xref: /dflybsd-src/sys/dev/netif/fxp/if_fxp.c (revision d54592ee9e96c920b951af2e00cd72c0081ccae3)
1 /*-
2  * Copyright (c) 1995, David Greenman
3  * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.110.2.30 2003/06/12 16:47:05 mux Exp $
29  * $DragonFly: src/sys/dev/netif/fxp/if_fxp.c,v 1.58 2008/08/03 11:00:32 sephe Exp $
30  */
31 
32 /*
33  * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
34  */
35 
36 #include "opt_polling.h"
37 #include "opt_ethernet.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/mbuf.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/interrupt.h>
45 #include <sys/socket.h>
46 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
48 
49 #include <net/if.h>
50 #include <net/ifq_var.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 
54 #ifdef NS
55 #include <netns/ns.h>
56 #include <netns/ns_if.h>
57 #endif
58 
59 #include <net/bpf.h>
60 #include <sys/sockio.h>
61 #include <sys/bus.h>
62 #include <sys/rman.h>
63 
64 #include <net/ethernet.h>
65 #include <net/if_arp.h>
66 
67 #include <vm/vm.h>		/* for vtophys */
68 #include <vm/pmap.h>		/* for vtophys */
69 
70 #include <net/if_types.h>
71 #include <net/vlan/if_vlan_var.h>
72 
73 #include <bus/pci/pcivar.h>
74 #include <bus/pci/pcireg.h>		/* for PCIM_CMD_xxx */
75 
76 #include "../mii_layer/mii.h"
77 #include "../mii_layer/miivar.h"
78 
79 #include "if_fxpreg.h"
80 #include "if_fxpvar.h"
81 #include "rcvbundl.h"
82 
83 #include "miibus_if.h"
84 
85 /*
86  * NOTE!  On the Alpha, we have an alignment constraint.  The
87  * card DMAs the packet immediately following the RFA.  However,
88  * the first thing in the packet is a 14-byte Ethernet header.
89  * This means that the packet is misaligned.  To compensate,
90  * we actually offset the RFA 2 bytes into the cluster.  This
91  * alignes the packet after the Ethernet header at a 32-bit
92  * boundary.  HOWEVER!  This means that the RFA is misaligned!
93  */
94 #define	RFA_ALIGNMENT_FUDGE	2
95 
96 /*
97  * Set initial transmit threshold at 64 (512 bytes). This is
98  * increased by 64 (512 bytes) at a time, to maximum of 192
99  * (1536 bytes), if an underrun occurs.
100  */
101 static int tx_threshold = 64;
102 
103 /*
104  * The configuration byte map has several undefined fields which
105  * must be one or must be zero.  Set up a template for these bits
106  * only, (assuming a 82557 chip) leaving the actual configuration
107  * to fxp_init.
108  *
109  * See struct fxp_cb_config for the bit definitions.
110  */
111 static u_char fxp_cb_config_template[] = {
112 	0x0, 0x0,		/* cb_status */
113 	0x0, 0x0,		/* cb_command */
114 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
115 	0x0,	/*  0 */
116 	0x0,	/*  1 */
117 	0x0,	/*  2 */
118 	0x0,	/*  3 */
119 	0x0,	/*  4 */
120 	0x0,	/*  5 */
121 	0x32,	/*  6 */
122 	0x0,	/*  7 */
123 	0x0,	/*  8 */
124 	0x0,	/*  9 */
125 	0x6,	/* 10 */
126 	0x0,	/* 11 */
127 	0x0,	/* 12 */
128 	0x0,	/* 13 */
129 	0xf2,	/* 14 */
130 	0x48,	/* 15 */
131 	0x0,	/* 16 */
132 	0x40,	/* 17 */
133 	0xf0,	/* 18 */
134 	0x0,	/* 19 */
135 	0x3f,	/* 20 */
136 	0x5	/* 21 */
137 };
138 
139 struct fxp_ident {
140 	u_int16_t	devid;
141 	int16_t		revid;		/* -1 matches anything */
142 	char 		*name;
143 };
144 
145 /*
146  * Claim various Intel PCI device identifiers for this driver.  The
147  * sub-vendor and sub-device field are extensively used to identify
148  * particular variants, but we don't currently differentiate between
149  * them.
150  */
151 static struct fxp_ident fxp_ident_table[] = {
152      { 0x1029,	-1,	"Intel 82559 PCI/CardBus Pro/100" },
153      { 0x1030,	-1,	"Intel 82559 Pro/100 Ethernet" },
154      { 0x1031,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
155      { 0x1032,	-1,	"Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
156      { 0x1033,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
157      { 0x1034,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
158      { 0x1035,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
159      { 0x1036,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
160      { 0x1037,	-1,	"Intel 82801CAM (ICH3) Pro/100 Ethernet" },
161      { 0x1038,	-1,	"Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
162      { 0x1039,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
163      { 0x103A,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
164      { 0x103B,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
165      { 0x103C,	-1,	"Intel 82801DB (ICH4) Pro/100 Ethernet" },
166      { 0x103D,	-1,	"Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
167      { 0x103E,	-1,	"Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
168      { 0x1050,	-1,	"Intel 82801BA (D865) Pro/100 VE Ethernet" },
169      { 0x1051,	-1,	"Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
170      { 0x1059,	-1,	"Intel 82551QM Pro/100 M Mobile Connection" },
171      { 0x1064,	-1,	"Intel 82562ET/EZ/GT/GZ (ICH6/ICH6R) Pro/100 VE Ethernet" },
172      { 0x1065,	-1,	"Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
173      { 0x1068,	-1,	"Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
174      { 0x1069,	-1,	"Intel 82562EM/EX/GX Pro/100 Ethernet" },
175      { 0x1091,	-1,	"Intel 82562GX Pro/100 Ethernet" },
176      { 0x1092,	-1,	"Intel Pro/100 VE Network Connection" },
177      { 0x1093,	-1,	"Intel Pro/100 VM Network Connection" },
178      { 0x1094,	-1,	"Intel Pro/100 946GZ (ICH7) Network Connection" },
179      { 0x1209,	-1,	"Intel 82559ER Embedded 10/100 Ethernet" },
180      { 0x1229,	0x01,	"Intel 82557 Pro/100 Ethernet" },
181      { 0x1229,	0x02,	"Intel 82557 Pro/100 Ethernet" },
182      { 0x1229,	0x03,	"Intel 82557 Pro/100 Ethernet" },
183      { 0x1229,	0x04,	"Intel 82558 Pro/100 Ethernet" },
184      { 0x1229,	0x05,	"Intel 82558 Pro/100 Ethernet" },
185      { 0x1229,	0x06,	"Intel 82559 Pro/100 Ethernet" },
186      { 0x1229,	0x07,	"Intel 82559 Pro/100 Ethernet" },
187      { 0x1229,	0x08,	"Intel 82559 Pro/100 Ethernet" },
188      { 0x1229,	0x09,	"Intel 82559ER Pro/100 Ethernet" },
189      { 0x1229,	0x0c,	"Intel 82550 Pro/100 Ethernet" },
190      { 0x1229,	0x0d,	"Intel 82550 Pro/100 Ethernet" },
191      { 0x1229,	0x0e,	"Intel 82550 Pro/100 Ethernet" },
192      { 0x1229,	0x0f,	"Intel 82551 Pro/100 Ethernet" },
193      { 0x1229,	0x10,	"Intel 82551 Pro/100 Ethernet" },
194      { 0x1229,	-1,	"Intel 82557/8/9 Pro/100 Ethernet" },
195      { 0x2449,	-1,	"Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
196      { 0x27dc,	-1,	"Intel 82801GB (ICH7) 10/100 Ethernet" },
197      { 0,	-1,	NULL },
198 };
199 
200 static int		fxp_probe(device_t dev);
201 static int		fxp_attach(device_t dev);
202 static int		fxp_detach(device_t dev);
203 static int		fxp_shutdown(device_t dev);
204 static int		fxp_suspend(device_t dev);
205 static int		fxp_resume(device_t dev);
206 
207 static void		fxp_intr(void *xsc);
208 static void		fxp_intr_body(struct fxp_softc *sc,
209 				u_int8_t statack, int count);
210 
211 static void 		fxp_init(void *xsc);
212 static void 		fxp_tick(void *xsc);
213 static void		fxp_powerstate_d0(device_t dev);
214 static void 		fxp_start(struct ifnet *ifp);
215 static void		fxp_stop(struct fxp_softc *sc);
216 static void 		fxp_release(device_t dev);
217 static int		fxp_ioctl(struct ifnet *ifp, u_long command,
218 			    caddr_t data, struct ucred *);
219 static void 		fxp_watchdog(struct ifnet *ifp);
220 static int		fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
221 static int		fxp_mc_addrs(struct fxp_softc *sc);
222 static void		fxp_mc_setup(struct fxp_softc *sc);
223 static u_int16_t	fxp_eeprom_getword(struct fxp_softc *sc, int offset,
224 			    int autosize);
225 static void 		fxp_eeprom_putword(struct fxp_softc *sc, int offset,
226 			    u_int16_t data);
227 static void		fxp_autosize_eeprom(struct fxp_softc *sc);
228 static void		fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
229 			    int offset, int words);
230 static void		fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
231 			    int offset, int words);
232 static int		fxp_ifmedia_upd(struct ifnet *ifp);
233 static void		fxp_ifmedia_sts(struct ifnet *ifp,
234 			    struct ifmediareq *ifmr);
235 static int		fxp_serial_ifmedia_upd(struct ifnet *ifp);
236 static void		fxp_serial_ifmedia_sts(struct ifnet *ifp,
237 			    struct ifmediareq *ifmr);
238 static int		fxp_miibus_readreg(device_t dev, int phy, int reg);
239 static void		fxp_miibus_writereg(device_t dev, int phy, int reg,
240 			    int value);
241 static void		fxp_load_ucode(struct fxp_softc *sc);
242 static int		sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
243 static int		sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
244 #ifdef DEVICE_POLLING
245 static poll_handler_t fxp_poll;
246 #endif
247 
248 static void		fxp_lwcopy(volatile u_int32_t *src,
249 			    volatile u_int32_t *dst);
250 static void 		fxp_scb_wait(struct fxp_softc *sc);
251 static void		fxp_scb_cmd(struct fxp_softc *sc, int cmd);
252 static void		fxp_dma_wait(volatile u_int16_t *status,
253 			    struct fxp_softc *sc);
254 
255 static device_method_t fxp_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		fxp_probe),
258 	DEVMETHOD(device_attach,	fxp_attach),
259 	DEVMETHOD(device_detach,	fxp_detach),
260 	DEVMETHOD(device_shutdown,	fxp_shutdown),
261 	DEVMETHOD(device_suspend,	fxp_suspend),
262 	DEVMETHOD(device_resume,	fxp_resume),
263 
264 	/* MII interface */
265 	DEVMETHOD(miibus_readreg,	fxp_miibus_readreg),
266 	DEVMETHOD(miibus_writereg,	fxp_miibus_writereg),
267 
268 	{ 0, 0 }
269 };
270 
271 static driver_t fxp_driver = {
272 	"fxp",
273 	fxp_methods,
274 	sizeof(struct fxp_softc),
275 };
276 
277 static devclass_t fxp_devclass;
278 
279 DECLARE_DUMMY_MODULE(if_fxp);
280 MODULE_DEPEND(if_fxp, miibus, 1, 1, 1);
281 DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
282 DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
283 DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
284 
285 static int fxp_rnr;
286 SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
287 
288 /*
289  * Copy a 16-bit aligned 32-bit quantity.
