw->mac.ops.read_mac_addr) 1074 return hw->mac.ops.read_mac_addr(hw); 1075 1076 return e1000_read_mac_addr_generic(hw); 1077 } 1078 1079 /** 1080 * e1000_read_pba_string - Read device part number string 1081 * @hw: pointer to the HW structure 1082 * @pba_num: pointer to device part number 1083 * @pba_num_size: size of part number buffer 1084 * 1085 * Reads the product board assembly (PBA) number from the EEPROM and stores 1086 * the value in pba_num. 1087 * Currently no func pointer exists and all implementations are handled in the 1088 * generic version of this function. 1089 **/ 1090 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) 1091 { 1092 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); 1093 } 1094 1095 /** 1096 * e1000_read_pba_length - Read device part number string length 1097 * @hw: pointer to the HW structure 1098 * @pba_num_size: size of part number buffer 1099 * 1100 * Reads the product board assembly (PBA) number length from the EEPROM and 1101 * stores the value in pba_num. 1102 * Currently no func pointer exists and all implementations are handled in the 1103 * generic version of this function. 1104 **/ 1105 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) 1106 { 1107 return e1000_read_pba_length_generic(hw, pba_num_size); 1108 } 1109 1110 /** 1111 * e1000_read_pba_num - Read device part number 1112 * @hw: pointer to the HW structure 1113 * @pba_num: pointer to device part number 1114 * 1115 * Reads the product board assembly (PBA) number from the EEPROM and stores 1116 * the value in pba_num. 1117 * Currently no func pointer exists and all implementations are handled in the 1118 * generic version of this function. 1119 **/ 1120 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) 1121 { 1122 return e1000_read_pba_num_generic(hw, pba_num); 1123 } 1124 1125 /** 1126 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum 1127 * @hw: pointer to the HW structure 1128 * 1129 * Validates the NVM checksum is correct. This is a function pointer entry 1130 * point called by drivers. 1131 **/ 1132 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 1133 { 1134 if (hw->nvm.ops.validate) 1135 return hw->nvm.ops.validate(hw); 1136 1137 return -E1000_ERR_CONFIG; 1138 } 1139 1140 /** 1141 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum 1142 * @hw: pointer to the HW structure 1143 * 1144 * Updates the NVM checksum. Currently no func pointer exists and all 1145 * implementations are handled in the generic version of this function. 1146 **/ 1147 s32 e1000_update_nvm_checksum(struct e1000_hw *hw) 1148 { 1149 if (hw->nvm.ops.update) 1150 return hw->nvm.ops.update(hw); 1151 1152 return -E1000_ERR_CONFIG; 1153 } 1154 1155 /** 1156 * e1000_reload_nvm - Reloads EEPROM 1157 * @hw: pointer to the HW structure 1158 * 1159 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the 1160 * extended control register. 1161 **/ 1162 void e1000_reload_nvm(struct e1000_hw *hw) 1163 { 1164 if (hw->nvm.ops.reload) 1165 hw->nvm.ops.reload(hw); 1166 } 1167 1168 /** 1169 * e1000_read_nvm - Reads NVM (EEPROM) 1170 * @hw: pointer to the HW structure 1171 * @offset: the word offset to read 1172 * @words: number of 16-bit words to read 1173 * @data: pointer to the properly sized buffer for the data. 1174 * 1175 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function 1176 * pointer entry point called by drivers. 1177 **/ 1178 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1179 { 1180 if (hw->nvm.ops.read) 1181 return hw->nvm.ops.read(hw, offset, words, data); 1182 1183 return -E1000_ERR_CONFIG; 1184 } 1185 1186 /** 1187 * e1000_write_nvm - Writes to NVM (EEPROM) 1188 * @hw: pointer to the HW structure 1189 * @offset: the word offset to read 1190 * @words: number of 16-bit words to write 1191 * @data: pointer to the properly sized buffer for the data. 1192 * 1193 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function 1194 * pointer entry point called by drivers. 1195 **/ 1196 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 1197 { 1198 if (hw->nvm.ops.write) 1199 return hw->nvm.ops.write(hw, offset, words, data); 1200 1201 return E1000_SUCCESS; 1202 } 1203 1204 /** 1205 * e1000_power_up_phy - Restores link in case of PHY power down 1206 * @hw: pointer to the HW structure 1207 * 1208 * The phy may be powered down to save power, to turn off link when the 1209 * driver is unloaded, or wake on lan is not enabled (among others). 1210 **/ 1211 void e1000_power_up_phy(struct e1000_hw *hw) 1212 { 1213 if (hw->phy.ops.power_up) 1214 hw->phy.ops.power_up(hw); 1215 1216 e1000_setup_link(hw); 1217 } 1218 1219 /** 1220 * e1000_power_down_phy - Power down PHY 1221 * @hw: pointer to the HW structure 1222 * 1223 * The phy may be powered down to save power, to turn off link when the 1224 * driver is unloaded, or wake on lan is not enabled (among others). 1225 **/ 1226 void e1000_power_down_phy(struct e1000_hw *hw) 1227 { 1228 if (hw->phy.ops.power_down) 1229 hw->phy.ops.power_down(hw); 1230 } 1231 1232