290  */
291 static void
292 fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
293 {
294 #ifdef __i386__
295 	*dst = *src;
296 #else
297 	volatile u_int16_t *a = (volatile u_int16_t *)src;
298 	volatile u_int16_t *b = (volatile u_int16_t *)dst;
299 
300 	b[0] = a[0];
301 	b[1] = a[1];
302 #endif
303 }
304 
305 /*
306  * Wait for the previous command to be accepted (but not necessarily
307  * completed).
308  */
309 static void
310 fxp_scb_wait(struct fxp_softc *sc)
311 {
312 	int i = 10000;
313 
314 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
315 		DELAY(2);
316 	if (i == 0) {
317 		if_printf(&sc->arpcom.ac_if,
318 		    "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
319 		    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
320 		    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
321 		    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
322 		    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
323 	}
324 }
325 
326 static void
327 fxp_scb_cmd(struct fxp_softc *sc, int cmd)
328 {
329 
330 	if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
331 		CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
332 		fxp_scb_wait(sc);
333 	}
334 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
335 }
336 
337 static void
338 fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
339 {
340 	int i = 10000;
341 
342 	while (!(*status & FXP_CB_STATUS_C) && --i)
343 		DELAY(2);
344 	if (i == 0)
345 		if_printf(&sc->arpcom.ac_if, "DMA timeout\n");
346 }
347 
348 /*
349  * Return identification string if this is device is ours.
350  */
351 static int
352 fxp_probe(device_t dev)
353 {
354 	u_int16_t devid;
355 	u_int8_t revid;
356 	struct fxp_ident *ident;
357 
358 	if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
359 		devid = pci_get_device(dev);
360 		revid = pci_get_revid(dev);
361 		for (ident = fxp_ident_table; ident->name != NULL; ident++) {
362 			if (ident->devid == devid &&
363 			    (ident->revid == revid || ident->revid == -1)) {
364 				device_set_desc(dev, ident->name);
365 				return (0);
366 			}
367 		}
368 	}
369 	return (ENXIO);
370 }
371 
372 static void
373 fxp_powerstate_d0(device_t dev)
374 {
375 	u_int32_t iobase, membase, irq;
376 
377 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
378 		/* Save important PCI config data. */
379 		iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
380 		membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
381 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
382 
383 		/* Reset the power state. */
384 		device_printf(dev, "chip is in D%d power mode "
385 		    "-- setting to D0\n", pci_get_powerstate(dev));
386 
387 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
388 
389 		/* Restore PCI config data. */
390 		pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
391 		pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
392 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
393 	}
394 }
395 
396 static int
397 fxp_attach(device_t dev)
398 {
399 	int error = 0;
400 	struct fxp_softc *sc = device_get_softc(dev);
401 	struct ifnet *ifp;
402 	u_int32_t val;
403 	u_int16_t data;
404 	int i, rid, m1, m2, prefer_iomap;
405 
406 	callout_init(&sc->fxp_stat_timer);
407 	sysctl_ctx_init(&sc->sysctl_ctx);
408 
409 	/*
410 	 * Enable bus mastering. Enable memory space too, in case
411 	 * BIOS/Prom forgot about it.
412 	 */
413 	pci_enable_busmaster(dev);
414 	pci_enable_io(dev, SYS_RES_MEMORY);
415 	val = pci_read_config(dev, PCIR_COMMAND, 2);
416 
417 	fxp_powerstate_d0(dev);
418 
419 	/*
420 	 * Figure out which we should try first - memory mapping or i/o mapping?
421 	 * We default to memory mapping. Then we accept an override from the
422 	 * command line. Then we check to see which one is enabled.
423 	 */
424 	m1 = PCIM_CMD_MEMEN;
425 	m2 = PCIM_CMD_PORTEN;
426 	prefer_iomap = 0;
427 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
428 	    "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
429 		m1 = PCIM_CMD_PORTEN;
430 		m2 = PCIM_CMD_MEMEN;
431 	}
432 
433 	if (val & m1) {
434 		sc->rtp =
435 		    (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
436 		sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
437 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
438 		    RF_ACTIVE);
439 	}
440 	if (sc->mem == NULL && (val & m2)) {
441 		sc->rtp =
442 		    (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
443 		sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
444 		sc->mem = bus_alloc_resource_any(dev, sc->rtp, &sc->rgd,
445             	    RF_ACTIVE);
446 	}
447 
448 	if (!sc->mem) {
449 		device_printf(dev, "could not map device registers\n");
450 		error = ENXIO;
451 		goto fail;
452         }
453 	if (bootverbose) {
454 		device_printf(dev, "using %s space register mapping\n",
455 		   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
456 	}
457 
458 	sc->sc_st = rman_get_bustag(sc->mem);
459 	sc->sc_sh = rman_get_bushandle(sc->mem);
460 
461 	/*
462 	 * Allocate our interrupt.
463 	 */
464 	rid = 0;
465 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
466 	    RF_SHAREABLE | RF_ACTIVE);
467 	if (sc->irq == NULL) {
468 		device_printf(dev, "could not map interrupt\n");
469 		error = ENXIO;
470 		goto fail;
471 	}
472 
473 	/*
474 	 * Reset to a stable state.
475 	 */
476 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
477 	DELAY(10);
478 
479 	sc->cbl_base = kmalloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
480 	    M_DEVBUF, M_WAITOK | M_ZERO);
481 
482 	sc->fxp_stats = kmalloc(sizeof(struct fxp_stats), M_DEVBUF,
483 	    M_WAITOK | M_ZERO);
484 
485 	sc->mcsp = kmalloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_WAITOK);
486 
487 	/*
488 	 * Pre-allocate our receive buffers.
489 	 */
490 	for (i = 0; i < FXP_NRFABUFS; i++) {
491 		if (fxp_add_rfabuf(sc, NULL) != 0) {
492 			goto failmem;
493 		}
494 	}
495 
496 	/*
497 	 * Find out how large of an SEEPROM we have.
498 	 */
499 	fxp_autosize_eeprom(sc);
500 
501 	/*
502 	 * Determine whether we must use the 503 serial interface.
503 	 */
504 	fxp_read_eeprom(sc, &data, 6, 1);
505 	if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
506 	    (data & FXP_PHY_SERIAL_ONLY))
507 		sc->flags |= FXP_FLAG_SERIAL_MEDIA;
508 
509 	/*
510 	 * Create the sysctl tree
511 	 */
512 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
513 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
514 	    device_get_nameunit(dev), CTLFLAG_RD, 0, "");
515 	if (sc->sysctl_tree == NULL)
516 		goto fail;
517 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
518 	    OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
519 	    &sc->tunable_int_delay, 0, &sysctl_hw_fxp_int_delay, "I",
520 	    "FXP driver receive interrupt microcode bundling delay");
521 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
522 	    OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
523 	    &sc->tunable_bundle_max, 0, &sysctl_hw_fxp_bundle_max, "I",
524 	    "FXP driver receive interrupt microcode bundle size limit");
525 
526 	/*
527 	 * Pull in device tunables.
528 	 */
529 	sc->tunable_int_delay = TUNABLE_INT_DELAY;
530 	sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
531 	resource_int_value(device_get_name(dev), device_get_unit(dev),
532 	    "int_delay", &sc->tunable_int_delay);
533 	resource_int_value(device_get_name(dev), device_get_unit(dev),
534 	    "bundle_max", &sc->tunable_bundle_max);
535 
536 	/*
537 	 * Find out the chip revision; lump all 82557 revs together.
538 	 */
539 	fxp_read_eeprom(sc, &data, 5, 1);
540 	if ((data >> 8) == 1)
541 		sc->revision = FXP_REV_82557;
542 	else
543 		sc->revision = pci_get_revid(dev);
544 
545 	/*
546 	 * Enable workarounds for certain chip revision deficiencies.
547 	 *
548 	 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
549 	 * some systems based a normal 82559 design, have a defect where
550 	 * the chip can cause a PCI protocol violation if it receives
551 	 * a CU_RESUME command when it is entering the IDLE state.  The
552 	 * workaround is to disable Dynamic Standby Mode, so the chip never
553 	 * deasserts CLKRUN#, and always remains in an active state.
554 	 *
555 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
556 	 */
557 	i = pci_get_device(dev);
558 	if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
559 	    sc->revision >= FXP_REV_82559_A0) {
560 		fxp_read_eeprom(sc, &data, 10, 1);
561 		if (data & 0x02) {			/* STB enable */
562 			u_int16_t cksum;
563 			int i;
564 
565 			device_printf(dev,
566 			    "Disabling dynamic standby mode in EEPROM\n");
567 			data &= ~0x02;
568 			fxp_write_eeprom(sc, &data, 10, 1);
569 			device_printf(dev, "New EEPROM ID: 0x%x\n", data);
570 			cksum = 0;
571 			for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
572 				fxp_read_eeprom(sc, &data, i, 1);
573 				cksum += data;
574 			}
575 			i = (1 << sc->eeprom_size) - 1;
576 			cksum = 0xBABA - cksum;
577 			fxp_read_eeprom(sc, &data, i, 1);
578 			fxp_write_eeprom(sc, &cksum, i, 1);
579 			device_printf(dev,
580 			    "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
581 			    i, data, cksum);
582 #if 1
583 			/*
584 			 * If the user elects to continue, try the software
585 			 * workaround, as it is better than nothing.
586 			 */
587 			sc->flags |= FXP_FLAG_CU_RESUME_BUG;
588 #endif
589 		}
590 	}
591 
592 	/*
593 	 * If we are not a 82557 chip, we can enable extended features.
594 	 */
595 	if (sc->revision != FXP_REV_82557) {
596 		/*
597 		 * If MWI is enabled in the PCI configuration, and there
598 		 * is a valid cacheline size (8 or 16 dwords), then tell
599 		 * the board to turn on MWI.
600 		 */
601 		if (val & PCIM_CMD_MWRICEN &&
602 		    pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
603 			sc->flags |= FXP_FLAG_MWI_ENABLE;
604 
605 		/* turn on the extended TxCB feature */
606 		sc->flags |= FXP_FLAG_EXT_TXCB;
607 
608 		/* enable reception of long frames for VLAN */
609 		sc->flags |= FXP_FLAG_LONG_PKT_EN;
610 	}
611 
612 	/*
613 	 * Read MAC address.
614 	 */
615 	fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
616 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
617 		device_printf(dev, "10Mbps\n");
618 	if (bootverbose) {
619 		device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
620 		    pci_get_vendor(dev), pci_get_device(dev),
621 		    pci_get_subvendor(dev), pci_get_subdevice(dev),
622 		    pci_get_revid(dev));
623 		fxp_read_eeprom(sc, &data, 10, 1);
624 		device_printf(dev, "Dynamic Standby mode is %s\n",
625 		    data & 0x02 ? "enabled" : "disabled");
626 	}
627 
628 	/*
629 	 * If this is only a 10Mbps device, then there is no MII, and
630 	 * the PHY will use a serial interface instead.
631 	 *
632 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
633 	 * doesn't have a programming interface of any sort.  The
634 	 * media is sensed automatically based on how the link partner
635 	 * is configured.  This is, in essence, manual configuration.
636 	 */
637 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
638 		ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
639 		    fxp_serial_ifmedia_sts);
640 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
641 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
642 	} else {
643 		if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
644 		    fxp_ifmedia_sts)) {
645 	                device_printf(dev, "MII without any PHY!\n");
646 			error = ENXIO;
647 			goto fail;
648 		}
649 	}
650 
651 	ifp = &sc->arpcom.ac_if;
652 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653 	ifp->if_baudrate = 100000000;
654 	ifp->if_init = fxp_init;
655 	ifp->if_softc = sc;
656 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
657 	ifp->if_ioctl = fxp_ioctl;
658 	ifp->if_start = fxp_start;
659 #ifdef DEVICE_POLLING
660 	ifp->if_poll = fxp_poll;
661 #endif
662 	ifp->if_watchdog = fxp_watchdog;
663 
664 	/*
665 	 * Attach the interface.
666 	 */
667 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
668 
669 	/*
670 	 * Tell the upper layer(s) we support long frames.
671 	 */
672 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
673 
674 	/*
675 	 * Let the system queue as many packets as we have available
676 	 * TX descriptors.
677 	 */
678 	ifq_set_maxlen(&ifp->if_snd, FXP_USABLE_TXCB);
679 	ifq_set_ready(&ifp->if_snd);
680 
681 	error = bus_setup_intr(dev, sc->irq, INTR_NETSAFE,
682 			       fxp_intr, sc, &sc->ih,
683 			       ifp->if_serializer);
684 	if (error) {
685 		ether_ifdetach(ifp);
686 		if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
687 			ifmedia_removeall(&sc->sc_media);
688 		device_printf(dev, "could not setup irq\n");
689 		goto fail;
690 	}
691 
692 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq));
693 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
694 
695 	return (0);
696 
697 failmem:
698 	device_printf(dev, "Failed to malloc memory\n");
699 	error = ENOMEM;
700 fail:
701 	fxp_release(dev);
702 	return (error);
703 }
704 
705 /*
706  * release all resources
707  */
708 static void
709 fxp_release(device_t dev)
710 {
711 	struct fxp_softc *sc = device_get_softc(dev);
712 
713 	if (sc->miibus)
714 		device_delete_child(dev, sc->miibus);
715 	bus_generic_detach(dev);
716 
717 	if (sc->cbl_base)
718 		kfree(sc->cbl_base, M_DEVBUF);
719 	if (sc->fxp_stats)
720 		kfree(sc->fxp_stats, M_DEVBUF);
721 	if (sc->mcsp)
722 		kfree(sc->mcsp, M_DEVBUF);
723 	if (sc->rfa_headm)
724 		m_freem(sc->rfa_headm);
725 
726 	if (sc->irq)
727 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
728 	if (sc->mem)
729 		bus_release_resource(dev, sc->rtp, sc->rgd, sc->mem);
730 
731         sysctl_ctx_free(&sc->sysctl_ctx);
732 }
733 
734 /*
735  * Detach interface.
736  */
737 static int
738 fxp_detach(device_t dev)
739 {
740 	struct fxp_softc *sc = device_get_softc(dev);
741 
742 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
743 
744 	/*
745 	 * Stop DMA and drop transmit queue.
746 	 */
747 	fxp_stop(sc);
748 
749 	/*
750 	 * Disable interrupts.
751 	 *
752 	 * NOTE: This should be done after fxp_stop(), because software
753 	 * resetting in fxp_stop() may leave interrupts turned on.
754 	 */
755 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
756 
757 	/*
758 	 * Free all media structures.
759 	 */
760 	if (sc->flags & FXP_FLAG_SERIAL_MEDIA)
761 		ifmedia_removeall(&sc->sc_media);
762 
763 	if (sc->ih)
764 		bus_teardown_intr(dev, sc->irq, sc->ih);
765 
766 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
767 
768 	/*
769 	 * Close down routes etc.
770 	 */
771 	ether_ifdetach(&sc->arpcom.ac_if);
772 
773 	/* Release our allocated resources. */
774 	fxp_release(dev);
775 
776 	return (0);
777 }
778 
779 /*
780  * Device shutdown routine. Called at system shutdown after sync. The
781  * main purpose of this routine is to shut off receiver DMA so that
782  * kernel memory doesn't get clobbered during warmboot.
783  */
784 static int
785 fxp_shutdown(device_t dev)
786 {
787 	struct fxp_softc *sc = device_get_softc(dev);
788 	struct ifnet *ifp = &sc->arpcom.ac_if;
789 
790 	lwkt_serialize_enter(ifp->if_serializer);
791 	/*
792 	 * Make sure that DMA is disabled prior to reboot. Not doing
793 	 * do could allow DMA to corrupt kernel memory during the
794 	 * reboot before the driver initializes.
795 	 */
796 	fxp_stop(sc);
797 	lwkt_serialize_exit(ifp->if_serializer);
798 	return (0);
799 }
800 
801 /*
802  * Device suspend routine.  Stop the interface and save some PCI
803  * settings in case the BIOS doesn't restore them properly on
804  * resume.
805  */
806 static int
807 fxp_suspend(device_t dev)
808 {
809 	struct fxp_softc *sc = device_get_softc(dev);
810 	int i;
811 
812 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
813 
814 	fxp_stop(sc);
815 
816 	for (i = 0; i < 5; i++)
817 		sc->saved_maps[i] = pci_read_config(dev, PCIR_BAR(i), 4);
818 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
819 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
820 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
821 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
822 
823 	sc->suspended = 1;
824 
825 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
826 	return (0);
827 }
828 
829 /*
830  * Device resume routine.  Restore some PCI settings in case the BIOS
831  * doesn't, re-enable busmastering, and restart the interface if
832  * appropriate.
833  */
834 static int
835 fxp_resume(device_t dev)
836 {
837 	struct fxp_softc *sc = device_get_softc(dev);
838 	struct ifnet *ifp = &sc->arpcom.ac_if;
839 	int i;
840 
841 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
842 
843 	fxp_powerstate_d0(dev);
844 
845 	/* better way to do this? */
846 	for (i = 0; i < 5; i++)
847 		pci_write_config(dev, PCIR_BAR(i), sc->saved_maps[i], 4);
848 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
849 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
850 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
851 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
852 
853 	/* reenable busmastering and memory space */
854 	pci_enable_busmaster(dev);
855 	pci_enable_io(dev, SYS_RES_MEMORY);
856 
857 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
858 	DELAY(10);
859 
860 	/* reinitialize interface if necessary */
861 	if (ifp->if_flags & IFF_UP)
862 		fxp_init(sc);
863 
864 	sc->suspended = 0;
865 
866 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
867 	return (0);
868 }
869 
870 static void
871 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
872 {
873 	u_int16_t reg;
874 	int x;
875 
876 	/*
877 	 * Shift in data.
878 	 */
879 	for (x = 1 << (length - 1); x; x >>= 1) {
880 		if (data & x)
881 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
882 		else
883 			reg = FXP_EEPROM_EECS;
884 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
885 		DELAY(1);
886 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
887 		DELAY(1);
888 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
889 		DELAY(1);
890 	}
891 }
892 
893 /*
894  * Read from the serial EEPROM. Basically, you manually shift in
895  * the read opcode (one bit at a time) and then shift in the address,
896  * and then you shift out the data (all of this one bit at a time).
897  * The word size is 16 bits, so you have to provide the address for
898  * every 16 bits of data.
899  */
900 static u_int16_t
901 fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
902 {
903 	u_int16_t reg, data;
904 	int x;
905 
906 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
907 	/*
908 	 * Shift in read opcode.
909 	 */
910 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
911 	/*
912 	 * Shift in address.
913 	 */
914 	data = 0;
915 	for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
916 		if (offset & x)
917 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
918 		else
919 			reg = FXP_EEPROM_EECS;
920 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
921 		DELAY(1);
922 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
923 		DELAY(1);
924 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
925 		DELAY(1);
926 		reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
927 		data++;
928 		if (autosize && reg == 0) {
929 			sc->eeprom_size = data;
930 			break;
931 		}
932 	}
933 	/*
934 	 * Shift out data.
935 	 */
936 	data = 0;
937 	reg = FXP_EEPROM_EECS;
938 	for (x = 1 << 15; x; x >>= 1) {
939 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
940 		DELAY(1);
941 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
942 			data |= x;
943 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
944 		DELAY(1);
945 	}
946 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
947 	DELAY(1);
948 
949 	return (data);
950 }
951 
952 static void
953 fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
954 {
955 	int i;
956 
957 	/*
958 	 * Erase/write enable.
959 	 */
960 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
961 	fxp_eeprom_shiftin(sc, 0x4, 3);
962 	fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
963 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
964 	DELAY(1);
965 	/*
966 	 * Shift in write opcode, address, data.
967 	 */
968 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
969 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
970 	fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
971 	fxp_eeprom_shiftin(sc, data, 16);
972 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
973 	DELAY(1);
974 	/*
975 	 * Wait for EEPROM to finish up.
976 	 */
977 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
978 	DELAY(1);
979 	for (i = 0; i < 1000; i++) {
980 		if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
981 			break;
982 		DELAY(50);
983 	}
984 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
985 	DELAY(1);
986 	/*
987 	 * Erase/write disable.
988 	 */
989 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
990 	fxp_eeprom_shiftin(sc, 0x4, 3);
991 	fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
992 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
993 	DELAY(1);
994 }
995 
996 /*
997  * From NetBSD:
998  *
999  * Figure out EEPROM size.
1000  *
1001  * 559's can have either 64-word or 256-word EEPROMs, the 558
1002  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1003  * talks about the existance of 16 to 256 word EEPROMs.
1004  *
1005  * The only known sizes are 64 and 256, where the 256 version is used
1006  * by CardBus cards to store CIS information.
1007  *
1008  * The address is shifted in msb-to-lsb, and after the last
1009  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1010  * after which follows the actual data. We try to detect this zero, by
1011  * probing the data-out bit in the EEPROM control register just after
1012  * having shifted in a bit. If the bit is zero, we assume we've
1013  * shifted enough address bits. The data-out should be tri-state,
1014  * before this, which should translate to a logical one.
1015  */
1016 static void
1017 fxp_autosize_eeprom(struct fxp_softc *sc)
1018 {
1019 
1020 	/* guess maximum size of 256 words */
1021 	sc->eeprom_size = 8;
1022 
1023 	/* autosize */
1024 	fxp_eeprom_getword(sc, 0, 1);
1025 }
1026 
1027 static void
1028 fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < words; i++)
1033 		data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1034 }
1035 
1036 static void
1037 fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < words; i++)
1042 		fxp_eeprom_putword(sc, offset + i, data[i]);
1043 }
1044 
1045 /*
1046  * Start packet transmission on the interface.
1047  */
1048 static void
1049 fxp_start(struct ifnet *ifp)
1050 {
1051 	struct fxp_softc *sc = ifp->if_softc;
1052 	struct fxp_cb_tx *txp;
1053 
1054 	ASSERT_SERIALIZED(ifp->if_serializer);
1055 
1056 	/*
1057 	 * See if we need to suspend xmit until the multicast filter
1058 	 * has been reprogrammed (which can only be done at the head
1059 	 * of the command chain).
1060 	 */
1061 	if (sc->need_mcsetup) {
1062 		ifq_purge(&ifp->if_snd);
1063 		return;
1064 	}
1065 
1066 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1067 		return;
1068 
1069 	txp = NULL;
1070 
1071 	/*
1072 	 * We're finished if there is nothing more to add to the list or if
1073 	 * we're all filled up with buffers to transmit.
1074 	 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1075 	 *       a NOP command when needed.
1076 	 */
1077 	while (!ifq_is_empty(&ifp->if_snd) && sc->tx_queued < FXP_USABLE_TXCB) {
1078 		struct mbuf *m, *mb_head;
1079 		int segment, ntries = 0;
1080 
1081 		/*
1082 		 * Grab a packet to transmit.
1083 		 */
1084 		mb_head = ifq_dequeue(&ifp->if_snd, NULL);
1085 		if (mb_head == NULL)
1086 			break;
1087 tbdinit:
1088 		/*
1089 		 * Make sure that the packet fits into one TX desc
1090 		 */
1091 		segment = 0;
1092 		for (m = mb_head; m != NULL; m = m->m_next) {
1093 			if (m->m_len != 0) {
1094 				++segment;
1095 				if (segment >= FXP_NTXSEG)
1096 					break;
1097 			}
1098 		}
1099 		if (segment >= FXP_NTXSEG) {
1100 			struct mbuf *mn;
1101 
1102 			if (ntries) {
1103 				/*
1104 				 * Packet is excessively fragmented,
1105 				 * and will never fit into one TX
1106 				 * desc.  Give it up.
1107 				 */
1108 				m_freem(mb_head);
1109 				ifp->if_oerrors++;
1110 				continue;
1111 			}
1112 
1113 			mn = m_dup(mb_head, MB_DONTWAIT);
1114 			if (mn == NULL) {
1115 				m_freem(mb_head);
1116 				ifp->if_oerrors++;
1117 				continue;
1118 			}
1119 
1120 			m_freem(mb_head);
1121 			mb_head = mn;
1122 			ntries = 1;
1123 			goto tbdinit;
1124 		}
1125 
1126 		/*
1127 		 * Get pointer to next available tx desc.
1128 		 */
1129 		txp = sc->cbl_last->next;
1130 
1131 		/*
1132 		 * Go through each of the mbufs in the chain and initialize
1133 		 * the transmit buffer descriptors with the physical address
1134 		 * and size of the mbuf.
1135 		 */
1136 		for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1137 			if (m->m_len != 0) {
1138 				KKASSERT(segment < FXP_NTXSEG);
1139 
1140 				txp->tbd[segment].tb_addr =
1141 				    vtophys(mtod(m, vm_offset_t));
1142 				txp->tbd[segment].tb_size = m->m_len;
1143 				segment++;
1144 			}
1145 		}
1146 		KKASSERT(m == NULL);
1147 
1148 		txp->tbd_number = segment;
1149 		txp->mb_head = mb_head;
1150 		txp->cb_status = 0;
1151 		if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1152 			txp->cb_command =
1153 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1154 			    FXP_CB_COMMAND_S;
1155 		} else {
1156 			txp->cb_command =
1157 			    FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1158 			    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1159 		}
1160 		txp->tx_threshold = tx_threshold;
1161 
1162 		/*
1163 		 * Advance the end of list forward.
1164 		 */
1165 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1166 		sc->cbl_last = txp;
1167 
1168 		/*
1169 		 * Advance the beginning of the list forward if there are
1170 		 * no other packets queued (when nothing is queued, cbl_first
1171 		 * sits on the last TxCB that was sent out).
1172 		 */
1173 		if (sc->tx_queued == 0)
1174 			sc->cbl_first = txp;
1175 
1176 		sc->tx_queued++;
1177 		/*
1178 		 * Set a 5 second timer just in case we don't hear
1179 		 * from the card again.
1180 		 */
1181 		ifp->if_timer = 5;
1182 
1183 		BPF_MTAP(ifp, mb_head);
1184 	}
1185 
1186 	if (sc->tx_queued >= FXP_USABLE_TXCB)
1187 		ifp->if_flags |= IFF_OACTIVE;
1188 
1189 	/*
1190 	 * We're finished. If we added to the list, issue a RESUME to get DMA
1191 	 * going again if suspended.
1192 	 */
1193 	if (txp != NULL) {
1194 		fxp_scb_wait(sc);
1195 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1196 	}
1197 }
1198 
1199 #ifdef DEVICE_POLLING
1200 
1201 static void
1202 fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1203 {
1204 	struct fxp_softc *sc = ifp->if_softc;
1205 	u_int8_t statack;
1206 
1207 	ASSERT_SERIALIZED(ifp->if_serializer);
1208 
1209 	switch(cmd) {
1210 	case POLL_REGISTER:
1211 		/* disable interrupts */
1212 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1213 		break;
1214 	case POLL_DEREGISTER:
1215 		/* enable interrupts */
1216 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1217 		break;
1218 	default:
1219 		statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1220 			  FXP_SCB_STATACK_FR;
1221 		if (cmd == POLL_AND_CHECK_STATUS) {
1222 			u_int8_t tmp;
1223 
1224 			tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1225 			if (tmp == 0xff || tmp == 0)
1226 				return; /* nothing to do */
1227 			tmp &= ~statack;
1228 			/* ack what we can */
1229 			if (tmp != 0)
1230 				CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1231 			statack |= tmp;
1232 		}
1233 		fxp_intr_body(sc, statack, count);
1234 		break;
1235 	}
1236 }
1237 
1238 #endif /* DEVICE_POLLING */
1239 
1240 /*
1241  * Process interface interrupts.
1242  */
1243 static void
1244 fxp_intr(void *xsc)
1245 {
1246 	struct fxp_softc *sc = xsc;
1247 	u_int8_t statack;
1248 
1249 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
1250 
1251 	if (sc->suspended) {
1252 		return;
1253 	}
1254 
1255 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1256 		/*
1257 		 * It should not be possible to have all bits set; the
1258 		 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1259 		 * all bits are set, this may indicate that the card has
1260 		 * been physically ejected, so ignore it.
1261 		 */
1262 		if (statack == 0xff)
1263 			return;
1264 
1265 		/*
1266 		 * First ACK all the interrupts in this pass.
1267 		 */
1268 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1269 		fxp_intr_body(sc, statack, -1);
1270 	}
1271 }
1272 
1273 static void
1274 fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1275 {
1276 	struct ifnet *ifp = &sc->arpcom.ac_if;
1277 	struct mbuf *m;
1278 	struct fxp_rfa *rfa;
1279 	int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1280 #ifdef ETHER_INPUT_CHAIN
1281 	struct mbuf_chain chain[MAXCPU];
1282 #endif
1283 
1284 	if (rnr)
1285 		fxp_rnr++;
1286 #ifdef DEVICE_POLLING
1287 	/* Pick up a deferred RNR condition if `count' ran out last time. */
1288 	if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1289 		sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1290 		rnr = 1;
1291 	}
1292 #endif
1293 
1294 	/*
1295 	 * Free any finished transmit mbuf chains.
1296 	 *
1297 	 * Handle the CNA event likt a CXTNO event. It used to
1298 	 * be that this event (control unit not ready) was not
1299 	 * encountered, but it is now with the SMPng modifications.
1300 	 * The exact sequence of events that occur when the interface
1301 	 * is brought up are different now, and if this event
1302 	 * goes unhandled, the configuration/rxfilter setup sequence
1303 	 * can stall for several seconds. The result is that no
1304 	 * packets go out onto the wire for about 5 to 10 seconds
1305 	 * after the interface is ifconfig'ed for the first time.
1306 	 */
1307 	if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1308 		struct fxp_cb_tx *txp;
1309 
1310 		for (txp = sc->cbl_first; sc->tx_queued &&
1311 		    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1312 		    txp = txp->next) {
1313 			if ((m = txp->mb_head) != NULL) {
1314 				txp->mb_head = NULL;
1315 				sc->tx_queued--;
1316 				m_freem(m);
1317 			} else {
1318 				sc->tx_queued--;
1319 			}
1320 		}
1321 		sc->cbl_first = txp;
1322 
1323 		if (sc->tx_queued < FXP_USABLE_TXCB)
1324 			ifp->if_flags &= ~IFF_OACTIVE;
1325 
1326 		if (sc->tx_queued == 0) {
1327 			ifp->if_timer = 0;
1328 			if (sc->need_mcsetup)
1329 				fxp_mc_setup(sc);
1330 		}
1331 
1332 		/*
1333 		 * Try to start more packets transmitting.
1334 		 */
1335 		if (!ifq_is_empty(&ifp->if_snd))
1336 			if_devstart(ifp);
1337 	}
1338 
1339 	/*
1340 	 * Just return if nothing happened on the receive side.
1341 	 */
1342 	if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1343 		return;
1344 
1345 #ifdef ETHER_INPUT_CHAIN
1346 	ether_input_chain_init(chain);
1347 #endif
1348 
1349 	/*
1350 	 * Process receiver interrupts. If a no-resource (RNR)
1351 	 * condition exists, get whatever packets we can and
1352 	 * re-start the receiver.
1353 	 *
1354 	 * When using polling, we do not process the list to completion,
1355 	 * so when we get an RNR interrupt we must defer the restart
1356 	 * until we hit the last buffer with the C bit set.
1357 	 * If we run out of cycles and rfa_headm has the C bit set,
1358 	 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1359 	 * that the info will be used in the subsequent polling cycle.
1360 	 */
1361 	for (;;) {
1362 		m = sc->rfa_headm;
1363 		rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1364 		    RFA_ALIGNMENT_FUDGE);
1365 
1366 #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1367 		if (count >= 0 && count-- == 0) {
1368 			if (rnr) {
1369 				/* Defer RNR processing until the next time. */
1370 				sc->flags |= FXP_FLAG_DEFERRED_RNR;
1371 				rnr = 0;
1372 			}
1373 			break;
1374 		}
1375 #endif /* DEVICE_POLLING */
1376 
1377 		if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1378 			break;
1379 
1380 		/*
1381 		 * Remove first packet from the chain.
1382 		 */
1383 		sc->rfa_headm = m->m_next;
1384 		m->m_next = NULL;
1385 
1386 		/*
1387 		 * Add a new buffer to the receive chain.
1388 		 * If this fails, the old buffer is recycled
1389 		 * instead.
1390 		 */
1391 		if (fxp_add_rfabuf(sc, m) == 0) {
1392 			int total_len;
1393 
1394 			/*
1395 			 * Fetch packet length (the top 2 bits of
1396 			 * actual_size are flags set by the controller
1397 			 * upon completion), and drop the packet in case
1398 			 * of bogus length or CRC errors.
1399 			 */
1400 			total_len = rfa->actual_size & 0x3fff;
1401 			if (total_len < sizeof(struct ether_header) ||
1402 			    total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1403 				sizeof(struct fxp_rfa) ||
1404 			    rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1405 				m_freem(m);
1406 				continue;
1407 			}
1408 			m->m_pkthdr.len = m->m_len = total_len;
1409 #ifdef ETHER_INPUT_CHAIN
1410 			ether_input_chain2(ifp, m, chain);
1411 #else
1412 			ifp->if_input(ifp, m);
1413 #endif
1414 		}
1415 	}
1416 
1417 #ifdef ETHER_INPUT_CHAIN
1418 	ether_input_dispatch(chain);
1419 #endif
1420 
1421 	if (rnr) {
1422 		fxp_scb_wait(sc);
1423 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1424 		    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1425 		    RFA_ALIGNMENT_FUDGE);
1426 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1427 	}
1428 }
1429 
1430 /*
1431  * Update packet in/out/collision statistics. The i82557 doesn't
1432  * allow you to access these counters without doing a fairly
1433  * expensive DMA to get _all_ of the statistics it maintains, so
1434  * we do this operation here only once per second. The statistics
1435  * counters in the kernel are updated from the previous dump-stats
1436  * DMA and then a new dump-stats DMA is started. The on-chip
1437  * counters are zeroed when the DMA completes. If we can't start
1438  * the DMA immediately, we don't wait - we just prepare to read
1439  * them again next time.
1440  */
1441 static void
1442 fxp_tick(void *xsc)
1443 {
1444 	struct fxp_softc *sc = xsc;
1445 	struct ifnet *ifp = &sc->arpcom.ac_if;
1446 	struct fxp_stats *sp = sc->fxp_stats;
1447 	struct fxp_cb_tx *txp;
1448 	struct mbuf *m;
1449 
1450 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1451 
1452 	ifp->if_opackets += sp->tx_good;
1453 	ifp->if_collisions += sp->tx_total_collisions;
1454 	if (sp->rx_good) {
1455 		ifp->if_ipackets += sp->rx_good;
1456 		sc->rx_idle_secs = 0;
1457 	} else {
1458 		/*
1459 		 * Receiver's been idle for another second.
1460 		 */
1461 		sc->rx_idle_secs++;
1462 	}
1463 	ifp->if_ierrors +=
1464 	    sp->rx_crc_errors +
1465 	    sp->rx_alignment_errors +
1466 	    sp->rx_rnr_errors +
1467 	    sp->rx_overrun_errors;
1468 	/*
1469 	 * If any transmit underruns occured, bump up the transmit
1470 	 * threshold by another 512 bytes (64 * 8).
1471 	 */
1472 	if (sp->tx_underruns) {
1473 		ifp->if_oerrors += sp->tx_underruns;
1474 		if (tx_threshold < 192)
1475 			tx_threshold += 64;
1476 	}
1477 
1478 	/*
1479 	 * Release any xmit buffers that have completed DMA. This isn't
1480 	 * strictly necessary to do here, but it's advantagous for mbufs
1481 	 * with external storage to be released in a timely manner rather
1482 	 * than being defered for a potentially long time. This limits
1483 	 * the delay to a maximum of one second.
1484 	 */
1485 	for (txp = sc->cbl_first; sc->tx_queued &&
1486 	    (txp->cb_status & FXP_CB_STATUS_C) != 0;
1487 	    txp = txp->next) {
1488 		if ((m = txp->mb_head) != NULL) {
1489 			txp->mb_head = NULL;
1490 			sc->tx_queued--;
1491 			m_freem(m);
1492 		} else {
1493 			sc->tx_queued--;
1494 		}
1495 	}
1496 	sc->cbl_first = txp;
1497 
1498 	if (sc->tx_queued < FXP_USABLE_TXCB)
1499 		ifp->if_flags &= ~IFF_OACTIVE;
1500 	if (sc->tx_queued == 0)
1501 		ifp->if_timer = 0;
1502 
1503  	/*
1504 	 * Try to start more packets transmitting.
1505 	 */
1506 	if (!ifq_is_empty(&ifp->if_snd))
1507 		if_devstart(ifp);
1508 
1509 	/*
1510 	 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1511 	 * then assume the receiver has locked up and attempt to clear
1512 	 * the condition by reprogramming the multicast filter. This is
1513 	 * a work-around for a bug in the 82557 where the receiver locks
1514 	 * up if it gets certain types of garbage in the syncronization
1515 	 * bits prior to the packet header. This bug is supposed to only
1516 	 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1517 	 * mode as well (perhaps due to a 10/100 speed transition).
1518 	 */
1519 	if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1520 		sc->rx_idle_secs = 0;
1521 		fxp_mc_setup(sc);
1522 	}
1523 	/*
1524 	 * If there is no pending command, start another stats
1525 	 * dump. Otherwise punt for now.
1526 	 */
1527 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1528 		/*
1529 		 * Start another stats dump.
1530 		 */
1531 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1532 	} else {
1533 		/*
1534 		 * A previous command is still waiting to be accepted.
1535 		 * Just zero our copy of the stats and wait for the
1536 		 * next timer event to update them.
1537 		 */
1538 		sp->tx_good = 0;
1539 		sp->tx_underruns = 0;
1540 		sp->tx_total_collisions = 0;
1541 
1542 		sp->rx_good = 0;
1543 		sp->rx_crc_errors = 0;
1544 		sp->rx_alignment_errors = 0;
1545 		sp->rx_rnr_errors = 0;
1546 		sp->rx_overrun_errors = 0;
1547 	}
1548 	if (sc->miibus != NULL)
1549 		mii_tick(device_get_softc(sc->miibus));
1550 	/*
1551 	 * Schedule another timeout one second from now.
1552 	 */
1553 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1554 
1555 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1556 }
1557 
1558 /*
1559  * Stop the interface. Cancels the statistics updater and resets
1560  * the interface.
1561  */
1562 static void
1563 fxp_stop(struct fxp_softc *sc)
1564 {
1565 	struct ifnet *ifp = &sc->arpcom.ac_if;
1566 	struct fxp_cb_tx *txp;
1567 	int i;
1568 
1569 	ASSERT_SERIALIZED(ifp->if_serializer);
1570 
1571 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1572 	ifp->if_timer = 0;
1573 
1574 	/*
1575 	 * Cancel stats updater.
1576 	 */
1577 	callout_stop(&sc->fxp_stat_timer);
1578 
1579 	/*
1580 	 * Issue software reset, which also unloads the microcode.
1581 	 */
1582 	sc->flags &= ~FXP_FLAG_UCODE;
1583 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1584 	DELAY(50);
1585 
1586 	/*
1587 	 * Release any xmit buffers.
1588 	 */
1589 	txp = sc->cbl_base;
1590 	if (txp != NULL) {
1591 		for (i = 0; i < FXP_NTXCB; i++) {
1592 			if (txp[i].mb_head != NULL) {
1593 				m_freem(txp[i].mb_head);
1594 				txp[i].mb_head = NULL;
1595 			}
1596 		}
1597 	}
1598 	sc->tx_queued = 0;
1599 
1600 	/*
1601 	 * Free all the receive buffers then reallocate/reinitialize
1602 	 */
1603 	if (sc->rfa_headm != NULL)
1604 		m_freem(sc->rfa_headm);
1605 	sc->rfa_headm = NULL;
1606 	sc->rfa_tailm = NULL;
1607 	for (i = 0; i < FXP_NRFABUFS; i++) {
1608 		if (fxp_add_rfabuf(sc, NULL) != 0) {
1609 			/*
1610 			 * This "can't happen" - we're at splimp()
1611 			 * and we just freed all the buffers we need
1612 			 * above.
1613 			 */
1614 			panic("fxp_stop: no buffers!");
1615 		}
1616 	}
1617 }
1618 
1619 /*
1620  * Watchdog/transmission transmit timeout handler. Called when a
1621  * transmission is started on the interface, but no interrupt is
1622  * received before the timeout. This usually indicates that the
1623  * card has wedged for some reason.
1624  */
1625 static void
1626 fxp_watchdog(struct ifnet *ifp)
1627 {
1628 	ASSERT_SERIALIZED(ifp->if_serializer);
1629 
1630 	if_printf(ifp, "device timeout\n");
1631 	ifp->if_oerrors++;
1632 	fxp_init(ifp->if_softc);
1633 }
1634 
1635 static void
1636 fxp_init(void *xsc)
1637 {
1638 	struct fxp_softc *sc = xsc;
1639 	struct ifnet *ifp = &sc->arpcom.ac_if;
1640 	struct fxp_cb_config *cbp;
1641 	struct fxp_cb_ias *cb_ias;
1642 	struct fxp_cb_tx *txp;
1643 	struct fxp_cb_mcs *mcsp;
1644 	int i, prm;
1645 
1646 	ASSERT_SERIALIZED(ifp->if_serializer);
1647 
1648 	/*
1649 	 * Cancel any pending I/O
1650 	 */
1651 	fxp_stop(sc);
1652 
1653 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1654 
1655 	/*
1656 	 * Initialize base of CBL and RFA memory. Loading with zero
1657 	 * sets it up for regular linear addressing.
1658 	 */
1659 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1660 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1661 
1662 	fxp_scb_wait(sc);
1663 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1664 
1665 	/*
1666 	 * Initialize base of dump-stats buffer.
1667 	 */
1668 	fxp_scb_wait(sc);
1669 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1670 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1671 
1672 	/*
1673 	 * Attempt to load microcode if requested.
1674 	 */
1675 	if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1676 		fxp_load_ucode(sc);
1677 
1678 	/*
1679 	 * Initialize the multicast address list.
1680 	 */
1681 	if (fxp_mc_addrs(sc)) {
1682 		mcsp = sc->mcsp;
1683 		mcsp->cb_status = 0;
1684 		mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1685 		mcsp->link_addr = -1;
1686 		/*
1687 	 	 * Start the multicast setup command.
1688 		 */
1689 		fxp_scb_wait(sc);
1690 		CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1691 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1692 		/* ...and wait for it to complete. */
1693 		fxp_dma_wait(&mcsp->cb_status, sc);
1694 	}
1695 
1696 	/*
1697 	 * We temporarily use memory that contains the TxCB list to
1698 	 * construct the config CB. The TxCB list memory is rebuilt
1699 	 * later.
1700 	 */
1701 	cbp = (struct fxp_cb_config *) sc->cbl_base;
1702 
1703 	/*
1704 	 * This bcopy is kind of disgusting, but there are a bunch of must be
1705 	 * zero and must be one bits in this structure and this is the easiest
1706 	 * way to initialize them all to proper values.
1707 	 */
1708 	bcopy(fxp_cb_config_template,
1709 		(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1710 		sizeof(fxp_cb_config_template));
1711 
1712 	cbp->cb_status =	0;
1713 	cbp->cb_command =	FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1714 	cbp->link_addr =	-1;	/* (no) next command */
1715 	cbp->byte_count =	22;	/* (22) bytes to config */
1716 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
1717 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
1718 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
1719 	cbp->mwi_enable =	sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1720 	cbp->type_enable =	0;	/* actually reserved */
1721 	cbp->read_align_en =	sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1722 	cbp->end_wr_on_cl =	sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1723 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
1724 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
1725 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
1726 	cbp->late_scb =		0;	/* (don't) defer SCB update */
1727 	cbp->direct_dma_dis =	1;	/* disable direct rcv dma mode */
1728 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
1729 	cbp->ci_int =		1;	/* interrupt on CU idle */
1730 	cbp->ext_txcb_dis = 	sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1731 	cbp->ext_stats_dis = 	1;	/* disable extended counters */
1732 	cbp->keep_overrun_rx = 	0;	/* don't pass overrun frames to host */
1733 	cbp->save_bf =		sc->revision == FXP_REV_82557 ? 1 : prm;
1734 	cbp->disc_short_rx =	!prm;	/* discard short packets */
1735 	cbp->underrun_retry =	1;	/* retry mode (once) on DMA underrun */
1736 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
1737 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
1738 	cbp->mediatype =	sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1739 	cbp->csma_dis =		0;	/* (don't) disable link */
1740 	cbp->tcp_udp_cksum =	0;	/* (don't) enable checksum */
1741 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
1742 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
1743 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
1744 	cbp->mc_wake_en =	0;	/* (don't) enable PME# on mcmatch */
1745 	cbp->nsai =		1;	/* (don't) disable source addr insert */
1746 	cbp->preamble_length =	2;	/* (7 byte) preamble */
1747 	cbp->loopback =		0;	/* (don't) loopback */
1748 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
1749 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
1750 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
1751 	cbp->promiscuous =	prm;	/* promiscuous mode */
1752 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
1753 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
1754 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
1755 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
1756 	cbp->crscdt =		sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1757 
1758 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
1759 	cbp->padding =		1;	/* (do) pad short tx packets */
1760 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
1761 	cbp->long_rx_en =	sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1762 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
1763 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
1764 					/* must set wake_en in PMCSR also */
1765 	cbp->force_fdx =	0;	/* (don't) force full duplex */
1766 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
1767 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
1768 	cbp->mc_all =		sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1769 
1770 	if (sc->revision == FXP_REV_82557) {
1771 		/*
1772 		 * The 82557 has no hardware flow control, the values
1773 		 * below are the defaults for the chip.
1774 		 */
1775 		cbp->fc_delay_lsb =	0;
1776 		cbp->fc_delay_msb =	0x40;
1777 		cbp->pri_fc_thresh =	3;
1778 		cbp->tx_fc_dis =	0;
1779 		cbp->rx_fc_restop =	0;
1780 		cbp->rx_fc_restart =	0;
1781 		cbp->fc_filter =	0;
1782 		cbp->pri_fc_loc =	1;
1783 	} else {
1784 		cbp->fc_delay_lsb =	0x1f;
1785 		cbp->fc_delay_msb =	0x01;
1786 		cbp->pri_fc_thresh =	3;
1787 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
1788 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
1789 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
1790 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
1791 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
1792 	}
1793 
1794 	/*
1795 	 * Start the config command/DMA.
1796 	 */
1797 	fxp_scb_wait(sc);
1798 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1799 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1800 	/* ...and wait for it to complete. */
1801 	fxp_dma_wait(&cbp->cb_status, sc);
1802 
1803 	/*
1804 	 * Now initialize the station address. Temporarily use the TxCB
1805 	 * memory area like we did above for the config CB.
1806 	 */
1807 	cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1808 	cb_ias->cb_status = 0;
1809 	cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1810 	cb_ias->link_addr = -1;
1811 	bcopy(sc->arpcom.ac_enaddr,
1812 	    (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1813 	    sizeof(sc->arpcom.ac_enaddr));
1814 
1815 	/*
1816 	 * Start the IAS (Individual Address Setup) command/DMA.
1817 	 */
1818 	fxp_scb_wait(sc);
1819 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1820 	/* ...and wait for it to complete. */
1821 	fxp_dma_wait(&cb_ias->cb_status, sc);
1822 
1823 	/*
1824 	 * Initialize transmit control block (TxCB) list.
1825 	 */
1826 
1827 	txp = sc->cbl_base;
1828 	bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1829 	for (i = 0; i < FXP_NTXCB; i++) {
1830 		txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1831 		txp[i].cb_command = FXP_CB_COMMAND_NOP;
1832 		txp[i].link_addr =
1833 		    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1834 		if (sc->flags & FXP_FLAG_EXT_TXCB)
1835 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1836 		else
1837 			txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1838 		txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1839 	}
1840 	/*
1841 	 * Set the suspend flag on the first TxCB and start the control
1842 	 * unit. It will execute the NOP and then suspend.
1843 	 */
1844 	txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1845 	sc->cbl_first = sc->cbl_last = txp;
1846 	sc->tx_queued = 1;
1847 
1848 	fxp_scb_wait(sc);
1849 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1850 
1851 	/*
1852 	 * Initialize receiver buffer area - RFA.
1853 	 */
1854 	fxp_scb_wait(sc);
1855 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1856 	    vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1857 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1858 
1859 	/*
1860 	 * Set current media.
1861 	 */
1862 	if (sc->miibus != NULL)
1863 		mii_mediachg(device_get_softc(sc->miibus));
1864 
1865 	ifp->if_flags |= IFF_RUNNING;
1866 	ifp->if_flags &= ~IFF_OACTIVE;
1867 
1868 	/*
1869 	 * Enable interrupts.
1870 	 */
1871 #ifdef DEVICE_POLLING
1872 	/*
1873 	 * ... but only do that if we are not polling. And because (presumably)
1874 	 * the default is interrupts on, we need to disable them explicitly!
1875 	 */
1876 	if ( ifp->if_flags & IFF_POLLING )
1877 		CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1878 	else
1879 #endif /* DEVICE_POLLING */
1880 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1881 
1882 	/*
1883 	 * Start stats updater.
1884 	 */
1885 	callout_reset(&sc->fxp_stat_timer, hz, fxp_tick, sc);
1886 }
1887 
1888 static int
1889 fxp_serial_ifmedia_upd(struct ifnet *ifp)
1890 {
1891 	ASSERT_SERIALIZED(ifp->if_serializer);
1892 	return (0);
1893 }
1894 
1895 static void
1896 fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1897 {
1898 	ASSERT_SERIALIZED(ifp->if_serializer);
1899 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1900 }
1901 
1902 /*
1903  * Change media according to request.
1904  */
1905 static int
1906 fxp_ifmedia_upd(struct ifnet *ifp)
1907 {
1908 	struct fxp_softc *sc = ifp->if_softc;
1909 	struct mii_data *mii;
1910 
1911 	ASSERT_SERIALIZED(ifp->if_serializer);
1912 
1913 	mii = device_get_softc(sc->miibus);
1914 	mii_mediachg(mii);
1915 	return (0);
1916 }
1917 
1918 /*
1919  * Notify the world which media we're using.
1920  */
1921 static void
1922 fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1923 {
1924 	struct fxp_softc *sc = ifp->if_softc;
1925 	struct mii_data *mii;
1926 
1927 	ASSERT_SERIALIZED(ifp->if_serializer);
1928 
1929 	mii = device_get_softc(sc->miibus);
1930 	mii_pollstat(mii);
1931 	ifmr->ifm_active = mii->mii_media_active;
1932 	ifmr->ifm_status = mii->mii_media_status;
1933 
1934 	if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1935 		sc->cu_resume_bug = 1;
1936 	else
1937 		sc->cu_resume_bug = 0;
1938 }
1939 
1940 /*
1941  * Add a buffer to the end of the RFA buffer list.
1942  * Return 0 if successful, 1 for failure. A failure results in
1943  * adding the 'oldm' (if non-NULL) on to the end of the list -
1944  * tossing out its old contents and recycling it.
1945  * The RFA struct is stuck at the beginning of mbuf cluster and the
1946  * data pointer is fixed up to point just past it.
1947  */
1948 static int
1949 fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1950 {
1951 	u_int32_t v;
1952 	struct mbuf *m;
1953 	struct fxp_rfa *rfa, *p_rfa;
1954 
1955 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1956 	if (m == NULL) { /* try to recycle the old mbuf instead */
1957 		if (oldm == NULL)
1958 			return 1;
1959 		m = oldm;
1960 		m->m_data = m->m_ext.ext_buf;
1961 	}
1962 
1963 	/*
1964 	 * Move the data pointer up so that the incoming data packet
1965 	 * will be 32-bit aligned.
1966 	 */
1967 	m->m_data += RFA_ALIGNMENT_FUDGE;
1968 
1969 	/*
1970 	 * Get a pointer to the base of the mbuf cluster and move
1971 	 * data start past it.
1972 	 */
1973 	rfa = mtod(m, struct fxp_rfa *);
1974 	m->m_data += sizeof(struct fxp_rfa);
1975 	rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
1976 
1977 	/*
1978 	 * Initialize the rest of the RFA.  Note that since the RFA
1979 	 * is misaligned, we cannot store values directly.  Instead,
1980 	 * we use an optimized, inline copy.
1981 	 */
1982 
1983 	rfa->rfa_status = 0;
1984 	rfa->rfa_control = FXP_RFA_CONTROL_EL;
1985 	rfa->actual_size = 0;
1986 
1987 	v = -1;
1988 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1989 	fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1990 
1991 	/*
1992 	 * If there are other buffers already on the list, attach this
1993 	 * one to the end by fixing up the tail to point to this one.
1994 	 */
1995 	if (sc->rfa_headm != NULL) {
1996 		p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1997 		    RFA_ALIGNMENT_FUDGE);
1998 		sc->rfa_tailm->m_next = m;
1999 		v = vtophys(rfa);
2000 		fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2001 		p_rfa->rfa_control = 0;
2002 	} else {
2003 		sc->rfa_headm = m;
2004 	}
2005 	sc->rfa_tailm = m;
2006 
2007 	return (m == oldm);
2008 }
2009 
2010 static int
2011 fxp_miibus_readreg(device_t dev, int phy, int reg)
2012 {
2013 	struct fxp_softc *sc = device_get_softc(dev);
2014 	int count = 10000;
2015 	int value;
2016 
2017 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2018 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2019 
2020 	while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2021 	    && count--)
2022 		DELAY(10);
2023 
2024 	if (count <= 0)
2025 		device_printf(dev, "fxp_miibus_readreg: timed out\n");
2026 
2027 	return (value & 0xffff);
2028 }
2029 
2030 static void
2031 fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2032 {
2033 	struct fxp_softc *sc = device_get_softc(dev);
2034 	int count = 10000;
2035 
2036 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2037 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2038 	    (value & 0xffff));
2039 
2040 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2041 	    count--)
2042 		DELAY(10);
2043 
2044 	if (count <= 0)
2045 		device_printf(dev, "fxp_miibus_writereg: timed out\n");
2046 }
2047 
2048 static int
2049 fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2050 {
2051 	struct fxp_softc *sc = ifp->if_softc;
2052 	struct ifreq *ifr = (struct ifreq *)data;
2053 	struct mii_data *mii;
2054 	int error = 0;
2055 
2056 	ASSERT_SERIALIZED(ifp->if_serializer);
2057 
2058 	switch (command) {
2059 
2060 	case SIOCSIFFLAGS:
2061 		if (ifp->if_flags & IFF_ALLMULTI)
2062 			sc->flags |= FXP_FLAG_ALL_MCAST;
2063 		else
2064 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2065 
2066 		/*
2067 		 * If interface is marked up and not running, then start it.
2068 		 * If it is marked down and running, stop it.
2069 		 * XXX If it's up then re-initialize it. This is so flags
2070 		 * such as IFF_PROMISC are handled.
2071 		 */
2072 		if (ifp->if_flags & IFF_UP) {
2073 			fxp_init(sc);
2074 		} else {
2075 			if (ifp->if_flags & IFF_RUNNING)
2076 				fxp_stop(sc);
2077 		}
2078 		break;
2079 
2080 	case SIOCADDMULTI:
2081 	case SIOCDELMULTI:
2082 		if (ifp->if_flags & IFF_ALLMULTI)
2083 			sc->flags |= FXP_FLAG_ALL_MCAST;
2084 		else
2085 			sc->flags &= ~FXP_FLAG_ALL_MCAST;
2086 		/*
2087 		 * Multicast list has changed; set the hardware filter
2088 		 * accordingly.
2089 		 */
2090 		if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2091 			fxp_mc_setup(sc);
2092 		/*
2093 		 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2094 		 * again rather than else {}.
2095 		 */
2096 		if (sc->flags & FXP_FLAG_ALL_MCAST)
2097 			fxp_init(sc);
2098 		error = 0;
2099 		break;
2100 
2101 	case SIOCSIFMEDIA:
2102 	case SIOCGIFMEDIA:
2103 		if (sc->miibus != NULL) {
2104 			mii = device_get_softc(sc->miibus);
2105                         error = ifmedia_ioctl(ifp, ifr,
2106                             &mii->mii_media, command);
2107 		} else {
2108                         error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2109 		}
2110 		break;
2111 
2112 	default:
2113 		error = ether_ioctl(ifp, command, data);
2114 		break;
2115 	}
2116 	return (error);
2117 }
2118 
2119 /*
2120  * Fill in the multicast address list and return number of entries.
2121  */
2122 static int
2123 fxp_mc_addrs(struct fxp_softc *sc)
2124 {
2125 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2126 	struct ifnet *ifp = &sc->arpcom.ac_if;
2127 	struct ifmultiaddr *ifma;
2128 	int nmcasts;
2129 
2130 	nmcasts = 0;
2131 	if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2132 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2133 			if (ifma->ifma_addr->sa_family != AF_LINK)
2134 				continue;
2135 			if (nmcasts >= MAXMCADDR) {
2136 				sc->flags |= FXP_FLAG_ALL_MCAST;
2137 				nmcasts = 0;
2138 				break;
2139 			}
2140 			bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2141 			    (void *)(uintptr_t)(volatile void *)
2142 				&sc->mcsp->mc_addr[nmcasts][0], 6);
2143 			nmcasts++;
2144 		}
2145 	}
2146 	mcsp->mc_cnt = nmcasts * 6;
2147 	return (nmcasts);
2148 }
2149 
2150 /*
2151  * Program the multicast filter.
2152  *
2153  * We have an artificial restriction that the multicast setup command
2154  * must be the first command in the chain, so we take steps to ensure
2155  * this. By requiring this, it allows us to keep up the performance of
2156  * the pre-initialized command ring (esp. link pointers) by not actually
2157  * inserting the mcsetup command in the ring - i.e. its link pointer
2158  * points to the TxCB ring, but the mcsetup descriptor itself is not part
2159  * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2160  * lead into the regular TxCB ring when it completes.
2161  *
2162  * This function must be called at splimp.
2163  */
2164 static void
2165 fxp_mc_setup(struct fxp_softc *sc)
2166 {
2167 	struct fxp_cb_mcs *mcsp = sc->mcsp;
2168 	struct ifnet *ifp = &sc->arpcom.ac_if;
2169 	int count;
2170 
2171 	/*
2172 	 * If there are queued commands, we must wait until they are all
2173 	 * completed. If we are already waiting, then add a NOP command
2174 	 * with interrupt option so that we're notified when all commands
2175 	 * have been completed - fxp_start() ensures that no additional
2176 	 * TX commands will be added when need_mcsetup is true.
2177 	 */
2178 	if (sc->tx_queued) {
2179 		struct fxp_cb_tx *txp;
2180 
2181 		/*
2182 		 * need_mcsetup will be true if we are already waiting for the
2183 		 * NOP command to be completed (see below). In this case, bail.
2184 		 */
2185 		if (sc->need_mcsetup)
2186 			return;
2187 		sc->need_mcsetup = 1;
2188 
2189 		/*
2190 		 * Add a NOP command with interrupt so that we are notified
2191 		 * when all TX commands have been processed.
2192 		 */
2193 		txp = sc->cbl_last->next;
2194 		txp->mb_head = NULL;
2195 		txp->cb_status = 0;
2196 		txp->cb_command = FXP_CB_COMMAND_NOP |
2197 		    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2198 		/*
2199 		 * Advance the end of list forward.
2200 		 */
2201 		sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2202 		sc->cbl_last = txp;
2203 		sc->tx_queued++;
2204 		/*
2205 		 * Issue a resume in case the CU has just suspended.
2206 		 */
2207 		fxp_scb_wait(sc);
2208 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2209 		/*
2210 		 * Set a 5 second timer just in case we don't hear from the
2211 		 * card again.
2212 		 */
2213 		ifp->if_timer = 5;
2214 
2215 		return;
2216 	}
2217 	sc->need_mcsetup = 0;
2218 
2219 	/*
2220 	 * Initialize multicast setup descriptor.
2221 	 */
2222 	mcsp->next = sc->cbl_base;
2223 	mcsp->mb_head = NULL;
2224 	mcsp->cb_status = 0;
2225 	mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2226 	    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2227 	mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2228 	fxp_mc_addrs(sc);
2229 	sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2230 	sc->tx_queued = 1;
2231 
2232 	/*
2233 	 * Wait until command unit is not active. This should never
2234 	 * be the case when nothing is queued, but make sure anyway.
2235 	 */
2236 	count = 100;
2237 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2238 	    FXP_SCB_CUS_ACTIVE && --count)
2239 		DELAY(10);
2240 	if (count == 0) {
2241 		if_printf(&sc->arpcom.ac_if, "command queue timeout\n");
2242 		return;
2243 	}
2244 
2245 	/*
2246 	 * Start the multicast setup command.
2247 	 */
2248 	fxp_scb_wait(sc);
2249 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2250 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2251 
2252 	ifp->if_timer = 2;
2253 	return;
2254 }
2255 
2256 static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2257 static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2258 static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2259 static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2260 static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2261 static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2262 
2263 #define UCODE(x)	x, sizeof(x)
2264 
2265 struct ucode {
2266 	u_int32_t	revision;
2267 	u_int32_t	*ucode;
2268 	int		length;
2269 	u_short		int_delay_offset;
2270 	u_short		bundle_max_offset;
2271 } ucode_table[] = {
2272 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2273 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2274 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2275 	    D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2276 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2277 	    D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2278 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
2279 	    D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2280 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2281 	    D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2282 	{ 0, NULL, 0, 0, 0 }
2283 };
2284 
2285 static void
2286 fxp_load_ucode(struct fxp_softc *sc)
2287 {
2288 	struct ucode *uc;
2289 	struct fxp_cb_ucode *cbp;
2290 
2291 	for (uc = ucode_table; uc->ucode != NULL; uc++)
2292 		if (sc->revision == uc->revision)
2293 			break;
2294 	if (uc->ucode == NULL)
2295 		return;
2296 	cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2297 	cbp->cb_status = 0;
2298 	cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2299 	cbp->link_addr = -1;    	/* (no) next command */
2300 	memcpy(cbp->ucode, uc->ucode, uc->length);
2301 	if (uc->int_delay_offset)
2302 		*(u_short *)&cbp->ucode[uc->int_delay_offset] =
2303 		    sc->tunable_int_delay + sc->tunable_int_delay / 2;
2304 	if (uc->bundle_max_offset)
2305 		*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2306 		    sc->tunable_bundle_max;
2307 	/*
2308 	 * Download the ucode to the chip.
2309 	 */
2310 	fxp_scb_wait(sc);
2311 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2312 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2313 	/* ...and wait for it to complete. */
2314 	fxp_dma_wait(&cbp->cb_status, sc);
2315 	if_printf(&sc->arpcom.ac_if,
2316 	    "Microcode loaded, int_delay: %d usec  bundle_max: %d\n",
2317 	    sc->tunable_int_delay,
2318 	    uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2319 	sc->flags |= FXP_FLAG_UCODE;
2320 }
2321 
2322 /*
2323  * Interrupt delay is expressed in microseconds, a multiplier is used
2324  * to convert this to the appropriate clock ticks before using.
2325  */
2326 static int
2327 sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2328 {
2329 	return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2330 }
2331 
2332 static int
2333 sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2334 {
2335 	return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2336 }
2337